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PREFACE

See also http: //www.wiley.com/college/kreyszig/

Goal of the Book. Arrangement of Material

This new edition continues the tradition of providing instructors and students with a
comprehensive and up-to-date resource for teaching and learning engineering
mathematics, that is, applied mathematics for engineers and physicists, mathematicians
and computer scientists, as well as members of other disciplines. A course in elementary
calculus is the sole prerequisite.

The subject matter is arranged into seven parts A-G:

A Ordinary Differential Equations (ODEs) (Chaps. 1-6)

B Linear Algebra. Vector Calculus (Chaps. 7-9)

C Fourier Analysis. Partial Differential Equations (PDEs) (Chaps. 11-12)
D Complex Analysis (Chaps. 13-18)

E Numeric Analysis (Chaps. 19-21)

F Optimization, Graphs (Chaps. 22-23)

G Probability, Statistics (Chaps. 24-25).

This is followed by five appendices:

App. 1 References (ordered by parts)

App. 2 Answers to Odd-Numbered Problems
App. 3 Auxiliary Material (see also inside covers)
App. 4 Additional Proofs

App. 5 Tables of Functions.

This book has helped to pave the way for the present development of engineering
mathematics. By a modern approach to those areas A-G, this new edition will prepare
the student for the tasks of the present and of the future. The latter can be predicted to
some extent by a judicious look at the present trend. Among other features, this trend
shows the appearance of more complex production processes, more extreme physical
conditions (in space travel, high-speed communication, etc.), and new tasks in robotics
and communication systems (e.g.. fiber optics and scan statistics on random graphs) and
elsewhere. This requires the refinement of existing methods and the creation of new ones.

It follows that students need solid knowledge of basic principles, methods, and results,
and a clear view of what engineering mathematics is all about, and that it requires
proficiency in all three phases of problem solving:

¢ Modeling, that is, translating a physical or other problem into a mathematical form,
into a mathematical model; this can be an algebraic equation, a differential equation,
a graph, or some other mathematical expression.

* Solving the model by selecting and applying a suitable mathematical method, often
requiring numeric work on a computer.

 Interpreting the mathematical result in physical or other terms to see what it
practically means and implies.

It would make no sense to overload students with all kinds of little things that might be of
occasional use. Instead they should recognize that mathematics rests on relatively few basic
concepts and involves powerful unifying principles. This should give them a firm grasp on
the interrelations among theory, computing, and (physical or other) experimentation.
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Preface

General Features of the Book Include:

* Simplicity of examples, to make the book teachable—why choose complicated
examples when simple ones are as instructive or even better?

* Independence of chapters, to provide flexibility in tailoring courses to special needs.

« Self-contained presentation, except for a few clearly marked places where a proof
would exceed the level of the book and a reference is given instead.

* Modern standard notation, to help students with other courses. modern books, and
mathematical and engineering journals.

Many sections were rewritten in a more detailed fashion, to make it a simpler book. This
also resulted in a better balance between theory and applications.

Use of COI'T]EDGTG!’S

The presentation is adaptable to various levels of technology and use of a computer or
graphing calculator: very little or no use, medium use, or intensive use of a graphing
calculator or of an unspecified CAS (Computer Algebra System, Maple, Mathematica,
or Matlab being popular examples). In either case texts and problem sets form an entity
without gaps or jumps. And many problems can be solved by hand or with a computer
or both ways. (For software, see the beginnings of Parr E on Numeric Analysis and Part G
on Probability and Statistics.)

More specifically, this new edition on the one hand gives more prominence to tasks
the computer cannot do, notably, modeling and interpreting results. On the other hand, it
includes CAS projects, CAS problems, and CAS experiments, which do require a
computer and show its power in solving problems that are difficult or impossible to access
otherwise, Here our goal is the combination of intelligent computer use with high-quality
mathematics. This has resulted in a change from a formula-centered teaching and learning
of engineering mathematics to a more quantitative, project-oriented, and visual approach.
CAS experiments also exhibit the computer as an instrument for observations and
experimentations that may become the beginnings of new research, for “proving” or
disproving conjectures, or for formalizing empirical relationships that are often quite useful
to the engineer as working guidelines. These changes will also help the student in
discovering the experimental aspect of modern applied mathematics.

Some routine and drill work is retained as a necessity for keeping firm contact with
the subject matter. In some of it the computer can (but must not) give the student a hand,
but there are plenty of problems that are more suitable for pencil-and-paper work.

Major Changes

. New Problem Sets. Modern engineering mathematics is mostly feamwork. It usually
combines analytic work in the process of modeling and the use of computer algebra and
numerics in the process of solution, followed by critical evaluation of results. Our
problems—some straightforward, some more challenging, some “thinking problems™ not
accessible by a CAS, some open-ended—reflect this modern situation with its increased
emphasis on qualitative methods and applications, and the problem sets take care of this
novel situation by including team projects, CAS projects, and writing projects. The latter
will also help the student in writing general reports, as they are required in engineering
work quite frequently.

-

2. Computer Experiments, using the computer as an instrument of “experimental
mathematics” for exploration and research (see also above). These are mostly open-ended
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experiments, demonstrating the use of computers in experimentally finding results, which
may be provable afterward or may be valuable heuristic qualitative guidelines to the
engineer, in particular in complicated problems.

3. More on modeling and selecting methods, tasks that usually cannot be automated.

4. Student Solutions Manual and Study Guide enlarged, upon explicit requests
of the users. This Manual contains worked-out solutions to carefully selected odd-numbered
problems (to which App. | gives only the final answers) as well as general comments
and hints on studying the text and working further problems, including explanations on
the significance and character of concepts and methods in the various sections of the
book.

Further Changes, New Features

» Electric circuits moved entirely to Chap. 2, to avoid duplication and repetition

» Second-order ODEs and Higher Order ODEs placed into two separate chapters
(2 and 3)

+ In Chap. 2, applications presented before variation of parameters
« Series solutions somewhat shortened, without changing the order of sections

+ Material on Laplace transforms brought into a better logical order: partial fractions
used earlier in a more practical approach, unit step and Dirac’s delta put into separate
subsequent sections, differentiation and integration of transforms (not of functions!)
moved to a later section in favor of practically more important topics

* Second- and third-order determinants made into a separate section for reference
throughout the book

« Complex matrices made optional

= Three sections on curves and their application in mechanics combined in a single section
» First two sections on Fourier series combined to provide a better, more direct start
+ Discrete and Fast Fourier Transforms included

» Conformal mapping presented in a separate chapter and enlarged

» Numeric analysis updated

» Backward Euler method included

» Stiffness of ODEs and systems discussed

= List of software (in Part E) updated; another list for statistics software added (in Part G)
= References updated, now including about 75 books published or reprinted after 1990

Suggestions for Courses: A Four-Semester Sequence

The material, when taken in sequence, is suitable for four consecutive semester courses,
meeting 3—4 hours a week:

Ist Semester. ODEs (Chaps. 1-5 or 6)
2nd Semester. Linear Algebra. Vector Analysis (Chaps. 7-10)
3rd Semester. Complex Analysis (Chaps. 13-18)

4th Semester. Numeric Methods (Chaps. 19-21)
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Suggestions for Independent One-Semester Courses

The book is also suitable for various independent one-semester courses meeting 3 hours
a week. For instance:

Introduction to ODEs (Chaps. 1-2, Sec. 21.1)
Laplace Transforms (Chap. 6)

Matrices and Linear Systems (Chaps. 7-8)

Vector Algebra and Calculus (Chaps. 9-10)
Fourier Series and PDEs (Chaps. 11-12, Secs. 21.4-21.7)
Introduction to Complex Analysis (Chaps. 13-17)
Numeric Analysis (Chaps. 19, 21)

Numeric Linear Algebra (Chap. 20)

Optimization (Chaps. 22-23)

Graphs and Combinatorial Optimization (Chap. 23)
Probability and Statistics (Chaps. 24-25)
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PART A

Ordinary
Differential
Equations (ODEs)

CHAPTER 1 First-Order ODEs

CHAPTER 2 Second-Order Linear ODEs

CHAPTER 3 Higher Order Linear ODEs

CHAPTER 4 Systems of ODEs. Phase Plane. Qualitative Methods
CHAPTER 5 Series Solutions of ODEs. Special Functions
CHAPTER 6 Laplace Transforms

Differential equations are of basic importance in engineering mathematics because many
physical laws and relations appear mathematically in the form of a differential equation.
In Part A we shall consider various physical and geometric problems that lead to
differential equations, with emphasis on modeling, that is, the transition from the physical
situation to a “mathematical model.” In this chapter the model will be a differential
equation, and as we proceed we shall explain the most important standard methods for
solving such equations.

Part A concerns ordinary differential equations (ODEs), whose unknown functions
depend on a single variable. Partial differential equations (PDEs), involving unknown
functions of several variables, follow in Part C.

ODEs are very well suited for computers. Numeric methods for ODEs can be studied
directly after Chaps. 1 or 2. See Secs. 21.1-21.3, which are independent of the other
sections on numerics.



Basic

In this chapter we begin our program of studying ordinary differential equations (ODEs)
by deriving them from physical or other problems (modeling), solving them by standard
methods, and interpreting solutions and their graphs in terms of a given problem. Questions
of existence and uniqueness of solutions will also be discussed (in Sec. 1.7).

We begin with the simplest ODEs, called ODEs of the first order because they involve
only the first derivative of the unknown function. no higher derivatives. Our usual
notation for the unknown function will be y(x), or y(¢) if the independent variable is
time .

If you wish, use your computer algebra system (CAS) for checking solutions, but make
sure that you gain a conceptual understanding of the basic terms, such as ODE, direction
field, and initial value problem.

COMMENT. Numerics for first-order ODEs can be studied immediately after this
chapter. See Secs. 21.1-21.2, which are independent of other sections on numerics.

Prerequisite: Integral calculus.
Sections that may be omitted in a shorter course: 1.6, 1.7.
References and Answers to Problems: App. 1 Part A, and App. 2

Concepts. Modeling

If we want to solve an engineering problem (usually of a physical nature), we first have
to formulate the problem as a mathematical expression in terms of variables, functions,
equations, and so forth. Such an expression is known as a mathematical model of the
given problem. The process of setting up a model, solving it mathematically, and
interpreting the result in physical or other terms is called mathematical modeling or, briefly,
modeling. We shall illustrate this process by various examples and problems because
modeling requires experience. (Your computer may help you in solving but hardly in
setting up models.)

Since many physical concepts, such as velocity and acceleration, are derivatives. a
model is very often an equation containing derivatives of an unknown function. Such
a model is called a differential equation. Of course, we then want to find a solution
(a function that satisfies the equation), explore its properties. graph it, find values of it,
and interpret it in physical terms so that we can understand the behavior of the physical
system in our given problem. However, before we can turn to methods of solution we
must first define basic concepts needed throughout this chapter.
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Some applications of differential equations
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An ordinary differential equation (ODE) is an equation that contains one or several
derivatives of an unknown function, which we usually call y(x) (or sometimes y(7) if the
independent variable is time 7). The equation may also contain y itself, known functions
of x (or 1), and constants. For example,

(1) y' = cosx,
(2) v+ 9y =0,
(3) X2y + 265" = (x% + 2)y?

are ordinary differential equations (ODEs). The term ordinary distinguishes them from
partial differential equations (PDEs), which involve partial derivatives of an unknown
function of two or more variables. For instance, a PDE with unknown function « of two
variables x and y is
0%u a%u i
dx2 ay®
PDEs are more complicated than ODEs; they will be considered in Chap. 12.

An ODE is said to be of order » if the nth derivative of the unknown function y is the
highest derivative of y in the equation. The concept of order gives a useful classification
into ODE:s of first order, second order, and so on. Thus, (1) is of first order, (2) of second
order, and (3) of third order.

In this chapter we shall consider first-order ODEs. Such equations contain only the
first derivative y' and may contain y and any given functions of x. Hence we can write
them as

4) Flx,y,¥)=10

or often in the form

¥y = f(x, ).

This is called the explicit form. in contrast with the implicit form (4). For instance, the
implicit ODE x~3y" — 4y = 0 (where x # 0) can be written explicitly as y' = 4x%y2,

Concept of Solution
A function
v = hix)

is called a solution of a given ODE (4) on some open interval a < x < b if h(x) is defined
and differentiable throughout the interval and is such that the equation becomes an identity
if y and y” are replaced with h and &', respectively. The curve (the graph) of 4 is called
a solution curve.

Here, open interval ¢ < x < b means that the endpoints a and b are not regarded as
points belonging to the interval. Also, a < x < b includes infinite intervals —% < x < b,
a<x <= —%<x< = /(the real line) as special cases.
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EXAMPLE 2
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w

Verification of Solution

v = h{x) = ¢/x (¢ an arbitrary constant, x # 0) is a solution of xy' = —y. To verify this, differentiate,
_1»' =K'= —c/x?, and multiply by x to get xv' = —c/x = —y. Thus, .-:_\" = —y, the given ODE. il
Solution Curves

The ODE y' = dyldx = cos x can be solved directly by integration on both sides. Indeed, using calculus, we
obtain y = [ cosx dx = sinx + ¢, where ¢ is an arbitrary constant. This is a family of solutions. Each value

of ¢, for instance, 2.75 or 0 or —8, gives one of these curves. Figure 2 shows some of them, for ¢ = —3, =2,
-1,0,1,2, 3,4 =
¥
._\‘ " N . ; >
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Fig. 2. Solutions y = sin x + ¢ of the ODE y’ = cos x

Exponential Growth, Exponential Decay
From calculus we know that y = ce™ (¢ any constant) has the derivative (chain rule!)

F dy
y = ;‘? = 3ce = 3.
This shows that v is a solution of _\" = 3yv. Hence this ODE can model exponential growth, for instance, of
animal populations or colonies of bacteria. It also applies to humans for small populations in a large country
(e.g.. the United States in early times) and is then known as Malthus’s law." We shall say more about this topic
in Sec. 1.5.

Similarly, y' = —0.2y (with a minus on the right!) has the solution y = ce™ 2t Hence this ODE models
exponential decay, for instance, of a radioactive substance (see Example 5). Figure 3 shows solutions for some
positive ¢. Can you find what the solutions look like for negative ¢? [iS]

¥
25K
2K

Fig. 3. Solutions of y' = —0.2y in Example 3

!Named after the English pioneer in classic economics, THOMAS ROBERT MALTHUS (1766-1 834).
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We see that each ODE in these examples has a solution that contains an arbitrary constant
¢. Such a solution containing an arbitrary constant ¢ is called a general solution of the
ODE.

(We shall see that ¢ is sometimes not completely arbitrary but must be restricted to
some interval to avoid complex expressions in the solution.)

We shall develop methods that will give general solutions uniguely (perhaps except for
notation). Hence we shall say the general solution of a given ODE (instead of a general
solution).

Geometrically, the general solution of an ODE is a family of infinitely many solution
curves, one for each value of the constant ¢. If we choose a specific ¢ (e.g.. ¢ = 6.45 or
0 or —2.01) we obtain what is called a particular solution of the ODE. A particular
solution does not contain any arbitrary constants.

In most cases, general solutions exist, and every solution not containing an arbitrary constant
is obtained as a particular solution by assigning a suitable value to ¢. Exceptions to these
rules occur but are of minor interest in applications; see Prob. 16 in Problem Set 1.1.

Initial Value Problem

In most cases the unique solution of a given problem, hence a particular solution, is
obtained from a general solution by an initial condition y(x,) = y,. with given values
Xp and yg, that is used to determine a value of the arbitrary constant ¢. Geometrically
this condition means that the solution curve should pass through the point (x;, yo) in
the xy-plane. An ODE together with an initial condition is called an initial value
problem. Thus, if the ODE is explicit, v’ = f(x, v), the initial value problem is of the
form

(5) y' = flx, y), ¥(xg) = Yo.

Initial Value Problem

Solve the initial value problem
y=—= =3y, ¥0) = 5.7.

Solution. The general solution is y(x) = 093"; see Example 3. From this solution and the initial condition

we obtain y(0) = ce® = ¢ = 5.7. Hence the initial value problem has the solution y(x) = 5.7¢%. This is a
particular solution. .

Modeling

The general importance of modeling to the engineer and physicist was emphasized at the
beginning of this section. We shall now consider a basic physical problem that will show
the typical steps of modeling in detail: Step 1 the transition from the physical situation
(the physical system) to its mathematical formulation (its mathematical model); Step 2
the solution by a mathematical method; and Step 3 the physical interpretation of the result.
This may be the easiest way to obtain a first idea of the nature and purpose of differential
equations and their applications. Realize at the outset that your computer (your CAS) may
perhaps give you a hand in Step 2, but Steps 1 and 3 are basically your work. And Step 2
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EXAMPLE 5

requires a solid knowledge and good understanding of solution methods available to you—
you have to choose the method for your work by hand or by the computer. Keep this in
mind, and always check computer results for errors (which may result, for instance, from
false inputs).

Radioactivity. Exponential Decay

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount present at any later time.
Physical Informarion. Experiments show that at each instant a radioactive substance decomposes at a rate
proportional to the the amount present.

Step 1. Setting up a mathematical model (a differential equation) of the physical process. Denote by y(1) the
amount of substance still present at any time £. By the physical law, the time rate of change v'(r) = dy/dr is
proportional to v(¢). Denote the constant of proportionality by & Then

o -
The value of k is known from experiments for various radioactive substances (e.g., k = —1.4- 107 Msec™",

approximately, for radium anglzzﬁ). k is negative because y(r) decreases with time. The given initial amount is
0.5 g. Denote the corresponding time by r = (). Then the initial condition is y(0) = (.5. This is the instant at
which the process begins; this motivates the term initial condition (which, however, is also used more generally
when the independent variable is not time or when you choose a r other than + = 0). Hence the model of the
process is the initial value problem

dy

7 —= = fy, (0) = 0.5.
(7 T ky ¥(0) 5

Step 2. Mathematical solution. As in Example 3 we conclude that the ODE (6) models exponential decay and
has the general solution (with arbitrary constant ¢ but definite given k)

(8) ¥ = ce®t,

We now use the initial condition to determine ¢. Since y(0) = ¢ from (8). this gives y(0) = ¢ = 0.5. Hence the
particular solution governing this process is

(9 W = 0.5 (Fig. 4).

Always check your result—it may involve human or computer errors! Verify by differentiation (chain rule!)
that your solution (9) satisfies (7) as well as y(0) = 0.5:

dy 3
== 0.5ke™ = k+0.5¢" = ky. y(0) = 0.5¢° = 0.5.

Step 3. Interpretation of result. Formula (9) gives the amount of radioactive substance at time 7. It starts from
the correct given initial amount and decreases with time because k (the constant of proportionality, depending
on the kind of substance) is negative. The limit of y as r — = is zero.

0 0.5 1 15 2 2.5 3 ¢

Fig. 4. Radioactivity (Exponential decay,
y = 0.5, with k = —15 as an example)
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EXAMPLE 6 A Geometric Application

Geometric problems may also lead to initial value problems. For instance, find the curve through the point
(1, 1) in the xy-plane having at each of its points the slope —y/x.

Solution. The slope y' should equal —y/x. This gives the ODE y' = —yl/x. Its general solution is y = ¢/x
(see Example 1). This is a family of hyperbolas with the coordinate axes as asymptotes.

Now, for the curve to pass through (1, 1). we must have y = | when x = |. Hence the initial condition is
¥(1) = 1. From this condition and y = ¢fx we get ¥(1) = ¢/1 = 1; that is, ¢ = 1. This gives the particular
solution ¥ = 1/x (drawn somewhat thicker in Fig. 5). [ |

/
\

Fig. 5. Solutions of y = —y/x (hyperbolas)

(14| CALCULUS
Solve the ODE by integration.

1.y = —sin mx 2. =g
3y = xe*2 4. v' = cosh 4x
[59] VERIFICATION OF SOLUTION

State the order of the ODE. Verify that the given function
is a solution. (a, b, ¢ are arbitrary constants.)
y = tan (x + ¢)

y = a cos wx + b sin wx

8.y +2y=4(x+ 1% y=5F+2u%+ 2+ 1
9. y" = cos x,

10-14| INITIAL VALUE PROBLEMS

Verify that y is a solution of the ODE. Determine from y
the particular solution satisfying the given initial condition.
Sketch or graph this solution.

10. ¥ = 0.5y, y = ce®%, y(2) =2

11. v/ =1 +4y% y=2tan Qv + ¢). y0) =0
12. y' =y —x, y=ce®+x+1, y0) =3

13. y" + 2xy =0, y= ce™", ¥(1) = 1/e

0) = §m

y = —sinx + ax® + bx + ¢

14. y' = ytanx, y = ¢ secux,

=5

Fig. 6. Particular solutions and singular

solution in Problem 16

15. (Existence) (A) Does the ODE y'2 = —1 have a (real)
solution?

(B) Does the ODE |y| + |y| = 0 have a general
solution?

16. (Singular solution) An ODE may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular solution.
The ODE y'2 — xy' + y = 0 is of the kind. Show by
differentiation and substitution that it has the general
solution y = ex — ¢” and the singular solution y = x%/4.
Explain Fig. 6.

17-22| MODELING, APPLICATIONS

The following problems will give you a first impression of
modeling. Many more problems on modeling follow
throughout this chapter.

17. (Falling body) If we drop a stone, we can assume air
resistance (“drag”) to be negligible. Experiments show
that under that assumption the acceleration y" = d?y/dr?
of this motion is constant (equal to the so-called
acceleration of gravity g = 9.80 m/sec® = 32 ft/sec?).
State this as an ODE for y(), the distance fallen as a
function of time . Solve the ODE to get the familiar
law of free fall, y = gr%/2.



SEC. 1.2 Geometric Meaning of y' = f(x, y). Direction Fields

18.

19.

20.

21.

(Falling body) If in Prob. 17 the stone starts at r = 0
from initial position v, with initial velocity v = vy,
show that the solution is y = g*/2 + vot + yo. How
long does a fall of 100 m take if the body falls from
rest? A fall of 200 m? (Guess first.)

(Airplane takeoff) If an airplane has a run of 3 km,
starts with a speed 6 m/sec., moves with constant
acceleration, and makes the run in | min, with what
speed does it take off?

(Subsonic flight) The efficiency of the engines of
subsonic airplanes depends on air pressure and usually
is maximum near about 36 000 ft. Find the air pressure
y(x) at this height without calculation. Physical
information. The rate of change v'(x) is proportional
to the pressure, and at 18 000 ft the pressure has
decreased to half its value v, at sea level.

(Half-life) The half-life of a radioactive substance is
the time in which half of the given amount disappears.
Hence it measures the rapidity of the decay. What

is the half-life of radium ggRa??® (in years) in
Example 57

22. (Interest rates) Show by algebra that the investment y(r)

from a deposit y, after r years at an interest rate r is

Val) = yoll + r]°  (Interest compounded annually)

yal) = yoll + (1/365)]%5%
(Interest compounded daily).

Recall from calculus that
1+ (1/n)]"— easn— =

hence [1 + (1/n)]™ — €™; thus

i

Ye(t) = voe' (Interest compounded continuously).

What ODE does the last function satisfy? Let the
initial investment be $1000 and r = 6%. Compute the
value of the investment after | year and after 5 years
using each of the three formulas. Is there much
difference?

1.2 Geometric Meaning of y' = f(x, y).

Direction Fields

A first-order ODE

(1)

y'= 1@ )

has a simple geometric interpretation. From calculus you know that the derivative y'(x)
of y(x) is the slope of y(x). Hence a solution curve of (1) that passes through a point
(X0, Yo) must have at that point the slope y'(xp) equal to the value of f at that point; that is,

y'(x0) = Flxo, Yo).

Read this paragraph again before you go on, and think about it.

It follows that you can indicate directions of solution curves of (1) by drawing short
straight-line segments (lineal elements) in the xy-plane (as in Fig. 7a) and then fitting
(approximate) solution curves through the direction field (or slope field) thus obtained.
This method is important for two reasons.

1. You need not solve (1). This is essential because many ODEs have complicated
solution formulas or none at all.

2. The method shows, in graphical form, the whole family of solutions and their typical
properties. The accuracy is somewhat limited, but in most cases this does not matter.

Let us illustrate this method for the ODE

(2) vy =y
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Direction Fields by a CAS (Computer Algebra System). A CAS plots lineal elements
at the points of a square grid, as in Fig. 7a for (2), into which you can fit solution curves.
Decrease the mesh size of the grid in regions where f(x, y) varies rapidly.

Direction Fields by Using Isoclines (the Older Method). Graph the curves
f(x. ¥) = k = const, called isoclines (meaning curves of equal inclination). For (2) these
are the hyperbolas f(x, y) = xy = k = const (and the coordinate axes) in Fig. 7b. By (1),
these are the curves along which the derivative y' is constant. These are not yet solution
curves—don’t get confused. Along each isocline draw many parallel line elements of the
corresponding slope k. This gives the direction field, into which you can now graph
approximate solution curves.

We mention that for the ODE (2) in Fig. 7 we would not need the method, because we
shall see in the next section that ODEs such as (2) can easily be solved exactly. For the
time being, let us verify by substitution that (2) has the general solution

y(x) = ce* R (¢ arbitrary).

Indeed, by differentiation (chain rule!) we get y' = x(ce®”2) = xy. Of course, knowing
the solution, we now have the advantage ol obtaining a feel for the accuracy of the
method by comparing with the exact solution. The particular solution in Fig. 7 through
(x, ¥) = (1, 2) must satisfy y(1) = 2. Thus, 2 = ce'?, ¢ = 2/Ve = 1.213, and the particular
solution is y(x) = 1.213¢72.

A famous ODE for which we do need direction fields is

3) y =011 — x?) — \i .

(It is related to the van der Pol equation of electronics, which we shall discuss in Sec. 4.5.)
The direction field in Fig. 8 shows lineal elements generated by the computer. We have
also added the isoclines for k = —5, —3, 4, 1 as well as three typical solution curves, one
that is (almost) a circle and two spirals approaching it from inside and outside.

v ¥|
Il \‘\ ; , / A } Y
Y Y N /i { A ) 1 R
- ,\ I.'
\ \ ot ;;j'r / D \\"\\
\ N+ 77/ e X AN
R \\.k.\_ i ’.'/"' , - 1
\ N\ »:“ 11—~ -~ Lt 14+ = e
| | e N ) e
= P A e = Lo
2y ~ Nl T =yt £ ; T
. '\_ % —~— . g Vv
£ T N R 1 A 1
! ] b \ ™ \'\- ll’ I P ."/.
/ ) T R Sk ¥ b/ X
O e R R Rl N \, I b¢ ¥
(a) ByaCAS (b) By isoclines

Fig. 7. Direction field of y' = xy
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Fig. 8. Direction field of y’ = 0.1(1 — x?) — %

On Numerics

Direction fields give “all” solutions, but with limited accuracy. If we need accurate numeric
values of a solution (or of several solutions) for which we have no formula, we can use
a numeric method. If you want to get an idea of how these methods work, go to Sec.
21.1 and study the first two pages on the Euler-Cauchy method, which is typical of
more accurate methods later in that section, notably of the classical Runge-Kutta method.
It would make little sense to interrupt the present flow of ideas by including such methods
here: indeed, it would be a duplication of the material in Sec. 21.1. For an excursion to
that section you need no extra prerequisites; Sec. 1.1 just discussed is sufficient.

DIRECTION FIELDS, SOLUTION CURVES
Graph a direction field (by a CAS or by hand). In the field
graph approximate solution curves through the given point
or points (x, ¥) by hand.

Ly =e*— 5 (0,0), (0, 1)

2. 4yy' = —9x,(2,2)

3y =144 Gm 1)

4. y' =y — 2y% (0, 0), (0. 0.25), (0, 0.5), (0, 1)
5.9 =22 -1y, (1, =-2)

6.y =1+ siny, (—1,0), (1, —4)

7.9 =33+ % (0, 1)

y
8.y =2xy +1,(-1,2),(0,0), (1, -2)
9. y' = ytanhx — 2, (=1, —2), (1, 0), (1, 2)

10. ¥' = e¥* (1, 1), (2, 2). (3, 3)

ACCURACY

Direction fields are very useful because you can see
solutions (as many as you want) without solving the ODE,
which may be difficult or impossible in terms of a formula.
To get a feel for the accuracy of the method, graph a field,
sketch solution curves in it, and compare them with the
exact solutions.

11. y' = sin %Trx 12, y' = 1/x?
13. y' = —2y (Sol. y = ce™%%)
14. v' = 3y/x (Sol. y = ¢x?)

15. v/ = ~Inx

MOTIONS

A body moves on a straight line, with velocity as given,
and y(r) is its distance from a fixed point 0 and ¢ time. Find
a model of the motion (an ODE). Graph a direction field.
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it sketch a solution curve corresponding to the given

initial condition.

16. Velocity equal to the reciprocal of the distance, y(1) = 1

17
18

19.

. Product of velocity and distance equal to —r, y(3) = —3

. Velocity plus distance equal to the square of time,
0) =6

(Skydiver) Two forces act on a parachutist, the
attraction by the earth mg (m = mass of person plus
equipment, g = 9.8 m/sec? the acceleration of gravity)
and the air resistance, assumed to be proportional to
the square of the velocity v(). Using Newton’s second
law of motion (mass X acceleration = resultant of the
forces), set up a model (an ODE for v(r)). Graph a
direction field (choosing m and the constant of
proportionality equal to 1). Assume that the parachute
opens when v = 10 m/sec. Graph the corresponding
solution in the field. What is the limiting velocity?

20. CAS PROJECT. Direction Fields. Discuss direction

fields as follows.

(a) Graph a direction field for the ODE y=1-y
and in it the solution satisfying y(0) = 5 showing
exponential approach. Can you see the limit of any
solution directly from the ODE? For what initial
condition will the solution be increasing? Constant?
Decreasing?

(b) What do the solution curves of y' = —x%y* look
like, as concluded from a direction field. How do they
seem to differ from circles? What are the isoclines?
What happens to those curves when you drop the minus
on the right? Do they look similar to familiar curves?
First, guess.

(c) Compare. as best as you can. the old and the
computer methods, their advantages and disadvantages.
Write a short report.

1.3 Separable ODEs. Modeling

Many practically useful ODEs can be reduced to the form

(1) gy’ = flx)

by purely algebraic manipulations. Then we can integrate on both sides with respect to x,
obtaining

2) f gy y dx = ff(x) dx + c.

On the left we can switch to y as the variable of integration. By calculus, y’ dx = dy, so
that

&) [ew) ay = [ dx + c.

If f and g are continuous functions, the integrals in (3) exist, and by evaluating them we
obtain a general solution of (1). This method of solving ODE:s is called the method of
separating variables, and (1) is called a separable equation, because in (3) the variables
are now separated: x appears only on the right and y only on the left.

EXAMPLE 1 A Separable ODE
The ODE y' =1 + ‘\'2 is separable because it can be written
dy
I +,2 = dx. By integration, arctany = x + ¢ or y = tan (x + c).
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EXAMPLE 2

EXAMPLE 3

It is very important to introduce the constant of integration immediately when the integration is performed.
If we wrote arctan v = x, then y = tan x, and rhen introduced ¢. we would have obtained y = tanx + ¢, which
is not a solution (when ¢ # 0). Verify this. i

Modeling

The importance of modeling was emphasized in Sec. 1.1, and separable equations yield
various useful models. Let us discuss this in terms of some typical examples.

Radiocarbon Dating?

In September 1991 the famous lceman (Oetzi), 2 mummy from the Neolithic period of the Stone Age found in
the ice of the Oetztal Alps (hence the name “Oetzi”) in Southern Tyrolia near the Austrian—Ttalian border, caused
a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon EC” 1o carbon gC 12 in
this mummy is 52.5% of that of a living organism?

Physical Information, In the atmosphere and in living organisms, the ratio of radioactive carbon GC“ (made
radioactive by cosmic rays) to ordinary carbon ¢C'? is constant. When an organism dies. its absorption of zC
by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive carbon
ratio in the fossil with that in the atmosphere. To do this, one needs to know the half-life of C**, which is 5715
years (CRC Handbook of Chemistry and Physies, 83rd ed., Boca Raton: CRC Press, 2002, page 11-52, line 9).

Solution. Modeling. Radioactive decay is governed by the ODE y' = ky (see Sec. 1.1, Example 5). By
separation and integration (where 1 is time and v is the initial ratio of SCm to gC 12

1y
‘T =k, Inly =kt + ¢, ¥y = yoett.

Next we use the half-life # = 5715 to determine k. When 1 = H. half of the original substance is still present.
Thus,
In 0.5 0.693

IH 5% =
0 € = 0.3vq, =15, = = - = —(.0001213.
Vo€ 0.5vg e 0 k m 5715

Finally, we use the ratio 52.5% for determining the time ¢ when Oetzi died (actually, was killed).

; In 0.525
ot = 00001213t _ (y 595 b= 0005 5312. Answer: About 5300 years ago.

Other methods show that radiocarbon dating values are usually too small. According to recent research, this is
due 1o a variation in that carbon ratio because of industrial pollution and other factors. such as nuclear testing. M

Mixing Problem

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 9 contains 1000 gal of water in which initially 100 Ib of salt is dissolved.
Brine runs in at a rate of 10 gal/min, and each gallon contains 5 Ib of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time 1.

Solution. Step 1. Setting up a model. Let v(r) denote the amount of salt in the tank at time r. Its time rate
of change is
‘\" = Salt inflow rate — Salt outflow rate “Balance law™.

5 1b times 10 gal gives an inflow of 50 Ib of salt. Now, the outflow is 10 gal of brine. This is 10/1000 = 0.01
(= 1%) of the total brine content in the tank. hence 0.01 of the salt content y(1), that is, 0.01y(r). Thus the model
is the ODE

(4) v =50 - 001y = —0.01(y — 5000).

2Method by WILLARD FRANK LIBBY (1908-1980), American chemist, who was awarded for this work
the 1960 Nobel Prize in chemistry.
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Step 2. Solution of the model. The ODE (4) is separable. Separation, integration, and taking exponents on both
sides gives

dy

—_— = (), ¥ ' — = —(). + o, S = —D.Ul‘l.
g = 001dinly~ 5000| = ~0011 + ¢ ¥ = 5000 = ce

Initially the tank contains 100 Ib of salt. Hence y(0) = 100 is the initial condition that will give the unique
solution. Substituting y = 100 and ¢ = 0 in the last equation gives 100 — 5000 = ce” = ¢. Hence ¢ = —4900.
Hence the amount of salt in the tank at time 7 is

il () = 5000 — 4900201

This function shows an exponential approach to the limit 5000 Ib; see Fig. 9. Can you explain physically that
v(r) should increase with time? That its limit is 5000 1b? Can you see the limit directly from the ODE?

The model discussed becomes more realistic in problems on pollutants in lakes (see Problem Set 1.5. Prob.
27) or drugs in organs. These types of problems are more difficult because the mixing may be imperfect and
the flow rates (in and out) may be different and known only very roughly. =

y

BODD [~ — = = e

4000 -
| 3000 /
‘ 2000
::Q 1000 '—/

! 100 I I I 1 1
0 100 200 300 400 500 ¢t

Tank Salt content y(¢)

Fig. 9. Mixing problem in Example 3

Heating an Office Building (Newton’s Law of Cooling’)

Suppose that in Winter the daytime temperature in a certain office building is maintained at 70°F. The heating
is shut off at 10 p.m. and turned on again at 6 a.M. On a certain day the temperature inside the building at
2 aM. was found to be 65°F. The outside temperature was 50°F at 10 p.m. and had dropped to 40°F by 6 A.m.
What was the temperature inside the building when the heat was turned on at 6 A.m.?

Physical information. Experiments show that the time rate of change of the temperature 7 of a body B (which
conducts heat well, as, for example, a copper ball does) is proportional to the difference between T and the
temperature of the surrounding medium (Newton’s law of cooling).

Solution. Step 1. Setting up a model. Let T(t) be the temperature inside the building and T, the outside
temperature (assumed to be constant in Newton's law). Then by Newton's law,

dr
(6) — = k(T — T,).
dr

Such experimental laws are derived under idealized assumptions that rarely hold exactly. However, even if a
model seems to fit the reality only poorly (as in the present case), it may still give valuable qualitative information.
To see how good a model is, the engineer will collect experimental data and compare them with caleulations
from the model.

2Sir ISAAC NEWTON (1642-1727), great English physicist and mathematician, became a professor at
Cambridge in 1669 and Master of the Mint in 1699. He and the German mathematician and philosopher
GOTTFRIED WILHELM LEIBNIZ (1646-1716) invented (independently) the differential and integral calculus.
Newton discovered many basic physical laws and created the method of investigating physical problems by
means of calculus. His Philosophiae natwralis principia mathematica (Mathematical Principles of Natural
Philosophy, 1687) contains the development of classical mechanics. His work is of greatest importance to both
mathematics and physics.
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Step 2. General solution. We cannot solve (6) because we do not know T, just that it varied between 50°F
and 40°F, so we follow the Golden Rule: If you cannot solve your problem, try to solve a simpler one. We
solve (6) with the unknown function T4 replaced with the average of the two known values, or 45°F. For physical
reasons we may expect that this will give us a reasonable approximate value of T in the building at 6 A.m.

For constant T4 = 45 (or any other constant value) the ODE (6) is separable. Separation, integration, and
taking exponents gives the general solution

dr
T—45

=k dt, In|T — 45| = kt + ¢*, () = 45 + ce (c=é).

Step 3. Particular solution. We choose 10 p.m. to be ¢+ = (). Then the given initial condition is 7(0) = 70 and
yields a particular solution, call it T}, By substitution,

T(0) = 45 + ce® = 70, ¢ =70 — 45 = 25, Ty(n) = 45 + 256,

Step 4. Determination of k. We use T(4) = 65, where t = 4 is 2 .M. Solving algebraically for k£ and inserting
kinto T,(1) gives (Fig. 10)

Ty(4) = 45 + 25¢* = 65. e =08, k=1In0.8 = —0.056. Tp(r) = 45 + 25¢~ 0096,
Step 5. Answer and interpretation. 6 a.M. is 1 = 8 (namely, 8 hours after 10 p.M.), and
Tp(8) = 45 + 25¢70056 '8 = g1 [°F),

Hence the temperature in the building dropped 9°F, a result that looks reasonable.

Fig. 10, Particular solution (temperature) in Example 4

Leaking Tank. Outflow of Water Through a Hole (Torricelli’s Law)

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a
cylindrical tank with a hole at the bottom (Fig. 11). You are asked to find the height of the water in the tank at
any time if the tank has diameter 2 m. the hole has diameter | cm, and the initial height of the water when the
hole is opened is 2.25 m. When will the tank be empty?

Physical information. Under the influence of gravity the outflowing water has velocity

(7 v(n) = 0.600V 2gh(n) (Torricelli’s law™),

where fi(t) is the height of the water above the hole at time r, and ¢ = 980 emfsec® = 32.17 fifsec? is the
acceleration of gravity at the surface of the earth.

Solution. Step 1. Setting up the model. To get an equation, we relate the decrease in water level /(1) to the
outflow. The volume AV of the outflow during a short time At is

AV= Av Ar (A = Area of hole).

*EVANGELISTA TORRICELLI (1608-1647). Italian physicist, pupil and successor of GALILEO GALILEI
(1564-1642) at Florence. The “contraction factor” 0.600 was introduced by J. C. BORDA in 1766 because the
stream has a smaller cross section than the area of the hole.
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AV must equal the change AV* of the volume of the water in the tank. Now
AVE = —RB Ah (B = Cross-sectional area of tank)

where Al (= 0) is the decrease of the height i(r) of the water. The minus sign appears because the volume of
the water in the tank decreases. Equating AV and AV* gives

—B Ah = Av Ar

We now express v according to Torricelli’s law and then let Ar (the length of the time interval considered)
approach O—this is a standard way of obtaining an ODE as a model. That is, we have

Ah A A
—— b i = - — 2
r v 0.600\2ghn),

and by letting Ar — 0 we obtain the ODE

dh A
i ~26.56 . Vi,

where 26.56 = 0.600 V' 2 - 980. This is our model, a first-order ODE.

Step 2. General solution. Our ODE is separable. A/B is constant. Separation and integration gives

dh A A
R i, 7 - SE —
7 2656 - dt and 2Vh = c* — 26.56 5 "
Dividing by 2 and squaring gives i = (¢ — 13.2841/B)°. Inserting 13.284/B = 13.28 - 0.5%7/100%7 = 0.000332
yields the general solution
h(r) = (¢ — 0.0003320)%.

Step 3. Particular solution. The initial height (the initial condition) is #(0) = 225 cm, Substitution of ¢ = 0
and h = 225 gives from the general solution 2= 225, ¢ = 15.00 and thus the particular solution (Fig. 11)
hp(r) = (15.00 — 0.0003320)°,

Step 4. Tank empty. hy(1) = 0if 1 = 15.00/0.000332 = 45 181 [sec] = 12.6 [hours].
Here you see distinctly the importance of the choice of units—we have been working with the Cgs system,
in which time is measured in seconds! We used g = 980 cm/sec?.

Step 5. Checking. Check the result. ]
2.00m h
"e : "'" 250 |-
= Water level \
i = at time ¢ 200 _‘-\_.
' 150
225m b
100 N
50 |- N
}. Outflowing 0 | \ N 4
"l water 0 10000 30000 50000 ¢
Tank Water level h(2) in tank

Fig. 1. Example 5. Outflow from a cylindrical tank (“leaking tank”). Torricelli’s law

Extended Method: Reduction to Separable Form

Certain nonseparable ODEs can be made separable by transformations that introduce for
¥ a new unknown function. We discuss this technique for a class of ODEs of practical
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importance, namely, for equations

@) gl f(f}) ;
X

Here, f is any (differentiable) function of y/x, such as sin (v/x), (v/x)%, and so on. (Such
an ODE is sometimes called a homogeneous ODE, a term we shall not use but reserve
for a more important purpose in Sec. 1.5.)

The form of such an ODE suggests that we set y/x = u; thus,

9) y = ux and by product differentiation y =u'x + u

Substitution into y" = f(y/x) then gives u'x + u = f(u) or u’x = f(u) — u. We see that
this can be separated:

(10) dia = ﬁ
flu) —u X
Reduction to Separable Form
Solve
2xyy’ = )__2 — 22

Solution. To get the usual explicit form, divide the given equation by 2xy,

2ry w2y

Now substitute y and y" from (9) and then simplify by subtracting u on both sides,

' u 1 i u 1 =i~ 1
x+ug=— = =, hrxrs—0m = 08—,
2 2u 2 2u 2u
You see that in the last equation you can now separate the variables,
2u du dx ’ . 2 !
= = By integration, In(l + )= =Inlx] 4+ c* =1In|—| + c*
1 + u x x

Take exponents on both sides to get 1 + u® = ¢fx or | + (y/x)?> = ¢/x. Multiply the last equation by x* to

obtain (Fig. 12)

2 2

2 2 £ 3. 2
+ » X —_— — + 5 __.

X ¥ =cx Thus ( 2) y o=

This general solution represents a family of circles passing through the origin with centers on the x-axis.

Fig. 12 General solution (family of circles) in Example 6
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1. (Constant of integration) An arbitrary constant of
integration must be introduced immediately when the
integration is performed. Why is this important? Give
an example of your own.

[2-9] GENERAL SOLUTION

Find a general solution. Show the steps of derivation. Check
your answer by substitution.

2.y +(x+2y%=0

3.y =2sec2y

4.y =(y+9)? (y+9%=10)
5.9y +36x=0

6. y' = (4x% + v /(xv)

7. y' sin mx = y cos mx

8. xy' =% +y

=]

Ly e™ = y2 + ]

[10-19] INITIAL VALUE PROBLEMS

Find the particular solution. Show the steps of derivation,

beginning with the general solution. (L, R, b are constants.)

10. yy' + 4x = 0, y(0) = 3

11. drldt = =2tr, r(0) = ry

12. 2xyy" = 3y2 + %, y(1) = 2

13. L dlldt + Rl = 0, I(0) = I,

14. y' = yix + (2x%/y) cos(x?), _\;{\/1;?2—) =Vr

15. €2y’ = 2(x + 2)y®, y(0) = 1/V5 = 0.45

16. xy" = y + 4x® cos?(v/x), ¥(2) = 0

17. y'x Inx = y, y(3) = In 81

18. dr/d® = b[(dr/dB) cos 0 + r sin 0), r3m) = 7.
0<bh<l

19. yy' = (x — De™, y(0) = 1

20. (Particular solution) Introduce limits of integration in
(3) such that y obtained from (3) satisfies the initial
condition y(xg) = vo. Try the formula out on Prob. 19.

!'ji_ﬁi.-'.'j APPLICATIONS, MODELING

21. (Curves) Find all curves in the xy-plane whose
tangents all pass through a given point (a, b).

22, (Curves) Show that any (nonvertical) straight line
through the origin of the xy-plane intersects all solution
curves of y' = g(y/x) at the same angle.

23. (Exponential growth) If the growth rate of the amount
of yeast at any time 7 is proportional to the amount
present at that time and doubles in 1 week. how much
yeast can be expected after 2 weeks? After 4 weeks?

24. (Population model) If in a population of bacteria the
birth rate and death rate are proportional to the number

25.

26.

27

28

29.

31.

32.

of individuals present, what is the population as a
function of time? Figure out the limiting situation for
increasing time and interpret it.

(Radiocarbon dating) If a fossilized tree is claimed to
be 4000 years old, what should be its zC'* content
expressed as a percent of the ratio of zC* to ¢C'2 in a
living organism?

(Gompertz growth in tumors) The Gompertz model
is y' = —Ay Iny (A > 0), where y(r) is the mass of
tumor cells at time . The model agrees well with
clinical observations. The declining growth rate with
increasing y > 1 corresponds to the fact that cells in
the interior of a tumor may die because of insufficient
oxygen and nutrients, Use the ODE to discuss the
growth and decline of solutions (tumors) and to find
constant solutions. Then solve the ODE.

(Dryer) If wet laundry loses half of its moisture
during the first 5 minutes of drying in a dryer and if
the rate of loss of moisture is proportional to the
moisture content, when will the laundry be practically
dry, say, when will it have lost 95% of its moisture?
First guess.

(Alibi?) Jack, arrested when leaving a bar, claims that
he has been inside for at least half an hour (which
would provide him with an alibi). The police check the
water temperature of his car (parked near the entrance
of the bar) at the instant of arrest and again 30 minutes
later, obtaining the wvalues 190°F and 110°F,
respectively. Do these results give Jack an alibi? (Solve
by inspection.)

(Law of cooling) A thermometer. reading 10°C, is
brought into a room whose temperature is 23°C. Two
minutes later the thermometer reading is 18°C. How
long will it take until the reading is practically 23°C,
say, 22.8°C? First guess.

(Torricelli’s law) How does the answer in Example 5
(the time when the tank is empty) change if the
diameter of the hole is doubled? First guess.

(Torricelli’s law) Show that (7) looks reasonable
inasmuch as V2gh(1) is the speed a body gains if it
falls a distance i (and air resistance is neglected).

(Rope) To tie a boat in a harbor, how many times must
a rope be wound around a bollard (a vertical rough
cylindrical post fixed on the ground) so that a man
holding one end of the rope can resist a force exerted
by the boat one thousand times greater than the man
can exert? First guess. Experiments show that the
change AS of the force S in a small portion of the rope
is proportional to S and to the small angle A¢ in Fig.
13. Take the proportionality constant (.15,
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33

g

35.

Small
portion
of rope

Problem 32

Fig. 13.

(Mixing) A tank contains 800 gal of water in which
200 Ib of salt is dissolved. Two gallons of fresh water
runs in per minute, and 2 gal of the mixture in the tank,
kept uniform by stirring, runs out per minute. How
much salt is left in the tank after 5 hours?
WRITING PROJECT. Exponential Increase, Decay,
Approach. Collect, order, and present all the information
on the ODE y" = ky and its applications from the text
and the problems. Add examples of your own.

CAS EXPERIMENT. Graphing Solutions. A CAS
can usually graph solutions even if they are given by
integrals that cannot be evaluated by the usual methods
of calculus. Show this as follows.

36.

19

(A) Graph the curves for the seven initial value
2

problems y" = e, y(0) = 0, =1, =2, =3, common

axes. Are these curves congruent? Why?

(B) Experiment with approximate curves of nth partial

sums of the Maclaurin series obtained by termwise

integration of that of y in (A); graph them and describe

qualitatively the accuracy for a fixed interval

(0 = x = b and increasing n, and then for fixed n and

increasing b.

(C) Experiment with y' = cos (x?) as in (B).

(D) Find an initial value problem with solution

y= e"zj ¢~ dt and experiment with it as in (B).
(4]

TEAM PROJECT. Torricelli’s Law. Suppose that
the tank in Example 5 is hemispherical, of radius R,
initially full of water, and has an outlet of 5 cm? cross-
sectional area at the bottom. (Make a sketch.) Set up
the model for outflow. Indicate what portion of your
work in Example 5 you can use (so that it can become
part of the general method independent of the shape of
the tank). Find the time ¢ to empty the tank (a) for any
R, (b) for R = 1 m. Plot 1 as function of R. Find the
time when i = R/2 (a) for any R, (b) for R = 1 m.

1.4 Exact ODEs. Integrating Factors

We remember from calculus that if a function u(x, y) has continuous partial derivatives,
its differential (also called its total differential) is

du
du = — dx +
ax

du
— dy.
dy

From this it follows that if u(x, y) = ¢ = const, then du = 0.
¢, then

2.3 _

For example, if u = x + x~y

du = (1 + 2xy*) dx + 3x*%dy =0

or

y

P @
dx

1+ 2xy®
BT

an ODE that we can solve by going backward. This idea leads to a powerful solution

method as follows.

A first-order ODE M(x, y) + N(x, y)y' = 0, written as (use dy = y' dx as in Sec. 1.3)

(1

M(x, v) dx + N(x, y) dv = 0
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is called an exact differential equation if the differential form M(x, y) dx + N(x, y) dy
is exact, that is, this form is the differential

du du
(2) du= —dx + —dy
ox dy

of some function u(x, y). Then (1) can be written
du = 0.

By integration we immediately obtain the general solution of (1) in the form
3 u(x, y) = c.

This is called an implicit solution, in contrast with a solution y = h(x) as defined in Sec.
1.1, which is also called an explicit solution, for distinction. Sometimes an implicit solution
can be converted to explicit form. (Do this for x* + y* = 1.) If this is not possible, your
CAS may graph a figure of the contour lines (3) of the function u(x, y) and help you in
understanding the solution.

Comparing (1) and (2), we see that (1) is an exact differential equation if there is some
function u(x, y) such that

4) LY, B 2Ly
( @ =M ® =N

From this we can derive a formula for checking whether (1) is exact or not, as follows,

Let M and N be continuous and have continuous first partial derivatives in a region in
the xy-plane whose boundary is a closed curve without self-intersections. Then by partial
differentiation of (4) (see App. 3.2 for notation),

oM 0%u
ady dy ax
N u
dx ax ay

By the assumption of continuity the two second partial derivatives are equal. Thus

am dN
(5) e
ay dx

This condition is not only necessary but also sufficient for (1) to be an exact differential
equation. (We shall prove this in Sec. 10.2 in another context. Some calculus books (e.g.,
Ref. [GR11] also contain a proof.)

If (1) is exact, the function u(x, y) can be found by inspection or in the following
systematic way. From (4a) we have by integration with respect to x
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(6) u =fde + k(y);

in this integration, y is to be regarded as a constant, and k(y) plays the role of a “constant”
of integration. To determine k(y), we derive du/dy from (6), use (4b) to get dk/dy, and
integrate dk/dy to get k.

Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b).
Then instead of (6) we first have by integration with respect to y

(6%) = fN dy + I(x).

To determine /(x), we derive du/dx from (6%), use (4a) to get df/dx, and integrate. We
illustrate all this by the following typical examples.

An Exact ODE
Solve

(7) cos (x + y) de + (3_3'2 +2y +cos{x +y)dy =0.

Solution. Step 1. Test for exactness. Our equation is of the form (1) with
M = cos (x + ),

N = 3)'2 + 2y + cos (x + y).

Thus
am )
— = —sin (x + y),
ay :
aN :
— Samgmixd ),
ox

From this and (5) we see that (7) is exact.

Step 2. Implicit general solution. From (6) we obtain by integration
(8) u= jMfit' + k(y) = fcos (x + ¥)dx + k(y) = sin (x + y) + k(y).

To find k(y), we differentiate this formula with respect to y and use formula (4b), obtaining

fu dk 2
— =cos(x+y)+ — =N=3y"+ 2y + cos (x + y).
ay dy

Hence dkidy = 3_\_-'2 + 2y. By integration, k = )‘3 + )’2 + ¢*. Inserting this result into (8) and observing (3),

we obtain the answer
ulx, y) =sin(x + y) + _v3 + )‘2 =g,

Step 3. Checking an implicit solution. We can check by differentiating the implicit solution u(x, y) = ¢ implicitly
and see whether this leads to the given ODE (7):

au

oy @ =cos (x +y) dr + (cos (x + y) + 3y® + 2y) dy = 0.

du
9) du = — dx +
dx

This completes the check. (=]
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EXAMPLE 3

CHAP.1 First-Order ODEs

An Initial Value Problem

Solve the initial value problem

(1 (cos y sinhx + 1) dx — sin y coshx dy = 0, ¥l) =2
Solution. You may verify that the given ODE is exact. We find 1. For a change, let us use (6%),
0= - j sin y cosh x dy + l(x) = cos y coshx + (x).

From this, dw/dx = cosy sinhx + difdv = M = cosy sinhx + 1. Hence difdv = 1. By integration,
I(x) = x + ¢* This gives the general solution u(x, y) = cos y coshx + x = ¢. From the initial condition,
cos 2cosh | + 1 = 0.358 = . Hence the answer is cos y cosh x + x = (1.358. Figure 14 shows the particular
solutions for ¢ = 0, 0.358 (thicker curve). 1, 2, 3. Check that the answer satisfies the ODE. (Proceed as in
Example 1.) Also check that the initial condition is satisfied. i8]

¥y

2.5~
2.0

15[

1.0

NV
' I 1

I
1.0

I I | 1 I
0 0.5 1.6 20 25 30 «x

Fig. 14. Particular solu.ions in Example 2

WARNING! Breakdown in the Case of Nonexactness
The equation —y dx + xdy = 0 is not exact because M = —y and N = x, so that in (5), aM/ay = —1 but

aN/ax = 1. Let us show that in such a case the present method does not work. From (6),

du dk
H= fMd.\ + k(y) = —xy + k(y), hence E = o d_v )

Now, du/dy should equal N = x, by (4b). However, this is impossible because k(v) can depend only on y. Try
(6%): it will also fail. Solve the equation by another method that we have discussed. [

Reduction to Exact Form. Integrating Factors

The ODE in Example 3 is —y dx + xdy = 0. It is not exact. However, if we multiply it
by 1/x% we get an exact equation [check exactness by (5)!].

—ydx + xdy ] 1 y
(n e =-%dx+—dy=d(i):0.
X X X &

Integration of (11) then gives the general solution y/x = ¢ = const.
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This example gives the idea. All we did was multiply a given nonexact equation, say,
(12) P(x, y) dx + O(x, y) dy = 0,

by a function F that, in general, will be a function of both x and y. The result was an equation
(13) FPdx + FQdy =0

that is exact, so we can solve it as just discussed. Such a function F(x, y) is then called
an integrating factor of (12).
Integrating Factor

The integrating factor in (11) is F = 1/x%. Hence in this case the exact equation (13) is

X X

—vex + xdy v ) 3
FPdx + FQ {f_\' = - 3 =d1=]=0. Solution _; =

These are straight lines v = cx through the origin.
It is remarkable that we can readily find other integrating factors for the equation —y dx + x dy = 0, namely,
I{\'z. 1/(xy), and I,l’(_t-2 + ;-2). because

—vdx + xdy x —ydx + xdy x —ydy + xdv y
fl"]'} 72 = d T . —_—— _I'.f ]n ’\_ P — s % = d arctan :l- . .

xy 2y

How to Find Integrating Factors

In simpler cases we may find integrating factors by inspection or perhaps after some trials,
keeping (14) in mind. In the general case, the idea is the following.

For M dx + N dy = 0 the exactness condition (4) is dM/dy = dN/dx. Hence for (13),
FPdx + FQ dy = 0, the exactness condition is

ad d
(15) o Ry =
dy dx
By the product rule, with subscripts denoting partial derivatives, this gives
F,P + FP;, = F,Q + FQ,.

In the general case, this would be complicated and useless. So we follow the Golden Rule:
If you cannot solve your problem, try to solve a simpler one—the result may be useful
(and may also help you later on). Hence we look for an integrating factor depending only
on one variable: fortunately. in many practical cases, there are such factors, as we shall
see. Thus, let F = F(x). Then F,, = 0, and F,, = F' = dF/dx, so that (15) becomes

FPy = F'Q + FQ,.
Dividing by FQ and reshuffling terms, we have

(16) Ld—F—R h R—l '
Fdx*". whnere -—Q 'a—‘,'—zx—'

This proves the following theorem.
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THEOREM 1

THEOREM 2

EXAMPLE 5

CHAP.1 First-Order ODEs

i Integrating Factor F(x) '
If (12) is such that the right side R of (16), depends only on x, then (12) has an
integrating factor F = F(x), which is obtained by integrating (16) and taking

exponents on both sides,

(17) F(x) = exp fR(x) dx.

Similarly, if F* = F*¥(y), then instead of (16) we get

(8 1 dF* 7 . . 1 (aQ aP)
—— =R where =il e
) F* dy P\ ax dy

and we have the companion

Integrating Factor F*(y) |

If (12) is such that the right side R* of (18) depends only on v, then (12) has an
integrating factor F* = F*(y), which is obtained from (18) in the form |

(19) F#(y) = exp IR*{_\-'} dy.

Application of Theorems 1 and 2. Initial Value Problem

Using Theorem 1 or 2, find an integrating factor and solve the initial value problem

(20) (€Y + yeVydx + (xé? — 1) dy =0, y(0) = —1

Solution. Step 1. Nonexactness. The exactness check fails:

P8 L. . 8 3
— = — (&Y + yel)y = &Y 4 oY + yet but -£=—(xey—1)=ey.
dy ay i . dx dx

Step 2. Integrating factor. General solution. Theorem 1 fails because R [the right side of (16)] depends on
both x and y,
1 P a0 ) 1
Ri=— | == = (&Y + ¥ + ye¥ — &Y),
0 ( iy  ax ) w1 . ’

Try Theorem 2. The right side of (18) is

R)k:_]_. Q_E =—I._(ey_ex+h'_e£f_‘.e!!)=_]
P\ ox ay eV 4yt ) i

Hence (19) gives the integrating factor F#(y) = ¢~ . From this result and (20) you get the exact equation
(e +yyde+ (x—e Yydy=0.
Test for exactness: you will get | on both sides of the exactness condition. By integration, using (4a),

= f (e" + y)dv = ™ + xy + k(v).
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Differentiate this with respect to y and use (4b) to get

i + dk N 5 dk
—_=x — = =x—e 3 _
dy dy dy

Hence the general solution is

ux, ) =e*+axy+eV=c

Step 3. Particular solution. The initial condition y(0) = 1 gives w(0, —1) = 1 + 0 + ¢ = 3.,72. Hence the
answer is e” + xy + e~ ¥ = | + ¢ = 3.72. Figure 15 shows several particular solutions obtained as level curves
of u(x, ¥y) = ¢, obtained by a CAS, a convenient way in cases in which it is impossible or difficult to cast a
solution into explicit form. Note the curve that (nearly) satisfies the initial condition.

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the initial
condition.

B I".I I".\ I‘\ I".I\:\".I;':'|"'\\'I'

b9
T
—N—t R

\

e /I"
=% _———

Fig. 15, Particular solutions in Example 5

1-20| EXACT ODEs. INTEGRATING FACTORS 11. —ydx + xdy =0
Test for exactness. If exact, solve. If not, use an integrating 12, (Y — y)dx + (xe* Y + 1) dy = 0

factor as given or find it by inspection or from the theorems

— = i arpd
in the text. Also, if an initial condition is given, determine —Bydih Jray =10, FlGy)= pix

the corresponding particular solution. 4. *+y)dx —xydy =0, y2)=1
Lx2dx+3y*dy=0 2. (x — y)dx —dy) =0  15. e®*(2 cos y dx — siny dy) = 0, y0) =0

3. —a sin wx sinh y dx + cos mx coshy dy = 0 16. —sinxy (ydx + xdy) = 0, y(1) =

4. (e — ye®) dx + (xe¥ — ™) dy =0 17. (cos wx + w sin wx) dx + e dy = 0, y(0) =
5. 9xdx + d4ydy =20 18. (cos xy + x/y) dx + (1 + (x/y) cos xy) dy = 0
6. e“(cos y dx — siny dy) =0 19. e ¥dx+ e ™(—e?V+ 1)dy=0, F= gt
7. e 2 dr — 2re 2% df = 0 20. (siny cosy + x cos? yvydx + xdy =0

8. (2x+ 1y — yix¥) dx + 2y + Ux — xly¥) dy =0 -
5 ; 21. Under what conditions for the constants A, B, C, D is
9. (—y/x® + 2 cos 2x) dx + (1/x — 2 sin 2y) dy = 0 (Ax + By) dx + (Cx + Dy) dy = 0 exact? Solve

10. —2xy sin (x2) dx + cos (x2) dy = 0 the exact equation.
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CHAP.1 First-Order ODEs

CAS PROJECT. Graphing Particular Solutions
Graph particular solutions of the following ODE.
proceeding as explained.

1
21 vcosxdy + = dv =0

(a) Test for exactness. If necessary, find an integrating
factor. Find the general solution u(x, v) = c.

(b) Solve (21) by separating variables. Is this simpler
than (a)?

(c) Graph contours u(x, y) = ¢ by your CAS. (Cf. Fig.
16.)

|| lll

Fig. 16. Particular solutions in CAS Project 22

5 Linear ODEs.

by

(d) In another graph show the solution curves
satisfying v(0) = =1, £2, *3, 4. Compare the
quality of (¢) and (d) and comment.

(e) Do the same steps for another nonexact ODE of
your choice.

WRITING PROJECT. Working Backward. Start
from solutions u(x, v) = ¢ of your choice, find a
corresponding exact ODE, destroy exactness by a
multiplication or division. This should give you a feel
for the form of ODEs vou can reach by the method of
integrating factors. (Working backward is useful in
other areas. too: Euler and other great masters
frequently did it.)

. TEAM PROJECT. Solution by Several Methods.

Show this as indicated. Compare the amount of work.
(A) e’(sinh x dx + cosh x dy) = 0 as an exact ODE
and by separation.

(B) (I + 2x) cos y dx + dy/cos y = 0 by Theorem
2 and by separation.

(C) (x® + y?) dx — 2xy dy = 0 by Theorem 1 or 2
and by separation with v = v/x.

(D) 3x% y dx + 4x* dy = 0 by Theorems | and 2
and by separation.

(E) Search the text and the problems for further ODEs
that can be solved by more than one of the methods
discussed so far. Make a list of these ODEs. Find
further cases of your own.

Bernoulli Equation.
Population Dynamics

Linear ODEs or ODEs that can be transformed to linear form are models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology. as we
shall see. A first-order ODE is said to be linear if it can be written

(1) ¥+ p(y = rx).

The defining feature of this equation is that it is linear in both the unknown function y
and its derivative y' = dy/dx, whereas p and r may be any given functions of x. If in an
application the independent variable is time, we write 7 instead of x.

If the first term is f(x)y’ (instead of y"), divide the equation by f(x) to get the “standard
form” (1), with y" as the first term, which is practical.

For instance, ¥’ cosx + y sinx = x is a linear ODE, and its standard form is
vy + ytanx = x sec x.

