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Derivation of Difference Formulas
(Taylor series)

The Taylor series:
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Richardson Differentiation

P A(h) _ h
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Richardson Differentiation

Sol:

Table 2x2

(Richardson formula)


O30 Oy ;(vo 16 ‘re-calculate at h/2 = 0.25
]

O

Ith:o&f l\\ir An(é):;l— [7[”_ ﬁJ

! _ |
el 0‘20%_0‘3645;]

e = 0328

Apply Richardson: \ 92_‘: &, A;(?} —

B e = @ 2006
Error 5
\ —X
GZL‘(’J.JLLS e {:: 2K E
\ - X(l("\c
s J( _ _1(|) C = —0.13%F —
E — BTN T 5L 2 5
R - = 0.2%6 = 2%
RS ‘ -
E — _TO5+-_—0.6328 _ 0.139 = 12.9
43 =B AN+
. _TOMSF_— 03406 py
EQ\C\I\ T OSAIT R ¥QYI = B /E


Apply Richardson:

re-calculate at h/2 = 0.25

Error:


Richardson Tables

use Difference formulas

A‘ (L\) R'h(Pdl)f ormula
A, (h) A(ln)

(P 2) o
A(h) Ay Asm -
(P=3)
A (E) [ Aak) LA (AL
i ¢ — /

A(h) = 2 alk
A?(é):zAl(%)—A(%)
A = £ A(F)-$ A
A (8) = 4 A(R) -4 A
Ay = E£A(2) -5 A ()


use Richardson formula
              (P=1)

use Richardson formula
              (P=2)

    use Richardson   formula
    (P=3)

use Difference formulas

Richardson Tables


Y s fio= B

\
Fod fha freck denwtine f G'H)) <

[using two points]

? afO’le\oJ? o enr wOi N ngt exlel

E-—-o DR
2%
: ) = X —x+€
S ”
Fey=w-3+Le
UK
£l = 2+4e
t&#)\‘b\&
6 \ g
Tw@ ;D'O?i\ﬂ"f_c‘ i

f‘u%

0.16 = \/\ Cé-“—'l‘a:i“:f‘&q )
-3
-9 b =2.3¢| +10 =2 p.0023C]
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Exact

Exact


Finite Difference Formula Using

Lagrangian Polynomials 260

* using 3 points:

Lagrangian
Error



Finite Difference Formula Using 

Lagrangian Polynomials

* using 3 points:

Lagrangian
    Error


Q( "X) G’(O“X'L) @‘ —Xo) (K- X'l) 2%k

QE(%) @X A = Xz)f Py @x Yo — X)ﬁ +(?x-x cij}

* @aqaua,ﬁ( % Xe= Xo


sub.

sub.

sub.


‘ X-Xo=h v o o 271
(g ¢ uggi Xa ¥y = k ){:-P%ﬁvlk

%%@ gmg&"h 7
}ggf })((14;2% Yo X K

= | (o) = o) fo | ek
> jp ) = (%=X ko ~¥2) T - x)(0-¥)

e G L
Q('z -XO)(X’I‘“XQ

»f\m( mgh)q@o e (=2h) £

- EhEw WGy

R
C&h)(h) &g@\e@@.;

-+

£ Ls)q@o + 2f —LF,
fmT

fo g [remiotd] )y

o
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Lagrange... 273
* using 2 points (forward):



* using 2 points (forward):

Lagrange...


(ﬁ‘ ) * for the second derivative: 274

AVAR’
mﬁﬂw . .
% ’? éﬂ) = O(O“XD( )(0,_)(94 g &
4 2 f

(EEYED

2 Fe

GG——YJXT‘})(Q

2 R 2R
= e T wey t ane
7 fo +4 2% o+ a8

i

}lhz = |n2 A



* for the second derivative:


o USe the Taglor cones(n=d % (5 poiid)
Y Ao edwe tre 'Y%M"“"":"J

(QL-%W{ @J;#e preaCe -(){w\__(_/(& g._.
For the Secord dlevocina =

3£) 416ff+)

T L s




Proof for £0x) 276

h=feht+ 20 @
fazf-npylr gt —@
é% ‘é+2kﬁ\ﬁ+zhl Jf\\ . d,
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Forward Finite-Difference

