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FUNDAMENTAL CONCEPTS

Solid materials may be classified according to the
regularity with which atoms or ions are arranged
with respect to one another.

A crystalline material is one in which the atoms are
situated in a repeating or periodic array over large
atomic distances—that is, long-range order exists,
such that upon solidification, the atoms will position
themselves in a repetitive three dimensional pattern,
In which each atom is bonded to its nearest
neighbour atoms.

All metals, many ceramic materials, and certain
polymers form crystalline structures under normal
solidification conditions. For those that do not
crystallize, this long-range atomic order is absent.

Some of the properties of crystalline solids depend
on the crystal structure of the material, the manner in
which atoms, ions, or molecules are spatially
arranged.

There is an extremely large number of different crystal
structures all having long-range atomic order; these
vary from relatively simple structures for metals to
exceedingly complex ones, as displayed by some of the
ceramic and polymeric materials.

When crystalline structures are described, atoms (or
ions) are thought of as being solid spheres having well-
defined diameters.

This is termed the atomic hard-sphere model in which
spheres representing nearest-neighbour atoms touch
one another.

Sometimes the term lattice is used in the context of
crystal structures; in this sense lattice means a three-
dimensional array of points coinciding with atom
positions (or sphere centres).



FUNDAMENTAL CONCEPTS

Hard-sphere unit cell representation
Reduced sphere

Aggregate of many atoms

« The atomic order in crystalline solids indicates that small groups of atoms form a repetitive pattern. Thus, in describing
crystal structures, it is often convenient to subdivide the structure into small repeat entities called unit cells.

» Unit cells for most crystal structures are parallelepipeds or prisms having three sets of parallel faces; one is drawn within
the aggregate of spheres, which in this case happens to be a cube.

» Aunit cell is chosen to represent the symmetry of the crystal structure, wherein all the atom positions in the crystal may
be generated by translations of the unit cell integral distances along each of its edges.



FUNDAMENTAL CONCEPTS

The unit cell is the basic structural unit or building
block of the crystal structure and defines the crystal
structure by virtue of its geometry and the atom
positions within.

Convenience usually dictates that parallelepiped
corners coincide with centres of the hard-sphere
atoms. Furthermore, more than a single unit cell
may be chosen for a particular crystal structure;
however, we generally use the unit cell having the
highest level of geometrical symmetry.




METALLIC CRYSTAL STRUCTURES

The atomic bonding in this group of materials is metallic and thus nondirectional in nature.

Consequently, there are minimal restrictions as to the number and position of nearest-neighbour atoms; this leads to
relatively large numbers of nearest neighbours and dense atomic packings for most metallic crystal structures.

Also, for metals, when we use the hard-sphere model for the crystal structure, each sphere represents an ion
core.

Three relatively simple crystal structures are found for most of the common metals: face-centred cubic, bodycentered cubic,
and hexagonal close-packed.

Atomic Radii and Crystal LAtomic Radius® Crystal Atomic

Crystal Structures Metal Structure® (nm) Meral Structure  Radius (nm)

for 16 Metals Aluminum  FCC 0.1431 Molybdenum  BCC 0.1363
Cadmium HCP 0.1490 Nickel FCC 0.1246
Chromimum  BCC 0.1249 Platinum FCC 0.1387
Cobalt HCP 0.1253 Silver FCC 0.1445
Copper FCC 0.1278 Tantalum BCC 0.1430
Gold FCC 0.1442 Titanium (o) HCP 0.1445
Iron («) BCC 0.1241 Tungsten BCC 0.1371

Lead FCC 0.1750 Zinc HCP 0.1332 a




METALLIC CRYSTAL STRUCTURES

The Face-Centred Cubic Crystal Structure

The crystal structure found for many metals has a unit cell of cubic geometry, with atoms located at each of the corners and
the centres of all the cube faces. It is aptly called the face-centred cubic (FCC) crystal structure.

Some of the familiar metals having this crystal structure are copper, aluminium, silver, and gold.

Atom centres are represented by
small circles to provide a better
perspective on atom positions.

‘/l, O ./.
Hard-sphere '

l
model for the ® i @ ®
FCC unit cell i

The aggregate of atoms
represents a section of
crystal consisting of many
FCC unit cells.

These spheres or ion cores touch one another across a face diagonal; the cube edge length a and the atomic radius R are
related through:

a=2R\2



METALLIC CRYSTAL STRUCTURES

The number of atoms associated with each unit cell can also be determined. Depending on an atom’s location, it may be
considered to be shared with adjacent unit cells—that is, only some fraction of the atom is assigned to a specific cell.

For example, for cubic unit cells, an atom completely within the interior “belongs” to that unit cell, one at a cell face is
shared with one other cell, and an atom residing at a corner is shared among eight.

The number of atoms per unit cell, N, can be computed using the following formula:

where

N; = the number of interior atoms
N; = the number of face atoms

N, = the number of corner atoms

For the FCC crystal structure, there are eight corner atoms (N, = 8), six face atoms (N; = 6), and no interior atoms (N; = 0).
Thus, N = 4 (a total of four whole atoms may be assigned to a given unit cell).



METALLIC CRYSTAL STRUCTURES

The cell is composed of the volume of the cube that is generated from the centres of the corner atoms. Corner and face
positions are really equivalent—that is, translation of the cube corner from an original corner atom to the centre of a face
atom will not alter the cell structure.

Two other important characteristics of a crystal structure are the coordination number and the atomic packing factor
(APF).

For metals, each atom has the same number of nearest-neighbour or touching atoms, which is the coordination number. For
facecentered cubics, the coordination number is 12,

Here the front face atom has four corner nearest-neighbour atoms surrounding it, four face atoms that
are in contact from behind, and four other equivalent face atoms residing in the next unit cell to the
front (not shown).

The APF is the sum of the sphere volumes of all atoms within a unit cell (assuming the atomic hard-sphere model) divided
by the unit cell volume:

volume of atoms in a unit cell

APF = :
total unit cell volume



METALLIC CRYSTAL STRUCTURES

Determination of FCC Unit Cell Volume

Calculate the volume of an FCC unit cell in terms of the atomic radius R.

Solution

In the FCC unit cell illustrated, the atoms touch one another
across a face-diagonal, the length of which is 4R. Because the
unit cell is a cube, its volume is @’, where a is the cell edge
length. From the right triangle on the face,

a* + a* = (4R)*
or, solving for a,
a=2R\2
The FCC unit cell volume V- may be computed from

Ve=da'= (2RV2)’ = 16R*V2

omputation of the Atomic Packing Factor for FCC

Solution

Shq|)w that the atomic packing factor for the FCC crystal structure is 0.74.

The APF is defined as the fraction of solid sphere volume in a unit cell, or

APF =

volume of atoms in a unit cell _ Vg
total unit cell volume Ve

Both the total atom and unit cell volumes may be calculated in terms of the atomic radius R.
The volume for a sphere is %n’R{ and because there are four atoms per FCC unit cell, the total

FCC atom (or sphere) volume is 16
(or sphere) V= ()R> = LrR?

The total unit cell volume is Ve = 16R>V/2

vs _ (3)7R°

Therefore, the atomi king factoris APF=—=——7——F=
erefore, the atomic packing factor is 6RO V2

Ve o

0.74



METALLIC CRYSTAL STRUCTURES

The body-Centred Cubic Crystal Structure
Another common metallic crystal structure also has a cubic unit cell with atoms located at all eight corners and a single atom
at the cube centre. This is called a body-centred cubic (BCC) crystal structure.




METALLIC CRYSTAL STRUCTURES

Not all metals have unit cells with cubic symmetry; the final common metallic crystal structure to be discussed has a unit
cell that is hexagonal or

If a and ¢ represent,
respectively, the
short and long unit 4
cell dimensions,
the c/a ratio should
be 1.633; however, @& 1
for some HCP -
metals, this ratio
deviates from the
ideal value.

