

Problem 1: The crane is used to hoist an elevator. If the motors at A and B are drawing in the cable at a speed of 2 m/s and 4 m/s, respectively. The speed of the elevator (in m/s) is:

(a) 1.5 (b) 3 (c) 6 (d) 0.75 (e) 9

$$2s_A + 2s_D =$$

$$2s_A + 2s_D$$

$$2s_A + 2s_B = L$$

$$2u_A + 2u_B = 0$$

$$2s_C + 2s_D + s_A + s_B = 0$$

$$2u_C + 2u_D + u_A + u_B = 0$$

$$2u_C + 2u_D - 2 - 4 = 0 \quad u_1 = 15 \text{ m/sec} \quad u_2 = 0, \quad x = 10 \text{ m}$$

$$2u_C + 2u_D = 6 = \text{speed of elevator}$$

Problem 2: A truck is travelling at 15 m/s when the brakes are applied, causing it to skid for a distance 10 m before coming to rest. If the mass of the boat and trailer is 1Mg, the horizontal force in the coupling C (in kN) is:

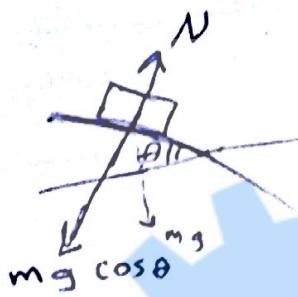
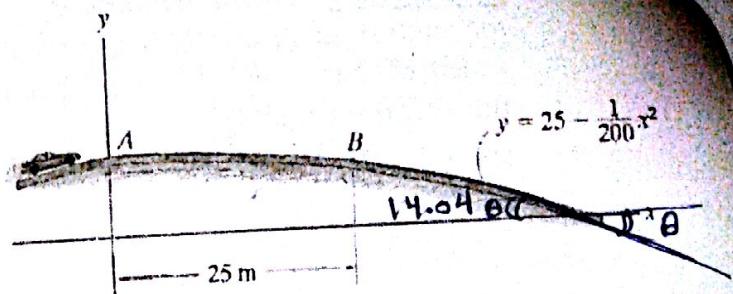
(a) 17.45 (b) 11.25 (c) 19.13 (d) 21.38 (e) 9.25

$$T = 1000 \text{ (a)}$$

$$= 1000 \times 11.25 \text{ (N)}$$

$$= 11.25 \text{ kN.}$$

$$v_2^2 = v_1^2 + 2a(10)$$



$$0 = 15^2 + 2a(10)$$

$$a = -11.25 \text{ m/sec}^2$$

$$v = 25 \text{ m/sec}$$

Problem 3: The 800-kg car travels in the vertical plane at a constant speed of 25 m/s. The normal force (in Newton's) on the car at point B is:

(a) 5337 (b) 4191 (c) 6477 (d) **3048** (e) 2056

$$mg \cos \theta - N = ma_n$$

$$N = 3048$$

$$v_0 = 0 \quad s_0 = 0$$

Problem 4: A car (starting from rest at $S=0$) travels along a circular path of $r=17 \text{ m}$, such that its speed is increased by $a_t = 2S \text{ m/s}^2$, where S is in meters. The magnitude of its acceleration (in m/s^2) after the car has traveled a distance of $S=18 \text{ m}$ is:

(a) 43.83 (b) 49.13 (c) 45.73 (d) **52.43** (e) 33.63

$$a_t = 2S$$

$$v \frac{dv}{ds} = 2S$$

$$\int v dv = \int 2S ds$$

$$\frac{v^2}{2} = S^2$$

$$\frac{v^2}{2} = 324$$

$$v = 25.46 \text{ m/s}$$

$$a_t = 2 \times 18$$

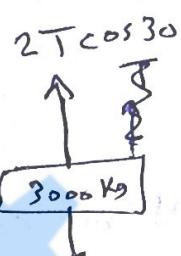
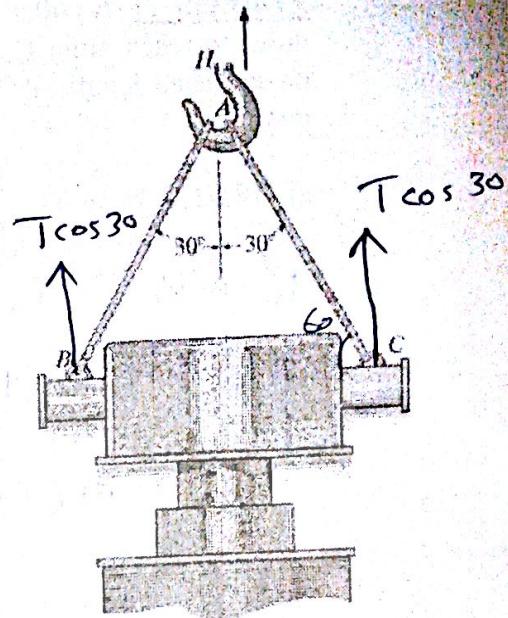
$$= 36$$

$$a = \sqrt{36^2 + 38.13^2}$$

$$= 52.43$$

$$a_n = \frac{v^2}{r}$$

$$= \frac{25.46^2}{17}$$



$$= 38.13$$

$$V_0 = 0 \quad a = \frac{0.2}{0.3} = 0.67 \text{ m/sec}^2$$

Problem 5: The 3-Mg casting, suspended in the vertical position and initially at rest, is given an upward speed of 0.2 m/s in 0.3 sec. Assuming constant acceleration, the tension in cables AB and AC (in kN) is:

