

The University of Jordan
Department of Mechanical Engineering
Faculty of Engineering and Technology, spring 2014-2015

Mechanics of Materials– Course # ME094372

First Midterm Examination

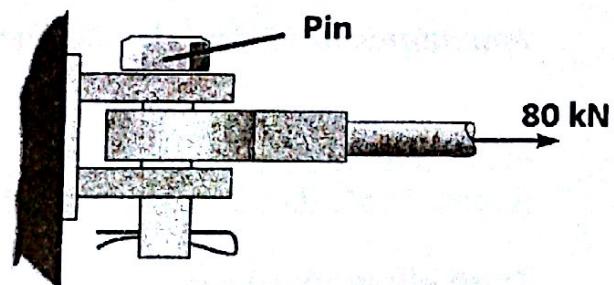
Instructors:

Prof. Mazen Qaisi
Assoc. Prof. Ibrahim Abu-Alshaikh

Prof. Osama Abu-Zied

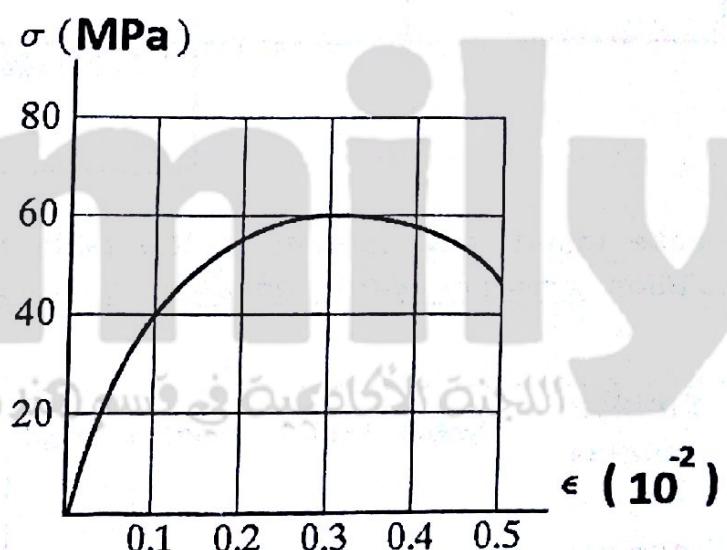
Time allowed: 60 min

Date: March 15, 2015

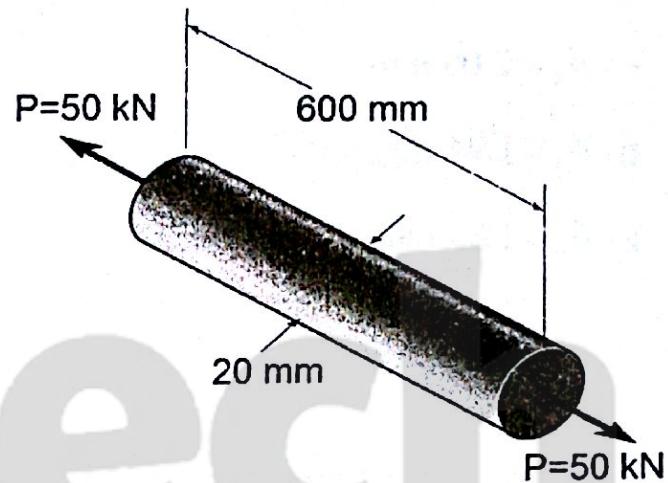

Student Name			ID#	Section #
Problem No.	Q1 (3pts)	Q2, 3,4 (3pts)	Q5, 6, 7 (9pts)	Q8,9 (6pts)
Course Outcome	4	12, 13	4, 14	2, 6
Student Outcome	SO1, 5	SO1, 2, 5	SO1, 5	SO1, 3, 5, 9
Problems Grade	3	7	10	6
	Total Grade out of 26			

Please insert your answer in the table below. Show clearly your detailed solution. Answers without detailed solution will not be weighted.

