
4.1: PROBLEM DEFINITION**Situation:**

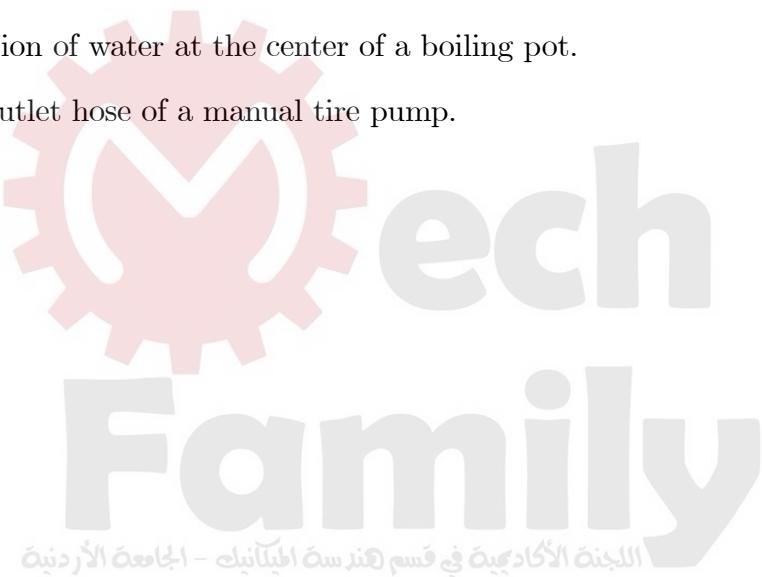
Unsteady flow.

Find:

Identify five examples of an unsteady flow explain what features classify them as unsteady?

SOLUTION

1. Gust of wind blowing past a pole.
2. Flow next to a rock in a natural river.
3. Flow past the lips due to inhaling and exhaling.
4. The motion of water at the center of a boiling pot.
5. At the outlet hose of a manual tire pump.



4.2: PROBLEM DEFINITION

Situation:

Pouring a heavy syrup on pancakes.

Find:

Would the thin film of syrup be a laminar or turbulent flow?

SOLUTION

The velocity is very low, the viscosity is high and the thickness of the layer is thin. These conditions favor laminar flow.



4.3: PROBLEM DEFINITION

Situation:

Breathing through your mouth.

Find:

Sense the air flow patterns near your face. Discuss the type of flow associated with these flow processes.

Why is it easier to blow out a candle by exhaling than by inhaling?

SOLUTION

The main point to this question is that while inhaling, the air is drawn into your mouth without any separation occurring in the flow that is approaching your mouth. Thus there is no concentrated flow; all air velocities in the vicinity of your face are relatively low. However, when exhaling as the air passes by your lips separation occurs thereby concentrating the flow of air which allows you to easily blow out a candle.

4.4: PROBLEM DEFINITION**Situation:**

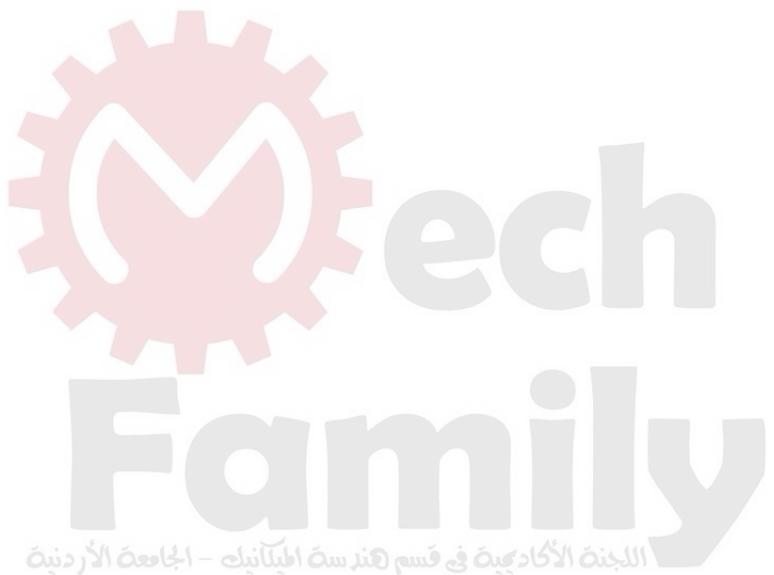
The valve in a system is gradually opened to have a constant rate of increase in discharge.

Find:

Describe the flow at points A and B.

SOLUTION

A:
B:



4.5: PROBLEM DEFINITION**Situation:**

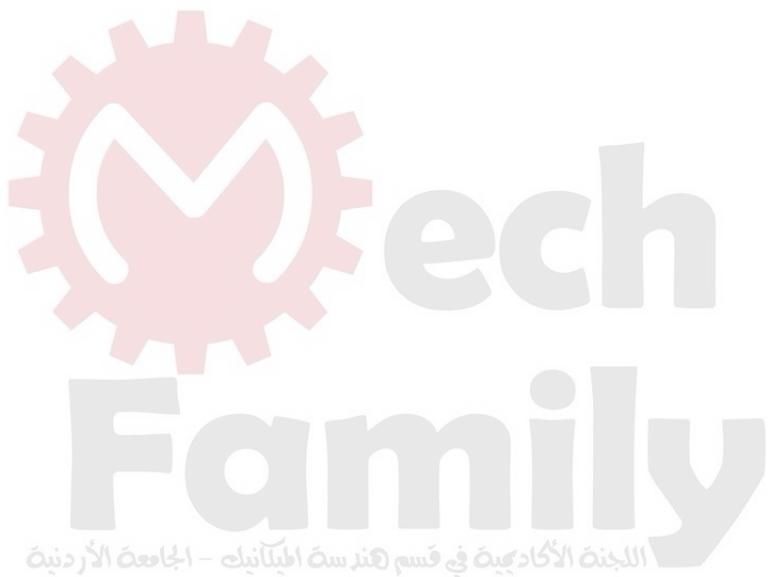
Water flows in a passage with flow rate decreasing with time.

Find:

Describe the flow.

SOLUTION

(b) Unsteady and (d) non-uniform.



4.6: PROBLEM DEFINITION**Situation:**

A flow pattern has converging streamlines.

Find:

Classify the flow.

SOLUTION

Non-uniform; steady or unsteady.

4.7: PROBLEM DEFINITION**Situation:**

A fluid flows in a straight conduit. The conduit has a section with constant diameter, followed by a section with changing diameter.

Find:

Match the given flow labels with the mathematical descriptions.

SOLUTION

Steady flow corresponds to $\partial V_s / \partial t = 0$.

Unsteady flow corresponds to $\partial V_s / \partial t \neq 0$.

Uniform flow corresponds to $\partial V_s / \partial s = 0$.

Non-uniform flow corresponds to $\partial V_s / \partial s \neq 0$.

4.8: PROBLEM DEFINITION**Situation:**

A series of flows are either one, two or three dimensional.

Find:

Classify the flows as one, two or three dimensional.

- (a) Water flow over the crest of a long spillway of a dam.
- (b) Flow in a straight horizontal pipe.
- (c) Flow in a constant-diameter pipeline that follows the contour of the ground in hilly country.
- (d) Airflow from a slit in a plate at the end of a large rectangular duct.
- (e) Airflow past an automobile.
- (f) Air flow past a house.
- (g) Water flow past a pipe that is laid normal to the flow across the bottom of a wide rectangular channel.

SOLUTION

a. <input type="checkbox"/> Two dimensional	e. <input type="checkbox"/> Three dimensional
b. <input type="checkbox"/> One dimensional	f. <input type="checkbox"/> Three dimensional
c. <input type="checkbox"/> One dimensional	g. <input type="checkbox"/> Two dimensional
d. <input type="checkbox"/> Two dimensional	

4.9: PROBLEM DEFINITION**Situation:**

Path of a fluid particle.

Find:

If a light was attached to a fluid particle and take a time exposure, would the image you photographed be a pathline or streakline?

SOLUTION

The pathline is defined as the path taken by a fluid particle moving through a field. The photograph would yield this line.

4.10: PROBLEM DEFINITION**Situation:**

Smoke rising from a chimney.

Find:

The pattern produced by smoke rising from a chimney on a windy day is analogous to a pathline or streakline?

SOLUTION

The streakline is defined as a line generated by a tracer injected into flow at starting point. The tracer is the smoke and the starting point is the chimney so smoke's pattern is analogous to a streakline. The diffusion of the smoke prevents achieving a fine line.

4.11: PROBLEM DEFINITION**Situation:**

Dye is injected into a flow field and produces a streakline.

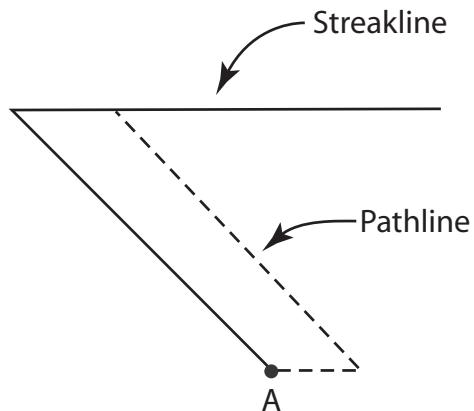
Pathline starts at $t = 4$ s, ends at $t = 10$ s. Flow speed is constant.

Find:

Draw a pathline of the particle.

SOLUTION

The streakline shows that the velocity field was originally in the horizontal direction to the right and then the flow field changed upward to the left. The pathline starts off to the right and then continues upward to the left.



4.12: PROBLEM DEFINITION**Situation:**

A dye streak was started, and a particle was released.

For $0 \leq t \leq 5$ s, $u = 2$ m/s, $v = 0$.

For $5 < t \leq 10$ s, $u = 3$ m/s, $v = -4$ m/s.

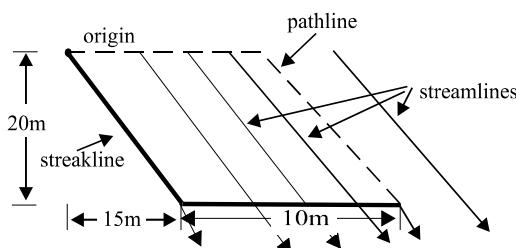
Find:

For $t = 10$ s, draw to scale the streakline, pathline of the particle, and streamlines.

SOLUTION

From $0 < t < 5$, the dye in the streakline moved to the right for a distance of 10 m. At the same time a particle is released from the origin and travels 10 m to the right. Then from $5 < t < 10$, the original line of dye is transported in whole downward to the right while more dye is released from the origin. The pathline of the particle proceeds from its location at $t=5$ sec downward to the right.

At 10 sec, the streamlines are downward to the right.



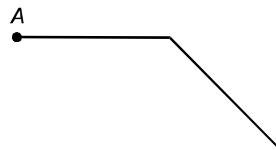
4.13: PROBLEM DEFINITION**Situation:**

A dye streak is produced in a flow that has a constant speed.

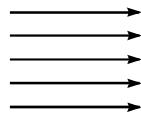
Find:

Sketch a streamline at $t = 8$ s.

Sketch a particle pathline at $t = 10$ s for a particle that was released from point A at time $t = 2$ s.

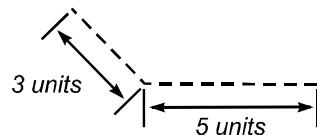
Sketch:**SOLUTION**

At 8 seconds (near 10 sec) the streamlines of the flow are horizontal to the right.



Streamlines at $t = 8$ s

Initially the flow is downward to the right and then switches to the horizontal direction to the right. Thus one has the following pathline.



Particle pathline for a particle released at $t = 2$ s

4.14: PROBLEM DEFINITION

Situation:

Acceleration.

Find:

Is the acceleration vector always aligned with the velocity vector?

SOLUTION

No. For flow along a curved path, there is a centripetal acceleration which is normal to the velocity vector.

4.15: PROBLEM DEFINITION

Situation:

Rotating bodies.

Find:

Is the acceleration toward the center of rotation a centripetal or centrifugal acceleration?

SOLUTION

The acceleration toward the center of rotation is centripetal acceleration. "Petal" comes from Latin word "petere" which means to move toward so "centripetal" means moving toward center. "Fugal" comes from Latin "fugere" which means to flee so "centrifugal" means moving from center.

4.16: PROBLEM DEFINITION**Situation:**

Flow past a circular cylinder with constant approach velocity.

Find:

Describe the flow as:

- (a) Steady or unsteady.
- (b) One dimensional, two dimensional, or three dimensional.
- (c) Locally accelerating or not, and if so, where.
- (d) Convectively accelerating or not, and if so, where.

SOLUTION

- (a) Steady.
- (b) Two-dimensional.
- (c) No.
- (d) Convective acceleration is present at each where a fluid particles changes speed as it moves along the streamline. Centripetal acceleration, which is also a form of convective acceleration occurs where there is streamline curvature.

4.17: PROBLEM DEFINITION

Situation:

A path line is given with velocity as a function of distance and time.

$$V = s^2 t^{1/2}, r = 0.5 \text{ m.}$$

$$s = 2 \text{ m, } t = 0.5 \text{ s.}$$

Find:

Acceleration along and normal to pathline (m/s²).

PLAN

Apply Eq. 4.5 for acceleration along pathline.

SOLUTION

Equation 4.5

$$\mathbf{a} = (V \frac{\partial V}{\partial s} + \frac{\partial V}{\partial t}) \mathbf{e}_t + \left(\frac{V^2}{r} \right) \mathbf{e}_n$$

Evaluation of velocity and derivatives at $s = 2$ m and $t = 0.5$ sec.

$$V = s^2 t^{1/2} = 2^2 \times 0.5^{1/2} = 2.83 \text{ m/s}$$

$$\frac{\partial V}{\partial s} = 2s t^{1/2} = 2 \times 2 \times 0.5^{1/2} = 2.83 \text{ 1/s}$$

$$\frac{\partial V}{\partial t} = \frac{1}{2} s^2 t^{-1/2} = \frac{1}{2} \times 2^2 \times 0.5^{-1/2} = 2.83 \text{ m/s}^2$$

Evaluation of the acceleration

$$\mathbf{a} = (2.83 \times 2.83 + 2.83) \mathbf{e}_t + \left(\frac{2.83^2}{0.5} \right) \mathbf{e}_n$$

$$\boxed{\mathbf{a} = 10.8 \mathbf{e}_t + 16.0 \mathbf{e}_n \text{ (m/s}^2\text{)}}$$

4.18: PROBLEM DEFINITION**Situation:**

Air is flowing around a sphere in a wind tunnel.

$$u = -U_o(1 - r_o^3/x^3).$$

Find:

An expression for the acceleration of a fluid particle on the x-axis. The form of the answer should be $a_x = a_x(x, r_o, U_o)$.

PLAN

Use Eq. 4.5 along x-axis which is a pathline. Replace V with u and s with x .

SOLUTION

$$\begin{aligned} a_x &= u \frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} \\ &= -U_o \left(1 - \frac{r_o^3}{x^3}\right) \frac{\partial}{\partial x} \left(-U_o \left(1 - \frac{r_o^3}{x^3}\right)\right) + \frac{\partial}{\partial t} \left(-U_o \left(1 - \frac{r_o^3}{x^3}\right)\right) \\ &= U_o^2 \left(1 - \frac{r_o^3}{x^3}\right) \left(-3 \frac{r_o^3}{x^4}\right) + 0 \\ &\boxed{a_x = -(3 U_o^2 \frac{r_o^3}{x^4})(1 - \frac{r_o^3}{x^3})} \end{aligned}$$

4.19: PROBLEM DEFINITION**Situation:**

Flow occurs in a tapered passage. The velocity is given as $V = 5 \text{ m/s} - 2.25 \frac{t}{t_0} \text{ m/s}$, $\partial V / \partial s = +2 \text{ s}^{-1}$, $t_0 = 0.5 \text{ s}$.