The function r(x) on the right may be a force, and the solution y(x) a displacement in
a motion or an electrical current or some other physical quantity. In engineering, r(x) is

frequently called the input, and y(x) is called the output or the response to the input (and,
if given, to the initial condition).
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Homogeneous Linear ODE. We want to solve (1) in some interval a < x < b, call it
J. and we begin with the simpler special case that r(x) is zero for all x in J. (This is
sometimes written r(x) = 0.) Then the ODE (1) becomes

(2) vy 4+ px)y =0

and is called homogeneous. By separating variables and integrating we then obtain

dy

— = —pl(x) dx, thus Inly| = —I[J(I) dx+ e*.

.\"
Taking exponents on both sides, we obtain the general solution of the homogeneous
ODE (2),
3 y(x) = ce™Ip@ dx (c = *=e* when y=0)

here we may also choose ¢ = 0 and obtain the trivial solution y(x) = 0 for all x in that
interval.

Nonhomogeneous Linear ODE. We now solve (1) in the case that r{x) in (1) is not
everywhere zero in the interval ./ considered. Then the ODE (1) is called nonhomogeneous.
It turns out that in this case, (1) has a pleasant property; namely, it has an integrating
factor depending only on x. We can find this factor F(x) by Theorem 1 in the last section.
For this purpose we write (1) as

(py — r)dx + dy = 0.

This is Pdx + Q dy = 0. where P = py — rand O = 1. Hence the right side of (16) in
Sec. 1.4 is simply 1(p — 0) = p, so that (16) becomes

1 dF @
S B R
Fdx ™
Separation and integration gives
dF
- =P dx and In|F| = fp dx.

Taking exponents on both sides, we obtain the desired integrating factor F(x),
F(x) = &/® 9",
We now multiply (1) on both sides by this F. Then by the product rule,
Py + py) = (P Fy)' = P dy
By integrating the second and third of these three expressions with respect to x we get
elP dxy = f Py dy + .

Dividing this equation by ¢/? * and denoting the exponent [p dx by &, we obtain

4) yx)=e* ( f er dx + c) : h= f px) dx.
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EXAMPLE 1

EXAMPLE 2

CHAP.1 First-Order ODEs

(The constant of integration in s does not matter; see Prob. 2.) Formula (4) is the general
solution of (1) in the form of an integral. Solving (1) is now reduced to the evaluation
of an integral. In cases in which this cannot be done by the usual methods of calculus,
one may have to use a numeric method for integrals (Sec. 19.5) or for the ODE itself
(Sec. 21.1).

The structure of (4) is interesting. The only quantity depending on a given initial
condition is ¢. Accordingly, writing (4) as a sum of two terms,

(4*) yx) = e j é'r dx + ce™",
we see the following:

(5) Total Output = Response to the Input » + Response to the Initial Data.

First-Order ODE, General Solution
Solve the linear ODE

Solution. Here,

and from (4) we obtain the general solution
yix) = e* (fe“"—ezt dy + r.‘) = eMe® + ¢) = ce® + &,

From (4*) and (5) we see that the response to the input is ¢,
In simpler cases, such as the present, we may not need the general formula (4), but may wish to proceed
directly, multiplying the given equation by e = ¢, This gives

x)" 2r —x x

O — e = (ye) = e = %,

Integrating on both sides, we obtain the same result as before:

ye ¥ =¢* + ¢, hence y = + ce®, E

First-Order ODE, Initial Value Problem
Solve the initial value problem
v + ytanx = sin 2x, ¥0) = 1.

Solution. Here p = tanx, r = sin 2x = 2 sin x cos x, and

fp dx = ftan x dx = In [sec xl.
From this we see that in (4),
I -h _ h

et = secx, e " = Cosx, er=(secx)(2sinxcosx) = 2sinx,

and the general solution of our equation is
¥(x) = cos x (2 j sinxdy + r.') = ¢cosx — 2 cosZ .

From this and the initial condition, 1 = ¢+ 1 — 2+ 1% thus ¢ = 3 and the solution of our initial value problem

s 2 k 4wy
isy= 3 cosx — 2 cos” x. Here 3 cos x is the response to the initial data. and —2 cos2 x is the response to the
input sin 2x. ]
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EXAMPLE 3

Hormone Level

Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate
of change is the difference between a sinusoidal input of a 24-hour period from the thyroid gland and a continuous
removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its
general solution. Find the particular solution satisfying a suitable initial condition.

Solution. Step 1. Setting up a model. Let v(1) be the hormone level at time . Then the removal rate is Ky(1).
The input rate is A + B cos (271/24), where A is the average input rate, and A = B to make the input nonnegative.
(The constants A, B, and K can be determined by measurements.) Hence the model is

y' () =1In— Out = A + B cos (1) — Ky(r) or v + Ky =A + B cos (5m0).

The initial condition for a particular solution ypa,z iS Vpar(0) = ¥o with 1 = 0 suitably chosen, e.g., 6:00 A.m.

Step 2. General solution. In (4) we have p = K = const, h = Kr, and r = A + B cos {ﬁm}. Hence (4) gives
the general solution

- it
¥ = e"K‘JeK‘ (A + B cos Ti) dr + ce ¥

A B Tt Tt
= Kt Kt _— i . —Kt
=g Ve [K + TARE + (]44Kws 2 + 1277 sin 12)]+ce

B it .t —Kt
+ ———= | 144K cos — + 12 sin =5 + ce s

A
K MK+ A2 12 12

The last term decreases to 0 as 7 increases, practically after a short time and regardless of ¢ (that is. of the initial
condition). The other part of y(r) is called the steady-state solution because it consists of constant and periodic
terms. The entire solution is called the transient-state solution because it models the transition from rest to the
steady state. These terms are used quite generally for physical and other systems whose behavior depends on time.

Step 3. Particular solution. Setting 1 = 0 in v(1) and choosing yy = 0, we have

¥0) = 5 144K + ¢ =0, thus e —=i = = 44K

A
L L B
K = 144K% + &

Inserting this result into y(r), we obtain the particular solution

=2 4 (144K ™+ 12msin — Ay AR Ym
. = S COSs —— s = - B
Yoot = K T + o2 12 =3 K" 144+ 2 )°

with the steady-state part as before. To plot v, we must specify values for the constants, say, A = B = 1 and
K = 0.05. Figure 17 shows this solution. Notice that the transition period is relatively short (although K is small),
and the curve soon looks sinusoidal; this is the response to the input A + B cos (571) = 1 + cos (). H

20+

10 |

1 ] I |

0 1 L L L I
0 100

1
200 t
Fig. 17, Particular solution in Example 3
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EXAMPLE 4

CHAP.1 First-Order ODEs

Reduction to Linear Form. Bernoulli Equation

Numerous applications can be modeled by ODEs that are nonlinear but can be transformed
to linear ODEs. One of the most useful ones of these is the Bernoulli equation®

(6) v+ plx)y = glx)y® (a any real number).

If a = 0 ora = 1, Equation (6) is linear. Otherwise it is nonlinear. Then we set
u(x) = [y
We differentiate this and substitute _\" from (6). obtaining
w' = (1 —ay™%" =1 —ay %" — py.
Simplification gives
u' = (1 —a)g — py*™,

where y'~* = y on the right, so that we get the linear ODE
(7) u' + (1 —apu = (1 — a)g.

For further ODEs reducible to linear from, see Ince’s classic [All] listed in App. 1.
See also Team Project 44 in Problem Set 1.5.

Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equationﬁ):
(8) y' = Ay — By?

Solution. Write (8) in the form (6), that is,
‘\" — Ay = —B.\‘g

T TR

to see that @ = 2, so that u = y A\'_l, Differentiate this i and substitute v" from (8),

u' = —_\"2_\" = —‘\‘_2(.-'1_'.- — B'\'gl =B - A_\"l,

The last term is —.:4._\-'l = —Au. Hence we have obtained the linear ODE

SJAKOB BERNOULLI (1654-1705), Swiss mathematician, professor at Basel. also known for his contribution
to elasticity theory and mathematical probability. The method for solving Bernoulli's equation was discovered by
the Leibniz in 1696. Jakob Bernoulli's students included his nephew NIKLAUS BERNOULLI (1687-1759), who
contributed to probability theory and infinite series, and his youngest brother JOHANN BERNOULLI (1667-1748),
who had profound influence on the development of calculus, became Jakob's successor at Basel, and had among
his students GABRIEL CRAMER (see Sec. 7.7) and LEONHARD EULER (see Sec. 2.5). His son DANIEL
BERNOULLI (1700-1782) is known for his basic work in fluid flow and the kinetic theory of gases.

SPIERRE-FRANCOIS VERHULST, Belgian statistician, who introduced Eq. (8) as a model for human
population growth in 1838.
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W' + Au=B.
The general solution is [by (4)]
w=ce ™ + BIA.
Since 1 = 1/y, this gives the general solution of (8),

1 I
9 Yy e = (Fig. 18).
¢ 2 " ce ™ + BIA g 18

Directly from (8) we see that y = 0 {y(r) = 0 for all 1) is also a solution. il

Population v

0 1 2 3 4  Timet
Fig. 18. Logistic population model. Curves (9) in Example 4 with A/B = 4

Population Dynamics

The logistic equation (8) plays an important role in population dynamics, a field that
models the evolution of populations of plants, animals, or humans over time 7. If B = 0,
then (8)is ¥’ = dy/dt = Ay. In this case its solution (9) is y = (1/c)e”" and gives exponential
growth, as for a small population in a large country (the United States in early times!).
This is called Malthus’s law. (See also Example 3 in Sec. 1.1.)

The term —By? in (8) is a “braking term” that prevents the population from growing
without bound. Indeed, if we write v’ = Ay[1 — (B/A)y], we see that if y < A/B, then
v > 0, so that an initially small population keeps growing as long as y < A/B. But if
y > A/B, then y' < 0 and the population is decreasing as long as y > A/B. The limit is
the same in both cases, namely, A/B. See Fig. 18.

We see that in the logistic equation (8) the independent variable ¢ does not occur
explicitly. An ODE y' = f(r, y) in which ¢ does not occur explicitly is of the form

(10) y' = Ff)

and is called an autonomous ODE. Thus the logistic equation (8) is autonomous.

Equation (10) has constant solutions, called equilibrium solutions or equilibrium
points. These are determined by the zeros of f(y), because f(y) = 0 gives y' = 0 by (10):
hence y = const. These zeros are known as critical points of (10). An equilibrium
solution is called stable if solutions close to it for some ¢ remain close to it for all further
. It is called unstable if solutions initially close to it do not remain close to it as f
increases. For instance, y = 0 in Fig. 18 is an unstable equilibrium solution, and y = 4
is a stable one.
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EXAMPLE 5

CHAP.1 First-Order ODEs

Stable and Unstable Equilibrium Solutions. “Phase Line Plot”

The ODE y' = (y — D(y — 2) has the stable equilibrium solution y; = 1 and the unstable yo = 2, as the
direction field in Fig. 19 suggests. The values y; and y, are the zeros of the parabola f(y) = (y — (v — 2)
in the figure. Now, since the ODE is autonomous, we can “condense” the direction field to a “phase line plot™
giving vy and yo, and the direction (upward or downward) of the arrows in the field, and thus giving information

about the stability or instability of the equilibrium solutions. |
¥ylx) ¥
2.0 /
I /
1.5 /
[ B2 X
2212222215;::::::::: Lo
e e e e e ey S b ey
= WY E— ® \ /
e ol o 5 A\
et /,f,/////j;/// 05 \ /
IO PSR TS DA Yoy \ /
Tt \
4% b 2 b1 _fr s :'l' N :’- AR :l "' b i ] \13'1. 1 -)"2)_/ 1
-2 -1 0 g ‘g x 0 0.5 1w.0 25 30 x
(A) (B} ©
Fig.19. Example 5. (A) Direction field. (B) “Phase line”. (C) Parabola f(y)

A few further population models will be discussed in the problem set. For some more
details of population dynamics, see C. W. Clark, Mathematical Bioeconomics, New York,
Wiley, 1976.

Further important applications of linear ODEs follow in the next section.

1. (CAUTION!) Show that e™'®* = 1/x (not —x) and 6. x2y' + 3xy = l/x, y(1) = —
—~In(sec ¥} _ §
e Cos x. ' ' 7.9 + ky = e2k®

2. (Integration constant) Give a reason why in (4) you 8.y +2y=4cos2x, ylm =

may choose the constant of integration in [p dx to be

ZEro,

9. y' = 6(y — 2.5) tanh 1.5x

i 10. y' + 4x%y = (4x2 — x)e~ %12
[3-17] GENERAL SOLUTION. INITIAL VALUE 1L y' + 2y sin2x = 26592%, y(0) =
PROBLEMS ' i

) 12. y tanx = 2y — 8, y(zm =0
Find the general solution. If an initial condition is given, 13. v + 4 - g
find also the corresponding particular solution and graph or i ’ yeotZe = € bonls, yfam) =2
sketch it. (Show the details of your work.) 4.y + ytanx = e " cosx, y(0) =
3.y + 3.5y =28 15. y' + y/x® = 2xe', y(1) = 13.86

4.y =4y +x 16. y' cos®x + 3y = 1, y(mw) =4

5.y + 125y =5, y0)= 17. x%" + 3x%y = 5 sinh 10x
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18—

24| NONLINEAR ODEs

-UE'lg a method of this section or separating variables, find
the general solution. If an initial condition is given, find
also the particular solution and sketch or graph it.

18.
19.
20.
21.
22,
23.
24,

yo+y =92 y0) = -1

vy =57y — 6.5y>

(x* + 1)y' = —tany, y(0) = 37
v+ (x+ Dy = ex2_v3. ¥(0) = 0.5
vy’ sin 2y + x cos 2y = 2x

2yy' + yZsinx = sinx, y(0) = V2
vy + x2y = (¢7* sinh x)/(3y?)

25-36

FURTHER APPLICATIONS

25. (Investment programs) Bill opens a retirement

26.

savings account with an initial amount y, and then adds
$k to the account at the beginning of every year until
retirement at age 65. Assume that the interest is
compounded continuously at the same rate R over the
years. Set up a model for the balance in the account
and find the general solution as well as the particular
solution, letting + = 0 be the instant when the account
is opened. How much money will Bill have in the
account at age 65 if he starts at 25 and invests $1000
initially as well as annually. and the interest rate R is
6%? How much should he invest initially and annually
(same amounts) to obtain the same final balance as
before if he starts at age 457 First, guess.

(Mixing problem) A tank (as in Fig. 9 in Sec. 1.3)
contains 1000 gal of water in which 200 Ib of salt is
dissolved. 50 gal of brine, each gallon containing
(1 + cos 1) Ib of dissolved salt, runs into the tank per
minute. The mixture, kept uniform by stirring, runs out
at the same rate. Find the amount of salt in the tank at
any time 1 (Fig. 20).

Yy

1000

500
200 -
0 5JD 160 t
Fig. 20.  Amount of salt y(t) in the tank in Problem 26
27. (Lake Erie) Lake Erie has a water volume of about

450 km? and a flow rate (in and out) of about 175 km®
per year. If at some instant the lake has pollution
concentration p = 0.04%. how long, approximately.
will it take to decrease it to p/2, assuming that the
inflow is much cleaner, say, it has pollution

29

g

31.

32.

33.

34.

concentration p/4, and the mixture is uniform (an
assumption that is only very imperfectly true)? First,
guess.

28. (Heating and cooling of a building) Heating and

cooling of a building can be modeled by the ODE
T' = k(T — T,) + ky(T — T,,) + P,

where T = T(7) is the temperature in the building at
time ¢, T, the outside temperature, T, the temperature
wanted in the building, and P the rate of increase of T
due to machines and people in the building, and k; and
ko are (negative) constants. Solve this ODE, assuming
P = const, T, = const, and T, varying sinusoidally
over 24 hours, say, T, = A — C cos (27/24)t. Discuss
the effect of each term of the equation on the solution.
(Drug injection) Find and solve the model for drug
injection into the bloodstream if, beginning at t = 0, a
constant amount A g/min is injected and the drug is
simultaneously removed at a rate proportional to the
amount of the drug present at time .

(Epidemics) A model for the spread of contagious
diseases is obtained by assuming that the rate of spread
is proportional to the number of contacts between
infected and noninfected persons, who are assumed to
move freely among each other. Set up the model. Find
the equilibrium solutions and indicate their stability or
instability. Solve the ODE. Find the limit of the
proportion of infected persons as t — > and explain
what it means.

(Extinction vs. unlimited growth) If in a population
¥(1) the death rate is proportional to the population, and
the birth rate is proportional to the chance encounters
of meeting mates for reproduction, what will the model
be? Without solving, find out what will eventually
happen to a small initial population. To a large one.
Then solve the model.

(Harvesting renewable resources. Fishing) Suppose
that the population y(r) of a certain kind of fish is given
by the logistic equation (8), and fish are caught at a
rate Hy proportional to y. Solve this so-called Schaefer
model. Find the equilibrium solutions y; and y, (> 0)
when H < A. The expression ¥ = Hy, is called the
equilibrium harvest or sustainable yield corresponding
to H. Why?

(Harvesting) In Prob. 32 find and graph the solution
satisfying y(0) = 2 when (for simplicity) A = B = 1
and A = 0.2. What is the limit? What does it mean?
What if there were no fishing?

(Intermittent harvesting) In Prob. 32 assume that you
fish for 3 years, then fishing is banned for the next 3
years. Thereafter you start again. And so on. This is
called intermittent harvesting. Describe qualitatively
how the population will develop if intermitting is
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continued periodically. Find and graph the solution for
the first 9 years, assuming that A = B = 1, H = 0.2,
and y(0) = 2.

b
2
1.8
16
141
1.2

1_

0_8 1 L ]
0 2 4 6 8 t

Fish population in Problem 34

35. (Harvesting) If a population of mice (in multiples of
1000) follows the logistic law with A = 1 and B = 0.25,
and if owls catch at a time rate of 10% of the population
present, what is the model, its equilibrium harvest for
that catch, and its solution?

36. (Harvesting) Do you save work in Prob. 34 if you first
transform the ODE to a linear ODE? Do this
transformation. Solve the resulting ODE. Does the
resulting y(r) agree with that in Prob. 34?

~ChCE ROPERTIES OF L INEAR OIDE<

These properties are of practical and theoretical importance

because they enable us to obtain new solutions from given

ones. Thus in modeling, whenever possible, we prefer linear

ODEs over nonlinear ones, which have no similar

properties.

Show that nonhomogeneous linear ODEs (1) and
homogeneous linear ODEs (2) have the following
properties. Illustrate each property by a calculation for two
or three equations of your choice. Give proofs.

37. The sum vy, + y, of two solutions y; and v, of the
homogeneous equation (2) is a solution of (2), and so
is a scalar multiple ay, for any constant a. These
properties are not true for (1)!

38. y = 0 (that is, y(x) = 0 for all x, also written y(x) = 0)
is a solution of (2) [not of (1) if r(x) # 0!]. called the
trivial solution.

39. The sum of a solution of (1) and a solution of (2) is a
solution of (1).

40. The difference of two solutions of (1) is a solution of (2).
41. If y, is a solution of (1), what can you say about ¢y,?

42. If y; and y, are solutions of y; + py; = r; and
] X . .
Y2 + pya = ry, respectively (with the same p!), what
can you say about the sum y; + y,?

43. CAS EXPERIMENT. (a) Solve the ODE

vy — y/x = —x~! cos (1/x). Find an initial condition
for which the arbitrary constant is zero. Graph the
resulting particular solution, experimenting to obtain
a good figure near x = 0.

(b) Generalizing (a) from n = 1 to arbitrary n, solve
the ODE y' — my/x = —x"~2 cos (1/x). Find an initial
condition as in (a), and experiment with the graph.
TEAM PROJECT. Riccati Equation, Clairaut
Equation. A Riccati equation is of the form

44

(11) v+ plx)y = g(x)y? + hlx).
A Clairaut equation is of the form

(12) y = .\'_\‘r + g(_\‘f}.

(a) Apply the transformation y = ¥ + 1l/u to the

Riccati equation (11), where Y is a solution of (11), and

obtain for u the linear ODE v’ + (2¥g — pju = —g.

Explain the effect of the transformation by writing it

asy=Y+uv,v=1lu

(b) Show that y = Y = x is a solution of

o= (2 + Dy = —x%? -t -+ ]

and solve this Riccati equation, showing the details.

(¢) Solvey + (3 — 2x%sinx)y

= —y®sinx + 2x + 3x% — x*sinx, using (and

verifying) that y = x? is a solution.

(d) By working “backward” from the u-equation find

further Riccati equations that have relatively simple

solutions.

(e) Solve the Clairaut equation y = xy’ + 1/y’. Hint.

Differentiate this ODE with respect to x.

(f) Solve the Clairaut equation y'2 — xy" + y = 0

in Prob. 16 of Problem Set 1.1.

(g) Show that the Clairaut equation (12) has as

solutions a family of straight lines y = ¢x + g(c) and

a singular solution determined by g'(s) = —x, where

s =y, that forms the envelope of that family.
45. (Variation of parameter) Another method of
obtaining (4) results from the following idea. Write
(3) as ¢y*, where v* is the exponential function,
which is a solution of the homogeneous linear ODE
v + py* = 0. Replace the arbitrary constant ¢ in (3)
with a function « to be determined so that the resulting
function y = wy* is a solution of the nonhomogeneous
linear ODE y" + py = r.
TEAM PROJECT. Transformations of ODEs. We
have transformed ODEs to separable form, to exact
form, and to linear form. The purpose of such
transformations is an extension of solution methods to
larger classes of ODEs. Describe the key idea of each
of these transformations and give three typical
examples of your choice for each transformation,
showing each step (not just the transformed ODE).

8
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1.6 Orthogonal Trajectories.

An important type of problem in physics or geometry is to find a family of curves that
intersect a given family of curves at right angles. The new curves are called orthogonal
trajectories of the given curves (and conversely). Examples are curves of equal
temperature (isotherms) and curves of heat flow, curves of equal altitude (contour lines)
on a map and curves of steepest descent on that map, curves of equal potential
(equipotential curves, curves of equal voltage—the concentric circles in Fig. 22), and
curves of electric force (the straight radial segments in Fig. 22).

Equipotential lines and curves of electric force (dashed)
between two concentric (black) circles (cylinders in space)

Here the angle of intersection between two curves is defined to be the angle between
the tangents of the curves at the intersection point. Orthogonal is another word for
perpendicular.

In many cases orthogonal trajectories can be found by using ODEs, as follows. Let

(n Glx,v,c)=20

be a given family of curves in the xy-plane, where each curve is specified by some value
of ¢. This is called a one-parameter family of curves, and c¢ is called the parameter
of the family. For instance, a one-parameter family of quadratic parabolas is given by

(Fig. 23)

y =e¢x®  or, written as in (1), Gx,y,c)=y—ex2=0.

Step 1. Find an ODE for which the given family is a general solution. Of course, this
ODE must no longer contain the parameter ¢. In our example we solve algebraically for
¢ and then differentiate and simplify: thus,

hence
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The last of these equations is the ODE of the given family of curves. It is of the form
@) y' = 5 y).

Step 2. Write down the ODE of the orthogonal trajectories, that is, the ODE whose general
solution gives the orthogonal trajectories of the given curves. This ODE is

1

e T

with the same f as in (2). Why? Well, a given curve passing through a point (xq, yo) has
slope f(xg, ¥o) at that point, by (2). The trajectory through (xy, vo) has slope —1/f(xy, ¥o)
by (3). The product of these slopes is —1, as we see. From calculus it is known that this
is the condition for orthogonality (perpendicularity) of two straight lines (the tangents at
(xg, ¥o)), hence of the curve and its orthogonal trajectory at (xg, yo).

Step 3. Solve (3).

For our parabolas y = cx® we have y’ = 2y/x. Hence their orthogonal trajectories are
obtained from ' = —x/2y or 2§%' + x = 0. By integration, 2 + 3x*> = c*. These are
the ellipses in Fig. 23 with semi-axes V2¢* and V¢*. Here, ¢* > 0 because ¢* = 0 gives
just the origin, and ¢ * < 0 gives no real solution at all.

Fig. 23. Parabolas and orthogonal trajectories (ellipses) in the text

[1-12] ORTHOGONAL TRAJECTORIES 7. y = ce®P? 822 —y2 =

Sketch or graph some of the given curves. Guess what their 9. 4x2 + y2 = ¢ 10. x = ¢\Vy

o@ogoqa] trajectories may look like. Find these 11. x = ce¥ 12, 22 + ( = )2 = ¢2

trajectories.

1 (Show the details of your work.) [13-15| OTHER FORMS OF THE ODEs (2) AND (3)
i = 4x + 2 = ¢ ; - B

3 Y ~ C; & F ¥ . _C .r2 13. (y as independent variable) Show that (3) may be
. yg » YT =2+ ¢ written dv/dy = —f(x, ¥). Use this form to find the

S.xy=c¢ 6.y = ce3®

orthogonal trajectories of y = 2x + ce™%,
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14. (Family g(x,y) = ¢) Show that if a family is given as
glx, ¥) = ¢, then the orthogonal trajectories can be
obtained from the following ODE, and use the latter to
solve Prob. 6 written in the form g(x, v) = ¢.

dy dglay
dx  aglox

15. (Cauchy-Riemann equations) Show that for a family
u(x, y) = ¢ = const the orthogonal trajectories
v(x,y) = ¢ = const can be obtained from the following
Cauchy-Riemann equations (which are basic in
complex analysis in Chap. 13) and use them to find the
orthogonal trajectories of e*siny = const. (Here,
subscripts denote partial derivatives.)

Uy = Uy, Uy = —Us

[16-20] APPLICATIONS

16. (Fluid flow) Suppose that the streamlines of the flow
(paths of the particles of the fluid) in Fig. 24 are
W(x, y) = xy = const. Find their orthogonal trajectories
(called equipotential lines, for reasons given in Sec.
18.4).

Fig. 24.  Flow in a channel in Problem 16

17. (Electric field) Let the electric equipotential lines
(curves of constant potential) between two concentric
cylinders (Fig. 22) be given by u(x, v) = 2% + y* = ¢.
Use the method in the text to find their orthogonal
trajectories (the curves of electric force).

(7]
L |

18. (Electric field) The lines of electric force of two
opposite charges of the same strength at (—1. 0) and
(1, 0) are the circles through (—1, 0) and (1, 0). Show
that these circles are given by x% + (y — ¢)> = 1 + ¢2.
Show that the equipotential lines (orthogonal
trajectories of those circles) are the circles given by
(x + ¢*)® + 5% = ¢** — | (dashed in Fig. 25).

Fig. 25, Electric field in Problem 18

19. (Temperature field) Let the isotherms (curves of
constant temperature) in a body in the upper half-plane
y = 0 be given by 4x? + 9y? = ¢. Find the orthogonal
trajectories (the curves along which heat will flow in
regions filled with heat-conducting material and free
of heat sources or heat sinks).

20. TEAM PROJECT. Conic Sections. (A) State the

main steps of the present method of obtaining orthogonal
trajectorics.

(B) Find conditions under which the orthogonal
trajectories of families of ellipses x*/a® + y*/b* = ¢ are
again conic sections. Illustrate your result graphically
by sketches or by using your CAS. What happens if
a— 071f b— 07

(C) Investigate families of hyperbolas

x%/a® — y%/b% = ¢ in a similar fashion.

(D) Can you find more complicated curves for which
you get ODEs that you can solve? Give it a try.

1./ Existence and Uniqueness of Solutions

The initial value problem

b+ bl =0,

»0) =1

has no solution because y = 0 (that is, y(x) = 0 for all x) is the only solution of the ODE.

The initial value problem

y

2)‘.3 "(0) = -1
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has precisely one solution, namely, y = x* + 1. The initial value problem
w =y-1, ¥0) =1
has infinitely many solutions, namely, y = 1 + cx, where ¢ is an arbitrary constant because

v(0) = 1 for all c.
From these examples we see that an initial value problem

(1) Yy = fx, y), ¥(xo) = Yo

may have no solution, precisely one solution, or more than one solution. This fact leads
to the following two fundamental questions.

Problem of Existence |

| Under what conditions does an initial value problem of the form (1) have at least
one solution (hence one or several solutions)?

|
Problem of Uniqueness |

Under what conditions does that problem have at most one solution (hence excluding |
the case that is has more than one solution)? |

Theorems that state such conditions are called existence theorems and uniqueness
theorems, respectively.

Of course, for our simple examples we need no theorems because we can solve these
examples by inspection; however, for complicated ODEs such theorems may be of
considerable practical importance. Even when you are sure that your physical or other
system behaves uniquely, occasionally your model may be oversimplified and may not
give a faithful picture of the reality.

| Existence Theorem

| Let the right side f(x, y) of the ODE in the initial value problem
(1) Y o=y, yag) =y

be continuous at all points (x, v) in some rectangle

Rilx—xl<a, |y=yl<b (Fig. 26)
and bounded in R; that is, there is a number K such that
(2) [fx, m| = K for all (x, v) in R. ‘
Then the initial value problem (1) has at least one solution y(x). This solution exists

at least for all x in the subinterval |x — xo| < a of the interval |x = xo| < a: here, |
a is the smaller of the two numbers a and b/K. |

= = |
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THEOREM 2

¥
Yo+b ==
J’U """"""""""" '?
I
I
MY, Y |
Yo—b I
| | |
| i I
& I I I
" X
Io — ,\fo "'U +a

Fig. 26. Rectangle R in the existence and uniqueness theorems

(Example of Boundedness. The function f(x, y) = x* + y® is bounded (with K = 2) in the
square |x| < 1, |y| < 1. The function f(x, y) = tan (x + v) is not bounded for |x + y| < 7/2.
Explain!)

Uniqueness Theorem

Let f and its partial derivative f,, = df/dy be continuous for all (x, y) in the
rectangle R (Fig. 26) and bounded, say,

(3) (a) |f(x, y)| =K, b) |f . =M  forall (x,y)inR

Then the initial value problem (1) has at most one solution y(x). Thus, by Theorem 1,
the problem has precisely one solution. This solution exists at least for all x in that
subinterval [x — xo| < a.

Understanding These Theorems

These two theorems take care of almost all practical cases. Theorem 1 says that if f(x, v)
is continuous in some region in the xy-plane containing the point (xg, vg). then the initial
value problem (1) has at least one solution.

Theorem 2 says that if, moreover, the partial derivative df/dy of f with respect to y
exists and is continuous in that region, then (1) can have at most one solution; hence, by
Theorem 1, it has precisely one solution.

Read again what you have just read—these are entirely new ideas in our discussion,

Proofs of these theorems are beyond the level of this book (see Ref. [A11] in App. 1);
however, the following remarks and examples may help you to a good understanding of
the theorems.

Since y' = f(x. y), the condition (2) implies that |y’| = K: that is, the slope of any
solution curve y(x) in R is at least —K and at most K. Hence a solution curve that passes
through the point (xq, vp) must lie in the colored region in Fig. 27 on the next page bounded
by the lines /; and /; whose slopes are —K and K, respectively. Depending on the form
of R, two different cases may arise. In the first case, shown in Fig. 27a, we have b/K =
a and therefore e = ¢ in the existence theorem, which then asserts that the solution exists
for all x between xo — a and xy + a. In the second case, shown in Fig. 27b, we have
bIK < a. Therefore, &« = b/K < a, and all we can conclude from the theorems is that the
solution exists for all x between x, — b/K and xo, + b/K. For larger or smaller x's the
solution curve may leave the rectangle R, and since nothing is assumed about f outside
R. nothing can be concluded about the solution for those larger or smaller x°s; that is, for
such x’s the solution may or may not exist—we don’t know.
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yo+b

Yo F— %R

y—b
/‘< J\
a>r<o

L‘—rx:a—‘-’""—'n=u->'l a @

x "
*o %y

(a) (b)

Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case

Let us illustrate our discussion with a simple example. We shall see that our choice of
a rectangle R with a large base (a long x-interval) will lead to the case in Fig. 27b.

Choice of a Rectangle

Consider the initial value problem

yo=1 4% ¥0)y=20
and take the rectangle R: |x| < 5. ly/ < 3. Thena = 5. b = 3. and

[fe o) = |1 + y% = kK = 10,

d
—f| =2 =M=06,
dy

= £ =03 <
a—K— ] .

Indeed, the solution of the problem is y = tan.x (see Sec. 1.3, Example 1). This solution is discontinuous at
/2, and there is no continuous solution valid in the entire interval x| < 5 from which we started. m

The conditions in the two theorems are sufficient conditions rather than necessary ones, and
can be lessened. In particular, by the mean value theorem of differential calculus we have

af
Flx, yo) — flx, y1) = (v2 — y1)
9 |y=g
where (x, y;) and (x, y,) are assumed to be in R, and ¥ is a suitable value between y, and
vy. From this and (3b) it follows that

(4) [f(x, ¥2) = f(x, y1)| = Mlys — y4.

It can be shown that (3b) may be replaced by the weaker condition (4), which is known
as a Lipschitz condition.” However, continuity of f(x, y) is not enough to guarantee the
uniqueness of the solution. This may be illustrated by the following example.



SEC.1.7 Existence and Uniqueness of Solutions

EXAMPLE 2 Nonuniqueness

The initial value problem

has the two solutions

_‘»EO

y =V,

and

41

y0)y =0

2140 x=0

pE
—x214if

x<0

although f(x, y) = '\/E is continuous for all y. The Lipschitz condition (4) is violated in any region that includes
the line y = 0, because for y; = 0 and positive vy we have

(5)

= ) Vg 1
[fx, yo) — flx, yy)| _ vy (\/y_g}O]

lva — »y

Y2

and this can be made as large as we please by choosing ys sufficiently small, whereas (4) requires that the
quotient on the left side of (5) should not exceed a fixed constant M.

1.

-

th

;

(Vertical strip) If the assumptions of Theorems 1 and 2
are satisfied not merely in a rectangle but in a vertical
infinite strip [x — xo| < @, in what interval will the
solution of (1) exist?

(Existence?) Does the initial value problem
(x — 1)y" = 2y, »(1) = 1 have a solution? Does your
result contradict our present theorems?

(Common points) Can two solution curves of the same
ODE have a common point in a rectangle in which the
assumptions of the present theorems are satisfied?
(Change of initial condition) What happens in Prob. 2
it you replace y(1) = 1 with y(1) = k?

(Linear ODE) If p and r in _1," + plx)y = r(x) are
continuous for all x in an interval [x — xo| =< a. show
that f(x, ¥) in this ODE satisfies the conditions of our
present theorems, so that a corresponding initial value
problem has a unique solution. Do you actually need
these theorems for this ODE?

(Three possible cases) Find all initial conditions such
that (x2 — 4x)y’ = (2x — 4)y has no solution, precisely
one solution, and more than one solution.

(Length of x-interval) In most cases the solution of an
initial value problem (1) exists in an x-interval larger
than that guaranteed by the present theorems. Show this
fact for y' = 2y2, y(1) = 1 by finding the best possible
« (choosing b optimally) and comparing the result with
the actual solution.

8.

10.

PROJECT. Lipschitz Condition. (A) State the
definition of a Lipschitz condition. Explain its relation
to the existence of a partial derivative. Explain its
significance in our present context. Illustrate your
statements by examples of your own.

(B) Show that for a linear ODE y' + p(x)y = r(x) with
continuous p and r in [x — x| = a a Lipschitz condition
holds. This is remarkable because it means that for a
linear ODE the continuity of f(x, v) guarantees not only
the existence but also the uniqueness of the solution of
an initial value problem. (Of course, this also follows
directly from (4) in Sec. 1.5.)

(C) Discuss the uniqueness of solution for a few simple
ODEs that you can solve by one of the methods
considered, and find whether a Lipschitz condition is
satisfied.

. (Maximum «) What is the largest possible « in

Example 1 in the text?

CAS PROJECT. Picard Iteration. (A) Show that by
integrating the ODE in (1) and observing the initial
condition you obtain

(6) ¥x) = yo + f f(t, (1)) .
xn

"RUDOLF LIPSCHITZ (1832-1903), German mathematician. Lipschitz and similar conditions are important
in modern theories, for instance, in partial differential equations.
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This form (6) of (1) suggests Picard’s iteration
method?®, which is defined by

(7)) yu(x) = vy + f flt. vy () dt, n=12---.
Ty

It gives approximations yy, Vo, Vg, - - - of the unknown
solution y of (1). Indeed, you obtain y, by substituting
¥ = ¥g on the right and integrating—this is the first
step—. then yy by substituting y = y; on the right and
integrating—this is the second step—. and so on. Write
a program of the iteration that gives a printout of the
first approximations vg, ¥y.---. vy as well as their
graphs on common axes. Try your program on two
initial value problems of your own choice.

1. Explain the terms ordinary differential equation (ODE),
partial differential equation (PDE), order, general
solution. and particular solution. Give examples. Why
are these concepts of importance?

2. What is an initial condition? How is this condition used
in an initial value problem?

3. What is a homogeneous linear ODE? A nonhomogeneous
linear ODE? Why are these equations simpler than
nonlinear ODEs?

4. What do you know about direction fields and their

practical importance?

Give examples of mechanical problems that lead to ODEs.

6. Why do electric circuits lead to ODEs?

7. Make a list of the solution methods considered. Explain
each method with a few short sentences and illustrate
it by a typical example.

8. Can certain ODEs be solved by more than one method?
Give three examples.

n
b

9. What are integrating factors? Explain the idea. Give
examples.
Does every first-order ODE have a solution? A general
solution? What do you know about uniqueness of
solutions?

10

i1-14| DIRECTION FIELDS

Graph a direction field (by a CAS or by hand) and sketch
some of the solution curves. Solve the ODE exactly and
compare.

11 y' =1 + 4y? 12, y' =3y — 2x

s CHAPTER T REVIEW - QUESTIONS AND PROBLEMS

(B) Apply the iteration to y' = x + v, ¥(0) = 0. Also
solve the problem exactly.

(C) Apply the iteration to y' = 2y% y(0) = 1. Also
solve the problem exactly.

(D) Find all solutions of ' = 2Vy, v(1) = 0. Which
of them does Picard’s iteration approximate?

(E) Experiment with the conjecture that Picard's
iteration converges to the solution of the problem for
any initial choice of y in the integrand in (7) (leaving
vp outside the integral as it is). Begin with a simple
ODE and see what happens. When you are reasonably
sure, take a slightly more complicated ODE and give

it a try.

13. y' =4y — y? 14. y' = 16xly

{15-26| GENERAL SOLUTION

Find the general solution. Indicate which method in this
chapter you are using. Show the details of your work.

15. y' = x2(1 + ¥

16. v/ = x(y — 22+ 1)

17. yv' + 0?2 = x

18. — 7 sin mx cosh 3y dx + 3 cos wmy sinh 3y dy = 0
19. y' + ysinx = sinx 20. y —y=1l/y
21. 3sin 2y dx + 2xcos 2y dy = 0

22, xy' = xtan (y/x) + y

23. (ycosxy — 2x)dx + (xcosxy + 2y)dy = 0
24, xy' =(y—2x)?+y (Sety — 2x =z

25, sin(v — x)dx + [cos (y — x) —sin(y —x)]dy =0
26. xy' = (y/ix)® + y

[27-32| INITIAL VALUE PROBLEMS

Solve the following initial value problems. Indicate the
method used. Show the details of your work.

27 v +x=0, y3) =4
28, y' — 3y = —12y% y0) =2
29. y’ =1+ _\‘2, _'.-'(1317} =0

30. y' + wy = 2bcos mx, y(0) =0

31 (2xy2 —sinx) dx + (2 + 2x%y) dy = 0, y(0) = |

32, [2y + y¥x 4+ €"(1 + 1/x)]) dx + (x + 2y) dy = 0,
vyl =1

SEMILE PICARD (1856-1941), French mathematician, also known for his important contributions to complex
analysis (see Sec. 16.2 for his famous theorem). Picard used his method to prove Theorems | and 2 as well as
the convergence of the sequence (7) to the solution of (1), In precomputer times the iteration was of little practical

vilue because of the integrations.
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33-43| APPLICATIONS, MODELING 40. (Chemistry) In a bimolecular reaction A + B — M,

2 3 3 o a moles per liter of a substance A and b moles per liter
R (et ) T the. ot i aeglon et =y of a substance B are combined. Under constant

what are the curves of heat flow (assuming orthogonality)? S
; 4 temperature the rate of reaction is
34. (Law of cooling) A thermometer showing 10°C is

brought into a room whose temperature is 25°C. After v = kla — v)b - y) (Law of mass action);
5 minutes it shows 20°C. When will the thermometer
practically reach the room temperature, say, 24.9°C? that is, v’ is proportional to the product of the

35. (Half-life) IT 10% of a radioactive substance disintegrates concentrations of the substances that are reacting, where
in 4 days, what is its half-life? ¥(r) is the number of moles per liter which have reacted

36. (Half-life) What is the half-life of a substance if after after time 7. Solve this ODE, assuming that a # b.

5 days, 0.020 g is present and after 10 days, 0.015 g? 41. (Population) Find the population y(r) if the birth rate is

37. (Half-life) When will 99% of the substance in Prob. 33 proportional to y(r) and the death rate is proportional to
have disintegrated? the square of y(2).

38. (Air circulation) In a room containing 20 000 ft* of ~ 42. (Curves) Find all curves in the first quadrant of the xy-
air, 600 ft* of fresh air flows in per minute, and the plane such that for every tangent, the segment between
mixture (made practically uniform by circulating fans) the coordinate axes is bisected by the point of tangency.
is exhausted at a rate of 600 cubic feet per minute (Make a sketch.)

(cfm). What is the amount of fresh air y(7) at any time 43, (Optics) Lambert’s law of absorption? states that the
if ¥(0) = 07 After what time will 90% of the air be absorption of light in a thin transparent layer is
fresh? proportional to the thickness of the layer and to the

39. (Electric field) If the equipotential lines in a region of amount of light incident on that layer. Formulate this
the xy-plane are 44% + y2 = ¢, what are the curves of law as an ODE and solve it.

the electrical force? Sketch both families of curves.

MIMARY O F CHAP-

First-Order ODEs

This chapter concerns ordinary differential equations (ODEs) of first order and
their applications. These are equations of the form

(1) Flx,v.y)=10 or in explicit form y' = fx, y)

involving the derivative y' = dy/dx of an unknown function y, given functions of
x, and, perhaps, y itself. If the independent variable x is time, we denote it by 1.

In Sec. 1.1 we explained the basic concepts and the process of modeling, that is,
of expressing a physical or other problem in some mathematical form and solving
it. Then we discussed the method of direction fields (Sec. 1.2), solution methods
and models (Secs. 1.3-1.6), and, finally, ideas on existence and uniqueness of
solutions (Sec. 1.7).

“JOHANN HEINRICH LAMBERT (1728-1777). German physicist and mathematician.
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A first-order ODE usually has a general solution, that is, a solution involving an
arbitrary constant, which we denote by c. In applications we usually have to find a
unique solution by determining a value of ¢ from an initial condition v(xy) = .
Together with the ODE this is called an initial value problem

(2) y = flx, ), ¥(xg,) = ¥g  (xp, Vo given numbers)

and its solution is a particular solution of the ODE. Geometrically, a general

solution represents a family of curves, which can be graphed by using direction

fields (Sec. 1.2). And each particular solution corresponds to one of these curves.
A separable ODE is one that we can put into the form

(3) g(y) dy = f(x) dx (Sec. 1.3)

by algebraic manipulations (possibly combined with transformations, such as y/x = u)
and solve by integrating on both sides.
An exact ODE is of the form

4) M(x, y)dx + N(x,y)dy = 0 (Sec. 1.4)
where M dx + N dy is the differential
du = u, dx + u, dy

of a function u(x, y), so that from du = 0 we immediately get the implicit general

solution u(x, y) = ¢. This method extends to nonexact ODEs that can be made exact

by multiplying them by some function F(x, y), called an integrating factor (Sec. 1.4).
Linear ODEs

(5) vy + py = rx)

are very important. Their solutions are given by the integral formula (4), Sec. 1.5.
Certain nonlinear ODEs can be transformed to linear form in terms of new variables.
This holds for the Bernoulli equation

v+ py = glx)y” (Sec. 1.5).

Applications and modeling are discussed throughout the chapter, in particular in
Secs. 1.1, 1.3, 1.5 (population dynamics, etc.), and 1.6 (trajectories).

Picard’s existence and uniqueness theorems are explained in Sec. 1.7 (and
Picard’s iteration in Problem Set 1.7).

Numeric methods for first-order ODEs can be studied in Secs. 21.1 and 21.2
immediately after this chapter, as indicated in the chapter opening.




CHAPTER 2

Second-Order Linear ODEs

Ordinary differential equations (ODEs) may be divided into two large classes, linear
ODEs and nonlinear ODEs. Whereas nonlinear ODEs of second (and higher) order
generally are difficult to solve, linear ODEs are much simpler because various properties
of their solutions can be characterized in a general way, and there are standard methods
for solving many of these equations.

Linear ODEs of the second order are the most important ones because of their
applications in mechanical and electrical engineering (Secs. 2.4, 2.8, 2.9). And their theory
is typical of that of all linear ODEs, but the formulas are simpler than for higher order
equations. Also the transition to higher order (in Chap. 3) will be almost immediate.

This chapter includes the derivation of general and particular solutions, the latter in
connection with initial value problems.

(Boundary value problems follow in Chap. 5, which also contains solution methods for
Legendre’s, Bessel’s, and the hypergeometric equations.)

COMMENT. Numerics for second-order ODEs can be studied immediately after this
chapter. See Sec. 21.3, which is independent of other sections in Chaps. 19-21.

Prerequisite: Chap. 1, in particular, Sec. 1.5.
Sections that may be omitted in a shorter course: 2.3, 2.9, 2.10.
References and Answers to Problems: App. 1 Part A, and App. 2.

2.l Homogeneous Linear ODEs of Second Order

We have already considered first-order linear ODEs (Sec. 1.5) and shall now define and
discuss linear ODEs of second order. These equations have important engineering
applications, especially in connection with mechanical and electrical vibrations (Secs. 2.4,
2.8, 2.9) as well as in wave motion, heat conduction, and other parts of physics, as we
shall see in Chap. 12.

A second-order ODE is called linear if it can be written

(1) v+ py' + glx)y = r(x)

and nonlinear if it cannot be written in this form.
The distinctive feature of this equation is that it is linear in y and its derivatives, whereas
the functions p, ¢, and r on the right may be any given functions of x. If the equation

begins with, say, f(x)y”, then divide by f(x) to have the standard form (1) with y" as
the first term, which is practical.
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If r(x) = 0 (that is, r(x) = 0 for all x considered; read “r(x) is identically zero™), then
(1) reduces to

(2) v+ plxy’ + gx)y =0

and is called homogeneous. If r(x) 0, then (1) is called nonhomogeneous. This is
similar to Sec. 1.5.
For instance, a nonhomogeneous linear ODE is

yv" + 25y = e7% cos x,

and a homogeneous linear ODE is

: |
+xy =0, in standard form y+—y +y=0.
”

An example of a nonlinear ODE is
yiy+y?=o0.

The functions p and ¢ in (1) and (2) are called the coefficients of the ODEs,
Solutions are defined similarly as for first-order ODEs in Chap. 1. A function

vy = h(x)

is called a solution of a (linear or nonlinear) second-order ODE on some open interval /
if /1 is defined and twice differentiable throughout that interval and is such that the ODE
becomes an identity if we replace the unknown y by h. the derivative v/ by h', and the
second derivative y" by h”. Examples are given below.

Homogeneous Linear ODEs: Superposition Principle

Sections 2.1-2.6 will be devoted to homogeneous linear ODEs (2) and the remaining
sections of the chapter to nonhomogeneous linear ODEs.

Linear ODEs have a rich solution structure. For the homogeneous equation the backbone
of this structure is the superposition principle or linearity principle, which says that we
can obtain further solutions from given ones by adding them or by multiplying them with
any constants. Of course, this is a great advantage of homogeneous linear ODEs. Let us
first discuss an example.

Homogeneous Linear ODEs: Superposition of Solutions

The functions ¥ = cos x and y = sin x are solutions of the homogeneous linear ODE

vy +y=0
for all x. We verify this by differentiation and substitution. We obtain (cos x)” = —cos x; hence
" "
y +y=(cosxy) +cosx= —cosx + cosx = 0.

Similarly for y = sinx (verify!). We can go an important step further. We multiply cos x by any constant, for
instance. 4.7. and sinx by, say, —2. and take the sum of the results, claiming that it is a solution. Indeed,
differentiation and substitution gives

(4.7 cosx = 2sinx)” + (4.7 cos.x — 2 sinx) = —4.7 cosx + 2sinx + 4.7 cosx — 2sinx = 0. [
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THEOREM 1

PROOF

EXAMPLE 2

EXAMPLE 3

In this example we have obtained from y; (= cos x) and y, (= sin x) a function of the form
3) ¥ =1y T ey (¢q. €5 arbitrary constants).

This is called a linear combination of y, and y,. In terms of this concept we can now
formulate the result suggested by our example, often called the superposition principle
or linearity principle.

Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), any linear combination of two solutions on an
open interval I is again a solution of (2) on I. In particular, for such an equation,
sums and constant multiples of solutions are again solutions.

Let y; and v, be solutions of (2) on /. Then by substituting y = ¢;v; + ¢3Vs and its
derivatives into (2), and using the familiar rule (c;y; + ¢o¥s)' = €11 + Co Vs, €tC., We
get
.‘." + P.T; + qy = ((’1.‘-..‘1 + ("2.“'2}“I + P(C'L"l F 62)'2), + (f(fl."l + (.2.“2)
= ¢y + cayp + pleyyy + €aya) + gleryy + caY2)
= c1(y] + py1 + gy) + ey + pys + qya) = 0,

since in the last line, (- - *) = 0 because y; and y, are solutions, by assumption. This shows
that y is a solution of (2) on I. =]

CAUTION! Don’'t forget that this highly important theorem holds for homogeneous
linear ODEs only but does not hold for nonhomogeneous linear or nonlinear ODEs, as
the following two examples illustrate.

A Nonhomogeneous Linear ODE

Verify by substitution that the functions y = | + cosxand y = 1 + sinx are solutions of the nonhomogeneous
linear ODE

y o +y=1
but their sum is not a solution. Neither is, for instance, 2(1 + cos ) or 5(1 + sin x). =]
A Nonlinear ODE
Verify by substitution that the functions y = x% and y = 1 are solutions of the nonlinear ODE
¥y —x' =0,

but their sum is not a solution. Neither is —x2, so you cannot even multiply by —1! &l

Initial Value Problem. Basis. General Solution

Recall from Chap. 1 that for a first-order ODE, an initial value problem consists of the
ODE and one initial condition y(x,) = yo. The initial condition is used to determine the
arbitrary constant c in the general solution of the ODE. This results in a unique solution,
as we need it in most applications. That solution is called a particular solution of the
ODE. These ideas extend to second-order equations as follows.
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For a second-order homogeneous linear ODE (2) an initial value problem consists of
(2) and two initial conditions

4) y(xg) = Ko, ¥'(x) = K;.

These conditions prescribe given values Ky and K of the solution and its first derivative
(the slope of its curve) at the same given x = x, in the open interval considered.

The conditions (4) are used to determine the two arbitrary constants ¢; and ¢, in a
general solution

(5) y=ey t ey

of the ODE: here. v; and y, are suitable solutions of the ODE, with “suitable™ to be
explained after the next example. This results in a unique solution, passing through the
point (xg, Ky) with K; as the tangent direction (the slope) at that point. That solution is
called a particular solution of the ODE (2).

Initial Value Problem

Solve the initial value problem

"

Y H+y=0 ¥(0) = 3.0, v'(0) = —05.

Solution. Step 1. General solution. The functions cos x and sin x are solutions of the ODE (by Example
1), and we take

¥ = ¢y cosx + cgsinx.

This will turn out to be a general solution as defined below.

Step 2. Particular solution. We need the derivative y' = —¢y sinx + ¢, cos x. From this and the initial values
we obtain, since cos 0 = | and sin 0 = 0,
y0) =¢; =30 and ¥'(0) = cg = —0.5.

This gives as the solution of our initial value problem the particular solution
v =3.0cosx — 0.5 sinx.

Figure 28 shows that at x = 0 it has the value 3.0 and the slope —0.5, so that its tangent intersects the x-axis

at x = 3.0/0.5 = 6.0. (The scales on the axes differ!) i

¥

3k ;

2| ‘\_\ ."f \

1F

0 1 1 ] I‘.I 1

2 4 6.8 10/ *

Ak \
2k
_3 L

Fig. 28.  Particular solution and initial tangent in Example 4

Observation.  Our choice of y; and y, was general enough to satisfy both initial
conditions. Now let us take instead two proportional solutions y; = cosx and
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DEFINITION

DEFINITION

vo = k cos x, so that y;/vo = 1/k = const. Then we can write y = ¢;y; + ca¥s in the
form

v = ¢y cosx + colk cosx) = C cosx where C=c¢; + ok

Hence we are no longer able to satisfy two initial conditions with only one arbitrary
constant C. Consequently. in defining the concept of a general solution, we must exclude
proportionality. And we see at the same time why the concept of a general solution is of
importance in connection with initial value problems.

General Solution, Basis, Particular Solution

A general solution of an ODE (2) on an open interval / is a solution (5) in which
vy and y, are solutions of (2) on / that are not proportional, and ¢, and ¢, are arbitrary
| constants. These y;, v, are called a basis (or a fundamental system) of solutions
of (2) on I
A particular solution of (2) on / is obtained if we assign specific values to ¢,
and ¢, in (5).

For the definition of an interval see Sec. 1.1. Also, ¢; and ¢, must sometimes be restricted
to some interval in order to avoid complex expressions in the solution. Furthermore, as
usual, y; and y, are called proportional on I if for all x on I,

(6) (a) y; = kyy or (b) yo =1y

where k and / are numbers, zero or not. (Note that (a) implies (b) if and only if k # 0).

Actually, we can reformulate our definition of a basis by using a concept of general
importance. Namely, two functions y; and y, are called linearly independent on an
interval / where they are defined if

(7)) k() + kays(x) = 0 everywhere on / implies ky =0and k; = 0.

And y, and y, are called linearly dependent on / if (7) also holds for some constants
ky. ks not both zero. Then if k; # 0 or ky # 0, we can divide and see that y; and v, are
proportional,

ko ky

V1= —— Y2 or Yo = — — ¥1.
] e ] g -

In contrast, in the case of linear independence these functions are not proportional because
then we cannot divide in (7). This gives the following

Basis (Reformulated)

A basis of solutions of (2) on an open interval / is a pair of linearly independent
solutions of (2) on I.

If the coefficients p and g of (2) are continuous on some open interval /, then (2) has a
general solution. It yields the unique solution of any initial value problem (2), (4). It
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includes all solutions of (2) on I; hence (2) has no singular solutions (solutions not
obtainable from of a general solution; see also Problem Set 1.1). All this will be shown
in Sec. 2.6.

Basis, General Solution, Particular Solution

cos x and sin x in Example 4 form a basis of solutions of the ODE y” + y = 0 for all x because their quotient
is cotx # const (or tlanx ¥ const). Hence y = ¢y cosx + ¢y sinx is a general solution. The solution
¥ = 3.0 cos x — (.5 sin x of the initial value problem is a particular solution. V]

Basis, General Solution, Particular Solution

Verify by substitution that y; = ¢ and vo = ¢ are solutions of the ODE y” — y = 0. Then solve the initial
value problem

Y=y =0, W0) = 6, ¥ = -2

Solution. (¢")" — &% = 0 and (¢7*)" — ™ = 0 shows that e* and ¢~ are solutions. They are not
proportional, ¢/ ™" = ¢ # const. Hence ¢, ¢™* form a basis for allv. We now write down the corresponding
general solution and its derivative and equate their values at 0 to the given initial conditions,

v = cpe” + cge”", ¥ = e1e® — cge™, ¥0)=¢y +e5 =6, ¥y () =¢i —cg= =2

By addition and subtraction, ¢; = 2. ¢5 = 4, so that the answer is y = 2¢* + 4¢ ", This is the particular solution
satisfying the two initial conditions. ]

Find a Basis if One Solution Is Known.

Reduction of Order

It happens quite often that one solution can be found by inspection or in some other way.
Then a second linearly independent solution can be obtained by solving a first-order ODE.

This is called the method of reduction of order.' We first show this method for an example
and then in general.

Reduction of Order if a Solution Is Known. Basis

Find a basis of solutions of the ODE

o2 - ' —-n +y=0

Solution. Inspection shows that ¥1 = x is a solution because _r{ = | and ,\"{ = (). so that the first term
vanishes identically and the second and third terms cancel. The idea of the method is to substitute

’ L n L '
¥ = uy; = ux, Yy =ux+u, y =ux+2u

into the ODE. This gives
(2 - X" + 2u") — xu'x + w) + ux = 0.
uy and —xu cancel and we are left with the following ODE, which we divide by .x. order, and simplify,

(% — 0" + 2w’y = B’ =0, (= xu" + (x—2u" = 0.

'Credited to the great mathematician JOSEPH LOUIS LAGRANGE (1736-1813), who was born in Turin,
of French extraction, got his first professorship when he was 19 (at the Military Academy of Turin). became
director of the mathematical section of the Berlin Academy in 1766, and moved to Paris in 1787. His important
major work was in the calculus of variations, celestial mechanics, general mechanics (Mécanique analytique,
Paris, 1788), differential equations, approximation theory, algebra, and number theory.
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Homogeneous Linear ODEs of Second Order

This ODE is of first order inv = 1, namely, (x> — x)v’

gives

+ (x — 2)v = 0. Separation of variables and integration

dv =2 1 2 x=1|
— == == Info| =l —1) =2 =1 —;
x : 3 x

We need no constant of integration because we want to obtain a particular solution; similarly in the next
integration. Taking exponents and integrating again, we obtain

g 1 1 1
s — =;~?2—. H=J’de=ln|.r|+-;. hence Yo =ux =xlInlx| + L

Since y; = xand yo = x In [x| + 1 are linearly independent (their quotient is not constant), we have obtained
a basis of solutions, valid for all positive x. I

In this example we applied reduction of order to a homogeneous linear ODE [see (2)]
y' + py’ + gqlay = 0.

Note that we now take the ODE in standard form, with y”, not f(x)y”"—this is essential
in applying our subsequent formulas. We assume a solution y, of (2) on an open interval
I to be known and want to find a basis. For this we need a second linearly independent
solution v, of (2) on /. To get y,, we substitute

Y= ys = uyy, Y =ys=u'y; + uyj, y' =ys =u"y; + 2u'y; + uyy
into (2). This gives
" o " ' ! _
(8) wyy + 2uyy +uyy + pluy, + uyy) + quy, = 0.

Collecting terms in u”, u’, and u, we have
" ' [ " [ _
wyy +u@2yy + pyp) +ulyy + pyr + gy) = 0.
Now comes the main point. Since y; is a solution of (2), the expression in the last

parentheses is zero. Hence u is gone, and we are left with an ODE in «” and «”. We divide
this remaining ODE by y, and set ' = U, u" = U’,

BB k)
u”-i-ﬁ'M:O, thus U + (ﬁ +p)U=O.
N N

This is the desired first-order ODE, the reduced ODE. Separation of variables and
integration gives

dUu 2}‘{ B
i ( a + p) dx and In|U| = =2 In |y fp dx.

By taking exponents we finally obtain

9 U= —5 g JPdx
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Here U = u’, so that u = [U dx. Hence the desired second solution is

5 = ViUl Zylfde.

The quotient y,/v; = u = [U dx cannot be constant (since U > 0), so that y; and y, form

a basis of solutions.

[1=6] GENERAL SOLUTION. INITIAL VALUE
PROBLEM

(More in the next problem set.) Verify by substitution that
the given functions form a basis. Solve the given initial
value problem. (Show the details of your work.)
Ly" =16y =0, €% %, y0)=3,y(0)=38
2. y" + 25y = 0, cos 5x, sin 5x, y(0) = 0.8,
¥'(0) = —6.5
3y +2y +2y=0,
¥0) = 1,y'(0) = —1

e cosx, e sinx,

Il

4. y" — 6y’ + 9y = 0, 3, xe¥*, y(0) = —1.4,
y'(0) = 4.6

5.0%" + v’ — 4y = 0,23 272 w(1) = 11,
y'(1) = -6

6. x2" — Txy' + 15y = 0, 2% 2%, v(1) = 04,
v =10

!_‘?—IJ LINEAR INDEPENDENCE AND DEPENDENCE

Are the following functions linearly independent on the
given interval?

T.x.xInx (0 < x < 10)

8. 32, 2x" (0 <x< 1)

9. ", e (any interval)

10. cos? x, sin? x (any interval)

11. Inx, Inx% (x > 0)

120 — 2,5+ 2(—2 <x=<2)

13. 5 sinx cos x, 3 sin2x (x > 0)

14. 0, sinh 7x (x > 0)

REDUCTION OF ORDER is important because it gives a

simpler ODE. A second-order ODE F(x. v. v'.v") = 0, linear

or not, can be reduced to first order if v does not occur
explicitly (Prob. 15) or if x does not occur explicitly (Prob.

16) or if the ODE is homogeneous linear and we know a

solution (see the text).

15. (Reduction) Show that F(x, y'. ¥") = 0 can be reduced
to first order in z = y' (from which y follows by
integration). Give two examples of your own.

16. (Reduction) Show that F(y, y’, ¥") = 0 can be reduced
to a first-order ODE with y as the independent variable
and y” = (dz/dy)z, where z = y'; derive this by the
chain rule. Give two examples.

17-22| Reduce to first order and solve (showing each
step in detail).

17. y" = ky'

18. y' =1+ y"2

19. )’}-‘” — 4_\”2

20. xy" + 2y +xy=0, vy =x1cosx
21. v + ¥ siny =0

22. (1 — x%)y" — 2xy' + 2y =0,

Y1 =X
23. (Motion) A small body moves on a straight line. Its
velocity equals twice the reciprocal of its acceleration.
If at 1 = 0 the body has distance 1 m from the origin
and velocity 2 m/sec, what are its distance and velocity
after 3 sec?

(Hanging cable) It can be shown that the curve y(x)
of an inextensible flexible homogeneous cable
hanging between two fixed points is obtained by

solving y" = kV'1 + y'2, where the constant k depends
on the weight. This curve is called a carenary (from
Latin catena = the chain). Find and graph y(x),
assuming & = | and those fixed points are (—1, 0) and
(1, 0) in a vertical xy-plane.

24

25, (Curves) Find and sketch or graph the curves passing
through the origin with slope 1 for which the second
derivative is proportional to the first.

26. WRITING PROJECT. General Properties of
Solutions of Linear ODEs. Write a short essay (with
proofs and simple examples of your own) that includes
the following.

(a) The superposition principle.

(b) ¥ = 0 is a solution of the homogeneous equation
(2) (called the trivial solution).

(c) The sum y = y; + ¥, of a solution y; of (1) and
vo of (2) is a solution of (1).

(d) Explore possibilities of making further general
statements on solutions of (1) and (2) (sums,
differences, multiples).

CAS PROJECT. Linear Independence. Write a
program for testing linear independence and
dependence. Try it out on some of the problems in this
problem set and on examples of your own.

27
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/.2 Homogeneous Linear ODEs
with Constant Coefficients

We shall now consider second-order homogeneous linear ODEs whose coefficients @ and
b are constant,

(1) ¥y +ay + by=0.

These equations have important applications, especially in connection with mechanical
and electrical vibrations, as we shall see in Secs. 2.4, 2.8, and 2.9.

How to solve (1)? We remember from Sec. 1.5 that the solution of the first-order linear
ODE with a constant coefficient k

y’ + k}! = ()

is an exponential function y = ce™". This gives us the idea to try as a solution of (1) the

function
@ ——
Substituting (2) and its derivatives
y' =i Aeh" and Y = A2

into our equation (1), we obtain
(A2 + aA + by = 0.