N=N. + n The coordination number and the atomic packing factor for the
: 2 6 HCP crystal structure are the same as for FCC: 12 and 0.74,

respectively. @



METALLIC CRYSTAL STRUCTURES

Determination of HCP Unit Cell Volume

(a) Calculate the volume of an HCP unit cell in
terms of its a and ¢ lattice parameters.

(b) Now provide an expression for this volume in
terms of the atomic radius, R, and the c lattice
parameter.

Solution

(a) We use the adjacent reduced-sphere HCP unit

cell to solve this problem.

Now, the unit cell volume is just the product
of the base area times the cell height, c. This base ~ *
area is just three times the area of the parallel-
epiped ACD E shown below. (This ACDE paral-
lelepiped is also labeled in the above unit cell.)

The area of ACDE is just the length of CD
times the height BC. But CD is just a, and BC is equal to BC = acos(30°) =

“\a

3a*y/3
2

- av3
Thus, the base area is just AREA = (3)(CD)(BC) = (3)(9)( > ) =

3a
Again, the unit cell volume V. is just the product of the AREA and ¢; thus, V.= AREA(c) = (

(b) For this portion of the problem, all we need do is realize that the lattice parameter a is
related to the atomic radius R as

a=2R
Now making this substitution for @ in Equation 3.7a gives
3(2R)%cV/3
c 2
= 6R’c\3



METALLIC CRYSTAL STRUCTURES

DENSITY COMPUTATIONS
A knowledge of the crystal structure of a metallic solid permits computation of its theoretical density p through the

relationship:

_ nA
VCJMA

o
where
n = number of atoms associated with each unit cell, A = atomic weight
V¢ = volume of the unit cell. N, = Avogadro’s number (6.022 x 1022 atoms/mol)

Theoretical Density Computation for Copper

Copper has an atomic radius of 0.128 nm, an FCC crystal structure, and an atomic weight of
63.5 g/mol. Compute its theoretical density, and compare the answer with its measured density.



METALLIC CRYSTAL STRUCTURES

DENSITY COMPUTATIONS
A knowledge of the crystal structure of a metallic solid permits computation of its theoretical density p through the

relationship:

_ nA
VeNa

o
where
n = number of atoms associated with each unit cell, A = atomic weight
V¢ = volume of the unit cell. N, = Avogadro’s number (6.022 x 1022 atoms/mol)

Theoretical Density Computation for Copper

Copper has an atomic radius of 0.128 nm, an FCC crystal structure, and an atomic weight of
63.5 g/mol. Compute its theoretical density, and compare the answer with its measured density.

Solution

Because the crystal structure is FCC, n, the number of atoms per unit cell. is 4.
Furthermore, the atomic weight A, is given as 63.5 g/mol.
The unit cell volume V- for FCC is 16R*y/2, where R, the atomic radius, is 0.128 nm.

Substitution yields
NAcy NAcy

VeNA — (16R*Y/2)N,

(4 atoms/unit cell)(63.5 g/mol)
[16v2(1.28 X 1078 cm)*/unit cell](6.022 X 10% atoms/mol)
= 8.89 g/cm’

Pcu =

The literature value for the density of copper is 8.94 g/cm?®, which is in very close agreement
with the foregoing result.



METALLIC CRYSTAL STRUCTURES

POLYMORPHISM AND ALLOTROPY

Some metals, as well as nonmetals, may have more than one crystal
structure, a phenomenon known as pelymeorphism.
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METALLIC CRYSTAL STRUCTURES

When found in elemental solids, the condition is often termed allotropy. The prevailing crystal structure depends on both
the temperature and the external pressure.

One familiar example is found in carbon: graphite is the stable polymorph at ambient conditions, whereas diamond is
formed at extremely high pressures.

Also, pure iron has a BCC crystal structure at room temperature, which changes to FCC iron at 912°C (1674°F).

Most often a modification of the density and other physical properties accompanies a polymorphic transformation.

A weak bond between layers




CRYSTAL SYSTEMS

Because there are many different possible crystal structures, it is sometimes convenient to divide them into groups according
to unit cell configurations and/or atomic arrangements.

One such scheme is based on the unit cell geometry, that is, the shape of the appropriate unit cell parallelepiped without
regard to the atomic positions in the cell.

Within this framework, an x-y-z coordinate system is established with its origin at one
of the unit cell corners; each of the x, y, and z axes coincides with one of the three
parallelepiped edges that extend from this corner, as illustrated.

The unit cell geometry is completely defined in terms of six parameters
(lattice parameters of a crystal structure): the three edge lengths a, b, and ¢, and
the three interaxial angles «, £, and y.




CRYSTAL SYSTEMS

On this basis there are seven different possible combinations of a, b, and ¢ and «, 8, and y, each of
which represents a distinct crystal system.

These seven crystal systems are cubic, tetragonal, hexagonal, orthorhombic, rhombohedral,
monoclinic, and triclinic.

The cubic system, for whicha=b=cand a = f =y =90°, has the greatest degree of symmetry.

The least symmetry is displayed by the triclinic system, becauseazb#cand a = #y.

From the discussion of metallic crystal structures, it should be apparent that both FCC and BCC structures belong to the
cubic crystal system, whereas HCP falls within the hexagonal system. The conventional hexagonal unit cell really consists of
three parallelepipeds.

It is important to note that many of the principles and concepts addressed here also apply to crystalline ceramic and
polymeric systems. For example, crystal structures are most often described in terms of unit cells, which are normally more
complex than those for FCC, BCC, and HCP.

In addition, for these other systems, we are often interested in determining atomic packing factors and densities, using
modified forms of the Equations presented earlier. Furthermore, according to unit cell geometry, crystal structures of these
other material types are grouped within the seven crystal systems. @



CRYSTAL SYSTEMS
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CRYSTAL SYSTEMS

Crystal Structures - Monoclinic /=
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CRYSTAL SYSTEMS

Simple Body-Centered



CRYSTAL SYSTEMS

a

Simple End Body Face
Face-Centered Centered Centered



CRYSTAL SYSTEMS

Crystal Structures - Other Shapes

"&b

Rhombohedral Hexagonal Triclinic



CRYSTAL SYSTEMS

Discussion Question:

What is the difference between
crystal structure and crystal
system?

A crystal structure is made of
atoms. A crystal lattice is made of
points. A crystal system is a set of
axes. In other words, the structure
IS an ordered array of atoms, ions
or molecules.

seven crystal system

1
.

Edges and angles Cubic
a=b=c
a=pB=y=90°
3/
B/ |f;
Monoclinic Hexagonal
azb#c a=b#c
a=y=90"=f3 a=p=90%vy=120°

B/
/

Tetragonal
a=b#c

a=pB=y=90°

\B

Rhombohedral
a=b=c

a=B=vy=90°

i

Orthorhombic
azb#c
a=pR=vy=90°

\B

Triclinic
azb#c
o= B#y=90°



CRYSTAL SYSTEMS

Discussion Question:

Crystal Structure is obtained by attaching atoms, groups of atoms or molecules.
This structure occurs from the intrinsic nature of the constituent particles to

produce symmetric patterns.

A small group of a repeating pattern of the atomic structure is known as the unit
cell of the structure.

A unit cell 1s the building block of the crystal structure and it also explains in
detail the entire crystal structure and symmetry with the atom positions along
with its principal axes. The length, edges of principal axes and the angle
between the unit cells are called lattice constants or lattice parameters.



https://byjus.com/chemistry/bcc-fcc-primitive-cubic-unit-cell/

CRYSTAL SYSTEMS

What is the difference between crystal structure and crystal system?

