|4.1: PROBLEM DEFINITION

Situation:
Unsteady flow.

Find:
Identify five examples of an unsteady flow explain what features classify them as
unsteady?

| SOLUTION I

1. Gust of wind blowing past a pole.

2. Flow next to a rock in a natural river.

3. Flow past the lips due to inhaling and exhaling.

4. The motion of water at the center of a boiling pot.

5. At the outlet hose of a manual tire pump.
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|4.2: PROBLEM DEFINITION

Situation:
Pouring a heavy syrup on pancakes.

Find:
Would the thin film of syrup be a laminar or turbulent flow?

| SOLUTION I

The velocity is very low, the viscosity is high and the thickness of the layer is thin.
These conditions favor laminar flow.
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|4.3: PROBLEM DEFINITION

Situation:
Breathing through your mouth.

Find:

Sense the air flow patterns near your face. Discuss the type of flow associated with
these flow processes.

Why is it easier to blow out a candle by exhaling than by inhaling?

| SOLUTION

The main point to this question is that while inhaling, the air is drawn into your
mouth without any separation occurring in the flow that is approaching your mouth.
Thus there is no concentrated flow; all air velocities in the vicinity of your face are
relatively low. However, when exhaling as the air passes by your lips separation
occurs thereby concentrating the flow of air which allows you to easily blow out a
candle.



http://www.mechfamily.net

|4.4: PROBLEM DEFINITION

Situation:

The valve in a system is gradually opened to have a constant rate of increase in
discharge.

Find:
Describe the flow at points A and B.

| SOLUTION I

A: | Unsteady, uniform.

B: | Non-uniform, unsteady.
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|4.5: PROBLEM DEFINITION

Situation:
Water flows in a passage with flow rate decreasing with time.

Find:
Describe the flow.

| SOLUTION

(b) Unsteady and (d) non-uniform.
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|4.6: PROBLEM DEFINITION

Situation:
A flow pattern has converging streamlines.

Find:
Classify the flow.

| SOLUTION I

Non-uniform; steady or unsteady.




|4.7: PROBLEM DEFINITION

Situation:
A fluid flows in a straight conduit. The conduit has a section with constant
diameter, followed by a section with changing diameter.

Find:
Match the given flow labels with the mathematical descriptions.

| SOLUTION I

Steady flow corresponds to 0V /0t = 0.
Unsteady flow corresponds to 9V;/dt # 0.
Uniform flow corresponds to 0V;/0s = 0.
Non-uniform flow corresponds to 9V;/ds # 0.




|4.8: PROBLEM DEFINITION

Situation:
A series of flows are either one, two or three dimensional.

Find:
Classify the flows as one, two or three dimensional.
(a) Water flow over the crest of a long spillway of a dam.
(b) Flow in a straight horizontal pipe.
(c) Flow in a constant-diameter pipeline that follows the contour of the ground in
hilly country.
(d) Airflow from a slit in a plate at the end of a large rectangular duct.
(e) Airflow past an automobile.
(f) Air flow past a house.
(g) Water flow past a pipe that is laid normal to the flow across the bottom of a
wide rectangular channel.

| SOLUTION

Two dimensional| e. |Three dimensional|

a
b. |One dimensional| f. |Three dimensional |
c

. | One dimensional| g. [ Two dimensional

d. | Two dimensional |




|4.9: PROBLEM DEFINITION

Situation:
Path of a fluid particle.

Find:
If a light was attached to a fluid particle and take a time exposure, would the image
you photographed be a pathline or streakline?

| SOLUTION I

The pathline is defined as the path taken by a fluid particle moving through a field.
The photograph would yield this line.




|4.10: PROBLEM DEFINITION

Situation:
Smoke rising from a chimney.
Find:

The pattern produced by smoke rising from a chimney on a windy day is analogous
to a pathline or streakline?

| SOLUTION I

The streakline is defined as a line generated by a tracer injected into flow at starting
point. The tracer is the smoke and the starting point is the chimney so smokes pattern
is analogous to a streakline. The diffusion of the smoke prevents achieving a fine line.

10



|4.11: PROBLEM DEFINITION

Situation:
Dye is injected into a flow field and produces a streakline.
Pathline starts at t = 4 s, ends at t = 10s. Flow speed is constant.

Find:
Draw a pathline of the particle.

| SOLUTION I

The streakline shows that the velocity field was originally in the horizontal direction
to the right and then the flow field changed upward to the left. The pathline starts
off to the right and then continues upward to the left.

/ Streakline

11



|4.12: PROBLEM DEFINITION

Situation:
A dye streak was started, and a particle was released.
For0<t<5s, u=2m/s, v=0.
For5<t<10s, u=3 m/s,v=—4 m/s.

Find:
For t = 10 s, draw to scale the streakline, pathline of the particle, and streamlines.

| SOLUTION

From 0<t<5, the dye in the streakline moved to the right for a distance of 10 m. At
the same time a particle is released from the origin and travels 10 m to the right.
Then from 5<t<10, the original line of dye is transported in whole downward to the
right while more dye is released from the origin. The pathline of the particle proceeds
from its location at t=5 sec downward to the right.

At 10 sec, the streamlines are downward to the right.

origin

20m

el
streakline

12



|4.13: PROBLEM DEFINITION

Situation:
A dye streak is produced in a flow that has a constant speed.

Find:

Sketch a streamline at ¢t = 8 s.

Sketch a particle pathline at ¢ = 10 s for a particle that was released from point A
at time t = 2 s.

Sketch:

| SOLUTION

At 8 seconds (near 10 sec) the streamlines of the flow are horizontal to the right.

Streamlines at t = 8 s

Initially the flow is downward to the right and then switches to the horizontal direction
to the right. Thus one has the following pathline.

Particle pathline for a particle released at t = 2 s

13



|4.14: PROBLEM DEFINITION

Situation:
Acceleration.

Find:
Is the acceleration vector always aligned with the velocity vector?

| SOLUTION I

No. For flow along a curved path, there is a centripetal acceleration which is normal
to the velocity vector.

14



|4.15: PROBLEM DEFINITION

Situation:
Rotating bodies.

Find:
Is the acceleration toward the center of rotation a centripetal or centrifugal accel-
eration?

| SOLUTION

The acceleration toward the center of rotation is centripetal acceleration. "Petal"
comes from Latin word"petere" which means to move toward so "centripetal" means
moving toward center. "Fugal" comes from Latin "fugere" which means to flee so
"centrifugal" means moving from center.

15



|4.16: PROBLEM DEFINITION
Situation:

Flow past a circular cylinder with constant approach velocity.
Find:

Describe the flow as:

(a) Steady or unsteady.

(b) One dimensional, two dimensional, or three dimensional.
(c) Locally accelerating or not, and is so, where.
(d) Convectively accelerating or not, and if so, where.

| SOLUTION

(a) Steady.

(b) Two-dimensional.
( .

(

c) No

d) Convective acceleration is present at each where a fluid particles changes speed
as it moves along the streamline. Centripetal acceleration, which is also a form of
convective acceleration occurs where there is stfreamline curvature.

16



| 4.17: PROBLEM DEFINITION

Situation:
A path line is given with velocity as a function of distance and time.
V =s*Y2 r=0.5m.
s=2m,t=0.5s.

Find:

Acceleration along and normal to pathline (m/s?).

Apply Eq. 4.5 for acceleration along pathline.

| SOLUTION

Equation 4.5

ov. oV V2
a— (V% + E)et + (T) e,

Evaluation of velocity and derivatives at s =2 m and ¢ = 0.5 sec.

Vo= £#tY?2=22%x05Y2=283m/s

%_v = 25112 =2x2x05Y2=2831/s
S

)% 1 1
= = 55%—1/2 =5 X 22 % 0.572 = 2.83 m/s’

Evaluation of the acceleration

2.832
a = (2.83x283+2.83)e;+ ( 05 ) e,

a=10.8e; + 16.0e,, (m/s?)

17



|4.18: PROBLEM DEFINITION

Situation:

Air is flowing around a sphere in a wind tunnel.
u=—Uy(1—13/2%).

Find:
An expression for the acceleration of a fluid particle on the x-axis. The form of the
answer should be a, = a, (z,7,,U,).

Use Eq. 4.5 along x-axis which is a pathline. Replace V' with v and s with z.

| SOLUTION

gy = U=—+ —

7“3 7"3
0 = ~(3UR (1 - 1)

18



|4.19: PROBLEM DEFINITION

Situation:
Flow occurs in a tapered passage. The velocity is given as
V=5m/s—225m/s, OV/0s = +2s7", tg = 0.5s.
Find:
(a) local acceleration at section AA (m/s?).
(b) Convective acceleration at section AA (m/s?).

| SOLUTION I

a) Local acceleration

o = WV _ 25
T ot Tt
225
05
a; = —4.5 m/s?
b) Convective acceleration
ov
a. = V—

Js
= (5—2.25x %) m/s x 2 1/s

a. = 5.5 m/s?

19



|4.20: PROBLEM DEFINITION

Situation:
One-dimensional flow occurs in a nozzle.
Viip =41t/ 8, Vigse = 11t/s, L = 1.5ft.
Find:

Convective acceleration ( ft/s?).

| SOLUTION I

Velocity gradient.

av ‘[cip - ‘/base

ds L

(4—1) ft/s
1.5 1t

= 257!

Acceleration at mid-point

(14+4)ft/s
2
= 25 ft/s
av
Vs
— 25ft/sx 2
a.=5ft/s?

a. =

20



|4.21: PROBLEM DEFINITION

Situation:

One-dimensional flow occurs in a nozzle and the velocity varies linearly with dis-
tance along the nozzle.