Find:

- (a) local acceleration at section AA (m/s^2).
- (b) Convective acceleration at section AA (m/s^2).

SOLUTION

a) Local acceleration

$$\begin{aligned} a_l &= \frac{\partial V}{\partial t} = -\frac{2.25}{t_0} \\ &= -\frac{2.25}{0.5} \\ & \boxed{a_l = -4.5 \text{ m/s}^2} \end{aligned}$$

b) Convective acceleration

$$\begin{aligned} a_c &= V \frac{\partial V}{\partial s} \\ &= (5 - 2.25 \times \frac{0.5}{0.5}) \text{ m/s} \times 2 \text{ 1/s} \\ & \boxed{a_c = 5.5 \text{ m/s}^2} \end{aligned}$$

4.20: PROBLEM DEFINITION**Situation:**

One-dimensional flow occurs in a nozzle.

$V_{tip} = 4 \text{ ft/s}$, $V_{base} = 1 \text{ ft/s}$, $L = 1.5 \text{ ft}$.

Find:

Convective acceleration (ft/s^2).

SOLUTION

Velocity gradient.

$$\begin{aligned}\frac{dV}{ds} &= \frac{V_{tip} - V_{base}}{L} \\ &= \frac{(4 - 1) \text{ ft/s}}{1.5 \text{ ft}} \\ &= 2 \text{ s}^{-1}\end{aligned}$$

Acceleration at mid-point

$$\begin{aligned}V &= \frac{(1 + 4) \text{ ft/s}}{2} \\ &= 2.5 \text{ ft/s} \\ a_c &= V \frac{dV}{ds} \\ &= 2.5 \text{ ft/s} \times 2 \\ a_c &= 5 \text{ ft/s}^2\end{aligned}$$

4.21: PROBLEM DEFINITION

Situation:

One-dimensional flow occurs in a nozzle and the velocity varies linearly with distance along the nozzle.

$$V_{tip} = 4t \text{ ft/s}, V_{base} = 1t \text{ ft/s}, t = 2 \text{ s.}$$

Find:

Local acceleration midway in the nozzle (ft/s²).

SOLUTION

$$\begin{aligned} a_\ell &= \frac{\partial V}{\partial t} \\ V &= \frac{t + 4t}{2} \\ &= 2.5t \text{ (ft/s)} \end{aligned}$$

Then

$$\begin{aligned} a_\ell &= \frac{\partial}{\partial t}(2.5t) \\ a_\ell &= 2.5 \text{ ft/s}^2 \end{aligned}$$

4.22: PROBLEM DEFINITION**Situation:**

Flow in a two-dimensional slot.

$$V = 2 \left(\frac{q_o}{b} \right) \left(\frac{t}{t_o} \right), \quad x = 2B, \quad y = 0 \text{ in.}$$

Find:

An expression for local acceleration midway in nozzle.

SOLUTION

$$V = 2 \left(\frac{q_o}{b} \right) \left(\frac{t}{t_o} \right) \text{ but } b = B/2$$

$$V = \left(\frac{4q_o}{B} \right) \left(\frac{t}{t_o} \right)$$

$$a_l = \frac{\partial V}{\partial t}$$

$$a_l = \frac{4q_o}{Bt_o}$$

4.23: PROBLEM DEFINITION**Situation:**

Flow in a two-dimensional slot and velocity varies as

$$V = 2 \left(\frac{q_0}{b} \right) \left(\frac{t}{t_0} \right), \quad x = 2B, \quad y = 0 \text{ in.}$$

Find:

An expression for convective acceleration midway in nozzle.

SOLUTION

$$a_c = \frac{V \partial V}{\partial x}$$

The width varies as

$$b = B - \frac{x}{8}$$

$$\begin{aligned} V &= \left(\frac{q_0}{t_0} \right) 2t \left(B - \frac{x}{8} \right)^{-1} \\ \frac{\partial V}{\partial x} &= \left(\frac{q_0}{t_0} \right) 2t \left(\frac{1}{8} \right) \left(B - \frac{x}{8} \right)^{-2} \\ a_c &= \frac{V \partial V}{\partial x} = \frac{(q_0/t_0)^2 4t^2 (1/8)}{(B - (1/8)x)^{-3}} \end{aligned}$$

At $x = 2B$

$$\begin{aligned} a_c &= (1/2) \left(\frac{q_0}{t_0} \right)^2 \frac{t^2}{((3/4)B)^{-3}} \\ a_c &= 32/27 \left(\frac{q_0}{t_0} \right)^2 \frac{t^2}{B^3} \end{aligned}$$

4.24: PROBLEM DEFINITION**Situation:**

Water flow in a nozzle with

$$V = \frac{2t}{(1 - 0.5x/L)^2}$$

$$L = 4 \text{ ft}, x = 0.5L, t = 3 \text{ s.}$$

Find:

Local acceleration (ft/ s²).

Convective acceleration (ft/ s²).

SOLUTION

$$\begin{aligned} a_\ell &= \partial V / \partial t \\ &= \partial / \partial t [2t / (1 - 0.5x/L)^2] \\ &= 2 / (1 - 0.5x/L)^2 \\ &= 2 / (1 - 0.5 \times 0.5L/L)^2 \\ & \boxed{a_\ell = 3.56 \text{ ft/s}^2} \end{aligned}$$

$$\begin{aligned} a_c &= V(\partial V / \partial x) \\ &= [2t / (1 - 0.5x/L)^2] \partial / \partial x [2t / (1 - 0.5x/L)^2] \\ &= \frac{4t^2}{L(1 - 0.5x/L)^5} (-2) \left(-\frac{0.5}{L} \right) \\ &= \frac{4 \times 3^2}{4 \times (1 - 0.5 \times 0.5L/L)^5} \\ & \boxed{a_c = 37.9 \text{ ft/s}^2} \end{aligned}$$

4.25: PROBLEM DEFINITION**Situation:**

State Newton's second law of motion.

Find:

Are there any limitations on the use of Newton's second law?

SOLUTION

Newton's second law states

$$\vec{F} = m\vec{a}$$

where m is the mass of the system. The velocity (and acceleration) must be measured with respect to an inertial reference frame and the mass must be constant.

4.26: PROBLEM DEFINITION**Situation:**

Force weight and force pressure.

Find:

What is the difference between a force due to weight and a force due to pressure?

SOLUTION

The force due to weight is the gravitational attraction on the mass and the magnitude of the force depends on the mass. The force due to pressure is the force acting on a surface and depends on the magnitude of the pressure and the area of the surface.

4.27: PROBLEM DEFINITION

Situation:

Flow through an inclined pipe at 30° from horizontal.

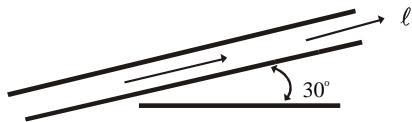
$$a_\ell = -0.3g.$$

Find:

Pressure gradient in flow direction.

PLAN

Apply Euler's equation.

SOLUTION

Euler's equation

$$\begin{aligned}\frac{\partial}{\partial \ell}(p + \gamma z) &= -\rho a_\ell \\ \frac{\partial p}{\partial \ell} + \gamma \frac{\partial z}{\partial \ell} &= -\rho a_\ell \\ \frac{\partial p}{\partial \ell} &= -\rho a_\ell - \gamma \frac{\partial z}{\partial \ell} \\ &= -\frac{\gamma}{g} \times (-0.30g) - \gamma \sin 30^\circ \\ &= \gamma(0.30 - 0.50) \\ \boxed{\frac{\partial p}{\partial \ell} = -0.20\gamma}\end{aligned}$$

4.28: PROBLEM DEFINITION

Situation:

Kerosene is accelerated upward in vertical pipe.

$$S = 0.81, a_z = 0.3g.$$

Find:

Pressure gradient required to accelerate flow (lbf/ ft³).

Properties:

$$\gamma = 62.4 \text{ lbf/ ft}^3.$$

PLAN Apply Euler's equation.

SOLUTION Applying Euler's equation in the z direction.

$$\begin{aligned}\frac{\partial(p + \gamma z)}{\partial z} &= -\rho a_z = -\frac{\gamma}{g} \times 0.30g \\ \frac{\partial p}{\partial z} + \gamma &= -0.30\gamma \\ \frac{\partial p}{\partial z} &= \gamma(-1 - 0.30) \\ &= 0.81 (62.4 \text{ lbf/ ft}^3) (-1.30) \\ \boxed{\frac{\partial p}{\partial z} = -65.7 \text{ lbf/ft}^3}\end{aligned}$$

4.29: PROBLEM DEFINITION**Situation:**

A hypothetical liquid flows through a vertical tube.

$$v = 0.$$

Find:

Direction of acceleration.

Properties:

$$\gamma = 10 \text{ kN/m}^3, p_B - p_A = 12 \text{ kPa.}$$

PLAN Apply Euler's equation.**SOLUTION** Euler's equation

$$\begin{aligned} \rho a_\ell &= -\frac{\partial}{\partial \ell}(p + \gamma z) \\ a_\ell &= \frac{1}{\rho} \left(-\frac{\partial p}{\partial \ell} - \gamma \frac{\partial z}{\partial \ell} \right) \end{aligned}$$

Let ℓ be positive upward. Then $\partial z / \partial \ell = +1$ and $\partial p / \partial \ell = (p_A - p_B) / 1 = -12,000 \text{ Pa/m}$. Thus

$$\begin{aligned} a_\ell &= \frac{g}{\gamma} (12,000 - \gamma) \\ a_\ell &= g \left(\frac{12,000}{\gamma} - 1 \right) \\ a_\ell &= g(1.2 - 1.0) \text{ m/s}^2 \end{aligned}$$

a_ℓ has a positive value; therefore, acceleration is upward. Correct answer is **a).**

4.30: PROBLEM DEFINITION**Situation:**

A piston and water accelerating upward at $0.5g$.
 $a = 0.5g$, $z = 2$ ft.

Find:

Pressure in water column (psfg).

Properties:

$$\rho = 62.4 \text{ lbm/ft}^3, \gamma = 62.4 \text{ lbf/ft}^3$$

PLAN

Apply Euler's equation.

SOLUTION

Euler's equation

$$\rho a_\ell = -\frac{\partial p}{\partial \ell} (p + \gamma z)$$

Let ℓ be positive upward.

$$\begin{aligned} \rho(0.5g) &= -\frac{\partial p}{\partial \ell} - \gamma \frac{\partial z}{\partial \ell} \\ \left(\frac{\gamma}{g}\right)(0.5g) &= -\frac{\partial p}{\partial \ell} - \gamma(1) \\ \frac{\partial p}{\partial \ell} &= -\gamma(0.5 + 1) = -1.5\gamma \end{aligned}$$

Thus the pressure decreases upward at a rate of 1.5γ . The pressure at the top is atmospheric. At a depth of 2 ft.:

$$\begin{aligned} p_2 &= (1.5\gamma)(2) = 3\gamma \\ &= 3 \text{ ft.} \times 62.4 \text{ lbf/ft}^3 \\ p_2 &= 187 \text{ psfg} \end{aligned}$$

4.31: PROBLEM DEFINITION**Situation:**

Water stands with depth of 10 ft in a vertical pipe open at top and supported by piston at the bottom.

$$z = 0 \text{ ft}, z_2 = 10 \text{ ft}.$$

Find:

$$\text{Acceleration of piston (ft/ s}^2\text{).}$$

Properties:

$$\gamma = 62.4 \text{ lbf/ ft}^3, \rho = 1.94 \text{ slug/ ft}^3.$$

$$p_1 = 8 \text{ psig}, p_2 = 0 \text{ psig}.$$

PLAN

Apply Euler's equation.

SOLUTION

Euler's equation

$$\frac{\partial}{\partial s}(p + \gamma z) = -\rho a_s$$

Take s as vertically upward with point 1 at piston surface and point 2 at water surface.

$$\begin{aligned} -\Delta(p + \gamma z) &= \rho a_s \Delta s \\ -(p_2 - p_1) - \gamma(z_2 - z_1) &= \rho a_s \Delta s \\ -(0 - 8 \text{ psig} \times 144 \text{ in}^2/\text{ft}^2) - 62.4 \text{ lbf/ ft}^3 \times 10 \text{ ft} &= 1.94 \text{ slug/ ft}^3 \times 10 a_s \\ a_s &= \frac{(8 \text{ psig} \times 144 \text{ in}^2/\text{ft}^2 - 62.4 \text{ lbf/ ft}^3 \times 10 \text{ ft})}{19.4 \text{ slug/ ft}^3} \\ a_s &= 27.2 \text{ ft/s}^2 \end{aligned}$$

4.32: PROBLEM DEFINITION

Situation:

Water accelerates in a horizontal pipe.
 $a_s = 6 \text{ m/s}^2$, $\rho = 1000 \text{ kg/m}^3$.

Find:

Pressure gradient (N/m³).

PLAN

Apply Euler's equation.

SOLUTION

Euler's equation with no change in elevation

$$\begin{aligned}\frac{\partial p}{\partial s} &= -\rho a_s \\ &= -1,000 \text{ kg/m}^3 \times 6 \text{ m/s}^2 \\ \boxed{\frac{\partial p}{\partial s} = -6,000 \text{ N/m}^3}\end{aligned}$$

4.33: PROBLEM DEFINITION**Situation:**

Water accelerated from rest in horizontal pipe.

$$L = 100 \text{ m}, D = 30 \text{ cm}, a_s = 5 \text{ m/s}^2.$$

Find:

Pressure at upstream end (kPa).

Properties:

$$\rho = 1000 \text{ kg/m}^3, p_{downstream} = 90 \text{ kPa.}$$

PLAN

Apply Euler's equation.

SOLUTION

Euler's equation with no change in elevation

$$\begin{aligned} \frac{\partial p}{\partial s} &= -\rho a_s \\ &= -1,000 \text{ kg/m}^3 \times 5 \text{ m/s}^2 \\ &= -5,000 \text{ N/m}^3 \\ p_{downstream} - p_{upstream} &= \frac{\partial p}{\partial s} \Delta s \\ p_{upstream} &= 90,000 \text{ Pa} + (5,000 \text{ N/m}^3) (100 \text{ m}) \\ &= 590,000 \text{ Pa, gage} \\ p_{upstream} &= 590 \text{ kPa, gage} \end{aligned}$$

4.34: PROBLEM DEFINITION**Situation:**

Water stands in a vertical pipe closed at the bottom by a piston.
 $z = 10 \text{ ft.}$

Find:

Maximum downward acceleration before vaporization (ft/s^2).

Assumptions:

Vapor pressure is zero.

Properties:

$$\rho = 62.4 \text{ lbm/ft}^3 = 1.94 \text{ slug/ft}^3, \gamma = 62.4 \text{ lbf/ft}^3.$$

PLAN

Apply Euler's equation.

SOLUTION

Applying Euler's equation in the z -direction with $p = 0$ at the piston surface

$$\begin{aligned} \frac{\partial}{\partial z}(p + \gamma z) &= -\rho a_z \\ \Delta(p + \gamma z) &= -\rho a_z \Delta z \\ (p + \gamma z)_{\text{at water surface}} - (p + \gamma z)_{\text{at piston}} &= -\rho a_z (z_{\text{surface}} - z_{\text{piston}}) \\ p_{\text{atm}} - p_v + \gamma(z_{\text{surface}} - z_{\text{piston}}) &= -12 \rho a_z \\ 14.7 \text{ psi} (144 \text{ psf/psi}) - 0 + (62.4 \text{ lbf/ft}^3) (10 \text{ ft}) &= -10 \times 1.94 \text{ slug/ft}^3 \times a_z \\ a_z &= -141 \text{ ft/s}^2 \end{aligned}$$

4.35: PROBLEM DEFINITION**Situation:**

A liquid flows through a conduit.