Crystal Structure: A crystal structure can be described in terms of its lattice and motif. We say, loosely:
Crystal = lattice + motif

A lattice is a periodic arrangement of points. It is a geometrical construct that gives the periodicity of the crystal, or in other
words, tells us how the atoms are repeated. It is still not a crystal as there are no atoms. Atoms come from motif. Motif (or
basis) is an atom or a group of atoms associated with each lattice point.

Crystal System: A crystal structure is classified into 32 crystal classes based on its point group symmetry (Rotation or Roto-
reflection axes). These 32 point groups are then classified into 7 crystal systems based on certain characteristic symmetry.




CRYSTAL SYSTEMS

Axial Unit
Crystal System Relationships Interaxial Angles Cell Geometry
Cubic a=Db=c a=p=y=90°
a a
a
LA
T
R
Hexagonal a=b#c a = =90°y=120° “r |
I [
0T
PN P




CRYSTAL SYSTEMS

Axial Unit
Crystal System Relationships Interaxial Angles Cell Geometry
Tetragonal a=b#c a=p=y=90° .
a
a
7
Rhombohedral a=b=c a=p=y#90°

(Trigonal)
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Axial Unit
Crystal System Relationships Interaxial Angles Cell Geometry
Orthorhombic a#Fb#c a=p=y=90° .
a
b
Monoclinic a*b#c a=y=90°#p
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Axial Unit
Crystal System Relationships Interaxial Angles Cell Geometry

Triclinic a#b#c a#FpFy#F90°




CRYSTAL SYSTEMS

Crystal Unit cell Essential Example of everyday object Mineral
system symmetry with essential symmetry example
i ath#c ¢ a packet of plagioclase
triclinic atpiy % none :ns&vgl:‘:ﬁm):shed % feldspar, kyanite
directions
gypsum.
a partially lotite mica,
hed muscovite mica,
monoclinic ~ 27B#¢C € ane two-fold ?ﬁgﬁiﬁ bg,.; cover, orthoclase feldspar,
a=y=90"#f g axis flattened to one hornblende
a side {amphibole),
augite (pyroxene),
talc
three two-fold )
othorhombic 2%8%¢ ¢ axes (at 90°  a matchbox barite, topaz,
ag=f=y=90 to each other) olivine, andalusite
a
a=b#c e one four-fold . <\ugar cubes ite. zi
b a=f=y=90° axis stuck together chalcopyrite, zircon
galena, halite, pyrite,
b four three-fold fluorite, garnet,
. a=b=¢ a diamond, sphalerite,
cubic a=f=y=90° axes (through @ sugar cube magnetite, silver,
a COMmers) gold
=h= calcite, tourmaline,
trigonal 132'0‘51 aczﬁz, £90° one three-fold  a triangular hematite, corundum
¥ axis prism (e.g. ruby, sapphire)
ash#c graplh{ite. apatite, ”
- f=0an° G one six-fold unsharpened eryl (e.g. emerald,
hexagond 'i:-f = :132(?0 3 axis pencil P ’@ aquamarine)

Crystal Structure - Definition, 7
Types of Crystal Structure with
Videos (byjus.com)



https://byjus.com/chemistry/crystal-structure/#:~:text=Crystal%20shapes%20in%20a%20trigonal%20system%20include%20three-sided,Agate%2C%20Jasper%2C%20Tiger%E2%80%99s%20Eyes%20and%20more.%20Trigonal%2FPyramidal%20System.
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https://byjus.com/chemistry/crystal-structure/#:~:text=Crystal%20shapes%20in%20a%20trigonal%20system%20include%20three-sided,Agate%2C%20Jasper%2C%20Tiger%E2%80%99s%20Eyes%20and%20more.%20Trigonal%2FPyramidal%20System.

Crystallographic Points, Directions, and Planes

. . . - . Crvstall hic Direction: d Plane:
When dealing with crystalline materials, it often becomes e s At e
necessary to Specify a particu|ar point within a unit cell, a we need a way to identify directions and planes of atoms. Why?
crystallographic direction, or some CrySta”OgraphiC plane e Deformation under loading (s/ip) occurs on certain crystalline planes
of atoms. and 1n certain crystallographic directions.

e Before we can predict how materials fail, we need to know what

Labelling conventions have been established in which three modes of failure are more likely to occur.
numbers or indices are used to designate point locations e Other properties of materials (electrical conductivity,thermal

conductivity, elastic modulus) can vary in a crystal with orientation.

directions, and planes.

The basis for determining index values is the unit cell, with a
right-handed coordinate system consisting of three (X, y, and
Z) axes situated at one of the corners and coinciding

with the unit cell edges, as shown.

For some crystal systems—namely, hexagonal,
rhombohedral, monoclinic, and triclinic—the three axes are
not mutually perpendicular, as in the familiar Cartesian
coordinate scheme.




Crystallographic Points, Directions, and Planes

POINT COORDINATES

Sometimes it is necessary to specify a lattice position within a unit cell. Lattice position is defined in terms of three lattice
position coordinates, which are associated with the X, y, and z axes—we have chosen to label these coordinates as P,, P,, and
P..
Coordinate specifications are possible using three point indices:n@ese indices are fractional multiples of a, b, and
c unit cell lengths—that is, g is some fractional length of a along+he x axis;r is some fractional length of b along the y axis,
and similarly for s.

In other words, lattice position coordinates (i.e., the Ps) are equal to the products
of their respective point indices and the unit cell edge lengths—viz,

To illustrate, consider the unit cell as shown, the x-y-z coordinate system with its
origin located at a unit cell corner, and the lattice site located at point P.

Note how the location of P is related to the products of its g, r, and s point indices
and the unit cell edge lengths




Crystallographic Points, Directions, and Planes

Example "l'l 2 /Z

Location of Point Having Specified Coordinates

For the unit cell shown in the accompanying sketch (a), locate the point having M

: ; A b

.’III” |
b:i‘)(@ y 0.46 nm———=/ f
Q- J ,f
/ |

/
/
/

0.40 nm !
M
//;_ 12 nm/ ™ .y
el N ~70.46 nm
T
x/ x/
a b
Solution @) (®)

From sketch (a), edge lengths for this unit cell are as follows: @ = 0.48 nm, b = 0.46 nm, and

¢ = 0.40 nm. Furthermore, in light of the preceding discussion, the three point indices are

q= % r=1,ands = % We use Equations 3.9a through 3.9¢ to determine lattice position coor-
dinates for this point as follows:

Po=qa \/
_ (l)a — (048 nm) = 0.12 nm ./

4
Py = rb\/
=(1)b =1(0.46 nm) = 0.46 nm
P, =sc

_ (;} = 2 (0.40 nm) = 0.20 nm /

To locate the point having these coordinates within the unit cell, first use the x
lattice position coordinate and move from the origin (point M) 0.12 nm units
along the x axis (to point N), as shown in (b).

Similarly, using the y lattice position coordinate, proceed 0.46 nm parallel to
the y axis, from point N to point O. Finally, move from this position 0.20 nm
units parallel to the z axis to point P (per the z lattice position), as noted again
in (b). Thus, point P corresponds to the 13 point indices.



Crystallographic Points, Directions, and Planes

Example
Specification of Point Indices
Specify indices for all numbered points of the unit cell in the illustration.

Solution

For this unit cell, lattice points are located at all eight corners with a single point at the center
position.

Point 1 is located at the origin of the coordinate system, and,
therefore, its lattice position coordinates referenced to the x, y,
and z axes are Oa, 0b, and Oc, respectively.