Vip = 41t/ s, Vigse = 1t 1t/ s, t = 25.
Find:

Local acceleration midway in the nozzle ( ft/s?).

| SOLUTION I

a — a—v
CT ot
t+ 4t
V = —
= 2.5t (ft/s)
Then
0
ag = 2.5 ft/s?

21



|4.22: PROBLEM DEFINITION

Situation:
Flow in a two-dimensional slot.
V=2(%) (L) v =2B,y=0in.

Find:
An expression for local acceleration midway in nozzle.

[SOLUTION
vo— o(®) (L) puv=n/2

- ()

oV
ap E

4,

ap B_to

22



|4.23: PROBLEM DEFINITION

Situation:
Flow in a two-dimensional slot and velocity varies as

V=2(%) (L) v =2B,y=0in.

Find:
An expression for convective acceleration midway in nozzle.
| SOLUTION
VoV
9= "on
The width varies as .
b=B— 3

VOV (qo/to)*4t* (1/8)
or  (B—(1/8)x)3

At x =2B
Qo 2 12
e = (1/2 <t_) (G/AB)

2 42

do t
=327 (%) L
¢ / <t0) B3

23



|4.24: PROBLEM DEFINITION

Situation:
Water flow in a nozzle with

2t

Ve o
(1—-0.52/L)?
L= 4ft, z = 0.5L, t = 3s.

Find:
Local acceleration ( ft/s?).
Convective acceleration ( ft/s?).

| SOLUTION

ag = OV/ot

= 0/0t[2t/(1 — 0.5x/L)?]

= 2/(1—0.5z/L)

= 2/(1-0.5x0.5L/L)?
ay = 3.56 ft/s?
a. = V(0V/ox)

= [2t/(1 —0.52/L)%)0/0x[2t/(1 — 0.52/L)?]

At 0.5
T L- 0.5:1;/L)5(_2> <_T)
4 x 32

4% (1-05x05L/L)5
a. = 37.9 ft/s?

24



|4.25: PROBLEM DEFINITION

Situation:
State Newton’s second law of motion.

Find:
Are there any limitations on the use of Newton’s second law?

| SOLUTION I

Newtons second law states

—

F=md

where m is the mass of the system. The velocity (and acceleration) must be measured
with respect to an inertial reference frame and the mass must be constant.

25



|4.26: PROBLEM DEFINITION

Situation:
Force weight and force pressure.
Find:
What is the difference between a force due to weight and a force due to pressure?

| SOLUTION I

The force due to weight is the gravitational attraction on the mass and the magnitude
of the force depends on the mass. The force due to pressure is the force acting on a
surface and depends on the magnitude of the pressure and the area of the surface.

26



|4.27: PROBLEM DEFINITION

Situation:
Flow through an inclined pipe at 30° from horizontal.
a, = —0.3g.

Find:

Pressure gradient in flow direction.

Apply Euler’s equation.

| SOLUTION

/f
— 330"

Euler’s equation

2( + ) -
op 0= _ _
ar T T TP
o _ _ 0z
ar T PUT T
- —%x(—O.SOg)—ysinZ’)Oo
= 7(0.30 — 0.50)
op

27



|4.28: PROBLEM DEFINITION

Situation:
Kerosene is accelerated upward in vertical pipe.
S =0.81, a, =0.3g.

Find:
Pressure gradient required to accelerate flow (1bf/ ft?).

Properties:
v = 62.41bf/ ft>.

PLAN I Apply Euler’s equation.

| SOLUTIONI Applying Euler’s equation in the z direction.

e A
0z g
@—l-’y = —0.30v
0z
dp
- = y(-1-0.
o gl 0.30)
= 0.81(62.41bf/ft*) (—1.30)
dp

- = —65.7 Ibf/ft3
o 65.7 1bf/

28



|4.29: PROBLEM DEFINITION

Situation:
A hypothetical liquid flows through a vertical tube.
v =0.

Find:
Direction of acceleration.

Properties:
v =10kN/m?3, pp — pa = 12kPa.

PLAN I Apply Euler’s equation.

|SOLUTION Euler’s equation

= 2 +72)
pay = agp &

_ 1 op  0x
“w = 5\ T

Let ¢ be positive upward. Then 0z/9¢ = +1 and dp/Il = (pa — pp)/1 = —12,000
Pa/m. Thus

a = %(12,000—7)

<12,000 )
ag = ¢ -1
f)/

ap = ¢(1.2—1.0) m/s’

ay has a positive value; therefore, acceleration is upward. Correct answer is |a).

29



|4.30: PROBLEM DEFINITION

Situation:
A piston and water accelerating upward at 0.5g.
a = 0.5g, z = 2ft.

Find:

Pressure in water column (psfg).

Properties:
p = 62.4 Ibm/ ft?, v = 62.41bf/ ft?

| PLAN I

Apply Euler’s equation.

| SOLUTION I

Euler’s equation

Let ¢ be positive upward.

_Op 0z
P059) = =5 o
g _ 9%
dp B B

Thus the pressure decreases upward at a rate of 1.5y. The pressure at the top is
atmospheric. At a depth of 2 ft.:

p2 = (157)(2) =3y
= 3 ft. x 62.4 1bf/ft?

py = 187 psfg

30



|4.31: PROBLEM DEFINITION

Situation:
Water stands with depth of 10 ft in a vertical pipe open at top and supported by
piston at the bottom.
z = 0ft, zo = 10ft.
Find:
Acceleration of piston (ft/s?).
Properties:
v = 62.41bf/ ft*, p = 1.94slug/ ft>.
p1 = 8 psig, p» = 0 psig.

| PLAN I

Apply Euler’s equation.

| SOLUTION

Euler’s equation

g( +vz) = —pa
aSp VZ) = —pPas

Take s as vertically upward with point 1 at piston surface and point 2 at water surface.

—A(p+vz) = pasAs
—(p2—p1) —v(22 —21) = pasAs
—(0 — 8 psig x 144in?/ ft?) — 62.41bf/ ft*> x 10ft = 1.94slug/ft* x 10a,
(8 psig x 144in?/ ft* — 62.41bf/ ft*> x 10 ft)
19.4 slug/ ft*

s =

as = 27.2 ft /s

31



|4.32: PROBLEM DEFINITION

Situation:
Water accelerates in a horizontal pipe.
as =6m/s? p=1000kg/ m?.

Find:

Pressure gradient (N/m3).

Apply Euler’s equation.

| SOLUTION

Euler’s equation with no change in elevation

2 -
ds pits
= —1,000kg/ m® x 6m/ s’
dp
— = —6,000 N/m?
B , /m

32



|4.33: PROBLEM DEFINITION

Situation:
Water accelerated from rest in horizontal pipe.
L=100m, D =30cm, a, = 5m/s%

Find:
Pressure at upstream end ( kPa).

Properties:
p= 1000 kg/ m37 Pdownstream = 90 kPa.

| PLAN I

Apply Euler’s equation.

| SOLUTIONI
Euler’s equation with no change in elevation
Ip
= = _ja,
0s p
= —1,000kg/ m* x 5m/s?
= —5,000 N/m”
0
Pdownstream — Pupstream — 8—§AS

Pupstream = 90, 000 Pa + (5, 000 N/ Il’l3) (100 m)
590, 000 Pa, gage
Pupstream = 990 kPa, gage

33



|4.34: PROBLEM DEFINITION

Situation:
Water stands in a vertical pipe closed at the bottom by a piston.
z = 10ft.

Find:
Maximum downward acceleration before vaporization ( ft/s?).

Assumptions:
Vapor pressure is zero.

Properties:
p = 62.4 Ibm/ ft* = 1.94slug/ ft*, v = 62.41bf/ ft*.

| PLAN I

Apply Euler’s equation.

| SOLUTION

Applying Euler’s equation in the z-direction with p = 0 at the piston surface

%)
5, Ptz = —pa
Alp+vyz) = —pa,Az
(P + 72)at water surface = (P +Y2)at piston = —P0z(Zsurface — Zpiston)
Patm — Po + V(Zsurface = Zpiston) = —12 pa
14.7psi (144psf/psi) — 0 + (62.41bf/ ft*) (10ft) = —10 x 1.94slug/ft* x a.

a, = —141 ft/s?

34



|4.35: PROBLEM DEFINITION

Situation:
A liquid flows through a conduit.

Find:
Which statements can be discerned with certainty:
(a) The velocity is in the positive ¢ direction.
(b) The velocity is in the negative ¢ direction.
(c) The acceleration is in the positive ¢ direction.
(d) The acceleration is in the negative ¢ direction.

Assumptions:
Viscosity is zero.

Properties:
pa = 170 psf, pp = 100 psf, v = 1001bf/ ft>.

| PLAN I

Apply Euler’s equation.

| SOLUTION I

Euler’s equation

where Op/of = (pp —pa)/l = (100 — 170)/2 = —35 Ib/ft3 and 9z/9¢ = sin 30° = 0.5.
Then

ay = %(35 Ib/ ft* — (100)(0.5))
= %(—15 ) 1bf/ft?

e Because a, has a negative value we conclude that = (d) the accelera-
tion is in the negative ¢ direction .

° = The flow direction cannot be established; so answer (d) is the only
answer that can be discerned with certainty.

35



|4.36: PROBLEM DEFINITION

Situation:

Velocity varies linearly with distance in water nozzle.
L =11t V, =30ft/s, Vo =80ft/s.

Find: Pressure gradient midway in the nozzle (psf/ft).