Hence if A is a solution of the important characteristic equation (or auxiliary equation)

3) A+ar+b=0

then the exponential function (2) is a solution of the ODE (1). Now from elementary
algebra we recall that the roots of this quadratic equation (3) are

@ m=dCat Ve —an),  dp=}a- Ve - ab)

(3) and (4) will be basic because our derivation shows that the functions

(5) y; = eM* and yo = e’
are solutions of (1). Verify this by substituting (5) into (1).

From algebra we further know that the quadratic equation (3) may have three kinds of
roots, depending on the sign of the discriminant a® — 4b, namely,

(Case I)  Two real roots if a — 4b > 0,
(Case II) A real double root if a> — 4b = 0,
(Case III) Complex conjugate roots if a> — 4b < Q.
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Case |. Two Distinct Real Roots A, and A,

In this case, a basis of solutions of (1) on any interval is

¥y = M and vy = e*®

because y; and v, are defined (and real) for all x and their quotient is not constant. The
corresponding general solution is

(6) y = c;eMT + cpe’

General Solution in the Case of Distinct Real Roots

We can now solve v" — y = 0 in Example 6 of Sec. 2.1 systematically. The characteristic equation is
A% — 1 = 0. Its roots are Ay = 1 and Ay = — 1. Hence a basis of solutions is e” and ¢~ and gives the same
general solution as before.

¥ =rie” + cze . il

Initial Value Problem in the Case of Distinct Real Roots
Solve the initial value problem
"

Yy =2y =0, ¥0) = 4, V() = —5.

Solution. Step 1. General solution, The characteristic equation is
AP+a-2=0.
Its roots are
M =3-14+V0 =1 and Ay =3(-1=-V0) = -2

so that we obtain the general solution

v =c1e” + ege” %,

Step 2. Particular solution. Since v'(x) = ¢16* — 200”2, we obtain from the general solution and the initial
conditions

y0)=¢e; + g =4,

¥'(0) = ¢y — 2cy = 5.

Hence ¢; = 1 and ¢5 = 3. This gives the answer v = ¢* + 362, Figure 29 shows that the curve begins at
¥ = 4 with a negative slope (—35. but note that the axes have different scales!). in agreement with the initial
conditions. =

¥

8

6 7

.//
4
S o
5 =

Fig. 29. Solution in Example 2
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EXAMPLE 3

EXAMPLE 4

Case Il. Real Double Root A = —a/2

If the discriminant a® — 4b is zero, we see directly from (4) that we get only one root,
A= Ay = Ay = —a/2, hence only one solution,

Py = e“(a&)x’

To obtain a second independent solution y, (needed for a basis), we use the method of
reduction of order discussed in the last section, setting y5 = wuy;. Substituting this and its
derivatives y, = u'y; + uyy and yy into (1), we first have

{u"_‘,-‘l + 211’_1:1 + zc_\-"l') + a(u'yl + u_}-‘{) + buy; = 0.
Collecting terms in u”, 1, and u, as in the last section, we obtain
W'yy + u'Qyy + ayy) + u(yy + ay; + by,) = 0.

The expression in the last parentheses is zero, since y; is a solution of (1). The expression
in the first parentheses is zero, too, since

' i
2)‘1 = —ae ax/2 _

—yy.

We are thus left with "y, = 0. Hence 1" = 0. By two integrations, u = c,x + ¢5. To
get a second independent solution y, = wuy;, we can simply choose ¢; = 1, ¢ = 0 and
take u = x. Then y, = xy,. Since these solutions are not proportional, they form a basis.
Hence in the case of a double root of (3) a basis of solutions of (1) on any interval is

g aw/2 xe—aa:f!Z_
The corresponding general solution is
(7) y = (ey + epx)e™ 2,

Warning. If A is a simple root of (4), then (¢, + cyx)e™ with ¢y # 0 is not a solution
of (1).

General Solution in the Case of a Double Root

The characteristic equation of the ODE Y46y 9y =0is A%+ 6A + 9 = (A + 3) = 0. It has the double
root A = —3. Hence a basis is ™ and xe™%". The corresponding general solution is y = (¢; + cox)e ™", M

Initial Value Problem in the Case of a Double Root

Solve the initial value problem

" !

v+ v+ 025y =0, V0) =30, ¥y'(0)=-35

Solution. The characteristic equation is A% + A + 0.25 = (A + 0.5)®> = 0. It has the double root A = —0.5.
This gives the general solution

y={ey + t'2_\'Je“O'5x‘

We need its derivative

0.

_-,ﬂ = Czew Sx 0.5{6‘1 + (,2_”8-0_5_1_
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From this and the initial conditions we obtain

W0) = ¢; = 3.0, V(0) = ey — 0.5¢; = —3.5; hence ¢y = =2,
The particular solution of the initial value problem is y = (3 — 2x)e~ %%, See Fig. 30. O

&

3

21y

1

0 ol 1 1 | L ]

L 2__4 68 10 12 14 ¥
-1

Fig. 30. Solution in Example 4

Case Ill. Complex Roots —1a + iwand —1a — iw

This case occurs if the discriminant ® — 4b of the characteristic equation (3) is negative.
In this case, the roots of (3) and thus the solutions of the ODE (1) come at first out
complex. However, we show that from them we can obtain a basis of real solutions

—axf2

(8) vi = e~ %" cos wn, Yo=¢€ sin wx (w > 0)

where o> = b — Ja®. It can be verified by substitution that these are solutions in the
present case. We shall derive them systematically after the two examples by using the
complex exponential function. They form a basis on any interval since their quotient
cot wx is not constant. Hence a real general solution in Case III is

9) y = e~ 2 (A cos wx + B sin wx) (A, B arbitrary).

Complex Roots. Initial Value Problem

Solve the initial value problem

Yo+ 04y +9.04y =0, yoy=0, y'(0)=3.

Solution. Step 1. General solution. The characteristic equation is A% + 0.4A + 9.04 = 0. It has the roots
—0.2 = 3i. Hence @ = 3, and a general solution (9) is

y = ¢~ %2%(A cos 3x + B sin 3x).

Step 2. Particular solution. The [irst initial condition gives y(0) = A = 0. The remaining expression is
y = Be™ %" sin 3x. We need the derivative (chain rule!)

y = B(—0.2¢7%%% 5in 3x + 3¢7 %27 cos 3x).

From this and the second initial condition we obtain y'(0) = 3B = 3. Hence B = 1. Our solution is
y =% sin3x.
—0.2¢ —0.2r

Figure 31 shows v and the curves of ¢ and —e (dashed), between which the curve of y oscillates.
Such “damped vibrations™ (with x = ¢ being time) have important mechanical and electrical applications, as we
shall soon see (in Sec. 2.4). M
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EXAMPLE 6

-1of
Fig. 31, Solution in Example 5

Complex Roots
A general solution of the ODE

¥+ ey =0 (@ constant, not zero)
is

v =A cos wx + B sin wx.

With @ = | this confirms Example 4 in Sec. 2.1. [

Summary of Cases |-l

| Case Roots of (2) Basis of (1) General Solution of (1)
Distinct real :
I . 6’\11, eazx y= (.'11‘.”\335 I (.‘2(3)\2‘1
1» A2
Real double root | )
I m o} e——am’2’ xe—a:vf?. y=(c; + sz)f,-ua.fz
- A= —gd ) |
Complex conjugate - —
111 M= —da + iw, W, = ¢~ %2(A cos wx + B sin wx)
51N X

)lzz _‘é‘ﬂ_ “-U

It is very interesting that in applications to mechanical systems or electrical circuits,
these three cases correspond to three different forms of motion or flows of current,
respectively. We shall discuss this basic relation between theory and practice in detail in
Sec. 2.4 (and again in Sec. 2.8).

Derivation in Case lll. Complex Exponential Function

If verification of the solutions in (8) satisfies you, skip the systematic derivation of these
real solutions from the complex solutions by means of the complex exponential function
¢® of a complex variable z = r + ir. We write r + if, not x + jy because x and y occur
in the ODE. The definition of ¢* in terms of the real functions e’, cos ¢, and sin 7 is

(10) € = et = ¢"e = ¢"(cost + isini).
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This is motivated as follows. For real z = r, hence r = 0, cos 0 = 1, sin 0 = 0, we get
the real exponential function ¢”. It can be shown that e*"*2 = ¢"¢*2, just as in real. (Proof
in Sec. 13.5.) Finally, if we use the Maclaurin series of ¢* with z = it as well as i* = —1,
i3 = —i,i* = 1. etc.. and reorder the terms as shown (this is permissible, as can be proved),
we obtain the series

. .3 s 4 L5
(if) N (i) N (it) N (it) N

- :
er=l+i+ = 3! 41 51

|'2 f4 3 r"i
e ta ””("? 5 )

=cost +isint.

(Look up these real series in your calculus book if necessary.) We see that we have obtained
the formula

(11) e = cost + isint,

called the Euler formula. Multiplication by e gives (10).
For later use we note that e™** = cos (—f) + i sin (=) = cost — i sint, so that by
addition and subtraction of this and (11),

| ) | . .
(12) cost = — (e + 7', sint = — (ef — ™).
2 2i

After these comments on the definition (10), let us now turn to Case 111
In Case III the radicand a® — 4b in (4) is negative. Hence 4b — a? is positive and,
using V' —1 = i, we obtain in (4)

Wa2 —4b=3V—-4b—a® = V—(b —3a®» = iVb —1a® = iw

with w defined as in (8). Hence in (4),

A =3a+iw and, similarly, Ay =1a - iw.
Using (10) with r = —3ax and 7 = wx, we thus obtain
oMt = e—(a!2?x+iwx — e-(afzu-(cos wx + isin wx)

eh2® = pmlalr—ion — =D ((coq (yx — | sin wx).

We now add these two lines and multiply the result by 4. This gives y; as in (8). Then
we subtract the second line from the first and multiply the result by 1/(27). This gives v,
as in (8). These results obtained by addition and multiplication by constants are again
solutions, as follows from the superposition principle in Sec. 2.1. This concludes the
derivation of these real solutions in Case III.
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[1-14] GENERAL SOLUTION
Find a general solution. Check your answer by substitution.
Ly —6¢ — Ty =0
210" =7y + 12y =0
3. 4y" — 209" + 25y =0
4. v + 47y’ + 472y =0
5. 1000" + 20y" — 99y =0
6. v+ 2y +5y=0
7
8

=y 25y =0

Sy 2.6y + 169y =0
9. y" —2y' =525y =10
10. y" =2y =0

1L y" +97% =0 12. v+ 24y + 4.0y =0
13. y" — 144y = 0 14. y" +y' =096y =0
[15-20| FIND ODE

Find an ODE y" + ay’ + by = 0 for the given basis.
15. &%, * 16. £9:5%, g=3:5%

17. ¢*V3, xe*V3 18. 1, =3

19‘ IL,4:!:‘ e—‘}x 20. Ie{--]_-»i]:r.‘ e—(l-hi)a:

|&E INITIAL VALUE PROBLEMS

Solve the initial value problem. Check that your answer
satisfies the ODE as well as the initial conditions. (Show
the details of your work.)

21, y" — 2y =3y =0,y0) =2,y(0) = 14

22. y" + 2y +y=0,y0) =4,y (0 =-6

23, y" + 4y" + 5y =0, 9(0) = 2,¥(0) = =5

24. 10v" — 50y + 65y = 0, (0) = 1.5, ¥'(0) = 1.5
25. y" + ' =0, v(0) =3, y(0) = -7

26. 10y" + 18y" + 5.6y = 0. y(0) = 4, y'(0) = —3.8

/.5 Differential Operators.

27. 10y" +5y" + 0.625y = 0, v(0) = 2, y'(0) = —4.5
28. y" — 9y =0, y(0) = —2,y'(0) = —12
29. 20y" + 4y’ + y =0, y(0) = 3.2, ' (0) = 0
30. y" + 2ky" + (k%2 + )y =0, y(0) = 1,
y'(0) = —k
3L y" — 25y = 0. ¥(0) = 0. y'(0) = 40
32.y" — 29" — 24y = 0, y(0) = 0, y'(0) = 20

33. (Instability) Solve y” — v = 0 for the initial conditions
y(0) = 1.¥'(0) = — L. Then change the initial conditions
to ¥(0) = 1.001, y'(0) = —0.999 and explain why this
small change of 0.001 at x = 0 causes a large change
later, e.g., 22 at x = 10.

34. TEAM PROJECT. General Properties of Solutions

(A) Coefficient formulas. Show how « and b in (1)
can be expressed in terms of A; and As. Explain how
these formulas can be used in constructing equations
for given bases.
(B) Root zero. Solve y" + 4y" = 0 (i) by the present
method, and (ii) by reduction to first order. Can you
explain why the result must be the same in both cases?
Can you do the same for a general ODE y" + ay' = 0?
(C) Double root. Verify directly that xe’” with
A = —a/2 is a solution of (1) in the case of a double
root. Verify and explain why v = ¢™*% is a solution of
y" =y — 6y = 0 but xe™2" is not.
(D) Limits. Double roots should be limiting cases of
distinet roots Ay, Ap as, say, Ay — A;. Experiment with
this idea. (Remember I"Hopital’s rule from calculus.)
Can you arrive at xe™™? Give it a try.

35. (Verification) Show by substitution that v; in (8) is a
solution of (1).

Optional

This short section can be omitted without interrupting the flow of ideas; it will not be
used in the sequel (except for the notations Dy, D%y, etc., for y', y”, etc.).

Operational calculus means the technique and application of operators. Here, an
operator is a transformation that transforms a function into another function. Hence
differential calculus involves an operator, the differential operator D, which transforms
a (differentiable) function into its derivative. In operator notation we write

(1)

dy

Dy=y =—=.

dx
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CHAP. 2 Second-Order Linear ODEs

Similarly, for the higher derivatives we write D*y = D(Dy) = y", and so on. For example,
D sin = cos, D? sin = —sin, etc.

For a homogeneous linear ODE y” + ay’ + by = 0 with constant coefficients we can
now introduce the second-order differential operator

L= PD)=D?+ aD + bl,
where / is the identity operator defined by /y = y. Then we can write that ODE as
(2) Ly = P(D)y = (D*® + aD + bl)y = 0.

P suggests “polynomial.” L is a linear operator. By definition this means that if Ly and
Lw exist (this is the case if y and w are twice differentiable), then L(cy + kw) exists for
any constants ¢ and k, and

L(cy + kw) = cLy + kLw.

Let us show that from (2) we reach agreement with the results in Sec. 2.2. Since
(De)(x) = Ae™ and (D%e*)(x) = A2, we obtain

3) Ler(x) = P(DYeMx) = (D2 + aD + ble(x)
= (A2 + aA + b)e™ = P(L)e™ = 0.

This confirms our result of Sec. 2.2 that e is a solution of the ODE (2) if and only if A
is a solution of the characteristic equation P(A) = 0.

P(A) is a polynomial in the usual sense of algebra. If we replace A by the operator D,
we obtain the “operator polynomial™ P(D). The point of this operational calculus is that
P(D) can be treated just like an algebraic quantiry. In particular, we can factor it.

Factorization, Solution of an ODE
Factor P(D) = D® — 3D — 40/ and solve P(D)y = 0.

Solution. D®> — 3D — 401 = (D — 8I)(D + 51) because 12 = 1. Now (D — 8/)y = ' — 8y = 0 has the
solution yy = e, Similarly, the solution of (D + 50y = 0is yp = €% This is a basis of P(D)y = 0 on any
interval. From the factorization we obtain the ODE, as expected.

!

(D — 8IND + 50y = (D — 8D)(y" + 5y) = D(y' + 5y) — 8(y' + 5v)

=y" 4+ 5" — 8" —40y =" — 3y’ — 40y = 0.

Verify that this agrees with the result of our method in Sec. 2.2. This is not unexpected because we factored
P(D) in the same way as the characteristic polynomial P(A) = A2 — 30 —40. fiid

It was essential that L in (2) has constant coefficients. Extension of operator methods to
variable-coefficient ODEs is more difficult and will not be considered here.

If operational methods were limited to the simple situations illustrated in this
section, it would perhaps not be worth mentioning. Actually, the power of the operator
approach appears in more complicated engineering problems, as we shall see in
Chap. 6.
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[1-5

APPLICATION OF DIFFERENTIAL 1. (D2 + 41D + 3.10)y = 0
OPERATORS 12, (4D% + 47D + 72y = 0

Apply the given operator to the given functions. (Show all 13. (D% + 17.64021)y = 0
steps in detail.)

1. (D = N3 %, xe® sinx 14. (Double root) If D* + aD + bl has distinct roots
2. 8D% + 2D — I; coshix. sinhlx, &2 p and A, show that a particular solution is
3. D — 04 2%% — 1. %% 04w ¥y = (e" — e") /(i — A). Obtain from this a solution

.

xe™ by letting 0 — A and applying I'Hépital's rule.

[ + _ 9 —-5x _: . 51" -
A (D Sl)R=Ty, e SR % 15. (Linear operator) lllustrate the linearity of L in (2) by

- i i BN o -3
5.(D — 4D + 3I); x x%, sindx, o™ taking ¢ = 4, k = —6, y = ¢2*, and w = cos 2x.
[6-13] GENERAL SOLUTION Prove that L is linear.
Factor as in the text and solve. (Show the details.) 16. (Definition of linearity) Show that the definition of

linearity in the text is equivalent to the following. If

. (D? — 5.5D + 6. ) =
G A0 Sl ROEE @ L[y] and L[w] exist, then L[y + w] exists and L[cy]

2 p= 2 _ ]
7. (D + 2I)% 0 8. (D 0.497)y = 0 and L[kw] exist for all constants ¢ and k, and
9. (D®> + 6D + 131)y = 0 Ly + w] = Lly] + L{w] as well as L[cy] = ¢L[y] and
10. (10D* + 2D + 1.7y = 0 Llkw] = kL[w].

2.4 Modeling: Free Oscillations
(Mass—Spring System)

Linear ODEs with constant coefficients have important applications in mechanics, as we
show now (and in Sec. 2.8). and in electric circuits (to be shown in Sec. 2.9). In this section
we consider a basic mechanical system, a mass on an elastic spring (“mass-spring system,”
Fig. 32), which moves up and down. Its model will be a homogeneous linear ODE.

Setting Up the Model

We take an ordinary spring that resists compression as well extension and suspend it
vertically from a fixed support, as shown in Fig. 32. At the lower end of the spring we

Unstretched -
spring %o
e -y=0)0———-
System in E;
static i
equilibrium System in
motion
(a) (b) (e)

Fig. 32 Mechanical mass—spring system
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attach a body of mass m. We assume m to be so large that we can neglect the mass of the
spring. If we pull the body down a certain distance and then release it, it starts moving.
We assume that it moves strictly vertically.

How can we obtain the motion of the body. say, the displacement y(f) as function of
time /7 Now this motion is determined by Newton’s second law

(1) Mass X Acceleration = my” = Force

where y” = d@2y/dt® and “Force” is the resultant of all the forces acting on the body.

(For systems of units and conversion factors, see the inside of the front cover.)

We choose the downward direction as the positive direction, thus regarding downward
forces as positive and upward forces as negative.

Consider Fig. 32. The spring is first unstretched. We now attach the body. This stretches
the spring by an amount sy shown in the figure. It causes an upward force F, in the spring.
Experiments show that Fy is proportional to the stretch s, say,

(2) Fy = —ksg (Hooke’s law?).

k (> 0) is called the spring constant (or spring modulus). The minus sign indicates that
F, points upward, in our negative direction. Stiff springs have large k. (Explain!)

The extension sq is such that Fy in the spring balances the weight W = mg of the
body (where g = 980 cm/sec® = 32.17 ft/sec® is the gravitational constant). Hence
Fo + W= —ksy + mg = 0. These forces will not affect the motion. Spring and body are
again at rest. This is called the static equilibrium of the system (Fig. 32b). We measure
the displacement y(t) of the body from this ‘equilibrium point’ as the origin y = 0,
downward positive and upward negative.

From the position y = 0 we pull the body downward. This further stretches the spring
by some amount y > 0 (the distance we pull it down). By Hooke’s law this causes an
(additional) upward force F; in the spring,

Fl = _k\’

F is a restoring force. It has the tendency to restore the system, that is, to pull the body
back toy = 0.

Undamped System: ODE and Solution

Every system has damping—otherwise it would keep moving forever. But practically, the
effect of damping may often be negligible, for example, for the motion of an iron ball on
a spring during a few minutes. Then F; is the only force in (1) causing the motion. Hence
(1) gives the model my” = —ky or

3) my” + ky = 0.

2ROBERT HOOKE (1635-1703), English physicist. a forerunner of Newton with respect to the law of
gravitation,
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By the method in Sec. 2.2 (see Example 6) we obtain as a general solution

(4) y(1) = A cos wy! + B sin wyl, wy =

The corresponding motion is called a harmonic oscillation.

Since the trigonometric functions in (4) have the period 277/ wj, the body executes wy/27
cycles per second. This is the frequency of the oscillation, which is also called the natural
frequency of the system. It is measured in cycles per second. Another name for cycles/sec
is hertz (Hz).?

The sum in (4) can be combined into a phase-shifted cosine with amplitude C = 'V A2+ B2
and phase angle 8 = arctan (B/A),

4%) (1) = C cos (wgf — d).

To verify this, apply the addition formula for the cosine [(6) in App. 3.1] to (4*) and then
compare with (4). Equation (4) is simpler in connection with initial value problems,
whereas (4%) is physically more informative because it exhibits the amplitude and phase
of the oscillation.

Figure 33 shows typical forms of (4) and (4*), all corresponding to some positive initial
displacement y(0) [which determines A = y(0) in (4)] and different initial velocities _1"(0}
[which determine B = v'(0)/w,)].

y
-7 /®/® e N
(k ) \ d - =
N s \ / ’
L R 3 : .
o — /L <L
'\\ Ny // t
N, ~
@_/\\ e \\‘/‘,
\\. 2 ”
(D Positive
@) Zero Initial velocity
(3) Negative

Fig. 33. Harmonic oscillations

EXAMPLE 1 Undamped Motion. Harmonic Oscillation

If an iron ball of weight W = 98 nt (about 22 1b) stretches a spring 1.09 m (about 43 in.), how many cycles per
minute will this mass—spring system execute? What will its motion be if we pull down the weight an additional
16 cm (about 6 in.) and let it start with zero initial velocity?

Solution. Hooke's law (2) with W as the force and 1.09 meter as the stretch gives W = 1.09%: thus
k= W09 = 98/1.09 = 90 [kg.-’sccz] = 90 [nt/meter]. The mass is m = W/g = 98/9.8 = 10 [kg]. This gives
the frequency wy/(27) = Vk/m/(2w) = 3/(27) = 0.48 [Hz] = 29 [cycles/min].

PHEINRICH HERTZ (1857-1894), German physicist, who discovered electromagnetic waves, as the basis
of wireless communication developed by GUGLIELMO MARCONI (1874-1937), Italian physicist (Nobel prize
in 1909).
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From (4) and the initial conditions, ¥(0) = A = 0.16 [meter] and v'(0) = wyB = 0. Hence the motion is
v(r) = 0.16 cos 3t [meter] or 0.52 cos 31 [ft] (Fig. 34).

If you have a chance of experimenting with a mass—spring system, don’t miss it. You will be surprised about
the good agreement between theory and experiment, usually within a fraction of one percent if you measure
carefully. )

¥
0.2}
0.1p _
0 _' L\ o\ JI A\ i

k \ /2 \ /4 \ /6 \ /8 \ fo ¢

-0.1
-0.2

Fig. 34, Harmonic oscillation in Example 1

Damped System: ODE and Solutions

We now add a damping force

Fo = —cy
to our model m,\'” = —ky. so that we have my" = —ky — c_\-"' or
3) my" +cy' + ky=0.

Physically this can be done by connecting the body to a dashpot: see Fig. 35. We assume
this new force to be proportional to the velocity y' = dy/dt, as shown. This is generally
a good approximation, at least for small velocities.

c is called the damping constant. We show that ¢ is positive. If at some instant, y' is
positive, the body is moving downward (which is the positive direction). Hence the
damping force F, = —cy’, always acting against the direction of motion, must be an
upward force, which means that it must be negative, F5 = —¢y’ < 0, so that —¢ < 0 and
¢ > 0. For an upward motion, y’ < 0 and we have a downward F, = —cy > 0; hence
—¢ < 0 and ¢ > 0, as before.

The ODE (5) is homogeneous linear and has constant coefficients. Hence we can solve
it by the method in Sec. 2.2. The characteristic equation is (divide (5) by m)

Fig. 35. Damped system
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By the usual formula for the roots of a quadratic equation we obtain, as in Sec. 2.2,

: 1
6 AM=-a+P A=-a—p where a=ﬁ and B= 5V~ dnik

It is now most interesting that depending on the amount of damping (much, medium, or little)
there will be three types of motion corresponding to the three Cases I, II, II in Sec. 2.2:

Case .  ¢® > dmk. Distinct real roots Ay, As. (Overdamping)
Case IL.  ¢® = 4mk. A real double root. (Critical damping)
Case III. ¢® < 4mk. Complex conjugate roots. (Underdamping)

Discussion of the Three Cases
Case |. Overdamping

If the damping constant ¢ is so large that ¢ > 4mk, then A, and A, are distinct real roots.
In this case the corresponding general solution of (5) is

(7) —\(” == Cle—(a—ﬁit + Cze—(rxﬂﬂlr.

We see that in this case, damping takes out energy so quickly that the body does not
oscillate. For + > 0 both exponents in (7) are negative because @ > 0, § > 0, and
B% = o® — kim < o® Hence both terms in (7) approach zero as t — . Practically
speaking, after a sufficiently long time the mass will be at rest at the static equilibrium
position (y = 0). Figure 36 shows (7) for some typical initial conditions.

Case II. Critical Damping

Critical damping is the border case between nonoscillatory motions (Case I) and oscillations
(Case III). Tt occurs if the characteristic equation has a double root, that is, if ¢ = 4mk,

(a) (b)
(D) Positive
@) Zero Initial velocity
(3) Negative
Fig. 36, Typical motions (7) in the overdamped case
(a) Positive initial displacement
(b) Negative initial displacement
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so that B = 0, A; = A; = —a. Then the corresponding general solution of (3) is
(8) ¥ = (e F o™,

This solution can pass through the equilibrium position y = 0 at most once because ¢~

is never zero and ¢; + ¢,f can have at most one positive zero. If both ¢, and ¢, are positive
(or both negative), it has no positive zero, so that y does not pass through 0 at all. Figure
37 shows typical forms of (8). Note that they look almost like those in the previous figure.

Case lll. Underdamping

This is the most interesting case. It occurs if the damping constant ¢ is so small that
¢2 < 4mk. Then B in (6) is no longer real but pure imaginary, say.

1 — k &
(9 B =iw* where w* = n dmk = c® = = — = 5 (=0

m m 4m

(We write ™ to reserve w for driving and electromotive forces in Secs. 2.8 and 2.9.) The
roots of the characteristic equation are now complex conjugate,

AL = —a + iw¥, A = —a — iw*
with e = ¢/(2m). as given in (6). Hence the corresponding general solution is

(10) y() = e YA cos w*t + B sin w*t) = Ce™“ cos (w*t — d)

where C? = A® + B? and tan 8 = B/A, as in (4%).

This represents damped oscillations. Their curve lies between the dashed curves
y= Ce “and y = —Ce~*"in Fig. 38, touching them when w*r — § is an integer multiple
of 7r because these are the points at which cos (w*f — 8) equals 1 or —1.

The frequency is @*/(277) Hz (hertz, cycles/sec). From (9) we see that the smaller ¢ (= 0)
is, the larger is w* and the more rapid the oscillations become. It ¢ approaches 0, then @*
approaches wy = Vk/m, giving the harmonic oscillation (4), whose frequency wo/(27) is
the natural frequency of the system.

¥ | /@

G

— t ~

(D) Positive

@) zero Initial velocity

@ Negative Fig. 28. Damped oscillation in
Fig. 37.  Critical damping [see (8)] Case lll [see (10)]
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EXAMPLE 2 The Three Cases of Damped Motion

How does the motion in Example | change if we change the damping constant ¢ to one of the following three
values, with ¥(0) = 0.16 and v'(0) = 0 as before?

() ¢ = 100 kg/sec, (1) ¢ = 60 keg/sec, (Il ¢ = 10 kg/sec.

Solution. 1t is interesting to see how the behavior of the system changes due to the effect of the damping,
which takes energy from the system. so that the oscillations decrease in amplitude (Case III) or even disappear
(Cases 1l and I).

(I) With m = 10 and k = 90, as in Example 1, the model is the initial value problem
10y" + 100y" + 90y = 0, w0) = 0.16 [meter],  y'(0) = 0.
The characteristic equation is 10A% + 100A + 90 = 10(A + 9)(A + 1) = 0. It has the roots —9 and — 1. This
gives the general solution

t

y=c1e % + cpeh ;

We also need y = =907 — o™

The initial conditions give ¢; + cg = 0.16, —=%¢; — ¢ = 0. The solution is ¢; = —0.02, ¢, = 0.18. Hence in
the overdamped case the solution is
y = —0.02"2" + 0.18¢7".

It approaches 0 as t — 2. The approach is rapid; after a few seconds the solution is practically 0, that is, the
iron ball is at rest.

(II) The model is as before, with ¢ = 60 instead of 100. The characteristic equation now has the form
1042 + 60A + 90 = 10(A + 3)®> = 0. It has the double root —3. Hence the corresponding general solution is

y=(cg + czr)e_st We also need y = (cg — 3¢y — SC?_I)e'St,

The initial conditions give y(0) = ¢; = 0.16, y'(0) = ¢3 — 3¢; = 0, o = 0.48. Hence in the critical case the
solution is

y = (0.16 + 0.48n)e3",

It is always positive and decreases to 0 in a monotone fashion.

(1) The model now is 10}-" + 10y + 90y = 0. Since ¢ = 10 is smaller than the critical ¢, we shall get
oscillations. The characteristic equation is 10A% + 104 + 90 = I()[(A + %)2 +i— %] = 0. It has the complex
roots [see (4) in Sec, 2.2 witha = 1 and b = 9]

A=—-05+V052-9=-05+296i

This gives the general solution
y = e %A cos 2.96r + B sin 2.961).

Thus y(0) = A = 0.16. We also need the derivative
v = 7P (—0.54 cos 2.961 — 0.5B sin 2.967 — 2.96A sin 2.961 + 2.968 cos 2.961).
Hence _\"{(}) = —0.54 + 2968 = 0, B = 0.5A/2.96 = 0.027. This gives the solution
v = e %%40,16 cos 2.96r + 0.027 sin 2.961) = 0.162¢~%" cos (2.96r — 0.17).

We see that these damped oscillations have a smaller frequency than the harmonic oscillations in Example 1 by
about 1% (since 2.96 is smaller than 3.00 by about 1%). Their amplitude goes to zero. See Fig. 39. B

¥
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-0.05
-0.1

Fig. 29.  The three solutions in Example 2
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This section concerned free motions of mass-spring systems. Their models are
homogeneous linear ODEs. Nonhomogeneous linear ODEs will arise as models of forced
motions, that is, motions under the influence of a “driving force”. We shall study them
in Sec. 2.8, after we have learned how to solve those ODEs.

1-8] MOTION WITHOUT DAMPING
(HARMONIC OSCILLATIONS)

1. (Initial value problem) Find the harmonic motion (4)
that starts from y, with initial velocity v,. Graph or
sketch the solutions for wy = a7, ¥ = 1, and various
Up of your choice on common axes. At what r-values
do all these curves intersect? Why?

2. (Spring combinations) Find the frequency of vibration
of a ball of mass m = 3 kg on a spring of modulus
(i) ky = 27 nt/m, (i) ko = 75 nt/m, (iii) on these springs
in parallel (see Fig. 40). (iv) in series, that is, the ball hangs
on one spring. which in turn hangs on the other spring.

3. (Pendulum) Find the frequency of oscillation of a
pendulum of length L (Fig. 41), neglecting air
resistance and the weight of the rod. and assuming 6
to be so small that sin @ practically equals 6.

4. (Frequency) What is the frequency of a harmonic
oscillation if the static equilibrium position of the ball
is 10 cm lower than the lower end of the spring before
the ball is attached?

5. (Imitial velocity) Could you make a harmonic oscillation
move faster by giving the body a greater initial push?

6. (Archimedian principle) This principle states that the
buoyancy force equals the weight of the water
displaced by the body (partly or totally submerged).
The cylindrical buoy of diameter 60 cm in Fig. 42 is
floating in water with its axis vertical. When depressed
downward in the water and released, it vibrates with
period 2 sec. What is its weight?

Body of
mass m
Fig. 40. Parallel Fig. 41.  Pendulum
springs (Problem 2) (Problem 3)

Fig. 42.  Buoy (Problem 6)

7. (Frequency) How does the frequency of a harmonic
motion change if we take (i) a spring of three times the
modulus, (ii) a heavier ball?

8. TEAM PROJECT. Harmonic Motions in Different
Physical Systems. Different physical or other systems
may have the same or similar models, thus showing the
unifying power of mathematical methods. Nlustrate
this for the systems in Figs. 43-45.

(a) Flat spring (Fig. 43). The spring is horizontally
clamped at one end, and a body of weight 25 nt (about
5.6 Ib) is attached at the other end. Find the motion of
the system, assuming that its static equilibrium is 2 cm
below the horizontal line, we let the system start from
this position with initial velocity 15 cm/sec, and
damping is negligible.

(b) Torsional vibrations (Fig. 44). Undamped
torsional vibrations (rotations back and forth) of a wheel
attached to an elastic thin rod are modeled by the ODE
Io8" + K6 = 0. where § is the angle measured from the
state of equilibrium, /; is the polar moment of inertia of
the wheel about its center, and K is the torsional stiffness
of the rod. Solve this ODE for K/I, = 17.64 sec™?, initial
angle 45°, and initial angular velocity 15° sec™".

(c) Water in a tube (Fig. 45). What is the frequency
of vibration of 5 liters of water (about 1.3 gal) in a
U-shaped tube of diameter 4 cm, neglecting friction?

Fig. 43.

Flat spring (Project 8a)

Fig. 44, Torsional
vibrations (Project 8b)

517

Fig. 45, Tube (Project 8c)

DAMPED MOTION

9. (Frequency) Find an approximation formula for o* in
terms of @, by applying the binomial theorem in (9)
and retaining only the first two terms. How good is the
approximation in Example 2, 1117
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10.

11.

12.

13

14

15

16

17

18.

(Extrema) Find the location of the maxima and
minima of y = ¢~ cos r obtained approximately from
a graph of y and compare it with the exact values
obtained by calculation.

(Maxima) Show that the maxima of an underdamped
motion occur at equidistant 7-values and find the
distance.

(Logarithmic decrement) Show that the ratio of two
consecutive maximum amplitudes of a damped oscillation
(10) is constant, and the natural logarithm of this ratio,
called the logarithmic decrement, equals A = 27a/w*.
Find A for the solutions of y" + 2y" + 5y = 0.

(Shock absorber) What is the smallest value of the
damping constant of a shock absorber in the suspension
of a wheel of a car (consisting of a spring and an absorber)
that will provide (theoretically) an oscillation-free ride
if the mass of the car is 2000 kg and the spring constant
equals 4500 kg/sec??

(Damping constant) Consider an underdamped
motion of a body of mass m = 2kg. If the time
between two consecutive maxima is 2 sec and the
maximum amplitude decreases to § of its initial value
after 15 cycles, what is the damping constant of the
system?

(Initial value problem) Find the critical motion (8)
that starts from y, with initial velocity vy Graph
solution curves for & = 1, y = 1 and several vg such
that (i) the curve does not intersect the r-axis, (ii) it
intersects itatr = 1, 2, - - - | 5, respectively.

(Initial value problem) Find the overdamped motion
(7) that starts from yg with initial velocity vy,
(Overdamping) Show that in the overdamped case, the
body can pass through y = 0 at most once.

CAS PROJECT. Transition Between Cases I, I1, ITI.
Study this transition in terms of graphs of typical
solutions. (Cf. Fig. 46.)

&9

(a) Avoiding unnecessary generality is part of good
modeling. Decide that the initial value problems (A)
and (B),

@ ' tg'+y=0 30 =1 y(©0=0
(B) the same with different ¢ and y'(0) = —2 (instead
of 0), will give practically as much information as a
problem with other m. k, y(0), y'(0).

(b) Consider (A). Choose suitable values of ¢, perhaps
better ones than in Fig. 46 for the transition from Case
III to IT and I. Guess ¢ for the curves in the figure.
(c) Time to go to rest. Theoretically, this time is
infinite (why?). Practically. the system is at rest when
its motion has become very small, say, less than 0.1%
of the initial displacement (this choice being up to us),
that is in our case,

(11) |y(n)] < 0.001 for all + greater than some ¢,.

In engineering constructions, damping can often be varied
without too much trouble. Experimenting with your
graphs, find empirically a relation between #; and c.

(d) Solve (A) analytically. Give a reason why the
solution ¢ of y(r;) = —0.001, with 75 the solution of
y' (1 =0, will give you the best possible ¢ satisfying (11).
(e) Consider (B) empirically as in (a) and (b). What
is the main difference between (B) and (A)?

s
1

0.5

=1

Fig. 46.

CAS Project 18

2.5 Euler—Cauchy Equations

Euler—Cauchy equations® are ODEs of the form

(1)

2.1

X7y

+axy' +by=0

4LEONHARD EULER (1707-1783) was an enormously creative Swiss mathematician. He made fundamental
contributions to almost all branches of mathematics and its application to physics. His important books on algebra
and calculus contain numerous basic results of his own research. The great French mathematician AUGUSTIN
LOUIS CAUCHY (1789-1857) is the father of modern analysis. He is the creator of complex analysis and had
great influence on ODEs, PDEs, infinite series, elasticity theory, and optics.
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EXAMPLE 1

CHAP. 2 Second-Order Linear ODEs

with given constants @ and b and unknown y(x). We substitute

{2) '\.' &= xm.

and its derivatives y' = mx™ ' and y" = m(m — 1)x™ 2 into (1). This gives

2mm — Dx™72 + axmx™ ™ + bx™ = 0.

We now see that (2) was a rather natural choice because we have obtained a common
factor x™. Dropping it, we have the auxiliary equation m(m — 1) + am + b = 0 or

(3) m? 4+ (a — )m + b = 0. (Note: @ — 1, not a.)

Hence y = x™ is a solution of (1) if and only if m is a root of (3). The roots of (3) are

@ m=30-a+Vil—-aP-b m=31-a)— Vil —-a’-0b.

Case 1. If the roots m; and ms are real and different, then solutions are
yi(x) = x™ and yo(x) = x™2

They are linearly independent since their quotient is not constant. Hence they constitute
a basis of solutions of (1) for all x for which they are real. The corresponding general
solution for all these x is

(5) ¥ =€ X" + cox™? (cy. Co arbitrary).

General Solution in the Case of Different Real Roots
The Euler-Cauchy equation

.1'2_\'" + 150" =05y =0
has the auxiliary equation

mZ+ 05m—05=0. (Note: 0.5, not 1.5!)

The roots are 0.5 and — |. Hence a basis of solutions for all positive x is y; = 1?3 and vo = l/x and gives the
general solution

~, C2
y=eVr+ — (x > 0). =

Case II. Equation (4) shows that the auxiliary equation (3) has a double root
my; = 4(1 — @) if and only if (1 — a)> — 4b = 0. The Euler-Cauchy equation (1) then
has the form

(6) 2"+ axy’ + 31 - aPy=0.

A solution is y; = x*~®”2 To obtain a second linearly independent solution, we apply
the method of reduction of order from Sec. 2.1 as follows. Starting from y, = uy;, we
obtain for u the expression (9), Sec. 2.1, namely,

1
u =fU dx where U= —75exp (—jp d.r) .

N
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EXAMPLE 2

EXAMPLE 3

Here it is crucial that p is taken from the ODE written in standard form, in our case,

a (1 — a)®
6F M o g . - v=0.
(6%) 3 oL 2 ) 0

This shows that p = a/x (not ax). Hence its integral is ¢ In x = In (x“), the exponential

function in U is 1/x%, and division by y,% = x}~® gives U = 1/x, and « = In x by integration.

Thus, in this “critical case,” a basis of solutions for positive x is y; = x™ and

vo = x"Inx, where m = (1 — ). Linear independence follows from the fact that the
quotient of these solutions is not constant. Hence, for all x for which y; and y, are defined
and real, a general solution is

(7 y = (e; + c3 Inx)x™, m=3%(1 — a).

General Solution in the Case of a Double Root

The Euler-Cauchy equation ,\‘2_'.'" — Sxy’ + 9y = 0 has the auxiliary equation m® — 6m + 9 = 0. It has the
double root m = 3, so that a general solution for all positive x is

y=(cy +caln _\"].\'3. im

Case IILI.  The case of complex roots is of minor practical importance, and it suffices to
present an example that explains the derivation of real solutions from complex ones.

Real General Solution in the Case of Complex Roots
The Euler—Cauchy equation
22"+ 0.6y + 1604y =0

has the auxiliary equation m® — 0.4m + 16.04 = 0. The roots are complex conjugate, m; = 0.2 + 4i and
mg = 0.2 — 4i, where i = V — 1. (We know from algebra that if a polynomial with real coefficients has complex
roots. these are always conjugate.) Now use the trick of writing x = "™ and obtain

i _rll.:!-i- 4 _\,0.2(€In .1'}415 - _‘:0.29(4 In :rn‘.

'l_mz == "_0.2—41 i ID.Z(eln .1.')—49 = .\'0'2(.’_(4 In :r)v‘

Next apply Euler’s formula (11) in Sec. 2.2 with 1 = 4 In x to these two formulas. This gives

A = 2"Feos (4 Inx) + i sin (4 1n X)),

X2 = O2[cos (4 Inx) — i sin (4 Inx)].
Add these two formulas, so that the sine drops out, and divide the result by 2. Then subtract the second formula
from the first, so that the cosine drops out, and divide the result by 2i. This yields

292 cos (4 In %) and +%2 sin (4 1nx)

respectively. By the superposition principle in Sec. 2.2 these are solutions of the Euler-Cauchy equation (1).
Since their quotient cot (4 In x) is not constant, they are linearly independent. Hence they form a basis of solutions,
and the corresponding real general solution for all positive x is

(8) v=2x"2[4 cos (4 In x) + B sin (4 Inx)].

Figure 47 shows typical solution curves in the three cases discussed. in particular the basis functions in
Examples 1 and 3. .}
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¥ A 1.5, y Yy
3.D-||rl \\ x/ ! xInx A
H AN P o * x0%Inx : £02sin (4 Inx)
\\ o 1.0 10 ~
20\ V4 / r—o.Elnx / r\ .
\\ 27 .os 0.5 e oskll\ / /
N\ £ % Lt Tz nx 0 ,|.|.|,|{| }~| |r\
1.0+ 0.5 114 2 x 04/ A 14 2 x
I ——— x-t -05 i \
Y x -1.0 /| -1.0 o ™
0 = ;. e 12 x -1.5 /f -15 x“-zcgg(4lnx)
Case I: Real roots Case I1: Double root Case I1I: Complex roots
Fig. 47. Euler—Cauchy equations
EXAMPLE 4 Boundary Value Problem. Electric Potential Field Between Two Concentric Spheres

Find the electrostatic potential v = v(r) between two concentric spheres of radii /; = 5cm and 5, = 10em

kept at potentials vy = 110 V and vy = 0, respectively.
Physical Information. v(r) is a solution of the Euler-Cauchy equation '+ w = 0, where v' = dvldr.

Solution. The auxiliary equation is m> + m = 0. It has the roots 0 and —1. This gives the general solution
v(r) = ¢y + ¢g/r. From the “boundary conditions” (the potentials on the spheres) we obtain

]
+ —= =0

v(10) = ¢ + 5

C2
v(3) = ¢y + e 110,

By subtraction, co/10 = 110, ¢o 1100. From the second equation, ¢; —cal10 = —110. Answer:
v(r) = —110 + 1100/r V. Figure 48 shows that the potential is not a straight line, as it would be for a potential
between two parallel plates. For example, on the sphere of radius 7.5 cm it is not 110/2 = 55 V, but considerably

less. (What is it?)

100 [
80F .
60
40

20

Ty

Fig. 48.

9 10 r
Potential v(r) in Example 4

1-10f GEMERAL SOLUTION

Find a real general solution, showing the details of your
work.

L%y —6y=0 2. 4x%" + 40y —y =0
3.x%" =Ty’ + 16y =0

4.x%" + 30" +y=0 55" —xy' +2y=0
6. 2x%y" + 4xy" + 5y =0

7. (10x2D? — 20xD + 22.41)y =

8. (4x°D* + I)y = 9. (100x2D2 + 9)y = 0

10. (10x2D? + 6xD + 0.51)y

INITIAL VALUE PROBLEM

11-15
Solve and graph the solution, showing the details of your
work.

11 x%y"
12 25" + 30" +y =

+ 6y =0,y(1) = 1,y'Q) =
0, y(1) = 4, v(l)

’
— 4xy

13. (x2D2 + 2xD + 100.250)y = 0, ¥(1) =
r
(L) =11
14. (x2D2% — 2xD + 2.25I)y = 0, ¥(1) =
y'(1) =
15. (xD% + 4D)y = 0, y(1) = 12, ¥'(1) = —
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16. TEAM PROJECT. Double Root (C) Verify by substitution that x™ In x, m = (1 — a)/2,
(A) Derive a second linearly independent solution of is a solution in the critical case.
(1) by reduction of order; but instead of using (9), Sec. (D) Transform the Euler-Cauchy equation (1) into an
2.1. perform all steps directly for the present ODE (1). ODE with constant coefficients by setting x = &' (x > 0).
(B) Obtainx™ In x by considering the solutions x™ and (E) Obtain a second linearly independent solution of
xS of a suitable Euler-Cauchy equation and letting the Euler—Cauchy equation in the “critical case” from

55— 0.

i |

that of a constant-coefficient ODE.

2.6 Existence and Uniqueness of Solutions.

Wronskian

THEOREM 1

In this section we shall discuss the general theory of homogeneous linear ODEs
¢}) Y+ pl)y" + gy =0

with continuous, but otherwise arbitrary variable coefficients p and ¢. This will concern
the existence and form of a general solution of (1) as well as the uniqueness of the solution
of initial value problems consisting of such an ODE and two initial conditions

(2) Y(xg) = Ko, ¥'(xo) = Ky

with given x4, Ky, and Kj.
The two main results will be Theorem 1, stating that such an initial value problem
always has a solution which is unique, and Theorem 4, stating that a general solution

3 Y=yt Caye (¢y, co arbitrary)

includes all solutions. Hence linear ODEs with continuous coefficients have no “singular
solutions™ (solutions not obtainable from a general solution).

Clearly, no such theory was needed for constant-coefficient or Euler—Cauchy equations
because everything resulted explicitly from our calculations,

Central to our present discussion is the following theorem.

Existence and Uniqueness Theorem for Initial Value Problems

If p(x) and g(x) are continuous functions on some open interval I (see Sec. 1.1) and
Xg is in I, then the initial value problem consisting of (1) and (2) has a unique
solution y(x) on the interval 1.

The proof of existence uses the same prerequisites as the existence proof in Sec. 1.7
and will not be presented here; it can be found in Ref. [A11] listed in App. 1. Uniqueness
proofs are usually simpler than existence proofs. But for Theorem 1, even the uniqueness
proof is long, and we give it as an additional proof in App. 4.
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THEOREM 2

PROOF

CHAP. 2 Second-Order Linear ODEs

Linear Independence of Solutions

Remember from Sec. 2.1 that a general solution on an open interval / is made up from a
basis y;, y» on /, that is, from a pair of linearly independent solutions on /. Here we call
¥1. ¥o linearly independent on / if the equation

4) kyvi(x) + kayo(x) =0 on/ implies ky =0, k=0.

We call y,, v, linearly dependent on / if this equation also holds for constants ky, ks
not both 0. In this case, and only in this case, y; and y, are proportional on /, that is (see
Sec. 2.1),

(5) (a) v, = kysy or (b) vy = Iy, for all x on 1.

For our discussion the following criterion of linear independence and dependence of
solutions will be helpful.

Linear Dependence and Independence of Solutions |

Let the ODE (1) have continuous coefficients p(x) and g(x) on an open interval I.
Then two solutions y, and v of (1) on I are linearly dependent on I if and only if
their “Wronskian”

(6) W(y1, ¥2) = y1¥2 — Ya¥1

is 0 at some xq in I. Furthermore, if W = 0 at an x = xqin I, then W = 0 on I; hence
if there is an xy in I at which W is not 0, then y,, y, are linearly independent on I. |

(a) Let v, and v, be linearly dependent on /. Then (5a) or (5b) holds on /. If (5a) holds, then
W(y1, ¥2) = ¥1¥2 — Ya¥1 = kyaya — Vakys = 0.

Similarly if (5b) holds.

(b) Conversely, we let W(yy. yo) = 0 for some x = x,, and show that this implies linear
dependence of v, and y, on . We consider the linear system of equations in the unknowns
ky, ko

kyy1(xp) + kg yalxp) = 0
)
k1y1(xo) + kays(xo) = 0.

To eliminate k,, multiply the first equation by ys and the second by —y, and add the
resulting equations. This gives

k}."l[-fo).\’zr(—fo) = kl.f;(xa).\’zf-’io] = kg W(y1(xg). ¥alxp)) = 0.

Similarly, to eliminate k;, multiply the first equation by —y; and the second by y, and
add the resulting equations. This gives

ko Wiy (xg). yalxp)) = 0.
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EXAMPLE 1

EXAMPLE 2

If W were not 0 at x,, we could divide by W and conclude that k; = ko = 0. Since W is
0, division is not possible, and the system has a solution for which &, and &, are not both
0. Using these numbers ky, ky, we introduce the function

W(x) = kyyi(x) + kaya(x).

Since (1) is homogeneous linear, Fundamental Theorem 1 in Sec. 2.1 (the superposition
principle) implies that this function is a solution of (1) on /. From (7) we see that it satisfies
the initial conditions y(x,) = 0, ¥'(xy) = 0. Now another solution of (1) satisfying the
same initial conditions is y* = 0. Since the coefficients p and ¢ of (1) are continuous,
Theorem 1 applies and gives uniqueness. that is, v = v*, written out

""1.“1 + kg_\'z =0 on /.

Now since ky and ks are not both zero, this means linear dependence of vy, v, on I.

(c) We prove the last statement of the theorem. If W(x;) = 0 at an x, in /, we have
linear dependence of y;, y, on I by part (b), hence W = 0 by part (a) of this proof., Hence
in the case of linear dependence it cannot happen that W(x,) # 0 at an ., in /. If it does
happen. it thus implies linear independence as claimed. |

Remark. Determinants. Students familiar with second-order determinants may have
noticed that

4| Y2

(] r

Wiy yo) = | r| = Yi¥z — YaVi-
Y1 Va

This determinant is called the Wronski determinant® or, briefly, the Wronskian, of two
solutions y; and ys of (1). as has already been mentioned in (6). Note that its four entries
occupy the same positions as in the linear system (7).

llustration of Theorem 2

The functions y; = cos wx and v, = sin wx are solutions of v" + @’y = 0. Their Wronskian is

COS WX sin wx
. o - ' o i | _
W(cos wx. sin wx) = = Vi¥z — Ya¥i = @C0S8T @wX + wsinT wx = w.
—w sin wx W COS WX

Theorem 2 shows that these solutions are linearly independent if and only if @ # 0. Of course, we can see
this directly from the quotient ys/yy = tan wx. For @ = () we have yo, = 0. which implies linear dependence
(why?). ]

llustration of Theorem 2 for a Double Root

A general solution of v" — 2y’ + v = 0 on any interval is y = (cy + cgx)e®. (Verify!). The corresponding
Wronskian is not 0. which shows linear independence of ¢* and xe™ on any interval. Namely,

y e’ xe®
Wi(x, xe™) =

B ‘ =(x+ 1)e® — xe™ = 2 2, =

¢ (x+ De*

Introduced by WRONSKI (JOSEF MARIA HONE. 1776-1853). Polish mathematician.
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THEOREM 3

PROOF

THEOREM 4

PROOF

CHAP. 2 Second-Order Linear ODEs

A General Solution of (1) Includes All Solutions
This will be our second main result, as announced at the beginning. Let us start with existence.

Existence of a General Solution

If p(x) and q(x) are continuous on an open interval I, then (1) has a general solution
on l.

By Theorem 1, the ODE (1) has a solution y;(x) on / satisfying the initial conditions
nlxp) = 1, yi(xg) = 0
and a solution yy(x) on [ satisfying the initial conditions
ya(xp) = 0, ya(xg) = L.
The Wronskian of these two solutions has at x = x, the value
W(y1(0), y2(0)) = y1(xo)y3(xo) — yalxoly1(ro) = 1.

Hence, by Theorem 2, these solutions are linearly independent on /. They form a basis of
solutions of (1) on /, and y = ¢y, + ¢,y, with arbitrary ¢, ¢, is a general solution of (1)
on [, whose existence we wanted to prove. H

We finally show that a general solution is as general as it can possibly be.

i
‘ A General Solution Includes All Solutions |
If the ODE (1) has continuous coefficients p(x) and g(x) on some open interval I,

‘ then every solution y = Y(x) of (1) on I is of the form |
(8) Y(x) = Cyyi(x) + Coyalx)

where yy, ys is any basis of solutions of (1) on I and Cy, Cy are suitable constants.
Hence (1) does not have singular solutions (that is, solutions not obtainable from |
a general solution).

Let y = Y(x) be any solution of (1) on /. Now, by Theorem 3 the ODE (1) has a general
solution

®) ¥(x) = e1y(x) + eaya(x)

on /. We have to find suitable values of ¢;, ¢, such that y(x) = Y(x) on /. We choose any
Xp in I and show first that we can find values of ¢y, ¢5 such that we reach agreement at
Xo, that is, y(xo) = Y(xo) and y¥'(xo) = Y'(xy). Written out in terms of (9). this becomes

a 1 (xn) + CoV = ¥(x,,
(i) (@) cqy1(xg) + coyalxp) (xo)

() eryi(xo) + cayang) = ¥'(xp).
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We determine the unknowns ¢, and ¢,. To eliminate ¢, we multiply (10a) by ya(x,) and
(10b) by —s(xg) and add the resulting equations. This gives an equation for ¢;. Then we
multiply (10a) by —y;(xo) and (10b) by y,(xo) and add the resulting equations. This gives
an equation for ¢, These new equations are as follows, where we take the values of y,,
y{" 1”2! yz" Y'J Y’ atx{)s

c1(y1ys — Yo¥1) = 1 W(y1, ¥2) = Yyg — ¥’

ca(y1yz — Yoy1) = Wy, ¥2) = nY' — Yy

Since y;. vy is a basis, the Wronskian W in these equations is not 0, and we can solve for
¢, and ¢,. We call the (unique) solution ¢; = C;. ¢ = C,. By substituting it into (9) we
obtain from (9) the particular solution

yEx) = Ciyi(x) + Coyalx).
Now since C;, C, is a solution of (10), we see from (10) that

¥¥(x0) = ¥(xo). y*'(x0) = ¥'(xo).
From the uniqueness stated in Theorem 1 this implies that y* and Y must be equal
everywhere on /, and the proof is complete. =

Looking back at he content of this section, we see that homogeneous linear ODEs with
continuous variable coefficients have a conceptually and structurally rather transparent
existence and uniqueness theory of solutions. Important in itself, this theory will also
provide the foundation of an investigation of nonhomogeneous linear ODEs, whose theory
and engineering applications we shall study in the remaining four sections of this chapter.

i-17| BASES OF SOLUTIONS.

CORRESPONDING ODEs. WRONSKIANS

Find an ODE (1) for which the given functions are
solutions. Show linear independence (a) by considering
quotients, (b) by Theorem 2.

1, £U5% 05 2. cos mx, sin wx
3. eF*, xek 4. %5
5. x025 4025 o 6. ¢34% o—2.5%

7. cos (2 In x), sin (2 In x)
8. e~2%, yo=2* 9, x15, x~0.5
10 x 3, x 3 Inx 11. cosh 2.5x, sinh 2.5x
12. ¢ 2% cos wx, e~ 2* sin wx
13. ¢7 cos 0.8x, ¢ * sin 0.8x
x71cos (In x), x~* sin (In x)
15. e=25% ¢os 0.3x, ¢~ 2-5% 5in 0.3x
16. 7% cos mx, e™ 5 sin mx
e

—3.371'3:* x9—3.8 wx

18. TEAM PROJECT. Consequences of the Present
Theory. This concerns some noteworthy general
properties of solutions. Assume that the coefficients p
and g of the ODE (1) are continuous on some open
interval /, to which the subsequent statements refer.
(A) Solve y" — y = 0 (a) by exponential functions,
(b) by hyperbolic functions. How are the constants in
the corresponding general solutions related?

(B) Prove that the solutions of a basis cannot be 0 at
the same point.

(C) Prove that the solutions of a basis cannot have a
maximum or minimum at the same point.

(D) Express (y»/v;)" by a formula involving the
Wronskian W. Why is it likely that such a formula
should exist? Use it to find W in Prob. 10.

(E) Sketch y;(x) = 2% if x = 0 and 0 if x < 0,
yo(x) = 0 if x = 0 and +® if x < 0. Show linear
independence on —1 < x < 1. What is their
Wronskian? What Euler-Cauchy equation do y;, v,
satisfy? Is there a contradiction to Theorem 27
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(F) Prove Abel’s formula® where ¢ = W(y;(xp). va(xg)). Apply it to Prob. 12, Hint:

Wi(vi(x). yolx)) = ¢ exp l:—f plr) d.':l
o

Write (1) for y; and for y,. Eliminate ¢ algebraically
from these two ODEs, obtaining a first-order linear
ODE. Solve it.

2./ Nonhomogeneous ODEs

DEFINITION

THEOREM 1

Method of Undetermined Coefficients

In this section we proceed from homogeneous to nonhomogeneous linear ODEs
(1) ¥+ py' + glx)y = rx)

where r(x) ¥ 0. We shall see that a “general solution™ of (1) is the sum of a general
solution of the corresponding homogeneous ODE

) y' 4 plx)y’ + glx)y =0

and a “particular solution” of (1). These two new terms “general solution of (1) and
“particular solution of (1)” are defined as follows.

|
General Solution, Particular Solution

A general solution of the nonhomogeneous ODE (1) on an open interval / is a
solution of the form

(3) ) = yp(x) + yu();

here, v;, = ¢,y + €5V, is a general solution of the homogeneous ODE (2) on [ and

¥p is any solution of (1) on / containing no arbitrary constants.
A particular solution of (1) on / is a solution obtained from (3) by assigning |
specific values to the arbitrary constants ¢; and ¢, in yy,. |
|

Our task is now twofold, first to justify these definitions and then to develop a method
for finding a solution y,, of (1).

Accordingly, we first show that a general solution as just defined satisfies (1) and that
the solutions of (1) and (2) are related in a very simple way.

i Relations of Solutions of (1) to Those of (2)

| . . T . . ~
(a) The sum of a solution y of (1) on some open interval I and a solution y of

(2) on I is a solution of (1) on I In particular, (3) is a solution of (1) on I
(b) The difference of two solutions of (1) on I is a solution of (2) on L

SNIELS HENRIK ABEL (1802-1829), Norwegian mathematician.
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PROOF

THEOREM 2

PROOF

(a) Let L[y] denote the left side of (1). Then for any solutions y of (1) and ¥ of (2) on [,
Ly +y1=Llyl + LIyl =r+0=r.

(b) For any solutions y and y* of (1) on [ we have L[y — y*] = L[y] — L[y*] =r — r= 0.

il
Now for homogeneous ODEs (2) we know that general solutions include all solutions.
We show that the same is true for nonhomogeneous ODEs (1).

A General Solution of a Nonhomogeneous ODE Includes All Solutions

If the coefficients p(x), q(x), and the function r(x) in (1) are continuous on some
open interval I, then every solution of (1) on I is obtained by assigning suitable
values to the arbitrary constants ¢, and ¢y in a general solution (3) of (1) on I

Let y* be any solution of (1) on [ and x; any x in /. Let (3) be any general solution of (1)
on I. This solution exists. Indeed, v;, = ¢yv; + coys exists by Theorem 3 in Sec. 2.6
because of the continuity assumption, and y,, exists according to a construction to be shown
in Sec. 2.10. Now, by Theorem 1(b) just proved, the difference ¥ = y* — y,, is a solution
of (2) on I. At x, we have

Y(xg) = y*(x0) — ¥p(Xo), Y'(xg) = y*'(xp) — yp(xo)-

Theorem 1 in Sec. 2.6 implies that for these conditions, as for any other initial conditions
in /. there exists a unique particular solution of (2) obtained by assigning suitable values
to ¢y, ¢5 in yy,. From this and y* = ¥ + y, the statement follows. B

Method of Undetermined Coefficients

Our discussion suggests the following. To solve the nonhomogeneous ODE (1) or an initial
value problem for (1), we have to solve the homogeneous ODE (2) and find any solution
¥p of (1), so that we obtain a general solution (3) of (1).

How can we find a solution y, of (1)? One method is the so-called method of
undetermined coefficients. It is much simpler than another, more general method (to be
discussed in Sec. 2.10). Since it applies to models of vibrational systems and electric
circuits to be shown in the next two sections, it is frequently used in engineering.

More precisely, the method of undetermined coefficients is suitable for linear ODEs
with constant coefficients a and b

€] ¥+ ay' + by = r(x)

when 7(x) is an exponential function, a power of x, a cosine or sine, or sums or products
of such functions. These functions have derivatives similar to r(x) itself. This gives the
idea. We choose a form for y, similar to r(x), but with unknown coefficients to be
determined by substituting that y,, and its derivatives into the ODE. Table 2.1 on p. 80

shows the choice of y,, for practically important forms of r(x). Corresponding rules are
as follows.
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Choice Rules for the Method of Undetermined Coefficients

(a) Basic Rule. If r(x) in (4) is one of the functions in the first column in
Table 2.1, choose y,, in the same line and determine its undetermined
coefficients by substituting y, and its derivatives into (4).

(b) Modification Rule. /f a term in your choice for y, happens to be a
solution of the homogeneous ODE corresponding to (4), multiply your
choice of y, by x (or by x2 if this solution corresponds to a double root of
the characteristic equation of the homogeneous ODE).

(¢) Sum Rule. [f r(x) is a sum of functions in the first column of Table 2.1,

choose for v, the sum of the functions in the corresponding lines of the
second column.

The Basic Rule applies when r(x) is a single term. The Modification Rule helps in the
indicated case, and to recognize such a case, we have to solve the homogeneous ODE
first. The Sum Rule follows by noting that the sum of two solutions of (1) with r = r,
and r = ry (and the same left side!) is a solution of (1) with » = r; + ry. (Verify!)

The method is self-correcting. A false choice for y, or one with too few terms will lead
to a contradiction. A choice with too many terms will give a correct result. with superfluous
coefficients coming out zero.

Let us illustrate Rules (a)-(c) by the typical Examples 1-3.

Table 2.1 Method of Undetermined Coefficients

[ Term in r(x) Choice for y,(x)
l ket* Ce™
x"(n=0,1,--°) Kox"+ Kp_x™ U+ 4+ K+ K
k cos wx ;
L }Kcosm\'+M5mm
k sin ax
ke™ cos wx

. }e‘“"(K cos wy + M sin wx)
ke™™ sin wx

Application of the Basic Rule (a)

Solve the initial value problem

(5) ¥ oy = 000122, w0y =0,  ¥(0) =15

Solution. Step 1. General solution of the homogeneous ODE. The ODE y” + v = 0 has the general solution
Vi = Acosx + Bsinax.