= qa FVd Thus we determine values for the ¢, r, and s indices as follows:
Py=rb g=1 r=0 s=0
P, =s5c=

Hence, point 2is 1 0 0.
Solving the above three expressi or values of the ¢, r, and s This same procedure is carried out for the remaining seven points in the unit cell. Point
indices leads to indices for all nine points are listed in the following table.

Oa
q=—,= 0 / Point Number /q ) M)
0b 5%

Therefore this is the 0 0 0 point.
Because point number 2 lies one unit cell edge length along the x axis, its lattice position

1
2
3
4
5
6
coordinates referenced to the x, y, and z axes are a, 0b, and Oc, and 7
8
9

{E_OWQ__
,_.‘ I == T e B S T P e S
u—-' —_— e e =D D D

P.=qa=a

P,=rb=0b @

P.=5s5c=0c

Z




Crystallographic Points, Directions, and Planes e
1N
CRYSTALLOGRAPHIC DIRECTIONS y \s
A crystallographi defined as a line directed between two points, or & o~ ) O

The following steps are used to determine the three directional indices: A right-handed x-y-z coordinate system is first

constructed. As a matter of convenience, its origin may be located at a unit cell corner.

1. The coordinates of two points that lie on the direction vector (referenced to the coordinate system) are determined—for
example, for the vector tail, point 1: x,, y,, and z,; whereas for the vector head, point 2: x,, y,, and z,.

2. Tail point coordinates are subtracted from head point components—that is, X, = X, ¥, = Y, and z, - z;.

3. These coordinate differences are then normalized in terms of (i.e., divided by) their respective a, b, and c lattice

parameters—that is, / ’_-)) —
Q)/ ( 62)

which yields a set of three numbers.

5. If necessary, these three numbers are \ul—t@d or ﬁv@ by icommon faator to reduce them to thﬁﬁalleét integer
N

values. o

6. The three resulting indices, not separated by commas, are enclosed in square brackets, thus: [uvw]. 7V, and w
integers correspond to the normalized coordinate Tifferences referenced to the X, y, and z axes, respectively.




Crystallographic Points, Directions, and Planes

In summary, the u, v, and w indices may be determined using the following equations:

In these expressions, n is the factor that may be required to reduce u, v, and w to integers.

For each of the three axes, there are both positive and negative coordinates. Thus, negative indices are also possible, which
are represented by a bar over the appropriate index. For example, the [111] direction has a component in the -y direction.

Also, changing the signs of all indices produces an antiparallel direction; that is, [111_] Is directly opposite to [1_1'1]. If more
than one direction (or plane) is to be specified for a particular crystal structure, it is imperative for maintaining consistency
that a positive— negative convention, once established, not be changed.

The [100], [110], and [111] directions are common ones (shown in the unit cell)




Crystallographic Points, Directions, and Planes

Example

Determination of Directional Indices

Determine the indices for the direction shown in
the accompanying figure.

Solution

It is first necessary to take note of the vector tail
and head coordinates. From the illustration, tail
coordinates are as follows:

X, =a y; =0b Z, = 0c

For the head coordinates,

X, = 0a V., =D
Now taking point coordinate differences,

X, —Xx;=0a—a=—a
Y=y =b—0b=b

zz—zlzc/Z—Ocz@



Crystallographic Points, Directions, and Planes

Example

v (57 d@)@ hk)

And, finally enclosure of the —2, 2, and 1 indices in brackets leads to [521] as the direction
designation.
This procedure is summarized as follows:

X y Z
Head coordinates (x,, v, 25,) Oa b c/2
Tail coordinates (x;, v, 21.) a 0b Oc
Coordinate differences —a b cl2
Calculated values of u, v, and w u= -2 Vv = w=1

Enclosure [221]
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Example

Construction of a Specified Crystallographic Direction

. z
Within the following unit cell draw a [110] direction with its tail f
located at the origin of the coordinate system, point O.

Solution

This problem is solved by reversing the procedure of the preceding Z\ )
example. For this [110] direction,

u=1

v=-—1

w=20

Because the tail of the direction vector is positioned at the origin, its coordinates are as
follows:

x; = 0a
y; = 0b
7= Oc
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Example

X, =ua+ x;=(1)(a) +0a = a
y=vb+y, =(-1)(b)+0b=-b
Z,=wc+ 7, = (0)(c) + 0c = 0c

The construction process for this direction vec-
tor is shown in the following figure.

Because the tail of the vector is positioned i
at the origin, we start at the point labeled O 7
and then move in a stepwise manner to locate |
the vector head. Because the x head coordinate
(x,) is a, we proceed from point O, a units along
the x axis to point Q. From point Q, we move b
units parallel to the —y axis to point P, because
the y head coordinate (y,) is —b. There is no £
component to the vector inasmuch as the 7 head
coordinate (z,) is Oc. Finally, the vector corre-
sponding to this [110] direction is constructed by
drawing a line from point O to point P, as noted
in the illustration.
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For some crystal structures, several nonparallel directions with different indices are crystallographically equivalent,
meaning that the spacing of atoms along each direction is the same.

For example, inrystals, all the directions represented by the following indices are equivalent: [100], HOO], [010],
[010], [001], and [001]. As a convenience, equivalent directions are grouped together into a family, which is enclosed in
angle brackets, thus({100Y;

@more, directions in cubic crystals having the same indices without regard to order or sign—for exampl and

[213]-)are equivalent.

This is, in general, not true for other crystal systems. For example, for crystals of tetragonal symmetry, the [100] and [010]
directions are equivalent, whereas the [100] and [001] are not.
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Directions in Hexagonal Crystals
A problem arises for crystals having hexagonal symmetry in that some equivalent crystallographic directions do not have the
same set of indices.

This situation is addressed using a four-axis, or Miller—Bravais, coordinate system, as shown. O

The three a,, a,, and a, axes are all contained within a single plane (called the basal '
plane) and are at 120° angles to one another. The z axis is perpendicular to this basal |
ﬁﬁﬁ. Directional indices, which are obtained as described earlier, are denoted by four |
indices, aby convention, the u, v, and t relate to vector coordinate differences :
referenced to the respective a,, a,, and a, axes in the basal plane; the fourth index pertains Vo
to the z axis. a3 —

AT

(Ll

120°
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Conversion from the three-index system to the four-index system as [UVW]- [uvtw]

is accomplished using the following formulas: — | :
| | | |
1 1 |
u=—-RU-V) v=-R2V-U) t=—(u+tv) w=W |
R/ R - | :
| | {12
Here, uppercase U, V, and W indices are associated with the three-index scheme : L/
(instead of u, v, and w as previously), whereas lowercase u, v, t, and w correlate with F—1"TL~
the Miller—Bravais four-index system. ) \J Lo / 120°T
S (\t“-" \’x
For example, using these equations, the [010] direction becomes [121}2)_ ; furthermore, ~
[1210] is also equivalent to the following: [1210], [1210], [1210]. 2 1
[0001] |
T
~_ |/
For the hexagonal crystal system, the i | a,
[0001], [1100], and [1120] directions. |
T/ ™~ _
as <k |- £~ —[1120]
3= \ N

=

\ a,
1700] (s )
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Determination of directional indices is carried out using a procedure similar to the
one used for other crystal systems—Dby the subtraction of vector tail point coordinates |
from head point coordinates. |

To simplify the demonstration of this procedure, first determine the U, V, and W indices
using the three-axis a,—a,—z coordinate system and then convert to the u, v, t, and w indices
Using: 1 1

u=:j(2U— V) v::j(ZV— Uy t=—(u+v) w=Ww

|
|
|
!
|
=T
/ 120°]
The designation scheme for the three sets of head and tail coordinates is as follows: \’_ﬁ&\

Head Tail aq
Axis Coordinate Coordinate
a a’l a
a, as a,
- - -1
’e re ¢

Using this scheme, the U, V, and W hexagonal index equivalents are as follows:

