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INTRODUCTION
Learning Objectives

• Describe the difference in atomic/molecular structure 
between crystalline and noncrystalline materials.

• Draw unit cells for face-centred cubic, bodycentered 
cubic, and hexagonal close-packed crystal structures.

• Derive the relationships between unit cell edge length 
and atomic radius for face-centred cubic and body-
centred cubic crystal structures.

• Compute the densities for metals having facecentered 
cubic and body-centred cubic crystal structures given 
their unit cell dimensions. 

• Given three direction index integers, sketch the 
direction corresponding to these indices within a unit 
cell.

• Specify the Miller indices for a plane that has been 
drawn within a unit cell.

• Describe how face-centred cubic and hexagonal close-
packed crystal structures may be generated by the 
stacking of close-packed planes of atoms.

• Distinguish between single crystals and polycrystalline 
materials.

• Define isotropy and anisotropy with respect to material 
properties.

2



FUNDAMENTAL CONCEPTS

There is an extremely large number of different crystal 

structures all having long-range atomic order; these 

vary from relatively simple structures for metals to 

exceedingly complex ones, as displayed by some of the 

ceramic and polymeric materials. 

When crystalline structures are described, atoms (or 

ions) are thought of as being solid spheres having well-

defined diameters. 

This is termed the atomic hard-sphere model in which 

spheres representing nearest-neighbour atoms touch 

one another. 

Sometimes the term lattice is used in the context of 

crystal structures; in this sense lattice means a three-

dimensional array of points coinciding with atom 

positions (or sphere centres).

Solid materials may be classified according to the 

regularity with which atoms or ions are arranged 

with respect to one another. 

A crystalline material is one in which the atoms are 

situated in a repeating or periodic array over large 

atomic distances—that is, long-range order exists, 

such that upon solidification, the atoms will position 

themselves in a repetitive three dimensional pattern, 

in which each atom is bonded to its nearest 

neighbour atoms. 

All metals, many ceramic materials, and certain 

polymers form crystalline structures under normal 

solidification conditions. For those that do not 

crystallize, this long-range atomic order is absent.

Some of the properties of crystalline solids depend 

on the crystal structure of the material, the manner in 

which atoms, ions, or molecules are spatially 

arranged. 3



FUNDAMENTAL CONCEPTS

• The atomic order in crystalline solids indicates that small groups of atoms form a repetitive pattern. Thus, in describing 

crystal structures, it is often convenient to subdivide the structure into small repeat entities called unit cells. 

• Unit cells for most crystal structures are parallelepipeds or prisms having three sets of parallel faces; one is drawn within 

the aggregate of spheres, which in this case happens to be a cube. 

• A unit cell is chosen to represent the symmetry of the crystal structure, wherein all the atom positions in the crystal may 

be generated by translations of the unit cell integral distances along each of its edges.

Aggregate of many atoms

Hard-sphere unit cell representation

Reduced sphere
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FUNDAMENTAL CONCEPTS

• The unit cell is the basic structural unit or building 

block of the crystal structure and defines the crystal 

structure by virtue of its geometry and the atom 

positions within. 

• Convenience usually dictates that parallelepiped 

corners coincide with centres of the hard-sphere 

atoms. Furthermore, more than a single unit cell 

may be chosen for a particular crystal structure; 

however, we generally use the unit cell having the 

highest level of geometrical symmetry.
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METALLIC CRYSTAL STRUCTURES

The atomic bonding in this group of materials is metallic and thus nondirectional in nature. 

Consequently, there are minimal restrictions as to the number and position of nearest-neighbour atoms; this leads to 

relatively large numbers of nearest neighbours and dense atomic packings for most metallic crystal structures. 

Also, for metals, when we use the hard-sphere model for the crystal structure, each sphere represents an ion

core. 

Three relatively simple crystal structures are found for most of the common metals: face-centred cubic, bodycentered cubic, 

and hexagonal close-packed.

Atomic Radii and
Crystal Structures 
for 16 Metals
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METALLIC CRYSTAL STRUCTURES

The Face-Centred Cubic Crystal Structure
The crystal structure found for many metals has a unit cell of cubic geometry, with atoms located at each of the corners and 

the centres of all the cube faces. It is aptly called the face-centred cubic (FCC) crystal structure. 

Some of the familiar metals having this crystal structure are copper, aluminium, silver, and gold. 

These spheres or ion cores touch one another across a face diagonal; the cube edge length a and the atomic radius R are 

related through:

Hard-sphere 

model for the 

FCC unit cell

Atom centres are represented by 

small circles to provide a better 

perspective on atom positions. The aggregate of atoms 

represents a section of 

crystal consisting of many 

FCC unit cells. 
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METALLIC CRYSTAL STRUCTURES

The number of atoms associated with each unit cell can also be determined. Depending on an atom’s location, it may be 

considered to be shared with adjacent unit cells—that is, only some fraction of the atom is assigned to a specific cell. 

For example, for cubic unit cells, an atom completely within the interior “belongs” to that unit cell, one at a cell face is 

shared with one other cell, and an atom residing at a corner is shared among eight. 

The number of atoms per unit cell, N, can be computed using the following formula:

where

Ni = the number of interior atoms

Nf = the number of face atoms

Nc = the number of corner atoms

For the FCC crystal structure, there are eight corner atoms (Nc = 8), six face atoms (Nf = 6), and no interior atoms (Ni = 0). 