First Derivative

fxy) — f(x)

fx)=

h

—f (x; 2 + 4f(xr'+ N sf(-’-'f)

flx)=

2h

Second Derivative

(X2 — 2f(-";‘-+ D +f(x)

f'ex) =

I & (x;') =

hz
—f(xi2) + Af (x2) = Sf () + 21 (x)

hE

Third Derivative

f&)=

fw ( xj) s

f(x13) — 3f (xiyn) + 3f (xip) — f(x)
h3
_Sf(x”q) < ]4f(x“.3) - 24f(x,'.2) 1P laf(x.'q) — Sf(x,)
2h

Fourth Derivative

fﬂ'ﬂ (x') —

") =

fxig) —4f(x.3) + Of(x;.0) — 4f(x;,y) + f(x)
kﬂ-
_Qf(xn-s) + 1 ]f(x:' ra) — 24f(-“n3) 4 Qéf(xfaz) = ]4f(’-'.'- ) 3f(x,-)
h4

Error

O(h)

o)

O(h)

o)

O(h)

o)

O(h)

o)



Backward Finite-Difference

First Derivative

fx)=

f&x) = fxi_y)

fr(xf) —

h

3f(x) —4f(xi_) + f(x;_0)

2h

Second Derivative

f:.- ( xj) —

f@x) = 2f (i) + F (i)

hZ
2f(x) — Sf(xi) + 4f (xip) — f(x;3)

i : (x) =

hl

Third Derivative

fm (xf) pe

&)=

J&x) — Sf(xi—l) + af(x,-_z) — f(x_3)
hi
Sf(x) — 18f(x_)) +24f(x;p) — 14f(x;5) + 3f(x_p)
2h

Fourth Derivative

) =

frm (xj) i

J &) — 4f(1.'--1) + é'f(xs- 2) — 4f(1f )+ fxi o)
hd
af(xj) = Id‘f(x,l) - Qbf(x,-._zj = 24f(xi_.3) =k ] If(1l4) — Qf(x!.___j)
h4

Error

O(h)

o)

O(h)

O(h?)

O(h)

O(h?)

O(h)

O(h?)



Centered Finite-Difference

First Derivative Error
oy = L) =S 00
ff(xf) - —f (x40 + Bf(xf---ll)?_h Bf(xi—l) + f(x_2) O(hd)

Second Derivative
fG) — 2F0) + f(x;_y)

ff@) = 7 O(hz)
frog =T+ 16f(xi41) — 3]02 igxij + 16f(x_)) — f(x2) o
Third Derivative

£y = () —2f (x,._.F,)Q-;jQ f@)—1 (x5 o)
() = —f(x%i3) + 8f (x40 — 13f(x1.0) ‘f; 13f(x;i-1) — 8f(xi_0) + f(xin) o)

8h

Fourth Derivative

(%) = fxio) — 4f(x) + bﬁ(jﬁ) — 4f () + f(x;5) o)
frrﬂ(x‘_) — _f(xr'+3) i lzf(xi-:v-E) ik ng(xi-l-]) ar Sbf(xg) = Sof(xj_]) a5 lzf(x,'_z) + f(xj_j) O(hﬁ

6n*



Mostly used three-point formula (see Figure )

Let xq, X1, and x, be equally spaced and the grid spacing be h.
Thus x; = xo + h; and x, = Xy + 2h.

1.f'(x0) = _[ 3f(xp) +4f(x1) — f(x2)] +— f(3)(f(xo))

(three-point endpomt formula with error)

2. f'(x1) = o [—f (x0) + f(x)] + = f<3>(6(x )

(three-point mldpomt formula with error)

3. () = = [f (o) — 4f (1) + 3F ()] + 2 D (£ (x,))

(three-point endpoint formula with error)

Mostly used five-point formula
1.Five-point midpoint formula

1
f'(xo) = Fh[f(xo — 2h) — 8f(xo — h) + 8f(xo + h) — f(xo + 2h)]
—f(S)(f)

2.Five-point endpoint formula
[ [ [J [ [ ]

1
fl(xp) = 12h[ 25f (xo) +48f(xo + h) — 36f(x0 + 2h)
+ 16f(xy + 3h) — 3f(xy + 4h)] + ? f(s)(f)