Properties:
p = 62.4 Ibm/ ft> = 1.94slug/ ft*.

| PLAN |

Apply Euler’s equation.

| SOLUTION I

Euler’s equation

2( +7z2) = —pa

but z =const.; therefore

dp
— = —pa,
0
v SV
Qg = Gconvective —
‘ or

v _ (80 — 30)/1 = 50 s~

X
Vinia = (80ft/s + 30ft/s)/2 = 55 ft /s
— (55 ft/s)(50 ft/s/ft) = 2,750 ft /s

Finally
9
22 = (~1.94 shug/f)(2,750 £t /57)
Ip
9 _ _ £/t
5 = 5,330 psf/

36



|4.37: PROBLEM DEFINITION

Situation:
Closed tank is full of liquid.
L =3ft, H=4ft, a, = 0.9¢.
ap = 1.5g, S =1.2.

Find:

(a) pc — pa (psf).
(b) ps — pa (pst).

Properties:
p = 1.94slug/ ft3.
PLAN
Apply Euler’s equation.
|SOLUTION
Euler’s equation. Take ¢ in the z-direction.
_dp At
ac — Tag —
7}
d_]t? = —p(g+ )
= —1.2(1.94slug/ ft*) (32.2ft/s* — 1.5 (32.2ft /%))
= 37.5 pst/ft
pg—pa = —37.5 pst/ft x 41t

p — pa = —150 psf

Take ¢ in the x-direction. Euler’s equation becomes

dp
Cdx
pc—pp = pazL
= 1.2 x 1.94slug/ ft> x 0.9g x 3ft
= 202.4 psf
pc—pa = pc—ps+ (PB—Dpa)
pc —pa = 202.4— 150

pc — pa = 52.4 psf

37



|4.38: PROBLEM DEFINITION

Situation:

Closed tank is full of liquid.

L=25m, H=3m, a, =2/3¢g, a, =129, S =1.3.
Find:

(a) pc — pa (kPa).

(b) pp — pa (kPa).
Properties:

p = 1000kg/ m3.

| PLAN I

Apply Euler’s equation.

| SOLUTION

Euler’s equation in z direction

dp
E"’"y = —pa
dp
5 = “Plata)
d
d—i — —1.3(1,000kg/ m?) (9.81m/s> — 6.54m/ s°)
= —4,251 N/m®
pe—pa = (4,251N/m?) (3m)
— 12,753 Pa

p — pa = 12.7 kPa

Euler’s equation in x-direction

dp
Cdx
pc —pe = pazL
= 1.3 x 1,000 x 9.81 x 2.5
— 31,882 Pa
pc—pa = pc—pp+ (pB—Dpa)
pc—pa = 31,882+ 12,753
44,635 Pa
pe — pa = 44.6 kPa
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|4.39: PROBLEM DEFINITION

Situation:
Stirring a liquid in a cup.
Find:

Report on the contour of the surface. Provide an explanation for the observed
shape.

| SOLUTION I

Stirring the cup of liquid creates a surface depressed at the center and higher at the
wall of the cup. The difference in depth between the wall and the cup center creates
an inward radial force to keep the fluid moving in a circle.

39



|4.40: PROBLEM DEFINITION

Situation:

A cyclonic separator separates solid particles from a gas stream by inducing a spin
in the gas stream
Find:

Explain the mechanism by which the particles are separated from the gas.

| SOLUTION I

With no particles in the separator, the pressure gradient in the gas is just sufficient
to provide a force equal to the centripetal acceleration and keep the gas moving in
a circle. The pressure force is insufficient to keep the heavier particles moving in a
circle and they migrate to the outer walls.

40



|4.41: PROBLEM DEFINITION

Situation:
A closed tank filled with water is rotated about a vertical axis.
D = 4ft, w =10 rad/s.

Find:
Pressure at bottom center of tank (psig).

Properties:
p = 62.4 Ibm/ ft* = 1.94slug/ ft, v = 62.41bf/ ft>.

| PLAN I

Apply the equation for pressure variation equation- rotating flow.

| SOLUTION I

Pressure variation equation- rotating flow

2,2 2,,2
W prow
5 =Ptz — £

2
where p, =0, r, = 3 ft and r = 0, then

ptyz—"

p = L0’ +4(z-2)
3
_ (%) (3£t x 10)? + (62.41bf/ ft?) (2.5 ft)

= —717 psfg = —4.98 psig

p = —4.98 psig

41



|4.42: PROBLEM DEFINITION

Situation:
A tank of liquid is rotated on an arm.
S =0.80, D =1ft.

h =11t r = 2ft.

VA = 20ft/S, A = 25 pSf.
Find:

Pressure at B (psf).
Properties:

p = 62.4 Ibm/ ft* = 1.94slug/ ft*, v = 62.41bf/ ft*.
PLAN
Apply the pressure variation equation- rotating flow from point A to point B.
| SOLUTION
Pressure variation equation- rotating flow

2 2 2,02
PA+VzZA — ; = pB+WZB—p§
pe = pa+ 5@0% —r3) + (2 - 2)

where w = Vy/ra = 20/1.5 = 13.333 rad/s and p = 0.8 x 1.94 slugs/ft®. Then

pp = 25psf+ [1.94slug/ft? (0.80/2)] (13.331rad/s?) [(2.5ft)* — (1.5ft)?] + 62.41bf/ £t* (0.8) (—1)
= 25+551.5—49.9
pr = 527 psf
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|4.43: PROBLEM DEFINITION

Situation:

A cream separator is in operation.
D =20cm, f =9000 rpm.

Find:
Centripetal acceleration (m/s?).
RCF.

| SOLUTION

The centripetal acceleration is

The rotational rate of the separator is

9000rpm
=27 | ——— | = 942.
w=27 (60 y min) 942.5 rad/s

The radius of the separator is 10 cm or 0.1 m. The acceleration is

a, = (942.5rad/s)*(0.1m)
a, = 88831 m/s?

The RCF is

RCF = 88831 m/s’/9.81 m/s’
| RCF = 9055 |
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|4.44: PROBLEM DEFINITION

Situation:
A closed tank with liquid is rotated about the vertical axis.
w=10rad/s, rg =0.5m, a, = 4m/ s>

Find:
Difference in pressure between points A and B (kPa).

Properties:
p=1000kg/ m3 S =1.2.

| PLAN I

Apply the pressure variation equation for rotating flow between points B & C. Let
point C' be at the center bottom of the tank.

| SOLUTION

Pressure variation equation- rotating flow

2, .2 2, .2
_ prpw _ _ prow
pPB 5 bc 5

where 75 = 0.5 m, 7¢ = 0 and w = 10 rad/s. Then

pB—po = g(wz)(rz)

1200 kg/ m®
- +/m(100rad2/sz)(0.25m2)
= 15,000 Pa
pc—pa = 27+ pal
2 (11,772N/m?) + (1,200kg/ m?) (4m/s?) (2)

33.1 kPa

Then

pB—pa = PB—pc+ (pc—pa)
— 15,000 Pa + 33,144 Pa

48,144 Pa
p —pa = 48.1 kPa
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|4.45: PROBLEM DEFINITION

Situation:
A U-tube rotating about the leg on the right side.
ry =0.5m, z; = 0.5m.
Zo = 0m, ro = 0m.

Find:

Maximum rotational speed so that no liquid escapes from the leg on the left side

(rad/s).

| PLAN I

Since the fluid is in rigid body rotation, apply the pressure variation equation for
rotating flow. At the condition of imminent spilling, the liquid will be to the top of
the left leg and at the bottom of the right leg. Thus, locate point 1 be at top of the
left (outside) leg. Locate point 2 at the bottom of the right (inside) leg.

| SOLUTION

Pressure variation equation- rotating flow

2002 2002
p1+721—p12 :p2+722—p22 (1)
Term-by-term analysis
p1 = p2 = 0kPa-gage
21 = 0.5m
ry = 0.5m
29 = Om
ro = 0Om
Substitute values into Eq. 1.
202 202
P11tz — P 12 =Pzt 72— P 22
0'52 2 2
O+pg(0.5m)—w =0+0-0
0'52 2 2
g(0.5m) — % —0
w? = 4g
w=2/yg
w = 6.26 rad/s
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|4.46: PROBLEM DEFINITION

Situation:

A stagnation tube in a tank is rotated.

w =100 rad/s, r = 20 cm, v = 10000 N/ m3.
Find:

Location of liquid surface in central tube.

Pressure variation equation for rotating flow from pt. 1 to pt. 2 where pt. 1 is at
liquid surface in vertical part of tube and pt. 2 is just inside the open end of the
Pitot tube.

| SOLUTION

lu@%/ 2

10 c T !:'
T_

Elevation view Plan view

Pressure variation equation- rotating flow

v, V2
h_ oy, =22,
v 29 v 29
2, .2
D2 T W
0—0+(0.10+¢) = = — -0 1
H00040) = 22— 1)

where z; = z5. If we reference the velocity of the liquid to the tip of the Pitot tube
then we have steady flow and Bernoulli’s equation will apply from pt. 0 (point ahead
of the Pitot tube) to point 2 (point at tip of Pitot tube).

V2 V2
v 29 v 29
0.1 r202
4 ) 2)
v 29 v

Solve Egs. (1) & (2) for ¢
liquid surface in the tube is the same as the elevation as outside liquid surface.
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|4.47: PROBLEM DEFINITION

Situation:
A U-tube partially full of liquid is rotating about one leg.
f =50 rpm, S =3.0, r, =1ft.

Find:
Specific gravity of other fluid.