Thus, N = 4 (a total of four whole atoms may be assigned to a given unit cell).
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METALLIC CRYSTAL STRUCTURES

The cell is composed of the volume of the cube that is generated from the centres of the corner atoms. Corner and face 

positions are really equivalent—that is, translation of the cube corner from an original corner atom to the centre of a face 

atom will not alter the cell structure.

Two other important characteristics of a crystal structure are the coordination number and the atomic packing factor 

(APF). 

For metals, each atom has the same number of nearest-neighbour or touching atoms, which is the coordination number. For 

facecentered cubics, the coordination number is 12. 

Here the front face atom has four corner nearest-neighbour atoms surrounding it, four face atoms that 

are in contact from behind, and four other equivalent face atoms residing in the next unit cell to the 

front (not shown).

The APF is the sum of the sphere volumes of all atoms within a unit cell (assuming the atomic hard-sphere model) divided 

by the unit cell volume:
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METALLIC CRYSTAL STRUCTURES
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METALLIC CRYSTAL STRUCTURES

The body-Centred Cubic Crystal Structure
Another common metallic crystal structure also has a cubic unit cell with atoms located at all eight corners and a single atom 

at the cube centre. This is called a body-centred cubic (BCC) crystal structure. 

The atomic packing factor for BCC is 0.68
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METALLIC CRYSTAL STRUCTURES

The Hexagonal Close-Packed Crystal Structure
Not all metals have unit cells with cubic symmetry; the final common metallic crystal structure to be discussed has a unit 

cell that is hexagonal or hexagonal close-packed (HCP). 

The coordination number and the atomic packing factor for the 

HCP crystal structure are the same as for FCC: 12 and 0.74, 

respectively.

If a and c represent, 

respectively, the 

short and long unit 

cell dimensions,

the c/a ratio should 

be 1.633; however, 

for some HCP 

metals, this ratio 

deviates from the

ideal value.
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METALLIC CRYSTAL STRUCTURES
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METALLIC CRYSTAL STRUCTURES

DENSITY COMPUTATIONS
A knowledge of the crystal structure of a metallic solid permits computation of its theoretical density 𝜌 through the 

relationship:

where

n = number of atoms associated with each unit cell, A = atomic weight

VC = volume of the unit cell. NA = Avogadro’s number (6.022 × 1023 atoms/mol)
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METALLIC CRYSTAL STRUCTURES
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METALLIC CRYSTAL STRUCTURES

POLYMORPHISM AND ALLOTROPY

Some metals, as well as nonmetals, may have more than one crystal 

structure, a phenomenon known as polymorphism. 
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METALLIC CRYSTAL STRUCTURES

When found in elemental solids, the condition is often termed allotropy. The prevailing crystal structure depends on both 

the temperature and the external pressure. 

One familiar example is found in carbon: graphite is the stable polymorph at ambient conditions, whereas diamond is 

formed at extremely high pressures. 

Also, pure iron has a BCC crystal structure at room temperature, which changes to FCC iron at 912°C (1674°F). 

Most often a modification of the density and other physical properties accompanies a polymorphic transformation.
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CRYSTAL SYSTEMS

Because there are many different possible crystal structures, it is sometimes convenient to divide them into groups according 

to unit cell configurations and/or atomic arrangements. 

One such scheme is based on the unit cell geometry, that is, the shape of the appropriate unit cell parallelepiped without 

regard to the atomic positions in the cell. 

Within this framework, an x-y-z coordinate system is established with its origin at one 

of the unit cell corners; each of the x, y, and z axes coincides with one of the three 

parallelepiped edges that extend from this corner, as illustrated. 

The unit cell geometry is completely defined in terms of six parameters 

(lattice parameters of a crystal structure): the three edge lengths a, b, and c, and 

the three interaxial angles 𝛼, 𝛽, and 𝛾. 
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CRYSTAL SYSTEMS

On this basis there are seven different possible combinations of a, b, and c and 𝛼, 𝛽, and 𝛾, each of  

which represents a distinct crystal system. 

These seven crystal systems are cubic, tetragonal, hexagonal, orthorhombic, rhombohedral,

monoclinic, and triclinic. 

The cubic system, for which a = b = c and 𝛼 = 𝛽 = 𝛾 = 90°, has the greatest degree of symmetry.

The least symmetry is displayed by the triclinic system, because a ≠ b ≠ c and 𝛼 ≠ 𝛽 ≠ 𝛾.

From the discussion of metallic crystal structures, it should be apparent that both FCC and BCC structures belong to the 

cubic crystal system, whereas HCP falls within the hexagonal system. The conventional hexagonal unit cell really consists of 

three parallelepipeds.

It is important to note that many of the principles and concepts addressed here also apply to crystalline ceramic and 

polymeric systems. For example, crystal structures are most often described in terms of unit cells, which are normally more 

complex than those for FCC, BCC, and HCP. 

In addition, for these other systems, we are often interested in determining atomic packing factors and densities, using 

modified forms of the Equations presented earlier. Furthermore, according to unit cell geometry, crystal structures of these 

other material types are grouped within the seven crystal systems. 19



CRYSTAL SYSTEMS
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CRYSTAL SYSTEMS
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CRYSTAL SYSTEMS
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CRYSTAL SYSTEMS
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CRYSTAL SYSTEMS
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CRYSTAL SYSTEMS

Discussion Question:

What is the difference between 

crystal structure and crystal 

system?