Xo Xo +h

Approximate f(x, + h) by expansion about x;:

f(xo+h) = f(xo) + f'(xo)h + 5 " (xo)h? + < f " (xo)R® +

1
i (28] 5
Approximate f(xo — h) by expansion about x:

flxo—h) = f(xo) = f'(xo)h + f""(xo)h? =2 f" (xo)h3 +

@)
Add Eqgns. (3)and (4): f(xg—h) + f(xo + h) = 2f(x,) + "' (xo)h? +
o f@EDR* + D (E,)h*]

(3)

(4)

Thus

Second derivative midpoint formula

1 h?
f7(x0) = 75 [f (o —h) = 2f Cxo) + f (%o + )] - -l—z-f(‘”(s‘)

Example Values for f(x) = xe* are given in the following table.
Use all applicable 3-point and 5-point formulas to approximate f'(2.0).
X 1.8 1.9 2.0 2.1 2.2

f(x) 10.889365 | 12.703199 | 14.778112 | 17.148957 | 19.855030




O BASIC NUMERICAL DIFFERENTIATION

FORWARD FINITE DIFFERENCE

Let f : [a, ] — I be differentiable and let a < »; < x;4, < b.then, using Taylor theorem:

flai) = flm) + fx)h + OR?

where b = x;,) — x; Inthat case, the forward finite-difference can be used to approximate f'{x;) as follows:

Flas) = flxita) — fla) + Oh) ™)

Tipl — T
where O indicates that the error term is directly proportional to the chosen step size h.
BACKWARD FINITE DIFFERENCE
Let f : [a,b] — I be differentiable and let @ < x;_) < x; < b, then, using Taylor theorem:

flzioa) = flx) = flz)h + OR®)

where b = x; — ;1. In this case, the backward finite-difference can be used to approximate f*(x;) as follows:

) = flai1) = flag) +Oh) @)

Li—1 — X

where O i) indicates that the error term is directly proportional to the chosen step size h.

CENTRED FINITE DIFFERENCE

The centred finite difference can provide a better estimate for the derivative of a function &t a particular point. If the values
of a function f are known at the points &; _; < &; < x4 @and ;4 — x; = 2; — xj—) = h, then, we can use the
Taylor series to find a good approximation for the derivative as follows:

Flan) = £z + £+ L2524 on)

frien) = £ + )=+ L 4 oot

subtracting the above two equations and dividing by fr gives the following:

i) = f':Ii+]}2_h.ﬂTi—l} oM

where l::‘J{h?j indicates that the error term is directly proportional to the square of the chosen step size k. e, the centred
finite difference provides a better estimate for the derivative when the step size k is reduced compared to the forward and
backward finite diffierences. Motice that when ;.4 — o; = x; — x;—, the centred finite diffierence is the average of the
forward and backward finite differencel



O BASIC NUMERICAL DIFFERENTIATION
FORMULAS FOR HIGHER DERIVATIVES

The formulas presented in the previous section can be extended naturally to higher-order denvatives as follows.

FORWARD FINITE DIFFERENCE

Let f : [a,b] =+ R be diffierentiable and leta < T; < Ti11 < Tita < bowith b = 131 — 2y = 7; — T{—1. then, using
the basic forward finite difference formula for the second derivative, we hawe:

,I'""'{.t,;} — fr{ﬂ'i+l:]h- fr{:ﬂi} +@{h}
Fleipad—firea) _ ey d—fieg)
= e & + (k) (3)
flaive) — 2f(xip1) + fim)

= P +Oh)

Motice that in arder to calculate the second dervative at a point I using foneard finite difference, the values of the fumction
at two additional points i;  » and ;. are needed.

Similarly, for the third derivative, the value of the function at another point 1; 43 with Tj+2 < Tiyrg3 < b is required (with the
same spacing f ). Than, the third derivalive can be calculated as follows:

_.rllrlllznfr'_] — lJlillllll{'“'-l'+|} - f”{IF} + 'E:I{Iri-]'

]
Priaal-2 M e ot Mol Flwies ) -2 04+
- L P b + k)
_ flwira) — df(wica) + 3f(wir1) — ) +Oh)

b

Similarly, for the fourth derivative, the value of the function at another point ;.4 4 with T3 < T4 < bis required (with
the same spacing h). Then, the fourth derivative can be calculated as follows:

ey M
fg) = LS o
.I’[ﬁ':'+4]—3.|'[:r.+ufl-l;3f¢mc4*a}—_r'[:r.+|] _ .H!Fi-l-ﬂ'—3.”#1‘4-2]:+3.|'I':il-'14-l:|—.|'|:'r'fi:|
_ i L + )