" !
ay — d ay — ab

B 7" =7’ . . .
U=n p V=n p W= n( : ) the parameter n is included to facilitate, if

necessary, reduction of the U, V, and W to integer values. @




Crystallographic Points, Directions, and Planes

Example

Determination of Directional Indices for a Hexagonal Unit Cell

For the direction shown in the accompanying figure, do the following:

(a) Determine the directional indices referenced to the three-axis coordinate system of
(b) Convert these indices into an index set referenced to the four-axis scheme

Solution Z

The first thing we need to do is determine U, V. and

W indices for the vector referenced to the three-axis
scheme represented in the sketch;

Because the vector passes through the origin, a; = a; = Oa
and 7z’ = Oc. _ ! I —
Furthermore, from the sketch, coordinates for the vector
head are as follows:

c
al =0a a5 =—a "=

2

Because the denominator in z” is 2, we assume that
n = 2. Therefore,

" o !/0_0 \/
u=n("T) ) -0
a a
(375 w29 ) 1
a a C C

This direction is represented by enclosing the above indices in brackets—namely, [051].
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Example
For this [021] direction U=0 Vv=-2 W=1
and
1 1 2 1 1 4
u=QU-V)=[2)0) - (-2)] =5 v=50QV-0)=1[Q)(-2) -0 =—
(2 4) 2
fr=—(u+v)=—\z—=) == w=W=1
I D D

Multiplication of the preceding indices by 3 reduces them to the lowest set, which yields values
for u, v, t,and w of 2, —4, 2, and 3, respectively. Hence, the direction vector shown in the figure

is [2423].
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CRYSTALLOGRAPHIC PLANES <

The orientations of planes for a crystal structure are represented in a similar manner.
Again, the unit cell is the basis, with the three-axis coordinate system as represented.

What are Miller indices?

Miller indices, group of three numbers that indicates the orientation of a plane or set
of parallel planes of atoms in a crystal. x

Any two planes parallel to each other are equivalent and have identical indices. The procedure used to determine the h, k,
and | index numbers is as follows:

1. If the plane passes through the selected origin, either another parallel plane must be constructed within the unit cell by an
appropriate translation, or a new origin must be established at the corner of another unit cell.

2. At this point, the crystallographic plane either intersects or parallels each of the three axes. The coordinate for the
intersection of the crystallographic plane with each of the axes is determined (referenced to the origin of the coordinate
system). These intercepts for the X, y, and z axes will be designed b espectively.
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3. The reciprocals of these numbers are taken. A plane that parallels an axis is considered to have an infinite intercept and
therefore a zero index.

4. The reciprocals of the intercepts are then normalized in terms of (i.e., multiplied by) their respective a, b, and c lattice

parameters. That is, ;

5. If necessary, these three numbers are changed to the set of smallest integers by multiplication or by division by a
common factor.

6. Finally, the integer indices, not separated by commas, are enclosed within parentheses, thus: (hkl). The h, k, and |
integers correspond to the normalized intercept reciprocals referenced to the x, y, and z axes, respectively.

In summary, the h, k, and | indices may be determined using the following equations:

In these expressions, n is the factor that may be required to reduce h, k, and | to integers.
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An intercept on the negative side of the origin is indicated by a bar or minus sign positioned over the appropriate index.
Furthermore, reversing the directions of all indices specifies another plane parallel to, on the opposite side of, and
equidistant from the origin. Several low-index planes are represented in the figure below.

An interesting and unique characteristic of cubic crystals is that planes and directions having the same indices are

perpendicular to one another; however, for other crystal systems there are no simple geometrical relationships between
planes and directions having the same indices.

/‘
)
(001) Plane referenced to
the origin at point O

z
A

z
A (111) Plane referenced to
(110) Plane referenced to the the origin at point O
origin at point O

T

- Other equivalent
_____ (001) planes

Other equivalent’
(111) planes

/ Other equivalent /
x (110) planes s

() ®) (©)

Representations of a series each of the (a) (001), (b) (110), and (c) (111) crystallographic planes.
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Example

Determination of Planar (Miller) Indices

Determine the Miller indices for the plane shown in the accompanying sketch (a).

Solution

Because the plane passes through the selected origif\ O,/a new origin must be chosen at the
corner of an adjacent unit cell. In choosing this new unit cell, we move one unit-cell distance
parallel to the y-axis, as shown in sketch (b). Thus x'-y-z" is the new coordinate axis system
having its origin located at O’. Because this plane is parallel to the x’ axis its intercept is
cog—that is, A = coa. Furthermore, from illustration (b), intersections with the y and 7’ axes
are as follows:
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Example

Determination of Planar (Miller) Indices

Determine the Miller indices for the plane shown in the accompanying sketch (a).

z
A
I‘I

l Jéa
T
(a

)

Solution

Because the plane passes through the selected origin O, a new origin must be chosen at the
corner of an adjacent unit cell. In choosing this new unit cell, we move one unit-cell distance
parallel to the y-axis, as shown in sketch (b). Thus x'-y-z" is the new coordinate axis system
having its origin located at O’. Because this plane is parallel to the x’ axis its intercept is
cog—that is, A = coa. Furthermore, from illustration (b), intersections with the y and 7’ axes
are as follows:

B=-b C=c/2
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And finally, enclosure of the 0, —1, and 2 indices in parentheses leads to (012) as the designation for this direction.
This procedure is summarized as follows:

Intercepts (A, B, C)

Calculated values of &, k, and /
(Equations 3.13a-3.13c)

Enclosure
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Example

Construction ‘of a Specified Crystallographic Plane /;f

Construct @}a plane within the following unit cell. / f_

Solution Q \o\/ L o\ \7

To solve this problem, carry out the procedure used in the preced- |
7L y

ing example in reverse order. For this (101) direction, ,0

(a)

Using these A, k, and [ indices, we want to solve for the values of A, B, and C

Taking the value of n to be 1—because these three Miller indices are all integers—leads to the following:

_na _ (1)(a) _ nb  (1)(b)
A== =« B="=""0 =0
_nc _ ()(c) _

C_z_ =

Intersection with
z axis (value of C)

Intersection with

x axis (value of A) / .
A e —
S

(b)
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Example

!

(101) (110)
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Atomic Arrangements

The atomic arrangement for a crystallographic plane, which is often of interest, depends on the crystal structure. The (110)
atomic planes for FCC and BCC crystal structures are represented in the figures below, respectively. Reduced-sphere unit

cells are also included.
C

A B AN/ B/ C
2 AN (a) Reduced-sphere FCC unit cell with the (110) plane. (b) Atomic packing of an
| o D\ FCC (110) plane.
® :. @ D N EAF
'.,, . Corresponding atom positions from (a) are indicated.
S
D
(a) (b)
5
Q)

(a) Reduced-sphere BCC unit cell with the (110) plane. (b) Atomic packing of a
BCC (110) plane.

Corresponding atom positions from (a) are indicated.

(a) (b)
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Note that the atomic packing is different for each case. The circles represent atoms lying in the crystallographic planes as
would be obtained from a slice taken through the centres of the full-size hard spheres.

A “family” of planes contains all planes that are crystallographically equivalent— that is, having the same atomic packing; a
family is designated by indices enclosed in braces—such as {100}.

— —

For example, in cubic crystals, the (111), (11 1), (ill), (1 II) (11I), (1 11), (111), and (1_1—1) planes all belong to the {111}
family.

However, for tetragonal crystal structures, the {100} family contains only the (100), (IOO), (010), and (010) planes because
the (001) and (001) planes are not crystallographically equivalent.