Step 2. Solution y, of the nonhomogeneous ODE. We first try y,, = K+®. Then _\'; = 2K. By substitution,
2K + Kx® = 0.001x. For this to hold for all x. the coefficient of each power of x (x* and +°) must be the same
on both sides; thus K = 0.001 and 2K = 0, a contradiction.
The second line in Table 2.1 suggests the choice

S ; sy s = 2 = 2

Vp = Ko™ + Kyx + K. Then yp v = 2K + Kox® + Kpx + Kp = 0.001x7%,
Equating the coefficients of x2. x, x° on both sides, we have Ko = 0001, Ky = 0, 2K, + Ky = 0. Hence
Ko = —2Kp = —0.002. This gives y,, = 0.001x* — 0,002, and

Y=y +y, =Acosx + Bsiny + 0.001x — 0.002.
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EXAMPLE 2

Step 3. Solution of the initial value problem. Setting x = 0 and uvsing the first initial condition gives
v(0) = A — 0.002 = 0, hence A = 0.002. By differentiation and from the second initial condition,

¥y =yt _'.';, = —Asinx + Bcosx + 0.002x and y'(0)=B =15
This gives the answer (Fig. 49)

v =0.002 cosx + 1.5 sinx + 0.001x% — 0.002,

Figure 49 shows y as well as the quadratic parabola y,, about which y is oscillating, practically like a sine curve

since the cosine term is smaller by a factor of about 1/1000. |

¥ f!

2

ol

|/ 10/ |\ 20/ %
Fig. 49. Solution in Example 1

Application of the Modification Rule (b)
Solve the initial value problem
(6) V' 3y 225y = —10 717 ¥0) = 1, y'(0) = 0.

Solution. Step 1. General solution of the homogeneous ODE. The characteristic equation of the
homogeneous ODE is AZ 4+ 3x+225 = (A + 1.5)2 = 0. Hence the homogeneous ODE has the general
solution

Yp = (e3 + cpv)e” 157,

-1.5x

Step 2. Solution y, of the nonhomogeneous ODE. The function ¢ on the right would normally require

the choice Ce™ %%, But we see from ¥y, that this function is a solution of the homogeneous ODE, which
corresponds to a double root of the characteristic equation. Hence, according to the Modification Rule we have
to multiply our choice function by xZ. That is, we choose

Yp = Cre™ 197, Then _1';, = C(2x — 1.5x%e 15, _\'; = 02 - 3x — 3x + 2.25x%e 152,

We substitute these expressions into the given ODE and omit the factor e~ 3%, This yields

C(2 — 6x + 2.25x%) + 3C(2x — 1.5x%) + 22562 = —10.

Comparing the coefficients of x2, x, x” gives 0 = 0,0 = 0. 2C = —10, hence C = —35. This gives the solution
» = —5x2¢™ 19" Hence the given ODE has the general solution
y=yptyp=le+ cz.\')e-l'ax — 532157,

Step 3. Selution of the initial value problem. Setting x = 0 in y and using the first initial condition, we obtain
¥(0) = ¢y = |. Differentiation of y gives

¥ = (eg — 1.5¢; = 1.5cox)e™ 15 — 10xe™ 15 4 7.5:%715%,

From this and the second initial condition we have y'(0) = ¢y — 1.5cy = 0. Hence ¢ = 1.5¢; = 1.5. This
gives the answer (Fig. 50)

y=(1+ 1.50) ¢715% — 52,7158 = (] 4 | 5y — 5¢2) 157

The curve begins with a horizontal tangent, crosses the x-axis at v = 0.6217 (where 1 + 1.5r — 5:2 = ) and
approaches the axis from below as x increases. m
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Yy
10k

0.5
0

I |

N1 2 3 B 5 X
E i %=

-1.0

b

Fig. 50. Solution in Example 2

Application of the Sum Rule (c)
Solve the initial value problem

"

(7 + 2y + 5y = %% + 40 cos 10x — 190 sin 10x, W0y = 016,  v'(0) = 40.08.

Solution. Step 1. General solution of the homogeneous ODE. The characteristic equation

AR+2A+5=A+1+20A+1-2)=0

shows that a real general solution of the homogeneous ODE is

Vi = € (A cos 2x + B sin 2x).

Step 2. Selution of the nonhomogeneous ODE. We write y,, = v + Y2, where y,,; corresponds to the
exponential term and ypy to the sum of the other two terms. We set

Ypi = Ce™, Then yp1 = 0.5Ce"5* and yp1 = 0255,
Substitution into the given ODE and omission of the exponential factor gives (0.25 + 2-0.5 + 5)C = |, hence
C = 1/6.25 = 0.16, and y,; = 0.16¢"%".
We now set Ypz = Kcos 10x + M sin 10x, as in Table 2.1, and obtain
y;,z = —10K sin 10x + 10M cos 10x, _\';2 = — 100K cos 10x — 100M sin 10x.
Substitution into the given ODE gives for the cosine terms and for the sine terms

—100K + 2+ 10M + 5K = 40. —100M — 2- 10K + 5M = —190

or, by simplification,
—95K + 20M = 40, =20K — 95M = —190.

The solution is K = 0, M = 2. Hence Ypz = 2 sin 10x. Together,
¥ =¥n + ¥p1 + Vpa = ¢ % (A cos 2x + B sin 2x) + 0.16¢%%* + 2 sin 10x.
Step 3. Solution of the initial value problem. From y and the first initial condition. y(0) = A + 0.16 = 0.16,
hence A = 0. Differentiation gives
_v’ = ¢ "(—A cos 2x — B sin 2x — 24 sin 2x + 2B cos 2x) + 0.08¢%5% + 20 cos 10x.

From this and the second initial condition we have y'(0) = —A + 2B + 0.08 + 20 = 40.08, hence B = 10.
This gives the solution (Fig. 51)

y = 10¢7% sin 2x + 0.16¢%%* + 2 sin 10x.
The first term goes to 0 relatively fast. When x = 4, it is practically 0, as the dashed curves =10e™" + 0.16¢%5

show. From then on. the last term, 2 sin 10x, gives an oscillation about 0.16¢%%, the monotone increasing
dashed curve. =
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Fig. 51.  Solution in Example 3

Stability. The following is important. If (and only if) all the roots of the characteristic

equation of the homogeneous ODE y”

+ ay’ + by = 0in (4) are negative, or have a negative

real part, then a general solution yj, of this ODE goes to 0 as x — =, so that the “transient

solution” y = v, + y, of (4) approaches the “steady-state solution” y,,. In this case the

nonhomogeneous ODE and the physical or other system modeled by the ODE are called

stable; otherwise they are called unstable. For instance, the ODE in Example 1 is unstable.
Basic applications follow in the next two sections.

PROBLEM SET

[1-14] GENERAL SOLUTIONS OF
NONHOMOGENEOUS ODEs

Find a (real) general solution. Which rule are you using?
(Show each step of your calculation.)

1L y" + 3y" + 2y = 30>

2. y" + 4y + 3.75y = 109 cos 5x

3. 3" — 16y = 19.2¢% + 60e”

4. y" + 9y = cosx + §cos 3x

5.v" + 3y — 6y =6x% — 3x% + 12x
6. v" + 4y’ + 4y = ¢~ sin 2x

7. v" + 6y’ + 73y = 80e" cos 4x

8. v" + 10y" + 25y = 100 sinh 5x

9. y" — 0.16y = 32 cosh 0.4x

10. " + 4y" + 6.25y = 3.125(x + 1)2
11. " + 1.44y = 24 cos 1.2x

12. y" + 9y = 18x + 36 sin 3x

13. y" + 4y’ + 5y = 25x2 + 13 sin 2x
14. y" + 2y’ + y = 2xsinx

15-20| INITIAL VALUE PROBLEMS FOR
NONHOMOGENEOUS ODEs

Solve the initial value problem. State which rules you are
using. Show each step of your calculation in detail.
15. y" + 4y = 16 cos 2x. y(0) = 0, y'(0) = 0

16. y" — 3y' + 2.25y = 27(x% — x),
¥(0) = 20, y'(0) = 30
17. y" + 0.2y" + 0.26y = 1.22%5%,
v(0) = 3.5, v'(0) = 0.35
18. y" — 2y’ = 12¢** — 8727,
¥(0) = =2, y'(0) = 12
19. " — y' — 12y = 144x% + 12.5,
¥(0) = 5, y'(0) = —0.5
20. y" + 2y' + 10y = 17 sinx — 37 sin 3x,
¥(0) = 6.6, y'(0) = =22

21. WRITING PROJECT. Initial Value Problem. Write
out all the details of Example 3 in your own words.
Discuss Fig. 51 in more detail. Why is it that some of
the “half-waves” do not reach the dashed curves,
whereas others preceding them (and. of course, all later
ones) excede the dashed curves?

22. TEAM PROJECT. Extensions of the Method of
Undetermined Coefficients. (a) Extend the method
to products of the function in Table 2.1. (b) Extend
the method to Euler—-Cauchy equations. Comment on
the practical significance of such extensions.

23. CAS PROJECT. Structure of Solutions of Initial
Value Problems. Using the present method, find, graph,
and discuss the solutions y of initial value problems of
your own choice. Explore effects on solutions caused by
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changes of initial conditions. Graph y,. v. v — ¥, problem with v(0) = 0, ¥'(0) = 0. Consider a problem
separately, to see the separate effects. Find a problem in in which you need the Modification Rule (a) for a simple
which (a) the part of y resulting from y;, decreases to zero, root, (b) for a double root. Make sure that your problems
(b) increases, (c) is not present in the answer y. Study a cover all three Cases I, II, III (see Sec. 2.2).

2.5 Modeling: Forced Oscillations. Resonance

In Sec. 2.4 we considered vertical motions of a mass-spring system (vibration of a mass
m on an elastic spring, as in Figs. 32 and 52) and modeled it by the homogeneous linear
ODE

(1) my" + ey’ + ky = 0.

Here v(1) as a function of time ¢ is the displacement of the body of mass m from rest.
These were free motions, that is, motions in the absence of external forces (outside forces)
caused solely by internal forces, forces within the system. These are the force of inertia
my", the damping force ¢y’ (if ¢ > 0), and the spring force ky acting as a restoring force.

We now extend our model by including an external force, call it (1), on the right. Then
we have

(2%) my” + ¢y’ + ky = r(1).

Mechanically this means that at each instant ¢ the resultant of the internal forces is in
equilibrium with r(f). The resulting motion is called a forced motion with forcing
function r(r), which is also known as input or driving force, and the solution y(7) to be
obtained is called the output or the response of the system to the driving force.

Of special interest are periodic external forces, and we shall consider a driving force
of the form

r(r) = Fg cos wt (Fy >0, w > 0).

Then we have the nonhomogeneous ODE
(2) my" + cy' + ky = F, cos wt.

Its solution will familiarize us with further interesting facts fundamental in engineering
mathematics, in particular with resonance.

Spring

m ‘ Mass I{r(r) =F,cos wt
= J Dashpot

Fig. 52.  Mass on a spring
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Solving the Nonhomogeneous ODE (2)

From Sec. 2.7 we know that a general solution of (2) is the sum of a general solution y;,
of the homogeneous ODE (1) plus any solution y,, of (2). To find y,,, we use the method
of undetermined coefficients (Sec. 2.7), starting from

3) Yu(t) = a cos wt + b sin ot

By differentiating this function (chain rule!) we obtain

r
V.

Yp = —wasin ot + wb cos wt,

yp = —@acos wt — w’b sin wt.
Substituting y,,. _'.';,, and 3.-‘-; into (2) and collecting the cosine and the sine terms, we get

[(k — mow®)a + wcb] cos wt + [—wca + (k — mw®)b] sin wr = F;, cos wt.

The cosine terms on both sides must be equal, and the coefficient of the sine term on the
left must be zero since there is no sine term on the right. This gives the two equations

(k — mo®a + wch = F,
(4)
—wea  + (k— meo®)b =0

for determining the unknown coefficients a and b. This is a linear system. We can solve
it by elimination. To eliminate b, multiply the first equation by k — mw® and the second
by —wc and add the results, obtaining

(k — mo®2a + o*c?a = Fylk — m?).

Similarly, to eliminate a, multiply the first equation by w¢ and the second by k — ma?

and add to get
&b + (k — mw®?b = Fywe.

If the factor (k — maw?)?

and b,

+ w?c? is not zero, we can divide by this factor and solve for a

k — mae? b=F wc
(k — mo?®? + *c? "’ 7= "o (k — mo®? + o??

a=F,
If we set Vk/m = wy (> 0) as in Sec. 2.4, then k = m w,”> and we obtain

m(wy® — %) R wce
0 }H2{w02 1 2)2 + wzcz J

5 = F,
@) O (w2 — ®)? + 0¥’

We thus obtain the general solution of the nonhomogeneous ODE (2) in the form

(©6) Y@ = yu() + v (0).
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Here y;, is a general solution of the homogeneous ODE (1) and y,, is given by (3) with
coefficients (5).

We shall now discuss the behavior of the mechanical system, distinguishing between
the two cases ¢ = 0 (no damping) and ¢ > 0 (damping). These cases will correspond to
two basically different types of output.

Case 1. Undamped Forced Oscillations. Resonance

If the damping of the physical system is so small that its effect can be neglected over the
time interval considered, we can set ¢ = 0. Then (5) reduces to a = Fy/[m(we> — @?)]
and b = 0. Hence (3) becomes (use wy> = k/m)

a (I . ST . R
) W= e =) TP M = @iyl

Cos .

Here we must assume that w® # w2 physically, the frequency w/(27) [cycles/sec] of the
driving force is different from the natural frequency wqy/(277) of the system, which is the
frequency of the free undamped motion [see (4) in Sec. 2.4]. From (7) and from (4*) in
Sec. 2.4 we have the general solution of the “undamped system”

Fy
(8) v(t) = Ccos (wyt — 6) + 2 cos wl.

m(wy® — o

We see that this output is a superposition of two harmonic oscillations of the frequencies
Jjust mentioned.

Resonance. We discuss (7). We see that the maximum amplitude of y, is (put
cos wt = 1)

1

F,
® %= T (ol

L p where p=
k

ap depends on @ and wy. If @ — wg, then p and @ tend to infinity. This excitation of
large oscillations by matching input and natural frequencies (w = wy) is called
resonance. p is called the resonance factor (Fig. 53), and from (9) we see that p/k = ay/F,
is the ratio of the amplitudes of the particular solution y, and of the input F, cos wt.
We shall see later in this section that resonance is of basic importance in the study of
vibrating systems.

In the case of resonance the nonhomogeneous ODE (2) becomes

F,
(10) V' + wedy = =2 cos wyl.
i

Then (7) is no longer valid, and from the Modification Rule in Sec. 2.7 we conclude that
a particular solution of (10) is of the form

Ypt) = t{a cos wet + b sin wy!).
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wo e (0]
vl

Resonance factor p(w)

By substituting this into (10) we find @ = 0 and b = Fy/(2mwy). Hence (Fig. 54)

(1n

1 sin wet.

We see that because of the factor t the amplitude of the vibration becomes larger and
larger. Practically speaking, systems with very little damping may undergo large vibrations
that can destroy the system. We shall return to this practical aspect of resonance later in

this section.

Fig. 54. Particular solution in the case of resonance

Beats. Another interesting and highly important type of oscillation is obtained if w is
close to wg. Take, for example, the particular solution [see (8)]

(12) y@t) =

w?)

(cos wt — cos wyt) (0 # wy).

Using (12) in App. 3.1, we may write this as

2F,

m(wy® — &)

. [ wo T w . [ W — @
sin tl sl —a——" ]|
2 2

Since w is close to wy, the difference wy — w is small. Hence the period of the last sine
function is large, and we obtain an oscillation of the type shown in Fig. 55, the dashed
curve resulting from the first sine factor. This is what musicians are listening to when

they fune their instruments.
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Fig. 55. Forced undamped oscillation when the difference
of the input and natural frequencies is small (“beats”)

Case 2. Damped Forced Oscillations

If the damping of the mass-spring system is not negligibly small, we have ¢ > 0 and a
damping term ¢y’ in (1) and (2). Then the general solution y;, of the homogeneous ODE
(1) approaches zero as ¢ goes to infinity, as we know from Sec. 2.4. Practically. it is zero
after a sufficiently long time. Hence the “transient solution” (6) of (2), given by
¥ = ¥, + ¥p. approaches the “steady-state solution” y,,. This proves the following.

Steady-State Solution
After a sufficiently long time the output of a damped vibrating system under a purely
sinusoidal driving force [see (2)] will practically be a harmonic oscillation whose
[frequency is that of the input.

Amplitude of the Steady-State Solution. Practical Resonance

Whereas in the undamped case the amplitude of y,, approaches infinity as @ approaches
wy. this will not happen in the damped case. In this case the amplitude will always be finite.
But it may have a maximum for some @ depending on the damping constant ¢. This may
be called practical resonance. It is of great importance because if ¢ is not too large, then
some input may excite oscillations large enough to damage or even destroy the system.
Such cases happened, in particular in earlier times when less was known about resonance.
Machines, cars, ships, airplanes, bridges, and high-rising buildings are vibrating mechanical
systems, and it is sometimes rather difficult to find constructions that are completely free
of undesired resonance effects, caused, for instance, by an engine or by strong winds.
To study the amplitude of y,, as a function of w, we write (3) in the form

(13) Yp(t) = C* cos (wr — 7).

C* is called the amplitude of v, and 7 the phase angle or phase lag because it measures
the lag of the output behind the input. According to (5), these quantities are

F,
CHw) = Va® + b* = s

\/mz(woz - 0?2 + o?®

(14)

tan n(w) e
w=—=—"
n a mwg® — &)
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Let us see whether C*(w) has a maximum and, if so, find its location and then its size.
We denote the radicand in the second root in C* by R. Equating the derivative of C* to
zero, we obtain

dC*
dw

1
= FU(—— = R“3"2) [2m*(wy® — &®)(—2w) + 2wc?].

The expression in the brackets [. . .] is zero if
(15) e = 2m*(wy? — @) (wy> = kim).
By reshuffling terms we have

2m2e? = 2mlws® — ¢ = 2mk — 2

The right side of this equation becomes negative if ¢* > 2mk, so that then (15) has no
real solution and C* decreases monotone as w increases, as the lowest curve in Fig. 56
on p. 90 shows. If ¢ is smaller, ¢? < 2mk, then (15) has a real solution © = wy,,y, Where

cz

(15%) Whax = @0 = 53 -

From (15%) we see that this solution increases as ¢ decreases and approaches wq
as ¢ approaches zero. See also Fig. 56.

The size of C¥(wyay) is Obtained from (14), with ©® = w2, given by (15%). For this
w? we obtain in the second radicand in (14) from (15%)

4 2
¢ ¢
20 2 2 _ " LI . ¥ — 2
mAwy? — @hay)® = e and Whpaxt® = (cu.;, )c ;

The sum of the right sides of these two formulas is
(c* + dmPwyc® — 2¢H/(4m>) = *(dmPwy” — ) /(4m?).
Substitution into (14) gives
2mF,
(16) C¥n) = —F————"
cVamws? — c2

We see that C*(w,,,) is always finite when ¢ > 0. Furthermore, since the expression

c24mPwy? — ¢* = A(dmk — c®)
in the denominator of (16) decreases monotone to zero as ¢ (< 2mk) goes to zero, the
maximum amplitude (16) increases monotone to infinity, in agreement with our result in
Case 1. Figure 56 shows the amplification C*/F, (ratio of the amplitudes of output and

input) as a function of @ for m = 1, k = 1. hence wy = 1, and various values of the
damping constant c.
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Figure 57 shows the phase angle (the lag of the output behind the input), which is less
than 7/2 when @ < w,. and greater than 7/2 for w > .

.
F n -
— . - c=
= AN i __e=12
o= i I t/_ c=1
3r .l/ I' | ,"'{/,—C=2
/ \ W/ =
,." |II ; = !;{.ﬁ.-'
2 l,/ ’\\)-(_,./C =5 Eln /{.:f
r gy
c=1
1 { m}{(; /// |
oS, Ve
06 | 1 ——=r ol i
0 1 2 0 1 2 [0}
Fig. 56.  Amplification C*/F, as a function Fig. 57. Phase lag 7 as a function of w for

of wform =1,k =1, and various values
of the damping constant ¢

m =1,k =1, thus w, = 1, and various
values of the damping constant ¢

[1-8]
Find the steady-state oscillation of the mass—spring system
modeled by the given ODE. Show the details of your
calculations.

1Ly" +6y +8y=

STEADY-STATE SOLUTIONS

130 cos 3¢

2. 4y" + 8y’ + 13y = 8 sin 1.5¢

3.v" + 3y + 4.25y = 221 cos 4.5¢

4, y" + 4y + 5y = cost — sint

5.(D* + 2D + I)y = —sin 21

6. (D* + 4D + 31)y = cost + % cos 31
7. (D* + 6D + 181)y = cos 3t — 3 sin 3¢
8. (D® + 2D + 10I)y = —25 sin 4t

[9-14| TRANSIENT SOLUTIONS

Find the transient motion of the mass—spring system
modeled by the given ODE. (Show the details of your
work.)

9.v" + 2y + 0.75y = 13 sin¢t
10. y" + 4y" + 4y = cos 41
11. 4y" + 12y" + 9y = 75 sin 31

12. (D? + 5D + 41)y = sin 2t
13. (D? + 3D + 3.25I)y = 13 — 39 cos 2¢
14. (D? + 2D + 5I)y = 1 + sint

15-20

INITIAL VALUE PROBLEMS

Find the motion of the mass—spring system modeled by
the ODE and initial conditions. Sketch or graph the
solution curve. In addition, sketch or graph the curve of

¥ — ¥, to see when the system practically reaches the

steady state.
15. 3" + 2y" + 26y = 13 cos 31,

y(0) = 1, yv'(0) = 0.4
16. y" + 64y = cos 1, v(0) = 0, yv'(0) =
17. y” + 6y" + 8y = 4 sin 21, v(0) = 0.7,
y'(0) = —11.8
18. (D® + 2D + I)y = 75(sint — 3 sin2t + % sin 31).
y(0) = 0, vy =1
19. (4D% + 12D + 131)y = 12 cost — 6 sinr,
0y =1, y'(0) = —1

20. y" + 25y = 99 cos 4.91, y(0) =2, ¥'(0) =0

21. (Beats) Derive the formula after (12) from (12). Can
there be beats if the system has damping?

22. (Beats) How does the graph of the solution in Prob. 20
change if you change (a) y(0). (b) the frequency of the
driving force?

23. WRITING PROJECT. Free and Forced Vibrations.
Write a condensed report of 2—3 pages on the most
important facts about free and forced vibrations.

24. CAS EXPERIMENT. Undamped Vibrations.
(a) Solve the initial value problem y” + y = cos wr,
w® # 1, »(0) = 0, y'(0) = 0. Show that the solution
can be written

2 i 1
¥ = ' sin |:2 1+ w}r] X

sin [-%- (1= w}r] .

(17)
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(b) Experiment with (17) by changing 1o see the 25. TEAM PROJECT. Practical Resonance. (a) Give

change of the curves from those for small (> 0) to a detailed derivation of the crucial formula (16).

beats, to resonance and to large values of w (see Fig. 58). (b) By considering dC*/de show that C¥*(wy,,,)

increases as ¢ (= V 2mk) decreases.

(c) Ilustrate practical resonance with an ODE of your

own in which you vary ¢, and sketch or graph

corresponding curves as in Fig. 56.

_ "/ 20n (d) Take your ODE with ¢ fixed and an input of two

A Y, V] terms, one with frequency close to the practical
(TR resonance frequency and the other not. Discuss and

sketch or graph the output.

w=0.2 (e) Give other applications (not in the book) in which
resonance is important.
10 O LW T 26. (Gun barrel) Solve

A
fi A
PO (Y O T 8 O L VP T T
,".||'|'|||I|I||" N 1=l f0=st=x
“'.. ! II — 1 L1 rl.-x; - }n -+ y=

T Voo 0 ifr>m

\J '.". |“| !,I I|,| \/ v _\’(0):}!:(0) — 0.
_10 vy

This models an undamped system on which a force F
o=03 acts during some interval of time (see Fig. 59), for
instance, the force on a gun barrel when a shell is fired,
T O T T the barrel being braked by heavy springs (and then
0.04 I '|I'|I|| i e i 1 damped by a dashpot, which we disregard for
ol |I Il l!'.II'I'ILI"|I|"l'II i III'.I'II il simplicity). Hint. At 7rboth y and ¥ must be continuous.

1A A A
I| |||1 [Ill[ |_I'{'| Illll ]| |’|||||1075

|

I m=1 o
I —L m——AW—
l-\\

w=6

-0.04

Fig. 58. Typical solution curves in CAS Experiment 24 Fig. 59. Problem 26

2.9 Modeling: Electric Circuits

Designing good models is a task the computer cannot do. Hence setting up models has
become an important task in modern applied mathematics. The best way to gain experience
is to consider models from various fields. Accordingly, modeling electric circuits to be
discussed will be profitable for all students, not just for electrical engineers and computer
scientists.

We have just seen that linear ODEs have important applications in mechanics (see also
Sec. 2.4). Similarly, they are models of electric circuits, as they occur as portions of large
networks in computers and elsewhere. The circuits we shall consider here are basic
building blocks of such networks. They contain three kinds of components, namely,
resistors, inductors, and capacitors. Figure 60 on p. 92 shows such an RLC-circuit, as
they are called. In it a resistor of resistance R ) (ohms), an inductor of inductance L H
(henrys), and a capacitor of capacitance C F (farads) are wired in series as shown, and
connected to an electromotive force E(r) V (volts) (a generator, for instance), sinusoidal
as in Fig. 60, or of some other kind. R, L, C, and E are given and we want to find the
current /(1) A (amperes) in the circuit.
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Eit) = Eﬁl sin ot

Fig. 60. RLC-circuit

An ODE for the current /(1) in the RLC-circuit in Fig. 60 is obtained from the following
law (which is the analog of Newton’s second law, as we shall see later).

Kirchhoff’s Voltage Law (KVL).” The voltage (the electromotive force) impressed on
a closed loop is equal to the sum of the voltage drops across the other elements of the
loop.

In Fig. 60 the circuit is a closed loop, and the impressed voltage E(7) equals the sum
of the voltage drops across the three elements R, L, C of the loop.

Voltage Drops. Experiments show that a current / flowing through a resistor, inductor
or capacitor causes a voltage drop (voltage difference, measured in volts) at the two ends;
these drops are

RI (Ohm’s law) Voltage drop for a resistor of resistance R ohms ({),

dl
L' =1L % Voltage drop for an inductor of inductance L henrys (H),
¢

Q

T Voltage drop for a capacitor of capacitance C farads (F).

Here Q coulombs is the charge on the capacitor, related to the current by

_do . -
I(r) = a equivalently, o) = fl{r) dr.

This is summarized in Fig. 61.

According to KVL we thus have in Fig. 60 for an RLC-circuit with electromotive force
E(r) = Eg sin wt (Eq constant) as a model the “integro-differential equation”

1
(1" LI' + RI + = J’Idr = E(t) = E, sin ot.

“GUSTAV ROBERT KIRCHHOFF (1824-1887), German physicist. Later we shall also need Kirchhoff’s
current law (KCL):

At any point of a circuit, the sum of the inflowing currents is equal to the sum of the outflowing currents.

The units of measurement of electrical quantities are named after ANDRE MARIE AMPERE (1775-1836).
French physicist, CHARLES AUGUSTIN DE COULOMB (1736-1806), French physicist and engineer,
MICHAEL FARADAY (1791-1867), English physicist, JOSEPH HENRY (1797-1878). American physicist,
GEORG SIMON OHM (1789-1854), German physicist, and ALESSANDRO VOLTA (1745-1827), Italian
physicist.
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Name Symbol Notation Unit Voltage Drop
Ohm’s resistor MM~ R Ohm’s resistance ohms (£1) RI
Inductor SO0 L Inductance henrys (H) L %
Capacitor —) ]— C Capacitance farads (F) Q/C

Fig. 61. Elements in an RLC-circuit

To get rid of the integral, we differentiate (1") with respect to 7, obtaining
n ! l r
(1) LI" + RI' + E I = E (1) = Eyw cos wt.

This shows that the current in an RLC-circuit is obtained as the solution of this
nonhomogeneous second-order ODE (1) with constant coefficients.
From (1), using I = Q', hence I’ = Q", we also have directly

I
(1" LO" + RQ' + = Q = E, sin ot.

But in most practical problems the current /(¢) is more important than the charge Q(r),
and for this reason we shall concentrate on (1) rather than on (1").

Solving the ODE (1) for the Current.
Discussion of Solution

A general solution of (1) is the sum / = [, + I, where I, is a general solution of the
homogeneous ODE corresponding to (1) and /,, is a particular solution of (1). We first
determine /,, by the method of undetermined coefficients, proceeding as in the previous
section. We substitute

(2) 1, = acos wt + bsin wt

H‘-\
I

w(—a sin wt + b cos wt)
I} = w*(—acos ot — b sin wr)

into (1). Then we collect the cosine terms and equate them to Egw cos wt on the right,
and we equate the sine terms to zero because there is no sine term on the right,

Lo*(—a) + Rwb + alC = Eyw (Cosine terms)
Lo*(—b) + Rw(—a) + b/IC =0 (Sine terms).

To solve this system for @ and b, we first introduce a combination of L and C, called the
reactance

(3) S=awl — — .
wC
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Dividing the previous two equations by w, ordering them, and substituting § gives

—Sa + Rb = E,
—Ra — Sh = 0.

We now eliminate » by multiplying the first equation by § and the second by R, and
adding. Then we eliminate a by multiplying the first equation by R and the second by
—8, and adding. This gives

—(8%2 + R¥a = E,S, (R% + $®b = E4R.

In any practical case the resistance R is different from zero, so that we can solve for a
and b,

@ _ —E,S , — _ EoR
TR+ R+ 58

Equation (2) with coefficients a and b given by (4) is the desired particular solution 7, of
the nonhomogeneous ODE (1) governing the current / in an RLC-circuit with sinusoidal
electromotive force.

Using (4), we can write /,, in terms of “physically visible” quantities, namely, amplitude
Iy and phase lag # of the current behind the electromotive force, that is,

(5) 1(1) = I sin (ot — 6)

where [see (14) in App. A3.1]

10=Vaz+b2=—-E°—. tan 6 = — —
VR* + §° 4

The quantity VR* + S$?is called the impedance. Our formula shows that the impedance
equals the ratio Ey/ly. This is somewhat analogous to E// = R (Ohm’s law).
A general solution of the homogeneous equation corresponding to (1) is

E .

At Aat
I, = cie + e

where A; and Ay are the roots of the characteristic equation

A2+£,\+L—0
L LC ’

We can write these roots in the form Ay = —a + B and Ay = —a — B, where

R 4 R 1 1L o AL
o= —, — —_ e — = —_—. —_——
2L 4 IC 2L c

Now in an actual circuit, R is never zero (hence R > 0). From this it follows that [,
approaches zero, theoretically as r — ¢, but practically after a relatively short time. (This
is as for the motion in the previous section.) Hence the transient current / = [, + 1, tends
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EXAMPLE 1

to the steady-state current /,,, and after some time the output will practically be a harmonic
oscillation, which is given by (5) and whose frequency is that of the input (of the
electromotive force).

RLC-Circuit

Find the current /(r) in an RLC-circuit with R = 11 ) (ohms), L = 0.1 H (henry), C = 10™2F (farad), which
is connected to a source of voltage E(r) = 100 sin400¢ (hence 635 Hz = 633 cyclesfsec, because
400 = 633+ 2m). Assume that current and charge are zero when r = 0.

Solution. Step 1. General solution of the homogeneous ODE. Substituting R, L. C, and the derivative E'(7)
into (1), we obtain

0.17" + 114" + 100/ = 100+ 400 cos 400+.
Hence the homogeneous ODE is 0.17" + 111" + 100/ = 0. Its characteristic equation is
0.1A% + 11A + 100 = 0.
The roots are Ay = — 10 and Ay = —100. The corresponding general solution of the homogeneous ODE is
Iy = L’le'_lm + ¢‘2eumm.

Step 2. Particular solution I, of (1). We calculate the reactance S = 40 — 1/4 = 39.75 and the steady-state
current

1,(t) = a cos 4001 + b sin 4007

with coefficients obtained from (4)

—100-39.75 10011
a= ———— = —2.3368, b= ————5 = 0.6467.
11 + 39.75 11 4 39.75
Hence in our present case, a general solution of the nonhomogeneous ODE (1) is
(6) I = ¢c1e 0" + 07190 — 23368 cos 4001 + 0.6467 sin 4001,

Step 3. Particular solution satisfying the initial conditions. How to use Q(0) = 0? We finally determine ¢;
and ¢5 from the initial conditions /(0) = 0 and Q(0) = 0. From the first condition and (6) we have

(7 10) = ¢1 + ¢ — 2.3368 = 0, hence cg = 2.3368 — ¢q.

Furthermore, using (1 "y with r = 0 and noting that the integral equals Q(r) (see the formula before (1 ")), we
obtain

, 1
LI'0)y + R0 + = «0'=0, hence I'0) = 0.

Differentiating (6) and setting ¢ = (), we thus obtain
1'(0) = —10¢; — 100¢y + 0 + 0.6467 - 400 = 0, hence —10¢; = 100(2.3368 — ¢) — 258.68.
The solution of this and (7) is ¢; = —0.2776, ¢ = 2.6144. Hence the answer is

I = —0.2776e~ %" + 2.6144¢ ™% — 2.3368 cos 4001 + 0.6467 sin 4001.
Figure 62 on p. 96 shows /(1) as well as L,(r). which practically coincide, except for a very short time near
t = 0 because the exponential terms go to zero very rapidly. Thus after a very short time the current will
practically execute harmonic oscillations of the input frequency 632 Hz = 632 cycles/sec. Its maximum amplitude

and phase lag can be seen from (5), which here takes the form

In(1) = 2.4246 sin (400¢ — 1.3008), |
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Fig. 62. Transient and steady-state currents in Example 1

Analogy of Electrical and Mechanical Quantities

Entirely different physical or other systems may have the same mathematical model.
For instance, we have seen this from the various applications of the ODE y' = ky in
Chap. 1. Another impressive demonstration of this unifying power of mathematics is
given by the ODE (1) for an electric RLC-circuit and the ODE (2) in the last section for

a mass—spring system. Both equations

1 '
LI" + RI' + e I = Egw cos ot and my" + ¢y’ + ky = F,, cos ot

are of the same form. Table 2.2 shows the analogy between the various quantities involved.
The inductance L corresponds to the mass m and, indeed. an inductor opposes a change
in current, having an “inertia effect” similar to that of a mass. The resistance R corresponds
to the damping constant ¢, and a resistor causes loss of energy, just as a damping dashpot
does. And so on.

This analogy is strictly quantitative in the sense that to a given mechanical system we
can construct an electric circuit whose current will give the exact values of the displacement
in the mechanical system when suitable scale factors are introduced.

The practical importance of this analogy is almost obvious. The analogy may be used
for constructing an “electrical model” of a given mechanical model, resulting in substantial
savings of time and money because electric circuits are easy to assemble, and electric
quantities can be measured much more quickly and accurately than mechanical ones.

Table 2.2 Analogy of Electrical and Mechanical Quantities

: Electrical System Mechanical System |

| = s e )
Inductance L Mass m :
Resistance R Damping constant ¢
Reciprocal 1/C of capacitance Spring modulus &

| Derivative Eqw cos wf of } — . |
: riving force F, cos wt
electromotive force = 4

;_Cu_rrcm 1) Displacement y(r) |
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1. (RL-circuit) Model the RL-circuit in Fig. 63. Find the
general solution when R, L, E are any constants. Graph
or sketch solutions when L = 0.1H, R = 50,
E=12V.

2. (RL-circuit) Solve Prob. | when E = E; sin wr and R,
L, E,, o are arbitrary. Sketch a typical solution.

3. (RC-circuit) Model the RC-circuit in Fig. 66. Find the
current due to a constant E.

4. (RC-circuit) Find the current in the RC-circuit in
Fig. 66 with E = E; sin er and arbitrary R, C. Ey, and w.

R

E(t)

L
Fig. 63. RL-circuit

Current I(t)

—

=R W s,
|
f
[

’/..f
2 -
-

Vs
2 | | | | I

0 0.02 0.04 006 008 0.1 ¢
Fig. 64. Currents in Problem 1

Current I(t)
2 =
Jr‘\l
1.57 | A
I I I'II \ II"J\'lI N Al n
> f \ | [ |t I | \
0.5} rF“II* / \ I\ I|' l'.l I|'
| Il I |I_ Fh_'li_‘llﬂ—'l—_l'.__ll |
II | | | | | (| ¢
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Fig. 65. Typical current | = e %" + sin (t — 17)
in Problem 2
R

E(t)

L

C
Fig. 66. RC-circuit

Current I(¢)

\N-\—‘_\—\_‘——_

Fig. 67. Current 1in Problem 3

5. (LC-circuit) This is an RLC-circuit with negligibly
small R (analog of an undamped mass—spring system).
Find the current when L = 0.2H, C = 0.05F, and
E = sin1V, assuming zero initial current and charge.

6. (LC-circuit) Find the current when L = 0.5H,
C=8-10"*F, E = 1> V and initial current and charge
zero.

[7-9] RLC-CIRCUITS (FIG. 60, P. 92)

7. (Tuning) In tuning a stereo system to a radio station,
we adjust the tuning control (turn a knob) that changes
C (or perhaps L) in an RLC-circuit so that the amplitude
of the steady-state current (5) becomes maximum. For
what C will this happen?

8. (Transient current) Prove the claim in the text that if
R # 0 (hence R > 0), then the transient current
approaches [, as 1 — =,

9. (Cases of damping) What are the conditions for an
RLC-circuit to be (I) overdamped, (II) critically
damped, (III) underdamped? What is the critical
resistance R, (the analog of the critical damping

constant 2V mk)?

I 10-12]  Find the steady-state current in the RLC-circuit
in Fig. 60 on p. 92 for the given data. (Show the details of
your work.)

10. R=8Q,L=05H,C=0.1F E=100sin2tV
11.R=10,L=025H,C=5-10°F,E= 110V
120R=2Q,L=1H,C=005F, E=%sin3rV

l.LIS‘ Find the transient current (a general solution)
in the RLC-circuit in Fig. 60 for the given data. (Show the
details of your work.)
13.R=60.L=02H.C=0025F.E=110sin 10t V
14. R=020Q,L=01H,C=2F E=T754sn0.5rV
1I5. R=1/10Q,L=1/2H, C = 100/13 F,

E = ¢7%(1.932 cos 3 + 0.246 sin3) V

|16-18]  Solve the initial value problem for the
RLC-circuit in Fig. 60 with the given data, assuming zero
initial current and charge. Graph or sketch the solution.
(Show the details of your work.)
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16.
17.

18.

19.

20.
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R=40Q,L=01H,C=0025F, E=10sin10r V
R=6QO,L=1H,C=004F

E=600(cost+ 4sinnV

R=360,L=02H, C=00625F,

E = 164 cos 10r V

WRITING PROJECT. Analogy of RLC-Circuits and
Damped Mass—Spring Systems. (a) Write an essay of
2-3 pages based on Table 2.2. Describe the analogy in
more detail and indicate its practical significance.

(b) What RLC-circuit with L = 1 H is the analog of
the mass—spring system with mass 5 kg, damping
constant 10 kg/sec, spring constant 60 kg/sec?, and
driving force 220 cos 10¢?

(c) Ilustrate the analogy with another example of your
own choice.

TEAM PROJECT. Complex Method for Particular
Solutions. (a) Find a particular solution of the complex
ODE

(i=V-1)

(8 LI"+RI+ % I = Eqwe'™
by substituting 7, = Ke'* (K unknown) and its
derivatives into (8), and then take the real part [, of /,,,
showing that /, agrees with (2), (4). Hinz. Use the Euler
formula €'t = cos wt + i sin wr [(11) in Sec. 2.2 with
wr instead of r]. Note that Eyw cos wt in (1) is the real
part of Egwe' in (8). Use i® = —1.

(b) The complex impedance Z is defined by

1
Z=R+iS=R+iloL - —].
S !({r} wC)

Show that K obtained in (a) can be written as

E‘O
iz’

Note that the real part of Z is R, the imaginary part is
the reactance S, and the absolute value is the impedance
|zl = VR? + §2 as defined before. See Fig. 68.

(c) Find the steady-state solution of the ODE
I" + 21" + 31 = 20 cos 1, first by the real method and
then by the complex method, and compare. (Show the
details of your work.)

(d) Apply the complex method to an RLC-circuit of
your choice.

o
&
g z
.E_n cﬁﬂ’\- - -2
@ 200%
E VR | Reactance S
he
R Real axis
Fig. 68. Complex impedance Z

2.10 Solution by Variation of Parameters

We continue our discussion of nonhomogeneous linear ODEs

(1) y' 4 py’ + glx)y = rx).

In Sec. 2.6 we have seen that a general solution of (1) is the sum of a general solution y;,

of the corresponding homogeneous ODE and any particular solution y,, of (1). To obtain y,

P

when #(x) is not too complicated, we can often use the method of undetermined coefficients,

as we have shown in Sec. 2.7 and applied to basic engineering models in Secs. 2.8 and 2.9.
However, since this method is restricted to functions r(x) whose derivatives are of a form

similar to r(x) itself (powers, exponential functions, etc.), it is desirable to have a method valid

for more general ODEs (1), which we shall now develop. It is called the method of variation

of parameters and is credited to Lagrange (Sec. 2.1). Here p, ¢, r in (1) may be variable

(given functions of x), but we assume that they are continuous on some open interval /.
Lagrange’s method gives a particular solution y,, of (1) on / in the form

wr

Voo
@ 3o = [ 225 e + 3o [
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where v;. v, form a basis of solutions of the corresponding homogeneous ODE

(3) ¥+ ply” + glx)y =0

on /I, and W is the Wronskian of yy, vo,

4 W= yiys — ¥201 (see Sec. 2.6).

CAUTION!  The solution formula (2) is obtained under the assumption that the ODE
is written in standard form, with y” as the first term as shown in (1). If it starts with f(x)y",
divide first by f(x).

The integration in (2) may often cause difficulties, and so may the determination of y,,
ve if (1) has variable coefficients. If you have a choice, use the previous method. It is
simpler. Before deriving (2) let us work an example for which you do need the new
method. (Try otherwise.)

Method of Variation of Parameters

Solve the nonhomogeneous ODE
1

cosx

vty =secx=

Solution. A basis of solutions of the homogeneous ODE on any interval is v; = cos x, ¥ = sin.x. This
gives the Wronskian
W(y1. ¥2) = cosx cosx — sinx (—sinx) = 1.

From (2), choosing zero constants of integration, we get the particular solution of the given ODE

V.

Yp = —COS§ _rj-sin_r secxdy + sin_rfcos_t sec x dx

(Fig. 69).
= cos x In jcos x| + xsinx

Figure 69 shows v, and its first term, which is small, so that x sin x essentially determines the shape of the curve
of y,,. (Recall from Sec. 2.8 that we have seen x sin x in connection with resonance, except for notation.) From
¥p and the general solution y;, = c1yy + cpyg of the homogeneous ODE we obtain the answer

¥y =yu+ ¥ = (cq +In|cos ) cosx + (cy + x) sinx.
Had we included integration constants —cq, cg in (2), then (2) would have given the additional

¢q cosx + g sinx = ¢qyy + cg¥e, that is, a general solution of the given ODE directly from (2). This will

always be the case.

[ |
0 et e 1 l'-JI+L— L L]
'2\4'58_1012|x
\ | |
\ / ,

\/ | [

-5

-10

TIT R it

Fig- 69. Particular solution y, and its first term in Example 1
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|dea of the Method. Derivation of (2)

What idea did Lagrange have? What gave the method the name? Where do we use the
continuity assumptions?
The idea is to start from a general solution

Yr(X) = €1y1(x) + caya(x)
of the homogeneous ODE (3) on an open interval  and to replace the constants (“the
parameters”) ¢; and ¢5 by functions #(x) and v(x); this suggests the name of the method.
We shall determine « and v so that the resulting function
(5) Ypx) = ux)y(x) + v(x)ys(x)
is a particular solution of the nonhomogeneous ODE (1). Note that y,, exists by Theorem
3 in Sec. 2.6 because of the continuity of p and ¢ on /. (The continuity of » will be used
later.)

We determine « and v by substituting (5) and its derivatives into (1). Differentiating
(5), we obtain

vp = u'yy + uys + v'yy + vy,
Now y,, must satisfy (1). This is one condition for rwe functions u and v. It seems plausible
that we may impose a second condition. Indeed, our calculation will show that we can
determine « and v such that y,, satisfies (1) and u and v satisfy as a second condition the
equation
(6) u'y, + v'ye = 0.
This reduces the first derivative _\,-';, to the simpler form

o [ ]

(7) Yp = uy; + Uya.
Differentiating (7). we obtain
(8) }!g = u’y; + ny’lr + U'__\-'é + U.\'g.

We now substitute y, and its derivatives according to (5), (7), (8) into (1). Collecting
terms in i and terms in v, we obtain

u(yy + pyi + qy) T (s + pys + qyp) +u'yi +0'yy =
Since y; and y, are solutions of the homogeneous ODE (3), this reduces to
(9a) 'y, +v'ys=r.
Equation (6) is

(9b) u'yy +v'yy=0.
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This is a linear system of two algebraic equations for the unknown functions u’ and v'.
We can solve it by elimination as follows (or by Cramer’s rule in Sec. 7.6). To eliminate
v’. we multiply (9a) by —y, and (9b) by v, and add, obtaining

u'(y1y2 = Yoy1) = —Yar, thus u'W= —yr.

Here, W is the Wronskian (4) of y;, vs. To eliminate «” we multiply (9a) by y;, and (9b)
by —y; and add, obtaining

! ’ r r
U (y1y2 — Yo¥1) = i thus v W=yr

Since y;. y, form a basis, we have W # 0 (by Theorem 2 in Sec. 2.6) and can divide by W,

r yir
(10) u’=—%. o = 2L,
By integration,
Yar »nr
N el o = [ —dnr
u J’ w & v "

These integrals exist because r(x) is continuous. Inserting them into (5) gives (2) and
completes the derivation. m

prese—— =

_!—I?t GENERAL SOLUTION 14. (x2D? + xD — 4l)y = 1/x?
Solve the given nonhomogeneous ODE by variation of 15. (D® + I)y = sec x — 10 sin 5x
parameters or undetermined coefficients. Give a general 16. (x2D? + xD + (x% — %] Dy = 2 o g
solution. (Show the details of your work.) Hint. To find yy, vs set y = ux—12,
"
Ly +vy 17. (x?D? + xD + (x> — H)y = +*2 sin x.
2. y" — 4y’ + 4y = x%e* Hint: As in Prob. 16.
X3 — 2y’ & — B
Ray—am W e 30 18. TEAM PROJECT. Comparison of Methods. The
4. -"'” — 2y ty=esinx undetermined-coefficient method should be used
5.y +y=tanx whenever possible because it is simpler. Compare it
6. x%y" — xy' + y = xIn|x with the present method as follows.
7 & y” “+ y = cosx + secx {a) Solve _V" + 2}” — 15}' = 17 sin5x by both
8. y" — 4y’ + 4y = 122%/x4 methods, showing all details, and compare.
9, (DZ — 2D + !)y = _‘,2 4 x—Ze:r (b) Solve )’" + 9}7 = f + o, R = SCCBJ\',

10. (D* — I)y = 1/cosh x
11. (D% + 41)y = cosh 2x

ro = sin 3x by applying each method to a suitable
function on the right.

(¢) Invent an undetermined-coefficient method for

22 = L
12. (x®D® + xD — 3l)y = 3x~' + 3x nonhomogeneous  Euler-Cauchy  equations by
13. (x2D2% — 2xD + 2I)y = x® sin x experimenting.
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JESTIONS AND PROBLEMS

1. What general properties make /inear ODEs particularly
attractive?

2. What is a general solution of a linear ODE? A basis of
solutions?

3. How would you obtain a general solution of a
nonhomogeneous linear ODE if you knew a general
solution of the corresponding homogeneous ODE?

4. What does an initial value problem for a second-order
ODE look like?

5. What is a particular solution and why is it more common
than a general solution as the answer to practical
problems?

6. Why are second-order ODEs more important in

modeling than ODEs of higher order?

Describe the applications of ODEs in mechanical

vibrating systems. What are the electrical analogs of

those systems?

8. If a construction, such as a bridge, shows undesirable
resonance, what could you do?

7

9-18)] GENERAL SOLUTION

Find a general solution. Indicate the method you are using
and show the details of your calculation.
9. y" — 2y' — 8y = 52 cos 6x

10. y" + 65" + 9y = 73 — 2742
1L y" + 8y’ + 25y = 26 sin 3x

12. yy" = 2y'2

13. (x*D* + 2xD — 12Dy = 1/x®
14. (x*D* + 6xD + 61)y = x*

15. (D® — 2D + Dy = x %"

16. (D® — 4D + 5Dy = ¢** ¢cscx
17. (D® — 2D + 2Dy = ¢* csc x

18. (4x°D® — 24xD + 491)y = 36x°

Eq_zs INITIAL VALUE PROBLEMS

Solve the following initial value problems. Sketch or graph
the solution. (Show the details of your work.)

19. y" + 5y — 14y =0, ¥0)=6, y'(0)= -6

20. y" + 6y' + 18y = 0. w0) =35, y(0) = -21
2L 23" — xy' — 24y =0, y(1)=15 y'(1)=0
22, a%y" + 15xy" +49y =0, ¥1)=2, y'(1)=-11
23, y" 4+ 5y" + 6y =108x% y(0)=18, y'(0)=—26

24. y" + y' + 2.5y = 13 cos x, ¥(0) = 8.0,
¥ (0) = 4.5

25. (x2D% + xD — 4Dy = x3, y(1) = —4/5,
y'(1) = 93/5

26-34| APPLICATIONS

26. Find the sready—stat_é solution of the system in Fig. 70
when m = 4, ¢ = 4, k = 17 and the driving force is
202 cos 3t.

Find the motion of the system in Fig. 70 with mass
0.25 kg, no damping, spring constant | kg/sec®, and
driving force 15 cos 0.5 — 7 sin 1.5¢ nt, assuming zero
initial displacement and velocity. For what frequency
of the driving force would you get resonance?

27

28. In Prob. 26 find the solution corresponding to initial
displacement 10 and initial velocity 0.

29. Show that the system in Fig. 70 with m = 4, ¢ = 0,
k = 36, and driving force 61 cos 3.1¢ exhibits beats.
Hint: Choose zero initial conditions.

30. In Fig. 70 letm = 2, ¢ = 6, k = 27, and
r(r) = 10 cos wt. For what w will you obtain the steady-
state  vibration of maximum possible amplitude?
Determine this amplitude. Then use this @ and the
undetermined-coefficient method to see whether you
obtain the same amplitude.

31. Find an electrical analog of the mass—spring system in
Fig. 70 with mass 0.5 kg, spring constant 40 kg/sec?,
damping constant 9 kg/sec. and driving force
102 cos 61 nt. Solve the analog, assuming zero initial
current and charge.

32. Find the current in the RLC-circuit in Fig. 71
when L =01 H R=209Q.C=2-10"*F. and
E(r) = 110sin 415t V (66 cycles/sec).

33. Find the current in the RLC-circuit when L = 0.4 H,
R =40 Q. C = 10"*F, and E(r) = 220sin 3141 V
(50 cycles/sec).

34. Find a particular solution in Prob. 33 by the complex
method. (See Team Project 20 in Sec. 2.9.)

(o]
—
Rg L
E(t)
Fig. 70.  Mass—spring Fig. 71.  RLC-circuit

system
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Second-Order Linear ODEs

Second-order linear ODEs are particularly important in applications, for instance,
in mechanics (Secs. 2.4, 2.8) and electrical engineering (Sec. 2.9). A second-order
ODE is called linear if it can be written

(1) Y+ py’ + gy = r(x) (Sec. 2.1).

(If the first term is, say, f(x)y", divide by f(x) to get the “standard form” (1) with

y" as the first term.) Equation (1) is called homogeneous if r(x) is zero for all x

considered, usually in some open interval; this is written r(x) = 0. Then
(2) v+ p{x}}" + g(x)y = 0.

Equation (1) is called nonhomogeneous if r(x) # 0 (meaning r(x) is not zero for
some x considered).

For the homogeneous ODE (2) we have the important superposition principle
(Sec. 2.1) that a linear combination v = ky; + Iy, of two solutions yy, v, is again
a solution.

Two linearly independent solutions y;, v of (2) on an open interval / form a basis
(or fundamental system) of solutions on /, and y = ¢;y; + csV, with arbitrary
constants ¢, ¢ is a general solution of (2) on /. From it we obtain a particular
solution if we specify numeric values (numbers) for ¢; and ¢,, usually by prescribing
two initial conditions

(3) ¥(xg) = Ko, y'(xo) = Ky (xg. K. K, given numbers; Sec. 2.1).

(2) and (3) together form an initial value problem. Similarly for (1) and (3).
For a nonhomogeneous ODE (1) a general solution is of the form

) Y= ynt (Sec. 2.7).

Here y;, is a general solution of (2) and y,, is a particular solution of (1). Such a y,
can be determined by a general method (variation of parameters, Sec. 2.10) or in
many practical cases by the method of undetermined coefficients. The latter applies
when (1) has constant coefficients p and ¢, and r(x) is a power of x, sine. cosine,
etc. (Sec. 2.7). Then we write (1) as

(5) y' +ay' + by = r(x) (Sec. 2.7).

The corresponding homogeneous ODE y' + ay’ + by = 0 has solutions y = &%,
where A is a root of

(6) AH+ar+b=0.
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Hence there are three cases (Sec. 2.2):

Case 'I Type of Roots General Solution ‘
I | Distinct real Ay, Ao ¥ = ,8MF + cpe’?®
1 Double —3a y = (c; + cax)e %2
1M Complex —3a *+ iw* y = e""2(A cos w¥x + B sin w¥x)

Important applications of (5) in mechanical and electrical engineering in connection
with vibrations and resonance are discussed in Secs. 2.4, 2.7, and 2.8.

Another large class of ODEs solvable *“algebraically” consists of the
Euler-Cauchy equations

(7) 2"+ axy' + by =0 (Sec. 2.5).

m

These have solutions of the form y = x™, where m is a solution of the auxiliary

equation
(8) m*+ (a— Dm+b=0.

Existence and uniqueness of solutions of (1) and (2) is discussed in Secs. 2.6
and 2.7, and reduction of order in Sec. 2.1.




CHAPTER 3

Higher Order Linear ODEs

In this chapter we extend the concepts and methods of Chap. 2 for linear ODEs from order
n = 2 to arbitrary order n. This will be straightforward and needs no new ideas. However,
the formulas become more involved, the variety of roots of the characteristic equation (in
Sec. 3.2) becomes much larger with increasing n, and the Wronskian plays a more
prominent role.

Prerequisite: Secs. 2.1, 2.2, 2.6, 2.7, 2.10.
References and Answers to Problems: App. 1 Part A, and App. 2.

3.1 Homogeneous Linear ODEs

Recall from Sec. 1.1 that an ODE is of nth order if the nth derivative y'* = d™y/dx™ of
the unknown function y(x) is the highest occurring derivative. Thus the ODE is of the form

d"
Fx,y,y', "=+, y™) =0 (“'m = &
where lower order derivatives and y itself may or may not occur. Such an ODE is called
linear if it can be written

(1) Y + pp 1Y+ -+ pi()y + po@)y = r(x).

(For n = 2 this is (1) in Sec. 2.1 with p; = p and py = g). The coefficients py, * - -, p, 1
and the function r on the right are any given functions of x, and y is unknown. y* has
coefficient 1. This is practical. We call this the standard form. (If you have p,,(x)y"",
divide by p,(x) to get this form.) An nth-order ODE that cannot be written in the form
(1) is called nonlinear.

If r(x) is identically zero, r(x) = 0 (zero for all x considered, usually in some open
interval /), then (1) becomes

(2) Y 4 P @y TV 4 -+ pi@)Y' + o)y = 0

and is called homogeneous. If r(x) is not identically zero, then the ODE is called
nonhomogeneous. This is as in Sec. 2.1.

A solution of an nth-order (linear or nonlinear) ODE on some open interval [ is a
function y = h(x) that is defined and n times differentiable on / and is such that the ODE
becomes an identity if we replace the unknown function y and its derivatives by 4 and its
corresponding derivatives.

105
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THEOREM 1

DEFINITION

DEFINITION

CHAP.3 Higher Order Linear ODEs

Homogeneous Linear ODE: Superposition Principle,
General Solution

Sections 3.1-3.2 will be devoted to homogeneous linear ODEs and Sec. 3.3 to
nonhomogeneous linear ODEs. The basic superposition or linearity principle in Sec. 2.1
extends to nth order homogeneous linear ODEs as follows.

Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), sums and constant multiples of solutions on
some open interval I are again solutions on I. (This does not hold for a

nonhomogeneous or nonlinear ODE!) |
|

The proof is a simple generalization of that in Sec. 2.1 and we leave it to the student.

Our further discussion parallels and extends that for second-order ODEs in Sec. 2.1.
So we define next a general solution of (2), which will require an extension of linear
independence from 2 to » functions.

General Solution, Basis, Particular Solution

A general solution of (2) on an open interval / is a solution of (2) on / of the form
(3) ¥(x) = (@) + -+ eyn(x) (¢y, =+ +, ¢, arbitrary)

where vy, -+ -, v, is a basis (or fundamental system) of solutions of (2) on [; that |
is, these solutions are linearly independent on /, as defined below.

A particular solution of (2) on / is obtained if we assign specific values to the
n constants ¢y, * * +, ¢, in (3).

Linear Independence and Dependence |

n functions yy(x), -+ -, y,(x) are called linearly independent on some interval [ |
where they are defined if the equation
(4) kyvi(x) + -+ ky,(x) =0 on /
implies that all &y, - - -, k,, are zero. These functions are called linearly dependent
on [ if this equation also holds on [ for some ky, - - -, k,, not all zero.
(As in Secs. 1.1 and 2.1, the arbitrary constants ¢;. * * + , ¢,, must sometimes be restricted
to some interval.)
If and only if y;, - - -, y, are linearly dependent on I, we can express (at least) one of

these functions on / as a “linear combination™ of the other n — 1 functions, that is, as
a sum of those functions, each multiplied by a constant (zero or not). This motivates the
term “linearly dependent.” For instance, if (4) holds with k; # 0, we can divide by k, and
express yy as the linear combination
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

THEOREM 2

1
Y= k_(kz,"z + oo Ky Ya).
1

Note that when n = 2, these concepts reduce to those defined in Sec. 2.1.

Linear Dependence
Show that the functions y; = 1%, y, = 5x, y5 = 2v are linearly dependent on any interval.
Solution. y, = Oy, + 2.5v5. This proves linear dependence on any interval, =
Linear Independence
Show that y; = x, yo = X2, g = x* are linearly independent on any interval, for instance, on —1 = x = 2.
Solution. Equation (4) is kyx + kex® + kyx® = 0. Taking (a) x = — 1, (b)x = 1, (¢c) x = 2, we get

() =k + ko — kg =0, (b) ky + kg + kg = 0, (c) 2k; + 4ko + 8kg = 0.

ko = 0 from (a) + (b). Then kg = 0 from (c) —2(b). Then ky = 0 from (b). This proves linear independence.
A better method for testing linear independence of solutions of ODEs will soon be explained. L

General Solution. Basis

Solve the fourth-order ODE

W sy 44y =0 (where y'V = d%v/dx%),

Solution. As in Sec. 2.2 we try and substitute v = ¢**. Omitting the common factor ¢**, we obtain the
characteristic equation

=52 +4=0
This is a quadratic equation in 1 = A%, namely,
p2=Sptd=(n— Du—4=0
The roots are . = 1 and 4. Hence A = —2, —1, I, 2. This gives four solutions. A general solution on any

interval is

=23 -1 : 2
¥y =17 F 4 o™ + cge® + cqe™

provided those four solutions are linearly independent. This is true but will be shown later. ]

Initial Value Problem. Existence and Uniqueness

An initial value problem for the ODE (2) consists of (2) and # initial conditions
(5) y(xo) == KD* _v’(xo) = Kl' seimmss ),(11—1){_]:0) = Kn—l

with given x; in the open interval / considered. and given K. - -+, K,,_;.
In extension of the existence and uniqueness theorem in Sec. 2.6 we now have the following.

Existence and Uniqueness Theorem for Initial Value Problems

If the coefficients py(x), * * +, pp_1(x) of (2) are continuous on some open interval 1
and xg is in I, then the initial value problem (2), (5) has a unique solution y(x) on L.

Existence is proved in Ref. [All] in App. I. Uniqueness can be proved by a slight
generalization of the uniqueness proof at the beginning of App. 4.
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THEOREM 3

CHAP. 3 Higher Order Linear ODEs

Initial Value Problem for a Third-Order Euler—Cauchy Equation

Solve the following initial value problem on any open interval / on the positive x-axis containing x = 1.
.ta,\'m — 3,\'2_\'" + 6;\‘_\-" — 6y =10, 1) =12, _\"(lj = 1, v'(1) = —4,
Solution. Step 1. General solution. As in Sec. 2.5 we try v = x™", By differentiation and substitution,
mim — D(m — 2)x™ — 3m(m — Dx™ + 6mx™ — 6x™ = 0.

Dropping £ and ordering gives m® — 6m® + 11m — 6 = 0. If we can guess the root m = 1, we can divide
by m — 1 and find the other roots 2 and 3, thus obtaining the solutions x, x% x% which are linearly independent
on I (see Example 2). [In general one shall need a root-finding method, such as Newton’s (Sec. 19.2). also
available in a CAS (Computer Algebra System).] Hence a general solution is

y=cpx t ('21.'2 G 1‘3.\‘3

valid on any interval /, even when it includes x = 0 where the coefficients of the ODE divided by «® (to have
the standard form) are not continuous.

Step 2. Particular solution. The derivatives are y' = ¢; + 2co1 + 3ege® and v = 2¢, + 6egx. From this and
v and the initial conditions we get by setting x = |

(@ 1) =c;+ 2t cg= 2

1

() ¥'(1) = ¢1 + 2e9 + 3cq

() y"(1) = 2co + bz = —4,
This is solved by Cramer’s rule (Sec. 7.6), or by elimination, which is simple, as follows. (b) — (a) gives
(d) ¢g + 2¢3 = —1. Then (c) — 2(d) gives 5 = —1. Then (c) gives ¢ = l. Finally ¢; = 2 from (a).
Answer: y = 2x + x% — x5, E

Linear Independence of Solutions. Wronskian

Linear independence of solutions is crucial for obtaining general solutions. Although it
can often be seen by inspection, it would be good to have a criterion for it. Now Theorem
2 in Sec. 2.6 extends from order n = 2 to any n. This extended criterion uses the Wronskian
W of n solutions vy, - - -, v, defined as the nth order determinant

¥} Y2 S Yn
] o - N
M Va2 Yn
(6) Wiys,* == ¥) =
L(n—1) Jm=1) L (n—1)
y1 Yz Yn

Note that W depends on x since y;. - - -, ¥,, does. The criterion states that these solutions
form a basis if and only if W is not zero: more precisely:

Linear Dependence and Independence of Solutions |

Let the ODE (2) have continuous coefficients po(x), * *+, p,_1(x) on an open
‘ interval I. Then n solutions yy, - - -, v, of (2) on [ are linearly dependent on I if
and only if their Wronskian is zero for some x = xg in 1. Furthermore, if W is zero for ‘
‘ X = xq. then W is identically zero on I. Hence if there is an xy in I ar which W is |
not zero, then yy, - - -, v, are linearly independent on I, so that they form a basis
of solutions of (2) on I.
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(a) Let yq, * -
are constants ky, *

-, ¥, be linearly dependent solutions of (2) on /. Then, by definition, there
* -, k,, not all zero, such that for all x in /,

(7) Ky Yyt v =k Ky, = O

By n — | differentiations of (7) we obtain for all x in /
kyr + - Y hy, =0

(8)

kl}__;n—h I kn.v:an_h = (.