A crystal structure is made of 

atoms. A crystal lattice is made of 

points. A crystal system is a set of 

axes. In other words, the structure 

is an ordered array of atoms, ions 

or molecules.
25



CRYSTAL SYSTEMS

Discussion Question:

Crystal Structure is obtained by attaching atoms, groups of atoms or molecules. 

This structure occurs from the intrinsic nature of the constituent particles to 

produce symmetric patterns. 

A small group of a repeating pattern of the atomic structure is known as the unit 

cell of the structure.

A unit cell is the building block of the crystal structure and it also explains in 

detail the entire crystal structure and symmetry with the atom positions along 

with its principal axes. The length, edges of principal axes and the angle 

between the unit cells are called lattice constants or lattice parameters.
26
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CRYSTAL SYSTEMS

What is the difference between crystal structure and crystal system?

Crystal Structure: A crystal structure can be described in terms of its lattice and motif. We say, loosely:

Crystal = lattice + motif

A lattice is a periodic arrangement of points. It is a geometrical construct that gives the periodicity of the crystal, or in other 

words, tells us how the atoms are repeated. It is still not a crystal as there are no atoms. Atoms come from motif. Motif (or 

basis) is an atom or a group of atoms associated with each lattice point.

Crystal System: A crystal structure is classified into 32 crystal classes based on its point group symmetry (Rotation or Roto-

reflection axes). These 32 point groups are then classified into 7 crystal systems based on certain characteristic symmetry.
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CRYSTAL SYSTEMS

28



CRYSTAL SYSTEMS
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CRYSTAL SYSTEMS
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CRYSTAL SYSTEMS
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CRYSTAL SYSTEMS
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Crystal Structure - Definition, 7 
Types of Crystal Structure with 
Videos (byjus.com)

https://byjus.com/chemistry/crystal-structure/#:~:text=Crystal%20shapes%20in%20a%20trigonal%20system%20include%20three-sided,Agate%2C%20Jasper%2C%20Tiger%E2%80%99s%20Eyes%20and%20more.%20Trigonal%2FPyramidal%20System.
https://byjus.com/chemistry/crystal-structure/#:~:text=Crystal%20shapes%20in%20a%20trigonal%20system%20include%20three-sided,Agate%2C%20Jasper%2C%20Tiger%E2%80%99s%20Eyes%20and%20more.%20Trigonal%2FPyramidal%20System.
https://byjus.com/chemistry/crystal-structure/#:~:text=Crystal%20shapes%20in%20a%20trigonal%20system%20include%20three-sided,Agate%2C%20Jasper%2C%20Tiger%E2%80%99s%20Eyes%20and%20more.%20Trigonal%2FPyramidal%20System.


Crystallographic Points, Directions, and Planes

When dealing with crystalline materials, it often becomes 

necessary to specify a particular point within a unit cell, a 

crystallographic direction, or some crystallographic plane

of atoms. 

Labelling conventions have been established in which three 

numbers or indices are used to designate point locations, 

directions, and planes. 

The basis for determining index values is the unit cell, with a 

right-handed coordinate  system consisting of three (x, y, and 

z) axes situated at one of the corners and coinciding 

with the unit cell edges, as shown. 

For some crystal systems—namely, hexagonal, 

rhombohedral, monoclinic, and triclinic—the three axes are 

not mutually perpendicular, as in the familiar Cartesian 

coordinate scheme.
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Crystallographic Points, Directions, and Planes

POINT COORDINATES

Sometimes it is necessary to specify a lattice position within a unit cell. Lattice position is defined in terms of three lattice 

position coordinates, which are associated with the x, y, and z axes—we have chosen to label these coordinates as Px, Py, and 

Pz. 

Coordinate specifications are possible using three point indices: q, r, and s. These indices are fractional multiples of a, b, and 

c unit cell lengths—that is, q is some fractional length of a along the x axis, r is some fractional length of b along the y axis, 

and similarly for s. 

In other words, lattice position coordinates (i.e., the Ps) are equal to the products 

of their respective point indices and the unit cell edge lengths—viz.

To illustrate, consider the unit cell as shown, the x-y-z coordinate system with its

origin located at a unit cell corner, and the lattice site located at point P. 

Note how the location of P is related to the products of its q, r, and s point indices 

and the unit cell edge lengths
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Crystallographic Points, Directions, and Planes

Example

To locate the point having these coordinates within the unit cell, first use the x 

lattice position coordinate and move from the origin (point M) 0.12 nm units 

along the x axis (to point N), as shown in (b). 

Similarly, using the y lattice position coordinate, proceed 0.46 nm parallel to 

the y axis, from point N to point O. Finally, move from this position 0.20 nm 

units parallel to the z axis to point P (per the z lattice position), as noted again 

in (b). Thus, point P corresponds to the     point indices.
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

CRYSTALLOGRAPHIC DIRECTIONS

A crystallographic direction is defined as a line directed between two points, or a vector.

The following steps are used to determine the three directional indices: A right-handed x-y-z coordinate system is first 

constructed. As a matter of convenience, its origin may be located at a unit cell corner.