Find:

Which statements can be discerned with certainty:

- (a) The velocity is in the positive ℓ direction.
- (b) The velocity is in the negative ℓ direction.
- (c) The acceleration is in the positive ℓ direction.
- (d) The acceleration is in the negative ℓ direction.

Assumptions:

Viscosity is zero.

Properties:

$p_A = 170$ psf, $p_B = 100$ psf, $\gamma = 100$ lbf/ ft³.

PLAN

Apply Euler's equation.

SOLUTION

Euler's equation

$$\begin{aligned}-\frac{\partial}{\partial \ell}(p + \gamma z) &= \rho a_\ell \\ -\frac{\partial p}{\partial \ell} - \gamma \frac{\partial z}{\partial \ell} &= \rho a_\ell\end{aligned}$$

where $\partial p / \partial \ell = (p_B - p_A) / \ell = (100 - 170) / 2 = -35$ lb/ft³ and $\partial z / \partial \ell = \sin 30^\circ = 0.5$.

Then

$$\begin{aligned}a_\ell &= \frac{1}{\rho} (35 \text{ lb/ ft}^3 - (100)(0.5)) \\ &= \frac{1}{\rho} (-15) \text{ lbf/ft}^3\end{aligned}$$

- Because a_ℓ has a negative value we conclude that **Answer** \Rightarrow (d) the acceleration is in the negative ℓ direction .
- **Answer** \Rightarrow The flow direction cannot be established; so answer (d) is the only answer that can be discerned with certainty.

4.36: PROBLEM DEFINITION

Situation:

Velocity varies linearly with distance in water nozzle.

$L = 1 \text{ ft}$, $V_1 = 30 \text{ ft/s}$, $V_2 = 80 \text{ ft/s}$.

Find: Pressure gradient midway in the nozzle (psf/ft).

Properties:

$\rho = 62.4 \text{ lbm/ft}^3 = 1.94 \text{ slug/ft}^3$.

PLAN

Apply Euler's equation.

SOLUTION

Euler's equation

$$\frac{\partial}{\partial x}(p + \gamma z) = -\rho a_x$$

but $z = \text{const.}$; therefore

$$\begin{aligned}\frac{\partial p}{\partial x} &= -\rho a_x \\ a_x &= a_{\text{convective}} = V \frac{\partial V}{\partial x} \\ \frac{\partial V}{\partial x} &= (80 - 30)/1 = 50 \text{ s}^{-1} \\ V_{\text{mid}} &= (80 \text{ ft/s} + 30 \text{ ft/s})/2 = 55 \text{ ft/s} \\ &= (55 \text{ ft/s})(50 \text{ ft/s/ft}) = 2,750 \text{ ft/s}^2\end{aligned}$$

Finally

$$\frac{\partial p}{\partial x} = (-1.94 \text{ slug/ft}^3)(2,750 \text{ ft/s}^2)$$

$$\boxed{\frac{\partial p}{\partial x} = -5,330 \text{ psf/ft}}$$

4.37: PROBLEM DEFINITION

Situation:

Closed tank is full of liquid.

$L = 3 \text{ ft}$, $H = 4 \text{ ft}$, $a_x = 0.9g$.

$a_\ell = 1.5g$, $S = 1.2$.

Find:

- (a) $p_C - p_A$ (psf).
- (b) $p_B - p_A$ (psf).

Properties:

$$\rho = 1.94 \text{ slug/ ft}^3.$$

PLAN

Apply Euler's equation.

SOLUTION

Euler's equation. Take ℓ in the z-direction.

$$-\frac{dp}{d\ell} - \gamma \frac{d\ell}{d\ell} = \rho a_l$$

$$\begin{aligned} \frac{dp}{d\ell} &= -\rho(g + a_\ell) \\ &= -1.2 (1.94 \text{ slug/ ft}^3) (32.2 \text{ ft/ s}^2 - 1.5 (32.2 \text{ ft/ s}^2)) \\ &= 37.5 \text{ psf/ ft} \\ p_B - p_A &= -37.5 \text{ psf/ ft} \times 4 \text{ ft} \\ &\boxed{p_B - p_A = -150 \text{ psf}} \end{aligned}$$

Take ℓ in the x-direction. Euler's equation becomes

$$\begin{aligned} -\frac{dp}{dx} &= \rho a_x \\ p_C - p_B &= \rho a_x L \\ &= 1.2 \times 1.94 \text{ slug/ ft}^3 \times 0.9g \times 3 \text{ ft} \\ &= 202.4 \text{ psf} \\ p_C - p_A &= p_C - p_B + (p_B - p_A) \\ p_C - p_A &= 202.4 - 150 \\ &\boxed{p_C - p_A = 52.4 \text{ psf}} \end{aligned}$$

4.38: PROBLEM DEFINITION

Situation:

Closed tank is full of liquid.

$L = 2.5 \text{ m}$, $H = 3 \text{ m}$, $a_x = 2/3g$, $a_\ell = 1.2g$, $S = 1.3$.

Find:

- (a) $p_C - p_A$ (kPa).
- (b) $p_B - p_A$ (kPa).

Properties:

$$\rho = 1000 \text{ kg/ m}^3.$$

PLAN

Apply Euler's equation.

SOLUTION

Euler's equation in z direction

$$\begin{aligned} \frac{dp}{dz} + \gamma &= -\rho a_z \\ \frac{dp}{dz} &= -\rho(g + a_z) \\ \frac{dp}{dz} &= -1.3 (1,000 \text{ kg/ m}^3) (9.81 \text{ m/ s}^2 - 6.54 \text{ m/ s}^2) \\ &= -4,251 \text{ N/m}^3 \\ p_B - p_A &= (4,251 \text{ N/ m}^3) (3 \text{ m}) \\ &= 12,753 \text{ Pa} \\ &\boxed{p_B - p_A = 12.7 \text{ kPa}} \end{aligned}$$

Euler's equation in x -direction

$$\begin{aligned} -\frac{dp}{dx} &= \rho a_x \\ p_C - p_B &= \rho a_x L \\ &= 1.3 \times 1,000 \times 9.81 \times 2.5 \\ &= 31,882 \text{ Pa} \\ p_C - p_A &= p_C - p_B + (p_B - p_A) \\ p_C - p_A &= 31,882 + 12,753 \\ &= 44,635 \text{ Pa} \\ &\boxed{p_C - p_A = 44.6 \text{ kPa}} \end{aligned}$$

4.39: PROBLEM DEFINITION**Situation:**

Stirring a liquid in a cup.

Find:

Report on the contour of the surface. Provide an explanation for the observed shape.

SOLUTION

Stirring the cup of liquid creates a surface depressed at the center and higher at the wall of the cup. The difference in depth between the wall and the cup center creates an inward radial force to keep the fluid moving in a circle.

4.40: PROBLEM DEFINITION**Situation:**

A cyclonic separator separates solid particles from a gas stream by inducing a spin in the gas stream

Find:

Explain the mechanism by which the particles are separated from the gas.

SOLUTION

With no particles in the separator, the pressure gradient in the gas is just sufficient to provide a force equal to the centripetal acceleration and keep the gas moving in a circle. The pressure force is insufficient to keep the heavier particles moving in a circle and they migrate to the outer walls.

4.41: PROBLEM DEFINITION**Situation:**

A closed tank filled with water is rotated about a vertical axis.

$D = 4 \text{ ft}$, $\omega = 10 \text{ rad/s}$.

Find:

Pressure at bottom center of tank (psig).

Properties:

$\rho = 62.4 \text{ lbm/ft}^3 = 1.94 \text{ slug/ft}^3$, $\gamma = 62.4 \text{ lbf/ft}^3$.

PLAN

Apply the equation for pressure variation equation- rotating flow.

SOLUTION

Pressure variation equation- rotating flow

$$p + \gamma z - \frac{\rho r^2 \omega^2}{2} = p_p + \gamma z_p - \frac{\rho r_p^2 \omega^2}{2}$$

where $p_p = 0$, $r_p = 3 \text{ ft}$ and $r = 0$, then

$$\begin{aligned} p &= -\frac{\rho}{2}(r\omega)^2 + \gamma(z_p - z) \\ &= \left(\frac{1.94 \text{ slug/ft}^3}{2}\right)(3 \text{ ft} \times 10)^2 + (62.4 \text{ lbf/ft}^3)(2.5 \text{ ft}) \\ &= -717 \text{ psfg} = -4.98 \text{ psig} \end{aligned}$$

$$p = -4.98 \text{ psig}$$

4.42: PROBLEM DEFINITION**Situation:**

A tank of liquid is rotated on an arm.

$$S = 0.80, D = 1 \text{ ft.}$$

$$h = 1 \text{ ft}, r = 2 \text{ ft.}$$

$$V_A = 20 \text{ ft/s}, p_A = 25 \text{ psf.}$$

Find:

Pressure at B (psf).

Properties:

$$\rho = 62.4 \text{ lbm/ft}^3 = 1.94 \text{ slug/ft}^3, \gamma = 62.4 \text{ lbf/ft}^3.$$

PLAN

Apply the pressure variation equation- rotating flow from point *A* to point *B*.

SOLUTION

Pressure variation equation- rotating flow

$$\begin{aligned} p_A + \gamma z_A - \frac{\rho r_A^2 \omega^2}{2} &= p_B + \gamma z_B - \frac{\rho r_B^2 \omega^2}{2} \\ p_B &= p_A + \frac{\rho}{2}(\omega^2)(r_B^2 - r_A^2) + \gamma(z_A - z_B) \end{aligned}$$

where $\omega = V_A/r_A = 20/1.5 = 13.333 \text{ rad/s}$ and $\rho = 0.8 \times 1.94 \text{ slugs/ft}^3$. Then

$$\begin{aligned} p_B &= 25 \text{ psf} + [1.94 \text{ slug/ft}^3 (0.80/2)] (13.33 \text{ rad/s}^2) [(2.5 \text{ ft})^2 - (1.5 \text{ ft})^2] + 62.4 \text{ lbf/ft}^3 (0.8) (-1) \\ &= 25 + 551.5 - 49.9 \end{aligned}$$

$$\boxed{p_B = 527 \text{ psf}}$$

4.43: PROBLEM DEFINITION

Situation:

A cream separator is in operation.

$D = 20 \text{ cm}$, $f = 9000 \text{ rpm}$.

Find:

Centripetal acceleration (m/s^2).

RCF.

SOLUTION

The centripetal acceleration is

$$a_r = \frac{V^2}{r} = \omega^2 r$$

The rotational rate of the separator is

$$\omega = 2\pi \left(\frac{9000 \text{ rpm}}{60 \text{ s/min}} \right) = 942.5 \text{ rad/s}$$

The radius of the separator is 10 cm or 0.1 m. The acceleration is

$$a_r = (942.5 \text{ rad/s})^2 (0.1 \text{ m})$$

$a_r = 88831 \text{ m/s}^2$

The RCF is

$$RCF = 88831 \text{ m/s}^2 / 9.81 \text{ m/s}^2$$

$RCF = 9055$

4.44: PROBLEM DEFINITION**Situation:**

A closed tank with liquid is rotated about the vertical axis.
 $\omega = 10 \text{ rad/s}$, $r_B = 0.5 \text{ m}$, $a_z = 4 \text{ m/s}^2$.

Find:

Difference in pressure between points A and B (kPa).

Properties:

$\rho = 1000 \text{ kg/m}^3$, $S = 1.2$.

PLAN

Apply the pressure variation equation for rotating flow between points B & C . Let point C be at the center bottom of the tank.

SOLUTION

Pressure variation equation- rotating flow

$$p_B - \frac{\rho r_B^2 \omega^2}{2} = p_C - \frac{\rho r_C^2 \omega^2}{2}$$

where $r_B = 0.5 \text{ m}$, $r_C = 0$ and $\omega = 10 \text{ rad/s}$. Then

$$\begin{aligned} p_B - p_C &= \frac{\rho}{2}(\omega^2)(r^2) \\ &= \frac{1200 \text{ kg/m}^3}{2} (100 \text{ rad}^2/\text{s}^2) (0.25 \text{ m}^2) \\ &= 15,000 \text{ Pa} \\ p_C - p_A &= 2\gamma + \rho a_z \ell \\ &= 2(11,772 \text{ N/m}^3) + (1,200 \text{ kg/m}^3) (4 \text{ m/s}^2) (2) \\ &= 33.1 \text{ kPa} \end{aligned}$$

Then

$$\begin{aligned} p_B - p_A &= p_B - p_C + (p_C - p_A) \\ &= 15,000 \text{ Pa} + 33,144 \text{ Pa} \\ &= 48,144 \text{ Pa} \\ p_B - p_A &= 48.1 \text{ kPa} \end{aligned}$$

4.45: PROBLEM DEFINITION**Situation:**

A U-tube rotating about the leg on the right side.

$$r_1 = 0.5 \text{ m}, z_1 = 0.5 \text{ m}.$$

$$z_2 = 0 \text{ m}, r_2 = 0 \text{ m}.$$

Find:

Maximum rotational speed so that no liquid escapes from the leg on the left side (rad/s).

PLAN

Since the fluid is in rigid body rotation, apply the pressure variation equation for rotating flow. At the condition of imminent spilling, the liquid will be to the top of the left leg and at the bottom of the right leg. Thus, locate point 1 be at top of the left (outside) leg. Locate point 2 at the bottom of the right (inside) leg.

SOLUTION

Pressure variation equation- rotating flow

$$p_1 + \gamma z_1 - \frac{\rho r_1^2 \omega^2}{2} = p_2 + \gamma z_2 - \frac{\rho r_2^2 \omega^2}{2} \quad (1)$$

Term-by-term analysis

$$p_1 = p_2 = 0 \text{ kPa-gage}$$

$$z_1 = 0.5 \text{ m}$$

$$r_1 = 0.5 \text{ m}$$

$$z_2 = 0 \text{ m}$$

$$r_2 = 0 \text{ m}$$

Substitute values into Eq. 1.

$$\begin{aligned} p_1 + \gamma z_1 - \frac{\rho r_1^2 \omega^2}{2} &= p_2 + \gamma z_2 - \frac{\rho r_2^2 \omega^2}{2} \\ 0 + \rho g (0.5 \text{ m}) - \frac{\rho (0.5^2 \text{ m}^2) \omega^2}{2} &= 0 + 0 - 0 \\ g (0.5 \text{ m}) - \frac{(0.5^2 \text{ m}^2) \omega^2}{2} &= 0 \\ \omega^2 &= 4g \\ \omega &= 2\sqrt{g} \end{aligned}$$

$$\boxed{\omega = 6.26 \text{ rad/s}}$$

4.46: PROBLEM DEFINITION

Situation:

A stagnation tube in a tank is rotated.

$\omega = 100 \text{ rad/s}$, $r = 20 \text{ cm}$, $\gamma = 10000 \text{ N/m}^3$.

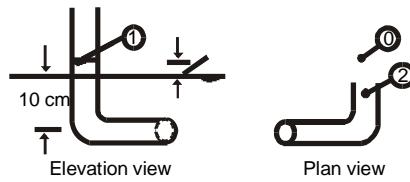
Find:

Location of liquid surface in central tube.

PLAN

Pressure variation equation for rotating flow from pt. 1 to pt. 2 where pt. 1 is at liquid surface in vertical part of tube and pt. 2 is just inside the open end of the Pitot tube.

