

General Instructions:

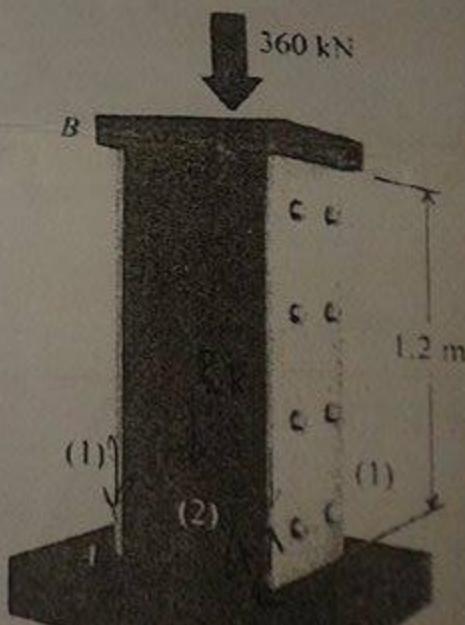
- This is a closed book, closed notes exam.
- Mobile phones are NOT allowed inside the exam Hall.
- Please attempt ALL questions.
- Use the provided space ONLY for your answers.
- Express the units properly throughout your solution.
- Present your answers in a neat and organised way.
- Exam duration: 60 mins.

Q₁ 3/10Q₂ 7/10Q₃ 7/10

17/30**Warning on exam conduct**

Where your conduct leads you to be reported for cheating, you will be subjected to the Academic Offences Procedure, you may receive a Warning on Exam Conduct, or reported immediately to the Assistant Dean for Student Affairs immediately where a penalty might be decided upon.

Problem 1 (10 Marks)

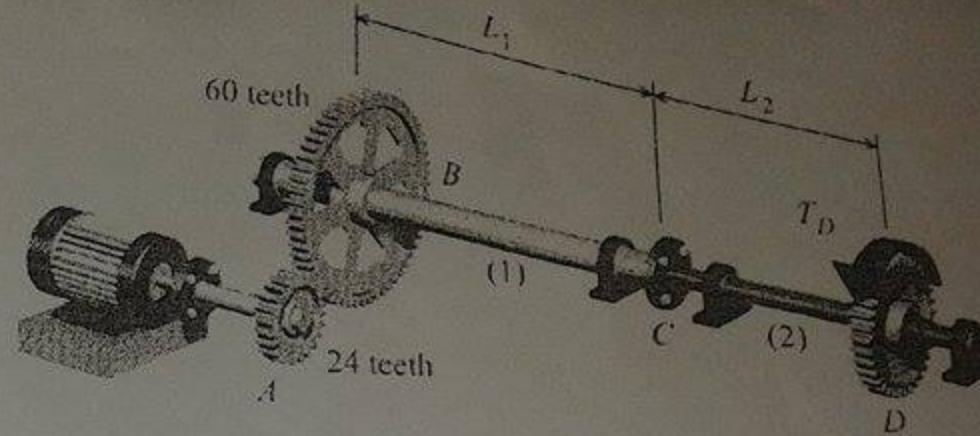

The $200 \times 200 \times 1,200$ -mm oak [$E = 12 \text{ GPa}$] block (2) shown was reinforced by bolting two $6 \times 200 \times 1,200$ mm steel [$E = 200 \text{ GPa}$] plates (1) to opposite sides of the block. A concentrated load of 360 kN is applied to a rigid cap. Determine:

- The normal stresses in the steel plates (1) and the oak block (2).
- The shortening of the block when the load is applied.

$$f = 1200 / E = 12 \text{ GPa} / A = 200 \times 200 / 6 \text{ bolts} / E_s = 200 \text{ GPa} /$$

$$P = 360 \text{ kN} / G_1 = ? / (6 - 1) /$$

(b)


November 15, 2011

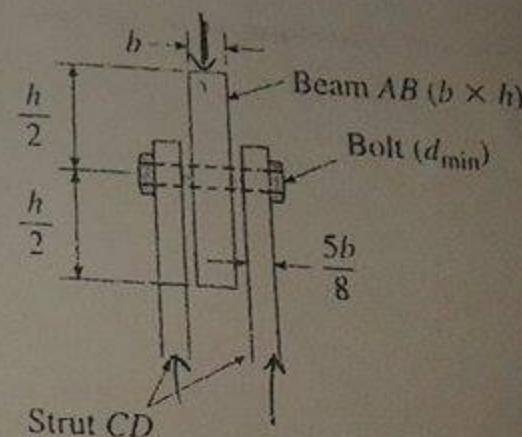
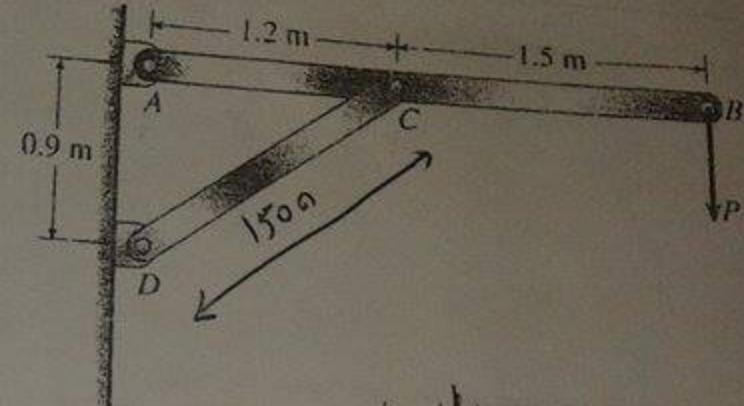
Problem II (10 Marks)

A motor supplies 20 kW at 400 rpm to gear A of the drive system shown. Shaft (1) is a solid 50-mm-diameter aluminum [$G = 28 \text{ GPa}$] shaft with a length of $L_1 = 1,200 \text{ mm}$. Shaft (2) is a solid 40-mm-diameter steel [$G = 80 \text{ GPa}$] shaft with a length of $L_2 = 750 \text{ mm}$. Shafts (1) and (2) are connected at flange C, and the bearings shown permit free rotation of the shaft.

Determine:

- the maximum shear stress in shafts (1) and (2).
- the rotation angle of gear D with respect to gear B.

$$20 \text{ kW} / w = 400 \text{ rpm} / d_1 = 50 / G_1 = 28 \text{ GPa} / \delta_1 = 1200 /$$



$$d_2 = 40 / G_2 = 20 / 80 \text{ GPa} / \delta_2 = 750$$

$$T_b = \frac{T_r}{T_f} = \frac{1910.93 \times 4 \times 20 \times 32}{7 \times 40^4}$$

Problem III (10 Marks)

A horizontal beam AB with cross-sectional dimensions ($b = 19\text{mm}$) \times ($h = 200\text{ mm}$) is supported by an inclined strut CD and carries a load $P = 12\text{ kN}$ at joint B as shown. The strut, which consists of two bars each of thickness $5b/8$, is connected to the beam by a bolt passing through the three bars meeting at joint C (see the figure).

- If the allowable shear stress in the bolt is 90 MPa , what is the minimum required diameter d_{\min} of the bolt at C?
- If the allowable bearing stress in the bolt is 130 MPa , what is the minimum required diameter d_{\min} of the bolt at C?
- What is the normal stress in the strut under the effect of the load P ?
- What is the change in length in the strut CD?

$$= 11.975 / T$$

$$T_{b\text{ allow}} = 90 \text{ MPa} / (d_c = ?)$$