1. The coordinates of two points that lie on the direction vector (referenced to the coordinate system) are determined—for 

example, for the vector tail, point 1: x1, y1, and z1; whereas for the vector head, point 2: x2, y2, and z2.

2. Tail point coordinates are subtracted from head point components—that is, x2 − x1, y2 − y1, and z2 − z1.

3. These coordinate differences are then normalized in terms of (i.e., divided by) their respective a, b, and c lattice 

parameters—that is,

which yields a set of three numbers.

5. If necessary, these three numbers are multiplied or divided by a common factor to reduce them to the smallest integer 

values.

6. The three resulting indices, not separated by commas, are enclosed in square brackets, thus: [uvw]. The u, v, and w 

integers correspond to the normalized coordinate differences referenced to the x, y, and z axes, respectively.
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Crystallographic Points, Directions, and Planes

In summary, the u, v, and w indices may be determined using the following equations:

In these expressions, n is the factor that may be required to reduce u, v, and w to integers.

For each of the three axes, there are both positive and negative coordinates. Thus, negative indices are also possible, which 

are represented by a bar over the appropriate index. For example, the [111] direction has a component in the −y direction. 

Also, changing the signs of all indices produces an antiparallel direction; that is, [111] is directly opposite to [111]. If more 

than one direction (or plane) is to be specified for a particular crystal structure, it is imperative for maintaining consistency 

that a positive– negative convention, once established, not be changed.

The [100], [110], and [111] directions are common ones (shown in the unit cell)
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

For some crystal structures, several nonparallel directions with different indices are crystallographically equivalent, 

meaning that the spacing of atoms along each direction is the same. 

For example, in cubic crystals, all the directions represented by the following indices are equivalent: [100], [100], [010], 

[010], [001], and [001]. As a convenience, equivalent directions are grouped together into a family, which is enclosed in 

angle brackets, thus: 〈100〉. 

Furthermore, directions in cubic crystals having the same indices without regard to order or sign—for example, [123] and 

[213]—are equivalent. 

This is, in general, not true for other crystal systems. For example, for crystals of tetragonal symmetry, the [100] and [010] 

directions are equivalent, whereas the [100] and [001] are not.
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Crystallographic Points, Directions, and Planes

Directions in Hexagonal Crystals
A problem arises for crystals having hexagonal symmetry in that some equivalent crystallographic directions do not have the 

same set of indices. 

This situation is addressed using a four-axis, or Miller–Bravais, coordinate system, as shown.

The three a1, a2, and a3 axes are all contained within a single plane (called the basal

plane) and are at 120° angles to one another. The z axis is perpendicular to this basal

plane. Directional indices, which are obtained as described earlier, are denoted by four

indices, as [uvtw]; by convention, the u, v, and t relate to vector coordinate differences

referenced to the respective a1, a2, and a3 axes in the basal plane; the fourth index pertains

to the z axis.
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Crystallographic Points, Directions, and Planes

Conversion from the three-index system to the four-index system as [UVW]→[uvtw]

is accomplished using the following formulas:

Here, uppercase U, V, and W indices are associated with the three-index scheme

(instead of u, v, and w as previously), whereas lowercase u, v, t, and w correlate with

the Miller–Bravais four-index system. 

For example, using these equations, the [010] direction becomes [1210]; furthermore, 

[1210] is also equivalent to the following: [1210], [1210], [1210].

For the hexagonal crystal system, the

[0001], [1100], and [1120] directions.
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Crystallographic Points, Directions, and Planes

Determination of directional indices is carried out using a procedure similar to the

one used for other crystal systems—by the subtraction of vector tail point coordinates

from head point coordinates. 

To simplify the demonstration of this procedure, first determine the U, V, and W indices 

using the three-axis a1–a2–z coordinate system and then convert to the u, v, t, and w indices 

Using:

The designation scheme for the three sets of head and tail coordinates is as follows:

Using this scheme, the U, V, and W hexagonal index equivalents are as follows:

              the parameter n is included to facilitate, if 

necessary, reduction of the U, V, and W to integer values. 46



Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

CRYSTALLOGRAPHIC PLANES

The orientations of planes for a crystal structure are represented in a similar manner. 

Again, the unit cell is the basis, with the three-axis coordinate system as represented.

In all but the hexagonal crystal system, crystallographic planes are specified by three Miller

indices as (hkl). 

Any two planes parallel to each other are equivalent and have identical indices. The procedure used to determine the h, k, 

and l index numbers is as follows:

1. If the plane passes through the selected origin, either another parallel plane must be constructed within the unit cell by an 

appropriate translation, or a new origin must be established at the corner of another unit cell.

2. At this point, the crystallographic plane either intersects or parallels each of the three axes. The coordinate for the 

intersection of the crystallographic plane with each of the axes is determined (referenced to the origin of the coordinate 

system). These intercepts for the x, y, and z axes will be designed by A, B, and C, respectively.
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Crystallographic Points, Directions, and Planes

3. The reciprocals of these numbers are taken. A plane that parallels an axis is considered to have an infinite intercept and 

therefore a zero index.

4. The reciprocals of the intercepts are then normalized in terms of (i.e., multiplied by) their respective a, b, and c lattice 

parameters. That is,

5. If necessary, these three numbers are changed to the set of smallest integers by multiplication or by division by a 

common factor.