SOLUTION



Pressure variation equation- rotating flow

$$\begin{aligned} \frac{p_1}{\gamma} - \frac{V_1^2}{2g} + z_1 &= \frac{p_2}{\gamma} - \frac{V_2^2}{2g} + z_2 \\ 0 - 0 + (0.10 + \ell) &= \frac{p_2}{\gamma} - \frac{r^2\omega^2}{2g} - 0 \end{aligned} \quad (1)$$

where $z_1 = z_2$. If we reference the velocity of the liquid to the tip of the Pitot tube then we have steady flow and Bernoulli's equation will apply from pt. 0 (point ahead of the Pitot tube) to point 2 (point at tip of Pitot tube).

$$\begin{aligned} \frac{p_0}{\gamma} + \frac{V_0^2}{2g} + z_0 &= \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 \\ \frac{0.1\gamma}{\gamma} + \frac{r^2\omega^2}{2g} &= \frac{p_2}{\gamma} + 0 \end{aligned} \quad (2)$$

Solve Eqs. (1) & (2) for ℓ

$\ell = 0$ liquid surface in the tube is the same as the elevation as outside liquid surface.

4.47: PROBLEM DEFINITION

Situation:

A U-tube partially full of liquid is rotating about one leg.

$f = 50$ rpm, $S = 3.0$, $r_1 = 1$ ft.

Find:

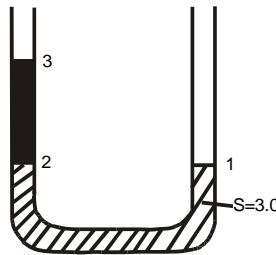
Specific gravity of other fluid.

PLAN

Apply the pressure variation equation for rotating flow between points 1 & 2.

SOLUTION

Pressure variation equation- rotating flow



$$p_2 + \gamma z_2 - \frac{\rho r_2^2 \omega^2}{2} = p_1 + \gamma z_1 - \frac{\rho r_1^2 \omega^2}{2}$$

where $z_2 = z_1$, $r_1 = 0$, $r_2 = 1$ ft. and $\omega = (50/60) \times 2\pi = 5.236$ rad/s. Then

$$p_2 = [3 (1.94 \text{ slug}/\text{ft}^3)] (1 \text{ ft})^2 \frac{(5.236 \text{ rad}/\text{s})^2}{2} = 79.78 \text{ psfg} \quad (1)$$

Also, by hydrostatics, because there is no acceleration in the vertical direction

$$p_2 = 0 + \frac{1}{2} \times \gamma_f \quad (2)$$

where γ_f is the specific weight of the other fluid. Solve for γ_f between Eqs. (1) & (2)

$$\begin{aligned} \gamma_f &= 159.6 \text{ lbf}/\text{ft}^3 \\ S &= \frac{\gamma_f}{\gamma_{\text{H}_2\text{O}}} \\ &= \frac{159.6}{62.4} \\ S &= 2.56 \end{aligned}$$

4.48: PROBLEM DEFINITION**Situation:**

A manometer is rotated about one leg.

$\Delta z = 20 \text{ cm}$, $r = 10 \text{ cm}$, $S = 0.8$.

Find:

Acceleration in g 's in leg with greatest amount of oil.

PLAN

Apply the pressure variation equation for rotating flow between the liquid surfaces of 1 & 2. Let leg 1 be the leg on the axis of rotation. Let leg 2 be the other leg of the manometer.

SOLUTION

Pressure variation equation- rotating flow

$$\begin{aligned} p_1 + \gamma z_1 - \frac{\rho r_1^2 \omega^2}{2} &= p_2 + \gamma z_2 - \frac{\rho r_2^2 \omega^2}{2} \\ 0 + \gamma z_1 - 0 &= \gamma z_2 - \frac{\gamma r_2^2 \omega^2}{g} \\ \frac{r_2^2 \omega^2}{2g} &= z_2 - z_1 \\ a_n &= r\omega^2 \\ &= \frac{(z_2 - z_1)2g}{r_2} \\ &= \frac{(0.20)(2g)}{0.1} \\ a_n &= 4g \end{aligned}$$

4.49: PROBLEM DEFINITION

Situation:

A fuel tank rotated in zero-gravity environment.

$f = 3$ rpm, $r_1 = 1.5$ m, $z_A = 1$ m.

Find:

Pressure at exit (Pa).

Properties:

$\rho = 800$ kg/m³, $p_1 = 0.1$ kPa.

PLAN

Apply the pressure variation equation for rotating flow from liquid surface to point A. Call the liquid surface point 1.

SOLUTION

Pressure variation equation- rotating flow

$$p_1 + \gamma z_1 - \frac{\rho r_1^2 \omega^2}{2} = p_A + \gamma z_A - \frac{\rho r_A^2 \omega^2}{2}$$
$$p_A = p_1 + \frac{\rho \omega^2}{2} (r_A^2 - r_1^2) + \gamma (z_1 - z_A)$$

However $\gamma(z_1 - z_A) = 0$ in zero- g environment. Thus

$$p_A = p_1 + \frac{800 \text{ kg/m}^3}{2} \left(\frac{6\pi}{60 \text{ rad/s}} \right)^2 ((1.5 \text{ m})^2 - (1 \text{ m})^2)$$
$$= 100 \text{ Pa} + 49.3 \text{ Pa}$$

$p_A = 149 \text{ Pa}$

4.50: PROBLEM DEFINITION**Situation:**

A rotating set of tubes has liquid in the bottom of it.

$$D_1 = 2d, D_2 = d.$$

$$r_2 = \ell, z_2 = 4\ell.$$

Find:

Derive a formula for the angular speed when the water will begin to spill.

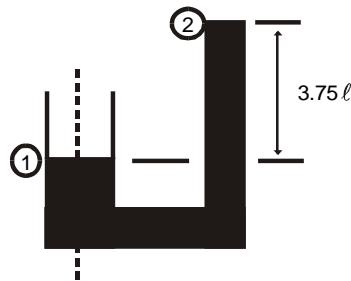
PLAN

Start with pressure variation equation for rotating flow. Let point 1 be at the liquid surface in the large tube and point 2 be at the liquid surface in the small tube.

SOLUTION

Pressure variation equation- rotating flow

$$p_1 + \gamma z_1 - \frac{\rho r_1^2 \omega^2}{2} = p_2 + \gamma z_2 - \frac{\rho r_2^2 \omega^2}{2}$$



The change in volume in leg 1 has to be the same as leg 2. So

$$\begin{aligned}\Delta h_1 d_1^2 &= \Delta h_2 d_2^2 \\ \Delta h_1 &= \Delta h_2 \left(\frac{d_2^2}{d_1^2} \right) \\ &= \frac{\Delta h_2}{4}\end{aligned}$$

The elevation difference between 1 and 2 will be

$$\begin{aligned}z_2 - z_1 &= 3\ell + \frac{3\ell}{4} \\ &= 3.75\ell\end{aligned}$$

Then $p_1 = p_2 = 0$ gage, $r_2 = \ell$, and $z_2 - z_1 = 3.75\ell$ so

$$\begin{aligned}
\frac{\rho r_2^2 \omega^2}{2} &= \gamma(3.75\ell) \\
\frac{\gamma}{2g} (\ell^2) \omega^2 &= 3.75\gamma\ell \\
\omega^2 &= \frac{7.5g}{\ell} \\
\boxed{\omega = \sqrt{\frac{7.5g}{\ell}}}
\end{aligned}$$

4.51: PROBLEM DEFINITION**Situation:**

Water fills a tube that is closed at one end.

$D = 1 \text{ cm}$, $r = 40 \text{ cm}$, $\omega = 50 \text{ rad/s}$.

Find:

Force exerted on closed end (N).

Properties:

$\rho = 1000 \text{ kg/m}^3$

PLAN

Apply the pressure variation equation for rotating flow from the open end of the tube to the closed end.

SOLUTION

Pressure variation equation- rotating flow

$$p_1 = \gamma z_1 - \frac{\rho r_1^2 \omega^2}{2} = p_2 + \gamma z_2 - \frac{\rho r_2^2 \omega^2}{2}$$

where $z_1 = z_2$. Also let point 2 be at the closed end; therefore $r_1 = 0$ and $r_2 = 0.40 \text{ m}$.

$$\begin{aligned} p_2 &= \frac{\rho}{2} (0.4 \text{ m})^2 (50 \text{ rad/s})^2 \\ &= 500 \text{ kg/m}^3 (0.16 \text{ m}^2) (2500 \text{ rad}^2/\text{s}^2) \\ &= 200 \text{ kPa} \end{aligned}$$

Then

$$F = p_2 A = 200,000 \text{ Pa} (\pi/4) (.01 \text{ m})^2$$

$$F = 15.7 \text{ N}$$

4.52: PROBLEM DEFINITION**Situation:**

Water sits in a U-tube that is closed at one end.

$D = 1 \text{ cm}$, $L = 40 \text{ cm}$, $\omega = 50 \text{ rad/s}$.

Find:

Rotational speed when water will begin to spill from open tube (rad/s).

Properties:

$\rho = 1000 \text{ kg/m}^3$, $\gamma = 9810 \text{ N/m}^3$.

PLAN

Apply the pressure variation equation for rotating flow between water surface in leg A-A to water surface in open leg after rotation.

SOLUTION

When the water is on the verge of spilling from the open tube, the air volume in the closed part of the tube will have doubled. Therefore, we can get the pressure in the air volume with this condition.

$$p_i V_i = p_f V_f$$

and i and f refer to initial and final conditions

$$\begin{aligned} p_f &= p_i \frac{V_i}{V_f} = 101 \text{ kPa} \times \frac{1}{2} \\ p_f &= 50.5 \text{ kPa, abs} = -50.5 \text{ kPa, gage} \end{aligned}$$

Pressure variation equation- rotating flow

$$\begin{aligned} p_A + \gamma z_A - \frac{\rho r_A^2 \omega^2}{2} &= p_{\text{open}} + \gamma z_{\text{open}} - \frac{\rho r_{\text{open}} \omega^2}{2} \\ p_A + 0 - 0 &= 0 + \gamma \times 6\ell - \frac{\rho (6\ell)^2 \omega^2}{2} \\ -50.5 \times 10^3 \text{ Pa} &= 9810 \text{ N/m}^3 (6) (0.1 \text{ m}) - (1000 \text{ kg/m}^3) (0.6 \text{ m})^2 \left(\frac{\omega^2}{2} \right) \\ -50.5 \times 10^3 &= 5886 - 180\omega^2 \\ \omega^2 &= 313.3 \end{aligned}$$

$$\boxed{\omega = 17.7 \text{ rad/s}}$$

4.53: PROBLEM DEFINITION**Situation:**

Water is pumped from a reservoir by a centrifugal pump consisting of a disk with radial ports.

$$r = 5 \text{ cm}, f = 3000 \text{ rpm}, z_1 = 0 \text{ m.}$$

Find:

Maximum operational height (m).

PLAN

Apply the pressure variation equation for rotating flow

Locate point 1 at the liquid surface where $z = 0$.

Locate point 2 at the outer edge of the rotating disk.

SOLUTION

Pressure variation equation

$$\begin{aligned} p_1 + \gamma z_1 - \frac{\rho r_1^2 \omega^2}{2} &= p_2 + \gamma z_2 - \frac{\rho r_2^2 \omega^2}{2} \\ 0 + 0 - 0 &= 0 + \gamma z_2 - \frac{\rho r_2^2 \omega^2}{2} \\ z_2 &= \frac{r_2^2 \omega^2}{2g} \end{aligned}$$

Rotational Rate

$$\omega = (3000 \text{ rev/min})(1 \text{ min}/60 \text{ s})(2\pi \text{ rad/rev}) = 314.1 \text{ rad/s}$$

Find z_2

$$z_2 = \frac{r_2^2 \omega^2}{2g} = \frac{(0.05 \text{ m})^2 (314.1 \text{ rad/s})^2}{2 (9.81 \text{ m/s}^2)}$$

$$\boxed{z_2 = 12.6 \text{ m}}$$

4.54: PROBLEM DEFINITION**Situation:**

A tank rotated about the horizontal axis and water in tank rotates as a solid body.
 $V = r\omega$, $z = -1, 0, +1$ m, $\omega = 5$ rad/s.

Find:

Pressure gradient each value of z (kPa/m).

Properties:

$$\rho = 1000 \text{ kg/m}^3.$$

PLAN

Apply the pressure variation equation for rotating flow.

SOLUTION

Pressure variation equation- rotating flow.

$$\begin{aligned}\frac{\partial p}{\partial r} + \gamma \frac{\partial p}{\partial r} &= -\rho r \omega^2 \\ \frac{\partial p}{\partial z} &= -\gamma - \rho r \omega^2\end{aligned}$$

when $z = -1$ m

$$\begin{aligned}\frac{\partial p}{\partial z} &= -\gamma - \rho \omega^2 \\ &= -\gamma \left(1 + \frac{\omega^2}{g}\right) \\ &= -9,810 \text{ N/m}^3 \left(1 + \frac{25}{9.81 \text{ m/s}^2}\right) \\ \boxed{\frac{\partial p}{\partial z} = -34.8 \text{ kPa/m}}\end{aligned}$$

when $z = +1$ m

$$\begin{aligned}\frac{\partial p}{\partial z} &= -\gamma + \rho \omega^2 \\ &= -\gamma \left(1 + \frac{\omega^2}{g}\right) \\ &= -9810 \text{ N/m}^3 \times \left(1 - \frac{25}{9.81 \text{ m/s}^2}\right) \\ \boxed{\frac{\partial p}{\partial z} = 15.2 \text{ kPa/m}}\end{aligned}$$

At $z = 0$

$$\frac{\partial p}{\partial z} = -\gamma$$

$\frac{\partial p}{\partial z} = -9.81 \text{ kPa/m}$

4.55: PROBLEM DEFINITION**Situation:**

A tank rotated about the horizontal axis and water in tank rotates as a solid body.

Find:

Derive an equation for the maximum pressure difference.

PLAN

Apply the pressure variation equation for rotating flow.

SOLUTION

Below the axis both gravity and acceleration cause pressure to increase with decrease in elevation; therefore, the maximum pressure will occur at the bottom of the cylinder. Above the axis the pressure initially decreases with elevation (due to gravity); however, this is counteracted by acceleration due to rotation. Where these two effects completely counter-balance each other is where the minimum pressure will occur ($\partial p / \partial z = 0$). Thus, above the axis:

$$\frac{\partial p}{\partial z} = 0 = -\gamma + r\omega^2\rho \text{ minimum pressure condition}$$

Solving: $r = \gamma/\rho\omega^2$; p_{\min} occurs at $z_{\min} = +g/\omega^2$. Using the equation for pressure variation in rotating flows between the tank bottom where the pressure is a maximum ($z_{\max} = -r_0$) and the point of minimum pressure.

$$\begin{aligned} p_{\max} + \gamma z_{\max} - \frac{\rho r_0^2 \omega^2}{2} &= p_{\min} + \gamma z_{\min} - \frac{\rho r_{\min}^2 \omega^2}{2} \\ p_{\max} - \gamma r_0 - \frac{\rho r_0^2 \omega^2}{2} &= p_{\min} + \frac{\gamma g}{\omega^2} - \frac{\rho (g/\omega^2)^2 \omega^2}{2} \\ p_{\max} - p_{\min} = \Delta p_{\max} &= \frac{\rho \omega^2}{2} \left[r_0^2 - \left(\frac{g}{\omega^2} \right)^2 \right] + \gamma \left(r_0 + \frac{g}{\omega^2} \right) \end{aligned}$$

Rewriting

$$\boxed{\Delta p_{\max} = \frac{\rho \omega^2 r_0^2}{2} + \gamma r_0 + \frac{\gamma g}{2\omega^2}}$$

4.56: PROBLEM DEFINITION**Situation:**

A tank 4 ft in diameter and 12 feet long rotated about horizontal axis and water in tank rotates as a solid body. Maximum velocity is 25 ft/s.

$$V = r\omega, V_{\max} = 25 \text{ ft/s.}$$

$$D = 4 \text{ ft}, L = 12 \text{ ft.}$$

Find:

Maximum pressure difference in tank (psf).