Apply the pressure variation equation for rotating flow between points 1 & 2.

| SOLUTION

Pressure variation equation- rotating flow

2 7- 1
S=3.0
praw? r?w?
P2 + Y22 — 2 =p1+7721 — 5

where 23 = 21, r1 =0, r9 = 1 ft. and w = (50/60) x 27 = 5.236 rad/s. Then
,(5.236 rad/ s)?

p2 = [3(1.94slug/ ft*)] (1ft) = 79.78 psfg (1)

Also, by hydrostatics, because there is no acceleration in the vertical direction

1
p2=0+§><7f (2)

where v, is the specific weight of the other fluid. Solve for v, between Egs. (1) &

(2)

v = 159.6 Ibf/ft’
s = U

V1,0
159.6

62.4
S = 2.56
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|4.48: PROBLEM DEFINITION

Situation:
A manometer is rotated about one leg.
Az=20cm, r =10cm, S = 0.8.

Find:
Acceleration in ¢’s in leg with greatest amount of oil.

Apply the pressure variation equation for rotating flow between the liquid surfaces of
1 & 2Let leg 1 be the leg on the axis of rotation. Let leg 2 be the other leg of the
manometer.

| SOLUTION

Pressure variation equation- rotating flow

r2w? praw?
P11tz — 5 = p2+ Y22 — 5
0+v21 -0 = 722_17“%&
g 2
2, 2
7”220; = 22— 21
a, = Tw?
_ (20 — 21)2¢
L)
_ (0.20)(2¢g)
0.1
a, =4g
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|4.49: PROBLEM DEFINITION

Situation:
A fuel tank rotated in zero-gravity environment.
f=3rpm,r; =15m, z4 = 1 m.

Find:
Pressure at exit (Pa).

Properties:
p = 800kg/ m?, p; = 0.1kPa.

| PLAN I

Apply the pressure variation equation for rotating flow from liquid surface to point
A. Call the liquid surface point 1.

| SOLUTION

Pressure variation equation- rotating flow

7’2(,02 7,.2w2
Ptz — 7 =patyza— A
2 2
2
)
pa=p1+ %(Ti — 1) + (21 — 2a)

However v(z; — z4) = 0 in zero-g environment. Thus

b= e S () () - ()

= 100 Pa +49.3 Pa
PA = 149 Pa
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|4.50: PROBLEM DEFINITION

Situation:
A rotating set of tubes has liquid in the bottom of it.
Dy =2d, Dy =d.
To = f, Z9 = 4¢.
Find:
Derive a formula for the angular speed when the water will begin to spill.

| PLAN I

Start with pressure variation equation for rotating flow. Let point 1 be at the liquid
surface in the large tube and point 2 be at the liquid surface in the small tube.

| SOLUTION I

Pressure variation equation- rotating flow

2

2,,2
(%%

2

praw
2

p1+721—p =p2+ 722 —

The change in volume in leg 1 has to be the same as leg 2. So

d;
Ahl = Ahg %)
dl
Ahy
4

The elevation difference between 1 and 2 will be

3¢
29 — 21 = 3€+Z

= 3.75¢

Then p; = po = 0 gage, 7o = ¢, and 2o — 21 = 3.75¢ so

50
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|4.51: PROBLEM DEFINITION

Situation:
Water fills a tube that is closed at one end.
D =1cm, r=40cm, w = 50 rad/s.

Find:
Force exerted on closed end (N).

Properties:
p = 1000kg/ m?

| PLAN I

Apply the pressure variation equation for rotating flow from the open end of the tube
to the closed end.

| SOLUTION I

Pressure variation equation- rotating flow

20,2 r2002
p1=721—'012 =p2+722—p22

where z; = z5. Also let point 2 be at the closed end; therefore 1 = 0 and r, = 0.40
m.

Py = g(O.4m)2(50 rad/s)?

= 500kg/m® (0.16m?) (2500 rad®/s*)
= 200 kPa

Then

F = pyA=200,000Pa(r/4)(.01 m)?
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|4.52: PROBLEM DEFINITION

Situation:
Water sits in a U-tube that is closed at one end.
D=1cm, L =40cm, w = 50 rad/s.
Find:
Rotational speed when water will begin to spill from open tube (rad/s).

Properties:
p=1000kg/ m3, v = 9810 N/ m?>.

| PLAN I

Apply the pressure variation equation for rotating flow between water surface in leg
A-A to water surface in open leg after rotation.

| SOLUTION

When the water is on the verge of spilling from the open tube, the air volume in the
closed part of the tube will have doubled. Therefore, we can get the pressure in the
air volume with this condition.

pivi = ps¥s

and ¢ and f refer to initial and final conditions

Vi 1

= pi— = 101 kPa x =

bro= Py 179
ps = 90.5 kPa, abs = —50.5 kPa, gage

Pressure variation equation- rotating flow

priw?

2

2
PTopenW

2

pa+vza — = Popen + YZopen —
p(60)*w?
2
2
—50.5 x 10° Pa = 9810 N/ m?® (6) (0.1 m) — (1000 kg/ m*) (0.6 m)? (%)

pa+0—-0=0+yx6f—

—50.5 x 10° = 5886 — 180w?
w? = 313.3

w=17.7 rad/s
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|4.53: PROBLEM DEFINITION

Situation:

Water is pumped from a reservoir by a centrifugal pump consisting of a disk with
radial ports.

r=>5cm, f = 3000 rpm, z; = 0m.

Find:
Maximum operational height (m).

Apply the pressure variation equation for rotating flow
Locate point 1 at the liquid surface where z = 0.
Locate point 2 at the outer edge of the rotating disk.

| SOLUTION I

Pressure variation equation

7”2&)2 7"2w2
pr+ya — B = gy, — 22
2 2
7"2(,02
0+0-0 = 0+722—p22
2, .2
Z =
2 2g

Rotational Rate

w = (3000 rev/min)(1min/60 s)(27 rad/rev) = 314.1 rad/s
Find 2,

s r2w?  (0.05m)?(314.1rad/s)?
2 pu pu— pu

2g 2(9.81m/s?)
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|4.54: PROBLEM DEFINITION

Situation:
A tank rotated about the horizontal axis and water in tank rotates as a solid body.
V=rw,z=-1,0,+1m, w=5rad/s.

Find:
Pressure gradient each value of z (kPa/m).

Properties:
p = 1000kg/ m3.

| PLAN I

Apply the pressure variation equation for rotating flow.

| SOLUTION I

Pressure variation equation- rotating flow.

dp dp _ 2
8r+78r -
Ly
0z
when z = -1 m
92 Y= P
2
()
g
25
= —9,810N/m*(1 + ———
980N/ w1+ 5o )
0
a_],: — —34.8 kPa/m
when z = +1 m
op 9
9, Y+ pw
2
()
g
25
= —9810N/m®x (1 - ———
9810N/m X< 9.81m/82>
dp

i 15.2 kPa/m
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At 2 =0

% = —9.81 kPa/m
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|4.55: PROBLEM DEFINITION

Situation:
A tank rotated about the horizontal axis and water in tank rotates as a solid body.
Find:

Derive an equation for the maximum pressure difference.

Apply the pressure variation equation for rotating flow.

| SOLUTION

Below the axis both gravity and acceleration cause pressure to increase with decrease
in elevation; therefore, the maximum pressure will occur at the bottom of the cylin-
der. Above the axis the pressure initially decreases with elevation (due to gravity);
however, this is counteracted by acceleration due to rotation. Where these two ef-
fects completely counter-balance each other is where the minimum pressure will occur
(Op/0z = 0). Thus, above the axis:

op
0z

=0=—7+ rw2p minimum pressure condition

Solving: 7 = v/pw?; pmin occurs at zyi, = +g/w? Using the equation for pressure
variation in rotating flows between the tank bottom where the pressure is a maximum

( Zmax = —70) and the point of minimum pressure.
22 2 2
Tow r2. W
Pmax T YZmax — P % = DPmin + YZmin — P _mén
20,2 2\2 2
i w?)2w
pmax—Wo—pO = pmin+ﬁ_M
2 w2 D)

2 2
_ _pw 2 g g
Pmax — Pmin = Apmax - 92 |fb - (E) 1 + Y (TO + E)

Rewriting

2,.2
pr 9.
9 + YTo + 22

Apmax -

o7



|4.56: PROBLEM DEFINITION

Situation:

A tank 4 ft in diameter and 12 feet long rotated about horizontal axis and water
in tank rotates as a solid body. Maximum velocity is 25 ft/s.

V =rw, Viax = 25 ft/s.

D =4ft, L = 12ft.

Find:
Maximum pressure difference in tank (psf).
Point of minimum pressure (ft).

Properties:
p =624 lbm/ft* = 1.94slug/ ft*, v = 62.41bf/ ft>.

Same solution procedure applies as in Prob. 4.55.

| SOLUTION

From the solution to Prob. 4.55 ppmoccurs at z = v/pw? where w = (25 ft/s)/2.0 ft
= 12.5 rad/s. Then

ke
pw?
9
w?

32.21ft/ 52
(12.5rad/s)

|zmin = 0.206 ft above axis

Zmin

The maximum change in pressure is given from solution of Problem 4.55

2,.2
pwirs 9
5 Tt g

1.94slug/ ft* (12.5rad/ s)* (2ft)?

Apmax
(62.41bf/ ft%) (32.2ft/ s?)

= 5 4 62.41bf / ft* (2t) +

= 606.2+124.8 +6.43
APmax = 737 psf

2(12.5rad/s)?

o8



|4.57: PROBLEM DEFINITION

Situation:
High winds.

Find:
Applying the Bernoulli equation, explain how a roof might be lifted from a house.

| SOLUTION I

If a building has a flat roof as air flows over the top of the building separation will
occur at the sharp edge between the wall and roof. Therefore, most if not all of
the roof will be in the separation zone. Because the zone of separation will have a
pressure much lower than the normal atmospheric pressure a net upward force will
be exerted on the roof thus tending to lift the roof.