6. Finally, the integer indices, not separated by commas, are enclosed within parentheses, thus: (hkl). The h, k, and l 

integers correspond to the normalized intercept reciprocals referenced to the x, y, and z axes, respectively.

In summary, the h, k, and l indices may be determined using the following equations:

In these expressions, n is the factor that may be required to reduce h, k, and l to integers.
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Crystallographic Points, Directions, and Planes

An intercept on the negative side of the origin is indicated by a bar or minus sign positioned over the appropriate index. 

Furthermore, reversing the directions of all indices specifies another plane parallel to, on the opposite side of, and 

equidistant from the origin. Several low-index planes are represented in the figure below. 

An interesting and unique characteristic of cubic crystals is that planes and directions having the same indices are 

perpendicular to one another; however, for other crystal systems there are no simple geometrical relationships between 

planes and directions having the same indices.

Representations of a series each of the (a) (001), (b) (110), and (c) (111) crystallographic planes.
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes

Atomic Arrangements
The atomic arrangement for a crystallographic plane, which is often of interest, depends on the crystal structure. The (110) 

atomic planes for FCC and BCC crystal structures are represented in the figures below, respectively. Reduced-sphere unit 

cells are also included. 

(a) Reduced-sphere FCC unit cell with the (110) plane. (b) Atomic packing of an 

FCC (110) plane.

Corresponding atom positions from (a) are indicated.

(a) Reduced-sphere BCC unit cell with the (110) plane. (b) Atomic packing of a 

BCC (110) plane.

Corresponding atom positions from (a) are indicated.
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Crystallographic Points, Directions, and Planes

Note that the atomic packing is different for each case. The circles represent atoms lying in the crystallographic planes as 

would be obtained from a slice taken through the centres of the full-size hard spheres.

A “family” of planes contains all planes that are crystallographically equivalent— that is, having the same atomic packing; a 

family is designated by indices enclosed in braces—such as {100}. 

For example, in cubic crystals, the (111), (1 1 1), (111), (1 1 1), (111), (1 11), (111), and (111) planes all belong to the {111} 
family. 

However, for tetragonal crystal structures, the {100} family contains only the (100), (100), (010), and (010) planes because 

the (001) and (001) planes are not crystallographically equivalent. 

Also, in the cubic system only, planes having the same indices, irrespective of order and sign,

are equivalent. For example, both (123) and (312) belong to the {123} family.
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Crystallographic Points, Directions, and Planes

Hexagonal Crystals
For crystals having hexagonal symmetry, it is desirable that equivalent planes have the same indices; 

as with directions, this is accomplished by the Miller–Bravais system. 

This convention leads to the four-index (hkil) scheme, which is favoured in most instances because it 

more clearly identifies the orientation of a plane in a hexagonal crystal. 

There is some redundancy in that i is determined by the sum of h and k through

i = −(h + k) 

Otherwise, the three h, k, and l indices are identical for both indexing systems.

Several of the common planes that are 

found for crystals having hexagonal 

symmetry. The (0001), (1011), and 

(1010) planes.
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Crystallographic Points, Directions, and Planes

Example
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Crystallographic Points, Directions, and Planes
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LINEAR AND PLANAR DENSITIES

Linear and planar densities are important considerations relative to the process of slip— that is, the mechanism by which 

metals plastically deform. Slip occurs on the most densely packed crystallographic planes and, in those planes, along 

directions having the greatest atomic packing.

Directional equivalency is related to linear density in the sense that, for a particular material, equivalent directions have 

identical linear densities. 

The corresponding parameter for crystallographic planes is planar density, and planes having the same planar density values 

are also equivalent.

Linear density LD (nm−1, m−1) is defined as the number of atoms per unit length whose centres lie on the direction vector for 

a specific crystallographic direction:

The linear density of the [110] direction for the FCC crystal structure: 

The five atoms that lie on the bottom face of this unit cell are shown.

The [110] direction vector passes from the centre of atom X, through 

atom Y, and finally to the centre of atom Z. 
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LINEAR AND PLANAR DENSITIES

With regard to the numbers  of atoms, it is necessary to take into account 

the sharing of atoms with adjacent unit cells.

Each of the X and Z corner atoms is also shared with one other adjacent 

unit cell along this [110] direction (i.e., one-half of each of these atoms 

belongs to the unit cell being considered), whereas atom Y lies entirely 

within the unit cell. 

Thus, there is an equivalence of two atoms along the [110] direction 

vector in the unit cell. 

Now, the direction vector length is equal to 4R; thus, the [110] linear density for FCC is:

Planar density PD (nm−2, m−2) is taken as the number of atoms per unit area that are centred on a particular crystallographic 

plane:
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LINEAR AND PLANAR DENSITIES

For example, consider the section of a (110) plane within an FCC unit cell:

Six atoms have centres that lie on this plane, only one-quarter of each of atoms 

A, C, D, and F and one-half of atoms B and E, for a total equivalence of just 2 

atoms, are on that plane. 

The area of this rectangular section is equal to the product of its length and width: 

the length (horizontal dimension) is equal to 4R, whereas the width (vertical dimension) is equal to 2R√2 

because it corresponds to the FCC unit cell edge length. 