Point of minimum pressure (ft).

Properties:

$$\rho = 62.4 \text{ lbm/ft}^3 = 1.94 \text{ slug/ft}^3, \gamma = 62.4 \text{ lbf/ft}^3.$$

PLAN

Same solution procedure applies as in Prob. 4.55.

SOLUTION

From the solution to Prob. 4.55 p_{\min} occurs at $z = \gamma/\rho\omega^2$ where $\omega = (25 \text{ ft/s})/2.0 \text{ ft} = 12.5 \text{ rad/s}$. Then

$$\begin{aligned} z_{\min} &= \frac{\gamma}{\rho\omega^2} \\ &= \frac{g}{\omega^2} \\ &= \frac{32.2 \text{ ft/s}^2}{(12.5 \text{ rad/s})^2} \end{aligned}$$

$$z_{\min} = 0.206 \text{ ft above axis}$$

The maximum change in pressure is given from solution of Problem 4.55

$$\begin{aligned} \Delta p_{\max} &= \frac{\rho\omega^2 r_0^2}{2} + \gamma r_0 + \frac{\gamma g}{2\omega^2} \\ &= \frac{1.94 \text{ slug/ft}^3 (12.5 \text{ rad/s})^2 (2 \text{ ft})^2}{2} + 62.4 \text{ lbf/ft}^3 (2 \text{ ft}) + \frac{(62.4 \text{ lbf/ft}^3) (32.2 \text{ ft/s}^2)}{2 (12.5 \text{ rad/s})^2} \\ &= 606.2 + 124.8 + 6.43 \\ \Delta p_{\max} &= 737 \text{ psf} \end{aligned}$$

4.57: PROBLEM DEFINITION**Situation:**

High winds.

Find:

Applying the Bernoulli equation, explain how a roof might be lifted from a house.

SOLUTION

If a building has a flat roof as air flows over the top of the building separation will occur at the sharp edge between the wall and roof. Therefore, most if not all of the roof will be in the separation zone. Because the zone of separation will have a pressure much lower than the normal atmospheric pressure a net upward force will be exerted on the roof thus tending to lift the roof.

Even if the building has a peaked roof much of the roof will be in zones of separation. These zones of separation will occur downwind of the peak. Therefore, peaked roof buildings will also tend to have their roofs uplifted in high winds.

4.58: PROBLEM DEFINITION

Situation:

Aspirators.

Find:

How does an aspirator work?

SOLUTION

Air is forced through a constriction in a duct. There is a port at the smallest area connected to a reservoir of fluid to be aspirated. The Bernoulli equation predicts a minimum pressure at the constriction which pulls fluid into the air flow from the reservoir and breaks it up into droplets that emerge from the aspirator.

4.59: PROBLEM DEFINITION**Situation:**

A water jet fires vertically from a nozzle.

$$V = 20 \text{ ft/s.}$$

Find:

Height jet will rise.

PLAN

Apply the Bernoulli equation from the nozzle to the top of the jet. Let point 1 be in the jet at the nozzle and point 2 at the top.

SOLUTION

Bernoulli equation

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2$$

where $p_1 = p_2 = 0$ gage

$$\begin{aligned} V_1 &= 20 \text{ ft/s} \\ V_2 &= 0 \\ 0 + \frac{(20 \text{ ft/s})^2}{2g} + z_1 &= 0 + 0 + z_2 \\ z_2 - z_1 &= h = \frac{400 \text{ ft}^2/\text{s}^2}{64.4 \text{ ft/s}^2} \\ h &= 6.21 \text{ ft} \end{aligned}$$

4.60: PROBLEM DEFINITION**Situation:**

Water discharges from a pressurized tank.

$z_1 = 0.5 \text{ m}$, $z_2 = 0 \text{ m}$, $V_1 = 0 \text{ m/s}$.

Find:

Velocity of water at outlet (m/s).

Properties:

Water (20°C , 10 kPa), Table A.5: $\rho = 998 \text{ kg/m}^3$, $\gamma = 9790 \text{ N/m}^3$.

SOLUTION

Apply the Bernoulli equation between the water surface in the tank (1) and the outlet (2)

$$p_1 + \gamma z_1 + \rho \frac{V_1^2}{2} = p_2 + \gamma z_2 + \rho \frac{V_2^2}{2}$$

Neglect V_1 ($V_1 \ll V_2$). Also $p_2 = 0$ gage. The Bernoulli equation reduces to

$$\begin{aligned} \rho \frac{V_2^2}{2} &= p_1 + \gamma(z_1 - z_2) \\ V_2 &= \sqrt{\frac{2(p_1 + \gamma(z_1 - z_2))}{\rho}} \end{aligned}$$

Elevation difference $z_1 - z_2 = 0.5 \text{ m}$. For water at 20°C , $\rho = 998 \text{ kg/m}^3$ and $\gamma = 9790 \text{ N/m}^3$. Therefore

$$\begin{aligned} V_2 &= \sqrt{\frac{2(10,000 \text{ Pa} + 9790 \text{ N/m}^3 (0.5 \text{ m}))}{998 \text{ kg/m}^3}} \\ V_2 &= 5.46 \text{ m/s} \end{aligned}$$

(

4.61: PROBLEM DEFINITION**Situation:**

Water flows through a vertical venturi configuration.

$V_1 = 10 \text{ ft/s}$, $\Delta z = 0.5 \text{ ft}$.

Find:

Velocity at minimum area (ft/s).

Properties:

$T = 68^\circ\text{F}$.

SOLUTION

Apply the Bernoulli equation between the pipe (1) and the minimum area (2)

$$p_1 + \gamma z_1 + \rho \frac{V_1^2}{2} = p_2 + \gamma z_2 + \rho \frac{V_2^2}{2}$$

From problem statement, $V_1 = 10 \text{ ft/s}$. Rewriting equation

$$\rho \frac{V_2^2}{2} = \rho \frac{V_1^2}{2} + (p_1 + \gamma z_1) - (p_2 + \gamma z_2)$$

The difference in the elevation in piezometers gives the change in piezometric pressure, $(p_1 + \gamma z_1) - (p_2 + \gamma z_2) = \gamma \Delta h$ so

$$\begin{aligned} V_2 &= \sqrt{V_1^2 + \frac{2\gamma \Delta h}{\rho}} = \sqrt{V_1^2 + 2g\Delta h} \\ &= \sqrt{10^2 (\text{ft/s})^2 + 2 (32.2 \text{ ft/s}^2) (0.5 \text{ ft})} \\ & \boxed{V_2 = 11.5 \text{ ft/s}} \end{aligned}$$

4.62: PROBLEM DEFINITION**Situation:**

Kerosene flows through a contraction section and a pressure is measured between pipe and contraction section.

$$V_2 = 10 \text{ m/s.}$$

Find:

Velocity in upstream pipe (m/s).

Properties:

Table A.4: $\rho = 814 \text{ kg/m}^3$.

$T = 20^\circ\text{C}$, $\Delta p = 20 \text{ kPa}$.

SOLUTION

Apply the Bernoulli equation between pipe (1) and contraction section (2)

$$\begin{aligned} p_1 + \gamma z_1 + \rho \frac{V_1^2}{2} &= p_2 + \gamma z_2 + \rho \frac{V_2^2}{2} \\ p_{z1} + \rho \frac{V_1^2}{2} &= p_{z2} + \rho \frac{V_2^2}{2} \end{aligned}$$

The pressure gage measures the difference in piezometric pressure, $p_{z1} - p_{z2} = 20 \text{ kPa}$. Rewrite the Bernoulli equation for V_1

$$\begin{aligned} \rho \frac{V_1^2}{2} &= \rho \frac{V_2^2}{2} - (p_{z1} - p_{z2}) \\ V_1 &= \sqrt{V_2^2 - \frac{2(p_{z1} - p_{z2})}{\rho}} \end{aligned}$$

The density of kerosene at 20°C is 814 kg/m^3 . Solving for V_1

$$\begin{aligned} V_1 &= \sqrt{(10 \text{ m/s})^2 - \frac{2(20,000 \text{ kPa})}{(814 \text{ kg/m}^3)}} \\ V_1 &= 7.13 \text{ m/s} \end{aligned}$$

4.63: PROBLEM DEFINITION**Situation:**

A Pitot tube on an airplane is used to measure airspeed

$$z_2 = 10000 \text{ ft}, h_{H_2O} = 10 \text{ in.}$$

$$T = 23^\circ\text{F}, p = 10 \text{ psia.}$$

Find:

Airspeed (ft/s).

Properties:

Water (23 °F), Table A.5: $\gamma = 62.4 \text{ lbf/ft}^3$.

Air. Table A.2: $R = 1716 \text{ J/kg K}$.

PLAN

Since the airspeed can be found by applying the Pitot-static tube equation, the steps to reach the goal are:

1. Find Δp_z by using the hydrostatic equation.
2. Find density by applying the ideal gas law.
3. Substitute values into the Pitot-static tube equation.

SOLUTION

1. Hydrostatic equation.

$$\begin{aligned}\Delta p_z &= \gamma_{H_2O} h_{H_2O} \\ &= 62.4 \text{ lbf/ft}^3 \times \frac{10}{12} \text{ ft} \\ &= 52 \text{ psf}\end{aligned}$$

2. Ideal gas law

$$\begin{aligned}\rho &= \frac{p}{RT} \\ &= \frac{(10 \text{ psi})(144 \text{ psi/psf})}{((1,716 \text{ lbf} \cdot \text{ft} / \text{slug} \cdot \text{R})(483 \text{ R}))} \\ &= 0.00174 \text{ slugs/ft}^3\end{aligned}$$

3. Pitot-Static Tube equation.

$$\begin{aligned}V &= \sqrt{\frac{2\Delta p_z}{\rho}} \\ V &= \sqrt{\frac{2 \times 52 \text{ lbf/ft}^2}{(0.00174 \text{ slugs/ft}^3)}} \\ V &= 244 \text{ ft/s}\end{aligned}$$

4.64: PROBLEM DEFINITION**Situation:**

A glass tube with 90° bend inserted into a stream of water.

$V = 4 \text{ m/s}$.

Find:

Rise in vertical leg above water surface (m).

PLAN

Apply the Bernoulli equation.

SOLUTION

Hydrostatic equation (between stagnation point and water surface in tube)

$$\frac{p_s}{\gamma} = h + d$$

where d is depth below surface and h is distance above water surface.

Bernoulli equation (between free stream and stagnation point)

$$\begin{aligned}\frac{p_s}{\gamma} &= d + \frac{V^2}{2g} \\ h + d &= d + \frac{V^2}{2g} \\ h &= \frac{V^2}{2g}\end{aligned}$$

$$\begin{aligned}h &= \frac{(4 \text{ m/s})^2}{2(9.81 \text{ m/s}^2)} \\ h &= 0.815 \text{ m}\end{aligned}$$

4.65: PROBLEM DEFINITION**Situation:**

A Bourdon tube gage attached to plate in an air stream.

$D = 1 \text{ ft}$, $V_0 = 40 \text{ ft/s}$.

Find:

Pressure read by gage ($>$, $=$, $<$) $\rho V_0^2/2$.

SOLUTION

Because it is a Bourdon tube gage, the difference in pressure that is sensed will be between the stagnation point and the separation zone downstream of the plate.

Therefore

$$\Delta C_p = 1 - (C_{p,\text{back of plate}})$$

$$\Delta C_p = 1 - (\text{neg. number})$$

$$\therefore \frac{\Delta p}{\rho V_0^2/2} = 1 + \text{positive number}$$

$$\Delta p = \left(\frac{\rho V_0^2}{2} \right) (1 + \text{positive number})$$

Case (c) is the correct choice.

4.66: PROBLEM DEFINITION**Situation:**

An air-water manometer is connected to a Pitot-static tube to measure air velocity.
 $T = 60^\circ\text{F}$, $\Delta h = 2 \text{ in.}$

Find:

Velocity (ft/s).

Properties:

Table A.2: $R = 1716 \text{ J/kg K}$.
Water (60°F , 15 psia), Table A.5: $\gamma = 62.4 \text{ lbf/ft}^3$.

PLAN Apply the Pitot tube equation calculate velocity. Apply the ideal gas law to solve for density.

SOLUTION Ideal gas law

$$\begin{aligned}\rho &= \frac{p}{RT} \\ &= \frac{15 \text{ psia} \times 144 \text{ in}^2/\text{ft}^2}{(1,715 \text{ J/kg K})(60 + 460) \text{ K}} \\ &= 0.00242 \text{ slugs/ft}\end{aligned}$$

Pitot tube equation

$$V = \left(\frac{2\Delta p_z}{\rho} \right)^{1/2}$$

From the manometer equation

$$\Delta p_z = \gamma_w \Delta h \left(1 - \frac{\gamma_a}{\gamma_w} \right)$$

but $\gamma_a/\gamma_w \ll 1$ so

$$\begin{aligned}V &= \left(\frac{2\gamma_w \Delta h}{\rho} \right)^{1/2} \\ &= \left[\frac{2(62.4 \text{ lbf/ft}^3)(2.0/12) \text{ ft}}{0.00242 \text{ slug/ft}} \right]^{1/2} \\ &\boxed{V = 92.7 \text{ ft/s}}$$

4.67: PROBLEM DEFINITION

Situation:

A flow-metering device is described in the problem.

$$V_2 = 2V_1, \Delta h = 10 \text{ cm.}$$

Find:

Velocity at station 2 (m/s).

Properties:

$$\rho = 1.2 \text{ kg/m}^3.$$

PLAN

Apply the Bernoulli equation and the manometer equation.

SOLUTION

Bernoulli equation

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} = \frac{p_t}{\gamma}$$

Manometer equation

$$\begin{aligned} p_1 + 0.1 \times 9810 - \overbrace{0.1 \times 1.2 \times 9.81}^{\text{neglect}} &= p_t \\ p_t - p_1 &= 981 \text{ N/m}^2 = \frac{\rho V_1^2}{2} \\ V_1^2 &= \frac{2(981 \text{ N/m}^2)}{1.2 \text{ kg/m}^3} \\ V_1 &= 40.4 \text{ m/s} \\ V_2 &= 2V_1 \\ V_2 &= 80.8 \text{ m/s} \end{aligned}$$

4.68: PROBLEM DEFINITION**Situation:**

A spherical Pitot tube is used to measure the flow velocity in water.

$$V_2 = 1.5V_0, \Delta h = 10 \text{ cm.}$$

Find:

Free stream velocity (m/ s).

Properties:

$$\rho = 1000 \text{ kg/ m}^3, \Delta p = 2 \text{ kPa.}$$

PLAN

Apply the Bernoulli equation between the two points. Let point 1 be the stagnation point and point 2 at 90° around the sphere.

