TaBLE 3.3 One-dimensional, steady-state solutions

to the heat equation with no generation
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FiGURE 3.2  Equivalent thermal circuit for a series composite wall.
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FIGURE 3.7 Temperature distribution for a composite eylindrical wall
TapLe 3.4 Temperature distribution and heat loss for fins of uniform cross section
Tip Condition Temperature Fin Heat
Case x=1L) Distribution 6/6, Transfer Rate g;
A g:r']‘:fi‘;f“’“ heat cosh m(L — x) + (Atmk) sinh (L — x) sinhmL + (hfmk) cos
oL _ — kdb/dl,., cosh ml + (hfmk) sinh mL cosh ml + (h/mk) sin
‘ (3.70)
B Adiabatic coshm(L — x)
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C Prescnibed temperature:
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Introducing the temperature difference S o 0.664Re; Pr® Pr= 06 {
6 = T_ Ta:
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and recognizing that (d@/dr) = (dT/dr) if T is constant, it follows that Nu, = 0,3347He5 Prm a . =100
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Separating variables and integrating from the initial condition, for which
7(0) = T, we then obtain
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The quantity Q is, of course, related to the change in the internal energy ¢
and from Equation 1.11b
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Equating Equations 6.11 and 6.12, it follows that the average and loc:

coefficients are related by an expression of the form
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Note that for the special case of flow over a flat plate (Figure 6.4b),
with the distance x from the leading edge and Equation 6.13 reduces to

From Equation 7.19 it is clear that 8 increases with increasing x and v
with increasing i, (the larger the free stream velocity, the thinner
layer). In addition, from Equation 7.15 the wall shear stress may be ex
du |
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Hence from Table 7.1
7, = 03320,V pun, /x

The local friction coefficient is then
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where it is assumed that transiton occurs abruptly at x = x_. Substituting from
Equations 7.23 and 7.36 for hy,, and A, respectively, we obtain
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Integrating, we then obtain

= (0.037 R — A) Pr'®
0.6 = Pr=060
Re,. < Re, = 10"
where the bracketed relations indicate the range of applicability and the co
is determined by the value of the critical Reynolds number, Re, | . That is,
A = 0.037Re¥> — 0.664Re,?

Similarly, the average friction coefficient may be found using the expressior
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Substituting expressions for Cpypam and Cp, from Equations 7.20 ar
respectively, and carrving out the integration provides an expression of the

= 0.074Re; " — %i
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It is also possible to have a uniform surface heat flux, rather than a unifon
ature, imposed at the plate. For laminar flow. it may be shown that [5]

Nu, = 0.453Re' pr' Pr=0.6

while for turbulent flow
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Since the total heat rate is readily determined from the product o
flux and the surface area, ¢ = g,A.. it is not necessary to introduce an
vection coefficient for the purpose of determining g. However, one ma;
determine an average surface temperatre from an expression of the ft
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where Nu, is obtained from the appropriate convection correlation
from Equation 7.45, it follows that
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where u, is the mean fluid velocity over the tube cross section and D is the tube
diameter. In a fully developed flow, the critical Revnolds number corresponding 10
the onser of turbulence js

Re, . ~ 2300 (8.2)

although much larger Reynolds numbers (Re,, ~ 10.000) are needed 10 achieve
fully turbulent conditions. The transition to turbulence is likely to begin in the
developing boundary layer of the entrance region,

For laminar flow (Re, < 2300). the hydrodynamic entry length may he
obtained from an expression of the form [1]

(‘—g-”) ~0.05 Re, (8.3)
lam

This expression js based on the presumption that fluid enters the tube from a rounded
converging nozzle and is hence characterized by a nearly uniform velocity profile a
the entrance (Figure 8.1), Although there is no satisfactory genera] expression for the
entry length in turbulent flow, we know thar it is approximately independen; of

Reynolds number and that, as a firg approximation [2],

RY
10= (—"‘-“) <60 (8.4)
turb

For the Purposes of this text, we shall assume fully developed turbulent flow for
/D) > 190,
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Integrating from x = 0, it follows that
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The average Nusselt number then has the form .
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where ¢ = 0.826 for the sphere {48] and 0.729 for the tube [44]. The
in this equation and the one below are evaluated as explained benc.
tion 10.32.

For a vertical tier of N horizontal tubes, Figure 10.14c, the average ¢
coefficient (over the /v tubes) may be expressed as
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Bg = 51,104 + 20447,,(°C)  22°C = T, < 100°C
D

hge = 255,510 100°C=T,,