Thus, the area of this planar region is (4R)(2R√2) = 8R2√2, and the planar density is determined as follows:
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CLOSE-PACKED CRYSTAL STRUCTURES

Recall: FCC and HCP structures have atomic packing factors of 0.74, which is the most efficient packing of equal-size 

spheres or atoms. 

These two crystal structures may be described in terms of close-packed planes of atoms (i.e., planes having a maximum 

atom or sphere-packing density); a portion of one such plane is illustrated. 

Both crystal structures may be generated by the stacking of these close-packed 

planes on top of one another; the difference between the two structures lies in the 

stacking sequence.

Let the centres of all the atoms in one close-packed plane be labelled A. 

Associated with this plane are two sets of equivalent triangular depressions formed by three adjacent atoms, into which the 

next close-packed plane of atoms may rest. 

Those having the triangle vertex pointing up are arbitrarily designated as B positions, whereas the remaining depressions are 

those with the down vertices, which are marked C.
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CLOSE-PACKED CRYSTAL STRUCTURES

A second close-packed plane may be positioned with the centres of its atoms over either B or C sites; at this point, both are 

equivalent. 

Suppose that the B positions are arbitrarily chosen; the stacking 

sequence is termed AB.

The real distinction between FCC and HCP lies in where the third 

close-packed layer is positioned. 

For HCP, the centres of this layer are aligned directly above the 

original A positions. 

This stacking sequence, ABABAB . . . , is repeated over and over. Of course, the 

ACACAC . . . arrangement would be equivalent. 

These close-packed planes for HCP are (0001)-type planes,  and the correspondence 

between this and the unit cell  representation is shown.
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CLOSE-PACKED CRYSTAL STRUCTURES

For the face-centred crystal structure, the centres of the third plane are situated

over the C sites of the first plane. This yields an ABCABCABC . . . stacking sequence; 

that is, the atomic alignment repeats every third plane. 

It is more difficult to correlate the stacking of close-packed planes to the FCC unit cell. 

However, this relationship is demonstrated. These planes are of the (111) type; an

FCC unit cell is outlined on the upper left-hand front face of to provide

perspective. 
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Crystalline and Noncrystalline Materials

SINGLE CRYSTALS
For a crystalline solid, when the periodic and repeated arrangement of atoms is perfect or 

extends throughout the entirety of the specimen without interruption, the result is a 

single crystal. 

All unit cells interlock in the same way and have the same orientation.

Single crystals exist in nature, but they can also be produced artificially. 

They are ordinarily difficult to grow because the environment must be carefully controlled.

If the extremities of a single crystal are permitted to grow without any external constraint, 

the crystal assumes a regular geometric shape having flat faces, as with some of the 

gemstones; the shape is indicative of the crystal structure. 

Within the past few years, single crystals have become extremely important in many 

modern technologies, in particular electronic microcircuits, which employ single crystals 

of silicon and other semiconductors.

Photograph of a garnet single crystal that 
was found in Tongbei, Fujian Province, China.
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POLYCRYSTALLINE MATERIALS
Most crystalline solids are composed of a collection of many small crystals or grains; such materials are termed 

polycrystalline. 

Various stages in the solidification of a polycrystalline specimen are represented schematically below. 

Initially, small crystals or nuclei form at various positions. These have random crystallographic orientations, as indicated by 

the square grids. 

Schematic diagrams of the various stages in the solidification of a polycrystalline material; the square grids depict unit cells. (a) Small crystallite nuclei. (b) 

Growth of the crystallites; the obstruction of some grains that are adjacent to one another is also shown. (c) Upon completion of solidification, grains having 

irregular shapes have formed. (d) The grain structure as it would appear under the microscope; dark lines are the grain boundaries.
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Crystalline and Noncrystalline Materials

The small grains grow by the successive addition from the surrounding liquid of atoms to the structure of each. 

The extremities of adjacent grains impinge on one another as the solidification process approaches completion. 

The crystallographic orientation varies from grain to grain. Also, there exists some atomic mismatch within the region

where two grains meet; this area, called a grain boundary.

Schematic diagrams of the various stages in the solidification of a polycrystalline material; the square grids depict unit cells. (a) Small crystallite nuclei. (b) 

Growth of the crystallites; the obstruction of some grains that are adjacent to one another is also shown. (c) Upon completion of solidification, grains having 

irregular shapes have formed. (d) The grain structure as it would appear under the microscope; dark lines are the grain boundaries.
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Crystalline and Noncrystalline Materials

ANISOTROPY
The physical properties of single crystals of some substances depend on the crystallographic direction in which 

measurements are taken. 

For example, the elastic modulus, the electrical conductivity, and the index of refraction may have different values in the 

[100] and [111] directions. This directionality of properties is termed anisotropy, and it is associated with the variance of 

atomic or ionic spacing with crystallographic direction.

Substances in which measured properties are independent of the direction of measurement are isotropic. 

The extent and magnitude of anisotropic effects in crystalline materials are functions of the symmetry of the crystal 

structure; the degree of anisotropy increases with decreasing structural symmetry—triclinic structures normally are highly

anisotropic. 

For many polycrystalline materials, the crystallographic 

orientations of the individual grains are totally random. 