SOLUTION

Bernoulli equation

$$\begin{aligned} p_{z1} + \frac{\rho V_1^2}{2} &= p_{z2} + \frac{\rho V_2^2}{2} \\ p_{z1} + 0 &= p_{z2} + \frac{\rho(1.5V_0)^2}{2} \\ p_{z1} - p_{z2} &= 1.125\rho V_0^2 \\ V_0^2 &= \frac{2,000 \text{ Pa}}{1.125 (1,000 \text{ kg/ m}^3)} = 1.778 \text{ m}^2/\text{s}^2 \\ V_0 &= 1.33 \text{ m/ s} \end{aligned}$$

4.69: PROBLEM DEFINITION**Situation:**

A device for measuring the water velocity in a pipe consists of a cylinder with pressure taps at forward stagnation point and at the back on the cylinder.

$\rho = 1000 \text{ kg/m}^3$, $\Delta p = 500 \text{ Pa}$, Pressure Coefficient is -0.3.

Find:

Water velocity (m/s).

PLAN

Apply the Bernoulli equation between the location of the two pressure taps. Let point 1 be the forward stagnation point and point 2 in the wake of the cylinder.

SOLUTION

The piezometric pressure at the forward pressure tap (stagnation point, $C_p = 1$) is

$$p_{z1} = p_{z0} + \rho \frac{V^2}{2}$$

At the rearward pressure tap

$$\frac{p_{z2} - p_{z0}}{\rho \frac{V^2}{2}} = -0.3$$

or

$$p_{z2} = p_{z0} - 0.3 \rho \frac{V_0^2}{2}$$

The pressure difference is

$$p_{z1} - p_{z2} = 1.3 \rho \frac{V_0^2}{2}$$

The pressure gage records the difference in piezometric pressure so

$$\begin{aligned} V_0 &= \left(\frac{2}{1.3 \rho} \Delta p_z \right)^{1/2} \\ &= \left[\frac{2}{1.3 (1000 \text{ kg/m}^3)} (500 \text{ Pa}) \right]^{1/2} \\ &= 0.88 \text{ m/s} \end{aligned}$$

$$V_0 = 0.88 \text{ m/s}$$

4.70: PROBLEM DEFINITION**Situation:**

A Pitot tube measures the flow direction and velocity in water.

Find:

Explain how to design the Pitot tube.

SOLUTION

Three pressure taps could be located on a sphere at an equal distance from the nominal stagnation point. The taps would be at intervals of 120° . Then when the probe is mounted in the stream, its orientation could be changed in such a way as to make the pressure the same at the three taps. Then the axis of the probe would be aligned with the free stream velocity.

4.71: PROBLEM DEFINITION**Situation:**

Two Pitot tubes are connected to air-water manometers to measure air and water velocities.

Find:

The relationship between V_A and V_W .

$$V = \sqrt{2g\Delta h} = \sqrt{\frac{2\Delta p_z}{\rho}}$$

SOLUTION

The Δp_z is the same for both; however,

$$\rho_w >> \rho_a$$

Therefore $V_A > V_W$. The correct choice is **b).**

4.72: PROBLEM DEFINITION

Situation:

A Pitot tube measures the velocity of kerosene at center of a pipe.

$D = 12 \text{ in}$, $\Delta h = 4 \text{ in}$,

Find:

Velocity (ft/s).

Properties:

From Table A.4: $\rho_{\text{ker}} = 1.58 \text{ slugs/ft}^3$.

$T = 68^\circ\text{F}$, $\gamma_{\text{ker}} = 51 \text{ lbf/ft}^3$, $\gamma_{\text{HG}} = 847 \text{ lbf/ft}^3$.

PLAN

Apply the Pitot tube equation and the hydrostatic equation.

SOLUTION

Hydrostatic equation

$$\begin{aligned}\Delta p_z &= \Delta h(\gamma_{\text{HG}} - \gamma_{\text{ker}}) \\ &= \frac{4}{12} \text{ ft} (847 - 51) \text{ lbf/ft}^3 \\ &= 265.3 \text{ psf}\end{aligned}$$

Pitot tube equation

$$\begin{aligned}V &= \left(\frac{2\Delta p_z}{\rho} \right)^{1/2} \\ &= \left[\frac{2(265.3 \text{ psf})}{1.58 \text{ slug/ft}^3} \right]^{1/2} \\ &\boxed{V = 18.3 \text{ ft/s}}\end{aligned}$$

4.73: PROBLEM DEFINITION

Situation:

A Pitot tube for measuring velocity of air.

Find:

Air velocity (m/ s).

Properties:

Air (20°C), Table A.3: $\rho = 1.2 \text{ kg/m}^3$.

$\Delta p_z = 3 \text{ kPa}$.

PLAN

Apply the Pitot tube equation.

SOLUTION

Pitot tube equation

$$\begin{aligned} V &= \left(\frac{2\Delta p_z}{\rho} \right)^{1/2} \\ &= \left[\frac{2(3,000 \text{ kPa})}{1.2 \text{ kg/m}^3} \right]^{1/2} \\ & \boxed{V = 70.7 \text{ m/s}} \end{aligned}$$

4.74: PROBLEM DEFINITION**Situation:**

A Pitot tube is used to measure the velocity of air.

$\Delta p_z = 11 \text{ psf}$, $T = 60^\circ\text{F}$.

Find:

Air velocity (ft / s).

Properties:

Air (60°F), Table A.3: $\rho = 0.00237 \text{ slug/ ft}^3$.

PLAN

Apply the Pitot tube equation.

SOLUTION

Pitot tube equation

$$V = \sqrt{\frac{2\Delta p_z}{\rho}}$$
$$V = \left[\frac{2(11\text{psf})}{0.00237 \text{ slug/ ft}^3} \right]^{1/2}$$

$V = 96.3 \text{ ft/ s}$

4.75: PROBLEM DEFINITION**Situation:**

A Pitot tube measures gas velocity in a duct.

Find:

Gas velocity in duct (ft/ s).

Properties:

$\Delta p_z = 1 \text{ psi}$, $\rho = 0.12 \text{ lb/ ft}^3$.

PLAN

Apply the Pitot tube equation.

SOLUTION

Pitot tube equation The density is $0.12 \text{ lbm/ft}^3 / 32.2 = 0.00373 \text{ slugs/ft}^3$

$$\begin{aligned} V &= \sqrt{\frac{2\Delta p_z}{\rho}} \\ &= \left[\frac{2 (1\text{psi}) (144\text{psf/psi})}{0.00373 \text{slug/ft}^3} \right]^{1/2} \\ &= 278 \text{ ft/s} \end{aligned}$$

4.76: PROBLEM DEFINITION**Situation:**

A sphere moving horizontally through still water.

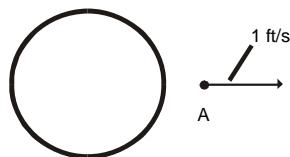
$$V_0 = 11 \text{ ft/s}, V_A = 1 \text{ ft/s}.$$

Find:

$$\text{Pressure ratio: } p_A/p_0$$

PLAN

Apply the Bernoulli equation.

SOLUTION

By referencing velocities to the spheres a steady flow case will be developed. Thus, for the steady flow case $V_0 = 11 \text{ ft/s}$ and $V_A = 10 \text{ ft/s}$. Then when Bernoulli's equation is applied between points 0 and A it will be found that $p_A/p_0 > 1$ (case c)

4.77: PROBLEM DEFINITION**Situation:**

A body moving horizontally through still water.

$$V_A = 13 \text{ m/s}, V_B = 5 \text{ m/s}, V_C = 3 \text{ m/s}.$$

Find:

$$p_B - p_C \text{ (kPa).}$$

SOLUTION

Apply the Bernoulli equation.

$$p_B - p_C = \frac{\rho}{2}(V_C^2 - V_B^2) \quad (1)$$

Reference all velocities to an observer situated on the sphere. From this reference frame, the flow is steady and the Bernoulli equation is applicable.

$$V_C = 13 \text{ m/s} - 3 \text{ m/s} = 10 \text{ m/s} \quad (2)$$

$$V_B = 13 \text{ m/s} - 5 \text{ m/s} = 8 \text{ m/s} \quad (3)$$

Combine Eqs. (1) to (3)

$$\begin{aligned} p_B - p_C &= \frac{\rho}{2}(V_C^2 - V_B^2) \\ p_B - p_C &= \left(\frac{1,000 \text{ kg/m}^3}{2}\right)[(10 \text{ m/s})^2 - (8 \text{ m/s})^2] \\ &= 18,000 \text{ Pa} \\ \boxed{p_B - p_C = 18 \text{ kPa}} \end{aligned}$$

4.78: PROBLEM DEFINITION**Situation:**

Water is in a flume with a pressure gage along the bottom.

$D_a = D_b$, $V_a = 0 \text{ m/s}$, $V_b = 3 \text{ m/s}$.

Find:

If gage A will read greater or less than gage B.

SOLUTION

Both gage A and B will read the same, due to hydrostatic pressure distribution in the vertical in both cases. There is no acceleration in the vertical direction.

4.79: PROBLEM DEFINITION

Situation:

An apparatus is used to measure the air velocity in a duct. It is connected to a slant tube manometer with a 30° leg with the indicated deflection.

$$D = 10 \text{ cm}, D_{stagn} = 2 \text{ mm}$$

$$\ell_1 = 6.7 \text{ cm}, \ell_2 = 2.3 \text{ cm.}$$

Find:

Air velocity (m/ s).

Properties:

$$\text{Table A.2: } R = 287 \text{ J/ kg K.}$$

$$T = 20^\circ\text{C}, p_{stagn} = 150 \text{ kPa}, S = 0.7$$

PLAN

Apply the Bernoulli equation.

SOLUTION

The side tube samples the static pressure for the undisturbed flow and the central tube senses the stagnation pressure.

Bernoulli equation

$$p_0 + \frac{\rho V_0^2}{2} = p_{stagn.} + 0$$
$$\text{or } V_0 = \sqrt{\frac{2}{\rho}(p_{stagn.} - p_0)}$$

But

$$p_{stagn.} - p_0 = (\ell_1 - \ell_2) \sin \theta (\gamma_m - \gamma_{air})$$

$$\text{but } \gamma_m \gg \gamma_{air}$$

$$p_{stagn.} - p_0 = (0.067 \text{ m} - 0.023 \text{ m}) \sin 30^\circ (0.7) (9,810 \text{ N/ m}^3) = 151.1 \text{ Pa}$$

$$\rho = \frac{p}{RT} = \frac{150,000 \text{ Pa}}{(287 \text{ J/ kg K})(273 + 20) \text{ K}} = 1.784 \text{ kg/m}^3$$

Then

$$V_0 = \sqrt{\frac{2}{1.784 \text{ kg/m}^3}(151.1 \text{ Pa})}$$

$$V_0 = 13.0 \text{ m/s}$$

4.80: PROBLEM DEFINITION

Situation:

An instrument used to find gas velocity in smoke stacks.

$C_{pA} = 1$, $C_{pB} = -0.3$, $\Delta h = 5 \text{ mm}$.

Find:

Velocity of stack gases (m/ s).

Properties:

$T = 20^\circ\text{C}$, $R = 200 \text{ J/kg K}$.

$T_{gas} = 250^\circ\text{C}$, $p_{gas} = 101 \text{ kPa}$.

SOLUTION

Ideal gas law

$$\begin{aligned}\rho &= \frac{p}{RT} \\ &= \frac{101,000 \text{ Pa}}{(200 \text{ J/kg K})(250 + 273) \text{ K}} \\ &= 0.966 \text{ kg/m}^3\end{aligned}$$

Manometer equation

$$\Delta p_z = (\gamma_w - \gamma_a) \Delta h$$

but $\gamma_w \gg \gamma_a$ so

$$\begin{aligned}\Delta p_z &= \gamma_w \Delta h \\ &= 9790 \text{ N/m}^3 (0.005 \text{ m}) \\ &= 48.9 \text{ Pa}\end{aligned}$$

$$\begin{aligned}(p_A - p_B)_z &= (C_{pA} - C_{pB}) \frac{\rho V_0^2}{2} \\ (p_A - p_B)_z &= 1.3 \frac{\rho V_0^2}{2} \\ V_0^2 &= \frac{2(48.9 \text{ Pa})}{1.3(0.966 \text{ kg/m}^3)} \\ V_0 &= 8.82 \text{ m/s}\end{aligned}$$

4.81: PROBLEM DEFINITION**Situation:**

The wake of a sphere which separates at 120° .

$$V_0 = 100 \text{ m/s.}$$

$$V = 1.5V_0, \theta = 120^\circ.$$

Find:

- (a) Gage pressure (kPa).
- (b) Pressure coefficient.

Properties:

$$\rho = 1.2 \text{ kg/m}^3.$$

PLAN

Apply the Bernoulli equation from the free stream to the point of separation and the pressure coefficient equation.

SOLUTION

Pressure coefficient

$$C_p = \frac{p - p_0}{\rho V^2 / 2}$$

Bernoulli equation

$$\begin{aligned} p_0 + \frac{\rho U^2}{2} &= p + \frac{\rho u^2}{2} \\ p - p_0 &= \frac{\rho}{2} (U^2 - u^2) \end{aligned}$$

or

$$\frac{p - p_0}{\rho U^2 / 2} = \left(1 - \left(\frac{u}{U}\right)^2\right)$$

but

$$\begin{aligned} u &= 1.5U \sin \theta \\ u &= 1.5U \sin 120^\circ \\ u &= 1.5U \times 0.866 \end{aligned}$$

At the separation point

$$\begin{aligned}\frac{u}{U} &= 1.299 \\ \left(\frac{u}{U}\right)^2 &= 1.687 \\ C_p &= 1 - 1.687 \\ C_p &= -0.687 \\ p_{\text{gage}} &= C_p \left(\frac{\rho}{2}\right) U^2 \\ &= (-0.687)(1.2 \text{ kg/m}^3/2)(100 \text{ m/s})^2 \\ &= -4,122 \text{ Pa} \\ p_{\text{gage}} &= -4.12 \text{ kPa gage}\end{aligned}$$

4.82: PROBLEM DEFINITION**Situation:**

An airplane uses a Pitot-static tube to measure airspeed.

$z_2 = 3000 \text{ m}$, $V_{ind} = 70 \text{ m/s}$.

Find:

True air-speed (m/s).

Properties:

$T_{SL} = 17^\circ\text{C}$, $T = -6.3^\circ\text{C}$.

$p_{SL} = 101 \text{ kPa}$, $p = 70 \text{ kPa}$.

PLAN

Apply the Pitot-tube equation and correct for density change.

SOLUTION

The Pitot-static tube equation is

$$V = \left(\frac{2\Delta p}{\rho} \right)^{1/2}$$

Multiplying and dividing by the sea level density

$$V = \left(\frac{2\Delta p}{\rho_{SL}} \right)^{1/2} \left(\frac{\rho_{SL}}{\rho} \right)^{1/2}$$

The factor $\left(\frac{2\Delta p}{\rho_{SL}} \right)^{1/2}$ is the indicated airspeed so

$$V_{true} = V_{ind} \left(\frac{\rho_{SL}}{\rho} \right)^{1/2}$$

From the ideal gas law

$$\frac{\rho_{SL}}{\rho} = \frac{p_{SL}}{T_{SL}} \frac{T}{p} = \frac{101 \text{ kPa}}{70 \text{ kPa}} \frac{(273 - 6.3) \text{ K}}{(273 + 17) \text{ K}} = 1.327$$

True air speed

$$V_{true} = 70 \text{ m/s} \times \sqrt{1.327}$$

$V_{true} = 80.6 \text{ m/s}$

4.83: PROBLEM DEFINITION**Situation:**

An airplane uses a Pitot-static tube to measure airspeed.

$z = 10000 \text{ ft.}$

Find:

Speed of aircraft (mph).