(a) 18.15 (b) 24.25 (c) 30.25 (d) 36.35 (e) 15.25

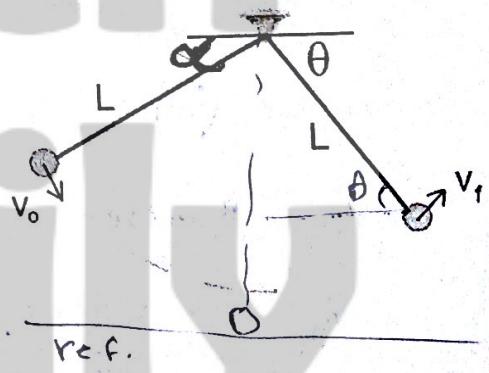
$$2T \cos 30 - 3000 \times 9.81 = 3000 \times 0.67$$

$$T = 18151.9 \text{ N} \\ = 18.15 \text{ kN}$$

~~sin 30 =~~

Problem 6: A simple pendulum starts moving downward with a velocity $V_0 = 2 \text{ m/s}$ and $\alpha = 30^\circ$. On the opposite side, it reaches a velocity $V_f = 4 \text{ m/s}$ and $\theta = 60^\circ$. The cable length L of the pendulum [in meters] is:

a) 2.67 b) 1.17 (c) 1.67 d) 3.67 e) 2.00

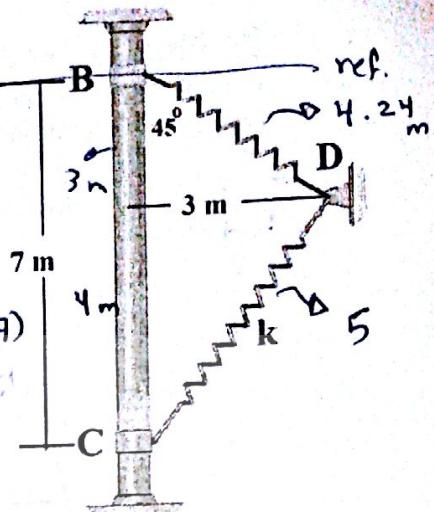

$$T_1 + V_1 = T_2 + V_2$$

$$\frac{1}{2} \gamma h (2)^2 + \gamma h \times 9.81 \times (L - L \sin 30)$$

$$= \frac{1}{2} \gamma h (4)^2 + \gamma h \times 9.81 \times (L - L \sin 60)$$

$$2 + 4.905 L = 8 + 1.31 L$$

$$L = 1.67 \text{ m}$$


Problem 7: A collar 8 kg starts to move from rest from point B and falls down to reach point C. If the spring has a stiffness of $k = 50 \text{ N/m}$ and an un-stretched length of 3m. The collar velocity while reaching point C (in m/s) is:

a) 18.02 b) 16.03 c) 12.05 d) 14.07 e) 11.04

$$T_1 + V_1 = T_2 + V_2$$

$$0 + \frac{1}{2} (50) (4.24 - 3)^2 = \frac{1}{2} (8) (V_2)^2 - (8)(9.81)(7) + \frac{1}{2} (50) (5 - 3)^2$$

$$V_2 = 11.04 \text{ m/sec}$$

$$\sin 45 = \frac{3}{x}$$

$$x = 4.24 \text{ m}$$

Problem 8: A nozzle discharges a stream of water in the direction of $\alpha = 40^\circ$ with an initial velocity of 8 m/s. The radius of curvature (in meters) of the stream as it will be at its maximum height is:

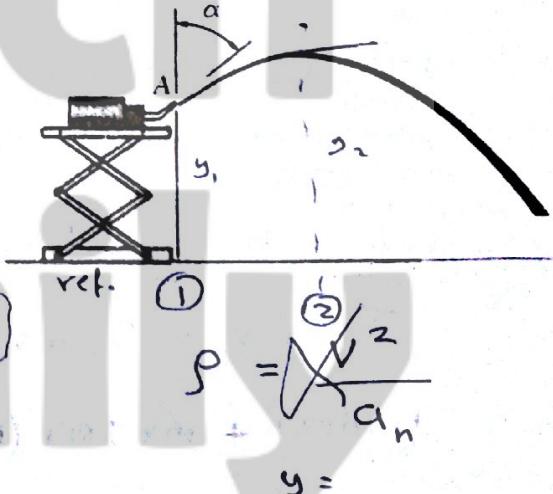
a) 4.38 b) 2.70 c) 2.15 d) ∞ e) 3.24

$$V_i = 8 \text{ m/sec} \quad V_x = 8 \sin 40$$

$$V_{y_i} = 8 \cos 40 \quad \boxed{V_x = 5.14 \text{ m/sec}}$$

$$\boxed{V_{y_i} = 6.13 \text{ m/sec}}$$

$$\Delta y = 6.13 t - \frac{1}{2} (9.81) t^2$$


$$x = 5.14 t \quad \Rightarrow \quad t = \frac{x}{5.14}$$

$$y = 6.13 \left(\frac{x}{5.14} \right) - 4.91 \frac{x^2}{(5.14)^2}$$

$$y = 1.19 x - 0.19 x^2 + y_1$$

$$y_1 = 1.19 - 0.38 x$$

$$y'' = -0.38$$

at max. height.

$$V_2^2 = V_i^2 - 2(9.81) \Delta y$$

$$0 = 6.13^2 - 19.62 \Delta y$$

$$\Delta y = 1.91$$

$$1.91 = 1.19 x - 0.19 x^2$$

$$x = \underline{3.13}$$

$$R = \frac{(1+y_1^2)^{3/2}}{y''}$$