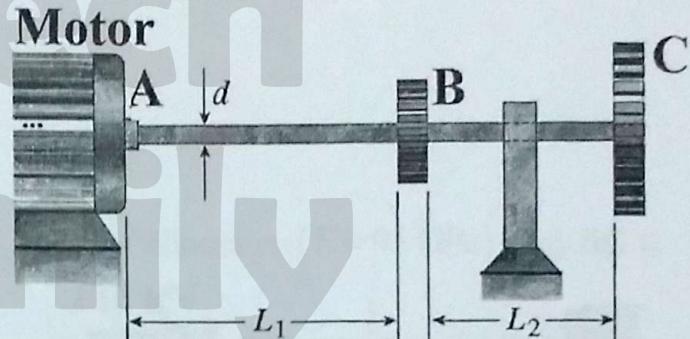


FACULTY OF ENGINEERING, Mechanical Engineering Department

Mechanics of Materials (I)


0934372

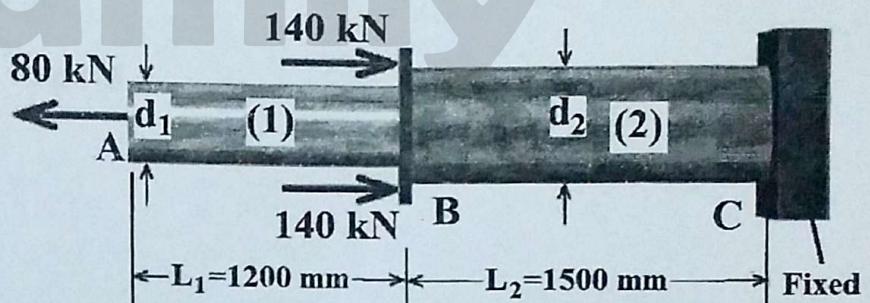
Midterm Exam (17/4/2014)

Time: 90 m

Student Name	Student #	Instructors Name	Section #

Q.1 (8- points) The shaft *ABC* shown in the figure is driven by a motor that delivers 270 kW at a rotational speed of 32 Hz. The gears at *B* and *C* take out 90 kW and 180 kW, respectively. The lengths of the two parts of the shaft are $L_1 = 1.6$ m and $L_2 = 1.1$ m. The shear modulus of elasticity of the shaft is $G = 75$ GPa.

- If the diameter of the shaft *ABC* is $d = 45$ mm, find the maximum shear stress in the shaft *ABC* and angle of twist between points *A* and *C*.
- Determine the required diameter d of the shaft, if the allowable shear stress is 110 MPa, and the allowable angle of twist between points *A* and *C* is 5.0° .

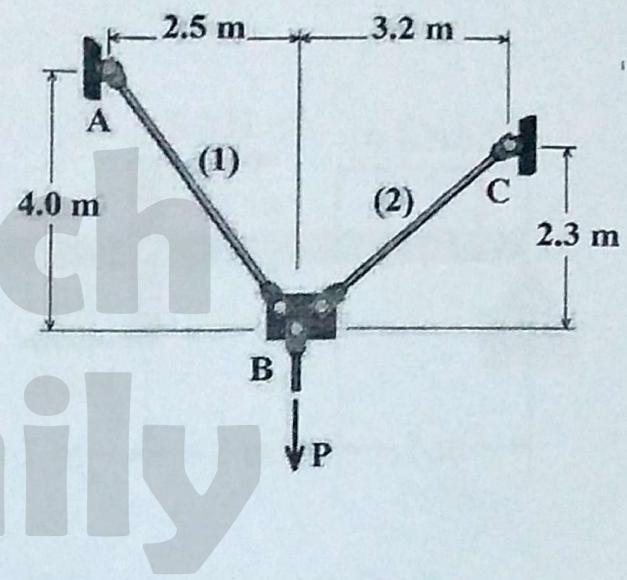

Q.2 (3- points) The solid cylindrical rods (1) and (2) are joined together by a rigid flange at B and loaded by three forces as shown. The diameter of rod (1) is $d_1 = 24\text{ mm}$ and the diameter of rod (2) is $d_2 = 42\text{ mm}$.

A) The normal stresses in rods (1) and (2) are:

- a) $\sigma_1 = 44.17 \text{ MPa (T)}$ and $\sigma_2 = 132.63 \text{ MPa (C)}$
- b) $\sigma_1 = 176.84 \text{ MPa (T)}$ and $\sigma_2 = 144.36 \text{ MPa (C)}$
- c) $\sigma_1 = 144.36 \text{ MPa (T)}$ and $\sigma_2 = 176.84 \text{ MPa (C)}$
- d) $\sigma_1 = 132.63 \text{ MPa (T)}$ and $\sigma_2 = 44.17 \text{ MPa (C)}$
- e) $\sigma_1 = 176.84 \text{ MPa (T)}$ and $\sigma_2 = 202.10 \text{ MPa (C)}$

B) The total elongation of the bar ABC if AB is made of aluminum ($E = 95 \text{ GPa}$) and BC is made of steel ($E = 205 \text{ GPa}$).