H
ita) — df{xits) + Gf{zige) — 4f{zip) + flx
_ flwica) — Af{wics) .i':i‘ +2) — dflmiga) + Flai) + O(h)




BACKWARD FINITE DIFFERENCE

Let f: [0, b] — R be differentiable and leta = T2 < X < T = b owith b = Ty — xi—1 = Ti—1 — Ti—2, then,
using the basic backward finite difference formula for the second derivative, we hawve:

fr{Ii} — f"[IrJ —j‘f'{Ii_L]' + 'Ifj{nrl-]-

Siril—Fiwi o) Fleioad—Flei_a)
3

_ i 3 ) (4)
= . + Ok

_ flwi) = 2f{ziq) + flmiz)
- =

+ O R}

Motice that in order to calculate the second derivative at a point 17 using backward finite difference, the values of the
fumction at two additional points £i—2 and Ti—1 are needed.

Similarly, for the third derivative the value of the function at another point T;—3 with & < T;-3 < Ti-2 is required [with the
same spacing ft). Then, the third derivative can be calculated as follows:

£ = £ 'hf””""]' +Oh)
Pl =2 T _a) P g b2 ) flx_a)
= b ; h + (k)
_ Ja) = 3fleim) + 3laia) = 1) | o

Similarly, for the fourth derivative, the value of the function at another point T;—4 with 8 < Ti—4 << Ti-3 is required (with
the same spacing ). Then, the fourth derivative can be calculated as follows:

) = S o

Sl )-8l i+ Héf[Ti—i]—.r[Ti—H-] _ Jima l]—3f|:-l=n—‘i'|'+‘-3..r[i':-ﬁ:|—..r[i': il
h u

- ; d + k)

flai) —Af(zioa) + ﬁf{-’ﬂ;ﬂ —Aflris) + floica) | g

(7}




CENTRED FINITE DIFFERENCE
Let f: [, &) —+ R be differentiable and leta < &y < @y < a3, = b with 3 constant spacing . then, we can use the
Taylor thearem for f(x;44) and f(x;_y) as follows:

f”'[ f'[

"Ilh. +

Flaer) = fla) + flashh+ 1 o)

fl:Ir—'I.:l - .f{-‘:l:l + Jr {-‘-‘z}[ R} + f {II:]F? + fm:’f:-.ljha + ﬂl{-haj

&dding the above two equations and dividing by W gives the following:

\being{equation}labeleqeq1}

iz i=raciflx fH1)-200x i -1} H"2+Hmatheal O (h2)

‘end{equation}

which provides a better approximation for the second denivative than that provided by the foraard or backward finite
difference as the emor is directly proportional to the sguare of the step size.

For the third derivative, the value of the funciion is required at the points £i—z and ;4 3. Assuming all the points io be
equidistant with a spacing f, then, the third dervative can be calculated using Equation 77 as follows:

ey = D) Z2LE LT | oy

Replacing the first derivatives with the centred finite diference value for those:

fieigal=rle] 2H#:‘+J}-fwl_ﬂ + Sl 1=l _a)

[ () = 7 A+ o)
flaipe) = 2f(wi) +|r;f':1'—1]' = flzia) 2 "
B i + oY)

For the fourth derivative, the value of the funciion at the poinis ;- and T;—2 is required. Assuming all the points o be
equidistant with a spacing f, then, the fourth derivative can be caloulated using Equation 77 as follows:

ﬁm{li} - _f"""[::l'_'-|-+1}I - E’f”{mi} + ff:{.“ll.','_]_;'l + E}I::hijl

h?
Using the centred finite difference for the second denvatives (Equation 77) yields:

.I'lf'-m.zfl—ij"'i::-.u]+.l"lf=ri] _ 2;1:'-'?'-}]"'_2:[:!']"'1’{#:'-“' + f{me}—i.l'[#i-zlfl+.l'[#.‘-zfl
f""{.r,-} . h ,I':F? i + C’I{hzj

_ flrical — 4flxin} + 6f (i) — Af(zia) + flzia)
ha

+ O 1)




O HIGH-ACCURACY NUMERICAL
DIFFERENTIATION FORMULAS

The formulas presented in the previous sections for the forward and backward finite difierence have an emor term of O ft)
while those for the centred finite difference scheme hawve an ermor term of G{}tzj. It is possible to provide formulas with
less error by utilizing more terms in the Taylor approximation. In essence, by increasing the number of terms in the Taylor
senies approximation, we assume a higher-order polymomial for the approximation which increases the accuracy of the
derivatives. In the following presentation, the function f is assumed to be smooth and the poinis are equidistant with a
step size of h.