Also, in the cubic system only, planes having the same indices, irrespective of order and sign,
are equivalent. For example, both (123) and (312) belong to the {123} family.
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Hexagonal Crystals
For crystals having hexagonal symmetry, it is desirable that equivalent planes have the same indices;
as with directions, this is accomplished by the Miller—Bravais system.

This convention leads to the four-index (hkil) scheme, which is favoured in most instances because it
more clearly identifies the orientation of a plane in a hexagonal crystal.

There is some redundancy in that i is determined by the sum of h and k through
i =-(h+Kk)

Otherwise, the three h, k, and | indices are identical for both indexing systems.

4

Several of the common planes that are (1011)

found for crystals having hexagonal
symmetry. The (0001), (1011), and
(1010) planes.

7

N———
|
|

/s

120°

~ a,
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Example

Determination of the Miller-Bravais Indices for a Plane within a
Hexagonal Unit Cell

Determine the Miller—Bravais indices for the plane shown in the z
hexagonal unit cell.

Solution

If we again take A, B, and C to represent intercepts on the respective
ay, a,, and z axes, normalized intercept reciprocals may be written as

a a ¢
A B C
Now, because the three intercepts noted on the above unit cell are
A=a B=-a C=c
values of A, k, and /, may be determined using

h_=%a=(l)(d)=l k=%=w=—l ne1
a —a

_nc_ (M)

===

And, finally, the value of 7 1s found as follows:

i=—(h+k)y=—[1+(-1)]=0

Therefore, the (Akil) indices are (1101).
Notice that the third index is zero (i.e., its reciprocal = ), which means this plane parallels
the a; axis. Inspection of the preceding figure shows that this is indeed the case.
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Summary of Equations Used to Determine Crystallographic Point, Direction, and Planar Indices

Representative Equation’

Equation Symbols

Coordinate Type Index Symbols
Point qrs
Direction
Non-hexagonal [tvw]
Hexagonal [UVW]
[teviw]
Plane
Non-hexagonal (hkl)
Hexagonal (hkil)

P, = lattice position coordinate

x; = tail coordinate—x axis

X, = head coordinate—x axis

ay = tail coordinate—a; axis

a’| = head coordinate—a; axis

A = plane intercept—x axis

In these equations ¢ and n denote, respectively, the x-axis lattice parameter,

and a reduction-to-integer parameter.



LINEAR AND PLANAR DENSITIES

Linear and planar densities are important considerations relative to the process of slip— that is, the mechanism by which
metals plastically deform. Slip occurs on the most densely packed crystallographic planes and, in those planes, along
directions having the greatest atomic packing.

Directional equivalency is related to linear density in the sense that, for a particular material, equivalent directions have
identical linear densities.

The corresponding parameter for crystallographic planes is planar density, and planes having the same planar density values
are also equivalent.

Linear density LD (nm-1, m1) is defined as the number of atoms per unit length whose centres lie on the direction vector for
a specific crystallographic direction:

- number of atoms centered on direction vector

length of direction vector

The linear density of the [110] direction for the FCC crystal structure:
The five atoms that lie on the bottom face of this unit cell are shown.
The [110] direction vector passes from the centre of atom X, through
atom Y, and finally to the centre of atom Z.
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With regard to the numbers of atoms, it is necessary to take into account
the sharing of atoms with adjacent unit cells. " ® ./. Q
Each of the X and Z corner atoms is also shared with one other adjacent ® i ® P
unit cell along this [110] direction (i.e., one-half of each of these atoms . '@
belongs to the unit cell being considered), whereas atom Y lies entirely g --.:--?)
. . o7 Y&
within the unit cell. ®

Thus, there is an equivalence of two atoms along the [110] direction
vector in the unit cell.

Now, the direction vector length is equal to 4R; thus, the [110] linear density for FCC is:

2 atoms 1
LDuo =" % =g

Planar density PD (nm-2, m~2) is taken as the number of atoms per unit area that are centred on a particular crystallographic
plane:

number of atoms centered on a plane
area of plane @
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For example, consider the section of a (110) plane within an FCC unit cell:

Six atoms have centres that lie on this plane, only one-quarter of each of atoms
A, C, D, and F and one-half of atoms B and E, for a total equivalence of just 2
atoms, are on that plane.

The area of this rectangular section is equal to the product of its length and width:
the length (horizontal dimension) is equal to 4R, whereas the width (vertical dimension) is equal to 2Rv2 a=2RV2

because it corresponds to the FCC unit cell edge length.

Thus, the area of this planar region is (4R)(2Rv2) = 8R2v2, and the planar density is determined as follows:

PD.. = 2 atoms _ 1
110 SRZ\/E 4R2\/§




CLOSE-PACKED CRYSTAL STRUCTURES

Recall: FCC and HCP structures have atomic packing factors of 0.74, which is the most efficient packing of equal-size
spheres or atoms.

These two crystal structures may be described in terms of close-packed planes of atoms (i.e., planes having a maximum
atom or sphere-packing density); a portion of one such plane is illustrated.

Both crystal structures may be generated by the stacking of these close-packed
planes on top of one another; the difference between the two structures lies in the
stacking sequence.

Let the centres of all the atoms in one close-packed plane be labelled A.

Associated with this plane are two sets of equivalent triangular depressions formed by three adjacent atoms, into which the
next close-packed plane of atoms may rest.

Those having the triangle vertex pointing up are arbitrarily designated as B positions, whereas the remaining depressions are
those with the down vertices, which are marked C.
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A second close-packed plane may be positioned with the centres of its atoms over either B or C sites; at this point, both are
equivalent.

W Y Yy

Suppose that the B positions are arbitrarily chosen; the stacking L J
sequence is termed AB. 3 Q Q q 9
The real distinction between FCC and HCP lies in where the third ( p YQ ‘Q "Q‘- "q ‘g

close-packed layer is positioned.

For HCP, the centres of this layer are aligned directly above the
original A positions.

This stacking sequence, ABABAB . . ., is repeated over and over. Of course, the
ACACAC .. . arrangement would be equivalent.

These close-packed planes for HCP are (0001)-type planes, and the correspondence
between this and the unit cell representation is shown.
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For the face-centred crystal structure, the centres of the third plane are situated
over the C sites of the first plane. This yields an ABCABCABC . . . stacking sequence;
that is, the atomic alignment repeats every third plane.

It is more difficult to correlate the stacking of close-packed planes to the FCC unit cell.
However, this relationship is demonstrated. These planes are of the (111) type; an

FCC unit cell is outlined on the upper left-hand front face of to provide
perspective.
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SINGLE CRYSTALS

For a crystalline solid, when the periodic and repeated arrangement of atoms is perfect or
extends throughout the entirety of the specimen without interruption, the result is a
single crystal.

9 ':
R ’
¢ / . - ‘
_—

Photograph of a garnet single crystal that
was found in Tongbei, Fujian Province, China.

All unit cells interlock in the same way and have the same orientation.

Single crystals exist in nature, but they can also be produced artificially.
They are ordinarily difficult to grow because the environment must be carefully controlled.

If the extremities of a single crystal are permitted to grow without any external constraint,
the crystal assumes a regular geometric shape having flat faces, as with some of the
gemstones; the shape is indicative of the crystal structure.

Within the past few years, single crystals have become extremely important in many
modern technologies, in particular electronic microcircuits, which employ single crystals :
of silicon and other semiconductors. B X '.:~“'u¥f

An 1ron pyrite single
crystal that was found in Navajun,

La Rioja, Spain. @
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POLYCRYSTALLINE MATERIALS
Most crystalline solids are composed of a collection of many small crystals or grains; such materials are termed

polycrystalline.
Various stages in the solidification of a polycrystalline specimen are represented schematically below.

Initially, small crystals or nuclei form at various positions. These have random crystallographic orientations, as indicated by
the square grids.