- a) 3.290 mm
- b) 2.234 mm
- c) 0 mm
- d) -1.056 mm
- e) 1.177 mm

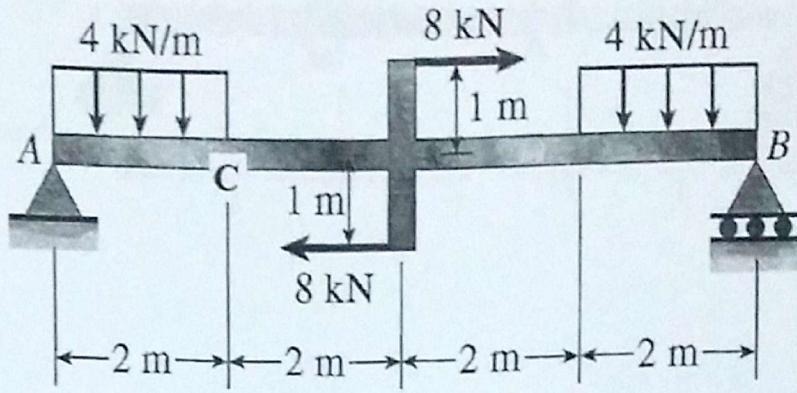

Q.3 (3- points) The solid cylindrical rods support a load ($P = 50 \text{ kN}$) as shown. If the normal stress in each rod must be limited to 130 MPa :

A) The minimum diameter required for rod (1) is:

- a) 19.96 mm
- b) 14.981 mm
- c) 18.96 mm
- d) 14.00 mm
- e) 9.981 mm

B) The shear stress in the 22 mm diameter bolt at point C (see the connection of the rod at C) is:

- a) 17.46 MPa
- b) 53.52 MPa
- c) 34.93 MPa
- d) 69.86 MPa
- e) 107.03 MPa


Q.4 (3- points) A simple beam AB is loaded as shown.

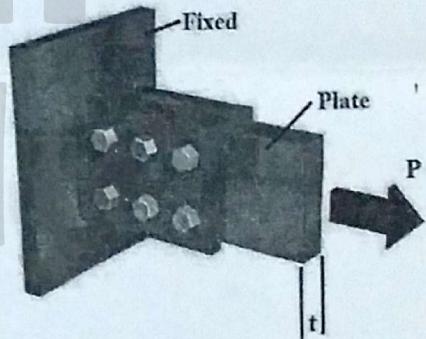
The internal shear force at Section passes through C is:

- a) 5 kN
- b) 0 kN
- c) 3 kN
- d) 4 kN
- e) -2 kN

B) The internal moment at Section passes through C is:

- a) 5 kN.m
- b) 4 kN.m
- c) 0 kN.m
- d) 6 kN.m
- e) 7 kN.m

Q.5 (3- points) Six bolts are used in the connection, as shown. The ultimate shear strength of the bolts is $\tau_u = 300 \text{ MPa}$, with a factor of safety (F.S.) 4 with respect to fracture

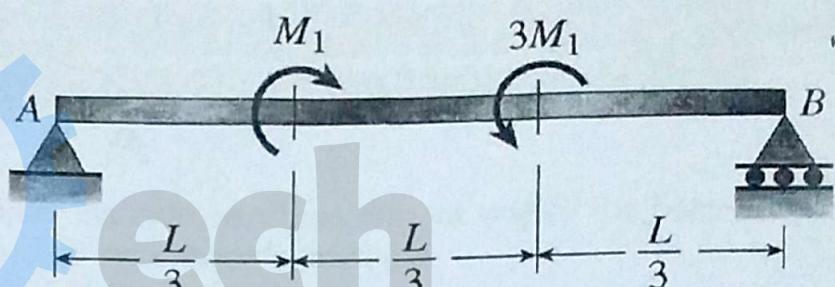

$$\left(\tau_{allow} = \frac{\tau_u}{F.S.} \right).$$

A) The minimum allowable diameter to support an applied load $P = 475 \text{ kN}$ is:

- a) 26 mm
- b) 37 mm
- c) 36 mm
- d) 18 mm
- e) 23 mm

B) If the thickness of the plate $t = 20 \text{ mm}$, and the diameter of the bolt $d = 30 \text{ mm}$. The bearing stress between the plate and the bolts is:

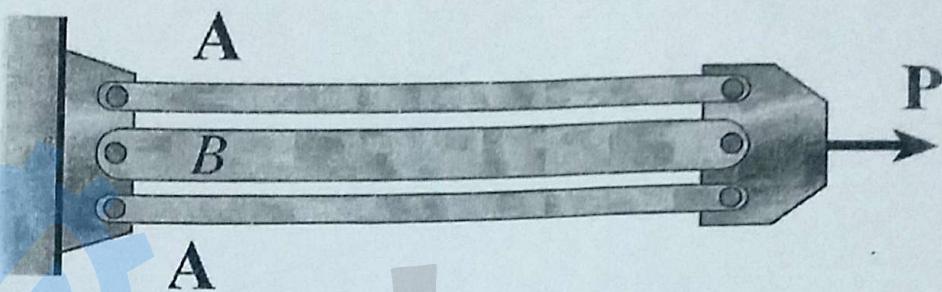
- a) 131.94 MPa
- b) 252.24 MPa
- c) 76.120 MPa
- d) 152.24 MPa
- e) 65.972 MPa


Q.6 (3- points) A simple beam AB is loaded as shown.

A) The maximum shear along the beam is:

- a) M_1/L
- b) $2M_1/L$
- c) $3M_1/L$
- d) $4M_1/3$
- e) $5M_1/3$

B) The maximum bending moment along the beam is:


- a) $6M_1/3$
- b) $3M_1$
- c) $5M_1/3$
- d) $7M_1/3$
- e) $4M_1/3$

Q.7 (9- points) Three prismatic bars, two of material *A* and one of material *B*, transmit a tensile load *P* (see figure). The two outer bars (material *A*) are identical. The cross-sectional area of the middle bar (material *B*) is 50% larger than the cross-sectional area of one of the outer bars.

Also, the modulus of elasticity of material *A* is twice that of material *B*.

- What fraction of the load *P* is transmitted by the middle bar?
- What is the ratio of the stress in the middle bar to the stress in the outer bars?
- What is the ratio of the strain in the middle bar to the strain in the outer bars?