Even if the building has a peaked roof much of the roof will be in zones of separation.
These zones of separation will occur downwind of the peak. Therefore, peaked roof
buildings will also tend to have their roofs uplifted in high winds.
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|4.58: PROBLEM DEFINITION

Situation:
Aspirators.

Find:
How does an aspirator work?

| SOLUTION I

Air is forced through a constriction in a duct There is a port at the smallest area
connected to a reservoir of fluid to be aspirated. The Bernoulli equation predicts
a minimum pressure at the contraction which pulls fluid into the air flow from the
reservoir and breaks it up into droplets that emerge from the aspirator.
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|4.59: PROBLEM DEFINITION

Situation:

A water jet fires vertically from a nozzle.
V =201t/s.

Find:
Height jet will rise.

Apply the Bernoulli equation from the nozzle to the top of the jet. Let point 1 be
in the jet at the nozzle and point 2 at the top.

| SOLUTION

Bernoulli equation

VZ v2
B =22
Y 2 yo2
where p; = p, = 0 gage
Vi = 20ft/s
Vo = 0
201t/ s)?
A LU i U
29
400 ft?/ 82
Zp— 21 = =0
SR 64.4 1t/ 2
h=6.21ft
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|4.60: PROBLEM DEFINITION

Situation:
Water discharges from a pressurized tank.
21 =05m, zp=0m, V; =0m/s.

Find:
Velocity of water at outlet (m/s).

Properties:
Water (20°C, 10kPa), Table A.5: p = 998kg/ m?, v = 9790 N/ m?.

| SOLUTION

Apply the Bernoulli equation between the water surface in the tank (1) and the outlet

(2)

Vi vy
p1+’721+,07 :P2+722+07

Neglect V1 (V7 < V3).Also ps = 0 gage. The Bernoulli equation reduces to

V2
072 = ;i +7(a — 2)

V, = \/2 (p1 +7(21 — 22))
p

Elevation difference z; — 2o = 0.5 m. For water at 20°C, p = 998kg/m3 and ~ = 9790
N/m?.Therefore

098 kg / m?
Vo =5.46m/s

. \/2(10,000 Pa + 9790 N/ m? (0.5m))
2 pu—
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|4.61: PROBLEM DEFINITION

Situation:
Water flows through a vertical venturi configuration.
Vi =101t/s, Az = 0.51t.

Find:
Velocity at minimum area (ft/s).

Properties:
T = 68°F.
| SOLUTION
Apply the Bernoulli equation between the pipe (1) and the minimum area (2)
Ve Vs
PLrsat P =Pty Py

From problem statement, V; = 10 ft/s. Rewriting equation

V2 V2
p72 = p71 + (p1 +7v21) — (p2 +722)

The difference in the elevation in piezometers gives the change in piezometric pressure,
(p1+7v21) = (P2 + 722) = YAh so

27 AL
V, = v12+77:\/1/12+2gm

= 102 (ft/s)* + 2 (32.2 ft/s) (0.5 fo)
Vo= 1158/ 5
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|4.62: PROBLEM DEFINITION

Situation:
Kerosene flows through a contraction section and a pressure is measured between
pipe and contraction section.
Vo =10m/s.
Find:
Velocity in upstream pipe (m/s).
Properties:
Table A.4: p = 814kg/ m>.
T =20°C, Ap = 20kPa.

| SOLUTION I

Apply the Bernoulli equation between pipe (1) and contraction section (2)

i Vs
P1+721+P7 = ]92+VZ2+P?
12 ‘/22

The pressure gage measures the difference in piezometric pressure, p,; —p.o = 20 kPa.
Rewrite the Bernoulli equation for V;

V2 V2
r5 = = (pa—p2a)
2 z1l 7 Mz
‘/1 _ \/‘/22 _ (pl D 2)
P

The density of kerosene at 20°C is 814 kg/m3.Solving for 1}

5 2(20,000kPa)
ho J“Om/s) )

Vi =713m/s
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|4.63: PROBLEM DEFINITION

Situation:
A Pitot tube on an airplane is used to measure airspeed
29 = 10000 ft, hp,0 = 10in.
T =23°F, p =10 psia.

Find:
Airspeed (ft/s).

Properties:

Water (23°F), Table A.5: v = 62.41bf/ ft>.
Air. Table A.2: R =1716J/kgK.

| PLAN |

Since the airspeed can be found by applying the Pitot-static tube equation, the steps
to reach the goal are:

1. Find Ap, by using the hydrostatic equation.

2. Find density by applying the ideal gas law.

3. Substitute values into the Pitot-static tube equation.

| SOLUTION

1. Hydrostatic equation.

Apz == ’szOh‘HQO

10
= 62.41bf/ft’ x —fi
62.41bf/ ft° x D t
= 52 psf
2. Ideal gas law
_
P = RT
(10psi)(144psi/psf)

((1,7161bf - ft/slug - R)(483 R))
— 0.00174 slugs/ft”

3. Pitot-Static Tube equation.

2Ap,
p

B 2 x 52 Ibf/ft’
B (0.00174 slugs/ft*)

V =244 ft/s

V:
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|4.64: PROBLEM DEFINITION

Situation:

A glass tube with 90° bend inserted into a stream of water.
V =4m/s.
Find:

Rise in vertical leg above water surface (m).

Apply the Bernoulli equation.

| SOLUTION

Hydrostatic equation (between stagnation point and water surface in tube)

Ly
Y

where d is depth below surface and h is distance above water surface.

Bernoulli equation (between free stream and stagnation point)

2
& — d+v_
v 29
2
had — di =
29
2
PR
29
o _(4m/s)’
2(9.81m/ s?)
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|4.65: PROBLEM DEFINITION

Situation:
A Bourdon tube gage attached to plate in an air stream.
D =1ft, Vj =40ft/s.

Find:
Pressure read by gage (>, =, <) pVZ/2.

| SOLUTION I

Because it is a Bourdon tube gage, the difference in pressure that is sensed will be
between the stagnation point and the separation zone downstream of the plate.
Therefore

ACp = 1- (Cp,back of plate)
AC, = 1— (neg. number)

Ap
—_— = 1 + positive number
PVi /2
V2
Ap = <'070) (1 4 positive number)

Case (c) is the correct choice.
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|4.66: PROBLEM DEFINITION

Situation:
An air-water manometer is connected to a Pitot-static tube to measure air velocity.

T = 60°F, Ah = 2in.
Find:
Velocity (ft/s).

Properties:
Table A.2: R =1716J/kgK.
Water (60°F, 15 psia), Table A.5: v = 62.41bf/ ft®.

PLAN I Apply the Pitot tube equation calculate velocity. Apply the ideal gas law
to solve for density.

|SOLUTION Ideal gas law

_ b
P~ RT
15 psia x 144in?/ ft?
(1,715 J/ kg K)(60 + 460) K
= 0.00242 slugs/ft

2Ap.\ /2
v=(5)
p
From the manometer equation

Ap. = v,Ah (1 - ﬁ)
Y

Pitot tube equation

but v,/7., < 1 so

1/2
vV - (QVMAh)
p

2 (62.410f/ %) (2.0/12) 6]
0.00242 slug/ ft

V =92.71t/s

68



|4.67: PROBLEM DEFINITION

Situation:

A flow-metering device is described in the problem.

Vo =2V, Ah = 10 cm.

Find:
Velocity at station 2 (m/s).

Properties:
p=12kg/m3.

| PLAN I

Apply the Bernoulli equation and the manometer equation.

| SOLUTION I

Bernoulli equation

pn Ve W

v 2 v 2

Manometer equation

neglect

p1+0.1x9810—0.1 x 1.2 x 9.87

bt — D1
‘/12

Vi
Vs

69

De

v

ygs

V2
981 N/m’ = 2L

2 (981 N/ m?)
1.2kg/ m3

40.4m/s

2V

Vo =80.8m/s




|4.68: PROBLEM DEFINITION

Situation:

A spherical Pitot tube is used to measure the flow velocity in water.
Vo = 1.5V, Ah = 10 cm.

Find:
Free stream velocity (m/s).

Properties:
p = 1000kg/ m?, Ap = 2kPa.

| PLAN I

Apply the Bernoulli equation between the two points. Let point 1 be the stagnation
point and point 2 at 90° around the sphere.

| SOLUTION

Bernoulli equation

V2
P+ pTl = Do+

Py

2
1.5V,)?
pa+0 = Pzz—i‘%

Pz1 — P22 = 1125p%2

2,000 Pa
Ve = ’ = 1.778 m* /s’
0 1.125 (1,000 kg / m?) me/s
Vo =1.33m/s
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|4.69: PROBLEM DEFINITION

Situation:

A device for measuring the water velocity in a pipe consists of a cylinder with
pressure taps at forward stagnation point and at the back on the cylinder.

p = 1000kg/ m?, Ap = 500 Pa, Pressure Coefficient is -0.3.

Find:
Water velocity (m/s).

Apply the Bernoulli equation between the location of the two pressure taps. Let point
1 be the forward stagnation point and point 2 in the wake of the cylinder.

| SOLUTION I

The piezometric pressure at the forward pressure tap (stagnation point, C, = 1) is

v2
P21 = P20 + P
2
At the rearward pressure tap
P2 ‘_/2pz0 — 03
P

or
2

V
Doz = Pao — 0-3;070

The pressure difference is
2

Vi
D21 — P22 = 13P7O

The pressure gage records the difference in piezometric pressure so

9 1/2
Vy = (——Ap,
’ (1-3/) p)

2
l1.3 (1000 kg/ m?)
= 0.88m/s

(500 Pa)] "

Vo =0.88m/s
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|4.70: PROBLEM DEFINITION

Situation:
A Pitot tube measures the flow direction and velocity in water.