Under these circumstances, even though each grain may be 

anisotropic, a specimen composed of the grain aggregate 

behaves isotropically. 71



Crystalline and Noncrystalline Materials

Also, the magnitude of a measured property represents some average of the directional values. Sometimes the grains in 

polycrystalline materials have a preferential crystallographic orientation, in which case the material is said to have a 

“texture.”

The magnetic properties of some iron alloys used in transformer cores are anisotropic—that is, grains (or single crystals) 

magnetize in a 〈100〉-type direction easier than any other crystallographic direction. 

Energy losses in transformer cores are minimized by utilizing polycrystalline sheets of these alloys into which have been

introduced a magnetic texture: most of the grains in each sheet have a 〈100〉-type crystallographic direction that is aligned 

(or almost aligned) in the same direction, which is oriented parallel to the direction of the applied magnetic field. 
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X-RAY DIFFRACTION: DETERMINATION OF CRYSTAL STRUCTURES

Historically, much of our understanding regarding the atomic and molecular arrangements in solids has resulted from x-ray 

diffraction investigations; furthermore, x-rays are still very important in developing new materials. 

The Diffraction Phenomenon
Diffraction occurs when a wave encounters a series of regularly spaced obstacles that 

(1) are capable of scattering the wave, and 

(2) have spacings that are comparable in magnitude to the wavelength. 

Furthermore, diffraction is a consequence of specific phase relationships established between two or more waves that have 

been scattered by the obstacles.

Consider waves 1 and 2, which have the same 

wavelength (𝜆) and are in phase at point O–Oʹ. 

Now let us suppose that both waves are scattered in 

such a way that they traverse different paths.
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The phase relationship between the scattered waves, which depends upon the difference in path length, is important.

One possibility results when this path length difference 

is an integral number of wavelengths. 

These scattered waves (now labelled 1ʹ and 2ʹ) are still 

in phase. 

They are said to mutually reinforce (or constructively 

Interfere with) one another; when amplitudes are added, 

the wave shown on the right side of the figure results. 

This is a manifestation of diffraction, and we refer to a diffracted beam as one composed of a large number of scattered 

waves that mutually reinforce one another.
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X-RAY DIFFRACTION: DETERMINATION OF CRYSTAL STRUCTURES

Other phase relationships are possible between scattered waves that will not lead to this mutual reinforcement. 

The other extreme is that demonstrated here, in which 

the path length difference after scattering is some 

Integral number of half-wavelengths. 

The scattered waves are out of phase—that is, 

Corresponding amplitudes cancel or annul one another, 

or destructively  interfere (i.e., the resultant wave has 

zero amplitude), as indicated  on the right side of the 

figure. 

Of course, phase relationships intermediate  between these two extremes exist, resulting in only partial reinforcement.
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X-RAY DIFFRACTION: DETERMINATION OF CRYSTAL STRUCTURES

X-Ray Diffraction and Bragg’s Law (Wulff–Bragg's condition)
X-rays are a form of electromagnetic radiation that have high energies and short wavelengths—wavelengths 

on the order of the atomic spacings for solids. 

When a beam of x-rays impinges on a solid material, a portion of this beam is scattered in all directions by the electrons 

associated with each atom or ion that lies within the beam’s path.

What are the necessary conditions for diffraction of x-rays by a periodic arrangement of atoms.

Consider the two parallel planes of atoms A–Aʹ and B–Bʹ , 
which have the same h, k, and l Miller indices and are 

separated by the interplanar spacing dhkl. 

Now assume that a parallel, monochromatic, and coherent 

(in-phase) beam of x-rays of wavelength 𝜆 is incident on these 

two planes at an angle 𝜃. 
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X-RAY DIFFRACTION: DETERMINATION OF CRYSTAL STRUCTURES

Two rays in this beam, labelled 1 and 2, are scattered by atoms 

P and Q. 

Constructive interference of the scattered rays 1ʹ and 2ʹ occurs 

also at an angle 𝜃 to the planes if the path length difference between

1–P–1ʹ and 2–Q–2ʹ (i.e., SQ + QT) is equal to a whole number, n, 

of wavelengths—that is, the condition for diffraction is:

n is the order of reflection, which may be any integer (1, 2, 3, . . .) consistent with sin 𝜃 not exceeding unity. Thus, we have a 

simple expression relating the x-ray wavelength and interatomic spacing to the angle of the diffracted beam. 

If Bragg’s law is not satisfied, then the interference will be nonconstructive so as to yield a very low-intensity diffracted 

beam. The magnitude of the distance between two adjacent and parallel planes of atoms (i.e., the interplanar spacing dhkl) is 

a function of the Miller indices (h, k, and l) as well as the lattice parameter(s). For example, for crystal structures that have 

cubic symmetry: (a is the lattice parameter “unit cell edge length”).

77
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Bragg’s law is a necessary but not sufficient condition for diffraction by real crystals. It specifies when diffraction will occur 

for unit cells having atoms positioned only at cell corners. 

However, atoms situated at other sites (e.g., face and interior unit cell positions as with FCC and BCC) act as extra 

scattering centres, which can produce out-of-phase scattering at certain Bragg angles. 

The net result is the absence of some diffracted beams that should be present. Specific sets

of crystallographic planes that do not give rise to diffracted beams depend on crystal

structure. 

