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Chapter Four

System of Linear and Nonlinear Equations

Direct Methods

Cramer’s Method

Gauss Elimination Method without Pivoting
Gauss Elimination Method with Pivoting
Gauss-Jordan Method

Matrix Inverse Method/ Gauss-Jordan Method
LU Decomposition Method without Pivoting
LU Decomposition Method with Pivoting
Positive Definite Matrix

Cholesky Decomposition Method

Indirect Iterative Methods

" Types of Norms

= Strictly Dominant Matrix
= Jacobi Method

" Gauss-Seidel Method

System of Nonlinear Equations

* Newton’s Jacobian Method
® Fixed Point Iterative Method
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Matrix A is symmetrical because a, = a . Its leading principal submatrices are
pe——— / s CEEEE—

g 2 -1 0
4,=[2] Az{ _] 4={-1 2 -1

e 0 sodlin2
det(4)=220, det(4,)=320,  det(4,)=420

Therefore matrix A positive definite.
S —

Cholesky Decomposition for Symmetrical Matrices
The cholesky decomposition is used primarily for symmetrical positive definite matrices.

Let S denote a symmetrical matrix and U denote upper triangular matrix according to Cholesky S
can be decomposed as follows:

S=U"xU

And hence can be written as follows

T F 1 a
Sy Si Sl/ U, 0 0 U, 12 1j
Syn Sn Sz,/ 24 u, Uy, 0 5% 0 Uy, u2j

0
EFE PRI P B TR YR 0 0 - ouy |

It can easily be shown by using matrix multiplication that

S, = U, XU, ,and therefore, U, ZJS” ;

Also
S

S =u, XU ,h u =

1; = “n 1/ ence 1

ull

Next lest solve for the second row (note that we already know u, = 0)

S22 = ulZ X uIZ T u22 X u22 >
S23 = ulZ X ul:‘a + u22 ' u23

Sy, = Up XUy, + U, XU,,



1f we solve for the third row we obtain:

Sy = Uy XUy, + Uy XUy + Uy X Uy,
Sy; = Uy XUy, t Uy XUy, + Uy XUy,

Now it is evident that we can write the general format for the matrix S a8

i ’_‘Z(um)z , while s, =Z(uk:)(ukj) jEitlit2enn
k=1 k=1 ’

The elements in row i of U are therefore

B i~ % §
oSea] e
k=1

—Lj\[sq—i(u“)(uki)} , j=i+1,i+2,-~,n
k=1

Luii

Il

Example:

u u, uls_1

0
9 6 0l=|um, u, OO0 wuy u,
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ool 2
6‘ulzxu12 +u22xu22 "ulz +u22

u§z=6_(_1)2:5:>u22=‘/§

. 1
0=uuxu13+unxu23+0=(—-1{—Ej+(~/—5')“23:3“23 )

L s A
3=u|23+u§3+u§3=(_"£) +(_2_"/"‘g) + U,
5 1 1 27 27
R e e I
; 4 20 10 10
Therefore we get
_ e
s
2
-1
u=lo 5 —=
245
o 0. {2
L 10 _
Since
Ax=U7'Ux:b,letUx=y,thenU'I'y:b
B T
2 0 0 —y|—\ [ 4]
1 A5 0 |x|y,|=|-6
-1 -1 20
—t = ) ¥ sl _0_
2 245 V1o
4:2)}1 :>y|—_—2
-4
—y,+/5y,=-6 =y, =—F=
2 %
-1 1 27
—y,=0 =y, =0.36515

-1

p——

o



G

—4 -1 '
—= =0«/_5———><x
J5 25

0.36515 | X ]
0381, o [
L 10 |
Jﬁn =0,36515 = x, =0.2222
107
1 4

e — x. =—0.7777

2 2\/5 3 \/‘5' 2
2x, = x, —lsz =2 =>x, = 0.6666

Norms of Vectors and Matrices

We need to measure the distance between vectors to determine whether a sequence of vectors
converges to a solution of the system.