(7), (8) is a homogeneous linear system of algebraic equations with a nontrivial solution
ky, * + -, k,. Hence its coefficient determinant must be zero for every x on /, by Cramer’s
theorem (Sec. 7.7). But that determinant is the Wronskian W, as we see from (6). Hence
W is zero for every x on /.

(b) Conversely, if Wis zero at an x in /. then the system (7), (8) with x = x; has a solution
ky*, -0, k¥, not all zero, by the same theorem. With these constants we define the
solution y* = ky*y; + - - - + k,*y, of (2) on [. By (7), (8) this solution satisfies the
initial conditions y*(xo) = 0, - - -, y*"~D(x,) = 0. But another solution satisfying the
same conditions is y = (. Hence y* = y by Theorem 2, which applies since the coefficients
of (2) are continuous. Together, y* = ky*y, + + <+ + k,* v, = 0 on [. This means linear
dependence of y;, -+, v, on [l

(¢) If Wis zero at an x, in /, we have linear dependence by (b) and then W = 0 by (a).

Hence if W is not zero at an x, in /, the solutions y,, -+ - -, y,, must be linearly independent
on /. =]

Basis, Wronskian

We can now prove that in Example 3 we do have a basis. In evaluating W, pull out the exponential functions
columnwise. In the result, subtract Column | from Columns 2. 3, 4 (without changing Column 1). Then
expand by Row 1. In the resulting third-order determinant, subtract Column | from Column 2 and expand
the result by Row 2:

-2 -z x 2x

e e e e 1 1 | 1
=207 _ T Gt % -2 -1 1 2 l 4 4

WE e et & 4| |4 o1 1 4| .
-8e7% —¢ o 8| |-8 -1 1 8 T

A General Solution of (2) Includes All Solutions

Let us first show that general solutions always exist. Indeed, Theorem 3 in Sec. 2.6 extends
as follows.

| Existence of a General Solution

| If the coefficients py(x), -+ -, p,_1(x) of (2) are continuous on some open interval

I. then (2) has a general solution on 1.
| |
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THEOREM 5

PROOF
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We choose any fixed x in /. By Theorem 2 the ODE (2) has n solutions vy, - * -, ¥,,,
where y; satisfies initial conditions (5) with K;_; = 1 and all other K’s equal to zero. Their
Wronskian at x, equals 1. For instance, when n = 3, then y,(xo) = 1, yalxy) = 1,
va(xp) = 1. and the other initial values are zero. Thus, as claimed.

y1lxg) Va(xp) valxg) 1 0 0
0

W(y1(xo). yalxo). ¥a(xo)) = [y1(x0)  ¥alxo)  ¥y3lxg)| = [0 1 =1
Yio)  yalxo)  ¥3li)l [0 0 ]
Hence for any n those solutions y,, - - - , v, are linearly independent on /, by Theorem 3.
They form a basison [, and y = ¢y, + * -+ + ¢, ¥, is a general solution of (2) on /. ®

We can now prove the basic property that from a general solution of (2) every solution
of (2) can be obtained by choosing suitable values of the arbitrary constants. Hence an
nth order linear ODE has no singular solutions, that is, solutions that cannot be obtained
from a general solution.

General Solution Includes All Solutions

If the ODE (2) has continuous coefficients po(x), = * * , p,.—1(x) on some open interval
I, then every solution y = Y(x) of (2) on I is of the form

(9) Y(-‘:J =t Cl.‘vl(x) £ e 2f Cn.\'n(-x} ‘
where vy, * + * . v, is a basis of solutions of (2) on I and Cy, - - -, C,, are suitable
| constants. ‘
|
Let ¥ be a given solution and y = ¢;v; + * -+ + ¢,,¥,, a general solution of (2) on 1. We

choose any fixed xy in / and show that we can find constants ¢;, - - -, ¢,, for which y and
its first n — 1 derivatives agree with ¥ and its corresponding derivatives at x,. That is,
we should have at x = x;

GQYy T o+ Ey¥y, = Y
e+ vy =Y
(10)
CI.\“i”_D Lo ks cﬂ_.\_.?lln.-—ll — anul)'
But this is a linear system of equations in the unknowns ¢y, - - -, ¢,. Its coefficient
determinant is the Wronskian Wof y,, - - -, y,, at x,. Since vy, - - -, ¥, form a basis, they

are linearly independent, so that W is not zero by Theorem 3. Hence (10) has a unique
solution ¢; = Cy, * * -, ¢, = C, (by Cramer’s theorem in Sec. 7.7). With these values
we obtain the particular solution

YEx) = Ci@) + - - - + Coynl®)

on /. Equation (10) shows that y* and its first n — | derivatives agree at x, with ¥ and
its corresponding derivatives. That is, y* and Y satisfy at x, the same initial conditions.
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m

The uniqueness theorem (Theorem 2) now implies that y* = ¥ on /. This proves the

theorem.

This completes our theory of the homogeneous linear ODE (2). Note that for n = 2 it is
identical with that in Sec. 2.6. This had to be expected.

1-5

TYPICAL EXAMPLES OF BASES

To get a feel for higher order ODEs, show that the given
functions are solutions and form a basis on any interval.

Use
1.
2.

7-19

Wronskians. (In Prob. 2, x = 0.)

1,i%,%% %% yiv =0

I, 2%, %% 2" =3y + 3y =0

e*, xe*, x%e”, ¥ =3"+3 —y=0
2% cos x, €2 sin x, €72 cos x, e 2% sin x,

e.
yi¥ — 6y" + 25y = 0.
X

. i "
x, cos 3x. sin 3x, W+ 9y =0

TEAM PROJECT. General Properties of Solutions
of Linear ODEs. These properties are important in
obtaining new solutions from given ones, Therefore
extend Team Project 34 in Sec. 2.2 to nth-order ODEs.
Explore statements on sums and multiples of solutions
of (1) and (2) systematically and with proofs.
Recognize clearly that no new ideas are needed in this
extension from n = 2 to general n.

LINEAR INDEPENDENCE

Are

AND DEPENDENCE
the given functions linearly independent or dependent

on the positive y-axis? (Give a reason.)

Ts
9.

8.x+1,x+ 2, x
10. €%, ¢™", sinh 2x

I, :.e%, e®

In x, In x2, (In x)?

11.
13.
15.
17.
19.

20.

x2, x|x|, x

12.
14.
16.
sin x, sin $x 18.

cos? £

x, Hx, 0

R, |
Ccos” X, sin” x, cos 2x
(x— D% (x+ 1% x
cosh x, sinh x, cosh? x

sin 2x, sin x, cos x
tan x, cot x, 1

x, sin“ x, 27

TEAM PROJECT. Linear Independence and
Dependence. (a) Investigate the given question about
a set S of functions on an interval /. Give an example.
Prove your answer.

(1) If § contains the zero function, can S be linearly
independent?

(2) If §is linearly independent on a subinterval J of I,
is it linearly independent on I?

(3) If S is linearly dependent on a subinterval J of /,
is it linearly dependent on 1?7

(4) If S is linearly independent on /. is it linearly
independent on a subinterval J?

(5) If § is linearly dependent on [/, is it linearly
independent on a subinterval J?

(6) If §is linearly dependent on /, and if T contains S,
is T linearly dependent on I?

(b) In what cases can you use the Wronskian for

testing linear independence? By what other means can
you perform such a test?

3.2 Homogeneous Linear ODEs with Constant

Coefficients

In this section we consider nth-order homogeneous linear ODEs with constant coefficients,

which we write in the form

(D

where Y = d"y/dx", etc. We shall see that this extends the case n =

Y+ a1y + ot ayy +ay=0

2 discussed in

Sec. 2.2. Substituting y = ¢** (as in Sec. 2.2), we obtain the characteristic equation

(2)

AN+ a, AP+ iidr g+ a,=0
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of (1). If A is a root of (2), then y = ¢** is a solution of (1). To find these roots, you may
need a numeric method, such as Newton’s in Sec. 19.2, also available on the usual CASs.
For general n there are more cases than for n = 2. We shall discuss all of them and
illustrate them with typical examples.

) +

Distinct Real Roots

If all the n roots Ay, -+ -, A,, of (2) are real and different, then the n solutions
(3) _Vl = GMI, o yn = ea,kx

constitute a basis for all x. The corresponding general solution of (1) is

Ant

(4) y=ce + e+ e
Indeed, the solutions in (3) are linearly independent, as we shall see after the example.

Distinct Real Roots
Solve the ODE y" — 2v" — y' + 2y = 0.

Solution. The characteristic equation is A* — 2A% — A + 2 = 0. It has the roots —1, 1, 2; if you find one
of them by inspection, you can obtain the other two roots by solving a quadratic equation (explain!). The
corresponding general solution (4) is ¥ = ¢16™% + ¢pe™ + cq6”7,

Linear Independence of (3). Students familiar with nth-order determinants may verify
that by pulling out all exponential functions from the columns and denoting their product
by E, thus E = exp [(A\; + - -+ + A,)x], the Wronskian of the solutions in (3) becomes

e,\|x 6,)\33' G oE eJ\...‘l‘
)‘161\1;7: )‘2",)\2::‘ 3 e )‘neaux
w = Alze)qx )Lzze,\zx . /\"_291‘":!:
)(n—l Mz ’\n—l Ap N )tn—l Apt
1 € g € n €
(5)
1 1 B F 1
Ay Ay b A
s 2 2 2
=E /\1 A?. s )"?1

n—1 n—1 n-—1
X A3 cee A

The exponential function E is never zero. Hence W = 0 if and only if the determinant on
the right is zero. This is a so-called Vandermonde or Cauchy determinant’. It can be
shown that it equals

'ALEXANDRE THEOPHILE VANDERMONDE (1735-1796), French mathematician, who worked on
solution of equations by determinants. For CAUCHY see footnote 4, in Sec. 2.5.
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THEOREM 1

THEOREM 2

EXAMPLE 2

{6) (_ I}n-(n—llﬂv

where V is the product of all factors A; — Ay, with j < k (= n); for instance, when n = 3
we get =V = —(A; — A3)(A; — Az)(As — Ag). This shows that the Wronskian is not zero
if and only if all the n roots of (2) are different and thus gives the following.

Basis

= A A, 5 £
Solutions y, = €, -+, y, = € " of (1) (with any real or complex A;’s) form a |
basis of solutions of (1) on any open interval if and only if all n roots of (2) are
different.

Actually, Theorem | is an important special case of our more general result obtained
from (5) and (6):

| Linear Independence

Any number of solutions of (1) of the form " are linearly independent on an open |
interval 1 if and only if the corresponding A are all different.

Simple Complex Roots

If complex roots occur, they must occur in conjugate pairs since the coefficients of (1)
are real. Thus, if A = y + i is a simple root of (2), so is the conjugate A = y — iw, and
two corresponding linearly independent solutions are (as in Sec. 2.2, except for notation)

vy = e cos wx, ¥yo = € sin wx.
Simple Complex Roots. Initial Value Problem
Solve the initial value problem
3" =" +100y" — 100y = 0, ¥0) =4, ¥y =11, ¥"(0) = —299.
Solution. The characteristic equation is A> — A2 + 100A — 100 = 0. It has the root 1. as can perhaps be
seen by inspection. Then division by A — 1 shows that the other roots are *10i. Hence a general solution and
its derivatives (obtained by differentiation) are
vy = c1e” + A cos 10x + B sin 10x,

v = ¢1e” — 104 sin 10x + 108 cos 10x,

"

v" = ¢, — 1004 cos 10x — 1008 sin 10x.
From this and the initial conditions we obtain by setting x = 0
(a) ¢ +A=4, (b) ¢ +10B =11, (c) ¢; — 1004 = =299,

We solve this system for the unknowns A, B, ¢y. Equation (a) minus Equation (c) gives 1014 = 303, A = 3.
Then ¢; = | from (a) and B = 1 from (b). The solution is (Fig. 72)

y=¢" + 3 cos 10x + sin 10x.

This gives the solution curve, which oscillates about ¢* (dashed in Fig. 72 on p. 114). m
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| I 1
0 1 2 3 x

Fig. 72. Solution in Example 2

Multiple Real Roots

If a real double root occurs, say, Ay = Ay, then y; = v, in (3), and we take y, and xy, as
corresponding linearly independent solutions. This is as in Sec. 2.2.

More generally, if A is areal root of order m, then m corresponding linearly independent
solutions are

{7} e:\x. xeiu-‘ .‘le‘?h. e xm—lea.\"

We derive these solutions after the next example and indicate how to prove their linear
independence.

Real Double and Triple Roots
Solve the ODE y* — 3y1V 4 33" — y" = .

Solution. The characteristic equation A% — 3A* + 34% — A% = 0 has the roots A; = Ay = 0 and
Az = Ag = A5 = 1, and the answer is

(8) ¥ =1+ cox + (03 + cqx + csad)e”. i
Derivation of (7). We write the left side of (1) as
L(3) =3 4 @ qd™ P4 <o Fiap¥:
Let y = ¢**. Then by performing the differentiations we have
L[] = (A®* + @A™ + = = 4 ap)e®,
Now let A; be a root of mth order of the polynomial on the right, where m = n. For
m<nlet A, 1, -, A, be the other roots, all different from A;. Writing the polynomial
in product form, we then have
L[e"] = (A — A)"h(A)er™

with #(A) = 1 if m = n, and A(A) = (A — A1) - - - (A — A,) if m < n. Now comes the
key idea: We differentiate on both sides with respect to A,

o . J
(9) Yy Lle™] = m(X — AD)™ Th(A)e™® + (A — A)™ );)‘ [A(A)e*].
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The differentiations with respect to x and A are independent and the occurring derivatives
are continuous, so that we can interchange their order on the left:

i Ar] — i. Ar | Ax
(10) I L[] L[ T :I L|xe*].

The right side of (9) is zero for A = A, because of the factors A — A, (and m = 2 since

we have a multiple root!). Hence L[xe"‘z] = 0 by (9) and (10). This proves that xe' is
a solution of (1).

We can repeat this step and produce x X * by another m — 2 such
differentiations with respect to A. Going one step further would no longer give zero on
the right because the lowest power of A — A; would then be (A — A;)", multiplied by
m!h(A) and h(A;) # 0 because h(A) has no factors A — Ay: so we get precisely the solutions
in (7).

We finally show that the solutions (7) are linearly independent. For a specific n
this can be seen by calculating their Wronskian, which turns out to be nonzero. For
arbitrary m we can pull out the exponential functions from the Wronskian. This gives
()™ = ¢"™* times a determinant which by “row operations™ can be reduced to the

A -1 A
261," i Ie

Wronskian of 1, x, -+, x™~1 The latter is constant and different from zero (equal to
112! -+« (m — 1)!). These functions are solutions of the ODE y™ = 0, so that linear
independence follows from Theroem 3 in Sec. 3.1. m

Multiple Complex Roots

In this case, real solutions are obtained as for complex simple roots above. Consequently,
if A = y + iw is a complex double root, so is the conjugate A = y — iw. Corresponding
linearly independent solutions are

(11) e”™ cos wy, e’ sin wx, xe™™ cos wx, xe¥ sin wx.

The first two of these result from ¢** and ¢** as before, and the second two from xe**
and xe™” in the same fashion. Obviously, the corresponding general solution is

(12) v = e"[(A, + Agx) cos wx + (By + Byx) sin wx].

For complex triple roots (which hardly ever occur in applications), one would obtain
two more solutions x%e** cos wx, x%¢”* sin wx, and so on.

|1I-6| ODE FOR GIVEN BASIS T?---ll.;' GENERAL SOLUTION

Find an ODE (1) for which the given functions form a basis Solve the given ODE. (Show the details of your work.)
of solutions. 7.3" +3y' =0

1. e*, ezx‘ ea;u 2. e—zx‘ xe-?..r. A_ze-zz 8. yi" - 29y" + [OO'V =0

3. %, 7", cosx, sinx 9. 3" +y" =y —y=0

4. cos x, sin.x, x cos.x, x sinx 10. 16y — 8y" + y =0

5. 1, x, cos 2x, sin 2x 1. y" — 3y" — 4y" + 6y =0

6. &7 TR N R 12 yV + 3y" — 4y =0
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INITIAL VALUE PROBLEMS

Solve by a CAS, giving a general solution and the particular
solution and its graph.

13.

14.

15.

16.

17.

18.

19.

V¥ + 0.45y" — 0.165y" + 0.0045y" — 0.00175y = 0,
y(0) = 17.4, y'(0) = —2.82, y"(0) = 2.0485,
y"(0) = —1.458675

4y"™ + 8y" + 41y’ + 37y =0, y(0) = 9,

y'(0) = —6.5, y"(0) = —39.75

v+ 3.2y" + 481y =0, y(0) = 3.4,

y'(0) = —4.6, v"(0) = 9.91

YW H+4y=0,v0) =3y (0 =-3y
_\'m(t)) = _%

yi¥ — 93" — 400y = 0, y(0) = 0, y'(0) = 0,
-‘_H(O] — 41‘ -vm{ﬂ) - 0

y" + 7.5y" + 14.25y" — 9.125y = 0.

y(0) = 10.05, y'(0) = —54.975,

¥"(0) = 257.5125

"

0) =

Lol

CAS PROJECT. Wronskians. Euler-Cauchy
Equations of Higher Order. Although Euler—Cauchy
equations have variable coefficients (powers of x), we
include them here because they fit quite well into the
present methods.

(a) Write a program for calculating Wronskians.

(b) Apply the program to some bases of third-order
and fourth-order constant-coefficient ODEs. Compare

20

21.

the results with those obtained by the program most
likely available for Wronskians in your CAS.

(¢) Extend the solution method in Sec. 2.5 to any order
n. Solve x*y" + 2x%y" — 4xy" + 4y = 0 and another
ODE of your choice. In each case calculate the
Wronskian.

PROJECT. Reduction of Order. This is of practical
interest since a single solution of an ODE can often be
guessed. For second order, see Example 7 in Sec. 2.1.
(a) How could you reduce the order of a linear
constant-coefficient ODE if a solution is known?

(b) Extend the method to a variable-coefficient ODE

¥+ pa)y” 4 pix)y” + polx)y = 0.

Assuming a solution y, to be known, show that another
solution is yo(x) = u(x)y;(x) with u(x) = [ z(x) dx and
= obtained by solving

yid’ + Gyi + payi)e’ + Gyi + 2payi + piy)z = 0.

(¢) Reduce

- "
2By

— 3+ (6 — By’ — (6 — 1By =0,

using y; = x (perhaps obtainable by inspection).
CAS EXPERIMENT. Reduction of Order. Starting
with a basis, find third-order ODEs with variable
coefficients for which the reduction to second order
turns out to be relatively simple.

3.3 Nonhomogeneous Linear ODEs

We now turn from homogeneous to nonhomogeneous linear ODEs of nth order. We write

them in standard form

1)

Y+ PR 4 - py)y’ + poly = r(x)

with ¥ = d"y/dx™ as the first term, which is practical, and r(x) # 0. As for second-order
ODEs, a general solution of (1) on an open interval / of the x-axis is of the form

2)

Here yu(x) = cyy(x) + -+
homogeneous ODE

(3)

Y(x) = yp(x) + yplx).

+ ¢, v,(x) is a general solution of the corresponding

Y A pea GV 4 - py(a)y” + po(a)y = 0

on I. Also, y, is any solution of (1) on / containing no arbitrary constants. If (1) has
continuous coefficients and a continuous r(x) on /, then a general solution of (1) exists
and includes all solutions. Thus (1) has no singular solutions.
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EXAMPLE 1

An initial value problem for (1) consists of (1) and » initial conditions
(C)) ¥(xo) = Ko, ¥'(x0) = Ky, vy YN = Ky 4

with xp in /. Under those continuity assumptions it has a unique solution. The ideas of
proof are the same as those for n = 2 in Sec. 2.7.

£ ~iant
iricients

Method of Undetermined Coe

Equation (2) shows that for solving (1) we have to determine a particular solution of (1).
For a constant-coefficient equation

(5) y(n.) + aﬂ_l},(n—l} S al.".f + apy = ."(.1')

(ag. - - *, a,_, constant) and special r(x) as in Sec. 2.7, such a y,(x) can be determined
by the method of undetermined coefficients, as in Sec. 2.7, using the following rules.

(A) Basic Rule as in Sec. 2.7.

(B) Modification Rule. If a term in your choice for y,(x) is a solution of the
homogeneous equation (3), then multiply y,(x) by x*, where k is the smallest positive
integer such that no term okayp(x) is a solution of (3).

(C) Sum Rule as in Sec. 2.7.

The practical application of the method is the same as that in Sec. 2.7. It suffices to
illustrate the typical steps of solving an initial value problem and, in particular, the new
Modification Rule, which includes the old Modification Rule as a particular case (with
k = 1 or 2). We shall see that the technicalities are the same as for n = 2, perhaps except
for the more involved determination of the constants.

Initial Value Problem. Modification Rule

Solve the initial value problem
(6) VOB E Hy=30e w0 =3, YO =-3  y'(0)=-47.

Solution. Step 1. The characteristic equation is A% + 3A% + 34 + 1 = (A + 1)* = 0. It has the triple root
A = —1. Hence a general solution of the homogeneous ODE is

i = c1€ © + coxe T + c3_1'2e_:"'

(c; + cax + ezx®)e™,

Step 2. If wetry v, = Ce™™, we get —C + 3C — 3C + C = 30, which has no solution. Try Cxe™ and e,
The Modification Rule calls for

. - -
¥p = Cx%e ",

C(3x% — x3)e 7%,

o R
Then ¥p

_'.’;; = C(6x — 622 + x%)e ™7,

"

Yp=C(6— 18x + 9% — He %,
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Substitution of these expressions into (6) and omission of the common factor ™" gives

C6 — 18y + 9% — x%) + 3C(6x — 602 + 1) + 3C3% — %) + & = 30,

The linear, quadratic, and cubic terms drop out, and 6C = 30. Hence € = 5. This gives y,, = 5x%e 7%,

Step 3. We now write down y = y;, + y,,, the general solution of the given ODE. From it we find ¢y by the
first initial condition. We insert the value, differentiate, and determine ¢y from the second initial condition, insert
the value, and finally determine ¢y from _-.'"(0) and the third initial condition:

¥ =yt yp = e +cox + t‘;*tz)e_'r + 5237, ¥0)=¢; =3
_\" = i—3 t+ eg + (—cg + 2eq)x + (15 — ('3).1'2 - 5.\‘3]e_x. ,\"(m = =3 + ¢p = =3, cp =0
y'=[3 + 205 + (30 — deg)x + (=30 + eq)x® + 5x% e, y(0) =3 + 2¢5 = —47,  ¢3 = —25.
Hence the answer to our problem is (Fig. 73)
y=03—25%e" + 2%

The curve of y begins at (0, 3) with a negative slope, as expected from the initial values. and approaches zero
as v — =, The dashed curve in Fig. 73 is v},

-5}

Fig. 73.  y and y, (dashed) in Example 1

Method of Variation of Parameters

The method of variation of parameters (see Sec. 2.10) also extends to arbitrary order n.
It gives a particular solution y,, for the nonhomogeneous equation (1) (in standard form

with y™ as the first term!) by the formula
n
Wi(x)
o) = 3 o) [ 7 ds
(7) i

W

1(x) ] . , W,
W) r(x) dx + + yu(x) f

A
W) r(x) dx

= y1(x) f

on an open interval / on which the coefficients of (1) and r(x) are continuous. In (7) the
functions yy, - - - . v, form a basis of the homogeneous ODE (3), with Wronskian W, and
W; (j = 1, -+, n)is obtained from W by replacing the jth column of W by the column
[0 0 --- 0 1]" Thus, when n = 2, this becomes identical with (2) in Sec. 2.10.

M Yo

= ¥Y1.
r -
Y1 1

W1 0
. ) — ---\.'2‘ W2 —
Y1 Y2

The proof of (7) uses an extension of the idea of the proof of (2) in Sec. 2.10 and can
be found in Ref [A11] listed in App. 1.
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EXAMPLE 2

Variation of Parameters. Nonhomogeneous Euler-Cauchy Equation

Solve the nonhomogeneous Euler-Cauchy equation

.\‘3_'.-'m - 3_\'2)‘" + 6,\'_\" — 6y = A nx (x > 0).

Step 1. General solution of the homogeneous ODE. Substitution of y = x™ and the derivatives
m o _:
gives

Solution.
into the homogeneous ODE and deletion of the factor x

mim — 1)m — 2) — 3mim — 1) + 6m — 6 = (.

The roots are 1. 2, 3 and give as a basis

Hence the corresponding general solution of the homogeneous ODE is
Vi = €% + e + eqa’,

Step 2. Determinants needed in (7). These are

X .\'2 \3
W=l 2x 32 =24
0 2 6x
0 x2 v
W; = |0 2x 32| =5t
| 2 (3%

Wo=[1 0 3% =-2.8
0 1 6y
X 22 0

We=1[1 2x 0] =22
0o 2 1

Step 3. Integration. In (7) we also need the right side r(x) of our ODE in standard form, obtained by division
of the given equation by the coefficient x* of y"; thus, #(x) = (x* In )/x® = x In x. In (7) we have the simple
quotients W/W = x/2, Wo/W = —1, Wy/W = 1/(2x). Hence (7) becomes

x 5 3 |
=x |z xlnxde —x* Jxlnxdy+ x% | — xInxdx
2 2x

x° i 1_3 2 ¥ - 2 5 X :
3 nx 9 x 2 nx — 2 5 (xInx — x).

k-

Simplification gives y, = L (Inx —1). Hence the answer is

2+ e 1t (iny — 1),

Y=Y T¥p =1k +Cox
Figure 74 shows v,. Can you explain the shape of this curve? Its behavior near x = 07 The occurrence of
a minimum? Its rapid increase? Why would the method of undetermined coefficients not have given the
solution? ™
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10}
=20+

Fig. 74. Particular solution y, of the nonhomogeneous
Euler—Cauchy equation in Example 2

Application: Elastic Beams

Whereas second-order ODEs have various applications, some of the more important ones
we have seen, higher order ODEs occur much more rarely in engineering work. An
important fourth-order ODE governs the bending of elastic beams, such as wooden or iron
girders in a building or a bridge.

Vibrations of beams will be considered in Sec. 12.3.

Bending of an Elastic Beam under a Load

We consider a beam B of length L and constant (e.g.. rectangular) cross section and homogeneous elastic
material (e.g.. steel); see Fig. 75. We assume that under its own weight the beam is bent so little that it is
practically straight. If we apply a load w0 B in a vertical plane through the axis of symmetry (the x-axis in
Fig. 75). B is bent. Its axis is curved into the so-called elastic curve C (or deflection curve). It is shown in
clasticity theory that the bending moment M(x) is proportional to the curvature k(x) of C. We assume the bending
to be small, so that the deflection y(x) and its derivative }"l.r] (determining the tangent direction of C) are small.
Then, by calculus, & = ,\‘"!(I + )"'2]3':2 = _\'", Hence

Mix) = EI"(x).

El is the constant of proportionality. £ is Young's modulus of elasticity of the material of the beam. [ is the
moment of inertia of the cross section about the (horizontal) z-axis in Fig. 75.
Elasticity theory shows further that M"(x) = f(x), where f(x) is the load per unit length. Together,

(8) ENVY = f(x).

Deformed beam
under uniform load
(simply supported)

Fig. 75.  Elastic Beam
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The practically most important supports and corresponding boundary conditions are as follows (see Fig. 76).

(A) Simply supported y=y"=0atx=0and L
(B) Clamped at both ends y=y =0atx=0and L
(C) Clampedatx =0, freeatx =1L  y0) =y'(0) =0,y

" m

(L) =y (L) = 0.
The boundary condition ¥ = 0 means no displacement at that point, y' = 0 means a horizontal tangent, y" = 0
means no bending moment, and v = 0 means no shear force.

Let us apply this to the uniformly loaded simply supported beam in Fig. 75. The load is f(x) = fy = const.
Then (8) is
) W=t k= —.

This can be solved simply by calculus. Two integrations give

x% + egx + ey

ta | =

v"(0) = 0 gives c5 = 0. Then y"(L) = LEAL + ¢1) = 0, ¢; = —kL/2 (since L # 0). Hence

(x? — Lx).

Integrating this twice, we obtain

with ¢4 = 0 from y(0) = 0. Then

(e 8 L’
“‘(L)ET ‘E"—g'-*-c‘;; =0, c3=1—2-.
Inserting the expression for &, we obtain as our solution
fo

(14 —2L3® + La.r}.

=

24E1

Since the boundary conditions at both ends are the same. we expect the deflection y(x) to be “symmetric” with
respect to L/2, that is, y(x) = w(L — x). Verify this directly or set x = u + L/2 and show that y becomes an

even function of u,
fo 2 L 2 3
y= 24E] (n -2 L o~ 2 ) s I

From this we can see that the maximum deflection in the middle at v = 0 (x = L/2) is 53‘01_.4?‘( 16 - 24ET7). Recall

that the positive direction points downward. i
Xx
E i. {A) Simply supported
x=0 x=1L

‘——T-==-==.====-==T—=‘ (B) Clamped at both
ends

=0 x=r
|
L d (C) Clamped at the left
| 1 end, free at the
x=0 z=L right end

Fig. 76.  Supports of a Beam
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1-8] GENERAL SOLUTION

Solve the following ODEs. (Show the details of your work.)
Ly" —2y" — 4y + 8y = 7% + 842

2. " + 3y" — 5y — 39y = 30 cos x

3.9V 4+ 0.5y" + 0.0625y = 7" cos 0.5x

4. y" + 2y" — 59" — 6y = 100~ + 18¢7*

5. 2% 4+ 0.75xy" — 0.75y = 9x55

6. (xD*® + 4D*)y = 8e*

7. (D* + 10D? + 9I)y = 13 cosh 2x

8. (D® — 2D% — 9D + 181)y = %%

9—14| INITIAL VALUE PROBLEMS

Solve the following initial value problems. (Show the
details.)

9. y" —9y" + 27y' — 27y = 54sin 3x, y(0) = 3.5,
¥'(0) = 13.5, »"(0) = 385

10. v'Y — 16y = 128 cosh 2x. y(0) = 1,
y'(0) =20, y"(0) = —160

11. (x*D® — x2D% — 7xD + 160)y = 9x In x,

¥'(0) = 24,

y(1)y =6. Dy(1) = 18, D?y(1) = 65
12, (D* — 26D% + 251)y = 50(x + 1)2,  y(0) = 12.16,
Dy(0) = —6. D%(0) = 34, D3*y(0) = —130

13. (D® + 4D% + 85D)y = 135xe®, y(0) = 10.4,
Dy(0) = —18.1, D%y(0) = —691.6

14. (2D* — D? — 8D + 4@)y = sinx, y(0) = 1,
Dy(0) = 0, D*(0) =0

15. WRITING PROJECT. Comparison of Methods.
Write a report on the method of undetermined coefficients
and the method of variation of parameters. discussing and
comparing the advantages and disadvantages of each
method. Ilustrate your findings with typical examples.
Try to show that the method of undetermined coefficients,
say, for a third-order ODE with constant coefficients and
an exponential function on the right, can be derived from
the method of variation of parameters.

16. CAS EXPERIMENT. Undetermined Coefficients.
Since variation of parameters is generally complicated,
it seems worthwhile to try to extend the other method.
Find out experimentally for what ODE:s this is possible
and for what not. Hint: Work backward, solving ODEs
with a CAS and then looking whether the solution
could be obtained by undetermined coefficients. For
example, consider

v = 12y" + 48y — 64y = xM2e and

" " r
"™ 4+ x%" — 6xy’ + 6y = xInx.

MEW QUESTIONS AND PROBLEMS

1. What is the superposition or linearity principle? For
what nth-order ODEs does it hold?

2. List some other basic theorems that extend from
second-order to nth-order ODEs.

3. If you know a general solution of a homogeneous linear
ODE, what do you need to obtain from it a general
solution of a corresponding nonhomogeneous linear
ODE?

4. What is an initial value problem for an nth-order linear
ODE?

5. What is the Wronskian? What is it used for?

6-15| GENERAL SOLUTION
Solve the given ODE. (Show the details of your work.)
6. y" + 6v" + 18y’ + 40y =0

7. 422" + 120" + 3y =0

8. vV + 10y" + 9y =0

9. 8y" + 12y" =2y’ =3y =0

10. (D® + 3D% + 3D + 1)y = 2

11. (xD* + D¥y = 150x*

12. (D* — 2D* — 8D?%)y = 16 cos 2x

13. (D® + Iy = 9¢*/2

14. (x*D® — 3x2D% + 6xD — 6)y = 30x~2
15. (D* = D®2 = D + 1)y = ¢*

;Hu' INITIAL VALUE PROBLEMS

Solve the given problem. (Show the details.)

16. y" — 2y" + 4y' — 8y =0, ¥0) = -1,
y'(0) =30, y"(0) =28

17. %™ + Tx%" — 20" — 10y = 0,
Yy =-=7, y"(1) = 44

18. (D® + 25D)y = 32 cos? 4y,
Dy(0) = 0, D*(0) =0

19. (D* + 40D? — 4411)y = 8 coshx, y(0) = 1.98,
Dy(0) = 3, D%y(0) = —40.02, D?y(0) = 27

20. (x3D? + 5x2D% + 2xD — 2y = Tx32,
¥(1) = 10.6, Dy(l) = —=3.6, D%*¢(1) = 31.2

1) = 1,

¥(0) = 0,



Summary of Chapter 3 123

— SUMMARY-OF CHAPTER 3 —

Higher Order Linear ODEs

‘ Compare with the similar Summary of Chap. 2 (the case n = 2).
Chapter 3 extends Chap. 2 from order n = 2 to arbitrary order n. An nth-order
| linear ODE is an ODE that can be written

(D Y + PP + s+ i)y’ + polx)y = r(x)
with ¥ = d"™y/dx" as the first term; we again call this the standard form. Equation

(1) is called homogeneous if r(x) = 0 on a given open interval [/ considered,
nonhomogeneous if »(x) # 0 on /. For the homogeneous ODE

2) ¥ + ppog Y™ 4+ o+ pi(x)y” + polx)y = 0

the superposition principle (Sec. 3.1) holds, just as in the case n = 2. A basis or
fundamental system of solutions of (2) on [/ consists of n linearly independent

solutions v, - - -, y,, of (2) on /. A general solution of (2) on / is a linear combination
of these,
I (3) Yy=oyp + -+ cuva (¢y, * * *, ¢, arbitrary constants).

| A general solution of the nonhomogeneous ODE (1) on [ is of the form
@ Y=yt (Sec. 3.3).

Here, y, is a particular solution of (1) and is obtained by two methods
(undetermined coefficients or variation of parameters) explained in Sec. 3.3.

An initial value problem for (1) or (2) consists of one of these ODEs and n
initial conditions (Secs. 3.1, 3.3)

) Yx) = Koo V() =Ky, cor. ¥"Px) = K,y
with given xg in / and given K¢, * + -, K,,_. If pg, * - -, p,,—1, I are continuous on

I, then general solutions of (1) and (2) on 7 exist, and initial value problems (1),
(5) or (2). (5) have a unique solution.




CHAPTER 4

Systems of ODEs. Phase Plane.
Qualitative Methods

Systems of ODEs have various applications (see, for instance, Secs. 4.1 and 4.5). Their
theory is outlined in Sec. 4.2 and includes that of a single ODE. The practically important
conversion of a single nth-order ODE to a system is shown in Sec. 4.1.

Linear systems (Secs. 4.3, 4.4, 4.6) are best treated by the use of vectors and matrices.
of which, however, only a few elementary facts will be needed here, as given in Sec. 4.0
and probably familiar to most students.

Qualitative methods. In addition to actually solving systems (Sec. 4.3, 4.6), which is
often difficult or even impossible, we shall explain a totally different method, namely, the
powerful method of investigating the general behavior of whole families of solutions in
the phase plane (Sec. 4.3). This approach to systems of ODEs is called a qualitative
method because it does not need actual solutions (in contrats to a “quantitative method”
of actually solving a system).

This phase plane method, as it is called. also gives information on stability of solutions,
which is of general importance in control theory, circuit theory, population dynamics, and
so on. Here, stability of a physical system means that, roughly speaking, a small change
at some instant causes only small changes in the behavior of the system at all later times.

Phase plane methods can be extended to nonlinear systems, for which they are
particularly useful. We will show this in Sec. 4.5, which includes a discussion of the
pendulum equation and the Lotka-Volterra population model. We finally discuss
nonhomogeneous linear systems in Sec. 4.6.

NOTATION. Analogous to Chaps. 1-3, we continue to denote unknown functions by
v: thus, y,(1), vo(r). This seems preferable to suddenly using x for functions, x;(r), x(1),
as is sometimes done in systems of ODEs.

Prerequisite: Chap. 2.
References and Answers to Problems: App. | Part A, and App. 2.

4.0 Basics of Matrices and Vectors

124

In discussing linear systems of ODEs we shall use matrices and vectors. This simplifies
formulas and clarifies ideas. But we shall need only a few elementary facts (by no means
the bulk of material in Chaps. 7 and 8). These facts will very likely be at the disposal of

most students. Hence this section is for reference only. Begin with Sec. 4.1 and consult
4.0 as needed.
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Most of our linear systems will consist of two ODEs in two unknown functions y,(1),
"‘2(’}-

Eo_ " ) N
Y1 = any t+ dapya, Y1

(1 for example, ,
Vo = do1yy T das)s, Y2

Il

—5y; + 2ys

Il

13y, + %3’2

(perhaps with additional given functions g,(1), gs(¢) in the two ODEs on the right).
Similarly, a linear system of n first-order ODEs in n unknown functions y,(1), * - -,
v,(7) is of the form

!
Y1 =dapy; tapys o oayyy,
! —— ¥ 1 - s . 1
Yo = dg1Vy T dagVy T + g yn
(2)
! = ¥ - s e .
Yn = dma)h =t tyoVa =t + pnn

(perhaps with an additional given function in each ODE on the right).

Some Definitions and Terms
Matrices. In (1) the (constant or variable) coefficients form a 2 X 2 matrix A, that is,

an array

dyy 2
\ for example, —

1
ot |
W W

bal= (8]

| S |

3 A= [a = [

(23] Ay

Similarly, the coefficients in (2) form an » X n matrix

an a2 s Ain
(53] aa = Bl oy
(4) A= [ﬂjk] —
ana Uya e yp,
The ay,. a;o, - - - are called entries, the horizontal lines rows, and the vertical lines

columns. Thus, in (3) the first row is [ay; @;2]. the second row is [ap; dap]. and the
first and second columns are

[Gu:| ]:ﬂlz:l

and :
g Aoy
In the “double subscript notation™ for entries, the first subscript denotes the row and the
second the column in which the entry stands. Similarly in (4). The main diagonal is the
diagonal a;; @z - @, in(4), hence ay; asy in (3).

We shall need only square matrices, that is, matrices with the same number of rows
and columns, as in (3) and (4).
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Vectors. A column vector x with # components x,, - - -, x,, is of the form

R}

Xo X1
e thus if n = 2, X = :
: Xo

'rn.

“
I

Similarly, a row vector v is of the form

V=[uy " Uyl thus if n = 2, then vV =[vy, Usl

Calculations with Matrices and Vectors

Equality. Two n X n matrices are equal if and only if corresponding entries are equal.
Thus for n = 2, let

ayy Ay byy bys
A= and = .
a2 gy bay bas
Then A = B if and only if

ayy = byy. ayp = byp

gy = by, day = ba.

Two column vectors (or two row vectors) are equal if and only if they both have n
components and corresponding components are equal. Thus, let

Uy X Ul =X
v = and x= . Then v =x if and only if
Uz 't:! vz = Xa.

Addition is performed by adding corresponding entries (or components); here, matrices
must both be n X n, and vectors must both have the same number of components. Thus
for n = 2,

a;; + by tys + bys By ~h iy
(5) A+B= 3 vk X= i
dgy + boy Qos + bos Us + Xy

Scalar multiplication (multiplication by a number ¢) is performed by multiplying each
entry (or component) by ¢. For example, if

9 3 -63 -21
A= . then —7A = g
=2 0 14 0
04 4
v = . then 10v = :
—13 —130

If
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Matrix Multiplication. The product C = AB (in this order) of two n X n matrices
A = [aj] and B = [by] is the n X n matrix C = [c¢j;] with entries

n Jj= 1= m
(6) Cie = ) Gimbmy
1

m=

k=1,+--,n,

that is, multiply each entry in the jth row of A by the corresponding entry in the kth column
of B and then add these n products. One says briefly that this is a “multiplication of rows
into columns.” For example,

9 3 I =4 9:-1+3-2 O«(—4)+3-5
|:—2 Oi| ]:2 5]:[—2-1+0'2 (—2)'(—4)+0'5i|
15 -21
) [—2 3}’

CAUTION!  Matrix multiplication is not commutative, AB # BA in general. In our
example,

1 —4 9 3 1.9+ (—4)-(—2) 1-3+(—=4)-0
[ eyl o g
17 3
:[8 6]

Multiplication of an n X n matrix A by a vector X with n components is defined by the
same rule: v = Ax is the vector with the n components

"
u; = E s G j=1+-,n
m=1
For example,
12 7] [x 12x; + x5
-8 3] |Lx —8x; + 3xp
Systems of ODEs as Vector Equations

Differentiation. The derivative of a matrix (or vector) with variable entries (or
components) is obtained by differentiating each entry (or component). Thus, if

) e yi() —2¢72
y@) = = , then y'@®= = .
Ya(t) sin ¢ va(1) cos t

Using matrix multiplication and differentiation, we can now write (1) as

: i G4y a2 | | ¥ =5 21y
{7) y B [ fJ B Ay B { ] [ IJ ‘ e‘gq y' - [ } { ]] .
Y dg dag Yo 13 34 Lys
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Similarly for (2) by means of an n X n matrix A and a column vector y with n components,
namely, y' = Ay. The vector equation (7) is equivalent to two equations for the
components, and these are precisely the two ODEs in (1).

Some Further Operations and Terms

Transposition is the operation of writing columns as rows and conversely and is indicated
by T. Thus the transpose A” of the 2 X 2 matrix

aqq (&S] —3 2 ayq gy -5 13
A= = is AT = = aE
Gz G2z 13 G2 4z 2 2

The transpose of a column vector, say,

b=

U1
e [ i| . is a row vector, vi= vy

and conversely.

Inverse of a Matrix. The n X n unit matrix I is the n X »n matrix with main diagonal
1, 1, -+ -, 1 and all other entries zero. If for a given n X n matrix A there is an n X n
matrix B such that AB = BA = I, then A is called nonsingular and B is called the inverse
of A and is denoted by A~ thus

(8) AAr=A"TA=1L

If A has no inverse, it is called singular. For n = 2,

© A=l = 1 gz, —Aaiz
) ~ detA :

—day tyy

where the determinant of A is

yq o

(10) det A =

= dy1flas — dyallay.

tlaq tag

(For general n, see Sec. 7.7, but this will not be needed in this chapter.)
Linear Independence. r given vectors vV, - - - | v with n components are called a
linearly independent set or, more briefly, linearly independent, if

(1[} (.1‘,(11 B I 8 Cr‘,(r) s 0

implies that all scalars ¢y, - - - . ¢, must be zero; here, () denotes the zero vector, whose
n components are all zero. If (11) also holds for scalars not all zero (so that at least
one of these scalars is not zero), then these vectors are called a linearly dependent set
or, briefly, linearly dependent, because then at least one of them can be expressed as
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a linear combination of the others: that is, if, for instance, ¢; # 0 in (11), then we
can obtain

1 .
VB = — — (cv® + + o+ + ¥ 7).
&

Eigenvalues, Eigenvectors

Eigenvalues and eigenvectors will be very important in this chapter (and, as a matter of
fact, throughout mathematics).
Let A = [a;.] be an n X n matrix. Consider the equation

(12) Ax = Ax

where A is a scalar (a real or complex number) to be determined and x is a vector to be
determined. Now for every A a solution is x = (. A scalar A such that (12) holds for some
vector X # () is called an eigenvalue of A, and this vector is called an eigenvector of A
corresponding to this eigenvalue A.

We can write (12) as Ax — Ax = 0 or

(13) (A — ADx = 0.
These are n linear algebraic equations in the n unknowns xy, * * +, x,, (the components of
x). For these equations to have a solution x # 0, the determinant of the coefficient matrix

A — AI must be zero. This is proved as a basic fact in linear algebra (Theorem 4 in
Sec. 7.7). In this chapter we need this only for n = 2. Then (13) is

a1 — A i X1 0
(14) :
gy dgy — A | [ X 0

in components,
(agp — Axp+  apxs =0

(147%)
fgqXq -+ (022 = )\).‘\:2 = 0.

Now A — Alis singular if and only if its determinant det (A — AI), called the characteristic
determinant of A (also for general n), is zero. This gives

fi]_l - )l ﬂlz
det (A — Al =
day ags — A
(15) = (ay; — Mage — A) — ayaaz,

= A2 - (ayy + asp)A + ayiass — ajzas; = 0.

This quadratic equation in A is called the characteristic equation of A. Its solutions are
the eigenvalues A; and Ay of A. First determine these. Then use (14%) with A = A; to
determine an eigenvector X of A corresponding to A;. Finally use (14*) with A = A, to
find an eigenvector X of A corresponding to A,. Note that if x is an eigenvector of A,
so0 is kx for any k # 0.



130

EXAMPLE 1

CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

Eigenvalue Problem

Find the eigenvalues and eigenvectors of the matrix

—4.0 4.0
(16) A= 7
—1.6 1:2

Solution. The characteristic equation is the quadratic equation

—-4- A 4

det [A — AIl = ‘ =22 +28 4+ 16=0.

—1.6 1.2 - A

It has the solutions A; = —2 and A, = —0.8. These are the eigenvalues of A.
Eigenvectors are obtained from (14*). For A = A; = —2 we have from (14%)

(—4.0 + 2.0)0xy + 4.0xy =0
= 1.6x4 + (1.2 + 2.0)x5 = 0.

A solution of the first equation is x; = 2, xo = |. This also satisfies the second equation. (Why?). Hence an
eigenvector of A corresponding to Ay = —=2.0is

2 1
(17) x = [ } Similarly, x® = [ }
1 0.8

is an eigenvector of A corresponding to Ay = —0.8, as obtained from (14%) with A = A5. Verify this, =

4.1 Systems of ODEs as Models

EXAMPLE 1

We first illustrate with a few typical examples that systems of ODEs can serve as models
in various applications. We further show that a higher order ODE (with the highest
derivative standing alone on one side) can be reduced to a first-order system. Both facts
account for the practical importance of these systems.

Mixing Problem Involving Two Tanks

A mixing problem involving a single tank is modeled by a single ODE, and you may first review the
corresponding Example 3 in Sec. 1.3 because the principle of modeling will be the same for two tanks. The
model will be a system of two first-order ODEs,

Tank Ty and T in Fig. 77 contain initially 100 gal of water each. In T, the water is pure, whereas 150 1b of
fertilizer are dissolved in Tp. By circulating liquid at a rate of 2 gal/min and stirring (to keep the mixture uniform)
the amounts of fertilizer y(r) in Ty and y(r) in 75 change with time 1. How long should we let the liquid circulate
so that Ty will contain at least half as much fertilizer as there will be left in T,?

Solution. Step I. Setting up the model. As for a single tank, the time rate of change v1(1) of y4(1) equals
inflow minus outflow. Similarly for tank Ts. From Fig. 77 we see that

P . .2 B
vy = Inflow/min — Outflow/min = 10072 ~ Too (Tank Ty)
> = Inflow/min — Outflow/mi = >
¥a = Inflow/min utflow/min = 100 Vi — 1002 (Tank 75).
Hence the mathematical model of our mixture problem is the system of first-order ODEs
y1 = —0.02y; + 0.02y, (Tank T;)

y2 = 0.02y; — 0.02y, (Tank Ts).
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¥t
150+

2 gallmin 100}
’1"1 ? galimin 50 /./f'yi(n
4 0 '.’ | i |
System of tanks 0 27.5 50 100 t

Fig. 77. Fertilizer content in Tanks T, (lower curve) and T,

»1
As a vector equation with column vector y = [ ] and matrix A this becomes
Yz
, —-0.02 002
y = Ay, where A= z
0.02 -0.02

Step 2. General solution. As for a single equation, we try an exponential function of f,

(1 y = xeM. Then y' = Axe™ = Axe".

Dividing the last equation Axe™ = Axe™ by " and interchanging the left and right sides. we obtain
Ax = Ax.

We need nontrivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues
and eigenvectors of A. The eigenvalues are the solutions of the characteristic equation

—0.02 — A 0.02 5
(2) det (A — AL = = (=002 = A)? = 0.02% = A(A + 0.04) = 0.
0.02 =0.02 - A

We see that Ay = 0 (which can very well happen—don’t get mixed up—it is eigenvecrors that must not be zero)
and As = —0.04. Eigenvectors are obtained from (14*) in Sec. 4.0 with A = 0 and A = —0.04. For our present
A this gives [we need only the first equation in (14%)]

=0.02x; + 0.02x5 = 0 and (—0.02 + 0.04)x; + 0.02x5 = 0,
respectively. Hence x; = xy and x; = —xg, respectively, and we can take xy = xg = land x; = —xp = L.
This gives two eigenvectors corresponding to Ay = 0 and A = —0.04, respectively, namely,

D= [l:l sl X2 = [ 1}‘
1 =1

From (1) and the superposition principle (which continues to hold for systems of homogeneous linear ODEs)
we thus obtain a solution

1 1
At t =
(3) y= L.lxcl)e LI Qx(z)eﬁg = [ ] F ey [ ] o 0-04t
1 -1

where ¢; and ¢y are arbitrary constants. Later we shall call this a general solution.

Step 3. Use of initial conditions. The initial conditions are y,(0) = 0 (no fertilizer in tank 77) and y(0) = 150.
From this and (3) with r = 0 we obtain

I 1 1 + o 0
3(0) =0 4 Cog = = N
1 —1 €] — Co 150
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In components this is ¢; + ¢g = 0, ¢; — ¢ = 150. The solution is ¢; = 75, cg = —75. This gives the answer
1 1 b
y= Tsx[l) oo ?sx:2:e—0,041 =175 — 75 E—U, I-
1 -1
In components,
y1 =75 = T5¢~00% (Tank Ty, lower curve)
yo = 75 + 757004 (Tank T, upper curve).

Figure 77 shows the exponential increase of y; and the exponential decrease of ys to the common limit 75 Ib.
Did you expect this for physical reasons? Can you physically explain why the curves look “symmetric”? Would
the limit change if Ty initially contained 100 Ib of fertilizer and T contained 50 Ib?

Step 4. Answer. Ty contains half the fertilizer amount of Ty if it contains 1/3 of the total amount, that is,
50 Ib. Thus

¥ =175 — 75¢790% = 50, M= 1= (In 3)/0.04 = 27.5.
Hence the fluid should circulate for at least about half an hour. i

Electrical Network

Find the currents /(1) and I5(r) in the network in Fig. 78. Assume all currents and charges to be zero at ¢ = 0,
the instant when the switch is closed.

L=1henry C=0.25farad

Switch
t=0

E =12 volts —

e

R, =6 ohms

Fig. 78.  Electrical network in Example 2

Solution. Step 1. Setting up the mathematical model. The model of this network is obtained from
Kirchhoff's voltage law, as in Sec. 2.9 (where we considered single circuits). Let /1(r) and /5(r) be the currents
in the left and right loops, respectively. In the left loop the voltage drops are L] = /1 [V] over the inductor
and Ry(I; — Iy) = 4I; — I3) [V] over the resistor, the difference because /; and /5 flow through the resistor
in opposite directions. By Kirchhoff’s voltage law the sum of these drops equals the voltage of the battery; that
is, 11 + 4(1; — I3) = 12, hence

(4a) Iy = =4I + 4L, + 12,

In the right loop the voltage drops are Rols = 6/5 [V] and Ry(ly — Iy) = 4(Io — Iy) [V] over the resistors and
(1/C)f 15 dt = 4 [ I dr [V] over the capacitor, and their sum is zero,

6f2+4{f2“!1}+4ff2df:[} or ]0.’2“4)“:“'4"’)‘2!1?:0
Division by 10 and differentiation gives Iy — 0.4/7 + 0.4/, = 0.
To simplify the solution process, we first get rid of 0.4/, which by (4a) equals 04(—4l; + 41, + 12).

Substitution into the present ODE gives

Iy = 0417 — 041, = 04(—4l; + 41, + 12) — 041,
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and by simplification

(4b) Iy = —1.6I; + 121, + 48.

In matrix form, (4) is (we write J since I is the unit matrix)

I —40 40 12.0
(5) I =AJ+g, where J= , A= . g= .
L -16 12 4.8

Step 2. Solving (5). Because of the vector g this is a nonhomogeneous system, and we try to proceed as for
Ar

a single ODE, solving first the fiomogeneous system J' = AJ (thus J' — AJ = 0) by substituting J = xe".
This gives
J' = Axe™ = AxeV, hence Ax = Ax.

Hence to obtain a nontrivial solution, we again need the eigenvalues and eigenvectors. For the present matrix
A they are derived in Example 1 in Sec. 4.0:

2 1
A=-2 xPs= ; Ay = —08, x®= :
| 0.8

Hence a “general solution™ of the homogeneous system is

Jla = (‘lx(“e'_m + t_zxme-o,a:‘

For a particular solution of the nonhomogeneous system (5), since g is constant, we try a constant column vector
J, = a with components ay. az. Then J;, = 0, and substitution into (5) gives Aa + g = 03 in components,

—40a, + 40as + 120 =0
~1.6ay + 12a5 + 48=0.

The solution is a; = 3, ag = 0: thus a = [g] . Hence

(6) J=I+1,= exVe™2t 4 eax ™08 o 5,

in components,

I =202+ e 4+ 3

I = cpe” 2 + 0.8coe™ "8

The initial conditions give

LO)=2c0+ 3 +3=0
I5(0) = ¢y + 0.8¢q =0.
Hence ¢y = —4 and cs = 5. As the solution of our problem we thus obtain
(7) J = —axWe™2t | 55208 4 o
In components (Fig. 79b),
I = —8¢7% + 50708 4 3

I = —4¢™2 + 4¢70%,

Now comes an important idea, on which we shall elaborate further, beginning in Sec. 4.3. Figure 79a shows
11(1) and /5(r) as two separate curves. Figure 79b shows these two currents as a single curve [11(1), I5(1)] in the
Ils-plane. This is a parametric representation with time r as the parameter. It is often important to know in
which sense such a curve is traced. This can be indicated by an arrow in the sense of increasing ¢, as is shown.
The /y15-plane is called the phase plane of our system (5), and the curve in Fig. 79b is called a trajectory. We
shall see that such “phase plane representations™ are far more important than graphs as in Fig. 79a because
they will give a much better qualitative overall impression of the general behavior of whole families of solutions,
not merely of one solution as in the present case. i
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I(t) IZ

a1 1.5
B e T 1k B
2 -

— 0.5
1H L
ol 1 b 0 L | L L I

0 1 2 3 4 b 0 1 2 3 4 5 Il
(a) Currents (b) Trajectory [Z,(#), I 2,(533T
(upper curve) in the I, -plane
and I, (the “phase plane”)

Fig. 79.  Currents in Example 2

Conversion of an nth-Order ODE to a System

We show that an nth-order ODE of the general form (8) (see Theorem 1) can be converted
to a system of n first-order ODEs. This is practically and theoretically important—
practically because it permits the study and solution of single ODEs by methods for
systems, and theoretically because it opens a way of including the theory of higher order
ODE:s into that of first-order systems. This conversion is another reason for the importance
of systems, in addition to their use as models in various basic applications. The idea of
the conversion is simple and straightforward, as follows.

THEOREM 1 Conversion of an ODE

An nth-order ODE

8 32 = B %' = )
can be converted to a system of n first-order ODEs by setting
9 V1=Y Yo=Y, ya=y" . =""0

This system is of the form

n=>ys
Yo =¥
X2 I3
(10)
14
)’n—l = yn
Yn = F(t, y1,¥2,* ** , Yn)-

PROOF The first n — 1 of these n ODEs follow immediately from (9) by differentiation. Also.
¥n = ™ by (9). so that the last equation in (10) results from the given ODE (8). M
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EXAMPLE 3

Mass on a Spring

To gain confidence in the conversion method, let us apply it to an old friend of ours. modeling the free motions
of a mass on a spring (see Sec. 2.4)

C k
my" + cyF +ky=0 or y" = — —y' S
m m

For this ODE (8) the system (10) is linear and homogeneous,

’

y1 =2
,__E _F
Y2 = i n W Y2-
: b ; ,
Setting y = , we get in matrix form
Y2
0 1 n
y' = A" = k 2
——= = Yo
n m
The characteristic equation is
—-A 1
k
det (A= AD=| & =2+l a+L 20
i —ee. g m m

nm m

It agrees with that in Sec, 2.4. For an illustrative computation, let m = 1, ¢ = 2, and k = 0.75. Then

M 4+20+075=(A+ 050+ 1.5) =0

This gives the eigenvalues Ay = —0.5 and A, = —1.5. Eigenvectors follow from the first equation in
A — A = 0, which is —Axy + x5 = 0. For Aq this gives 0.5x; + xg = 0, say, 1y = 2,59 = —1L. For Ay = —1.5
it gives 1.5x; + x5 = 0, say, x; = 1, x5 = —1.5. These eigenvectors

) 1 2 1
X0 = L x®@= give y=0c 0%t 4 o, 15t
-1 —1.5 -1 =1.5

This vector solution has the first component
y=y = 2018—0.5: + g 15t

which is the expected solution. The second component is its derivative

yo=y1 =y = —c1e70% — 1.5¢,e 15, U]
s PROBLEM SET 4.
1-6| MIXING PROBLEMS 3. Derive the eigenvectors in Example 1 without
1. Find out without calculation whether doubling the flow consulting this book.
rate in Example 1 has the same effect as halfing the 4. In Example 1 find a “general solution™ for any ratio
tank sizes. (Give a reason.) a = (flow rate)/(tank size), tank sizes being equal.
2. What happens in Example 1 if we replace 7, by a tank Comment on the result.
containing 500 gal of water and 150 1b of fertilizer 5. If you extend Example 1 by a tank 75 of the same size

dissolved in it?

as the others and connected to 7, by two tubes with
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flow rates as between T, and T, what system of ODEs
will you get?
6. Find a “general solution™ of the system in Prob. 5.

|_'7_1n ELECTRICAL NETWORKS

7. Find the currents in Example 2 if the initial currents
are 0 and —3 A (minus meaning that /5(0) flows against
the direction of the arrow).

8. Find the currents in Example 2 if the resistance of R,
and R, is doubled (general solution only). First, guess.

9. What are the limits of the currents in Example 2?
Explain them in terms of physics.

10. Find the currents in Example 2 if the capacitance is
changed to C = 1/5.4 F (farad).

i_l 1-15| CONVERSION TO SYSTEMS

Find a general solution of the given ODE (a) by first
converting it to a system, (b), as given. (Show the details
of your work.)

1. y" —4y =0 12. " + 2y — 24y =0
13.y" =y =0 14. y "+ 50y =0
15. 64y" — 48y — Ty =0

16. TEAM PROJECT. Two Masses on Springs. (a) Set
up the model for the (undamped) system in Fig. 80.

(b) Solve the system of ODEs obtained. Hint. Try
¥ = xe" and set &® = A. Proceed as in Example 1 or 2.

(¢) Describe the influence of initial conditions on the
possible kind of motions.

(J'} =0)

System in
static System in
equilibrium motion

Fig. 80. Mechanical system in Team Project 16

4.2 Basic Theory of Systems of ODEs

In this section we discuss some basic concepts and facts about systems of ODEs that are
quite similar to those for single ODEs.
The first-order systems in the last section were special cases of the more general system

(1)

."‘{ = f].(t' YAy ."‘ﬂ.)
= folt,yis """ ¥n)
= fﬂ.(fa ,"‘l! ™ .\"ﬂ.)-

We can write the system (1) as a vector equation by introducing the column vectors

Yy =D vy)" and f = [f,

fa]" (where T means transposition and saves us

the space that would be needed for writing y and f as columns). This gives

(1)

y' =1, y).

This system (1) includes almost all cases of practical interest. For n = 1 it becomes
v1 = fa1(t, yy) or, simply, v = f(z, ). well known to us from Chap. 1.
A solution of (1) on some interval ¢ < t < b is a set of n differentiable functions

."’l = hl(r)- Tt

.\.ﬁ i hn{r]
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on a < t < b that satisfy (1) throughout this interval. In vector form, introducing the
“solution vector” h = [hy + -+ h,|" (a column vector!) we can write

y = h(1).
An initial value problem for (1) consists of (1) and n given initial conditions
(2) yilto) = Ky, Yaolty) = Ks, Ry Yullo) = K.
in vector form, y(#5) = K, where #, is a specified value of 7 in the interval considered and
the components of K = [K; -+ - K,]" are given numbers. Sufficient conditions for the
existence and uniqueness of a solution of an initial value problem (1), (2) are stated in

the following theorem, which extends the theorems in Sec. 1.7 for a single equation. (For
a proof, see Ref. [A7].)

THEOREM 1 | Existence and Uniqueness Theorem
Let fy, -+ -, f, in (1) be continuous functions having continuous partial derivatives
dffovy, =L 0fdv,. 0. af v, in some domain R of tyyys * ¢ v,-space

| containing the point (15, Ky. - -+ . K,,). Then (1) has a solution on some interval
| o — o <1t <1y + asatisfving (2), and this solution is unique.

Linear Systems

Extending the notion of a linear ODE, we call (1) a linear system if it is linear in

V1, ¥, that is, if it can be written

yi= anOyy + -+ a0y, + &)
3)

."':1 = gy + - -+ + Quup)yy T ga(D).

In vector form, this becomes

3) YAy g

tyy T iy » £1
where A= . s -, y=|71 |, g =

anl "N Ay AL 8n

This system is called homogeneous if g = 0, so that it is
4 y' = Ay.

If g # 0, then (3) is called nonhomogeneous. The system in Example | in the last section is
homogeneous and in Example 2 nonhomogeneous. The system in Example 3 is homogeneous.
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For a linear system (3) we have df/dy, = a;;,(2), - - - . af /0y, = @,,(t) in Theorem 1.
Hence for a linear system we simply obtain the following.

Existence and Uniqueness in the Linear Case

Let the ay.'s and g;’s in (3) be continuous functions of t on an open interval
a < t < f3 containing the point t = to. Then (3) has a solution y(r) on this interval
satisfving (2), and this solution is unique.

As for a single homogeneous linear ODE we have

Superposition Principle or Linearity Principle

If YV and y*® are solutions of the homogeneous linear system (4) on some interval,

so is any linear combination y = ¢,y'V + c,y?.

Differentiating and using (4), we obtain

'

y

(1)

Il

(2)] '

[ery® + coy

1/ @)

c1¥ + Ca¥

Il

CIA.Y(IJ + L‘sz@)

I

A(ci¥™® + c:¥y®) = Ay. 2]

The general theory of linear systems of ODEs is quite similar to that of a single linear
ODE in Secs. 2.6 and 2.7. To see this, we explain the most basic concepts and facts. For
proofs we refer to more advanced texts, such as [A7].

Basis. General Solution. Wronskian

By a basis or a fundamental system of solutions of the homogeneous system (4) on some
interval J we mean a linearly independent set of n solutions y**’, - « -, ¥ of (4) on that
interval. (We write J because we need I to denote the unit matrix.) We call a corresponding
linear combination

(5) y=c ¥V + ¢,y™ (¢y. * * * . ¢, arbitrary)

a general solution of (4) on J. It can be shown that if the a;.(7) in (4) are continuous on
J, then (4) has a basis of solutions on J, hence a general solution, which includes every
solution of (4) on J.