For the BCC crystal structure, h + k + l must be even if diffraction is to occur, whereas for FCC, h, k, and l must all be either 

odd or even; diffracted beams for all sets of crystallographic planes are present for the simple cubic crystal structure.

These restrictions, called reflection rules, are  summarized:
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Diffraction Techniques
One common diffraction technique employs a powdered or polycrystalline 

specimen consisting of many fine and randomly oriented particles that are 

exposed to monochromatic x-radiation. 

Each powder particle (or grain) is a crystal, and having a large number of 

them with random orientations ensures that some particles are properly 

oriented such that every possible set of crystallographic planes will be 

available for diffraction.

The diffractometer is an apparatus used to determine the angles at which 

Diffraction occurs for powdered specimens; its features are represented 

schematically.

A specimen S in the form of a flat plate is supported so that rotations  about the axis 

labelled O are possible; this axis is perpendicular to the  plane of the page. 

The monochromatic x-ray beam is generated at point T, and the intensities of diffracted 

beams are detected with a counter labelled C in the figure.  The specimen, x-ray source, and 

counter are coplanar
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The counter is mounted on a movable The counter is mounted on a movable 

carriage that may also be rotated about the O axis; its angular position in terms 

of 2𝜃 is marked on a graduated scale. 

Carriage and specimen are mechanically coupled such that a rotation of the 

specimen through  𝜃 is accompanied by a 2𝜃 rotation of the counter; this ensures 

that the incident and  Reflection angles are maintained equal to one another.

Collimators are incorporated within the beam path to produce a well-defined and 

focused beam. Utilization of a filter provides a near-monochromatic beam.

As the counter moves at constant angular velocity, a recorder automatically plots the diffracted beam intensity (monitored by 

the counter) as a function of 2𝜃; 2𝜃 is termed the diffraction angle, which is measured experimentally. 

The figure shows a diffraction pattern  for a 

powdered specimen of lead. 

The high-intensity peaks result when the  Bragg 

diffraction condition is satisfied by  some set of 

crystallographic planes.  

These peaks are plane-indexed in the figure.
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Other powder techniques have been devised in which diffracted beam intensity and

position are recorded on a photographic film instead of being measured by a counter.

One of the primary uses of x-ray diffractometry is for the determination of crystal structure. The unit cell size and geometry 

may be resolved from the angular positions of the diffraction peaks, whereas the arrangement of atoms within the unit cell is 

associated with the relative intensities of these peaks.

X-rays, as well as electron and neutron beams, are also used in other types of material investigations. For example, 

crystallographic orientations of single crystals are possible using x-ray diffraction (or Laue) photographs. 

The figure here was generated using an incident x-ray beam that was directed 

on a magnesium crystal; each spot (with the exception of the darkest one near 

the centre) resulted from an x-ray beam that was diffracted by a specific set of 

crystallographic planes. 

Other uses of x-rays include qualitative and quantitative chemical 

identifications and the determination of residual stresses and crystal size.

81



X-RAY DIFFRACTION: DETERMINATION OF CRYSTAL STRUCTURES

Example
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Example
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NONCRYSTALLINE SOLIDS

It has been mentioned that noncrystalline solids lack a systematic and regular arrangement of atoms over relatively large 

atomic distances. 

Sometimes such materials are also called amorphous (meaning literally “without form”), or supercooled liquids, inasmuch

as their atomic structure resembles that of a liquid.

An amorphous condition may be illustrated by comparison of the crystalline and noncrystalline structures of the ceramic 

compound silicon dioxide (SiO2), which may exist in both states. 

Two-dimensional schemes of the structure of (a) crystalline silicon dioxide and (b) noncrystalline silicon dioxide. 84



NONCRYSTALLINE SOLIDS

Even though each silicon ion bonds to three oxygen ions (and a fourth oxygen ion above the plane) for both states, beyond 

this, the structure is much more disordered and irregular for the noncrystalline structure.

Whether a crystalline or an amorphous solid forms depends on the ease with which a random atomic structure in the liquid 

can transform to an ordered state during solidification. 

Amorphous materials, therefore, are characterized by atomic or molecular structures that are relatively complex and become 

ordered only with some difficulty. 

Furthermore, rapidly cooling through the freezing temperature favours the formation of a noncrystalline solid, because little 

time is allowed for the ordering process.

Metals normally form crystalline solids, but some ceramic materials are crystalline, whereas others—the inorganic glasses—

are amorphous. 

Polymers may be completely noncrystalline or semicrystalline consisting of varying degrees of crystallinity. 
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NONCRYSTALLINE SOLIDS

Even though each silicon ion bonds to three oxygen ions (and a fourth oxygen ion above the plane) for both states, beyond 

this, the structure is much more disordered and irregular for the noncrystalline structure.

Whether a crystalline or an amorphous solid forms depends on the ease with which a random atomic structure in the liquid 

can transform to an ordered state during solidification. 

Amorphous materials, therefore, are characterized by atomic or molecular structures that are relatively complex and become 

ordered only with some difficulty. 

Furthermore, rapidly cooling through the freezing temperature favours the formation of a noncrystalline solid, because little 

time is allowed for the ordering process.

Metals normally form crystalline solids, but some ceramic materials are crystalline, whereas others—the inorganic glasses—

are amorphous. 

Polymers may be completely noncrystalline or semicrystalline consisting of varying degrees of crystallinity. 
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