Find:
Explain how to design the Pitot tube.

| SOLUTION I

Three pressure taps could be located on a sphere at an equal distance from the
nominal stagnation point. The taps would be at intervals of 120°. Then when the
probe is mounted in the stream, its orientation could be changed in such a way as to
make the pressure the same at the three taps. Then the axis of the probe would be
aligned with the free stream velocity.
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|4.71: PROBLEM DEFINITION

Situation:
Two Pitot tubes are connected to air-water manometers to measure air and water
velocities.

Find:
The relationship between V4 and Vyy .

V= Vaghh = |22

p

| SOLUTION I

The Ap, is the same for both; however,

Puw >> Pq

Therefore V4 > Viy. The correct choice is | b).

73



|4.72: PROBLEM DEFINITION

Situation:

A Pitot tube measures the velocity of kerosene at center of a pipe.
D =12in, Ah = 4in,

Find:
Velocity (ft/s).

Properties:
From Table A.4: p,, = 1.58 slugs/ft>.
T = 68°F, 7y, = 51 Ibf/Ft5, vye — 847 Ibf /83,

| PLAN I

Apply the Pitot tube equation and the hydrostatic equation.

| SOLUTION

Hydrostatic equation

Apz = Ah(’YHGr - ’Yker)
4
= 5 ft(847 — 51) Ibf/ ft?

= 265.3 psf

Pitot tube equation

22 1/2
( /i )

2 (265.3psf) 1*/*
1.58slug/ ft* |
V =18.3ft/s
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|4.73: PROBLEM DEFINITION

Situation:
A Pitot tube for measuring velocity of air.

Find:
Air velocity (m/s).

Properties:
Air (20°C), Table A.3: p = 1.2 kg/m>.
Ap, = 3kPa.

| PLAN |

Apply the Pitot tube equation.

| SOLUTION I

Pitot tube equation

1/2
v o= (QApz)
p

2 (3,000kPa)] "/
1.2kg/ m?

V =70.7Tm/s

[0)



|4.74: PROBLEM DEFINITION

Situation:
A Pitot tube is used to measure the velocity of air.
Ap, =11 psf, T'= 60 °F.

Find:
Air velocity (ft/s).

Properties:
Air (60°F), Table A.3: p = 0.00237 slug/ ft*.

| PLAN I

Apply the Pitot tube equation.

| SOLUTION I

Pitot tube equation

2Ap,
p
B l 2 (11psf) ]1/2
0.00237 slug/ ft*
V =96.3ft/s

vV =

76



|4.75: PROBLEM DEFINITION

Situation:
A Pitot tube measures gas velocity in a duct.

Find:
Gas velocity in duct (ft/s).

Properties:
Ap, =1 psi, p = 0.121b/ ft>.

| PLAN |

Apply the Pitot tube equation.

| SOLUTION I

Pitot tube equation The density is 0.12 Ibm/ft3/32.2 = 0.00373 slugs/ft3

2Ap,
P
l? (1psi) (144psf/psi)] 12
0.00373 slug/ ft*
V =278 ft/s

V:

7



|4.76: PROBLEM DEFINITION

Situation:
A sphere moving horizontally through still water.
Vo =111t/s, V4 = 11t/s.

Find:

Pressure ratio: pa/po

Apply the Bernoulli equation.

| SOLUTION

1 ft/s

By referencing velocities to the spheres a steady flow case will be developed. Thus,
for the steady flow case Vo = 11 ft/s and V4 = 10 ft/s. Then when Bernoulli’s

equation is applied between points 0 and A it will be found that | pa/po > 1 (case c)
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|4.77: PROBLEM DEFINITION

Situation:
A body moving horizontally through still water.
Va=13m/s, Vg =5m/s, Vo =3m/s.

Find:
PB — PC (kPa)

| SOLUTION I

Apply the Bernoulli equation.

ps —pc = 5(Vé = Vi) (1)

N

Reference all velocities to an observer situated on the sphere. From this reference
frame, the flow is steady and the Bernoulli equation is applicable.
Ve = 13m/s—3m/s=10m/s (2)
Ve = 13m/s—5m/s=8m/s (3)

Combine Egs. (1) to (3)

b —Pc = g(Vé - Vé)

po—pe = (208002 (s sy

= 18,000 Pa
pe — pc = 18 kPa
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|4.78: PROBLEM DEFINITION

Situation:

Water is in a flume with a pressure gage along the bottom.
D, =Dy, V,=0m/s, V;, =3m/s.

Find:
If gage A will read greater or less than gage B.

| SOLUTION I

Both gage A and B will read the same, due to hydrostatic pressure distribution in
the vertical in both cases. There is no acceleration in the vertical direction.
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|4.79: PROBLEM DEFINITION

Situation:

An apparatus is used to measure the air velocity in a duct. It is connected to a
slant tube manometer with a 30° leg with the indicated deflection.

D =10cm, Dgqgn = 2mm

61 = 6.7 c111, 62 = 2.3cm.
Find:

Air velocity (m/s).

Properties:
Table A.2: R =287J/kgK.
T =20°C, pstagn = 150kPa, S = 0.7

Apply the Bernoulli equation.

| SOLUTION

The side tube samples the static pressure for the undisturbed flow and the central
tube senses the stagnation pressure.
Bernoulli equation

2

Vv
Do + T = Dstagn. +0
2
or ‘/0 = _(pstagn. - po)
P
But
Pstagn. —Po = (61 - £2> Sin@('ym - 'Vair)
bUt ,Ym > ’Yair
Pstagn. —Po = (0.067m — 0.023m)sin 30° (0.7) (9,810N/m?) = 151.1 Pa
p 150,000 Pa 5
_ b _ =1.784 k
P RT ~ (287J/kgK) (273 + 20) K g/m
Then

2
= | (151.1P
Yo \/1.784kg/m3( 51.1Pa)

Vo =13.0m/s
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|4.80: PROBLEM DEFINITION

Situation:
An instrument used to find gas velocity in smoke stacks.
Cpa =1, Cpp = —0.3, Ah = 5mm.

Find:
Velocity of stack gases (m/s).

Properties:
T =20°C, R=200J/kgK.
Tyas = 250°C, pgas = 101 kPa.

| SOLUTION I

Ideal gas law

P
RT
101,000 Pa
(200J/ kg K) (250 + 273) K

— 0.966 kg/m”

Manometer equation
Ap: = (Vo — Ya) A
but v, > v, so

= 9790N/m?(0.005m)
48.9 Pa

(pa—pB): = (Cpa—Cpp)—==
pVy

(pA_pB)z = 1-37

2 (48.9 Pa)
1.3 (0.966 kg/ m?)

Vo =8.82 m/s
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|4.81: PROBLEM DEFINITION

Situation:
The wake of a sphere which separates at 120°.
Vo =100m/ s.
V =15V, 6 =120°.
Find:
(a) Gage pressure ( kPa).
(b) Pressure coefficient.

Properties:
p=12kg/m3.

| PLAN |

Apply the Bernoulli equation from the free stream to the point of separation and the
pressure coefficient equation.

| SOLUTION

Pressure coefficient

_b—ho
TopV2)2
Bernoulli equation
U? u?

or )
P —Do Uu
— ]_ — e
pU?%/2 ( <U> )
but
= 1.5Usinf
= 1.5Usin 120°
= 1.5U x 0.866
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At the separation point

Ol =

D

Dgage

1.299

1.687
1—1.687

C, = —0.687

G (5) V"

(—0.687)(1.2kg/m*/2)(100m/ s)?
—4,122 Pa

Deage = —4.12 kPa gage
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|4.82: PROBLEM DEFINITION

Situation:
An airplane uses a Pitot-static tube to measure airspeed.
29 = 3000m, V;,g = 70m/s.

Find:
True air-speed (m/s).

Properties:
Tsr, =17°C, T = —6.3°C.
psr, = 101 kPa, p = 70 kPa.

| PLAN I

Apply the Pitot-tube equation and correct for density change.

| SOLUTION I

The Pitot-static tube equation is

1/2
-2
P

Multiplying and dividing by the sea level density

1/2 1/2
() (&)
PsrL P
1/2
The factor <%> is the indicated airspeed so

1/2
V;rue - de (pﬂ)
p

From the ideal gas law

psy  psu T 101kPa (273 —6.3) K

= = = 1.327
p Tspp  T70kPa (273 +17) K

True air speed

Virwe = 70 m/s x v/1.327
Virue = 80.6m/'s
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|4.83: PROBLEM DEFINITION

Situation:
An airplane uses a Pitot-static tube to measure airspeed.

z = 10000 ft.
Find:
Speed of aircraft (mph).

Properties:
Ty, = 25°F, p = 9.8 psig, Ap = 0.5 psid.

| SOLUTION I

The temperature is 25 degrees F' and the pressure is 9.8 psia. The pressure difference
is 0.5 psid. The pressure is 144x9.8 = 1411 psfa. The temperature is 460+25=485
R. The gas constant is 1545/29=53.3 ft-1bf/Ibm-R.

The density is

b 1411 psfa
~ RT  53.3ft-1bf/Ibm-R x 485°R

p = 0.0546 Ibm/ft> = 0.00169 slugs/ft’

. The differential pressure is 0.5 x 144 = 72 psf.
The pitot equation is

P
V' =199 mph

1/2 1/2
vo— (2Ar) o[ _2esh BT g 1092 — 202 /s
0.00169 slug/ ft
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|4.84: PROBLEM DEFINITION

Situation:

Check equations for pitot tube velocity measurement provided by instrument com-
pany.