We can write n solutions y
n X n matrix

W ... y™ of (4) on some interval J as columns of an

(6) ¥ = [ym " ym}].



SEC. 43 Constant-Coefficient Systems. Phase Plane Method 139

(1) (n)

The determinant of Y is called the Wronskian of y'*, - - - . ¥, written
\ fil) '\_.gl?.) ‘,m)
yiD .‘,(22) ‘(2n)

(7) W(ym‘ vew y('n.)) -

, (1 L (2) .
Yn Yn In

The columns are these solutions, each in terms of components. These solutions form a
basis on J if and only if W is not zero at any ¢, in this interval. W either is identically zero
or is nowhere zero in J. (This is similar to Secs. 2.6 and 3.1.)

If the solutions y, - - -, ¥y in (5) form a basis (a fundamental system), then (6) is
often called a fundamental matrix. Introducing a column vectore = [¢; ¢ - - cn]T,

we can now write (5) simply as
(8) y = Ye.

Furthermore, we can relate (7) to Sec. 2.6, as follows. If v and z are solutions of a
second-order homogeneous linear ODE, their Wronskian is

¥ Z

W(y, z) =

s R

To write this ODE as a system, we have to set y = y;, ¥’ = v; = y, and similarly for z
(see Sec. 4.1). But then W(y, z) becomes (7), except for notation.

4.3 Constant-Coefficient Systems.
Phase Plane Method

Continuing, we now assume that our homogeneous linear system

(8)) y' = Ay

under discussion has constant coefficients, so that the n X n matrix A = [a;;] has entries
not depending on r. We want to solve (1). Now a single ODE y'" = ky has the solution
y = Ce*. So let us try

(2) y = xe™.

Substitution into (1) gives y' = Axe = Ay = Axe". Dividing by ¢", we obtain the
eigenvalue problem

3) Ax = Ax.
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Thus the nontrivial solutions of (1) (solutions that are not zero vectors) are of the form (2).
where A is an eigenvalue of A and x is a corresponding eigenvector,
We assume that A has a linearly independent set of n eigenvectors. This holds in most

applications, in particular if A is symmetric (a;; = a;;.) or skew-symmetric (a; = —aj,)
or has n different eigenvalues.
Let those eigenvectors be x™, ---, x" and let them correspond to eigenvalues

Ayt 0 0o A, (which may be all different. or some—or even all—may be equal). Then the
corresponding solutions (2) are

At ) Ant

4) yfll e, x(l)e ., y(n) = x(n "

Their Wronskian W = W(y™", - - -, y¥™) [(7) in Sec. 4.2] is given by

Aqt At
.1'(11)9 1 S, x{lﬂ)e " A.!l.l) Vi ¥ x&n)
arMt L (n) At s )
; Xz e X27e St et [F2 X3
W = (yfl)‘ s v(ni} i =g 1 n
Ayt Ayt
.!:,",”e 1 ; ,(;”8 n ‘\,:111 S s x}(}m

On the right, the exponential function is never zero, and the determinant is not zero either
because its columns are the » linearly independent eigenvectors. This proves the following
theorem, whose assumption is true if the matrix A is symmetric or skew-symmetric, or if
the n eigenvalues of A are all different.

General Solution

\If the constant matrix A in the system (1) has a linearly independent set of n
eigenvectors, then the corresponding solutions yV, -+ + | y™ in (4) form a basis of

solutions of (1), and the corresponding general solution is

Ayt At
(5) y= clxme ol T S Cux(n)e nt

How to Graph Solutions in the Phase Plane

We shall now concentrate on systems (1) with constant coefficients consisting of two
ODEs

[ 3
- _ Y1 = any:y t az)ya
(6) y = Ay;  in components,

r
Y2 = lz1y1 T+ dzp Yo
Of course, we can graph solutions of (6),

_ y1(0)
(7) ¥y = ;
Yol1)
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EXAMPLE 1

as two curves over the r-axis, one for each component of y(7). (Figure 79a in Sec. 4.1 shows
an example.) But we can also graph (7) as a single curve in the y; vo-plane. This is a parametric
representation ( parametric equation) with parameter 7. (See Fig. 79b for an example. Many
more follow. Parametric equations also occur in calculus.) Such a curve is called a trajectory
(or sometimes an orbit or path) of (6). The y,vo-plane is called the phase plane.’ If we fill
the phase plane with trajectories of (6), we obtain the so-called phase portrait of (6).

Trajectories in the Phase Plane (Phase Portrait)
In order to see what is going on, let us find and graph solutions of the system

; -3 1 Y =-3y+ ¥
(8) Yy =Ay= Y. thus ;
-3 Vg = ¥1 — 3ys.

Solution. By substituting y = xe* and y" = Axe™ and dropping the exponential function we get Ax = Ax.
The characteristic equation is

=3~ A |
det (A — AI) = =A%+ 6L+ 8=0.
1 =3 =X
This gives the eigenvalues Ay = —2 and As = —4. Eigenvectors are then obtained from
(=3 = A)x; +x0 = 0.
For Ay = =2 this is —x; + x5 = 0. Hence we can take xV=11 1" For Ao = —4 this becomes x; + xp = 0,

and an eigenvector is 2 = [1

M 1 !
5= _ f'1)’m 4 (_23,(2) =& |: } o2t o gs [ ] o4t
Yo 1 =1

Figure 81 on p. 142 shows a phase portrait of some of the trajectories (to which more trajectories could be added
it so desired). The two straight trajectories correspond to ¢; = 0 and ¢5 = 0 and the others to other choices of

€1, 9. =

—117. This gives the general solution

Studies of solutions in the phase plane have recently become quite important, along with
advances in computer graphics, because a phase portrait gives a good general qualitative
impression of the entire family of solutions. This method becomes particularly valuable
in the frequent cases when solving an ODE or a system is inconvenient or impossible.

Critical Points of the System (6)

The point y = 0 in Fig. 81 seems to be a common point of all trajectories, and we want
to explore the reason for this remarkable observation. The answer will follow by calculus.
Indeed, from (6) we obtain

r
9) dy, _ ypdt _ y3 _ amyi + axnys
dyi  yidt  y;  auyi t apys

A name that comes from physics, where it is the y-(mv J-plane, used to plot a motion in terms of position
v and velocity ' = ¢ (m = mass): but the name is now used quite generally for the yy yo-plane.

The use of the phase plane is a qualitative method, a method of obtaining general qualitative information
on solutions without actually solving an ODE or a system. This method was created by HENRI POINCARE
(1854-1912). a great French mathematician, whose work was also fundamental in complex analysis, divergent
series. topology, and astronomy.
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This associates with every point P: (y;. ¥5) a unique tangent direction dys/dy, of the
trajectory passing through P. except for the point P = Py (0, 0). where the right side of
(9) becomes 0/0. This point Py, at which dy, /dy, becomes undetermined, is called a critical
point of (6).

Five Types of Critical Points

There are five types of critical points depending on the geometric shape of the trajectories
near them. They are called improper nodes, proper nodes, saddle points, centers, and
spiral points. We define and illustrate them in Examples 1-5.

(Continued) Improper Node (Fig. 81)

An improper node is a critical point Py at which all the trajectories, except for two of them, have the same
limiting direction of the tangent. The two exceptional trajectories also have a limiting direction of the tangent
at Py which, however, is different.

The system (8) has an improper node at 0, as its phase portrait Fig. 81 shows. The common limiting direction
at 0 is that of the eigenvector X7 = [1 1] because e™* goes to zero faster than e~ 2" as ¢ increases. The two
exceptional limiting tangent directions are those of X =[1 —1]Tand —x® = [-1 1]". &

Proper Node (Fig. 82)
A proper node is a critical point Py at which every trajectory has a definite limiting direction and for any given

direction d at Pg there is a trajectory having d as its limiting direction.
The system

_ ; 1 0 M=n
(10) y = ¥y thus ;
0 I Y2 =2

has a proper node at the origin (see Fig. 82). Indeed, the matrix is the unit matrix. Its characteristic equation

(1 — A)> = 0 has the root A = 1. Any x # 0 is an eigenvector, and we can take [1 0] and [0 11 Hence
a general solution is
[ ] ] [0} . Clet’
P o t - [ |
Yy=c e + oy e or or C1¥2 = C2)1-
0 1 Yo = cge”
J'z }"2
(1} l
| (£) |
[ :"/ .\ 11 {
R / « &
- = ; | -
s & - —
e . < ) P g
/) # |
'.J I h Y \,
| \ ! \
y;zrm
Fig. 81.  Trajectories of the system (8) Fig. 82.  Trajectories of the system (10)

(Improper node) (Proper node)
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EXAMPLE 3

EXAMPLE 4

Saddle Point (Fig. 83)

A saddle point is a critical point Py at which there are two incoming trajectories, two outgoing trajectories, and
all the other trajectories in a neighborhood of Py bypass Py,

The system
P = N
(11 y = Y, thus ;
0 -1 Yo = =¥
has a saddle point at the origin. Its characteristic equation (1 — A} —1 — A) = 0 has the roots A; = 1 and
Ay = —1. For A = 1 an eigenvector [1 01" is obtained from the second row of (A — ADx = 0, that is,
Oxy + (=1 = Dxy = 0. For Ay = — | the first row gives [0 1]7. Hence a general solution is
1 0 y1 = cpet
y=roc; e+ Cs et or 4 or Y1¥e = const.
0 1 Yo = cge
This is a family of hyperbolas (and the coordinate axes); see Fig. 83. [l

Center (Fig. 84)

A center is a critical point that is enclosed by infinitely many closed trajectories.
The system

; 0 1 Y1 =D
(12) y = ¥. thus
-4 0

has a center at the origin. The characteristic equation A+4=0 gives the eigenvalues 2 and —2i. For 2i an
eigenvector follows from the first equation —2ix; + x5 = 0 of (A — AI)x = 0, say. [1 2:']7. For A = —2i that
equation is —(—2i)x; + xo = 0 and gives, say, [I —2i]". Hence a complex general solution is

; —2it
17 I : y1= 4+ cpe

(12%) y=e¢ [ ] &2 + ¢y [ :| e, thus ] o LT
2! _‘21' Yo = 2f6192't = 2!{'28

The next step would be the transformation of this solution to real form by the Euler formula (Sec. 2.2). But we
were just curious to see what kind of eigenvalues we obtain in the case of a center. Accordingly, we do not
continue, but start again from the beginning and use a shortcut. We rewrite the given equations in the form

¥1 = ¥a. 4y = —ys: then the product of the left sides must equal the product of the right sides,
dyiy1 = —Vvays By integration, 23,% + %),22 = const.
This is a family of ellipses (see Fig. 84) enclosing the center at the origin. =
}"2 yz
1]
| I| i R
/ \ ' .
/ \ 1
3 / | Y Sl AW |
= ¥ = \
__—— =3 ~ a_ T— I o |
T | o R | .Y|
— \ / . — '.
i -
h / o \
.\.‘ \I II'I ; /a \ N . /
\ I| [/
\ L ! B
Fig. 83.  Trajectories of the system (11) Fig. 84.  Trajectories of the system (12)

(Saddle point) (Center)
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Spiral Point (Fig. 85)

A spiral point is a critical point Py about which the trajectories spiral, approaching Py as f — % (or tracing
these spirals in the opposite sense, away from Pg).
The system

R YI= ¥ty
(13) §= v, thus

= y2=-—¥m—Y2

has a spiral point at the origin, as we shall see. The characteristic equation is A? + 24 + 2 = 0. It gives the
eigenvalues —1 + i and —1 — i. Corresponding eigenvectors are obtained from (=1 — A)x; + x5 = 0. For
A= —1 + i this becomes —ix; + x5 = 0 and we can take [1 {17 as an eigenvector. Similarly, an eigenvector
corresponding to —1 — iis |1 —i]". This gives the complex general solution

1 1 ;
y=c [ } el-l U o l: ] ef—l—:)r‘
i =

The next step would be the transformation of this complex solution to a real general solution by the Euler
formula. But. as in the last example. we just wanted to see what eigenvalues to expect in the case of a spiral
point. Accordingly, we start again from the beginning and instead of that rather lengthy systematic calculation
we use a shortcut. We multiply the first equation in (13) by yy. the second by vs. and add, obtaining

yor +yave = —(n® + 3d

We now introduce polar coordinates r, f, where = 2+ ;.-22. Differentiating this with respect to 1 gives

277" = 2vyy{ + 2yav4. Hence the previous equation can be written

= —r% Thus, = —r, drir = —dt, In|f = =1+ %, r=ce L
For each real c this is a spiral, as claimed. (see Fig. 85). i
Yo
X
1 ‘I‘
/ | I| f
[ [ (% / ¥
| |
| A

Fig. 85. Trajectories of the system (13) (Spiral point)

No Basis of Eigenvectors Available. Degenerate Node (Fig. 86)

This cannot happen if A in (1) is symmetric (ay; = ajj. as in Examples 1-3) or skew-symmetric (ay; = —djp.
thus a;; = 0). And it does not happen in many other cases (see Examples 4 and 5). Hence it suffices to explain
the method to be used by an example.
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Find and graph a general solution of

4 |
(14) y =Ay= [ }y.
-1 2

Solution. A is not skew-symmetric! Its characteristic equation is

4-21 1
‘=A2—6A+9=(A—3)2=0.

det{A—AI)=|
—1 2~

It has a double root A = 3. Hence eigenvectors are obtained from (4 — A)x; + x5 = 0, thus from x; + x5 = 0,
say. P = n - IIT and nonzero multiples of it (which do not help). The method now is to substitute

yfza = xte™ + pet

with constant u = [u;  15]" into (14). (The xt-term alone, the analog of what we did in Sec. 2.2 in the case of
a double root, would not be enough. Try it.) This gives

¥2 = xeM + Axte™ + Aue* = AY® = Axte™ + Aue,
On the right, AX = Ax. Hence the terms Axte** cancel, and then division by ' gives
X + Au = Au, thus (A — Alu = x.

Here A=3andx = [1 —1]", so that

4-3 1 1 uy g =1
(A= 3Du= u= ; thus
=1 D.— 3 =h —uy — g = —1.

A solution, linearly independent of x = [ —1]".isu = [0 1]T. This yields the answer (Fig. 86)

1 1 0
¥ = clym 3 czy(m =6y [ } &+ ca(I: ] 25 [ :[) &,
=1 =1 1

The critical point at the origin is often called a degenerate node. c,y‘l’ gives the heavy straight line, with
¢ = 0 the lower part and ¢; < 0 the upper part of it. y{m gives the right part of the heavy curve from 0 through
gives the other part of that curve. =il

the second, first, and—finally—fourth quadrants. — yw

Fig. 86. Degenerate node in Example 6
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We mention that for a system (1) with three or more equations and a triple eigenvalue
with only one linearly independent eigenvector, one will get two solutions, as just
discussed, and a third linearly independent one from

y® = ix%eM + utet + veM

with v from u -+ Av = Av,

T N b

[1-9] GENERAL SOLUTION

Find a real general solution of the following systems. (Show
the details.)

1. 31= 35 2. y1 = 5y;

y2 = 12y y2 = 5y
3.y1=nm+ ¥ 4. y1 =9y + 13.5y,

Y2 =yt ¥ y2 = 1.5y, + 9y,
5. 51 = 4y, 6. y1 =2y — 2y,

Yo = —dy, y2 = 2y1 + 2y,
7.y1 =2y, + 8y, — 4y

Yo = —4y; — 10y5 + 2y3

_\’é = —4y; — 4y, — 4y,

8. yi =8y — y

y1 + 10y,

9.y1 = —y1 + ya + 0.4ys
ya =y; — O.lys + L4y,
vy = 0.4y, + 1.4y, + 0.2y
[10-15]  INITIAL VALUE PROBLEMS
Solve the following initial value problems. (Show the details.)

1L y3 =y + 2y2

10. _\r'; =WV 4 Vo
Y2 =3+ ¥
¥1(0) = 16, y;(0) = =2

Y2 =4y +ye

yi(0) = 1, vo(0) = 6
12. y1 = 3y; + 2y, 13. ) = dv; — 2y,
y; - _%}'1 + Vs

v1(0) = 0.4, y5(0) = 3.8

Yz =20+ 3y
yi(0) = 7, ¥2(0) = 7

14. y; = —y; + 5y 15. yi = 2y, + Sy,
2 y2 = Sy, + 12.5y,

y(0) = 12, v5(0) = 1

y
¥1(0) = 7. y2(0) = 2

= =y + 3y

16-17| CONVERSION

Find a general solution by conversion to a single ODE.
16. The system in Prob. 8.

17. The system in Example 5.

18. (Mixing problem, Fig. 87) Each of the two tanks
contains 400 gal of water, in which initially 100 Ib
(Tank T;) and 40 Ib (Tank T3) of fertilizer are
dissolved. The inflow, circulation, and outflow are
shown in Fig. 87. The mixture is kept uniform by
stirring. Find the fertilizer contents y,(f) in T} and (1)
in Ts.

Fig. 87.

Tanks in Problem 18

19. (Network) Show that a model for the currents /;(r) and
Io(1) in Fig. 88 is

1
—Ef:, dt + Ry — L) =0, LI3+ Ry~ I}) = 0.

Find a general solution, assuming that R = 20 (),
L=05HC=2-10"*F

CAS PROJECT. Phase Portraits. Graph some of the
figures in this section, in particular Fig. 86 on the
degenerate node, in which the vector y** depends on
1. In each figure highlight a trajectory that satisfies an
initial condition of your choice.

20,

Fig. 88, Network in Problem 19
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4.4 Criteria for Critical Points. Stability

We continue our discussion of homogeneous linear systems with constant coefficients

r

a tya Y1 = apyy todapeye

(1) y =Ay = |: } Y, in components,

! — . )
gy 57 Vo = dg1V1 T daaVy.

From the examples in the last section we have seen that we can obtain an overview of
families of solution curves if we represent them parametrically as y(1) = [yi(f) yo(0)]"
and graph them as curves in the y;vo-plane, called the phase plane. Such a curve is called
a trajectory of (1), and their totality is known as the phase portrait of (1).

Now we have seen that solutions are of the form

y(6) = xe™, Substitution into (1) gives y' (1) = Axe™ = Ay = Axe™.
Dropping the common factor e, we have
(2) Ax = Ax.

Hence y(f) is a (nonzero) solution of (1) if A is an eigenvalue of A and x a corresponding
eigenvector.

Our examples in the last section show that the general form of the phase portrait is
determined to a large extent by the type of critical point of the system (1) defined as a
point at which dys/dy, becomes undetermined, 0/0; here [see (9) in Sec. 4.3]

dys yg dt a1yy T aa)s
3) e -

dy, vy dt ap1yy T dizya

We also recall from Sec. 4.3 that there are various types of critical points, and we shall
now see how these types are related to the eigenvalues. The latter are solutions A = A,
and Ay of the characteristic equation

a7 — A g

(4) det (A — AI) = = A2 — (a1 + ag)A + det A = 0.

az Azp — A

This is a quadratic equation A2 — pA + ¢ = 0 with coefficients p. ¢ and discriminant A
given by

(5) p=ay + dss, q = det A = ay 000 — ay0dsy, A =p®—4q.
From calculus we know that the solutions of this equation are

(6) M =3 + VD), A = 3(p — VA).

Furthermore, the product representation of the equation gives

A =pA+g=0A—=A)A = d) = 22— (A + M)A + LA,
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Hence p is the sum and ¢ the product of the eigenvalues. Also Ay — Ay, = VA from (6).
Together,

(7) P=A+ Ay, g = MAg, A=\ — A2

This gives the criteria in Table 4.1 for classifying critical points. A derivation will be
indicated later in this section.

Table 41 Eigenvalue Criteria for Critical Points
(Derivation after Table 4.2)

Name | p=Mi+ A | g=NAs | A= (A — Ap)? | Comments on Ay, Ay ‘
(a) Node : qg=0 A=0 | Real, same sign
(b) Saddle point g<0 ‘ | Real. opposite sign |
(c) Center p=0 g>0 Pure imaginary |
(d) Spiral point p#0 A<O | Complex, not pure
| imaginary

Stability

Critical points may also be classified in terms of their stability. Stability concepts are basic
in engineering and other applications. They are suggested by physics, where stability
means, roughly speaking, that a small change (a small disturbance) of a physical system
at some instant changes the behavior of the system only slightly at all future times ¢. For
critical points. the following concepts are appropriate.

Stable, Unstable, Stable and Attractive

A critical point Py of (1) is called stable? if, roughly, all trajectories of (1) that at
some instant are close to Py remain close to Py at all future times: precisely: if for
every disk D, of radius € > 0 with center Py, there is a disk D of radius é > 0 with |
center Py, such that every trajectory of (1) that has a point P; (corresponding to
I = ty, say) in Dy has all its points corresponding to t = 1, in D,. See Fig. 89.

Py is called unstable if P, is not stable.

Py is called stable and attractive (or asvmprotically stable) if P is stable and
every trajectory that has a point in Dy approaches Py as t — =. See Fig. 90.

Classification criteria for critical points in terms of stability are given in Table 4.2. Both
tables are summarized in the stability chart in Fig. 91. In this chart the region of instability
is dark blue.

2In the sense of the Russian mathematician ALEXANDER MICHAILOVICH LIJAPUNOV (1857-1918),
whose work was fundamental in stability theory for ODEs. This is perhaps the most appropriate definition of
stability (and the only we shall use), but there are others, too.
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EXAMPLE 1

Table 4.2 stability Criteria for Critical Points

Fig. 89. Stable critical point P, of (1) (The trajectory Fig. 90. Stable and attractive critical

initiating at P, stays in the disk of radius €) point P, of (1)

Type of Stability | p=A+ Ay G = AAy
L b o - _ L . -
(a) Stable and attractive p=<0 q=>0
(b) Stable p=0 qg=0
(¢) Unstable p=0 OR g <0
q
A>0 \L\ <0 A< {}/ Ax>0
'\?\\ //0
2 Spiral | Spiral v
point point
Node MNode
P
Saddle point

Fig. 91, Stability chart of the system (1) with p, g, A defined in (5).
Stable and attractive: The second quadrant without the g-axis.
Stability also on the positive g-axis (which corresponds to centers).
Unstable: Dark blue region

We indicate how the criteria in Tables 4.1 and 4.2 are obtained. If ¢ = A Ay = 0,
both eigenvalues are positive or both are negative or complex conjugates. If also
p = Ay + Ay < 0, both are negative or have a negative real part. Hence Py is stable
and attractive. The reasoning for the other two lines in Table 4.2 is similar.

If A < 0, the eigenvalues are complex conjugates, say, A\; = a + iBand Ay = a — if.
If also p = Ay + Ay = 2a < 0, this gives a spiral point that is stable and attractive. If
p = 2a > 0, this gives an unstable spiral point.

If p=0,then Ay = —A; and ¢ = A Ay = —A;2 If also ¢ > 0, then A2 = —¢ < 0,
so that Ay, and thus A, must be pure imaginary. This gives periodic solutions, their
trajectories being closed curves around Py, which is a center.

Application of the Criteria in Tables 4.1 and 4.2

=3 |
In Example 1, Sec. 4.3, we have y' = l: :l ¥sp = —6,g = 8, A = 4, anode by Table 4.1(a), which
=4

1
is stable and attractive by Table 4.2(a). o
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EXAMPLE 2

Free Motions of a Mass on a Spring

What kind of critical point does my” + ¢y’ + ky = 0 in Sec. 2.4 have?

Solution. Division by m gives y" =

—(kim)y — (c/m)y". To get a system, set y,

=¥y = _1" (see Sec.

4.1). Then _vé =45= —(k/m)y; — (c/m)ys. Hence

&
¥ = Y.
—kim —clm

det (A — AI) = |

—A 1 .
=2+ =A+ = =0

—kim  —elm — A

We seethat p = —c/m, g = kim, A = (c;l’mu)2 — 44&/m. From this and Tables 4.1 and 4.2 we obtain the following
results. Note that in the last three cases the discriminant A plays an essential role.

No damping. ¢ = 0, p = 0, ¢ = 0, a center.

Underdamping. ¢ < 4mk, p < 0, g >0, A < 0, a stable and attractive spiral point.

Critical damping. &= 4mk, p < 0,¢ = 0, A = 0, a stable and attractive node.

Overdamping. ¢ > dmk, p<0,g>0,A >0, astable and attractive node. =

E—‘J! TYPE AND STABILITY OF CRITICAL POINT

Determine the type and stability of the critical point. Then
find a real general solution and sketch or graph some of the
trajectories in the phase plane. (Show the details of your
work.)

Ly =2y, 2. yi =4y
¥z = 8y, y3 = 3y
Ly1=2y+ y 4. y1 =1y,

y2 = y1 + 2y yz = —5y1 — 2y,
5.y1= 4y, + ¥ 6. y1 = y, + 10y,

Yo = y1— 4y y2 =Tyy — 8y
7. y1 = —2y, 8 yi= 3y + 5y

."é = 8y }’; = —5y; — 3y
9. y1= v+ 2y

Yo =2y + ¥

[10-12] FORM OF TRAJECTORIES

What kind of curves are the trajectories of the following
ODEs in the phase plane?

10, y" + 5y =0

11. y" — k2y =0

12 y" + &y =0

13. (Damped oscillation) Solve y” + 4y" + 5y = 0. What
kind of curves do you get as trajectories?

14. (Transformation of variable) What happens to the
system (1) and its critical point if you introduce 7= —¢
as a new independent variable?

15. (Types of critical points) Discuss the critical points in
(10)-(14) in Sec. 4.3 by applying the criteria in Tables
4.1 and 4.2 in this section.

16. (Perturbation of center) If a system has a center as
its critical point, what happens if you replace the matrix
A by A = A + kI with any real number k # 0
(representing measurement errors in the diagonal
entries)?

17. (Perturbation) The system in Example 4 in Sec. 4.3
has a center as its critical point. Replace each aj, in
Example 4, Sec. 4.3, by a;,, + b. Find values of b such
that you get (a) a saddle point, (b) a stable and attractive
node, (c) a stable and attractive spiral, (d) an unstable
spiral, (e) an unstable node.

18. CAS EXPERIMENT. Phase Portraits. Graph phase
portraits for the systems in Prob. 17 with the values of
b suggested in the answer. Try to illustrate how the phase
portrait changes “continuously” under a continuous
change of b.

19. WRITING EXPERIMENT. Stability. Stability
concepts are basic in physics and engineering. Write a
two-part report of 3 pages each (A) on general
applications in which stability plays a role (be as
precise as you can), and (B) on material related to
stability in this section. Use your own formulations and
examples; do not copy.

20. (Stability chart) Locate the critical points of the
systems (10)—(14) in Sec. 4.3 and of Probs. 1, 3, 5 in
this problem set on the stability chart.
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=

4.5 Qualitative Methods for Nonlinear Systems

Qualitative methods are methods of obtaining qualitative information on solutions
without actually solving a system. These methods are particularly valuable for systems
whose solution by analytic methods is difficult or impossible. This is the case for many
practically important nonlinear systems

! _)"{ = f1(vy, ¥2)
(1) y = f(y), thus

!
Yo = falyis ¥2).

In this section we extend phase plane methods, as just discussed, from linear systems
to nonlinear systems (1). We assume that (1) is autonomous, that is, the independent
variable r does not occur explicitly. (All examples in the last section are autonomous.)
We shall again exhibit entire families of solutions. This is an advantage over numeric
methods, which give only one (approximate) solution at a time.

Concepts needed from the last section are the phase plane (the y,y,-plane), trajectories
(solution curves of (1) in the phase plane), the phase portrait of (1) (the totality of these
trajectories), and critical points of (1) (points (v, v,) at which both f;(v;. y5) and fa(vy. vs)
are 7ero).

Now (1) may have several critical points. Then we discuss one after another. As a
technical convenience, each time we first move the critical point Py: (a, b) to be considered
to the origin (0, 0). This can be done by a translation

M =W — 4 Yo =yp — b

which moves Py to (0, 0). Thus we can assume P, to be the origin (0, 0). and for
simplicity we continue to write v;. v, (instead of ¥;, ¥,). We also assume that P is
isolated, that is, it is the only critical point of (1) within a (sufficiently small) disk with
center at the origin. If (1) has only finitely many critical points, this is automatically
true. (Explain!)

Linearization of Nonlinear Systems

How can we determine the kind and stability property of a critical point Py: (0, 0) of
(1)? In most cases this can be done by linearization of (1) near P, writing (1) as
y' = f(y) = Ay + h(y) and dropping h(y). as follows.

Since Py is critical, £1(0, 0) = 0, f,(0, 0) = 0, so that f, and f, have no constant terms
and we can write

; y1 = auyr + aizys + hy(y1. y2)
(2) y = Ay + h(y). thus

!
Yo = agyyy t+ ageys + halyy, ¥o).

A is constant (independent of r) since (1) is autonomous. One can prove the following
(proof in Ref. [A7], pp. 375-388, listed in App. 1).



152

THEOREM 1

EXAMPLE 1

CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

[ Linearization

If f1 and fs in (1) are continuous and have continuous partial derivatives in a
neighborhood of the critical point Py: (0, 0), and if det A # 0 in (2), then the kind
and stability of the critical point of (1) are the same as those of the linearized |
system

: ‘i = ayyy T odge)se
3) y = Ay, thus ,
Yz = ag ¥y T dap)a.

Exceptions occur if A has equal or pure imaginary eigenvalues; then (1) may have
the same kind of critical point as (3) or a spiral point.

Free Undamped Pendulum. Linearization
Figure 92a shows a pendulum consisting of a body of mass m (the bob) and a rod of length L. Determine the
locations and types of the critical points. Assume that the mass of the rod and air resistance are negligible.

Solution. Step 1. Setting up the mathematical model. Let 8 denote the angular displacement, measured
counterclockwise from the equilibrium position. The weight of the bob is mg (g the acceleration of gravity). It
causes a restoring force myg sin 6 tangent to the curve of motion (circular arc) of the bob. By Newton’s second
law, at each instant this force is balanced by the force of acceleration mL@", where L8" is the acceleration;
hence the resultant of these two forces is zero, and we obtain as the mathematical model

mL8" + mg sin & = 0.

Dividing this by mL, we have

L

When # is very small, we can approximate sin f rather accurately by # and obtain as an approximate solution
A cos Vkr + B sin Vi, but the exact solution for any @ is not an elementary function.

) 0"+ ksinf=0 (k=£)_

Step 2. Critical points (0, 0), (27, 0), (447, 0), - - -, Linearization. To obtain a system of ODEs, we set
# = vy, 8" = yo. Then from (4) we obtain a nonlinear system (1) of the form

= filyi. y2) = y2
(4%)
= falyq. ¥o) = —k sin yq.

The right sides are both zero when yo = 0 and sin vy = 0. This gives infinitely many critical points (n, 0),
where n = 0, =1, =2, - - - . We consider (0, (}). Since the Maclaurin series is

i oot o L E S .
sinyp =y — gy T =¥

the linearized system at (0, 0) is

i 0 1 Y=Y
¥ =Ay= ¥, thus X
—k 0 vz = —kyy.

To apply our criteria in Sec. 4.4 we calculate p = ay; + ase = 0, g = det A = k = g/L (= 0), and
A = p? — 4¢ = —4k. From this and Table 4.1(c) in Sec. 4.4 we conclude that (0, 0) is a center, which is always
stable. Since sin 6 = sin v, is periodic with period 27, the critical points (nm, 0), n = =2, £4, -- - are all
centers.

Step 3. Critical points =(1, 0), (3, 0), £(57, 0), - - -, Linearization. We now consider the critical point
(m 0) setting § — 7=y, and (6 — m)' = 0’ = ¥ao. Then in (4),

sin@=sin(y; +7) = —siny; = —yp +Ey° — + 0= -y
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and the linearized system at (7, 0) is now

; 01
y =Ay = ¥i
k0

Wesee thatp = 0,9 = —k (< 0), and A = —44 = 4k. Hence, by Table 4.1(b), this gives a saddle point, which
is always unstable. Because of periodicity, the critical points (na. 0), n = £1, £3, -+ -, are all saddle points.
These results agree with the impression we get from Fig. 92b. (3]

Y= vs
thus
\2 = h’

\

\J
mg sin @

mig

(a) Pendulum (b) Solution curves y,{y,) of (4) in the phase plane

Fig. 92. Example 1(C will be explained in Example 4.

Linearization of the Damped Pendulum Equation

To gain further experience in investigating critical points, as another practically important case, let us see how
Example | changes when we add a damping term ¢ (damping proportional to the angular velocity) to equation
(4), so that it becomes

(5) 8" +c0 +ksing=0
where k > 0 and ¢ = 0 (which includes our previous case of no damping, ¢ = 0). Setling 8 = vy, 8" = vq, as
before, we obtain the nonlinear system (use " = _\-é)
r

B 5 Chani

yé = —ksiny; — cys.
We see that the critical points have the same locations as before, namely, (0, 0), (£ 0), (Z2m, 0), - - - . We
consider (0, 0). Linearizing sin y; = y; as in Example 1, we get the linearized system at (0, 0)

, 0 1 ¥1 = e
(6) y =Ay= ¥s thus '
=k =€ yo = —kvy — ¢va.

This is identical with the system in Example 2 of Sec 4.4, except for the (positive!) factor m (and except for
the physical meaning of y{). Hence for ¢ = 0 (no damping) we have a center (see Fig. 92b). for small damping
we have a spiral point (see Fig. 93), and so on.
We now consider the critical point (. 0). We set # — 7 = yy. (0 — m)' = 8' = vy and linearize
sin f =

sin(y; + @) = —siny; = —y1.

This gives the new linearized system at (77, ()

» 0 1 __\-‘; = _\'2
Yy =Ay= ¥s thus ;
k —e va = kyy

(6%)

- CVa.
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For our criteria in Sec 4.4 we calculate p = ayy + agg = —¢. g = det A = —k, and A = P2 —4g=c*+ 4k
This gives the following results for the critical point at (7. 0).

No damping. ¢ = 0. p = 0. ¢ < 0, A = 0, a saddle point. See Fig. 92b.
Damping. ¢ = 0,p < 0, ¢ < 0, A = 0, a saddle point. See Fig. 93.

Since sin y; is periodic with period 27, the critical points (=2, 0), (44, 0), - - - are of the same type as
(0, 0), and the critical points (—ar, 0). (£3m. 0), - - - are of the same type as (7, 0), so that our task is finished.

Figure 93 shows the trajectories in the case of damping. What we see agrees with our physical intuition. Indeed,
damping means loss of energy. Hence instead of the closed trajectories of periodic solutions in Fig. 92b we now
have trajectories spiraling around one of the critical points (0, 0). (=2, 0), - - -. Even the wavy trajectories
corresponding to whirly motions eventually spiral around one of these points. Furthermore, there are no more
trajectories that connect critical points (as there were in the undamped case for the saddle points). Ei

Fig. 93. Trajectories in the phase plane for the damped pendulum
in Example 2

Lotka—Volterra Population Model

EXAMPLE 2 Predator-Prey Population Model®
This model concerns two species, say. rabbits and foxes, and the foxes prey on the rabbits.

Step 1. Setting up the model. We assume the following.

1. Rabbits have unlimited food supply. Hence if there were no foxes, their number y,() would grow
exponentially, y; = ay;.

2. Actually, v, is decreased because of the kill by foxes. say. at a rate proportional to yyve, where yo(f) is
the number of foxes. Hence y; = ay; — by;ys, where @ > 0 and b > 0.

3. If there were no rabbits, then vo(f) would exponentially decrease to zero, yé = —ly,. However, ys is
increased by a rate proportional to the number of encounters between predator and prey: together we
have '1-2' = — lvg + kyyve. where k > 0 and [ = (.

This gives the (nonlinear!) Lotka-Volterra system

¥1 = fily1, y2) = ayy — byyya
™ ;
Yo = falyr, ¥2) = kypye — Iys .

3Introduced by ALFRED J. LOTKA (1880-1949)., American biophysicist, and VITO VOLTERRA
(1860-1940), Italian mathematician, the initiator of functional analysis (see [GR7] in App. 1).
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Step 2. Critical point (0, 0), Linearization. We see from (7) that the critical points are the solutions of
(7%) F1(y1, y2) = yila — bys) = 0. falyis v2) = yalkyy — 1) = 0.

[ a
The solutions are (v, yo) = (0, 0) and (—, b ). We consider (0, 0). Dropping —byyys and ky, v, from (7) gives

k
, I:t.' D}
y = ¥
0 -

Its eigenvalues are A; = a = 0 and A = —[ < 0. They have opposite signs, so that we get a saddle point.

the linearized system

Step 3. Critical point (l/k, alb), Linearization. We set y; = vy + l/k, y5 = ¥ + a/b. Then the critical point
(Ifk, a/b) corresponds to (¥y, ¥») = (0, 0). Since ¥; = y1. ¥ = va. we obtain from (7) [factorized as in (8)]

(i w4 _ ., a o -
=\t ) |e-b\et ) | = Dt )
o[, @ o 4 N T
o= \Yat ) [kt ) — 4= 2t 5 |0

Dropping the two nonlinear terms —by, ¥, and AV, Vo, we have the linearized system

@ §i=-
(7%)
oo _oak
b) ¥a= — W-

The left side of (a) times the right side of (b) must equal the right side of (a) times the left side of (b),

ki b - ; p ‘ ak 5 b _,
— - T“rz"lz' By integration, ?_\rl + s Voo = const

This is a family ellipses, so that the critical point (I/k, a/b) of the linearized system (7%%) is a center (Fig. 94).
It can be shown by a complicated analysis that the nonlinear system (7) also has a center (rather than a spiral
point) at (I/k, a/b) surrounded by closed trajectories (not ellipses).

We see that the predators and prey have a cyclic variation about the critical point. Let us move counterclockwise
around the ellipse, beginning at the right vertex, where the rabbits have a maximum number. Foxes are sharply
increasing in number until they reach a maximum at the upper vertex, and the number of rabbits is then sharply
decreasing until it reaches a minimum at the left vertex, and so on. Cyclic variations of this kind have been
observed in nature, for example, for lynx and snowshoe hare near the Hudson Bay, with a cycle of about 10
years.

For models of more complicated situations and a systematic discussion, see C. W. Clark, Mathematical
Biveconomics (Wiley, 1976).

¥y
//_. ] __\_-H-"\--. <
a /
T R A ? |
| ;
\“m_ I i
—
|
|
1
1 Y1
k

Fig. 94. Ecological equilibrium point and trajectory
of the linearized Lotka—Volterra system (7**)
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EXAMPLE 4

CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

Transformation to a First-Order Equation
in the Phase Plane

Another phase plane method is based on the idea of transforming a second-order
autonomous ODE (an ODE in which  does not occur explicitly)

Fy,y', ") =0

to first order by taking y = y; as the independent variable, setting v' = y, and transforming
v" by the chain rule,
. dyy

mo o D2 dn .
dr  dvy dr dy %

.‘1 e ‘\'2 =

Then the ODE becomes of first order.
dy

™ F(-“l‘ Yo S -"2) -
dy,

and can sometimes be solved or treated by direction fields. We illustrate this for the
equation in Example | and shall gain much more insight into the behavior of solutions.

An ODE (8) for the Free Undamped Pendulum

Ifin (4) 8" + ksin 8 = 0 we set # = y;. 8’ = y, (the angular velocity) and use

s dva  dve dyy dyg dyg .
8= = = =i, we gel — ¥o = —ksiny.
dt dy, drt dvy dyy
Separation of variables gives yo dvp = —k sin vy dy,. By integration.
® 1va® = kcosy, + C (C constant).

Multiplying this by mL?, we get
%m(L_\‘z}z — mL?k cos vy = mL2C.

We see that these three terms are energies. Indeed. vy, is the angular velocity, so that Lys is the velocity and the
first term is the kinetic energy. The second term (including the minus sign) is the potential energy of the pendulum,
and mL2C is its total energy, which is constant, as expected from the law of conservation of energy, because
there is no damping (no loss of energy). The type of motion depends on the total energy, hence on C, as follows.

Figure 92b on p. 153 shows trajectories for various values of C. These graphs continue periodically with
period 27 to the left and to the right. We see that some of them are ellipse-like and closed, others are wavy,
and there are two trajectories (passing through the saddle points (na, 0), n = =1, £3, - - - ) that separate
those two types of trajectories. From (9) we see that the smallest possible C is C = —k; then y, = 0, and
cos y; = 1, so that the pendulum is at rest. The pendulum will change its direction of motion if there are points
at which y, = @' = 0. Then & cos y; + C = 0 by (9). If v, = 7. then cos y1 = —l and C = k. Hence if
—k < C < k. then the pendulum reverses its direction for a |v;| = |8 < 7. and for these values of C with
|€| < k the pendulum oscillates. This corresponds to the closed trajectories in the figure. However, if C > k.
then y, = 0 is impossible and the pendulum makes a whirly motion that appears as a wavy trajectory in the
¥y ¥o-plane. Finally. the value C = k corresponds to the two “separating trajectories” in Fig. 92b connecting the
saddle points. | |

The phase plane method of deriving a single first-order equation (8) may be of practical interest
not only when (8) can be solved (as in Example 4) but also when solution is not possible and
we have to utilize direction fields (Sec. 1.2). We illustrate this with a very famous example:
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EXAMPLE 5

Self-Sustained Oscillations. Van der Pol Equation

There are physical systems such that for small oscillations, energy is fed into the system, whereas for large
oscillations, energy is taken from the system. In other words, large oscillations will be damped, whereas for
small oscillations there is “negative damping” (feeding of energy into the system). For physical reasons we
expect such a system to approach a periodic behavior, which will thus appear as a closed trajectory in the phase
plane, called a limit cycle. A differential equation describing such vibrations is the famous van der Pol
equalion4

(10) Y= ul =3y +y=0 (@ = 0. constant).

It first occurred in the study of electrical circuits containing vacuum tubes. For g = 0 this equation becomes
v" + ¥ = 0 and we obtain harmonic oscillations, Let g > 0. The damping term has the factor — (1 — '\‘2).
This is negative for small oscillations, when y2 < 1, so that we have “negative damping.” is zero for v2 = 1 (no
damping), and is positive iI'_'r2 = | (positive damping, loss of energy). If u is small, we expect a limit cycle
that is almost a circle because then our equation differs but little from y" + v = 0. If j is large, the limit
cycle will probably look different.

Setting v = ¥y, y = vo and using y' = (dygldvy) v as in (8), we have from (10)

dy
(1 =2 yo — w(l — y1P)yp + 3 = 0.
dvy

The isoclines in the y;vg-plane (the phase plane) are the curves dyoldy, = K = const, that is,

d}‘g v
—=2 =l =y
dyy Yo

Y- ==
Solving algebraically for y,. we see that the isoclines are given by

(Figs. 95, 96).

Fig. 95. Direction field for the van der Pol equation with 1 = 0.1 in the phase plane,
showing also the limit cycle and two trajectories. See also Fig. 8 in Sec. 1.2.

“BALTHASAR VAN DER POL (1889-1959), Dutch physicist and engineer.
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Figure 95 shows some isoclines when p is small, g = 0.1, the limit cycle (almost a circle). and two (blue)
trajectories approaching it, one from the outside and the other from the inside. of which only the initial portion,
a small spiral, is shown. Due to this approach by trajectories, a limit cycle differs conceptually from a closed
curve (a trajectory) surrounding a center, which is not approached by trajectories. For larger u the limit cycle
no longer resembles a circle, and the trajectories approach it more rapidly than for smaller w. Figure 96 illustrates
this for = 1. B

K=0 Y2 K=-1

K=‘]- K=1 K:—]_

Fig. 96. Direction field for the van der Pol equation with i = 1in the phase plane,
showing also the limit cycle and two trajectories approaching it

[ 2m]
[1-12] CRITICAL POINTS, LINEARIZATION 9. y" + cosy = 0 10. y” + siny = 0

Determine the location and type of all critical points by 1L y" + 4y —y3 =0 12,y +y +2y—y2 =
linearization. In Probs. 7—12 first transform the ODE to a ’ : :

system. (Show the details of your work.) 13. (Trajectories) What kind of curves are the trajectories
Lyi =y +3° 2.yp =4y —»® of yy" +2y"% = 0?
J e oo 14. (Trajectories) Write the ODE y” — 4y + v* =0 asa
Y2 = N Yz = Y2 system, solve it for y, as a function of y;, and sketch
; 2 or graph some of the trajectories in the phase plane.
3. y1 = 4y2 4o yr= =3y + 3~y i ; "
15. (Trajectories) What is the radius of a real general
ya = 2y; — 2 Vo =¥y — 3y, solution of y” + y = 0 in the phase plane?
16. (Trajectories) In Prob. 14 add a linear damping term
S.91 = —y1 F s — 2 6. yp =y, — 2 togety" + 2y" — 4y + y* = 0. Using arguments from
. " " mechanics and a comparison with Prob. 14, as well as
Y2 = =¥1 — ¥ Y2 =V~ N with Examples | and 2, guess the type of each critical

B " . point. Then determine these types by linearization.
T.y +y—4"=0 83" +9+y2=0 (Show all details of your work.)
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17. (Pendulum) To what state (position. speed. direction Show that if w — 0, the isoclines approach straight
of motion) do the four points of intersection of a lines through the origin. Why is this to be expected?
closed trajectory with the axes in Fig. 92b correspond?
The point of intersection of a wavy curve with the
Vo-axis?

(b) Rayleigh equation. Show that the so-called
Rayleigh equation®

. - Y'— (1l —3Y'3Y' +¥=0 (u>0
18. (Limit cycle) What is the essential difference between M 57 ® )

a limit cycle and a closed trajectory surrounding a also describes self-sustained oscillations and that by

center? differentiating it and setting y = Y’ one obtains the van
19. CAS EXPERIMENT. Deformation of Limit Cycle. der Pol equation.

Convert the van der Pol equation to a system. Graph (¢) Duffing equation. The Duffing equation is

the limit cycle and some approaching trajectories for
©=02,040.6,0.38, 1.0, 1.5, 2.0. Try to observe how
the limit cycle changes its form continuously if you where usually |g] is small. thus characterizing a small
vary p continuously. Describe in words how the limit deviation of the restoring force from linearity. § > 0

'\‘" + wuz_\' + ,8_\'3 =10

cycle is deformed with growing p. and B < 0 are called the cases of a hard spring and a

20. TEAM PROJECT. Self-sustained oscillations. soft spring, respectively. Find the equation of the
(a) Van der Pol Equation. Determine the type of the trajectories in the phase plane. (Note that for g = 0 all
critical point at (0, 0) when u > 0, . = 0. . < 0. these curves are closed.)

4.6 Nonhomogeneous Linear Systems of ODEs

In this last section of Chap. 4 we discuss methods for solving nonhomogeneous linear
systems of ODEs

(1) y =Ay+g (see Sec. 4.2)

where the vector g(r) is not identically zero. We assume g(7) and the entries of the n X n
matrix A(7) to be continuous on some interval J of the r-axis. From a general solution
y”""(r) of the homogeneous system y' = Ay on J and a particular solution y‘”(1) of
(1) on J [i.e.. a solution of (1) containing no arbitrary constants], we get a solution
of (1),

(2) y = JI,(h}l =Y y(p)‘

y is called a general solution of (1) on J because it includes every solution of (1) on J.
This follows from Theorem 2 in Sec. 4.2 (see Prob. | of this section).

Having studied homogeneous linear systems in Secs. 4.1-4.4, our present task will be
to explain methods for obtaining particular solutions of (1). We discuss the method of
undetermined coefficients and the method of the variation of parameters; these have
counterparts for a single ODE, as we know from Secs. 2.7 and 2.10.

SLORD RAYLEIGH (JOHN WILLIAM STRUTT) (1842-1919), great English physicist and mathematician,
professor at Cambridge and London, known by his important contributions to the theory of waves, elasticity
theory, hydrodynamics. and various other branches of applied mathematics and theoretical physics. In 1904 he
received the Nobel Prize in physics.
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EXAMPLE 1

CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

of
Method of Undetermined Coefficients

As for a single ODE, this method is suitable if the entries of A are constants and the
components of g are constants, positive integer powers of #, exponential functions, or
cosines and sines. In such a case a particular solution y'* is assumed in a form similar
to g; for instance, y' = u + vr + wi? if g has components quadratic in ¢, with u, v, w
to be determined by substitution into (1). This is similar to Sec. 2.7, except for the
Modification Rule. It suffices to show this by an example.

Method of Undetermined Coefficients. Modification Rule

Find a general solution of

, -3 1 —6
(3) Yy =Ay+g= y + &7,
I =3 2

Solution. A general equation of the homogeneous system is (see Example | in Sec. 4.3)

1 1
) yun =¢ [ ] 2t 4 cs [ ] U
1 o |

2

Since A = —2 is an eigenvalue of A, the function ¢~>" on the right also appears in y(h’. and we must apply the

Modification Rule by setting

2t

2 (rather than ue™=").

y‘p’ = me_z' + ve~

Note that the first of these two terms is the analog of the modification in Sec. 2.7, but it would not be sufficient
here. (Try it.) By substitution,

VP = uem = 2ure™ — 2ve ¥ = Aure™ + Ave M + g

Equating the e~ >"-terms on both sides, we have —2u = Au. Hence u is an eigenvector of A corresponding to
A = —2; thus [see (5)] u = a[l I]'r with any a # 0. Equating the other terms gives

-6 a 2[)1 _3I'.r'l + Ug —6
u—2v=Av+ thus o = + ;
2 a 2vy vy — 3vs 2

Collecting terms and reshuffling gives

Uy — Vg = —a— 6
vy tug=—a+2
By addition, 0 = —2a — 4, a = —2, and then vy = vy + 4,52y, Uy = k, vy = k + 4, thus, v = [k &k + 4]".

We can simply choose k& = 0. This gives the answer

1 | | 0
(5) y=y® 4P o [ ] ey ¢ [ :| a3 _ 9 [ :| e~ 4 |: :| &
1 —1 1 4

For other k we get other v; for instance, k = —2 gives v = [—2 Z]T, so that the answer becomes

1 1 1 -2
(5%) Yy=0 l: :l a2 Co [ :’ g l: ] e 2 4 [ :P &% etc. @
| —1 1 2

Method of Variation of Parameters

This method can be applied to nonhomogeneous linear systems

(6) y =A@y + g
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EXAMPLE 2

with variable A = A(r) and general g(r). It yields a particular solution y** of (6) on some
open interval J on the t-axis if a general solution of the homogeneous system y’ = A(r)y
on J is known. We explain the method in terms of the previous example.

Solution by the Method of Variation of Parameters

Solve (3) in Example 1.

Solution. A basis of solutions of the homogeneous system is [¢ ™! e 2T and[e™% —e™*]7, Hence
the general solution (4) of the homogenous system may be written

; o2t f—4£ a
(7 N i & = Y(t)e.
e —¢ [

T . " .
Here, Y(1) = [ym ym] is the fundamental matrix (see Sec. 4.2). As in Sec. 2.10 we replace the constant
vector ¢ by a variable vector u(r) to obtain a particular solution

y'P = Y(nu(r).
Substitution into (3) y' = Ay + g gives
(8) Y'u+ Yu' =AYu + g

© are solutions of the homogeneous system, we have

Now since 'V and y
y(l)f - A.‘,fl)‘ yiz)f - Ay{?.)‘ thus Y' = AY.
Hence Y'u = AYu, so that (8) reduces to

Yu' =g The solution is u = Y'Ig;

here we use that the inverse Y 1 of Y (Sec. 4.0) exists because the determinant of Y is the Wronskian W, which
is not zero for a basis. Equation (9) in Sec. 4.0 gives the form of ¥

We multiply this by g, obtaining
| e,zl 821‘ = 6{,—2: 1 —4 -2
u = Y_lg = — = — == ,
2 At g 25—t 2 —g.2t —4et
Integration is done componentwise (just as differentiation) and gives
A
u(r) = - | dr=
o L-4s* —26% +2
(where + 2 comes from the lower limit of integration). From this and Y in (7) we obtain
e -2 —21e™2 — 2672 4 2¢7% —2t - 2 2
Yu = = = a2 4 Pt
e —em4] [ 26 +2 —2te™ + 2¢7% — 2¢~% —2t + 2 =

The last term on the right is a solution of the homogeneous system. Hence we can absorb it into },(h)_ We thus
obtain as a general solution of the system (3), in agreement with (5%),

1 1 1 =2
(9 Y= [ :[ e 2t 4 Co [ :[ ¥ -2 I: } e~ 4 [ :[ e 2t =
1 —1 1 2
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PROBLEEM-SET 46— —

1. (General solution) Prove that (2) includes every
solution of (1).

2-9| GENERAL SOLUTION
Find a general solution. (Show the details of your work.)
2.y1=ya +1 3. y1 =4y, + 9t

ya =y — 3t y2 = —4y; +5
4. yi =y, +y,+5cost 5 y; =2y + 2y, + 12
yo =3y, — vo — Ssint Yo = 5y; — v — 30
6. v1 =~y + ys + e
Y2 =Yy~ Yz €
7. y1 = —14y; + 10y, + 162
Yo = —5y; + yo — 3241
8. y1 =10y, — 6y, + 10(1 — 1 — 1?)
yo = 6y; — 10yy + 4 — 201 — 612
9. yy = —3y; — 4y, + 11t + 15
yo = 5y, + 6y, + 37" — 151 — 20
10. CAS EXPERIMENT. Undetermined Coefficients.

Find out experimentally how general you must choose
P in particular when the components of g have a

y
different form (e.g., as in Prob. 9). Write a short report,
covering also the situation in the case of the

modification rule.
[11-16] INITIAL VALUE PROBLEM
Solve (showing details):
1.y} = =2y, + 4

¥z =2y; — 2t
y1(0) =4, ¥, (0) =3
12 y; =4y, + 5ét
yz = —y; — 20e”*
y1(0) =1, y2(0) = 0
13 yi =y, + 2ys + €3 — 21
Yo=—Yyg+ 1+1¢

¥1(0) = 1. y,(0) = —4

4.  yi =3y; — 4y, + 20 cos ¢
Yo =y = 2y
¥1(0) = 0. y5(0) = 8
15.  yj =dys + 3%
yo = 2ys — 15¢~ 3¢
¥1(0) =2, ¥2(0) = 2
16. y; =4y, + 8y, + 2cost — 16sinz
yh =6y, + 2y, + cost — 14 sint

v1(0)

15, y,(0) = 13

17. (Network) Find the currents in Fig. 97 when R = 2.5 (),
L=1H,C=004F, E(r) = 845 sint V, and [;(0) = 0,
I5(0) = 0. (Show the details.)

18. (Network) Find the currents in Fig. 97 when R = 1 (),
L=10H,C= 125F, E(t) = 10 kV, and [,(0) = 0,
I5(0) = 0. (Show the details.)

I I
E § R il ]

Fig. 97. Network in Probs. 17, 18

19. (Network) Find the currents in Fig. 98 when R, = 2 (),
R,=8Q0.L=1H,C=05F, E=200V. (Show the
details.)

To’c- [

Switch c
Fig. 98, Network in Prob. 19

20. WRITING PROJECT. Undetermined Coefficients.
Write a short report in which you compare the
application of the method of undetermined coefficients
to a single ODE and to a system of two ODEs, using
ODEs and systems of your choice.
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10.

State some applications that can be modeled by systems
of ODEs.

2. What is population dynamics? Give examples.

3. How can you transform an ODE into a system of ODEs?
4. What are qualitative methods for systems? Why are they

important?

. What is the phase plane? The phase plane method? The

phase portrait of a system of ODEs?

. What is a critical point of a system of ODEs? How did

we classify these points?

. What are eigenvalues? What role did they play in this

chapter?

. What does stability mean in general? In connection with

critical points?

What does linearization of a system mean? Give an
example.

What is a limit cycle? When may it occur in mechanics?

GENERAL SOLUTION. CRITICAL POINTS

Find a general solution. Determine the kind and stability of
the critical point. (Show the details of your work.)

11.

13.

15,

17

19.

yi =4y, 12. yi = 9

ys = 16y, Ya = ¥2

Y1 =ys 14. yy = 3y; — 3y,
¥a = 6y; — 5y, ya =3y + 3ys
y:_ = 1.5y, — 6y; 16. _)'; = —3y; — 2yq
Yo = —4.5y; + 3y, ya = —2y; = 3y,
}':. = 3y, + 2y, 18. yi = 3y, + 5y,

y2 = 2y; + 3y, y2 = —5y1 — 32
Yi= Tyt 2y
)”2 = =2y — ¥

[20-25]

NONHOMOGENEOUS SYSTEMS

Find a general solution. (Show the details.)

20.

22,

y1 = 3y + 6t 21, yi = y; + 2y, + &%
ye = 12y, + 1 Vo = —y, + 1.5¢72%
y"1=yl + yg + osinr

Yo =4y, + vy

28. (Network) Find the currents in Fig.

23, y; =4y, + 3y, + 2

—6y; — Sy; + 4e*

]

’
Ya

4. y] =y, — 2y, —sint

!
Yo = 3y; — 4yy — cost

25 y; =y, + 2y, + 2

Il

y2 =2y +yp, — 1%

26. (Mixing problem) Tank T in Fig. 99 contains initially
200 gal of water in which 160 Ib of salt are dissolved.
Tank T, contains initially 100 gal of pure water. Liquid
is pumped through the system as indicated, and the
mixtures are kept uniform by stirring. Find the amounts
of salt y,(r) and y,(r) in T, and 7,, respectively.

Fig. 99. Tanks in Problem 26

27. (Critical point) What kind of critical point does y’ = Ay

have if A has the eigenvalues —6 and 17

100. where
Ry =050 R, =070, L, =04H, L, =05H,
E = 1KkV = 1000V, and I;(0) = 0, I,(0) = 0.

MY

E

T

Fig. 100.

R,

Network in Problem 28

29. (Network) Find the currents in Fig. 101 when R = 10 (),

L =125H,C = 0.002F, and /;(0) = I5(0) = 3 A.

—

I I

zr L

Network in Problem 29

Fig. 101.
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30-33| LINEARIZATION 3%, 30 =008 g 33 3! = yg ~ 2yg?
Determine the location and kind of all critical points of the ; . 5
given nonlinear system by linearization. Y2 =30 Y2 =y1 — 2y
30. yi =y, 3L yi = —9y,

J"é =iy = ® J'; = siny,

- Whereas single electric circuits or single mass—spring systems are modeled by single
ODE:s (Chap. 2), networks of several circuits, systems of several masses and springs,
and other engineering problems lead to systems of ODEs, involving several unknown
functions y;(1), * - -, v, (1). Of central interest are first-order systems (Sec. 4.2):

'
n= fl{'rs Vs V)

y = f, y), in components,
.":t = Faltoyi: =25 Yo

to which higher order ODEs and systems of ODEs can be reduced (Sec. 4.1). In
this summary we let n = 2, so that

, ) y1 = Falt, y1. y2)
[ (1) vy =f.y),. in components,

¥z = falt, Y1, ¥2)

Then we can represent solution curves as trajectories in the phase plane (the
vive-plane), investigate their totality [the “phase portrait” of (1)]. and study the
kind and stability of the critical points (points at which both f, and f, are zero),
and classify them as nodes, saddle points, centers, or spiral points (Secs. 4.3, 4.4).
These phase plane methods are qualitative; with their use we can discover various
general properties of solutions without actually solving the system. They are
primarily used for autonomous systems, that is, systems in which ¢ does not occur
explicitly.
A linear system is of the form

’ ayy o Vi §1
(2) y =Ay +g, where A= , ¥y= , E= .
gy gy Yz 82

If g = 0, the system is called homogeneous and is of the form

3) y = Ay.




Summary of Chapter 4

If ayq. * * + . ags are constants, it has solutions y = xe*’, where A is a solution of the
quadratic equation

ap — A iz
= (a11 — Mags — A) — aypaz = 0

3] Qg
and x # 0 has components xy, x; determined up to a multiplicative constant by
l’ﬂll = /\)xl + tlyaXs = 0.

(These A's are called the eigenvalues and these vectors x eigenvectors of the matrix
A. Further explanation is given in Sec. 4.0.)

A system (2) with g # 0 is called nonhomogeneous. Its general solution is of
the form y = y;, + y,, where y,, is a general solution of (3) and y,, a particular
solution of (2). Methods of determining the latter are discussed in Sec. 4.6.

The discussion of critical points of linear systems based on eigenvalues is
summarized in Tables 4.1 and 4.2 in Sec. 4.4. It also applies to nonlinear systems
if the latter are first linearized. The key theorem for this is Theorem 1 in Sec. 4.5,
which also includes three famous applications. namely the pendulum and van der
Pol equations and the Lotka—Volterra predator—prey population model.
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CHAPTER 5

Series Solutions of ODEs.
Special Functions

In Chaps. 2 and 3 we have seen that linear ODEs with constant coefficients can be solved
by functions known from calculus. However, if a linear ODE has variable coefficients
(functions of x), it must usually be solved by other methods, as we shall see in this
chapter.

Legendre polynomials, Bessel functions, and eigenfunction expansions are the three
main topics in this chapter. These are of greatest importance to the applied mathematician.

Legendre’s ODE and Legendre polynomials (Sec. 5.3) are likely to occur in problems
showing spherical symmetry, They are obtained by the power series method (Secs. 5.1,
5.2), which gives solutions of ODEs in power series.

Bessel’s ODE and Bessel functions (Secs. 3.5, 5.6) are likely to occur in problems
showing cvlindrical symmetry. They are obtained by the Frobenius method (Sec. 5.4),
an extension of the power series method which gives solutions of ODEs in power series,
possibly multiplied by a logarithmic term or by a fractional power.

Eigenfunction expansions (Sec. 5.8) are infinite series obtained by the Sturm-
Liouville theory (Sec. 5.7). The terms of these series may be Legendre polynomials or
other functions, and their coefficients are obtained by the orthogonality of those functions.
These expansions include Fourier series in terms of cosine and sine, which are so
important that we shall devote a whole chapter (Chap. 11) to them.

Special functions (also called higher functions) is a name for more advanced functions
not considered in calculus. If a function occurs in many applications, it gets a name, and
its properties and values are investigated in all details, resulting in hundreds of formulas
which together with the underlying theory often fill whole books. This is what has
happened to the gamma, Legendre, Bessel, and several other functions (take a look into
Refs. [GR1], [GR10]. [A11] in App. 1).

Your CAS knows most of the special functions and corresponding formulas that you
will ever need in your later work in industry, and this chapter will give you a feel for the
basics of their theory and their application in modeling.

COMMENT. You can study this chapter directly after Chap. 2 because it needs no
material from Chaps. 3 or 4.

Prerequisite: Chap. 2.
Sections that may be omitted in a shorter course: 5.2, 5.6-5.8.
References and Answers to Problems: App. 1 Part A, and App. 2.
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5.1 Power Series Method

The power series method is the standard method for solving linear ODEs with variable
coefficients. It gives solutions in the form of power series. These series can be used for
computing values, graphing curves, proving formulas, and exploring properties of solutions,
as we shall see. In this section we begin by explaining the idea of the power series method.

;...: ower Series

From calculus we recall that a power series (in powers of x — xg) is an infinite series of
the form

==
. mi— : 2
(1) 2 a(x — x0)™ = ag + ay(x — xp) + as(x — xg)° + - - -.
m=0
Here, x is a variable. ay, a;, as, - - - are constants, called the coefficients of the series.

Xg is a constant, called the center of the series. In particular, if x5 = 0, we obtain a power
series in powers of x

o0
2) D apx™ = ag + ax + apx® + agr® + < - -,

m=0

We shall assume that all variables and constants are real.
Familiar examples of power series are the Maclaurin series

1 -
—— = ™ =1l+x+x2+ - (|x| < 1, geometric series)
l=x m=0
-~ e _2 3
. X X X
e:{- — 2 —_— = l -+ X L i W
=0 m! 2! 3!
we 2m 2 4
(=17 x X
COS.\'Zzizl—_—_i_____'_“'
m=0 (2”3)! 2! 4!
i 2m+1 3 5
Fr (—‘1 ‘m'x X X
=1, EE o B g B
meo (2m+ 1! 3! 5!