(@) (b) (© (d)

Schematic diagrams of the various stages in the solidification of a polycrystalline material; the square grids depict unit cells. (a) Small crystallite nuclei. (b)
Growth of the crystallites; the obstruction of some grains that are adjacent to one another is also shown. (c¢) Upon completion of solidification, grains having
irregular shapes have formed. (d) The grain structure as it would appear under the microscope; dark lines are the grain boundaries. @
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The small grains grow by the successive addition from the surrounding liquid of atoms to the structure of each.
The extremities of adjacent grains impinge on one another as the solidification process approaches completion.

The crystallographic orientation varies from grain to grain. Also, there exists some atomic mismatch within the region
where two grains meet; this area, called a grain boundary.

(@) (b) (© (d)

Schematic diagrams of the various stages in the solidification of a polycrystalline material; the square grids depict unit cells. (a) Small crystallite nuclei. (b)
Growth of the crystallites; the obstruction of some grains that are adjacent to one another is also shown. (c¢) Upon completion of solidification, grains having
irregular shapes have formed. (d) The grain structure as it would appear under the microscope; dark lines are the grain boundaries. @
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ANISOTROPY
The physical properties of single crystals of some substances depend on the crystallographic direction in which
measurements are taken.

For example, the elastic modulus, the electrical conductivity, and the index of refraction may have different values in the
[100] and [111] directions. This directionality of properties is termed anisotropy, and it is associated with the variance of
atomic or ionic spacing with crystallographic direction.

Substances in which measured properties are independent of the direction of measurement are isotropic.
The extent and magnitude of anisotropic effects in crystalline materials are functions of the symmetry of the crystal

structure; the degree of anisotropy increases with decreasing structural symmetry—triclinic structures normally are highly
anisotropic.

Modulus of Elasticity (GPa)

For many polycrystalline materials, the crystallographic Modulus of Elasticity
orientations of the individual grains are totally random. Values for Several Meral A L
Metals at Various Aluminum 63.7 72.6 76.1
_ _ Crystallographic Copper 66.7 130.3 191.1
Under these circumstances, even though each grain may be Orientations Iron 125.0 10,5 72 7
anisotropic, a specimen composed of the grain aggregate Tungsten 384.6 384.6 384.6

behaves isotropically. @
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Also, the magnitude of a measured property represents some average of the directional values. Sometimes the grains in

polycrystalline materials have a preferential crystallographic orientation, in which case the material is said to have a
“texture.”

The magnetic properties of some iron alloys used in transformer cores are anisotropic—that is, grains (or single crystals)
magnetize in a (100)-type direction easier than any other crystallographic direction.

Energy losses in transformer cores are minimized by utilizing polycrystalline sheets of these alloys into which have been
introduced a magnetic texture: most of the grains in each sheet have a (100)-type crystallographic direction that is aligned
(or almost aligned) in the same direction, which is oriented parallel to the direction of the applied magnetic field.



X-RAY DIFFRACTION: DETERMINATION OF CRYSTAL STRUCTURES

Historically, much of our understanding regarding the atomic and molecular arrangements in solids has resulted from x-ray
diffraction investigations; furthermore, x-rays are still very important in developing new materials.

The Diffraction Phenomenon
Diffraction occurs when a wave encounters a series of regularly spaced obstacles that

(1) are capable of scattering the wave, and
(2) have spacings that are comparable in magnitude to the wavelength.

Furthermore, diffraction is a consequence of specific phase relationships established between two or more waves that have
been scattered by the obstacles.

Consider waves 1 and 2, which have the same Wave 1 Scattering Wave 1’

event

wavelength (1) and are in phase at point O-O'. [~— 4 — e
ARy NIa\ o

VARV NIARFA

<4 — 4 —

N NALA N\ O\

'\ ' \

Wave 2 Wave 2'

Now let us suppose that both waves are scattered in
such a way that they traverse different paths.

Amplitude ——

Position —=
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The phase relationship between the scattered waves, which depends upon the difference in path length, is important.

One possibility results when this path length difference o Wave 1 Scattering Wave 1
IS an integral number of wavelengths. =4 — — 4 —
AN AN\ o
These scattered waves (now labelled 1’ and 2') are still 3 \/ \ \/ \ \ /T\ /\
in phase. 2 e— 24— |<_,1_>|
=
| | | AN/ — \/ \
They are said to mutually reinforce (or constructively \/ \ ’ \/ \
Interfere with) one another; when amplitudes are added, Wave 2 Wave 2"
the wave shown on the right side of the figure results. 0 oction

This is a manifestation of diffraction, and we refer to a diffracted beam as one composed of a large number of scattered
waves that mutually reinforce one another.
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Other phase relationships are possible between scattered waves that will not lead to this mutual reinforcement.

The other extreme is that demonstrated here, in which
the path length difference after scattering is some
Integral number of half-wavelengths.

The scattered waves are out of phase—that is,
Corresponding amplitudes cancel or annul one another,
or destructively interfere (i.e., the resultant wave has
zero amplitude), as indicated on the right side of the
figure.

Amplitude ——=

p

Scattering Wave 3’
event

¥ N\

Wave 3

<~

A /\ r}()A
NN VA

AN

Pr

ANAN
VARGV ARV

|
Wave 4 !
Wave 4’

Position ——

Of course, phase relationships intermediate between these two extremes exist, resulting in only partial reinforcement.
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X-Ray Diffraction and Bragg’s Law (Wulff-Bragg's condition)

X-rays are a form of electromagnetic radiation that have high energies and short wavelengths—wavelengths
on the order of the atomic spacings for solids.

When a beam of x-rays impinges on a solid material, a portion of this beam is scattered in all directions by the electrons
associated with each atom or ion that lies within the beam’s path.

What are the necessary conditions for diffraction of x-rays by a periodic arrangement of atoms.

Consider the two parallel planes of atoms A-A’ and B-B’, e A R L
which have the same h, k, and | Miller indices and are beam \ beam

separated by the interplanar spacing dhkl. ’ :

Now assume that a parallel, monochromatic, and coherent
(in-phase) beam of x-rays of wavelength A is incident on these
two planes at an angle 6.

~-@---@--0—-0—-0—-0—-0-O
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. . _ 1 A \ 1
Two rays in this beam, labelled 1 and 2, are scattered by atoms  Incident S Diffracted

eam N\ beam
AY 2'

P and Q. 2

Constructive interference of the scattered rays 1’ and 2’ occurs
also at an angle 6 to the planes if the path length difference between
1-P-1"and 2-Q-2’ (i.e., SQ + QT) is equal to a whole number, n,

of wavelengths—that is, the condition for diffraction is:

H.r;l, = SQ - QT ”/“L = dhkf Sin9 + dhkf Sin@ B——

nA = 2d,;,;sin@  Bragg’s law
Q0000000
n is the order of reflection, which may be any integer (1, 2, 3, . . .) consistent with sin 8 not exceeding unity. Thus, we have a
simple expression relating the x-ray wavelength and interatomic spacing to the angle of the diffracted beam.

If Bragg’s law is not satisfied, then the interference will be nonconstructive so as to yield a very low-intensity diffracted
beam. The magnitude of the distance between two adjacent and parallel planes of atoms (i.e., the interplanar spacing dhkl) is
a function of the Miller indices (h, k, and I) as well as the lattice parameter(s). For example, for crystal structures that have
cubic symmetry: (a is the lattice parameter “unit cell edge length”).

a
dppy = 6
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Bragg’s law is a necessary but not sufficient condition for diffraction by real crystals. It specifies when diffraction will occur
for unit cells having atoms positioned only at cell corners.

