Q1 [7 pts]. Evaluate f.\;vdx+(x2 —y*)dy where
C i Loide F1.68
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b)) C=CU C, uC; UCy. (Hint:use Green’s Theorem)
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Q2 [8 pts]. Evaluate the surface integral HF.(JS, where F=xi + yf + (2x+2)
§

)k and § is
{ RN id z=4- -2 2 1 :
the part of the p'll"'\hﬂlﬂld 2=4 X =3 that lies ﬂh()\"c the unit di‘;k (xz +y2 <])
' =1) with

upward oricntation, {" (i, [ Uceavw, U sin U]
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Q3 (8 pts]. Let E be the solid unit cube with opposing corners at the origin and (1. 1, 1) and

faces parallel to the coordinate planes. Let S be the boundary surface of . oriented with the

outward-pointing normal. If F =[2xy,3ye?, xsin z], then

(¢) Compute div(F).
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Q4 [7 ptsl. Suppose F=—yi+xj+zkand § is the part of the sphere x” + y? 4 ;2 = 25
below the plane z =4, oriented with the outward-pointing normal (so that the normal at
(5,0,0)is 1 ).

(f) Compute cur{(F).
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