We note that the term “power series” usually refers to a series of the form (1) [or (2)]
but does not include series of negative or fractional powers of x. We use m as the
summation letter, reserving n as a standard notation in the Legendre and Bessel equations
for integer values of the parameter.

or the Power Series Method

The idea of the power series method for solving ODEs is simple and natural. We describe
the practical procedure and illustrate it for two ODEs whose solution we know, so that
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we can see what is going on. The mathematical justification of the method follows in the
next section.
For a given ODE

y' + plxy’ + qx)y =0

we first represent p(x) and g(x) by power series in powers of x (or of x — x if solutions
in powers of x — x, are wanted). Often p(x) and g(x) are polynomials, and then nothing
needs to be done in this first step. Next we assume a solution in the form of a power series
with unknown coefficients,

=
(3) Y= Apx™ = ag + ayx +agx® + agx® + - ¢ -
m=0

and insert this series and the series obtained by termwise differentiation,

-
r i
(@ y = 2 ;namxm b= a; + 26‘2x T 3(13.1'2 i &
=1

(4)

B ¥ =D mm — 1)a,x™"2 = 2ay + 3+2azx + 4+ 3ax> + -+ -

m=2

into the ODE. Then we collect like powers of x and equate the sum of the coefficients of
each occurring power of x to zero, starting with the constant terms, then taking the terms
containing x, then the terms in x% and so on. This gives equations from which we can
determine the unknown coefficients of (3) successively.

Let us show this for two simple ODEs that can also be solved by elementary methods,
so that we would not need power series.

Solve the following ODE by power series. To grasp the idea, do this by hand: do not use your CAS (for
which you could program the whole process).

r
y = 2xw

Solution. We insert (3) and (4a) into the given ODE. obtaining
Yaix 4 Fgawe b s ’ % I
fy + 2asx + Jagx” + = 2xlag + aqx + agx® + | B
We must perform the multiplication by 2x on the right and can write the resulting equation conveniently as

a; + 2asx + 3:13\'2 + 4{:4)'3 + 5(:5\'4 + 6::6.\'5 4o

= 2agx + 2a1x2 + Za?_,\'3

+ 2apc® + 2a,0° + - -
For this equation to hold, the two coefficients of every power of .x on both sides must be equal, that is,

ap =0, 2ay = 2ag, 3ag = 2ayq. 4ay = 2as, Saz = 2ag, bag = 2ag, - - - .

Hence ag = 0, a5z = 0, - - - and for the coefficients with even subscripts,

g dp g dy
dg = dp, {fq,:‘__’__ "?
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ag remains arbitrary. With these coefficients the series (3) gives the following solution, which you should confirm
by the method of separating variables.

4 6 a8
) 2 3 X 2 . x2
y=uag |l +x +§+§+4—I+“' = dn€

More rapidly, (3) and (4) give for the ODE _-." = Zxy

e =}

= o
Loap® + > ma,a™ 1 =2y 2 ax™ = X 288"
0

m=2 =0 m=

Now, to get the same general power on both sides, we make a “shift of index™ on the left by setting m = s + 2,
thus m — 1 = 5 + 1. Then a,, becomes a,,» and x™ ! becomes x***. Also the summation, which started with
m = 2, now starts with s = () because s = m — 2. On the right we simply make a change of notation m = s,

hence a,, = az and x™ 1 = ¥ also the summation now starts with s = 0. This altogether gives

o0 oo
ap + 20 (5 + Dagiox®tl = D 2a0" L
5=0 §=0

Every occurring power of x must have the same coefficient on both sides; hence

2
ay =10 and (s + ag.n = 2a, or Agio = Fﬂs.
Fors =0, 1. 2, - - - we thus have ag = (2/2)ag, ag = (213)ay = 0, ag = (2M)as, - - - as before. i

EXAMPLE 2 Solve

Solution. By inserting (3) and (4b) into the ODE we have

oo b= =}

D omim = Dagx™ 2+ D) g™ = 0.

m=2 m=0

To obtain the same general power on both series, we set m = s + 2 in the first series and m = s in the second,
and then we take the latter to the right side. This gives

== o
2 (s + 2)s + Dag.ox® = = E agx®,
§=0 =0
Each power x¥ must have the same coefficient on both sides. Hence (5 + 2)(s + )ag.n = —a,. This gives the
recursion formula
< 0,1
Qyyn= — —— T s=0,1,
"2 (s +2)(s + 1) ( é
We thus obtain successively
dp flg ay €y
W T gay T L R™ a2 TR
dg dy ag ay
=S = ag = — = =.
4 4-3 4 = 5:4 3!

and so on. ag and a; remain arbitrary. With these coefficients the series (3) becomes

.(.'B al ﬂ'g ﬂi
g i e R i s Y, R SN Tt
W ag + ayx 2 x 3 b S 2 X 31 L Sk
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Reordering terms (which is permissible for a power series), we can write this in the form

X2 2 8 X
vy =ag ]__’f+z"+"' + a; .t—'i'!"+"5'!'—+"'

and we recognize the familiar general solution
¥ = agcosx + ay sinx. il

Do we need the power series method for these or similar ODEs? Of course not; we used
them just for explaining the idea of the method. What happens if we apply the method
to an ODE not of the kind considered so far, even to an innocent-looking one such as
y" + xy = 0 (“Airy’s equation™)? We most likely end up with new special functions given
by power series. And if such an ODE and its solutions are of practical (or theoretical)
interest, we name and investigate them in terms of formulas and graphs and by numeric
methods.

We shall discuss Legendre’s, Bessel’s, and the hypergeometric equations and their
solutions, to mention just the most prominent of these ODEs. To do this with a good
understanding. also in the light of your CAS. we first explain the power series method
(and later an extension, the Frobenius method) in more detail.

_ B D ry 2 1 L AR & . L ¥ K

| Is N B L L IYR L & .

I—HII- POWER SERIES METHOD: TECHNIQUE, 11. v/ + 4y = 1. y(0) = 1.25. x =02
FEATURES | ) .

12y =1+y%4  yO =0 x =37
Apply the power series method. Do this by hand, not by a 13. v =y — y2, ¥(0) 1

CAS. so that you get a feel for the method, e.g.., why a f e W
series may terminate, or has even powers only, or has no
constant or linear terms, etc. Show the details of your work.

Ly —y=0 2.y +xy=0

Il

3 X1 =

14. (x — 2)y" = xy, v(0) = 4, x, =2

15. v" + 3xy” + 2y = 0, y(0) =1,
y© =1  x =05

16. (1 — x%)y" — 2xy" + 30y = 0, y(0) = 0.

83" hdy=0 Ay —p=0 y'(0) = 1.875,  x, = 0.5
524x =y 6y +31+xPHy=0
7.v =y + x 8. (" +4x®)y = (5x% + 12x%)y 17. WRITING PROJECT. Power Series. Write a review
9.v" —y' =0 10, 3" — 5" + 5 =10 (2-3 pages) on power series as they are discussed in
i ’ ’ ’ ’ calculus, using your own formulation and examples—
(11-16| CAS PROBLEMS. INITIAL VALUE do not just copy passages from calculus texts.
PROBLEMS 18. LITERATURE PROJECT. Maclaurin Series.
Solve the initial value problems by a power series. Graph Collect Maclaurin series of the functions known from
the partial sum s of the powers up to and including x®. Find calculus and arrange them systematically in a list that
the value of s (5 digits) at xy. you can use for your work.

5.2 Theory of the Power Series Method

In the last section we saw that the power series method gives solutions of ODEs in the
form of power series. In this section we justify the method mathematically as follows. We
first review relevant facts on power series from calculus. Then we list the operations on
power series needed in the method (differentiation, addition, multiplication, etc.). Near
the end we state the basic existence theorem for power series solutions of ODEs.
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Basic Concepts

Recall from calculus that a power series is an infinite series of the form

oo
1) D Gp(x — %)™ = ag + ay(x — xp) + as(x — Xp)2 + -+ -
m=0
As before, we assume the variable x, the center x;,, and the coefficients ag, a;. - - - to be

real. The nth partial sum of (1) is

(2) Sn(X) = ap + ay(x — xg) + aslx — x0)® + + + + + a,lx — x)"

wheren =0, 1, + - - . Clearly, if we omit the terms of s,, from (1), the remaining expression
is

3) R (X) = @y q(x — x0)"T + Gpaolx — xg)" 2 + 00,

This expression is called the remainder of (1) after the term a,(x — x)".
For example, in the case of the geometric series

l+x+x2+--+x"+---
we have
5o =1, Ro=x+x2+x3+---,
s;=1+x R1=I2+.-\‘3+X4+---,
sp = 1 4+ x + 2% Ro=x2+x*+x%+:--, ete.

In this way we have now associated with (1) the sequence of the partial sums
So(x), §1(x), so(x), + -+ . If for some x = x; this sequence converges, say,

r}Lﬂ:l Splxy) = s(xp).

then the series (1) is called convergent ar x = x,, the number s(x;) is called the value or
sum of (1) at x;, and we write

>

s(xy) = z Xy — 'r())m'
=10
Then we have for every n,
(4) s{xy) = s5,(x) + R, (xq).

If that sequence diverges at x = xy, the series (1) is called divergent at x = x;.
In the case of convergence, for any positive € there is an N (depending on €) such that,
by (4),

(5) IRn(xl)| = |S{'rl) - S-n,(xl)i < € fOI' alln > N.
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Geometrically, this means that all s,,(x;) with n > N lie between s(x;) — € and s(x,) + €
(Fig. 102). Practically, this means that in the case of convergence we can approximate
the sum s(x;) of (1) at x; by s,,(x;) as accurately as we please, by taking » large enough.

Convergence Interval. Radius of Convergence

With respect to the convergence of the power series (1) there are three cases, the useless
Case 1, the usual Case 2, and the best Case 3. as follows.

Case 1. The series (1) always converges at x = x,, because for x = x, all its terms are
zero, perhaps except for the first one, ag. In exceptional cases x = xy may be the only x
for which (1) converges. Such a series is of no practical interest.

Case 2. If there are further values of x for which the series converges, these values form
an interval, called the convergence interval. If this interval is finite, it has the midpoint
Xg, so that it is of the form

(6) lx — xo

<R (Fig. 103)

and the series (1) converges for all x such that l.r — x0| < R and diverges for all x such
that |x — xo| > R. (No general statement about convergence or divergence can be made
for x — x5 = R or —R.) The number R is called the radius of convergence of (1). (R is
called “radius™ because for a complex power series it is the radius of a disk of convergence.)
R can be obtained from either of the formulas

1

M—roe Az

%) (@ R=1 /lim Viay] ®) R=1 /lim

provided these limits exist and are not zero, [If these limits are infinite, then (1) converges
only at the center x,.]

Case 3. The convergence interval may sometimes be infinite, that is, (1) converges for
all x. For instance, if the limit in (7a) or (7b) is zero, this case occurs. One then writes
R = =, for convenience. (Proofs of all these facts can be found in Sec. 15.2.)

For each x for which (1) converges, it has a certain value s(x). We say that (1) represents
the function s(x) in the convergence interval and write

o0

5(x) = 2 aylx — xg)™ (Ix = xo| < R).

m=0

Let us illustrate these three possible cases with typical examples.

Divergence Convergence Divergence
| | | | |

s(x,)—€ slx,) slx)) +e x, - R X5 x,+R

Fig. 102, Inequality (5) Fig. 103.  Convergence interval (6) of a power
series with center x,
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

The Useless Case 1 of Convergence Only at the Center

In the case of the series

o0

D omy™ =1+ x4+ 22+ 6%+
m=0
we have a,,, = m!, and in (7b),
Qe (m + 1)!
e S Iy as m —» =,
Ay, m!
Thus this series converges only at the center x = (. Such a series is useless. |

The Usual Case 2 of Convergence in a Finite Interval. Geometric Series

For the geometric series we have

] = <]
-'!_—-=2.=:’"=l+,\‘+,r2+--- (] < 1).
¥ m=0

In fact, a,; = 1 for all m, and from (7) we obtain R = 1, that is, the geometric series converges and represents
/(1 — x) when [ < 1. |

The Best Case 3 of Convergence for All x

In the case of the series

®m ‘_2
#= — =1+4+x+ — +
¢ E m! ! 2!
=0
we have a,, = 1/m!. Hence in (7b),
By 41 1/im + 1)! 1
. T T — A — 0 as n — %,
Oy 1/m! m+ 1
so that the series converges for all x. |
Hint for Some of the Problems
Find the radius of convergence of the series
= e 3 6 a
(-1 : X x x
2 _\‘3'"“ = ] - = + o + -
g 64 512

m=0

Solution. This is a series in powers of 1 = x* with coefficients a,, = (—1)"/8™, so that in (7b),

D41 Sm o~ 1
dp 8m.+1 § "
Thus R = 8. Hence the series converges for |f| = [x®] < &, that is, [x] < 2. al

Operations on Power Series

In the power series method we differentiate, add, and multiply power series. These three
operations are permissible, in the sense explained in what follows. We also list a condition
about the vanishing of all coefficients of a power series, which is a basic tool of the power
series method. (Proofs can be found in Sec. 15.3.)
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Termwise Differentiation

A power series may be differentiated term by term. More precisely: if

e+

yix) = E (X — -"'U)m

m=0

converges for |x — xo| < R, where R > 0, then the series obtained by differentiating term
by term also converges for those x and represents the derivative y' of y for those x,
that is,

o
V() = D) mag(x — xg)™! (Jx — xo| < R).
=1
Similarly,
y'(x) = 2 m(m — Da,,(x — xo)™ 2 (Jx = xo| < R), etc.
m=2

Termwise Addition
Two power series may be added term by term. More precisely: if the series

o

(8) D ax — xp)" and > bx — xp)™

m=0 m=0

have positive radii of convergence and their sums are f(x) and g(x), then the series

E (@ T bm](-r B xo)m

m=0

converges and represents f(x) + g(x) for each x that lies in the interior of the convergence
interval of each of the two given series.

Termwise Multiplication

Two power series may be multiplied term by term. More precisely: Suppose that the series
(8) have positive radii of convergence and let f(x) and g(x) be their sums. Then the
series obtained by multiplying each term of the first series by each term of the second
series and collecting like powers of x — Xy, that is,

oL
2 (aﬂbm + t"illlbm—il. Shos e o a'.-nb(]){x - xﬂ)m

m=0
= agby + (aghy + a1bo)(x — xo) + (aghs + ayby + asbg)(x — xp)% + -+ -

converges and represents f(x)g(x) for each x in the interior of the convergence interval of
each of the two given series.
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DEFINITION

THEOREM 1

Vanishing of All Coefficients

If a power series has a positive radius of convergence and a sum that is identically zero
throughout its interval of convergence, then each coefficient of the series must be zero.

Existence of Power Series Solutions of ODEs.
Real Analytic Functions

The properties of power series just discussed form the foundation of the power series
method. The remaining question is whether an ODE has power series solutions at all. An
answer is simple: If the coefficients p and ¢ and the function » on the right side of

9) y' 4+ py” + gy = r(x)

have power series representations, then (9) has power series solutions. The same is true
if h, p. ¢, and ¥ in

(10) hx)y" + ploy’ + gy = #x)

have power series representations and i(x,) # 0 (x, the center of the series). Almost all
ODE:s in practice have polynomials as coefficients (thus terminating power series), so that
(when r(x) = 0 or is a power series, too) those conditions are satisfied, except perhaps
the condition h(xy) # 0. If /i(x,) # 0, division of (10) by A(x) gives (9) with p = p/h,
¢ = G/h, r = F/h. This motivates our notation in (10).

To formulate all this in a precise and simple way, we use the following concept (which
is of general interest).

| Real Analytic Function

A real function f(x) is called analytic ar a point x = x if it can be represented by
a power series in powers of x — x, with radius of convergence R > 0.

Using this concept, we can state the following basic theorem.

Existence of Power Series Solutions

If p, g, and r in (9) are analytic at x = xq, then every solution of (9) is analytic at
x = xp and can thus be represented by a power series in powers of x — xo with
radius of convergence R > 0. Hence the same is true if h, p, §, and 7 in (10) are
analytic at x = xo and h(xy) # 0.

The proof of this theorem requires advanced methods of complex analysis and can be
found in Ref. [A11] listed in App. 1.

We mention that the radius of convergence R in Theorem 1 is at least equal to the
distance from the point x = x, to the point (or points) closest to x, at which one of the
functions p, g, . as functions of a complex variable, is not analytic. (Note that that point
may not lie on the x-axis but somewhere in the complex plane.)
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RADIUS OF CONVERGENCE

[1-12
Determine the radius of convergence. (Show the details.)

(c # 0)
w0 L
oa "2 !}m S
2. En 3,,,(m Fmr g ETD
e +
3.3 B m . gy
m=1
4. 2 (_])mxtlm
m=0
" i (2m)! o
oo 2m +2)2m + 4)
s D7 2m+10
0. ,E‘] )2 X

e -
7-2 {4”3 (x_ l]2nl

Z  (4m)!
8.2 ﬂ_rnt

(m'y*

(m + 3)?
(m— 3)* x

m

2m)!
X

0.8 <

m

1
11. 2 F(x—‘éﬂ'm

(m + L)m
2m+ 1)

2m+1

SHIFTING SUMMATION INDICES

13-15
(CF. SEC. 5.1)

This is often convenient or necessary in the power series
method. Shift the index so that the power under the
summation sign is x°. Check by writing the first few terms
explicitly. Also determine the radius of convergence R.

o _1)114-1

Sn

A +2

[ )m+1

142(

m=3

'm—3

15. ————— (Pt
1 P+ DI
16-23| POWER SERIES SOLUTIONS

Find a power series solution in powers of x. (Show the
details of your work.)

16. y" + xy =0

17. y" =y + x%v =0
18. y" =y +xy =0
19. y" + 4xy' =0

20. y" + 2xy' + ¥y =0
2.y + (1 + 2By =0
22. y" —4xy’ + (4x* - 2)y =0

23, 2x2 —3x+ 1)y "+ 20y — 2y =0

24. TEAM PROJECT. Properties from Power Series.
In the next sections we shall define new functions
(Legendre functions, etc.) by power series, deriving
properties of the functions directly from the series. To
understand this idea, do the same for functions familiar
from calculus, using Maclaurin series.

(a) Show that coshx + sinhx =
coshx > 0 for all x. Show that ¢* =
x=Z 0.

(b) Derive the differentiation formulas for e*, cos x,
sinx, 1/(1 — x) and other functions of your choice.
Show that (cosx)” = —cosx, (coshx)” = coshx.
Consider integration similarly.

e*. Show that
e~ for all

(¢) What can you conclude if a series contains only
odd powers? Only even powers? No constant term? If
all its coefficients are positive? Give examples.

(d) What properties of cos x and sin x are not obvious
from the Maclaurin series? What properties of other
functions?

CAS EXPERIMENT. Information from Graphs of
Partial Sums. In connection with power series in
numerics we use partial sums. To get a feel for the
accuracy for various x, experiment with sinx and
graphs of partial sums of the Maclaurin series of an
increasing number of terms, describing qualitatively
the “breakaway points” of these graphs from the
graph of sin x. Consider other examples of your own
choice.

25
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>

5.5 Legendre’s Equation.
Legendre Polynomials P,(x)

In order to first gain skill, we have applied the power series method to ODEs that can
also be solved by other methods. We now turn to the first “big” equation of physics, for
which we do need the power series method. This is Legendre’s equation’

(1) (1 =x%y" = 2xy" + n(n+ 1)y =0

where n is a given constant. Legendre’s equation arises in numerous problems, particularly
in boundary value problems for spheres (take a quick look at Example 1 in Sec. 12.10).
The parameter # in (1) is a given real number. Any solution of (1) is called a Legendre
function. The study of these and other “higher” functions not occurring in calculus is
called the theory of special functions. Further special functions will occur in the next
sections.

Dividing (1) by the coefficient 1 — x2 of y”, we see that the coefficients —2x/(1 — x?)
and n(n + 1)/(1 — x®) of the new equation are analytic at x = 0. Hence by Theorem 1,
in Sec. 5.2, Legendre’s equation has power series solutions of the form

@ y=2 anx™
m=0

Substituting (2) and its derivatives into (1), and denoting the constant n(n + 1) simply by
k, we obtain

o0 o oo
(1 —x% 2 mim — a,, X" 2 — 2x 2 Mma,x™ 1 + k E a,x™ = 0.

m=2 m=1 m=0

By writing the first expression as two separate series we have the equation

o0 = o] oo oo
2 m(m — Da,,x™"2 — 2 m(m — Da,x™ — 2 2ma,,x™ + E ka,x™ = 0.
=2 m=2 m=1 m=0

To obtain the same general power x* in all four series, we setm — 2 = s (thus m = 5 + 2)
in the first series and simply write s instead of m in the other three series. This gives

D+ 2)s + Dagox® — D s(s — Dagx® — 2, 2sa.x* + D, kagx® = 0.
5=0 §=2 s=1 5=0

LADRIEN-MARIE LEGENDRE (1752-1833), French mathematician, who became a professor in Paris in
1775 and made important contributions to special functions, elliptic integrals. number theory, and the calculus
of variations, His book Eléments de géométrie (1794) became very famous and had 12 editions in less than 30
years.

Formulas on Legendre functions may be found in Refs. [GR1] and [GR10].
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(Note that in the first series the summation begins with s = 0.) Since this equation with
right side 0 must be an identity in x if (2) is to be a solution of (1), the sum of the
coefficients of each power of x on the left must be zero. Now x° occurs in the first and
fourth series and gives [remember that k = n(n + 1)]

(3a) 2+1as + n(n + 1)ay, = 0.

x! occurs in the first, third, and fourth series and gives

(3b) 3:2a3 +[—2 + n(n + 1)]a, = 0.

The higher powers x%, x®, - - - occur in all four series and give

(3c) (s + 2)(s + Dageg + [—s(s — 1) = 25 + n(n + 1)]a, = 0.

The expression in the brackets [- - -] can be written (n — s)(n + s + 1), as you may
readily verify. Solving (3a) for a, and (3b) for a4 as well as (3c¢) for a5, we obtain the
general formula

(n—s)n+s+1)
GCFDE+D *

“) Ggiz = — (s=0,1,-).

This is called a recurrence relation or recursion formula. (Its derivation you may verify
with your CAS.) It gives each coefficient in terms of the second one preceding it, except
for ay and a@,, which are left as arbitrary constants. We find successively

nn + 1) (n— Dn+2)
“== T S T
(n—2)n + 3) (n—3)n+4)
T BT="""may 9
(n— 2)nn + 1)(n + 3) (n—3)n— Dn+ 2)(n+ 4)
== 4] (IU = 5] a]

and so on. By inserting these expressions for the coefficients into (2) we obtain
(3) V(&) = agy;(x) + ayya(x)
where

nin + 1) 5 (n— 2)n(n + 1)(n + 3)
(6) y) =1 — - T i e

(n— n+2) (n—=3n—1)n+2)n+4
(7 yad) = x — o 2 F % X0 — H

These series converge for |x| < 1 (see Prob. 4; or they may terminate, see below). Since
(6) contains even powers of x only. while (7) contains odd powers of x only, the ratio
ifye is not a constant, so that y, and y, are not proportional and are thus linearly
independent solutions. Hence (5) is a general solution of (1) on the interval —1 < x < 1.
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Legendre Polynomials P, (x)

In various applications, power series solutions of ODEs reduce to polynomials, that is,
they terminate after finitely many terms. This is a great advantage and is quite common
for special functions, leading to various important families of polynomials (see Refs. [GR1]
or [GR10] in App. 1). For Legendre’s equation this happens when the parameter 2 is a
nonnegative integer because then the right side of (4) is zero for s = n, so that a,,,» = 0,
a,.q=0,a,,5=0,---.Hence if n is even, y,(x) reduces to a polynomial of degree n.
If n is odd, the same is true for y,(x). These polynomials, multiplied by some constants,
are called Legendre polynomials and are denoted by P, (x). The standard choice of a
constant is done as follows. We choose the coefficient a,, of the highest power x™ as

(2n)! Lwdiedios v —1) . ]
(8) a, = 212 = o (n a positive integer)

(and a,, = 1 if n = 0). Then we calculate the other coefficients from (4), solved for 4, in
terms of ag 5, that is,

. (s +2)(s + 1) =
©) %= " n— Sn+s+1) %eva (eEn—2)

The choice (8) makes P, (1) = 1 for every n (see Fig. 104 on p. 180); this motivates (8).
From (9) with s = n — 2 and (8) we obtain

nn — 1) . n(n — 1)(2n)!

T2en—-1) " T 200 - D2

p—2

Using 2n)! = 2n(2n — 1)2n — 2)!, n! = n(n — 1)!, and n! = n(n — 1)(n — 2)!, we
obtain
nn — 12n(2n — 1)(2n — 2)!
22n — 12"n — D! an — in — 2)!

a2 =

n(n — 1)2n(2n — 1) cancels, so that we get

2n — 2)!
=2 = T S — Dl (-2
Similarly,
n—2)n—3)
n-g = = o 73 Gn-2
2n — 4)!

T 20 (- 2! (n - 4
and so on, and in general, when n — 2m = 0,

(2n — 2m)!
2"m! (n — m)! (n — 2m)!

(10) y—2m = (_ l]m
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The resulting solution of Legendre’s differential equation (1) is called the Legendre
polynomial of degree n and is denoted by P, (x).
From (10) we obtain

M
> s (2n — 2m)! n—2m
PA) = 2 Tt — 2t
1
(2!‘.‘.}' i@ (2?1 e 2)1I xn—z S e

o 2%(n!)? S 2" (n — D! (n — 2)!
where M = n/2 or (n — 1)/2, whichever is an integer. The first few of these functions are
(Fig. 104)
Polx) = 1, Pix) = x
(11)  Py(x) = 3(3x2 — 1), Pa(x) = 3(5x® — 3x)
Pa(x) = (35x* — 3042 + 3), Ps(x) = 3(63x® — 70x® + 15x)

and so on. You may now program (11) on your CAS and calculate P,,(x) as needed.
The so-called orthogonality of the Legendre polynomials will be considered in

Secs. 5.7 and 5.8.

T T T

S
%
&
<

oo

\ / |
\ y N ¢ | I||
K REXe /)
L ah i/ \\l LA 1y PR L d‘jl‘ll |
1 IV \ 4 / 1 =
P NS /
K/ / \\3 )/ / /,f
// by ! .
/ s N ‘\._.>Z_/
7 —
/ /
|

(RS O W 8,

Fig. 104.  Legendre polynomials

5. (Legendre function Qy(x) for n = 0) Show that (6)

1. Verify that the polynomials in (11"} satisfy Legendre’s

equation. with n = 0 gives y,(x) = Py(x) = 1 and (7) gives
2. Derive (11") from (11).

: 2 (=3)—1)-2-4

3. Obtain Pg and P; from (11). yalx) = x + = X+ ——— O+
4. (Convergence) Show that for any n for which (6) or ) '

(7) does not reduce to a polynomial, the series has S xg‘ 3 %5 = % In l1 +x '

=F

radius of convergence 1.
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Verify this by solving (1) with n = 0, setting z = y
and separating variables.

(Legendre function —Q,(x) for n = 1) Show that (7)
with n = 1 gives yo(x) = Py(x) = x and (6) gives
y1(x) = —Q;(x) (the minus sign in the notation being
conventional),

6

b

] X
=l = - —g Serentan

Il
i
|
”
——
=
+
W,
+
8
1
+
S —

[
I
I

=

=}

7. (ODE) Find a solution of
(@ — x%)y" — 2xy" + n(n + Ly = 0, a # 0,
by reduction to the Legendre equation.

8. [Rodrigues’s formula (12)]? Applying the binomial
theorem to (x? — 1)". differentialing it n times term
by term, and comparing the result with (11), show
that

f! n

2! dx™

(12)  P,x) = [:2-1)"].

9. (Rodrigues’s formula) Obtain (11”) from (12).

[10-13| CAS PROBLEMS

10. Graph Pay(x), « + +, Pyp(x) on common axes. For what
x (approximately) and n = 2.+ - -, 10 is [P, (x)] < &?

11. From what n on will your CAS no longer produce

faithful graphs of P, (x)? Why?

Graph Qg(x), Q;(x), and some further Legendre

functions.

12

13. Substitute a.x* + a1 x* ' + g, ox* 2 into Legendre’s
equation and obtain the coefficient recursion (4).

14. TEAM PROJECT. Generating Functions.
Generating functions play a significant role in modern
applied mathematics (see [GR5]). The idea is simple.
If we want to study a certain sequence (f,(x)) and can

find a function

00
Glu, x) = 2 Falx)u™,

n=0

we may obtain properties of (f, (x)) from those of G,
which “generates” this sequence and is called a
generating function of the sequence.

181

(a) Legendre polynomials. Show that

(13) G, x) =

l o
e 2 Puxu™
VI = 2xu + u® g

is a generating function of the Legendre polynomials.
Hint: Start from the binomial expansion of 1I/V'1 — v,
then set v = 2xu — «®, multiply the powers of

2xu — 1> out, collect all the terms involving #”, and
verify that the sum of these terms is P, (x)u".

(b) Potential theory. Let A; and A, be two points in
space (Fig. 105, r5 = 0). Using (13), show that

1 )|

P V2 + r? — 2ryr cos 0

1 oo ,‘1 m
= — 3, Pp(cos 6) == =
2

2 m=0

This formula has applications in potential theory.
(Q/r is the electrostatic potential at A, due to a
charge Q located at A;. And the series expresses 1/r
in terms of the distances of A} and A, from any origin
O and the angle @ between the segments OA, and
0A,.)

Fig. 105, Team Project 14

(¢) Further applications of (13). Show that
Pn{]) =1, Pn(_ 1)= (= U“. P2n+1(0) = 0, and

Po (0) = (=1)*+ 13 v« (2n = DI[2+4 =++(2n)).

(d) Bonnet’s recursion.® Differentiating (13) with
respect to u, using (13) in the resulting formula, and
comparing coefficients of «", obtain the Bonnet
recursion

(14) (n+ DP,1(x) = 2n + DxPy(x) — nP,_;(x),

where n = 1, 2, ---. This formula is useful for
computations, the loss of significant digits being small
(except near zeros), Try (14) out for a few computations
of your own choice.

2OLINDE RODRIGUES (1794-1851), French mathematician and economist.
30SSIAN BONNET (1819-1892), French mathematician, whose main work was in differential geometry.
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15. (Associated Legendre functions) The associated and are solutions of the ODE

Legendre functions P,*(x) play a role in quantum
physics. They are defined by

(15) BE) =1 =R

(=" — '

(16) k2
d*p, + | nn+ 1) — = |y=0.
—= [Pt
dx®

Find P, (x), Po'(x), Po%(x), and Pg%(x) and verify that
they satisfy (16).

5.4 Frobenius Method

THEOREM 1

Several second-order ODEs of considerable practical importance—the famous Bessel
equation among them—have coefficients that are not analytic (definition in Sec. 5.2), but
are “not too bad,” so that these ODEs can still be solved by series (power series times a
logarithm or times a fractional power of x, etc.). Indeed, the following theorem permits
an extension of the power series method that is called the Frobenius method. The latter—
as well as the power series method itself—has gained in significance due to the use of
software in the actual calculations.

Frobenius Method
Let b(x) and ¢(x) be any functions that are analytic at x = 0. Then the ODE

b(x c(x
”+—-—'()\’!+ 2}V=
x X+ °

(1) y

has at least one solution that can be represented in the form

o
(2) yx) =x" 2 A x™ = x"(ag + ayx + asx® + - °) (ag #+ 0)
=0

where the exponent r may be any (real or complex) number (and r is chosen so that
ag # 0).

The ODE (1) also has a second solution (such that these two solutions are linearly
independent) that may be similar to (2) (with a different r and different coefficients)
or may contain a logarithmic term. (Details in Theorem 2 below.)*

For example, Bessel's equation (to be discussed in the next section)

i 3 ¢ x? — 2
y+—y+|—=—])y=0 (v a parameter)
¥ X

‘GEORG FROBENIUS (1849-1917), German mathematician, also known for his work on matrices and in
group theory.

In this theorem we may replace x by x — xg with any number xp. The condition ag # 0 is no restriction; it
simply means that we factor out the highest possible power of x.

The singular point of (1) at x = 0 is sometimes called a regular singular point, a term confusing to the
student, which we shall not use.
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is of the form (1) with b(x) = 1 and e(x) = x* — »® analytic at x = 0, so that the theorem
applies. This ODE could not be handled in full generality by the power series method.

Similarly, the so-called hypergeometric differential equation (see Problem Set 5.4) also
requires the Frobenius method.

The point is that in (2) we have a power series times a single power of x whose exponent
r is not restricted to be a nonnegative integer. (The latter restriction would make the whole
expression a power series, by definition: see Sec. 5.1.)

The proof of the theorem requires advanced methods of complex analysis and can be
found in Ref. [A11] listed in App. 1.

Regular and Singular Points
The following commonly used terms are practical. A regular point of

y' A+ pa)y’ + gx)y =0

is a point xy at which the coefficients p and ¢ are analytic. Then the power series method
can be applied. If x; is not regular, it is called singular. Similarly, a regular point of the
ODE

hx)y" + Py’ ) + Gy =0
is an xy at which 7, p, § are analytic and hi(x,) # 0 (so what we can divide by / and get

the previous standard form). If x, is not regular, it is called singular.

Indicial Equation, Indicating the Form of Solutions

We shall now explain the Frobenius method for solving (1). Multiplication of (1) by x
gives the more convenient form

2

1’ " + xbx)y' + c(x)y =0.
We first expand b(x) and ¢(x) in power series,
b(x) = by + byx + box® + + - -, e(x) =co+ cx +epr® + 0o

or we do nothing if b(x) and ¢(x) are polynomials. Then we differentiate (2) term by term,

finding
=2}
Y@ =2 n+ nNapx ™ ™ =2 rag + (r + Dagx + -+ ]
=0
o
(2%) Y =D (m+ A+ r— a2
=0

= x"'_z[r(r — Dag + (r + Drax + -+ ).
By inserting all these series into (1 "y we readily obtain

i XTr(r — Dag + =+ -] + (bg + byx + =+ )x"(rag + * + *)
+ (o +cx + - )x'(ag + ayx +--+) = 0.
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We now equate the sum of the coefficients of each power x”, X1, x"*2, - - - to zero. This

yields a system of equations involving the unknown coefficients «,,. The equation
corresponding to the power x" is

[r(r — 1) + bgr + colag = 0.

Since by assumption a, # 0. the expression in the brackets [+ - -] must be zero. This gives
(4) rir — 1) + bgr + ¢g = 0.

This important quadratic equation is called the indicial equation of the ODE (1). Its role
is as follows.

The Frobenius method yields a basis of solutions. One of the two solutions will always
be of the form (2), where r is a root of (4). The other solution will be of a form indicated
by the indicial equation. There are three cases:

Case 1. Distinct roots not differing by an integer 1, 2, 3, - - -,
Case 2. A double root.
Case 3. Roots differing by an integer 1., 2, 3, - - -,

Cases | and 2 are not unexpected because of the Euler—Cauchy equation (Sec. 2.5), the
simplest ODE of the form (1). Case 1 includes complex conjugate roots ry and r, = 71y
because ry — rp = ry — r; = 2i Im r; is imaginary, so it cannot be a real integer. The
form of a basis will be given in Theorem 2 (which is proved in App. 4), without a general
theory of convergence, but convergence of the occurring series can be tested in each
individual case as usual. Note that in Case 2 we must have a logarithm, whereas in Case
3 we may or may not.

Frobenius Method. Basis of Solutions. Three Cases

Suppose that the ODE (1) satisfies the assumptions in Theorem 1. Let ry and ry be
the roots of the indicial equation (4). Then we have the following three cases.

Case 1. Distinct Roots Not Differing by an Integer. A basis is

(S) 3’1('-]‘-} = In{ﬁ'g + ax + azv‘_z e ‘) .
and
{6) '\'2[.¥) = _1_"'2(A0 3 Al.\‘ 1 AQXZ +-00) |

with coefficients obtained successively from (3) with r = ry and r = ry, respectively.
Case 2. Double Root ry = ry = r. A basis is ‘
7 y1(x) = x(ap + ayx + axx® + -+ ) [r =11 = by)]
(of the same general form as before) and ‘

- ® Vo(¥) = y1(x) Inx + x"(Ax + Agx® + -+ +) (x> 0).
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EXAMPLE 1

EXAMPLE 2

Case 3. Roots Differing by an Integer. A basis is
| O V() = ¥ Nag + ax + apx® + -+ +)
(of the same general form as before) and
(10$) Yolx) = ky;(x) Inx + x*(Ag + Ax + Apx® + + -2,

where the roots are so denoted that ry — ry = 0 and k may turn out to be zero.

Typical Applications

Technically, the Frobenius method is similar to the power series method, once the roots
of the indicial equation have been determined. However, (5)—(10) merely indicate the
general form of a basis, and a second solution can often be obtained more rapidly by
reduction of order (Sec. 2.1).

Euler—Cauchy Equation, Illustrating Cases 1and 2 and Case 3 without a Logarithm
For the Euler—Cauchy equation (Sec. 2.5)
X2+ by’ + gy =0 (bg. co constant)
substitution of y = x" gives the auxiliary equation
rir— 1) + bgr + ¢y = 0,
which is the indicial equation [and y = x" is a very special form of (2)!]. For different roots ry, 15 we get a

basis y; = x'', v = x%, and for a double root r we get a basis x", x” In x. Accordingly, for this simple ODE,
Case 3 plays no extra role. |

llustration of Case 2 (Double Root)
Solve the ODE
(11) xx— 1"+ Bx—1) +y=0.

(This is a special hypergeometric equation, as we shall see in the problem set.)

Solution. Writing (11) in the standard form (1), we see that it satisfies the assumptions in Theorem 1. [What
are b(x) and e(x) in (11)?] By inserting (2) and its derivatives (2%) into (11) we obtain

o0 =
2 (m + r)m + r— Dapa™ " - 2 (m + rm + r— Dax™ !

m=0 =0
(12)
oo -] o
+3D (m+ Napd™ = D (m+ Napd™ T+ D g™ = 0.
m=0 m=10 m=0

The smallest power is 1"~

to zero we have

, occurring in the second and the fourth series: by equating the sum of its coefficients

[=r(r — 1) = rlag = 0, thus 2 =0

Hence this indicial equation has the double root r = 0.
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EXAMPLE 3
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First Solution.
+* to zero, obtaining

We insert this value r = 0 into (12) and equate the sum of the coefficients of the power

sls — Dag — (s + Dsageq + 3sag — (5 + Dagyy +a, =0

++ -, and by choosing ay = 1 we obtain the solution

i) = 2 =

1 —x
m=0

thus a,. = a,. Hence ag = ay = as =

(k] < 1).

Second Solution. We get a second independent solution ¥o by the method of reduction of order (Sec. 2.1),
substituting yo = wy; and its derivatives into the equation. This leads to (9). Sec. 2.1, which we shall use in this
example, instead of starting reduction of order from scratch (as we shall do in the next example). In (9) of
Sec. 2.1 we have p = (3x — 1)/(x% — x), the coefficient of v in (11) in standard form. By partial fractions,

J’d-— J'h_' dx = f( : -il)d-— 2inGe— 1) =1
pax = W~ 1) = =] = X = & Inx nx.

Hence (9), Sec. 2.1, becomes

2
- - (x—1) 1 In.x
“':U:_\-lze IPM:——T= e u=1Inux, Yo = uyy =
(x—1yx X

l—x

¥y and yo are shown in Fig. 106. These functions are linearly independent and thus form a basis on the interval

D<x<l(aswellason |l < x < =), =
v
41 1
|
3
2
- I
/]
14
= = A 1 |
I e
0 : If"3’|
-2 -rf i IJ.
| 1
3
s i

Fig. 106. Solutions in Example 2

Case 3, Second Solution with Logarithmic Term

Solve the ODE

(13) 2=y —x Fy=0
Solution. Substituting (2) and (2%) into (13), we have
-] oc ac
% — % E (m+ m + r = Dayd™ ™2 — 2 (m + Pa,™ "+ 2 AT =0,
=0 m=0 m=0

T

We now take xZ, x, and x inside the summations and collect all terms with power x and simplify algebraically,

b =
E (m+r— “?.am.‘_m+r o 2 (m+ r)m +r— |'lﬂmv\'m+r‘l =0
m=0 m=0

In the first series we set m = s and in the second m = 5 + 1, thus s = m — 1. Then

o0 ==
E (s + r = 1Pag™*" — E (s +r+ (s + Nag 177 = 0.
§=0 §==1

(14)
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The lowest power is x" " (take s = —1 in the second series) and gives the indicial equation
rir—1)y=0.

The roots are ry = | and ro = 0. They differ by an integer. This is Case 3.

First Solution. From (14) with r = r; = 1 we have

x
2 [.s'zas — (s + 2)s + I)a‘.,érl],\"‘"'1 =0
s=0)
This gives the recurrence relation
& (s=0,1
&I S T A s B = ),
LT s+ 2+ 1) S ’ }
T
Hence ay = 0, ag = 0. - - - successively. Taking ag = 1, we get as a first solution y; = x 'ag = x.

Second Solution. Applying reduction of order (Sec. 2.1), we substitute yo = yyu = xu, )'é = xu' + wand
v = xu" + 2u’ into the ODE, obtaining

(.\'2 = .\‘)(xn" + 21:') = .t(xlr' + u)+ xu=0.
xu drops out. Division by x and simplification give
(2 — ) + (x = 2)u" = 0.
From this, using partial fractions and integrating (taking the integration constant zero), we get

=1

2

u' =2 2 1 G
RS = == . Inu =1In
4 =x X ==l

1
= w=mhnx+ —, Yo=xu=xlnx+ I.
%

¥y and yy are linearly independent. and y, has a logarithmic term. Hence y; and yo constitute a basis of solutions
for positive . |

The Frobenius method solves the hypergeometric equation, whose solutions include
many known functions as special cases (see the problem set). In the next section we use
the method for solving Bessel’s equation.

BASIS OF SOLUTIONS BY THE 8. " —y=0
FROBENIUS METHOD 9.

Find a basis of solutions. Try to identify the series as 10
expansions of known functions. (Show the details of your :

o'+ 2+ Dy + @+ hHy=0
2y + 2% + (2 -2y =0
1L 2+ xy" + e+ 2" +2y=0

work.)

Loy +2) —y=0 2@+2%"—2y=0 225" +6x0"+@*+6y=0

3 " + 5" +xy =0 13 2xy" —@Bx— 1)y + Bx—2)y=0
420" + (3 —4x)y' + 2x - 3)y =0 Wy +y —xy=0

5. xzy" + 4xy' +@x2+ 2y=0 15. (x — 4)2)'" - (x = 4))" - 35y =0
6. 4xy” + 2y +y =0 16. %" +dxy" — (x* = 2)y = 0
7.(x+3)%" —9x + 3y +25y=0 17. y" + (x — 6)y = 0



188 CHAP. 5 Series Solutions of ODEs. Special Functions

18. TEAM PROJECT. Hypergeomeiric Equation,
Series, and Function. Gauss's hypergeometric ODE’
is

15 1 —xp" +[e —(a+ b+ DHxly — aby = 0.

Here. a. b, ¢ are constants. This ODE is of the form
poy" 4 piy’ 4 poy = 0, where p,, py, po are
polynomials of degree 2, 1, 0, respectively. These
polynomials are written so that the series solution takes
a most practical form. namely,

) - o ab iy ala + Db(b + 1)
N = fe > 2elc + 1)
(16)

2

aa + 1)a + 2)bb + (b +2)
tele+ e+ 2) #

This series is called the hypergeometric series. Its sum
vy(x) is called the hypergeometric function and is
denoted by F(a, b, c: x). Here, ¢ # 0, —1, =2, -~
By choosing specific values of a, b, ¢ we can obtain
an incredibly large number of special functions as
solutions of (15) [see the small sample of elementary
functions in part (¢)]. This accounts for the importance
of (15).

(a) Hypergeometric series and function. Show that
the indicial equation of (15) has the roots r; = 0 and
ro = 1 — ¢. Show that for r; = 0 the Frobenius method
gives (16). Motivate the name for (16) by showing that

F(1, 1, l:x) = F(1, b, b; x) = Fla, 1, a; x) =

R

(b) Convergence. For what a or b will (16) reduce to
a polynomial? Show that for any other a, b, ¢
(¢ # 0, —1, =2, ) the series (16) converges when
x| < 1.

(¢) Special cases, Show that

1+ x)* = F(—n, b, b; —x),

(1—x*=1-mF(l —n 1,2: %),
arctan x = xF(&, 1,3 —?),

arcsin x = xF(3. 3, &: ).

In(l +x)=xF(1, 1,2; —x),

1 +x

In uFE, 1, & x%).

L=
Find more such relations from the literature on special
functions.
(d) Second solution. Show that for r, = 1 — ¢ the
Frobenius method yields the following solution (where
CF 2,3, 4,000):
—e+ 1Db—c+1)

(a
p(x) = (1 + 3
Yol¥) = x (I 1l{—c+2) '

(17)
N la—c+1a—c+2)b—c+ 1)b—c+2)
2 (—¢ + 2)(—¢ + 3)

_l'2
eon).

o) =x"CFla—c+ 1,b—c+ 1,2 — e .

Show that

() On the generality of the hypergeometric
equation. Show that

(8) (P +Ar+ By +(Cr+ D)y +Ky=0
with y = dv/di. elc., constant A, B, C. D, K, and

2+ At + B = (t — 1,)(t — 13), I # I, can be reduced
to the hypergeometric equation with independent

variable
! Ky fl
xr = —
s — I
and parameters related by Cry + D = —clty, — 1y),

C=a+ b+ 1, K= ab. From this you see that (15)
is a “normalized form™ of the more general (18) and
that various cases of (18) can thus be solved in terms
of hypergeometric functions.

[19-24] HYPERGEOMETRIC EQUATIONS

Find a general solution in terms of hypergeometric
functions.

19. x(1 — " + E—2x)y' =3y =0

20, 2x(1 —x)y" — (1 +6x)y' —2y=0
2L x(1 —x)y”" + 4y + 2y =0

22,311 + )y +ty —y=0

23.2(2 - 51+ 6)§ + (2t —3)y — 8y =0
24. 402 - 31+ 2)y =2y +y=10

SCARL FRIEDRICH GAUSS (1777-1855), great German mathematician. He already made the first of his great
discoveries as a student at Helmstedt and Gdéttingen. In 1807 he became a professor and director of the Observatory
at Gottingen. His work was of basic importance in algebra, number theory, differential equations, differential
geometry, non-Euclidean geometry, complex analysis, numeric analysis, astronomy, geodesy, electromagnetism,
and theoretical mechanics. He also paved the way for a general and systematic use of complex numbers.
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5.5 Bessel’s Equation. Bessel Functions J,(x)

One of the most important ODEs in applied mathematics in Bessel’s equation.®

(1) ,1'2'1.'” + ' + o2 - Vz}_\' =0.
Its diverse applications range from electric fields to heat conduction and vibrations (see
Sec. 12.9). It often appears when a problem shows cylindrical symmetry (just as Legendre’s
equation may appear in cases of spherical symmetry). The parameter v in (1) is a given
number. We assume that » is real and nonnegative.

Bessel’s equation can be solved by the Frobenius method, as we mentioned at the
beginning of the preceding section, where the equation is written in standard form
(obtained by dividing (1) by x%). Accordingly, we substitute the series

(2) ¥R = F it (ag # 0)
m=0

with undetermined coefficients and its derivatives into (1). This gives

2 (m+ r)(m+r— Da,x""" + E (m +. 0, X0

=0 m=0
o %
n+r+2 2 m+r _
+ 2 amX =¥ E X =0.
n=0 m=0

r

We equate the sum of the coefficients of x*'" to zero. Note that this power x*"
corresponds to m = s in the first, second, and fourth series, and to m = 5 — 2 in the
third series, Hence for s = 0 and s = [, the third series does not contribute since
m = 0. For s = 2, 3, - - - all four series contribute, so that we get a general formula for
all these 5. We find

(a) r(r — Day + rag — v2ag =0 (s =0)
(3) (b) (r+ Dray + (r + Day — v2a; =0 s=1)
© +nrs+r—Da,+(s+ ra, +a,_o— v2a, =0 (s=2,3 ).

From (3a) we obtain the indicial equation by dropping ag,
(4) (r+v(r—»=0.

The roots are ; = v(= 0)and in, = —».

SFRIEDRICH WILHELM BESSEL ( 1784-1846), German astronomer and mathematician, studied astronomy
on his own in his spare time as an apprentice of a trade company and finally became director of the new Kénigsberg
Observatory.

Formulas on Bessel functions are contained in Ref. [GR1] and the standard treatise [A13].
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Coefficient Recursion for r = ry = ». For r = », Eq. (3b) reduces to 2v + 1)a; = 0.
Hence a; = 0 since » = 0. Substituting r = » in (3¢) and combining the three terms
containing a, gives simply

(5) (s + 2v)sa, + ag,_o = 0.

Since a; = 0 and v = 0, it follows from (5) that a3 = 0, a5 = 0, - - - . Hence we have
to deal only with even-numbered coefficients a, with s = 2m. For s = 2m, Eq. (5) becomes

2m + 2v)2mas,, + as,_s = 0.
Solving for as,, gives the recursion formula

(6) o = = mr = Doy m=1,2, -
o 22m(v + m) i
From (6) we can now determine as, ay, * * * successively. This gives
o = — _—aq___
= 2w+ 1)
dz o
Qg =

T +2) 2200+ D+ 2)

and so on, and in general

(_l):rnao
2l (p+ 1) +2)--- (v +m)

(7) Aoy = n= I’z‘...

Bessel Functions J,(x) For Integer v = n

Integer values of v are denoted by n. This is standard. For » = n the relation (7) becomes

(=1)"a

22l n+ Dn+2) - (n+m)’

(8) ds,, = m=1,2, %,
ag 1s still arbitrary, so that the series (2) with these coefficients would contain this arbitrary
factor ag. This would be a highly impractical situation for developing formulas or

computing values of this new function. Accordingly, we have to make a choice. ay = 1
would be possible, but more practical turns out to be

|
20!

9) tp =

because then n!(n + 1) -+ (n + m) = (m + n)! in (8), so that (8) simply becomes

(10) (_l)l‘ﬂ. ] ?
oy = ; Tk, e
Zm T g2mAn )y + o)) &
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EXAMPLE 1

This simplicity of the denominator of (10) partially motivates the choice (9). With these
coefficients and r; = v = n we get from (2) a particular solution of (1), denoted by J,,(x)
and given by

(_ 1 }m r2'm
ol (n + m)!

(11) ) =3 =

m=0

J,,(x) is called the Bessel function of the first kind of order n. The series (11) converges
for all x, as the ratio test shows. In fact, it converges very rapidly because of the factorials
in the denominator.

Bessel Functions J,(x) and J,(x)

For n = () we obtain from (11) the Bessel function of order 0

= (_l)m._,l_zm- _‘:2 _‘_4 ,t'B
L Jolx) :mz.o P LT 20 T P Pee

which looks similar to a cosine (Fig. 107). For n = | we obtain the Bessel function of order 1

= (—1™ l,2'.ri|'+] 3 1'3 ‘_5 ‘_1'
- i Eu Py 2 Pua | Pam 2w
m=

which looks similar to a sine (Fig. 107). But the zeros of these functions are not completely regularly spaced
(see also Table Al in App. 5) and the height of the “waves™ decreases with increasing x. Heuristically, n2h?
in (1) in standard form [(1) divided by +%] is zero (if n = 0) or small in absolute value for large x. and so is
v'/x. so that then Bessel’s equation comes close to ¥ + v = 0. the equation of cos x and sin a3 also ,\"J’,\' acts
as a “damping term,” in part responsible for the decrease in height. One can show that for large x,

[ 2 nw w
(14) Jalx) ~ vV E cos|x— o= = =

where ~ is read “asymptotically equal™ and means that for fixed n the quotient of the two sides approaches |
as x — o6,

Formula (14) is surprisingly accurate even for smaller x (= 0). For instance, it will give you good starting
values in a computer program for the basic task of computing zeros. For example, for the first three zeros of Jy
you obtain the values 2.356 (2.405 exact to 3 decimals, error 0.049), 5498 (5.520, error 0.022), 8.639 (8.654,

error (1.015), etc. i@

1=
i \\Jc
o\

0.5~ X7 “x_\JI

C R -

ol LNy S | //"! LT N y ~|_ 1L
- .\\ . /5// ) i \"\-\__\‘-10 ~_ \\)/,.-/' x
I N KT e

Fig. 107. Bessel functions of the first kind J, and J,
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Bessel Functions J,(x) for any » = 0. Gamma Function

\/

We now extend our discussion from integer » = n to any v = 0. All we need is an
extension of the factorials in (9) and (11) to any ». This is done by the gamma function
I'(») defined by the integral

o0

(15) I(v) = f e dr (v>0).

4]

By integration by parts we obtain

e =

I'v+ 1) = f et dt = =e~ %"
0

w o

4 vf &Y s
0 0

The first expression on the right is zero. The integral on the right is I'(»). This yields the
basic functional relation

(16) v+ 1) = vIl(p.
Now by (15)
1—‘(1']=j e ldt=—e" =0—-(—1)=1.
0 0
From this and (16) we obtain successively I'(2) = I'(1) = 1!, I'(3) = 2I'(2) = 2!, - - -
and in general
(17) I'(n+ 1) = n! (n=0,1,--).

This shows the the gamma function does in fact generalize the factorial function.
Now in (9) we had ay = 1/(2"n!). Thisis 1/(2"(n + 1)) by (17). It suggests to choose,
for any »,

1
(18) dg = 4“2"1,‘(” T ]) 4
Then (7) becomes

(-=nm
2"l (p+ D+ 2) - (v +m)2"T(w+ 1)

Ao =

But (16) gives in the denominator
(v+ 1)(rv+1)=T(r-+2), v+ 2+ 2)=T(v+ 3)
and so on, so that

(v+1)v+2)- - (v+mlv+ 1D)=T(w+m+ 1)
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THEOREM 1

THEOREM 2

Hence because of our (standard!) choice (18) of a, the coefficients (7) simply are

(_l)‘nl
22?R+!'”?! I"(v +m+ l} L

(19) oy =

With these coefficients and r = r; = v we get from (2) a particular solution of (1), denoted
by J,(x) and given by

(_ Imezm

m!' Dy +m+ 1)’

{20) JT,,(X) =x" 2 22111 +p

m=0

J,(x) is called the Bessel function of the first kind of order ». The series (20) converges
for all x, as one can verify by the ratio test.

General Solution for Noninteger ». Solution J_,

For a general solution, in addition to J, we need a second linearly independent solution.
For v not an integer this is easy. Replacing » by —v in (20), we have

_ 2 (=1
2 x=x |
1) I =x"2 s Yo =w+1

m=0

Since Bessel’s equation involves »2, the functions J, and J_, are solutions of the
equation for the same ». If » is not an integer, they are linearly independent, because
the first term in (20) and the first term in (21) are finite nonzero multiples of x” and
X", respectively. x = 0 must be excluded in (21) because of the factor x™" (with » > 0).
This gives

General Solution of Bessel’s Equation

If v is not an integer, a general solution of Bessel’s equation for all x # 0 is

(22) yx) = J, (%) + caJ_,(x).

But if »is an integer, then (22) is not a general solution because of linear dependence:

Linear Dependence of Bessel Functions J, and J_,

For integer v = n the Bessel functions J,(x) and J_,(x) are linearly dependent,
because

(23) J_.(x) = (1), (x) n=12---).
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PROOF

THEOREM 3

PROOF

CHAP. 5 Series Solutions of ODEs. Special Functions

We use (21) and let » approach a positive integer n. Then the gamma functions in the
coefficients of the first n terms become infinite (see Fig. 552 in App. A3.1), the
coefficients become zero, and the summation starts with m = n. Since in this case
I'(m — n+ 1) = (m — n)! by (17), we obtain

= (_ 1 )m.IZm—n = (_ 1 )n-ksx2$+ﬂ

J—‘ﬂ(”r] == 2 22m—n = E

m=n 5=0

(m=n+ s).

m! (m — n)! 2%+ + )l 5!

The last series represents (—1)"/,,(x), as you can see from (11) with m replaced by s. This
completes the proof. =]

A general solution for integer n will be given in the next section, based on some further
interesting ideas.

Discovery of Properties From Series

Bessel functions are a model case for showing how to discover properties and relations of
functions from series by which they are defined. Bessel functions satisfy an incredibly large
number of relationships—Ilook at Ref. [A13] in App. 1: also, find out what your CAS
knows. In Theorem 3 we shall discuss four formulas that are backbones in applications.

Derivatives, Recursions |
The derivative of J,(x) with respect to x can be expressed by J,_,(x) or J,.(x) by |
| the formulas |
@ [, =, %) |

(24) ) |
b) [ V,@] = —x"",na). '

|

|

Furthermore, J,(x) and its derivative satisfy the recurrence relations

| 2v
© J 1)+ Il =—/x)
(24) % ,
{d) Jv—]_('x) - Jv-i-l(x) I 2":!(-1-)-

(a) We multiply (20) by x” and take x2” under the summation sign. Then we have
S (_ l}mx2m+2v

L= >

m=0

2 v T+ m + 1)

We now differentiate this, cancel a factor 2, pull 7! out, and use the functional
relationship I'(v + m + 1) = (¢ + m)['(v + m) [see (16)]. Then (20) with » — 1 instead
of » shows that we obtain the right side of (24a). Indeed,

o (_l)mz(m e p))‘.2m+2v—1

@) =2 i =Y =
St 22"t v+ m + 1) e Jennk

(_l)))’lx2m
! T(v + m)
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EXAMPLE 2

(b) Similarly, we multiply (20) by x™", so that x” in (20) cancels. Then we differentiate,
cancel 2m, and use m! = m(m — 1)!. This gives. withm = s + 1,

-] {__ l)m.xzan—l o (__ l}s+1x2.s-+1

’—!'J I = — "
&%) m% 22—l — NI+ m+ 1) 5 2200 Dlrt+ s 4-2)

§=
Equation (20) with » + | instead of » and s instead of m shows that the expression on
the right is —x~"J,, 1(x). This proves (24b).

(c), (d) We perform the differentiation in (24a). Then we do the same in (24b) and
multiply the result on both sides by x*". This gives

(a*) v, + X =X,

®® —exU, + X = =2t

Substracting (b*) from (a*) and dividing the result by x” gives (24c¢). Adding (a*) and
(b*) and dividing the result by x"” gives (24d). [

Application of Theorem 3 in Evaluation and Integration

Formula (24¢) can be used recursively in the form
2v
J, e = i Jx) — J,_1(x)

for calculating Bessel functions of higher order from those of lower order. For instance, J5(x) = 2Jy(x)/x — Jy(x).
so that J, can be obtained from tables of Jg and J; (in App. 5 or, more accurately, in Ref. [GR1] in App. 1).

To illustrate how Theorem 3 helps in integration, we use (24b) with » = 3 integrated on both sides. This

evaluates, for instance, the integral

2 2 1

1= f X dy = x| = - 3 J3@ + J(h).
1 1

A table of J5 (on p. 398 of Ref. [GR1]) or your CAS will give you
= %'0.I28943 + 0.019563 = 0.003445.
Your CAS (or a human computer in precomputer times) obtains J5 from (24), first using (24c¢) with » = 2,

that is, J3 = 4x~1J, — J;. then (24c) with » = 1, that is, J» = 2x~'J; — J,. Together,

2

~
Il

3 2 = Jg) — T

~1[203(2) — 244(2) — 1 (2)] + [871(1) — 4Jp(1) — J3(1)]

-L1(2) + 1162 + TH(1) — 4Jy(1).

This is what you get, for instance. with Maple if you type int(- - -). And if you type evalf(int(- - -)), you obtain
0.003445448, in agreement with the result near the beginning of the example. =

In the theory of special functions it often happens that for certain values of a parameter
a higher function becomes elementary. We have seen this in the last problem set, and we
now show this for J/,.
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THEOREM 4 Elementary J, for Half-Integer Order v

Bessel functions J,, of orders ié, +g, tg. - are elementary; they can be expressed
by finitely many cosines and sines and powers of x. In particular,

(25) (a) JUQ(I) = ":_x sin X, (b) j_ug(x) = % COS X.

PROOF When » =1, then (20) is

{_'l]m 2m

Jya®) = Vx > = 2

2m+1/2 )y 3
s 2 m! U'(m + 3) o

] l)m 2m+1

22””’111! Iim+3)°

To simplify the denominator, we first write it out as a product AB, where
A=2"m! =2m2m —2)2m —4)---4-2
and [use (16)]
B =2""T(m + 3

2" Ym + Hm — L) - - - 8- 30

b=
—

;

@Cm+ D2m—1)---

here we used
(26) r@) =

We see that the product of the two right sides of A and B is simply (2m + D!V, so that

Jy2 becomes
)‘m 2m+1 2 )
J = = |— C,
172(x) I|' 2 (2m P e sin x

as claimed. Differentiation and the use of (24a) with v = 1 now gives

' 2
[Vadye]' = [ — cosx = x50,

This proves (25b). From (25) follow further formulas successively by (24c), used as in
Example 2. This completes the proof. i

EXAMPLE 3 Further Elementary Bessel Functions

From (24¢) with » = L and » = —1 and (25) we obtain

Tl = 1 7 ] B 2 sin x )
3/200) = < Jyalx) = J_qppld) = [ — _t_ cos ¥

2

1 cos X .
J_gyalx) = — = J_qpalx) = Jyely) = — — ( - + SII].I')

respectively, and so on. |
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We hope that our study has not only helped you to become acquainted with Bessel
functions but has also convinced you that series can be quite useful in obtaining various
properties of the corresponding functions.

1. (Convergence) Show that the series in (11) converges
for all x. Why is the convergence very rapid?

2. (Approximation) Show that for small x| we have
Jo = 1 — 0.25x% From this compute Jo(x) for
x=0,0.1, 0.2, - - -, 1.0 and determine the error by
using Table Al in App. 5 or your CAS.

3. (“Large” values) Using (14), compute Jy(x) for
x =10, 2.0, 3.0, - - -, 8.0, determine the error by
Table Al or your CAS, and comment.

4. (Zeros) Compute the first four positive zeros of Jy(x)
and J/,(x) from (14). Determine the error and comment.

520 ODEs REDUCIBLE TO BESSEL’S
EQUATION

Using the indicated substitutions, find a general solution in
terms of J,, and J_, or indicate when this is not possible.
(This is just a sample of various ODEs reducible to Bessel’s
equation. Some more follow in the next problem set. Show
the details of your work.)

5. (ODE with two parameters)

.\'2}'" +xy" + (A2 - 2Py =0 (Ax=7)
6. x%y" + xy' + (2 =Ly =0
7. X2y" + ,\’)" 4 i—(,\’ — vz}_\’ =0 (\/Tt—‘ = 7)

8. 2x + D& + 202x + 1)y’ + 16x(x + 1)y =0
(2x + 1 =12)

9. xy" —y +4xy=0 (y=xu 2x=2)

10. x%y" +xy' + 32—y =0 (x=27)

1. oy + Qv+ 1) +xy=0 (y=x"n)

12. x%" + xy' +4* - )y =0 (=12

13 2% + ' 9% — vy =0 (F =2

4. y" + (** -y =0 (e =1z

15. 0" +y=0 (y=Vau,2Va=2)

16. 16x%" + 8xy' + M2 + By =0
(y = xVoy, x4 = ;

17. 36x%y" + 18xy’ + Vay =0
(v = xMay, 24 = 3

18. x%y" + xy' + Vxy =0 (4x** = z)

19. x%" + Ixy" + Viy=0 (y=xPu, 4x1 = 3)

20 x%" + (1 = 2uxy" + 202+ 1 — By =0
(y = x"u, x¥' = z)

21-28]  APPLICATION OF (24): DERIVATIVES,
' INTEGRALS

Use the powerful formulas (24) to do Probs. 21-28. (Show
the details of your work.)
21. (Derivatives) Show that Jo(x) = —Jy(x).