Let R™ denote the set of all n-dimensional column vectors with real-number coefficients. To
define a distance in R" we use the notion of a norm.

A vector norm on R" is a function, H ” from R" into R with the following properties

1. x“Z 0 for all x.
2. x” =0 if and only if x=0.

3. ax“ = |a‘| X ”x” for all o=constant and all x.

4. |x+ y” < “x” + “y” forall x andy.

The /,,1,,_norms for the vector x = (xI s Xogs "%y X, )’ are defined by

I ) SR

‘|

12 norm is called the Euclidean norm of the vector x

Example: x = (— 11— 2) “’“”1 = |_ 1l + \1\ + l_ 2| ol



I, =) 1) +(-2)

I, = max(-1, 1 |- 2))=2

Note that for each x nleo < "x"_

If x= (x]) Xysttty x,,)’ and y = (y,, Vs s ¥, ) the [, 1,, 1 distances between x and y are
defined by:

“x‘y”, ::lexi _yil ‘Ix;YI|2 :\/2":( i"yi)z ”x_y“ —IEEZ((JJC oy ’)

i=1

Example:  x=(1,1,1) and y =(1.2001,0.99991,0.92538)

e~ |, = i\x,. ~ »,|=1-1.2001] + 1 - 0.99991) + |1 - 0.925381 =027281

x5, \/Z(" ~,) =(1-12001) +(1-0.9991) (1—0'.9:2538):0.21356

[ e — maxﬂl 12001, 1 - 0.99991), [l - 0.92538])=0.2001

1<i<n

The 1 x nmatrix A is said to be strictly diagonally dominant when

n
a,|> Z,av“

J=

J#i

Example
(7 2 0 [7]>[2]+ 0| yes
=35~ B>l yes
LA = 6>[0]+[5] yes
(6 4 3] f>[+p no
B=|4 -2 0 =2|>[4/+]0] no
St R U 1> -3]+10]
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* 2) Fixed point iteration method

for system of nonlinear equations
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Fixed-Point Iteration

mﬁﬁxed-point:itemtior! approach (Sec. 6.1) can be modified to solve two simultaneous,
nonlinear equations. This approach will be illustrated in the following example.

Fixed-Point Iteration for a Nonlinear System

Problem Siclem.ent. Use fixed-point iteration to determine the roots of Eg. (6.19). Note
that a correct pair of roots is x = 2 and y = 3. Initiate the computation with guesses of

x=15andy = 35.
Solution. Eq;Jation (6.19a) can be solved for

%
: d\ § ele i)
and 6.19b) ¢ can be sblved for ">> WJ’

( Yisr =57 = 3x0f (E6.11.2)
Note that we will drop the subscripts for the remainder of the example.
(E6.11.1) can be used to determine a new

On the basis of the initial guesses, Eq.
value of x:

(E6.11.1)

10 — (L.5)%
=" = 221429
* 35

This result and the initial value of y = 3.5 can be substituted into Eq. (E6.11.2) to
determine a new value of y:
y=57— 3(2.21429)(3.5)* = —24.37516

Thus, the approach seems to be diverging. This behavior is even more pronounced on

the second iteration:

10 — (2.21429)° ‘
= = —0.20910
¥ = T -2437516
y=57- 3(—0.20910)(—24.37516)° = 429.709

Obviously, the approach is deterioraling. .
Now we will repeat the computation but with the original equations set up in a

different format. For example, an alternative formulation_of Eq-(6.194) is

x=VI0—xy

and of Eq. (6.19b) is

et ()

Now the results are more satisfactory:

x = V10 - 1.5(3.5) = 2.17945



51-35
Y= J’\ = 2.
3(2.17945) 2.86051

= V10 = 2.17945(2.86051) = 1.94053

_ |37 - 2.86051
=4[~ = 3.0495
‘/\3(1.94053) AR

Thus, the approach is converging on the true values of x = 2 and y = 3.