Problem number	Prob.1	Prob.2	Prob.3	Prob.4	Prob.5	Prob.6	Prob.7	Prob.8	Prob.9
Answer									


Problem.1 (3- points) The pin shown is made of a material having a failure shear stress of $\tau_{\text{fail}} = 144 \text{ MPa}$. If we apply a factor of safety of (F.S. = 2.25) against shear failure, then the minimum required diameter of the pin is:

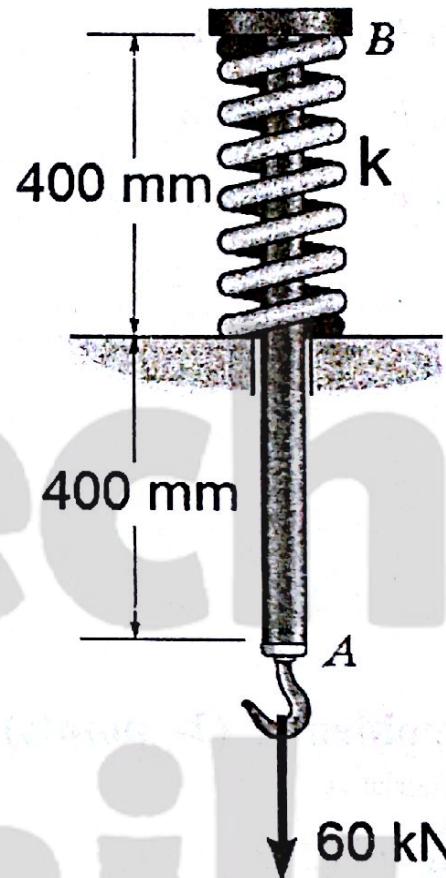
- A) $d=26.90 \text{ mm}$
- B) $d=30.00 \text{ mm}$
- C) $d=28.21 \text{ mm}$
- D) $d=29.74 \text{ mm}$
- E) $d=31.19 \text{ mm}$


Problem.2 (3- points) A tension test was performed on a specimen; the resulting stress-strain diagram is shown in the figure. The yield strength based on a 0.1% strain offset method is:

- A) $\sigma_Y = 63 \text{ MPa}$
- B) $\sigma_Y = 44 \text{ MPa}$
- C) $\sigma_Y = 55 \text{ MPa}$
- D) $\sigma_Y = 40 \text{ MPa}$
- E) $\sigma_Y = 35 \text{ MPa}$

Problem.3 (2- points) After applying the force P to a circular solid rod, its diameter becomes 19.9837 mm and it elongates by 1.5 mm. Assume that the material is linearly elastic, and then the modulus of elasticity (E) of the material is:

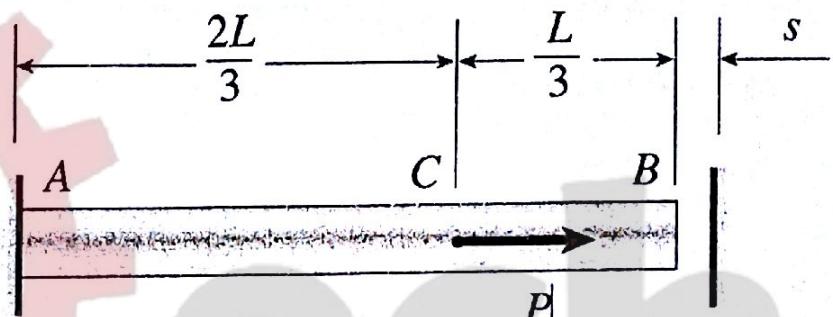
- A) $E = 59.68 \text{ GPa}$
- B) $E = 63.66 \text{ GPa}$
- C) $E = 68.21 \text{ GPa}$
- D) $E = 56.17 \text{ GPa}$
- E) $E = 75.21 \text{ GPa}$



Problem.4 (2- points) For the previous problem, the Poisson's ratio of the material is:

- A) $\nu = 0.273$
- B) $\nu = 0.288$
- C) $\nu = 0.306$
- D) $\nu = 0.326$
- E) $\nu = 0.349$