V =1096.7+/h,/d, d = 1.325P,/T.
Find:

Validity of Pitot tube equations provided.

| PLAN I

Apply the Bernoulli equation

| SOLUTION

Applying the Bernoulli equation to the Pitot tube, the velocity is related to the change
in piezometric pressure by

V2
Ap, = p—

where Ap, is in psf, p is in slugs/ft3 and V is in ft/s. The piezometric pressure
difference is related to the "velocity pressure" by

7, (If/£6%) Py (in)
12(in/ft)
62.4 X h,

12
= 5.2h,

Ap.(Ibf/ft*) =

The density in slugs/ft? is given by

d (Ibm/ft)
1

ge(Ibm/slug)
d

32.2
= 0.03106d

plslug/ft*) =

The velocity in ft/min is obtained by multiplying the velocity in ft/s by 60. Thus
2 x 5.2h,
Vo= 0\ 0031064
[ By
= 10984/ —
d

This differs by less than 0.1% from the manufacturer’s recommendations. This could
be due to the value used for g. but the difference is probably not significant compared
to accuracy of "velocity pressure" measurement.
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From the ideal gas law, the density is given by

p

PSR

where p is in slugs/ft3, p in psfa and T in °R. The gas constant for air is 1716 ft-
Ibf/slug-°R. The pressure in psfg is given by

_ P,(in-Hg) x 13.6 x 62.4 (Ibf/ft*)
p (psfe) = 12(in/ft)
— 70.72P,

where 13.6 is the specific gravity of mercury. The density in Ibm/ft? is

d = gep

72P,
= 322X 0.1

1716 x T

I
= 1.327—
T

which is within 0.2% of the manufacturer’s recommendation.
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|4.85: PROBLEM DEFINITION

Situation:
The flow of water over different surfaces.

Find:
Relationship of pressures.
(a) pc > pB > pa.

PB > Pc > PA.

Pc = DPB = DA

PB < pc < pa.

pa < pB < pc.

(b
(c
(d
(

—— — T

€

| SOLUTION

The flow curvature requires that pg > pp + vd where d is the liquid depth. Also,
because of hydrostatics pc = pp + ~vd. Therefore pg > pco. Also pa < pp + vd so
pa <pc. S0 pp > pc > pa.
The valid statement is | (b).
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|4.86: PROBLEM DEFINITION

Situation:
Fluid element rotation.

Find:
What is meant by rotation of a fluid element?

| SOLUTION I

An arbitrary cubical element is selected in a flow. One side lies along the x-axis. As
the element moves through the flow it will be deformed. If the angle between the
bisectors of the sides and the x-axis does not change, there is no rotation.
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|4.87: PROBLEM DEFINITION

Situation:

A spherical fluid element in an inviscid fluid.
Find:

If pressure and gravitational forces are the only forces acting on the element, can
they cause the element to rotate?

| SOLUTION I

The result force due to pressure passes through the center of the sphere so no moment
arm to create rotation. The resultant forces due to gravity also pass though the center
so cannot cause rotation.
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|4.88: PROBLEM DEFINITION

Situation:
A two-dimensional velocity field is represented by the vector V = 10xi — 10yj.

Find:
Is the flow irrotational?

| SOLUTION

In a two dimensional flow in the = — y plane, the flow is irrotational if (Eq. 4.34a)

ov  Ou

oy

The velocity components and derivatives are

u = 10x @ =0
Jdy
ov

= —10 — =0
v y ox

Therefore the flow is irrotational.
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|4.89: PROBLEM DEFINITION

Situation:

A flow field has velocity components described by u = —wy and v = w.

Find:
Vorticity.
Rate of rotation.

| SOLUTION

Rate of rotation

Wz

Vorticity is twice the average rate of rotation; therefore, the

1
50— (~w)
S (2)

93
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|4.90: PROBLEM DEFINITION

Situation:
A two-dimensional velocity field is given by:
u = Czx v = Cy
- ($2+y2)2, - ($2+y2)2 .

Find:
Check if flow is irrotational.

| SOLUTION

Apply equations for flow rotation in x — y plane.

v Ou  22Cy [_ 2yCw ]
or 0y (@+y)’ | (@24’
=0

| The flow is irrotational |
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|4.91: PROBLEM DEFINITION

Situation:
A two=dimensional flow field is defined by:
u=x%—y? v=—2xy.
r=1m,y=1m, t=1s.
Find:
If the flow is rotational or irrotational.
| SOLUTION

Rate of flow rotation about the z-axis,

ou Ov
o = 3(3- %)

1
2
1
3 (—2y+2y)=0

Therefore, the flow is
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|4.92: PROBLEM DEFINITION

Situation:
Fluid flows between two stationary plates.
u=2(1—4y?), Vipax = 2cm/s.

Find:

Find rotation of fluid element when it moves 1 cm downstream

| PLAN I

Apply equations for rotation rate of fluid element..

| SOLUTION I

The rate of rotation for this planar (two-dimensional) flow is

1 ov  Ou

Wy = 5(% - 8_y)
In this problem, v = 0 so
10u
W, = —=——
20y
= 16y
The time to travel 1 cm is
1
At = —
u
B 1
T (i—4p)

The amount of rotation in 1 cm travel is

AO = w, At

Al B

— T4
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|4.93: PROBLEM DEFINITION

Situation:
A velocity distribution is provided for a combination of free and forced vortex.

vp = 1[1 —exp(—r?)], r = 0.5, 1.0, 1.5.
% dv, )
202 = d_re + 79 = 1%(1)97“).
Find:
Find how much a fluid element rotates in one circuit around the vortex as a function
of radius.

| SOLUTION I

The rate of rotation is given by

0 = —=—(vyr)

The time to complete one circuit is

At = —

[1 — exp(—r?)]
So, the total rotation in one circuit is given by
AG = OAt

A —r?

— (rad) = 7’2—6Xp( ")

27 1 — exp(—12?)
A plot of the rotation in one circuit is shown. Note that the rotation is 27 for r— 0
(rigid body rotation) and approaches zero (irrotational) as r becomes larger.

0.8 4

0.6 4

Rotation, rad/2rn

0.4

0.2

0.0 T T T
0.0 05 1.0 15 20

Radius, r
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|4.94: PROBLEM DEFINITION

Situation:
Incompressible and inviscid liquid flows around a bend.
V:%,m:lm, T, = 3m.

Find:
Depth of liquid from inside to outside radius (m).

Flow field is irotational so apply the Bernoulli equation across streamlines between
the outside of the bend at the surface (point 2) and the inside of the bend at the
surface (point 1).

| SOLUTION

Bernoulli equation

29— 21 = — — —
where V5 = (1/3) m/s; V3 = (1/1) m/s. Then

1 2 2
20— 21 = %((1 m/s)” — (0.33m/s)")

|22 — 21 = 0.045 m|
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|4.95: PROBLEM DEFINITION

Situation:

An outlet pipe from a reservoir.
V =161t/s, h = 15ft.

Find:
Pressure at point A (psig).

Apply the Bernoulli equation.

| SOLUTION

Bernoulli equation. Let point 1 be at surface in reservoir.

V2 v2
&+—1+2’1 :&—F—A-l-ZA
vo2 vo2
16 ft/s)?
0+0+15 = — 14 (168t/5)

62.41bf/ ft> = 2 x 32.2ft/s?
pa = (15t — 3.98ft) x 62.41bf/ ft*
pa = 688 psfg

pa = 4.78 psig
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|4.96: PROBLEM DEFINITION

Situation:
An outlet pipe from a reservoir.
V =6m/s, h =15m.

Find:
Pressure at point A (kPa).

Assumptions:
Flow is irrotational.

| PLAN I

Apply the Bernoulli equation.

| SOLUTION

Bernoulli equation. Let point 1 be at reservoir surface.

VQ V2
&4——1—1—21 :]E‘I——A—I—ZA
v 29 v 29
6 2
0+0+15 = Pa (6m/s) +0

9810N/m?® 2 x 9.81m/s?
pa = (15m—1.83m) (9810N/m?)
pa = 129,200 Pa, gage
pa = 129 kPa, gage
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|4.97: PROBLEM DEFINITION

Situation:

Air flows past a cylinder. Highest velocity at the maximum width of sphere is twice
the free stream velocity.

Vo =40m/ s, Viax = 2V4.

Find:
Pressure difference between highest and lowest pressure (kPa).

Assumptions:
Hydrostatic effects are negligible and the wind has density of 1.2 kg/m?.

| PLAN I

Apply the Bernoulli equation between points of highest and lowest pressure.

| SOLUTION

The maximum pressure will occur at the stagnation point where V' = 0 and the point
of lowest pressure will be where the velocity is highest (Viax = 80 m/s).
Bernoulli equation

oo
Pn + 5 = De + 5
pr+0 = pe+g(vn2lax)
1.2ke/m?
Ph—pe = 75/ (80m/s)?
= 3,840 Pa

pn — pe = 3.84 kPa
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|4.98: PROBLEM DEFINITION

Situation:

Velocity and pressure given at two points in a duct.
Vi=1m/s, Vo =2m/s.

Find:
Determine which is true:
(a) Flow in contration in nonuniform and irrotational.
(b) Flow in contration is uniform and irrotational.
(c) Flow in contration is nonuniform and rotational.
(d) Flow in contration is uniform and rotational.

Assumptions:
Elevations are equal.