Properties:

$T_2 = 25^\circ\text{F}$, $p = 9.8 \text{ psig}$, $\Delta p = 0.5 \text{ psid}$.

SOLUTION

The temperature is 25 degrees F and the pressure is 9.8 psia. The pressure difference is 0.5 psid. The pressure is $144 \times 9.8 = 1411 \text{ psfa}$. The temperature is $460 + 25 = 485 \text{ R}$. The gas constant is $1545/29 = 53.3 \text{ ft-lbf/lbm-R}$.

The density is

$$\rho = \frac{p}{RT} = \frac{1411 \text{ psfa}}{53.3 \text{ ft-lbf/lbm-R} \times 485 \text{ R}} = 0.0546 \text{ lbm/ft}^3 = 0.00169 \text{ slugs/ft}^3$$

. The differential pressure is $0.5 \times 144 = 72 \text{ psf}$.

The pitot equation is

$$V = \left(\frac{2\Delta p}{\rho} \right)^{1/2} = \left[\frac{2(72 \text{ psf})}{0.00169 \text{ slug/ft}^3} \right]^{1/2} = (8.52 \times 10^4)^{1/2} = 292 \text{ ft/s}$$

$V = 199 \text{ mph}$

4.84: PROBLEM DEFINITION**Situation:**

Check equations for pitot tube velocity measurement provided by instrument company.

$$V = 1096.7\sqrt{h_v/d}, d = 1.325P_a/T.$$

Find:

Validity of Pitot tube equations provided.

PLAN

Apply the Bernoulli equation

SOLUTION

Applying the Bernoulli equation to the Pitot tube, the velocity is related to the change in piezometric pressure by

$$\Delta p_z = \rho \frac{V^2}{2}$$

where Δp_z is in psf, ρ is in slugs/ft³ and V is in ft/s. The piezometric pressure difference is related to the "velocity pressure" by

$$\begin{aligned}\Delta p_z(\text{lbf/ft}^2) &= \frac{\gamma_w(\text{lbf/ft}^3)h_v(\text{in})}{12(\text{in/ft})} \\ &= \frac{62.4 \times h_v}{12} \\ &= 5.2h_v\end{aligned}$$

The density in slugs/ft³ is given by

$$\begin{aligned}\rho(\text{slug/ft}^3) &= \frac{d \text{ (lbm/ft}^3)}{g_c(\text{lbm/slug})} \\ &= \frac{d}{32.2} \\ &= 0.03106d\end{aligned}$$

The velocity in ft/min is obtained by multiplying the velocity in ft/s by 60. Thus

$$\begin{aligned}V &= 60\sqrt{\frac{2 \times 5.2h_v}{0.03106d}} \\ &= 1098\sqrt{\frac{h_v}{d}}\end{aligned}$$

This differs by less than 0.1% from the manufacturer's recommendations. This could be due to the value used for g_c but the difference is probably not significant compared to accuracy of "velocity pressure" measurement.

From the ideal gas law, the density is given by

$$\rho = \frac{p}{RT}$$

where ρ is in slugs/ft³, p in psfa and T in °R. The gas constant for air is 1716 ft-lbf/slug-°R. The pressure in psfg is given by

$$\begin{aligned} p \text{ (psfg)} &= \frac{P_a \text{ (in-Hg)} \times 13.6 \times 62.4 \text{ (lbf/ft}^3\text{)}}{12 \text{ (in/ft)}} \\ &= 70.72 P_a \end{aligned}$$

where 13.6 is the specific gravity of mercury. The density in lbm/ft³ is

$$\begin{aligned} d &= g_c \rho \\ &= 32.2 \times \frac{70.72 P_a}{1716 \times T} \\ &= 1.327 \frac{P_a}{T} \end{aligned}$$

which is within 0.2% of the manufacturer's recommendation.

4.85: PROBLEM DEFINITION**Situation:**

The flow of water over different surfaces.

Find:

Relationship of pressures.

- (a) $p_C > p_B > p_A$.
- (b) $p_B > p_C > p_A$.
- (c) $p_C = p_B = p_A$.
- (d) $p_B < p_C < p_A$.
- (e) $p_A < p_B < p_C$.

SOLUTION

The flow curvature requires that $p_B > p_D + \gamma d$ where d is the liquid depth. Also, because of hydrostatics $p_C = p_D + \gamma d$. Therefore $p_B > p_C$. Also $p_A < p_D + \gamma d$ so $p_A < p_C$. So $p_B > p_C > p_A$.

The valid statement is (b).

4.86: PROBLEM DEFINITION**Situation:**

Fluid element rotation.

Find:

What is meant by rotation of a fluid element?

SOLUTION

An arbitrary cubical element is selected in a flow. One side lies along the x-axis. As the element moves through the flow it will be deformed. If the angle between the bisectors of the sides and the x-axis does not change, there is no rotation.

4.87: PROBLEM DEFINITION**Situation:**

A spherical fluid element in an inviscid fluid.

Find:

If pressure and gravitational forces are the only forces acting on the element, can they cause the element to rotate?

SOLUTION

The result force due to pressure passes through the center of the sphere so no moment arm to create rotation. The resultant forces due to gravity also pass though the center so cannot cause rotation.

4.88: PROBLEM DEFINITION**Situation:**

A two-dimensional velocity field is represented by the vector $\mathbf{V} = 10x\mathbf{i} - 10y\mathbf{j}$.

Find:

Is the flow irrotational?

SOLUTION

In a two dimensional flow in the $x - y$ plane, the flow is irrotational if (Eq. 4.34a)

$$\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}$$

The velocity components and derivatives are

$$\begin{aligned} u &= 10x & \frac{\partial u}{\partial y} &= 0 \\ v &= -10y & \frac{\partial v}{\partial x} &= 0 \end{aligned}$$

Therefore the flow is irrotational.

4.89: PROBLEM DEFINITION**Situation:**

A flow field has velocity components described by $u = -\omega y$ and $v = \omega x$.

Find:

Vorticity.

Rate of rotation.

SOLUTION

Rate of rotation

$$\begin{aligned}\omega_z &= (1/2)\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) \\ &= \frac{1}{2}(\omega - (-\omega)) \\ &= \frac{1}{2}(2\omega) \\ &\boxed{\omega_z = \omega}\end{aligned}$$

Vorticity is twice the average rate of rotation; therefore, the $\boxed{\text{vorticity} = 2\omega}$

4.90: PROBLEM DEFINITION

Situation:

A two-dimensional velocity field is given by:

$$u = \frac{Cx}{(x^2+y^2)^2}, \quad v = \frac{Cy}{(x^2+y^2)^2}.$$

Find:

Check if flow is irrotational.

SOLUTION

Apply equations for flow rotation in $x - y$ plane.

$$\begin{aligned} \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} &= \frac{-2xCy}{(x^2+y^2)^2} - \left[-\frac{2yCx}{(x^2+y^2)^2} \right] \\ &= 0 \end{aligned}$$

The flow is irrotational

4.91: PROBLEM DEFINITION**Situation:**

A two-dimensional flow field is defined by:

$$u = x^2 - y^2, \quad v = -2xy.$$

$$x = 1 \text{ m}, \quad y = 1 \text{ m}, \quad t = 1 \text{ s.}$$

Find:

If the flow is rotational or irrotational.

SOLUTION

Rate of flow rotation about the z-axis,

$$\begin{aligned}\Omega_z &= \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) \\ &= \frac{1}{2} (-2y + 2y) = 0\end{aligned}$$

Therefore, the flow is **irrotational**.

4.92: PROBLEM DEFINITION**Situation:**

Fluid flows between two stationary plates.

$$u = 2(1 - 4y^2), V_{\max} = 2 \text{ cm/s.}$$

Find:

Find rotation of fluid element when it moves 1 cm downstream

PLAN

Apply equations for rotation rate of fluid element..

SOLUTION

The rate of rotation for this planar (two-dimensional) flow is

$$\omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$

In this problem, $v = 0$ so

$$\begin{aligned} \omega_z &= -\frac{1}{2} \frac{\partial u}{\partial y} \\ &= 16y \end{aligned}$$

The time to travel 1 cm is

$$\begin{aligned} \Delta t &= \frac{1}{u} \\ &= \frac{1}{2(1 - 4y^2)} \end{aligned}$$

The amount of rotation in 1 cm travel is

$$\Delta\theta = \omega_z \Delta t$$

$$\boxed{\Delta\theta = \frac{8y}{(1-4y^2)}}$$

4.93: PROBLEM DEFINITION**Situation:**

A velocity distribution is provided for a combination of free and forced vortex.

$$v_\theta = \frac{1}{r} [1 - \exp(-r^2)], \quad r = 0.5, 1.0, 1.5.$$

$$2\dot{\theta}_z = \frac{dv_\theta}{dr} + \frac{v_\theta}{r} = \frac{1}{r} \frac{d}{dr}(v_\theta r).$$

Find:

Find how much a fluid element rotates in one circuit around the vortex as a function of radius.

SOLUTION

The rate of rotation is given by

$$\begin{aligned}\dot{\theta} &= \frac{1}{2} \frac{1}{r} \frac{d}{dr}(v_\theta r) \\ &= \frac{1}{2} \frac{1}{r} \frac{d}{dr}[1 - \exp(-r^2)] \\ &= \exp(-r^2)\end{aligned}$$

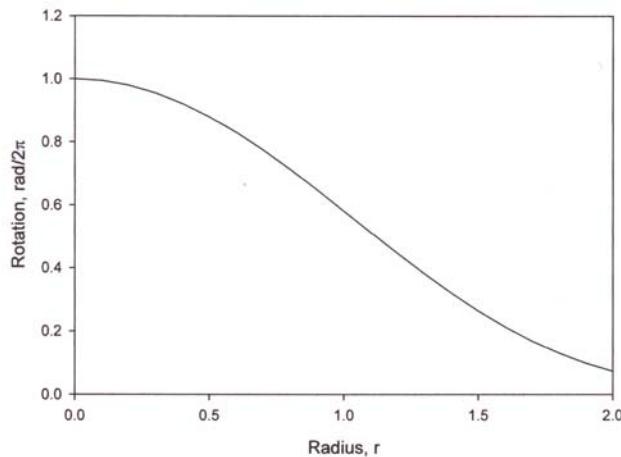
The time to complete one circuit is

$$\begin{aligned}\Delta t &= \frac{2\pi r}{v_\theta} \\ &= \frac{2\pi r^2}{[1 - \exp(-r^2)]}\end{aligned}$$

So, the total rotation in one circuit is given by

$$\begin{aligned}\Delta\theta &= \dot{\theta} \Delta t \\ \frac{\Delta\theta}{2\pi} \text{ (rad)} &= r^2 \frac{\exp(-r^2)}{1 - \exp(-r^2)}\end{aligned}$$

A plot of the rotation in one circuit is shown. Note that the rotation is 2π for $r \rightarrow 0$ (rigid body rotation) and approaches zero (irrotational) as r becomes larger.



4.94: PROBLEM DEFINITION**Situation:**

Incompressible and inviscid liquid flows around a bend.

$$V = \frac{1}{r}, r_i = 1 \text{ m}, r_o = 3 \text{ m.}$$

Find:

Depth of liquid from inside to outside radius (m).

PLAN

Flow field is irrotational so apply the Bernoulli equation across streamlines between the outside of the bend at the surface (point 2) and the inside of the bend at the surface (point 1).

SOLUTION

Bernoulli equation

$$\begin{aligned} \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 &= \frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 \\ 0 + \frac{V_2^2}{2g} + z_2 &= 0 + \frac{V_1^2}{2g} + z_1 \\ z_2 - z_1 &= \frac{V_1^2}{2g} - \frac{V_2^2}{2g} \end{aligned}$$

where $V_2 = (1/3) \text{ m/s}$; $V_1 = (1/1) \text{ m/s}$. Then

$$\begin{aligned} z_2 - z_1 &= \frac{1}{2g}((1 \text{ m/s})^2 - (0.33 \text{ m/s})^2) \\ z_2 - z_1 &= 0.045 \text{ m} \end{aligned}$$

4.95: PROBLEM DEFINITION**Situation:**

An outlet pipe from a reservoir.

$V = 16 \text{ ft/s}$, $h = 15 \text{ ft}$.

Find:

Pressure at point A (psig).

PLAN

Apply the Bernoulli equation.

SOLUTION

Bernoulli equation. Let point 1 be at surface in reservoir.

$$\begin{aligned}\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 &= \frac{p_A}{\gamma} + \frac{V_A^2}{2g} + z_A \\ 0 + 0 + 15 &= \frac{p_A}{62.4 \text{ lbf/ft}^3} + \frac{(16 \text{ ft/s})^2}{2 \times 32.2 \text{ ft/s}^2} + 0 \\ p_A &= (15 \text{ ft} - 3.98 \text{ ft}) \times 62.4 \text{ lbf/ft}^3 \\ p_A &= 688 \text{ psfg} \\ p_A &= 4.78 \text{ psig}\end{aligned}$$

4.96: PROBLEM DEFINITION**Situation:**

An outlet pipe from a reservoir.

$V = 6 \text{ m/s}$, $h = 15 \text{ m}$.

Find:

Pressure at point A (kPa).

Assumptions:

Flow is irrotational.

PLAN

Apply the Bernoulli equation.

SOLUTION

Bernoulli equation. Let point 1 be at reservoir surface.

$$\begin{aligned}\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 &= \frac{p_A}{\gamma} + \frac{V_A^2}{2g} + z_A \\ 0 + 0 + 15 &= \frac{p_A}{9810 \text{ N/m}^3} + \frac{(6 \text{ m/s})^2}{2 \times 9.81 \text{ m/s}^2} + 0 \\ p_A &= (15 \text{ m} - 1.83 \text{ m}) (9810 \text{ N/m}^3) \\ p_A &= 129,200 \text{ Pa, gage} \\ p_A &= 129 \text{ kPa, gage}\end{aligned}$$

4.97: PROBLEM DEFINITION**Situation:**

Air flows past a cylinder. Highest velocity at the maximum width of sphere is twice the free stream velocity.

$$V_0 = 40 \text{ m/s}, V_{\max} = 2V_0.$$

Find:

Pressure difference between highest and lowest pressure (kPa).

Assumptions:

Hydrostatic effects are negligible and the wind has density of 1.2 kg/m^3 .

PLAN

Apply the Bernoulli equation between points of highest and lowest pressure.

SOLUTION

The maximum pressure will occur at the stagnation point where $V = 0$ and the point of lowest pressure will be where the velocity is highest ($V_{\max} = 80 \text{ m/s}$).

Bernoulli equation

$$\begin{aligned} p_h + \frac{\rho V_h^2}{2} &= p_{\ell} + \frac{\rho V_{\ell}^2}{2} \\ p_h + 0 &= p_{\ell} + \frac{\rho}{2}(V_{\max}^2) \\ p_h - p_{\ell} &= \frac{1.2 \text{ kg/m}^3}{2} (80 \text{ m/s})^2 \\ &= 3,840 \text{ Pa} \end{aligned}$$

$p_h - p_{\ell} = 3.84 \text{ kPa}$

4.98: PROBLEM DEFINITION**Situation:**

Velocity and pressure given at two points in a duct.

$$V_1 = 1 \text{ m/s}, V_2 = 2 \text{ m/s}.$$

Find:

Determine which is true:

- (a) Flow in contraction is nonuniform and irrotational.
- (b) Flow in contraction is uniform and irrotational.
- (c) Flow in contraction is nonuniform and rotational.
- (d) Flow in contraction is uniform and rotational.

Assumptions:

Elevations are equal.