FORWARD FINITE DIFFERENCE

According to Taylor theorem, we hawe:

flaan) = fad + Pwoh+ T0dp2 4 o)

Using the forward finite diffierence equation (Equation 3) for f"(r;) yields:

Flah = flrin) — flay) - LR 22 2@ | o)
Therefore:
fI:TI.] _ —floga) + 4{?|:Ef+1} — 3f () T ﬂ.{hz]

In comgparison with Equation 1, this equation provides an ermor term that is directly proporiional to the square of the step
size indicating higher accuracy.

Using the same procedure, the following equations can be obtained for the second, third, and fourth dervatives:

~flxig) + 4}[-.:-;+zj]12— 6 () + 2f () O

) =
) = =3f(xipa) + 14 (xia) ~ Ezﬂinz} o+ 18 f{aiqq) = 5F(a;) + Oh?)

Py = —2flxigs) + L flwia) - E4f'[1=‘+1a+ 26 f(xip2) = 14 (2541} + 3F(x;) +OhY)




BACKWARD FINITE DIFFERENCE

According to Taylor theorem, we have:

fﬂ ] .
faim) = @) - faoh+ 28002 4 o(r2)
Using the backward finite difference equation (Equation 4) for f"{xz;) yields:

Fah = —f(ei) + [l + LEL BN I | o)

Therefore:

) = 3f (i) — dﬁ:;:l} + flzi_a) + o)

In comparison with Equation 2, this equation provides an error term that is directly proportional to the square of the
size indicating higher accuracy.
Using the same procedure, the following equations can be obtained for the second, third, and fourth derivatives:

2f(xi) — 5f(wi_1) +4f(wi_2) — flri_a)

f(x) = — B — — + O(h?)
) = 5f(a) — 18f(wi-) + 24f{;z—2] — 14 f{xi—3) + 3f(wi—yq) + O
() = 3f(xy) = 1 (zi1) + 26 (z;_2) fj.flf{s:t-_:xh 11 f(wi—q) — 2f(zi_s) +O(h2)

CENTRED FINITE DIFFERENCE

According to Taylor theorem, we have:

fleiv) = fla) + flla)h + f"{ }h, - f’”d! ﬂh - f"’;l 1}1’;'1 +O(h?)

Flei) = f) — £+ L "( Pl - e Lo o

step

Subtracting the above two equations and using the centred finite difference equation (Equation 5) for f"'(x;) yields:

Fa)2h = f{:i:a+1}—f(a:f_]jl—f{y“z} —2f(ri) ; 2f(xi1) — f(iﬁa—:ﬂ_l_oms}

Therefore:

) = —fwita) + 3f(l‘i+11)2; 8f(xi—1) + flwi_a) + O

Using the same procedure, the following equations can be obtained for the second, third, and fourth derivatives:

) = A0 160 r1sn) Z30) £16/0) ~ i) | o
h*)

F) = —flmiva) +8f(wive) — 13f(wipr) + 13f(2i1) — Bf(wi2) + flwia) + 0l
—flxips) + 12f (i) — 39f(xi1) + -‘-ﬁ fla) = 39f(xi1) + 12f(2;_0) — flwi_a)

8h?
i

L Ok
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+‘0ﬁ, !(>h.+sﬁg.~€_)

#x S = 5(Fis-vk,

2

({’H‘P )_JKP“_PH)+IO(1€+|“1L)
10( - fa) + 5 (Bu=Pr) = (B - fs)

6, B ‘
6€'+z ;L/T"'/?H - 20}?‘ +/5’,[.f.__’ = éﬂ‘_1 " /-[L)‘_g

& h‘ = fiwz '—

* % First Derivative

Bu/t £'+h = £ TC:’

wD b
Also , the Ocueraje /“L — F ; sw o _[5__';_‘7_
1/ =-1/2

4 E




-F\(x) :'-6.;%(?(3(—3}1) + q‘()(x-zh) — U5 f(>x-h)
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