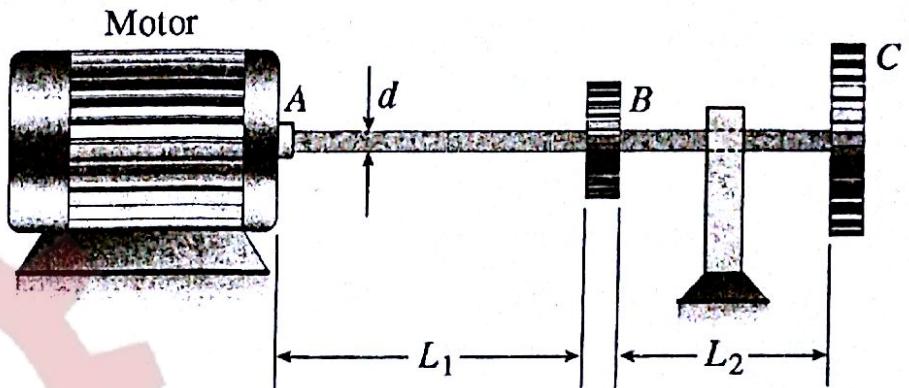
Problem.5 (4- points) If the 20-mm-diameter rod is made of A-36 steel ($E=180\text{GPa}$) and the stiffness of the spring is $k=55\text{ MN/m}$. When a force $P=60\text{ kN}$ is applied as shown, the displacement of the end A is:


- A) $\delta_A = 2.18\text{ mm}$
- B) $\delta_A = 1.20\text{ mm}$
- C) $\delta_A = 2.05\text{ mm}$
- D) $\delta_A = 1.94\text{ mm}$
- E) $\delta_A = 1.85\text{ mm}$

اللجنة الأكاديمية في قسم الهندسة الميكانيكية - الجامعة الأردنية

Problem.6 (3- points) A bar AB ($\alpha = 12 \times 10^{-6} \text{ } 1/\text{C}^\circ$) is fixed at end A and at the other end a small gap of dimension s exists between the end of the bar and a rigid wall. A load $P = 80 \text{ kN}$ acts on the bar at point C with a temperature increase of $\Delta T = 60 \text{ C}^\circ$. If the support reactions produced by the load P and by the increase in ΔT are to be equal in magnitude, then: The reactions at the fixed supports are?

- A) $R_A = R_B = 50 \text{ kN}$
- B) $R_A = R_B = 40 \text{ kN}$
- C) $R_A = R_B = 30 \text{ kN}$
- D) $R_A = R_B = 60 \text{ kN}$
- E) $R_A = R_B = 20 \text{ kN}$


$$E = 140 \text{ GPa}, L = 3 \text{ m}, A = 1500 \text{ mm}^2$$

Problem.7 (3- points) For the previous problem, the size s of the gap is?

- A) $s = 2.35 \text{ mm}$
- B) $s = 2.40 \text{ mm}$
- C) $s = 2.45 \text{ mm}$
- D) $s = 2.30 \text{ mm}$
- E) $s = 2.25 \text{ mm}$

Problem.8 (3- points) A motor delivers 200 kW at 1200 rpm to the end of a shaft (see figure). The gears at *B* and *C* take out 90 and 110 kW, respectively. Assume $G=80$ GPa, $L_1=1.8$ m, and $L_2=1.2$ m. if the allowable shear stress is 50 MPa, then the required diameter of the shaft is:

- A) $d=58$ mm
- B) $d=55$ mm
- C) $d=62$ mm
- D) $d=69$ mm
- E) $d=60$ mm

Problem.9 (3- points) For the previous problem, if $d=60$ mm, then the angle of twist between the motor and gear *C* is:

- A) $\theta=2.64^\circ$
- B) $\theta=2.20^\circ$
- C) $\theta=3.31^\circ$
- D) $\theta=4.41^\circ$
- E) $\theta=2.80^\circ$