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•Why?

•But
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Nonlinear Equation 

Solvers

Bracketing Graphical Open Methods

Bisection

False Position 

(Regula-Falsi)

Newton Raphson

Secant

All Iterative
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Bracketing Methods
(Or, two point methods for finding roots)

 Two initial guesses for the root 
are required. These guesses must 
“bracket” or be on either side of 
the root.

== > From The Figure

 If one root of a real and 
continuous function, f(x)=0, is 
bounded by values x= xl, x = xu
then 

f(xl) . f(xu) <0.

(The function changes sign on 
opposite sides of the root)
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No answer (No root)

Nice case (one root)

Oops!!  (two roots!!)

Three roots( Might work for a 

while!!)
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Two roots( Might 

work for a while!!)

Discontinuous 

function. Need 

special method
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Figure 5.4a

Figure 5.4b

Figure 5.4c

MANY-MANY roots. What 

do we do? 

f(x)=sin 10x+cos 3x



The Bisection Method

For the arbitrary equation of one variable, f(x)=0

1. Pick xl and xu such that they bound the root of 

interest, check if f(xl).f(xu) <0.

2. Estimate the root by evaluating f[(xl+xu)/2].

3. Find the pair 

• If f(xl). f[(xl+xu)/2]<0, root lies in the lower 

interval, then xu=(xl+xu)/2 and go to step 2.
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• If f(xl). f[(xl+xu)/2]>0, 

root lies in the upper 

interval, then xl= 

[(xl+xu)/2, go to step 2.

• If f(xl). f[(xl+xu)/2]=0, 

then root is (xl+xu)/2 and 

terminate.

4. Compare es with ea

5. If ea< es, stop. Otherwise 

repeat the process.
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Figure 5.6
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Evaluation of the Bisection Method

Properties

 Easy

 Always find root

 Number of iterations 

required to attain an 

absolute error can be 

computed a priori. 

Constrains

 Slow

 Know a and b that 

bound root

 Multiple roots

 No account is taken of 

f(xl) and f(xu), if f(xl) is 

closer to zero, it is likely 

that root is closer to xl .
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How Many Iterations will It Take?

sa
k

a
x

L
eee  %100

 Length of the first Interval Lo=b-a

 After 1 iteration L1=Lo/2

 After 2 iterations L2=Lo/4

 After k iterations Lk=Lo/2
k
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 If the absolute magnitude of the error is 

and Lo=2, how many iterations will you have to do to get 
the required accuracy in the solution? 
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The False-Position Method
(Regula-Falsi)

 If a real root is
bounded by xl and xu

of f(x)=0, then we
can approximate the
solution by doing a
linear interpolation
between the points
[xl, f(xl)] and [xu,
f(xu)] to find the xr

value such that
l(xr)=0, l(x) is the
linear approximation
of f(x).
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Procedure

1. Find a pair of values of x, xl and xu such that fl=f(xl) <0 

and fu=f(xu) >0.

2. Estimate the value of the root from the following 

formula (Refer to Box 5.1)

and evaluate f(xr).
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3. Use the new point to replace one of the original points, 
keeping the two points on opposite sides of the x axis.

If f(xr)<0 then xl = xr == > fl= f(xr)

If f(xr)>0 then xu= xr == > fu= f(xr)

If f(xr) = 0 then you have found the root and need go 
no further!
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4. See if the new xl and xu are close enough for 

convergence to be declared. If they are not go back to 

step 2.

 Why this method?

 Faster

 Always converges for a single root.

➔See Sec.5.3.1, Pitfalls of the False-Position Method

Note: Always check by substituting estimated root in 

the original equation to determine whether f(xr) ≈ 0.
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