Properties:

$$p_1 = 10 \text{ kPa}, p_2 = 7 \text{ kPa}.$$

$$\rho = 1000 \text{ kg/m}^3.$$

PLAN

Check to see if it is irrotational by seeing if it satisfies Bernoulli's equation.

SOLUTION

The flow is **non-uniform.**

Bernoulli equation

$$\begin{aligned} \frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 &= \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 \\ \frac{10,000 \text{ Pa}}{9,810 \text{ N/m}^3} + \frac{(1 \text{ m/s})^2}{2(9.81 \text{ m/s}^2)} + 0 &= \frac{7,000 \text{ Pa}}{9,810 \text{ N/m}^3} + \frac{(2 \text{ m/s})^2}{2(9.81 \text{ m/s}^2)} + 0 \\ 1.070 &\neq 0.917 \end{aligned}$$

Flow is **rotational.** The correct choice is **c.**

4.99: PROBLEM DEFINITION

Situation:

Water flowing from a large orifice in bottom of tank.

$$V_A = 8 \text{ ft/s}, V_B = 20 \text{ ft/s}.$$

$$z_A = 1 \text{ ft}, z_B = 0 \text{ ft}.$$

Find:

$$p_A - p_B \text{ (psf)}.$$

Properties:

$$\rho = 62.4 \text{ lb/ft}^3.$$

PLAN

Apply the Bernoulli equation.

SOLUTION

Bernoulli equation

$$\begin{aligned} \frac{p_A}{\gamma} + z_A + \frac{V_A^2}{2g} &= \frac{p_B}{\gamma} + z_B + \frac{V_B^2}{2g} \\ p_A - p_B &= \gamma \left[\frac{(V_B^2 - V_A^2)}{2g} - z_A \right] \\ &= 62.4 \text{ lb/ft}^3 \left[\frac{(400 - 64) \text{ ft}^2/\text{s}^2}{2(32.2 \text{ ft/s}^2)} - 1 \text{ ft} \right] \\ p_A - p_B &= 263 \text{ psf} \end{aligned}$$

4.100: PROBLEM DEFINITION**Situation:**

A flow pattern past an airfoil.

$V_0 = 80 \text{ m/s}$, $V_1 = 85 \text{ m/s}$, $V_2 = 75 \text{ m/s}$.

Find:

Pressure difference between bottom and top (kPa).

Assumptions:

The pressure due to elevation difference between points is negligible.

Properties:

$\rho = 1.2 \text{ kg/m}^3$.

SOLUTION

The flow is ideal and irrotational so the Bernoulli equation applies between any two points in the flow field

$$\begin{aligned}\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 &= \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 \\ p_2 - p_1 &= \frac{\rho}{2}(V_1^2 - V_2^2) \\ p_2 - p_1 &= \frac{1.2 \text{ kg/m}^3}{2}(85^2 - 75^2) \text{ m/s} \\ &= 960 \text{ Pa}\end{aligned}$$

$p_2 - p_1 = 0.96 \text{ kPa}$

4.101: PROBLEM DEFINITION**Situation:**

Flow of water between parallel plates.

Find:

Is the Bernoulli equation valid between plates?

SOLUTION

The flow between the two plates is rotational. The Bernoulli equation cannot be applied across streamlines in rotational flows.

4.102: PROBLEM DEFINITION**Situation:**

Category 5 hurricane.

$V_{\max} = 175 \text{ mi/h}$.

Find:

Calculate pressure at center (mbar).

Properties:

$\rho = 1.2 \text{ kg/m}^3$, $p_{center} = 902 \text{ mbar}$, $p_{atm} = 1 \text{ bar}$.

SOLUTION

The pressure change from the exterior to the core of a hurricane using the model of a rotating core surrounded by a free vortex is

$$\Delta p = \rho V_{\max}^2$$

The speed of 175 mph in m/s is

$$V = 175 \frac{\text{miles}}{\text{hr}} \times \frac{1 \text{ hr}}{3600 \text{ s}} \times \frac{5280 \text{ ft}}{1 \text{ mile}} \times \frac{1 \text{ m}}{3.048 \text{ ft}} = 84.21 \text{ m/s}$$

The pressure difference is

$$\Delta p = 1.2 \times 84.21^2 = 8510 \text{ Pa}$$

To convert to mbar, $1 \text{ mbar} = 10^2 \text{ Pa}$ so the pressure difference is 85.10 mbar and the estimated pressure at the center of the hurricane is

$$\begin{aligned} p &= 1000 - 85.10 \\ p &= 914 \text{ mbar} \end{aligned}$$

This is slightly higher than the recorded pressure. The discrepancy probably lies in the simplicity of the model. Also the presence of water droplets in the air will may increase the effective density giving rise to a higher pressure difference.

4.103: PROBLEM DEFINITION**Situation:**

Pressure drop in a tornado.

Find:

Estimate maximum velocity (m/s).

Properties:

$$\rho = 1.2 \text{ kg/m}^3, p_{center} = 100 \text{ mbar.}$$

SOLUTION

Assume an air density of 1.2 kg/m^3 . The pressure depression in a tornado is estimated as

$$\Delta p = \rho V_{\max}^2$$

so

$$\begin{aligned} V_{\max} &= \sqrt{\frac{\Delta p}{\rho}} \\ &= \sqrt{\frac{0.1 (100,000 \text{ Pa})}{1.2 \text{ kg/m}^3}} \\ & \boxed{V_{\max} = 91.3 \text{ m/s}} \end{aligned}$$

4.104: PROBLEM DEFINITION**Situation:**

A whirlpool modeled as free and forced vortex.

$V_{\max} = 10 \text{ m/s}$, $r = 10 \text{ m}$.

Find:

Shape of the water surface to 50 meter radius.

Properties:

$p_{atm} = 0$.

PLAN

Apply the Bernoulli equation to the free vortex region.

SOLUTION

Bernoulli equation

$$z_{10} + \frac{V_{\max}^2}{2g} = z + \frac{V^2}{2g} = 0$$

The elevation at the juncture of the forced and free vortex and a point far from the vortex center where the velocity is zero is given by

$$z_{10} = -\frac{V_{\max}^2}{2g}$$

In the forced vortex region, the equation relating elevation and speed is

$$z_{10} - \frac{V_{\max}^2}{2g} = z - \frac{V^2}{2g}$$

At the vortex center, $V = 0$, so

$$\begin{aligned} z_0 &= z_{10} - \frac{V_{\max}^2}{2g} = -\frac{V_{\max}^2}{2g} - \frac{V_{\max}^2}{2g} = -\frac{V_{\max}^2}{g} \\ z &= -\frac{10^2}{9.81} = -10.2 \text{ m} \end{aligned}$$

In the forced vortex region

$$V = \frac{r}{10} 10 \text{ m/s} = r$$

so the elevation is given by

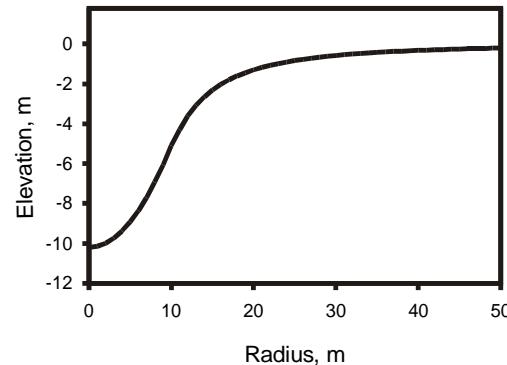
$$z = -10.2 + \frac{r^2}{2g}$$

In the free vortex region

$$V = 10 \frac{10}{r}$$

so the elevation is given by

$$z = z_{10} + \frac{V_{\max}^2}{2g} - \frac{100}{2g} \left(\frac{10}{r} \right)^2 = \frac{-510}{r^2}$$



4.105: PROBLEM DEFINITION**Situation:**

Tornado modeled as combination of forced and free vortex.

$V_{\max} = 350 \text{ km/h}$. $r = 50 \text{ m}$.

Find:

Variation in pressure.

Properties:

$p_{atm} = 100 \text{ kPa}$.

PLAN

Apply the pressure variation equation-rotating flow to the vortex center and the Bernoulli equation in the free vortex region.

SOLUTION

From the pressure variation equation-rotating flow, the pressure reduction from atmospheric pressure at the vortex center is

$$\Delta p = -\rho V_{\max}^2$$

which gives

$$\Delta p = -1.2 \times (350 \times \frac{1000}{3600})^2 = -11.3 \text{ kPa}$$

or a pressure of $p(0) = 100 - 11.3 = 88.7 \text{ kPa}$. In the forced vortex region the pressure varies as

$$p(0) = p - \rho \frac{V^2}{2}$$

In this region, the fluid rotates as a solid body so the velocity is

$$V = \frac{r}{50} V_{\max} = 1.94r$$

The equation for pressure becomes

$$p = 88.7 + 2.26r^2/1000 \quad \text{for } r \leq 50 \text{ m}$$

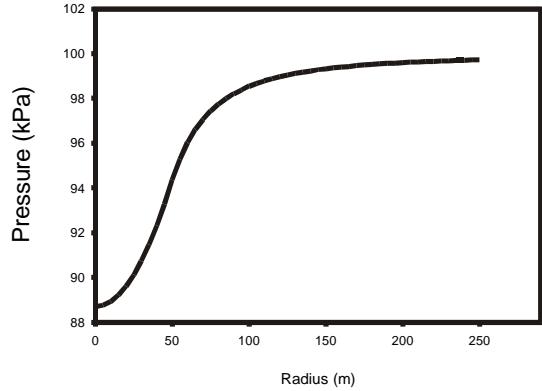
The factor of 1000 is to change the pressure to kPa. At the point of highest velocity the pressure is 94.3 kPa.

Bernoulli equation

$$p(50) + \frac{1}{2}\rho V_{\max}^2 = p + \frac{1}{2}\rho V^2$$

In the free vortex region so the equation for pressure becomes

$$\begin{aligned}
 p &= p(50) + \frac{1}{2} \rho V_{\max}^2 \left[1 - \left(\frac{50}{r} \right)^2 \right] \quad \text{for } r \geq 50 \text{ m} \\
 p &= 94.3 + 5.65 \times \left[1 - \left(\frac{50}{r} \right)^2 \right]
 \end{aligned}$$



4.106: PROBLEM DEFINITION**Situation:**

A weather balloon in a tornado modeled as a forced-free vortex.

Find:

Where the balloon will move.

SOLUTION

The fluid in a tornado moves in a circular path because the pressure gradient provides the force for the centripetal acceleration. For a fluid element of volume V the relationship between the centripetal acceleration and the pressure gradient is

$$\rho \frac{V^2}{r} = V \frac{dp}{dr}$$

The density of a weather balloon would be less than the local air so the pressure gradient would be higher than the centripetal acceleration so the

balloon would move toward the vortex center.

4.107: PROBLEM DEFINITION**Situation:**

The pressure distribution in a tornado.

Find:

If the Bernoulli equation over predicts or under predicts the pressure drop.

SOLUTION

As the pressure decreases the density becomes less. This means that a smaller pressure gradient is needed to provide the centripetal force to maintain the circular motion. This means that the Bernoulli equation will over predict the pressure drop.

4.108: PROBLEM DEFINITION**Situation:**

Flow over a sphere.

$$u_\theta = 1.5U \sin \theta, p = -2.5 \text{ in H}_2\text{O}.$$

$$V = 100 \text{ ft/s}.$$

Find:

Angle of separation point.

Properties:

$$\rho = 0.07 \text{ lb/ft}^3.$$

SOLUTION

Since the fluid is air, neglect the contribution of hydrostatic in the Bernoulli equation
The pressure coefficient defined by

$$C_p = \frac{(p - p_\infty)}{\frac{1}{2}\rho U^2}$$

can be expressed in terms of velocities as

$$C_p = 1 - \left(\frac{V}{U}\right)^2$$

by application of the Bernoulli equation. The pressure in psfg at the stagnation point is

$$\begin{aligned} p_{sep} &= -2.5 \text{ inch H}_2\text{O} \times \frac{1 \text{ ft}}{12 \text{ in}} \times 62.4 \frac{\text{lbf}}{\text{ft}^3} \\ &= -13.0 \text{ lbf/ft}^2 \end{aligned}$$

In order to have the correct units, the density has to be in slugs/ft³.

$$\rho = 0.07 \frac{\text{lbm}}{\text{ft}^3} \frac{1 \text{ slug}}{32.2 \text{ lbm}} = 0.00217 \frac{\text{slugs}}{\text{ft}^3}$$

The dynamic pressure is

$$\frac{1}{2}\rho V^2 = \frac{1}{2} \times 0.00217 \frac{\text{slugs}}{\text{ft}^3} \times 100^2 \frac{\text{ft}^2}{\text{s}^2} = 10.85 \text{ psf}$$

The pressure coefficient at the separation point is

$$C_p = \frac{-13.0}{10.85} = -1.198$$

so

$$-1.198 = 1 - \left(\frac{V}{U}\right)^2 = 1 - 1.5^2 \sin^2 \theta$$

Solving for $\sin \theta$ gives

$$\sin \theta = 0.988$$

There are two solutions

$$\theta = 81.1^\circ, 98.9^\circ$$

Separation occurs on windward side so

$$\boxed{\theta_{sep} = 81.1^\circ}$$

4.109: PROBLEM DEFINITION**Situation:**

Application of the Bernoulli equation between a point upstream and in the wake of a sphere.

Find:

Is the Bernoulli equation valid between these two points?

SOLUTION

The flow in the wake is irrotational so the Bernoulli equation cannot be applied between two arbitrary points

4.110: PROBLEM DEFINITION**Situation:**

A two dimensional flow in the $x - y$ plane is described in the problem statement.

Find:

- Show that $d(\frac{u^2+v^2}{2} + gh) = 0$.
- Show $\frac{V^2}{2g+h}$ is constant in all directions.

SOLUTION

a) Substituting the equation for the streamline into the Euler equation gives

$$\begin{aligned} u \frac{\partial u}{\partial x} dx + u \frac{\partial u}{\partial y} dy &= -g \frac{\partial h}{\partial x} dx \\ v \frac{\partial v}{\partial x} dx + v \frac{\partial v}{\partial y} dy &= -g \frac{\partial h}{\partial y} dy \end{aligned}$$

or

$$\begin{aligned} \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) dx + \frac{\partial}{\partial y} \left(\frac{u^2}{2} \right) dy &= -g \frac{\partial h}{\partial x} dx \\ \frac{\partial}{\partial x} \left(\frac{v^2}{2} \right) dx + \frac{\partial}{\partial y} \left(\frac{v^2}{2} \right) dy &= -g \frac{\partial h}{\partial y} dy \end{aligned}$$

Adding both equations

$$\frac{\partial}{\partial x} \left(\frac{u^2 + v^2}{2} \right) dx + \frac{\partial}{\partial y} \left(\frac{u^2 + v^2}{2} \right) dy = -g \left(\frac{\partial h}{\partial x} dx + \frac{\partial h}{\partial y} dy \right)$$

or

$$d\left(\frac{u^2 + v^2}{2} + gh\right) = 0$$

b) Substituting the irrotationality condition into Euler's equation gives

$$\begin{aligned} u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x} &= -g \frac{\partial h}{\partial x} \\ v \frac{\partial v}{\partial y} + u \frac{\partial u}{\partial y} dy &= -g \frac{\partial h}{\partial y} \end{aligned}$$

or

$$\begin{aligned} \frac{\partial}{\partial x} \left(\frac{u^2 + v^2}{2} + gh \right) &= 0 \\ \frac{\partial}{\partial y} \left(\frac{u^2 + v^2}{2} + gh \right) &= 0 \end{aligned}$$