However, atoms situated at other sites (e.g., face and interior unit cell positions as with FCC and BCC) act as extra
scattering centres, which can produce out-of-phase scattering at certain Bragg angles.

The net result is the absence of some diffracted beams that should be present. Specific sets
of crystallographic planes that do not give rise to diffracted beams depend on crystal
structure.

For the BCC crystal structure, h + k + I must be even if diffraction is to occur, whereas for FCC, h, k, and | must all be either
odd or even; diffracted beams for all sets of crystallographic planes are present for the simple cubic crystal structure.

These restrictions, called reflection rules, are summarized:

Reflection Indices

X-Ray Diffraction Crystal Structure Reflections Present Jor First Six Planes

Reflection Rules and g (h + k + [) even 110,200, 211.

Reflection Indices 220. 310. 222

for Body-Centered . | : _ .

Cubsic, Face-Centered FCC h, k, and [ either 111, 200, 220,

Cubsic, and Simple all odd or all even 311, 222, 400

Cubic Crystal Simple cubic All 100, 110, 111, @
Structures 200. 210. 211
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Diffraction Techniques

One common diffraction technique employs a powdered or polycrystalline
specimen consisting of many fine and randomly oriented particles that are
exposed to monochromatic x-radiation.

Each powder particle (or grain) is a crystal, and having a large number of
them with random orientations ensures that some particles are properly
oriented such that every possible set of crystallographic planes will be
available for diffraction.

The diffractometer is an apparatus used to determine the angles at which
Diffraction occurs for powdered specimens; its features are represented
schematically.

A specimen S in the form of a flat plate is supported so that rotations about the axis
labelled O are possible; this axis is perpendicular to the plane of the page.

The monochromatic x-ray beam is generated at point T, and the intensities of diffracted
beams are detected with a counter labelled C in the figure. The specimen, x-ray source, and
counter are coplanar
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The counter is mounted on a movable The counter is mounted on a movable
carriage that may also be rotated about the O axis; its angular position in terms

of 26 is marked on a graduated scale.

Carriage and specimen are mechanically coupled such that a rotation of the
specimen through 6 is accompanied by a 26 rotation of the counter; this ensures
that the incident and Reflection angles are maintained equal to one another.

Collimators are incorporated within the beam path to produce a well-defined and
focused beam. Utilization of a filter provides a near-monochromatic beam.

80° 100°

As the counter moves at constant angular velocity, a recorder automatically plots the diffracted beam intensity (monitored by
the counter) as a function of 26; 26 is termed the diffraction angle, which is measured experimentally.

The figure shows a diffraction pattern for a
powdered specimen of lead.

The high-intensity peaks result when the Bragg
diffraction condition is satisfied by some set of
crystallographic planes.

These peaks are plane-indexed in the figure.

Intensity

— (111)

(400) (331) (420)  (422)

A Al -

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Diffraction angle 26
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Other powder techniques have been devised in which diffracted beam intensity and
position are recorded on a photographic film instead of being measured by a counter.

One of the primary uses of x-ray diffractometry is for the determination of crystal structure. The unit cell size and geometry
may be resolved from the angular positions of the diffraction peaks, whereas the arrangement of atoms within the unit cell is
associated with the relative intensities of these peaks.

X-rays, as well as electron and neutron beams, are also used in other types of material investigations. For example,
crystallographic orientations of single crystals are possible using x-ray diffraction (or Laue) photographs.

The figure here was generated using an incident x-ray beam that was directed
on a magnesium crystal; each spot (with the exception of the darkest one near
the centre) resulted from an x-ray beam that was diffracted by a specific set of

crystallographic planes. gl * -
Other uses of x-rays include qualitative and quantitative chemical - - ®
identifications and the determination of residual stresses and crystal size. ’ @
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Example

Interplanar Spacing and Diffraction Angle Computations

For BCC iron, compute (a) the interplanar spacing and (b) the diffraction angle for the (220)
set of planes. The lattice parameter for Fe is 0.2866 nm. Assume that monochromatic radiation
having a wavelength of 0.1790 nm is used, and the order of reflection is 1.

Solution

(a) The value of the interplanar spacing d,,, is determined , with a = 0.2866 nm,
and h =2, k=2, and / = 0 because we are considering the (220) planes. Therefore,

a
P+ ikr+ P
_ 0.2866 nm
VP + @7+ 0y

Ay =

= 0.1013/nm

(b) The value of 6 may now be computed , with n = 1 because this is a first order reflection: -

ni (1)(0.1790nm)

- = (.884 0 = sin 1(0.884) = 62.13°
2d,,;  (2)(0.1013nm) ( )

sin@ =

The diffraction angle is 26, or

20 = (2)(62.13°) = 124.26°
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Example
Interplanar Spacing and Lattice Parameter Computations for Lead

Figure shows an x-ray diffraction pattern for lead taken using a diffractometer and mono-

chromatic x-radiation having a wavelength of 0.1542 nm; each diffraction peak on the pattern
has been indexed. Compute the interplanar spacing for each set of planes indexed: also, de-
termine the lattice parameter of Pb for each of the peaks. For all peaks, assume the order of

diffraction is 1.

Solution
The first peak results from diffraction by the (111) set of planes, occurs at 28 = 31.3°
the corresponding interplanar spacing is equal to - , (111)
A 1)(0.1542 nm
L O ) 02858 nm >
2 sinf - [313° %
(2)]sin > b5
a (400) (331) (400)  (422)
the lattice parameter a is determined as ~ a = dy\/h> + k> + I - — ) ke
0.0 10.0 20.0 30.0 80.0 90.0 100.0
=dy;; /(12 + (1) + (1> = (0.2858 nm) V3 = 0.4950 nm
\
Similar computations are made for the next four peaks; the results are tabulated below: r"‘\;t 0
Peak Index 20 dyy (nm) a (nm) 1, ' ' o
200 36.6 0.2455 0.4910 17 \lﬂ o A C‘ c\
220 52.6 0.1740 0.4921 2 2 4
311 62.5 0.1486 0.4929 U 0 uaA 0
222 65.5 0.1425 0.4936 L/t q/b %



NONCRYSTALLINE SOLIDS

It has been mentioned that noncrystalline solids lack a systematic and regular arrangement of atoms over relatively large
atomic distances.

Sometimes such materials are also called amorphous (meaning literally “without form”), or supercooled liquids, inasmuch
as their atomic structure resembles that of a liquid.

An amorphous condition may be illustrated by comparison of the crystalline and noncrystalline structures of the ceramic
compound silicon dioxide (SiO,), which may exist in both states.

Silicon atom
O Oxygen atom

?
?

?

? 7
/o/\&%;o’\o
cf\&#;cf\o\,o/\o
o\/o/\o\+/o/\o\p

O\,O/\D\é/O’\O
&
~Q
:
N o
& o
&

?
!

(a) (b)

Two-dimensional schemes of the structure of (a) crystalline silicon dioxide and (b) noncrystalline silicon dioxide. @



NONCRYSTALLINE SOLIDS

Even though each silicon ion bonds to three oxygen ions (and a fourth oxygen ion above the plane) for both states, beyond
this, the structure is much more disordered and irregular for the noncrystalline structure.

Whether a crystalline or an amorphous solid forms depends on the ease with which a random atomic structure in the liquid
can transform to an ordered state during solidification.

Amorphous materials, therefore, are characterized by atomic or molecular structures that are relatively complex and become
ordered only with some difficulty.

Furthermore, rapidly cooling through the freezing temperature favours the formation of a noncrystalline solid, because little
time is allowed for the ordering process.

Metals normally form crystalline solids, but some ceramic materials are crystalline, whereas others—the inorganic glasses—
are amorphous.

Polymers may be completely noncrystalline or semicrystalline consisting of varying degrees of crystallinity.
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