Properties:
p1 = 10kPa, py = 7kPa.
p = 1000kg/ m3.

| PLAN I

Check to see if it is irrotational by seeing if it satisfies Bernoulli’s equation.

| SOLUTION I

The flow is | non-uniform. |
Bernoulli equation

2 2
& + V—l + 21 = ]2 + V—2 -+ 29
Y29 Yo 29
10,000 Pa (1m/s)’ o _ _7.000Pa (2m/s)? 0
0.810N/m® | 2(981m/s3) |~ 9.810N/m? | 2(981m/s?) |
1.070 # 0.917

Flow is The correct choice is
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|4.99: PROBLEM DEFINITION

Situation:
Water flowing from a large orifice in bottom of tank.
Vy =8ft/s, Vg =201t/s.
za = 11t, zp = 0ft.
Find:
pa —pp (psf).
Properties:
p = 62.41b/ ft>.

Apply the Bernoulli equation.

| SOLUTION

Bernoulli equation

1% V2
%+ZA—|——A = @+ZB+—B
Y 29 Y 2g

V2—V2
pA—pp = V[M_ZA]
29
400 — 64) ft?/ s2

2(32.2ft/s?)
pa — pp = 263 psf

= 6241b/ft? F — 1ft1
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|4.100: PROBLEM DEFINITION

Situation:
A flow pattern past an airfoil.
Vo =80m/s, Vi =85m/s, Vo = 7hm/s.
Find:
Pressure difference between bottom and top (kPa).

Assumptions:
The pressure due to elevation difference between points is negligible.

Properties:
p=12kg/m3.

| SOLUTION

The flow is ideal and irrotational so the Bernoulli equation applies between any two
points in the flow field

VZ V2
v 29 729
P2 —p1 = g(vf - V22)
1.2ke/ m?
popy = EEE sty
= 960 Pa

P2 —P1 = 0.96 kPa
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|4.101: PROBLEM DEFINITION

Situation:
Flow of water between parallel plates.

Find:
Is the Bernoulli equation valid between plates?

| SOLUTION I

The flow between the two plates is rotational. The Bernoulli equation cannot be
applied across streamlines in rotational flows.
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|4.102: PROBLEM DEFINITION

Situation:
Category 5 hurricane.
Vinax = 175mi/ h.

Find:
Calculate pressure at center (mbar).

Properties:
p=12kg/ m3 Deenter = 902mbar, pys,, = 1bar.

| SOLUTION

The pressure change from the exterior to the core of a hurricane using the model of
a rotating core surrounded by a free vortex is

Ap = pV?2

max

The speed of 175 mph in m/s is

miles 1 hr 5280 ft 1m

_1
V=105 X 35005 X Tmile * 3.048 ft

=84.21 m/s

The pressure difference is
Ap = 1.2 x 84.21?> = 8510 Pa

To convert to mbar, 1 mbar=10? Pa so the pressure difference is 85.10 mbar and the
estimated pressure at the center of the hurricane is

p = 1000 — 85.10
p = 914 mbar

This is slightly higher than the recorded pressure. The discrepancy probably lies in
the simplicity of the model. Also the presence of water droplets in the air will may
increase the effective density giving rise to a higher pressure difference.
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|4.103: PROBLEM DEFINITION

Situation:
Pressure drop in a tornado.

Find:

Estimate maximum velocity (m/s).

Properties:
p= 12kg/ II]3, DPcenter = 100 mbar.

| SOLUTION

Assume an air density of 1.2 kg/m3.The pressure depression in a tornado is estimated
as

Ap = pV?2

SO
Ap

Vmax = —
p

0.1 (100,000 Pa)
1.2 kg/m®

Vinax = 91.3 m/s
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|4.104: PROBLEM DEFINITION

Situation:
A whirlpool modeled as free and forced vortex.
Vinax = 10m/s; r = 10 m.

Find:
Shape of the water surface to 50 meter radius.

Properties:
Patm = 0.

| PLAN |

Apply the Bernoulli equation to the free vortex region.

| SOLUTION I

Bernoulli equation

V2 V2
max __ =0
210 —|— 29 z 4+ 29

The elevation at the juncture of the forced and free vortex and a point far from the
vortex center where the velocity is zero is given by

V2
210 = — 2
In the forced vortex region, the equation relating elevation and speed is
Viax vz
210 — =z——
10 29 2
At the vortex center, V' = 0, so
v2 V2 V2 v2
ZO — 210 _ max — max _ max — max
29 29 29 g
102
= —=-102m
9.81

In the forced vortex region

r
V—l—ol()m/s =r

so the elevation is given by
2
2= 102+ —
29

In the free vortex region
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10
V =10—

so the elevation is given by

Z = Zi0 +

V2, 100 (10\* =510
2g 29 \r ) 12

' ' ' '
[ee] (2] B N o

Elevation, m

-10 +

-12

0 10 20 30 40 50

Radius, m
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|4.105: PROBLEM DEFINITION

Situation:
Tornado modeled as combination of forced and free vortex.
Vinax = 350km/h. r = 50 m.

Find:

Variation in pressure.

Properties:
Datm = 100 kPa.

| PLAN |

Apply the pressure variation equation-rotating flow to the vortex center and the
Bernoulli equation in the free vortex region.

| SOLUTION I

From the pressure variation equation-rotating flow, the pressure reduction from at-
mospheric pressure at the vortex center is

Ap = —pViu
which gives
1000
Ap=—1.2 —— )2 =_-11.3kP
) X (350 x 3600) 3 kPa

or a pressure of p(0) = 100—11.3 = 88.7 kPa. In the forced vortex region the pressure
varies as

V2
p(0) =p—p—

In this region, the fluid rotates as a solid body so the velocity is

r
:_max:1-4
V 5OV 94r

The equation for pressure becomes
p=88.7+226r*/1000  for r < 50 m

The factor of 1000 is to change the pressure to kPa. A the point of highest velocity
the pressure is 94.3 kPa.
Bernoulli equation

1 1
p®0%+§pﬁix=4%+§sz

In the free vortex region so the equation for pressure becomes
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1
p(50) + 5,0\/“21&,( ll - (5—7?)2} for r > 50 m

94.3 + 5.65 x {1 - (?)21

102

100

98

96

94

92

Pressure (kPa)

90

88

0 50 100 150 200 250

Radius (m)
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|4.106: PROBLEM DEFINITION

Situation:

A weather balloon in a tornado modeled as a forced-free vortex.
Find:

Where the balloon will move.

| SOLUTION

The fluid in a tornado moves in a circular path because the pressure gradient pro-
vides the force for the centripetal acceleration. For a fluid element of volume ¥ the
relationship between the centripetal acceleration and the pressure gradient is

V2 yp
r dr
The density of a weather balloon would be less than the local air so the pressure
radient would be higher than the centripetal acceleration so the
balloon would move toward the vortex center. |
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|4.107: PROBLEM DEFINITION

Situation:
The pressure distribution in a tornado.
Find:
If the Bernoulli equation over predicts or under predicts the pressure drop.

| SOLUTION I

As the pressure decreases the density becomes less. This means that a smaller pressure
gradient is needed to provide the centripetal force to maintain the circular motion.
This means that the Bernoulli equation will over predict the pressure drop.

114



|4.108: PROBLEM DEFINITION

Situation:
Flow over a sphere.
ug = 1.5U sin @, p = —2.5in H,0.
V =1001t/s.

Find:
Angle of separation point.

Properties:
p =0.071b/ ft>.

| SOLUTION I

Since the fluid is air, neglect the contribution of hydrostatic in the Bernoulli equation
The pressure coefficient defined by

(p _poo)
O _- = -7
p %pUQ

can be expressed in terms of velocities as

174 2
1= ()

by application of the Bernoulli equation. The pressure in psfg at the stagnation point
is
1ft Ibf

62.4—
1210 0N

Psep = —2.5 inch HQO X
—  —13.0 Ibf/ft?

In order to have the correct units, the density has to be in slugs/ft3.

Ibm 1slug slugs
_ o788 021
p= 00T oo — V00217 =

The dynamic pressure is

slugs
ft>

1 V2= 1 0.00217 1002ft2 = 10.85 psf
Ep —5 X U. X 8—2— . Ps

The pressure coefficient at the separation point is

—13.0
= =11
C 10.85 98
SO
V 2
—1.198 =1 — (5) —1—1.5%sin%60
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Solving for sin # gives
sinf = 0.988

There are two solutions
0 =81.1°, 98.9°

Separation occurs on windward side so

0ep = 81.1°
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|4.109: PROBLEM DEFINITION

Situation:
Application of the Bernoulli equation between a point upstream and in the wake
of a sphere.

Find:
Is the Bernoulli equation valid between these two points?

| SOLUTION I

The flow in the wake is irrotational so the Bernoulii equation cannot be applied
between two arbitrary points
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|4.110: PROBLEM DEFINITION

Situation:
A two dimensional flow in the x — y plane is described in the problem statement.

Find:
(a) Show that d(# + gh) = 0.

(b) Show 2;/% is constant in all directions.

| SOLUTION

a) Substituting the equation for the streamline into the Euler equation gives

u%dm + ug—Zdy = —g%daz
vg—;dx + vg—’y’dy = —gg—Zdy

u? 0 (u? 0
aa L) do + 8%( Ydy = —g%dm
9 (v

Fl
2
5 (%) do+ £.(5)dy = —g 5. dy

N

Adding both equations

0 [u®+? 0 [u?+ v? Ooh oh
%< 5 )d:ﬂ+8—y< 5 )dy——g(%d:rvLa—ydy)

or
2, .2
u®+v
d( 5t gh) =0
b) Substituting the irrotationality condition into Euler’s equation gives
vy, tug,dy=—g5,

or
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