Hx) = Jolx) = L(x)/x, Jox) = $[1(x) = Js()].
22, (Interlacing of zeros) Using (24) and Rolle’s theorem,
show that between two consecutive zeros of Jy(x) there
is precisely one zero of J(x).
(Interlacing of zeros) Using (24) and Rolle’s theorem,
show that between any two consecutive positive zeros
of J,(x) there is precisely one zero of J,, ., (x).
24. (Bessel’s equation) Derive (1) from (24).
(Basic integral formulas) Show that

2

o

fx".l,,_l{x) dx = x"J (x) + ¢,
fx"’J,fl(x] dx = —x7"J (x) + ¢,
IJ,,“(.\') dx = J-J,,_l(xJ i — 2108,

26. (Integration) Evaluate J’x_lh(x} dx. (Use Prob. 25;
integrate by parts.)

27. (Integration) Show that
fngo(.\r) dx = x2J,(x) + xJg(x) — fJo(x) dx. (The
last integral is nonelementary: tables exist, e.g. in Ref.
[A13] in App. 1.)

28. (Integration) Evaluate st(x} dx.

29, (Elimination of first derivative) Show that vy = uv
with v(x) = exp (=4 [ p(x) dx) gives from the ODE
'+ ploy’ + ¢g(x)y = 0 the ODE

i+ [q(x) - ép(x)z - Jz-p'(x)] u=20
no longer containing the first derivative. Show that for
the Bessel equation the substitution is y = ux~2 and

gives

(27) 2+ + 3 - vPHu=0.
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30. (Elementary Bessel functions)

31

32,

CHAP. 5 Series Solutions of ODEs. Special Functions

Derive (25) in
Theorem 4 from (27).

CAS EXPERIMENT. Change of Coefficient. Find
and graph (on common axes) the solutions of

Y+ kY +y=0,30)=1,y'0) =0,

for k = 0,1, 2, ---, 10 (or as far as you get useful
graphs). For what k do you get elementary functions?
Why? Try for noninteger k. particularly between 0 and
2. to see the continuous change of the curve. Describe
the change of the location of the zeros and of the
extrema as k increases from 0. Can you interpret the
ODE as a model in mechanics, thereby explaining your
observations?

TEAM PROJECT. Modeling a Vibrating Cable
(Fig. 108). A flexible cable, chain, or rope of length L
and density (mass per unit length) pis fixed at the upper
end (x = 0) and allowed to make small vibrations
(small angles e in the horizontal displacement u(x, 1),
1 = time) in a vertical plane.

(a) Show the following. The weight of the cable below
a point x is W(x) = pg(L — x). The restoring force is
Flx) = Wsin @ = Wu,, u, = duldx. The difference in
force between x and x + Ax is Ax (Wu,),. Newton’s
second law now gives

p Ax = Ax pg[(L — X)u,],.

For the expected periodic motion
u(x, 1) = y(x) cos (wr + &) the model of the problem

is the ODE
L= _‘_):rﬂ

-y + Ay =0, A% = &g,

(b) Transform this ODE to ¥ + s7'v + y = 0,
¥ = dvlds, s = 2072, z = L — x, so that the
solution is

¥(x) = Jo2wV (L — x)/g).

3

(e¢) Conclude that possible frequencies w/27 are those
for which s = Ew\/ITg is a zero of Jy The
corresponding solutions are called normal modes.
Figure 108 shows the first of them. What does the second
normal mode look like? The third? What is the frequency
(cycles/min) of a cable of length 2 m? Of length 10 m?

Cable
in motion

Equilibrium
position

Fig. 108.  Vibrating cable in Team Project 32
CAS EXPERIMENT. Bessel Functions for Large x.
(a) Graph J,,(x) forn = 0, - - - . 5 on common axes.
(b) Experiment with (14) for integer n. Using graphs,
find out from which x = x,, on the curves of (11) and
(14) practically coincide. How does x,, change with n?
(¢) What happens in (b) if n =
notation in this case would be ».)
(d) How does the error of (14) behave as function
of x for fixed n? [Error = exact value minus
approximation (14).]

(e) Show from the graphs that Jy(.x) has extrema where
Ji(x) = 0. Which formula proves this? Find further
relations between zeros and extrema.

+19 (Our usual

(f) Raise and answer questions of your own, for
instance, on the zeros of J, and J,. How accurately are
they obtained from (14)?

5.6 Bessel Functions of the Second Kind Y, (x)

From the last section we know that J, and J_, form a basis of solutions of Bessel’s
equation, provided v is not an integer. But when » is an integer, these two solutions are
linearly dependent on any interval (see Theorem 2 in Sec. 5.5). Hence to have a general
solution also when » = n is an integer, we need a second linearly independent solution
besides J,,. This solution is called a Bessel function of the second kind and is denoted
by V,,. We shall now derive such a solution, beginning with the case n = 0.

n = 0:

Bessel Function of the Second Kind Y,(x)

When n = 0, Bessel's equation can be written

(1)

x'+y +xy=0.
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Then the indicial equation (4) in Sec. 5.5 has a double root » = 0. This is Case 2 in
Sec. 5.4. In this case we first have only one solution, Jy(x). From (8) in Sec. 5.4 we see
that the desired second solution must be of the form

(2) yolx) = J'U().'} Inx + 2 Amxm.'

m=1

We substitute v, and its derivatives

Jo >
.\'E = J(', Inxd—= % 2 mAmxm_1

m=1
2k &y Z :
yo=Jdglnx + == — = + > mim — 1)A,x"2
= E
m=1

into (1). Then the sum of the three logarithmic terms xJg In x, J4 In x, and xJ, In x is zero
because J is a solution of (1). The terms —Jy/x and Jy/x (from xy” and y') cancel. Hence
we are left with

oc = =1 oc
2Jg + 2, m(m — DAX™ Y + X mA X"+ D, A Xt = 0.

m=1 m=1 m=1

Addition of the first and second series gives Sm?A4,,x" 1. The power series of Jo(x) is
obtained from (12) in Sec. 5.5 and the use of m!/m = (m — 1)! in the form

=% {_ 1 )mzmxmu—l =] (_ l)m_‘_2m—1
f r R —
Jo = 2 22m (mly 2 22"l (m — 1)

m=1 m=1

Together with Zm?A,,x™ ! and ZA,,x™*! this gives

oc { —1 ]mx?.m—l o

(3% > + > w4+ D At =0,

n= m=1 m=1

L 22" 2m! (m — 1)!
First, we show that the A,, with odd subscripts are all zero. The power x° occurs only in
the second series, with coefficient A;. Hence A; = 0. Next, we consider the even powers
x%%, The first series contains none. In the second series, m — 1 = 2s gives the term
(25 + 1)245..,x%. In the third series, m + | = 2s. Hence by equating the sum of the
coefficients of x> to zero we have

(2s + ])244234.1 + Age 1 = 0,

tn
I
-
]
3

Since A; = 0. we thus obtain A; = 0, A; = 0, - - -, successively.
We now equate the sum of the coefficients of x> to zero. For s = 0 this gives

=1+ 44, =0, thus Ay, =

=

For the other values of s we have in the first series in (3*) 2m — | = 25 + 1, hence
m=s+ 1,inthe second m — 1 = 25 + 1, and in the third m + 1 = 25 + 1. We thus obtain
(-

m + (2s + 2)2A23+2 + Ay, = 0.
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For s = 1 this yields

] 3

g + 1644 + A, = 0, thus Ay = _]_2_8-
and in general

iyt I 1+1+ 1 =4 3
(3) AZm . 221,1(”1!)2 + ) 3 =F m s M= 1, & .
Using the short notations

hy = hyp =1+ : + + : =23
(4) 1 =1 M, = > . m =23,
and inserting (4) and A; = A; = - - - = 0 into (2), we obtain the result

) = Jo(x) 1 3 i (_])m_Ihnx 2
Yalx) = Jolx) Inx TAZmrn2
m=1 2 m(mi}
(3)
1 3 11
=Jyx)Inx + —x2 — — xt + xb -
ol Inx+ 2" = 138 13824

Since J, and y, are linearly independent functions, they form a basis of (1) for x > 0.
Of course, another basis is obtained if we replace y, by an independent particular solution
of the form a(y, + bJy), where a (# 0) and b are constants. It is customary to choose
a = 2/mand b = y — In 2, where the number y = 0.577 215 664 90 - - - is the so-called
Euler constant, which is defined as the limit of

I |
I+ — 44 — —In;
5 3 ns

as s approaches infinity. The standard particular solution thus obtained is called the Bessel
function of the second kind of order zero (Fig. 109) or Neumann’s function of order
zero and is denoted by Yy(x). Thus [see (4)]

2 ¢ = (__I m—}.hm
(6) Yolx) = ; ["U()‘_) (111 % = 'y) + z _)—_ xz‘m:l .

2my 1712
ey 2" (m!)

For small x > 0 the function Yy(x) behaves about like In x (see Fig. 109, why?), and
Yolx) = — < asx— 0.

Bessel Functions of the Second Kind Y, (x)

For v =n = 1,2, - - - asecond solution can be obtained by manipulations similar to those
for n = 0, starting from (10), Sec 5.4. It turns out that in these cases the solution also
contains a logarithmic term.

The situation is not yet completely satisfactory, because the second solution is defined
differently, depending on whether the order » is an integer or not. To provide uniformity
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of formalism, it is desirable to adopt a form of the second solution that is valid for all
values of the order. For this reason we introduce a standard second solution Y, (x) defined
for all v by the formula

1
(a) Y, (x) = - [/, (x) cos vir — J_,(x)]

(7)
(b) Y (x) = lim ¥, (x).

r—T

This function is called the Bessel function of the second kind of order v or Neumann’s
function” of order v. Figure 109 shows Yy(x) and Y;(x).

Let us show that /, and Y, are indeed linearly independent for all » (and x > 0).

For noninteger order », the function Y, (x) is evidently a solution of Bessel's equation
because J,(x) and J_,(x) are solutions of that equation. Since for those v the solutions J,
and J_, are linearly independent and Y, involves J_,, the functions J,, and Y, are linearly
independent. Furthermore, it can be shown that the limit in (7b) exists and Y,, is a solution
of Bessel's equation for integer order: see Ref. [A13] in App. 1. We shall see that the
series development of Y,,(x) contains a logarithmic term. Hence J,,(x) and Y,,(x) are linearly
independent solutions of Bessel’s equation. The series development of Y, (x) can be
obtained if we insert the series (20) and (21), Sec. 5.5, for /,(x) and J_,(x) into (7a) and
then let v approach n; for details see Ref. [A13]. The result is

2 x 2 o D) St Ao

Pl =" ") ="y} S
) T @ (n 2 ‘}') Eu 22t (m + n)!
X n—m—1)!
i 2 2m—n x2m
2 2 m!
wherex >0,n =0,1,--+,and [asin (4)] hy=0. h, =1,

B = % . I s 1 g1
tm. = 2 m’ tmtn = 2 m-+n

-0.5

Fig. 109. Bessel functions of the second kind Y, and Y,.
(For a small table, see App. 5.)

TCARL NEUMANN (1832-1925), German mathematician and physicist. His work on potential theory sparked
the development in the field of integral equations by VITO VOLTERRA (1860-1940) of Rome, ERIC IVAR
FREDHOLM (1866-1927) of Stockholm, and DAVID HILBERT (1862-1943) of Géttingen (see the footnote
in Sec. 7.9).

The solutions Y, (x) are sometimes denoted by N, (x); in Ref. [A13] they are called Weber’s functions: Euler's
constant in (6) is often denoted by C or In y.
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For n = 0 the last sum in (8) is to be replaced by 0 [giving agreement with (6)].
Furthermore, it can be shown that

Y_o(@) = (=1)"Y,,(x).

Our main result may now be formulated as follows.

THEOREM 1

General Solution of Bessel’s Equation |

A general solution of Bessel's equation for all values of v (and x > 0) is |

(9) y(x) = CyJ, (x) + CoY,.(x). |

We finally mention that there is a practical need for solutions of Bessel's equation that
are complex for real values of x. For this purpose the solutions

(10)

HP(x)
H®(x)

= J,(x) + iY,(x)

=J,x) — i¥,(x)

are frequently used. These linearly independent functions are called Bessel functions of
the third kind of order v or first and second Hankel functions® of order v.

This finishes our discussion on Bessel functions, except for their “orthogonality,” which
we explain in Sec. 5.7. Applications to vibrations follow in Sec. 12.9.

SOME FURTHER ODEs REDUCIBLE TO
BESSEL’S EQUATIONS

(See also Sec. 5.5.)
Using the indicated substitutions, find a general solution in

1-10

terms of J, and Y. Indicate whether you could also use J_,

instead of Y. (Show the details of your work.)

1 22" + n' + x%2-25y=0

2.:%" + ' + -y =0 (Bx=72)

3. 4_\) +4y' +y=0 (Vx = z)

4. x3" +y +36y=0 (12Vx=7)

500" +xy' 4+ (4t — 16y =0 (x%=2)

6. xz‘,-" +ay = y=0 (1 8=12)

7. xy' +1|y’+.n=0 (y = x"%u)

8. v" + 4x%y =0 =u\/; r2=z
9.x2‘v"—5.\v +9(.:. —8) = (\—tuxa—::
10. xy" + 7y +dxy =0 (y=x"3u,2x=72)

11. (Hankel functions) Show that the Hankel functions (10)
form a basis of solutions of Bessel's equation for any v.

12. CAS EXPERIMENT. Bessel Functions for Large x.
It can be shown that for large x,

(11) Y, (x) ~ V2/(mx) sin (x — 3nm — 57

with ~ defined as in (14) of Sec. 5.5.

(a) Graph Y,(x) forn = 0, - -+, 5 on common axes.
Are there relations between zeros of one function and
extrema of another? For what functions?

(b) Find out from graphs from which x = x, on
the curves of (8) and (11) (both obtained from your
CAS) practically coincide. How does x, change
with n?

(c) Calculate the first ten zeros x,,. m = 1, - - -, 10,
of Yp(x) from your CAS and from (11). How does the
error behave as m increases?

(d) Do (c) for ¥;(x) and Y,(x). How do the errors
compare to those in (¢)?

SHERMANN HANKEL (1839-1873), German mathematician,
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13. Modified Bessel functions of the first kind of order v 14. (Modified Bessel functions I,) Show that /,(x) is real

are defined by 7,(x) = i~ "/, (ix). i = V —1. Show that for all real x (and real »), [,(x) # 0 for all real x # 0,
[, satisfies the ODE and /_,,(x) = I,,(x), where n is any integer.
(12) 2 +x =62+ Py =0 15. Modified Bessel functions of the third kind (sometimes
’ i ) called of the second kind) are defined by the formula (14)
and has the representation below. Show that they satisfy the ODE (12).
o _‘,21;:+p T
(13) L) =, (14) K, () = —— [[_,(x) = [,(x)]

22t T + v+ 1) 2 sin v

nie=0

5./ Sturm-Liouville Problem:s.
Orthogonal Functions

So far we have considered initial value problems. We recall from Sec. 2.1 that such a problem
consists of an ODE, say, of second order, and initial conditions y(xp) = Ko, _\"(xo) =K,
referring to the same point (initial point) x = x,. We now turn to boundary value problems.
A boundary value problem consists of an ODE and given boundary conditions referring
to the two boundary points (endpoints) x = a and x = b of a given interval a = x = b.
To solve such a problem means to find a solution of the ODE on the interval a = x = b
satisfying the boundary conditions.

We shall see that Legendre’s, Bessel’s, and other ODEs of importance in engineering
can be written as a Sturm-Liouville equation

(1) [Py ]" + [glx) + Ar(x)]y = 0

involving a parameter A. The boundary value problem consisting of an ODE (1) and given
Sturm-Liouville boundary conditions

(@  ky(a) + ky'(a) = 0
(b) Ly®) + L,y (b)) =0

(2)

is called a Sturm—-Liouville problem.? We shall see further that these problems lead to
useful series developments in terms of particular solutions of (1), (2). Crucial in this
connection is orthogonality to be discussed later in this section,

In (1) we make the assumptions that p, q, r, and p’ are continuous on a = x = b, and

rix) >0 (a =x = b).

In (2) we assume that k;, k, are given constants, not both zero, and so are /;, /5, not both
Zero.

9JACQUES CHARLES FRANCOIS STURM (1803-1855), was born and studied in Switzerland and then
moved to Paris, where he later became the successor of Poisson in the chair of mechanics at the Sorbonne (the
University of Paris).

JOSEPH LIOUVILLE (1809-1882), French mathematician and professor in Paris, contributed to various
fields in mathematics and is particularly known by his important work in complex analysis (Liouville's theorem;
Sec. 14.4), special functions, differential geometry, and number theory.
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EXAMPLE 1

EXAMPLE 2

CHAP.5 Series Solutions of ODEs. Special Functions

Legendre’s and Bessel’s Equations are Sturm—Liouville Equations
Legendre’s equation (1 — x%)y" — 20’ + n(n + 1)y = 0 may be written

[ =] +av=0 A =nn+ 1)
Thisis (1) withp = 1 = x%. ¢ = 0, and r = 1.

In Bessel’s equation
2

¥

Y +ir+ @2 —ndy=0 ¥ = dyldx, etc.

as a model in physics or elsewhere, one often likes to have another parameter & in addition to a. For this reason
we set ¥ = kx. Then by the chain rule ¥ = dv/dX = (dv/dx) dxidx = y'lk. ¥ = _\'"ﬂcz. In the first two terms, k>
and k drop out and we get

.1'2_\'" +xy + (A% - ndy =0

Division by x gives the Sturm-Liouville equation
2
_— n
[A‘_\' ] + (— v + A.!:)_\-‘ =0 A=%2

Thisis (1) withp = x, g = —fx, and r = x. E

Eigenfunctions, Eigenvalues

Clearly. y = 0 is a solution—the “trivial solution”—for any A because (1) is homogeneous
and (2) has zeros on the right. This is of no interest. We want to find eigenfunctions y(x),
that is, solutions of (1) satisfying (2) without being identically zero. We call a number A
for which an eigenfunction exists an eigenvalue of the Sturm-Liouville problem (1), (2).

Trigonometric Functions as Eigenfunctions. Vibrating String
Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem
(3) Y+ Aar =0, v(0) =0, v{m = 0.

This problem arises, for instance, if an elastic string (a violin string, for example) is stretched a little and then
fixed at its ends x = 0 and x = 7 and allowed to vibrate. Then y(x) is the “space function” of the deflection
ulx, 1) of the string, assumed in the form u(x. 7) = y(x)w(r), where r is time. (This model will be discussed in
great detail in Secs. 12.2-12.4.)

Solution. From (1) and (2) we seethat p = 1, g =0, r=1lin(landa =0, b =mk; =1 = 1,
ky = I = 0 in (2). For negative A = —» a general solution of the ODE in (3) is y(x) = ¢1e"™ + cpe™ . From
the boundary conditions we obtain ¢; = ¢ = 0, so that y = 0, which is not an eigenfunction. For A = () the
situation is similar. For positive A = »? a general solution is

y(x) = A cos vx + B sin px.
From the first boundary condition we obtain y(0) = A = (). The second boundary condition then yields

yim) = Bsinvr =0, thus p=A k], £2 -0

For » =0 we have y = 0. For A = v =1,4,916,---, taking B = [, we obtain

y(x) = sin vx (r=12°--)
Hence the eigenvalues of the problem are A = »2, where v = 1, 2. - - - . and corresponding eigenfunctions are
y(x) = sin px, where p = 1,2, - -+, | |

Existence of Eigenvalues

Eigenvalues of a Sturm-Liouville problem (1), (2), even infinitely many, exist under rather
general conditions on p, ¢. rin (1). (Sufficient are the conditions in Theorem 1. below,
together with p(x) > 0 and r(x) > 0 on @ < x < b. Proofs are complicated; see Ref. [A3]
or [Al1] listed in App. 1.)
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DEFINITION

EXAMPLE 3

Reality of Eigenvalues

Furthermore, if p, g, r, and p’ in (1) are real-valued and continuous on the interval
a = x = b and r is positive throughout that interval (or negative throughout that interval),
then all the eigenvalues of the Sturm-Liouville problem (1), (2) are real. (Proof in
App. 4.) This is what the engineer would expect since eigenvalues are often related to
frequencies, energies, or other physical quantities that must be real.

Orthogonality

The most remarkable and important property of eigenfunctions of Sturm-Liouville problems
is their orthogonality. which will be crucial in series developments in terms of eigenfunctions.

Orthogonality

Functions y;(x), ya(x), - - - defined on some interval ¢ = x = b are called orthogonal
on this interval with respect to the weight function r(x) > 0 if for all m and all n
different from m,

b

(4) f () v, () v, (x) dx = 0 (m # n).

The norm ||y, || of y,, is defined by

b
) Iyl =/ | 0y de.

Note that this is the square root of the integral in (4) with n = m.

The functions y;, v, -+ + are called orthonormal on ¢ = x = b if they are
orthogonal on this interval and all have norm 1.

If r(x) = 1, we more briefly call the functions orthogonal instead of orthogonal
with respect to r(x) = 1; similarly for orthonormality. Then

b b
j Vou(X) ¥p(x) dx = 0 (m # n), [yl = J- Vo 2(x) dx .

Orthogonal Functions. Orthonormal Functions

The functions y,,(x) = sinmx, m = 1, 2, - - - form an orthogonal set on the interval — 7 = x = 7. because for
m # n we obtain by integration [see (11) in App. A3.1]

o o w

I m
J’ V(%) yp(x) dx = J’ sin px sin nx dy = J- cos (m — mxdx — = j cos (m + n)x dx

12 | —
]
=]

The norm ||y, || equals V77, because

w

3,12 = f sin? mx dv = (m=1,

!\)

Hence the corresponding orthonormal set, obtained by division by the norm, is

sin x sin sin 3x

Vo ¥ ik v =
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PROOF

CHAP. 5 Series Solutions of ODEs. Special Functions

Orthogonality of Eigenfunctions

Orthogonality of Eigenfunctions

Suppose that the functions p, g, r, and p' in the Sturm-Liouville equation (1) are
real-valued and continuous and r(x) > 0 on the interval a = x = b. Let y,,(x) and
yn(x) be eigenfunctions of the Sturm—Liouville problem (1), (2) that correspond to
different eigenvalues A,, and A, respectively. Then v,,, v, are orthogonal on that
interval with respect to the weight function r, that is,

b

(6) f r(X) ¥ () v, (x) dx = 0 (m # n).

@

If pla) = 0. then (2a) can be dropped from the problem. If p(b) = 0, then (2b)
can be dropped. [1t is then required that y and y" remain bounded at such a point,
and the problem is called singular, as opposed to a regular problem in which (2)
‘ is used.]

If p(a) = p(b). then (2) can be replaced by the “periodic boundary conditions”

‘ (7) y(a) = y(b), Vi) = y'(b).

The boundary value problem consisting of the Sturm-Liouville equation (1) and the
periodic boundary conditions (7) is called a periodic Sturm-Liouville problem.

By assumption, y,,, and y,, satisfy the Sturm-Liouville equations
Py + @+ APy =0
(pyn) + (@ + Ay, =0
respectively. We multiply the first equation by y,,, the second by —v,,. and add,
A = A ¥m¥n = Yulp¥n)" = Yupym)" = [(2¥2)¥m = (Pym)yal’

where the last equality can be readily verified by performing the indicated differentiation
of the last expression in brackets, This expression is continuous on ¢ = x = b since p
and p" are continuous by assumption and y,,,, v,, are solutions of (1). Integrating over x
from a to b, we thus obtain

b b
(8) ()\m i An) J’ F¥m¥n dx = |:P(}':LVm i ."1rn.‘"n.}i| (a < b)
a

a

The expression on the right equals the sum of the subsequent Lines | and 2,

- POy (DY B) — ¥} (b)ya(b)] (Line 1)
—p@)[yp@yn(@) — ym(@yu(a)] (Line 2).

Hence if (9) is zero, (8) with A,, — A, # 0 implies the orthogonality (6). Accordingly,
we have to show that (9) is zero, using the boundary conditions (2) as needed.
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EXAMPLE 4

EXAMPLE 5

EXAMPLE 6

Case 1. pl(a) = p(b) = 0. Clearly, (9) is zero, and (2) is not needed.
Case 2. p(a) # 0, p(b) = 0. Line 1 of (9) is zero. Consider Line 2. From (2a) we have
kyyn(a) + ksy,i(a) = 0,
kyym(@) + koym(a) = 0.
Let ky # 0. We multiply the first equation by y,.(a), the last by —yv,,(a) and add,
kol ¥ (@) ym(@) = yp(@)y,(@)] = 0.

This is ks times Line 2 of (9), which thus is zero since k, # 0. If ks = 0, then k; # 0 by
assumption, and the argument of proof is similar.

Case 3. p(a) = 0, p(b) # 0. Line 2 of (9) is zero. From (2b) it follows that Line 1 of (9)
is zero; this is similar to Case 2.

Case 4. p(a) # 0, p(b) # 0. We use both (2a) and (2b) and proceed as in Cases 2 and 3.
Case 5. p(a) = p(b). Then (9) becomes

p(b)[";r{b)‘m(b] — .\‘:n.(b)."‘n{b) i .";(a).\‘-m(“} 2 ."':;:.(f"].\"n(a)]'

The expression in brackets [ - -] is zero, either by (2) used as before, or more directly by
(7). Hence in this case, (7) can be used instead of (2), as claimed. This completes the
proof of Theorem 1. m

Application of Theorem 1. Vibrating Elastic String

The ODE in Example 2 is a Sturm-Liouville equation withp = 1, ¢ = 0. and r = 1. From Theorem 1 it follows
that the eigenfunctions v,, = sinmx (m = 1, 2, + » ) are orthogonal on the interval 0 = x = = =
Application of Theorem 1. Orthogonality of the Legendre Polynomials

Legendre’s equation is a Sturm-Liouville equation (see Example 1)

[0 =21 + A =0, A=nn+1)
with p = 1 — x% g = 0,and r = 1. Since p(—1) = p(1) = 0, we need no boundary conditions, but have a
singular Sturm—Liouville problem on the interval —1 = x = 1. We know that for n = 0, 1, - -+, hence
A=0,1-22-3,---, the Legendre polynomials P, (x) are solutions of the problem. Hence these are the

eigenfunctions. From Theorem | it follows that they are orthogonal on that interval, that is,
1
(10) f P () P(x) dy = 0 (m#n. MW

Application of Theorem 1. Orthogonality of the Bessel Functions J,(x)

The Bessel function J,,(¥) with fixed integer n = 0 satisfies Bessel's equation (Sec. 5.5)
P2 @) + T @) + G2 = n?)J,E) = 0,

where J n = di[dX, J’,, = dﬂj,,fd_?z, In Example | we transformed this equation, by setting ¥ = kx, into a
Sturm-Liouville equation

2
n
[x/) k0] + (— =¥ ;'cz_r) Jotky) =0

with p(x) = x, g(x) = —n®/x. r(x) = x, and parameter A = k2. Since p(0) = 0, Theorem 1 implies orthogonality
on an interval 0 = x = R (R given, fixed) of those solutions J,,(kx) that are zero at x = R, that is,

(1) JulkR) =0 (n fixed).
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THEOREM 2

EXAMPLE 7

CHAP. 5 Series Solutions of ODEs. Special Functions

[Note that g(x) = —n/x is discontinuous at 0, but this does not affect the proof of Theorem 1.] It can be shown
(see Ref. [A13]) that J,,(¥) has infinitely many zeros, say, ¥ = a,,; < a5 < * -+ (see Fig. 107 in Sec. 5.5 for
n = 0and 1). Hence we must have

(12) kR = ay thus Ko, = i iR (m=1,2 ).

This proves the following orthogonality property.

Orthogonality of Bessel Functions

For each fixed nonnegative integer n the sequence of Bessel functions of the first
kind J,(k;, 1), J(ky 0X), + - = with k,,,,, as in (12) forms an orthogonal set on the
interval 0 = x = R with respect to the weight function r(x) = x, that is,

R
(13) xJ (K X) Ik ) dx = 0 (j # m, n fixed).

=

Hence we have obtained infinitely many erthogonal sets, each corresponding to one of the fixved values n. This
also illustrates the importance of the zeros of the Bessel functions. |
Eigenvalues from Graphs
Solve the Sturm-Liouville problem Vi Ay =0, y(0) + ,\"(0) =0, y(m — _1"(17! =0
Solution. A general solution and its derivative are
y = A cos kx + B sin kx and v = —Ak sin kx + Bk cos kx. k= VA
The first boundary condition gives y(0) + v'(0) = A + Bk = 0, hence A = —Bk. The second boundary condition
and substitution of A = —Bk give
v(m) — ¥'(7) = A cos wk + B sin wk + Ak sin wk — Bk cos wk
= —Bk cos wk + B sin wk — Bk® sin 7wk — Bk cos wk = 0.

We must have B # 0 since otherwise B = A = (), hence y = 0, which is not an eigenfunction. Division by
B cos wk gives
—2k
—k + tan 7k — k2 tan 7k — k = 0, thus lanfrk=k2 0

The graph in Fig. 110 now shows us where to look for eigenvalues. These correspond to the k-values of the points
of intersection of tan 7k and the right side —2k/(k* — 1) of the last equation. The eigenvalues are A, = k,,>.
where Ap = 0 with eigenfunction vy = 1 and the other A, are located near 22,32, 42, . .. with eigenfunctions
cos k,,x and sin kv, m = 1, 2, - - -, The precise numeric determination of the eigenvalues would require a
root-finding method (such as those given in Sec. 19.2). m

I}. /

/

e 1)

\
U P S —

_3__ il I W)

Fig-110. Example 7. Circles mark the intersections of tan 7k and —2k/(k* — 1)
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1. (Proof of Theorem 1) Carry out the details in Cases
3 and 4.

o

Normalization of eigenfunctions y,, of (1), (2) means
that we multiply y,, by a nonzero constant ¢,,, such that
€V has norm 1. Show that z,, = ¢v,,, withany ¢ # 0
is an eigenfunction for the eigenvalue corresponding to
Ve
3. (Change of x) Show that if the functions yo(x), y;(x),
-+ - form an orthogonal set on an interval a = x = b
(with r(x) = 1), then the functions yo(ct + k), yy(ct + k),
-, ¢ > 0, form an orthogonal set on the interval
(a—klc=t=(b— ke
(Change of x) Using Prob. 3, derive the orthogonality
of 1, cos 7rx, sin wx, cos2x, sin2mx, -++ on
=1 =x=1 (r(x) = 1) from that of 1, cos x, sin x,
cos 2x, sin 2x, - -
5. (Legendre polynomials) Show that the functions
P, (cos @), n = 0,1, - -+, form an orthogonal set on
the interval 0 = 6 = 7 with respect to the weight
function sin 6.
(Tranformation to Sturm-Liouville form) Show that
vy + fy' + (g + Ah)y = 0 takes the form (1) if you
set p = exp ([f dx), ¢ = pg. r = hp. Why would you
do such a transformation?

4

oD —TEXx=E W

6

|7-19| STURM-LIOUVILLE PROBLEMS

Write the given ODE in the form (1) if it is in a different
form. (Use Prob. 6.) Find the eigenvalues and eigenfunctions.
Verify orthogonality. (Show the details of your work.)

7. 3" + Ay =0, ¥0)=0, ¥5)=0
8.y +Ay=0, y(©0=0 y@m@=0
9.y + A&y =0, y0) =0, y@L =0

10. y" + Ay = 0,

1. y" + Ay =0,

12. y" 4+ Ay = 0,
y() +y'(1) =0

v(0) = y(1), ¥ (0) = y'(1)
y(0) =y2m), ¥ (0)=y'@2n)
y(0) + y'(0) = 0,

13.y"+Ay=0  y0) =0, y()+y(1)=0

14. (xy") + &x"ly =0, y(1) =0, y'(e) = 0.
(Set x = €'.)

15. (x7 1) + (A + a3y = 0. y(1) =0,
y(e™ = 0. (Set x = ¢€'.)

16. y" — 2y + (A + 1)y =0, ¥(0) = 0,
y(1) =20

17. " + 8y + (A + 16)y =0,  y(0) =0,
y(m) =10

8 x"+2y +axy=0. y(m=0, y2m=0.

(Use a CAS orset y = x™'u.)

19. y" = 2x7 + (k® + 2x72)y = 0,y(1) = 0, y(2) = 0.
(Use a CAS orset y = xu.)

20. TEAM PROJECT. Special Functions. Orthogonal
polynomials play a great role in applications. For this
reason, Legendre polynomials and various other
orthogonal polynomials have been studied extensively;
see Refs. [GR1]. [GR10] in App. 1. Consider some of
the most important ones as follows.

(a) Chebyshev polynomials'® of the first and second
kind are defined by

T,(x) = cos (n arccos x)

sin [(n + 1) arccos x|

o V1 —»2
respectively, where n = 0. 1, » - . Show that
To=1, )= x Tolx) = 222 — 1,
T5(x) = 4x3 — 3x,
Upg=1, Uy(x) =2x, Usp(x) = 4x? — 1,

Us(x) = 8x® — 4x.

Show that the Chebyshev polynomials 7,(x) are
orthogonal on the interval —1 = x = 1 with respect to

the weight function r(x) = I/V1 —x% (Hint. To
evaluate the integral, set arccosx = #6.) Verify that
T,(x).n =0, 1,2, 3, satisfy the Chebyshev equation

1 —x2" —x' +n2v=0.

(b) Orthogonality on an infinite interval: Laguerre

polynomials'! are defined by Ly = 1, and
e’ d'(x"e™)
L,(x) = 5 T n=12, .
Show that
Lix)y=1—x, Lo(x) = 1 — 2x + x%2,
Li(x) = 1 — 3x + 3x*2 — x%6.

Prove that the Laguerre polynomials are orthogonal on
the positive axis 0 = x < = with respect to the weight
function r(x) = e~ *. Hint. Since the highest power in
L, is x™, it suffices to show that [ e™"x*L, dx = 0 for
k < n. Do this by k integrations by parts.

1OpAFNUTI CHEBYSHEV (1821-1894), Russian mathematician, is known for his work in approximation
theory and the theory of numbers. Another transliteration of the name is TCHEBICHEF.
MEDMOND LAGUERRE (1834-1886). French mathematician, who did research work in geometry and in

the theory of infinite series.
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5.8 Orthogonal Eigenfunction Expansions

Orthogonal functions (obtained from Sturm-Liouville problems or otherwise) yield
important series developments of given functions, as we shall see. This includes the famous
Fourier series (to which we devote Chaps. 11 and 12). the daily bread of the physicist and
engineer for solving problems in heat conduction. mechanical and electrical vibrations, efc.
Indeed, orthogonality is one of the most useful ideas ever introduced in applied mathematics.

Standard Notation for Orthogonality and Orthonormality

The integral (4) in Sec. 5.7 defining orthogonality is denoted by (v,,,. v,,). This is standard.
Also, Kronecker’s delta'® 8, is defined by 8,,,, = 0if m # nand §,,,, = 1 if m = n
(thus o,,,, = 1). Hence for orthonormal functions vg, vy, Ve, -+ with respect (o weight
r(x) (> 0) on a = x = b we can now simply write (v,,,, ¥,) = 0O,,,,, Written out

5 O ) = [ O30 0) dx = 8, =

b {U if m#=n
1 if m=n.

Also, for the norm we can now write

b

@) Iyl = Vism 3w = | | H0yn2e0 dx.

- .??’(
Write down a few examples of your own, to get used to this practical short notation.

Orthogonal Series

Now comes the instant that shows why orthogonality is a fundamental concept. Let
Vos V1. Vo, © * * be an orthogonal set with respect to weight 7(x) on an interval a = x = b.
Let f(x) be a function that can be represented by a convergent series

(3.} f{-r) == E an?.}'rn(x} == (Iu_\-'o().') T a'l)"l(-r) isreneg

m=0

This is called an orthogonal expansion or generalized Fourier series. If the y,, are
eigenfunctions of a Sturm-Liouville problem, we call (3) an eigenfunction expansion. In
(3) we use again m for summation since n will be used as a fixed order of Bessel functions.

Given f(x), we have to determine the coefficients in (3), called the Fourier constants
of f(x) with respect to yy, vy, * - * . Because of the orthogonality this is simple. All we have
to do is to multiply both sides of (3) by r(x) v, (x) (n fixed) and then integrate on both sides
from a to b. We assume that term-by-term integration is permissible. (This is justified, for
instance, in the case of “uniform convergence,” as is shown in Sec. 15.5.) Then we obtain

b =% *x

b
(f‘ -“?1) = f 'rf-‘.ﬂ d" = f z anl.‘.‘ni .-\“H (f'r = 2 f“'l‘?l(.“!?l' “‘)1)‘
a

r
o m=0 m=0

2 EOPOLD KRONECKER (1823-1891), German mathematician at Berlin University, who made important
contributions to algebra, group theory, and number theory.
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EXAMPLE 1

L
el
|

Because of the orthogonality all the integrals on the right are zero, except when m = n.
Hence the whole infinite series reduces to the single term

ﬂ?l(:".ll‘ },ﬂ.) = ail ” y"ﬁ- " 2'

Assuming that all the functions y,, have nonzero norm, we can divide by |y, || % writing
again m for n, to be in agreement with (3), we get the desired formula for the Fourier
constants

(fs Ym) 1 4
va E Tyl [r@f@ya@dc =01,

4) Ay, =

Fourier Series

A most important class of eigenfunction expansions is obtained from the periodic Sturm-Liouville problem
_\’" + Ay = 0, yim) = y(—m), _\"(11'] = _\"(—17),

A general solution of the ODE is y = A cos kx + B sin kx, where k& = VA, Substituting y and its derivative
into the boundary conditions, we obtain

A cos kw + Bsinkw = A cos (—km) + B sin(—km)
—kA sinkw + kB cos km = —kA sin (—km) + kB cos (—k7).

Since cos (—a) = cos a. the cosine terms cancel, so that these equations give no condition for these terms. Since
sin (—a) = —sin @, the equations gives the condition sink7w = 0, hence km =mm k=m=0, 1,2, -- -, s0
that the eigenfunctions are

cos =1, COos X, sin .x, cos 2x, St 2E, COS Mmx, sinmux, = -+

corresponding pairwise to the eigenvalues A = k% =0, 1,4, - -, m? - -+ (sin 0 = 0 is not an eigenfunction.)

By Theorem 1 in Sec. 5.7, any two of these belonging to different eigenvalues are orthogonal on the interval
—7 = x = 7 (note that #(x) = 1 for the present ODE). The orthogonality of cos mx and sin mx for the same
m follows by integration,

-

I ™
j Cos mx sin mx dy = = J. sin 2mx dx = (.
iy —ar

For the norms we get |1 = V2w, and V7 for all the others, as you may verify by integrating |, cos® x,
sin” x, etc.. from — to 7. This gives the series (with a slight extension of notation since we have two functions
for each eigenvalue 1, 4,9, -+ +)

oa

(5) flx) = ap + 2 (a,y, cos mx + by, sinmx).
m=1

According to (4) the coefficients (withm = 1,2, + - +) are
I i i gl {9 )
(6) ag = Eym _ﬂ:f(,t) dx, a,, = - -.,,ﬂ'r) cos mx dx, b, = T ‘ﬂf(.r) sin mx dx.

The series (5) is called the Fourier series of f(x). Its coefficients are called the Fourier coefficients of f(x).
as given by the so-called Euler formulas (6) (not to be confused with the Euler formula (11) in Sec. 2.2).
For instance, for the “periodic rectangular wave™ in Fig. 111, given by

-1 if —r<x<0
flx)y= { and flx + 27 = f(x),

if D<xy<mw
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EXAMPLE 2

CHAP. 5 Series Solutions of ODEs. Special Functions

we get from (6) the values ag = 0 and

] w
|
Ay = — J’ (—l)cosmxd.r+j l-cnsm.td,t] =0,
™ L~ —ar 0
1 ~ 0 T
by =—— f (—l)sinmxdx+J- l-sinmxdx]
T St o 0
1 [ cos mx |© cosmx |”
I | m i m o
1 4/(mm) ifm=1,3,---,
=—|[1—-2cosmm+1] =
mm 0 ifm=2,4---
Hence the Fourier series of the periodic rectangular wave is
(x) = 2 + 2 s 3x + L& S5x + i
flx) = 5 \sinx + 7 sin3x + = sinSx ;
flx)
\ 1 1 T
[ I 1
| I 1
T 8§ 5w s
L _1 1 ]

Fig. 111, Periodic rectangular wave in Example 1

Fourier series are by far the most important eigenfunction expansions, so important to
the engineer that we shall devote two chapters (11 and 12) to them and their applications,
and discuss numerous examples.

Did it surprise you that a series of continuous functions (sine functions) can represent
a discontinuous function? More on this in Chap. 11.

Fourier—Legendre Series

A Fourier-Legendre series is an eigenfunction expansion

flx) = 2 A Prn(x) = agPo + apPy(x) + agPolx) + - - - = ag + a;x + az[g-.rz -+
m=0

in terms of Legendre polynomials (Sec. 5.3). The latter are the eigenfunctions of the Sturm-Liouville problem
in Example 5 of Sec. 5.7 on the interval —1 = x = 1. We have r(x) = | for Legendre’s equation, and (4) gives

2m + |

1
(7) Oy = f Fx) Pry(x) dx. m=0,1,---
2 -1

because the norm is

[ a
3
(8 Pl = f 92 dr = = =
) [ 2l _le(.x} dx ] m=0,1,--+)

as we state without proof. (The proof is tricky: it uses Rodrigues’s formula in Problem Set 5.3 and a reduction
of the resulting integral to a quotient of gamma functions.)
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EXAMPLE 3

For instance, let f(x) = sin 7x. Then we obtain the coefficients

1 1
2m + 1 . 3 .
Oy = = (sin x) P (x) dx, thus o=z x sin 7x dx =
) -1 -1

3w

= (.95493, etc.

Hence the Fourier—Legendre series of sin 7x is

sin x = 0.95493P(x) — 1.15824P5(x) + 0.21429P5(x) — 0.01664P-(x) + 0.00068Pg(x) — 0,00002P11(x) + - - -,

The coefficient of Py is about 3+ 1077 The sum of the first three nonzero terms gives a curve that practically
coincides with the sine curve. Can you see why the even-numbered coefficients are zero? Why ag is the absolutely
biggest coefficient? ]

Fourier—Bessel Series

In Example 6 of Sec. 5.7 we obtained infinitely many orthogonal sets of Bessel functions, one for each of Jg,
Jy. Jo, -+ - . Each set is orthogonal on an interval 0 = x = R with a fixed positive R of our choice and with
respect to the weight x. The orthogonal set for J, is J,(k,, 13). Jy,(ky 0X), Joo(kyy gx), -+, where n is fixed and
Ky is given in (12), Sec. 5.7. The corresponding Fourier-Bessel series is

aa
9) flx) = 2 ﬂ'mJn(kn,m-"J = ay Sk, 10) + azjnikﬂkzx} + agd(ky, qx) + - (n fixed).

m=1
The coefficients are (with o, ,,, = ky ;, R)

5 R

10 B P il
(10) % Rz.)'i...l(a‘u.m) 0

X f(x) (ke ) e, m=1,2+-

because the square of the norm is

R
2 2 Rz 2
(l IJ ||Jn(k‘n.1rrﬂ H = "“J‘l’l (kﬂ.‘??l"‘-) d_\' == T JN, + l(kn.?uR)
0

as we state without proof (which is tricky: see the discussion beginning on p. 576 of [A13]).

For instance, let us consider f(x) = 1 — +Z and take R = 1 and # = 0 in the series (9), simply writing A for
Qg e Then k,, ,, = ag, = A = 2,405, 5.520, 8.654, 11.792, etc. (use a CAS or Table Al in App. 5). Next we
calculate the coefficients a,,, by (10),

1

Oy = % f,\-u — ) Jp(A) dx.
Jrl (A) 1]

This can be integrated by a CAS or by formulas as follows. First use [J.'Jﬂ;\.\'}}' = AxJgp(Ax) from Theorem 3
in Sec. 5.5 and then integration by parts,

1

- f—(l—-%ud-———z—[i L= X)xJy(A
0)\ A%)JglAx) dx = -’12(»") A( x9)adq(Ax)

%N

oy, =

1 1 1
- = f.rjl(ztt)(—?.t) dx} ;
o AJy

The integral-free part is zero. The remaining integral can be evaluated by [xzfz(;lr)] f= uzfl(u) from Theorem
3 in Sec. 5.5. This gives
4J5(A)

. = )(2‘]12()() (A= agy).

Numeric values can be obtained from a CAS (or from the table on p. 409 of Ref. [GR1] in App. 1., together
with the formula J, = 2x"1J1 — Jp in Theorem 3 of Sec. 5.5). This gives the eigenfunction expansion of
1 — x2 in terms of Bessel functions Jo. that is,

I — 2% = 1.1081Jp(2.405x) — 0.1398/(5.520x) + 0.0455/0(8.654x) — 0.0210/(11.792x) + -+ -

A graph would show that the curve of 1 — x and that of the sum of the first three terms practically coincide. ™
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Mean Square Convergence.
Completeness of Orthonormal Sets

The remaining part of this section will give an introduction to a convergence suitable in
connection with orthogonal series and quite different from the convergence used in
calculus for Taylor series.

In practice, one uses only orthonormal sets that consist of “sufficiently many™ functions,
so that one can represent large classes of functions by a generalized Fourier series (3)—
certainly all continuous functions on an interval ¢ = x = b, but also functions that do “not
have too many” discontinuities (see Example 1). Such orthonormal sets are called “complete™
(in the set of functions considered; definition below). For instance, the orthonormal sets
corresponding to Examples 1-3 are complete in the set of functions continuous on the
intervals considered (or even in more general sets of functions; see Ref. [GR7], Secs. 3.4-3.7.
listed in App. 1, where “complete sets™ bear the more modern name “total sets”).

In this connection, convergence is convergence in the norm, also called mean-square
convergence; that is, a sequence of functions f,. is called convergent with the limit f if

(12%) Jim (£, — £]| =0

written out by (2) (where we can drop the square root, as this does not affect the limit)
b

4D m f FEOLf) — FI? dx = 0.

Accordingly, the series (3) converges and represents f if

b

(13) Jim | rolste) = feor dx =0
where ;. is the kth partial sum of (3).
ke
(14) si(x) = 2 A Y (X).
=0
By definition, an orthonormal set yg, v;, * - - on an interval a = x = b is complete in

a set of functions § defined on ¢ = x = b if we can approximate every f belonging to §
arbitrarily closely by a linear combination agyg + ayy; + * * + + a5y, that is, technically,
if for every € = 0 we can find constants ay, * * *, a;, (with & large enough) such that

(15) lf = (@oyo + -+ - + @y || < e.
An interesting and basic consequence of the integral in (13) is obtained as follows.
Performing the square and using (14), we first have

b b

b b
fr{‘r)[sk(x) — fOP dx = f rs2de — 2 f rfs, dx + j rf? dx

b k 2 k b b
= f r AV | dx — 2 2 a,, f rfy,, dx + f rf? dx.
a a

@ m=0 n=0

The first integral on the right equals X a,,”> because Jry,y, dx = 0 for m # I, and

J ry,,2 dx = 1. In the second sum on the right, the integral equals a,,, by (4) with
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THEOREM 1

PROOF

EXAMPLE 4

||l 2 = 1. Hence the first term on the right cancels half of the second term, so that the
right side reduces to

ke b
- 2 31}124—["}(‘2(1’1‘-
a

m=0

This is nonnegative because in the previous formula the integrand on the left is nonnegative
(recall that the weight r(x) is positive!) and so is the integral on the left. This proves the
important Bessel’s inequality

k b
(16) a” = |12 = f r(0)f(x)? dx k=1,2,++9).
0 a

m=

Here we can let k — 2, because the left sides form a monotone increasing sequence that
is bounded by the right side. so that we have convergence by the familiar Theorem 1 in
App. A3.3. Hence

(17) 2 an’ = |12
m=0
Furthermore, if vy, v;, * - - is complete in a set of functions S, then (13) holds for every

f belonging to §. By (15) this implies equality in (16) with k — 2. Hence in the case of
completeness every f in § satisfies the so-called Parseval’s equality

o b
{18) 2 “1??.2 = "Jc"2 = J- "(.’C)f(.l‘]2 dx.

m=0 a

As a consequence of (18) we prove that in the case of completeness there is no function
orthogonal to every function of the orthonormal set, with the trivial exception of a function
of zero norm:

Completeness

Let vy, vy, * + + be a complete orthonormal set on a = x = b in a set of functions S.
Then if a function f belongs to S and is orthogonal to every y,, . it must have norm
zero. In particular, if [ is continuous, then f must be identically zero.

Since f is orthogonal to every y,,., the left side of (18) must be zero. If f is continuous,
then [|f]| = O implies f(x) = 0, as can be seen directly from (2) with f instead of y,,
because r(x) = 0. o

Fourier Series

The orthonormal set in Example 1 is complete in the set of continuous functions on —7 = x = . Verify directly
that f(x) = 0 is the only continuous function orthogonal to all the functions of that set.

Solution. Lef f be any continuous function. By the orthogonality (we can omit V27 and V'7),

w

w -
f 1+ flx)de =0, f flx) cos my dx = 0, j flx) sinmx dx = 0.
— —

=

Hence a,, = 0 and b,,, = 0 in (6) for all m, so that (3) reduces to f(x) = 0. [
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This is the end of Chap. 5 on the power series method and the Frobenius method, which
are indispensable in solving linear ODEs with variable coefficients, some of the most
important of which we have discussed and solved. We have also seen that the latter are
important sources of special functions having orthogonality properties that make them
suitable for orthogonal series representations of given functions.

FOURIER-LEGENDRE SERIES

=

Showing the details of your calculations, develop:

1. 7x* — 642
3xF—x2+x—1

2. (x + 1)

2 .3

4. 1, x, x=, x°

5. Prove that if f(x) in Example 2 is even [that is,
flx) = f(—x)], its series contains only P, (x) with
even m.

CAS EXPERIMENTS. FOURIER—-LEGENDRE
SERIES

Find and graph (on common axes) the partial sums up to
that S, whose graph practically coincides with that of f{x)
within graphical accuracy. State what mg is. On what does
the size of m, seem to depend?

6. f(x) = sin wx 7. f(x) = sin 27x

8. f(x) = cos wx 9. f(x) = cos 27x
10. f(x) = cos 3mx 11. f(x) = &*
12. f(x) = e 13. f(x) = 141 + x?)

14. f(x) = Jy(ag,1x), where ay 4 is the first positive zero
of Jg

15. f(x) = Jy(ap ox). where oy, is the second positive
zero of Jy

16. f(x) = Jy(ay yx). where a; ; is the first positive zero
of J;

17. CAS EXPERIMENT. Fourier-Bessel Series. Use
Example 3 and again take n = 10 and R = 1, so that
you get the series

(19)  f(x) = arfolagx) + asdolagex) + agdolag sx)

s
with the zeros @y, agg, - - * from your CAS (see also
Table Al in App. 5).

(a) Graph the terms Jo(agx), - -+ . Jolag %) for

0 = x = | on common axes.

(b) Write a program for calculating partial sums of
(19). Find out for what f(x) your CAS can evaluate the
integrals. Take two such f(x) and comment empirically

18.

on the speed of convergence by observing the decrease
of the coefficients.

(c) Take f(x) = 1 in (19) and evaluate the integrals
for the coefficients analytically by (24a), Sec. 5.5, with
v = 1. Graph the first few partial sums on common
axes.

TEAM PROJECT. Orthogonality on the Entire
Real Axis. Hermite Polynomials.'® These orthogonal
polynomials are defined by Heg(1) = 1 and

dﬂ.
Heu() = (~1"e™® —5 (8, n=1,2,- .

REMARK. As is true for many special functions, the
literature contains more than one notation, and one

sometimes defines as Hermite polynomials the
functions
n —.122
Hy* =1, H,*(x) = (— )¢ ———
0 . @) = (—1) g

This differs from our definition, which is preferred in
applications.

(a) Small Values of n. Show that

Hey(x) = x* — 1,

Hey(x) = x* — 6x% + 3.

Heq(x) = x,

Hes(x) = ¥ — 3y,

(b) Generating Function. A generating function of
the Hermite polynomials is

=t — 2 a, (0"

n=0

(20)

because He,(x) = nla,(x). Prove this. Hinr: Use the
formula for the coefficients of a Maclaurin series and
note that rx — 3% = L — (v — 2

(c) Derivative. Differentiating the generating function
with respect to x, show that

(21) He,\(x) = nHe,_,(x).

13CHARLES HERMITE (1822-1901), French mathematician, is known for his work in algebra and number
theory. The great HENRI POINCARE (1854-1912) was one of his students.
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(d) Orthogonality on the x-Axis needs a weight
function that goes to zero sufficiently fast as x — *oe,
(Why?) Show that the Hermite polynomials are
orthogonal on —= << x << = with respect to the weight
function r(x) = e~*2_Hint. Use integration by parts
and (21).

(e) ODEs. Show that

(22) He:,_(x) = xHe,(x) — He, .(x).

Using this with n — 1 instead of n and (21), show that
y = He,(x) satisfies the ODE

217
(23) Y —x' +ny=0.
Show that w = e“’s"‘y is a solution of Weber’s
equation®*

2 W+m+i-HHw=0 ®@=01--).
19. WRITING PROJECT. Orthogonality. Write a short
report (2-3 pages) about the most important ideas and
facts related to orthogonality and orthogonal series and

their applications.

TIONS AND PROBLEMS

What is a power series? Can it contain negative or
fractional powers? How would you test for convergence?
Why could we use the power series method for
Legendre’s equation but needed the Frobenius method
for Bessel's equation?

3. Why did we introduce two kinds of Bessel functions,
J and ¥?

What is the hypergeometric equation and why did Gauss
introduce it?

List the three cases of the Frobenius method, giving
examples of your own.

What is the difference between an initial value problem
and a boundary value problem?

What does orthogonality of functions mean and how is
it used in series expansions? Give examples.

‘What is the Sturm-Liouville theory and its practical
importance?

What do you remember about the orthogonality of the
Legendre polynomials? Of Bessel functions?

What is completeness of orthogonal sets? Why is it
important?

11-20| SERIES SOLUTIONS

Find a basis of solutions. Try to identify the series as
expansions of known functions. (Show the details of your
work.)

1. y" =9y =0

12.(1 —0%"+ (1 —xp' —3y=0
By " —(x+1)y +y=0

14. %" = 3xy" + 4y =0

15. y" + dxy" + (4x2 + 2)y =0

16. x%" — dxy' + (x2 + 6)y = 0

x2y
17. 09" + Cx + 1y + (x + 1)y =0

10.

18. (x2 — 1)y" —2xy" + 2y =0
19. 22 = y" +4xy" + 2y =0
20 x%y" + oy + @xt - Dy =0

[2_1—25-'_ BESSEL’S EQUATION
Find a general solution in terms of Bessel functions. (Use
the indicated transformations and show the details.)

21 x%y" + xy' + (3622 — 2)y =0 (6x = 2)

22, %"+ 50y + 2= 12)y =0 (v = ulx?
23 x%y" +xy' +4x* - y=0 (P=2

24. 4x%y" — 200y’ + (4x2 + 35)y =0 (y = x%u)

25.y" + kA% =0  (y=uVy =72
26-30] BOUNDARY VALUE PROBLEMS
IEEdEe eigenvalues and eigenfunctions.
26. y" + Ay =0, y©0) =0, y(m=0
27. y" + Ay = 0, y(0) = y(1),
y'(0) = y'(1)
28. (xvy) + &~ly =0, y)=0, yle) =0.
(Set x = €".)
29, x%y" + xy" + (A% — Dy =0,
v(0) =0, y(1) =0
30. y" + Ay =0, y(0) + ¥'(0) = 0. y(2m) =0

[31-35| CAS PROBLEMS

Write a program, develop in a Fourier-Legendre series, and
graph the first five partial sums on common axes, together
with the given function. Comment on accuracy.

3. ¢ (—m1=x=1)

32. sin(m?) (-1=x=1)
BUA+ ) (-1=x=1)

3. jcos x| (m1=x=1)
Brxif0=Ex=1.0if-1=x<0

MHEINRICH WEBER (1842-1913), German mathematician.
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= SUMMARY OF CHAPTER B
Series Solution of ODEs. Special Functions

The power series method gives solutions of linear ODEs
(1 ¥+ ploy' + gy = 0

with variable coefficients p and ¢ in the form of a power series (with any center
Xg, .8, Xg = OJ

(2) yx) = 2 (X — x0)™ = ag + ay(x — xp) + as(x — X2+ -
m=0

Such a solution is obtained by substituting (2) and its derivatives into (1). This gives |
a recurrence formula for the coefficients. You may program this formula (or even
obtain and graph the whole solution) on your CAS.

If p and ¢ are analytic at x; (that is, representable by a power series in powers
of x — x, with positive radius of convergence; Sec. 5.2), then (1) has solutions of
this form (2). The same holds if & p, g in

R(x)y” + ploy" + Gy =0

are analytic at x, and /i(xy) # 0, so that we can divide by & and obtain the standard
form (1). Legendre’s equation is solved by the power series method in Sec. 5.3.
The Frobenius method (Sec. 5.4) extends the power series method to ODEs

a(x) F & b(x)

; =) =
X Xy (x — xp)

(3) v+ 0

whose coefficients are singular (i.e.. not analytic) at x,, but are “not too bad.”
namely, such that @ and b are analytic at x,. Then (3) has at least one solution of

the form
@ y®) = (c = x0)" 2 amlx — x)™ = ao(x — xo)" + ay(x — x)" + - -
m=0

where r can be any real (or even complex) number and is determined by substituting
(4) into (3) from the indicial equation (Sec. 5.4), along with the coefficients of (4).
A second linearly independent solution of (3) may be of a similar form (with different
rand a,,’s) or may involve a logarithmic term. Bessel’s equation is solved by the
Frobenius method in Secs. 5.5 and 3.6.

“Special functions™ is a common name for higher functions, as opposed to the
usual functions of calculus. Most of them arise either as nonelementary integrals
[see (24)—(44) in App. 3.1] or as solutions of (1) or (3). They get a name and notation
and are included in the usual CASs if they are important in application or in theory.
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Of this kind, and particularly useful to the engineer and physicist, are Legendre’s
equation and polynomials Py, P, - -- (Sec. 5.3). Gauss’s hypergeometric
equation and functions F(a, b, ¢; x) (Sec. 5.4), and Bessel’s equation and
functions J, and Y, (Secs. 5.5, 5.6).

Modeling involving ODEs usually leads to initial value problems (Chaps. 1-3)
or boundary value problems. Many of the latter can be written in the form of
Sturm-Liouville problems (Sec. 5.7). These are eigenvalue problems involving
a parameter A that is often related to frequencies, energies, or other physical
quantities. Solutions of Sturm-Liouville problems, called eigenfunctions, have
many general properties in common, notably the highly important orthogonality
(Sec. 5.7), which is useful in eigenfunction expansions (Sec. 5.8) in terms of cosine
and sine (“Fourier series”, the topic of Chap. 11), Legendre polynomials, Bessel
functions (Sec. 5.8), and other eigenfunctions.




CHAPTER 6

Laplace Transforms

The Laplace transform method is a powerful method for solving linear ODEs and
corresponding initial value problems, as well as systems of ODEs arising in engineering.
The process of solution consists of three steps (see Fig. 112).

Step 1. The given ODE is transformed into an algebraic equation (“‘subsidiary
equation™).
Step 2. The subsidiary equation is solved by purely algebraic manipulations.

Step 3. The solution in Step 2 is transformed back, resulting in the solution of the given
problem.

VP & ] | Solving Solution
Initial Value | Algebraic - AP r of the
Problem | @ Problem @ by Algebra @ | NE |

Fig. 112.  Solving an IVP by Laplace transforms

Thus solving an ODE is reduced to an algebraic problem (plus those transformations).
This switching from calculus to algebra is called operational calculus. The Laplace
transform method is the most important operational method to the engineer. This method
has two main advantages over the usual methods of Chaps. 1-4:

A. Problems are solved more directly, initial value problems without first determining
a general solution, and nonhomogeneous ODEs without first solving the corresponding
homogeneous ODE.

B. More importantly, the use of the unit step function (Heaviside function in
Sec. 6.3) and Dirac’s delta (in Sec. 6.4) make the method particularly powerful for
problems with inputs (driving forces) that have discontinuities or represent short impulses
or complicated periodic functions.

In this chapter we consider the Laplace transform and its application to engineering
problems involving ODEs. PDEs will be solved by the Laplace transform in Sec. 12.11.

General formulas are listed in Sec. 6.8, transforms and inverses in Sec. 6.9. The
usual CASs can handle most Laplace transforms.

Prerequisite: Chap. 2
Sections that may be omitted in a shorter course: 6.5, 6.7
References and Answers to Problems: App. 1 Part A, App. 2.



SEC. 6.1 Laplace Transform. Inverse Transform. Linearity. s-Shifting 221

6.1 Laplace Transform. Inverse Transform.
Linearity. s-Shifting

EXAMPLE 1

If (1) is a function defined for all ¢ = 0, its Laplace transform’ is the integral of f(7)
times e~ from t = 0 to o, It is a function of s, say, F(s), and is denoted by £(f); thus

0

(1) F(s) = $(f) = j(; e=tf(1) .

Here we must assume that f(7) is such that the integral exists (that is, has some finite
value). This assumption is usually satisfied in applications—we shall discuss this near the
end of the section.

Not only is the result F(s) called the Laplace transform, but the operation just described,
which vields F(s) from a given (1), is also called the Laplace transform. It is an “integral
transform”

F(s) = f k(s, n)f (1) dt
0

with “kernel” k(s, 1) = e~
Furthermore, the given function f(r) in (1) is called the inverse transform of F(s) and
is denoted by £~1(F); that is, we shall write

(1%) f() = L7YF).
Note that (1) and (1¥) together imply £~ (£(f)) = f and L(L~Y(F)) = F.

Notation

Original functions depend on ¢ and their transforms on s—keep this in mind! Original
functions are denoted by lowercase letters and their transforms by the same letters in
capital, so that F(s) denotes the transform of f(7), and ¥(s) denotes the transform of y(r),
and so on.

Laplace Transform
Let f(r) = 1 when ¢ 2 0, Find F(s).

Solution. From (1) we obtain by integration

Ef(f)=2(l}=f e_“df=";e_‘sr =i (s > 0).
o f

'PIERRE SIMON MARQUIS DE LAPLACE (1749-1827), great French mathematician, was a professor in
Paris. He developed the foundation of potential theory and made important contributions to celestial mechanics,
astronomy in general, special functions, and probability theory. Napoléon Bonaparte was his student for a year.
For Laplace’s interesting political involvements, see Ref. [GR2], listed in App. 1.

The powerful practical Laplace transform techniques were developed over a century later by the English
electrical engineer OLIVER HEAVISIDE (1850-1925) and were often called *Heaviside calculus.”

We shall drop variables when this simplifies formulas without causing confusion. For instance, in (1) we
wrote #(f) instead of £(f)(s) and in (1¥) ¥~YF) instead of ¥~ Y(F)(r).
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EXAMPLE 2

THEOREM 1

PROOF

EXAMPLE 3

CHAP. 6 Laplace Transforms

Qur notation is convenient, but we should say a word about it. The interval of integration in (1) is infinite.
Such an integral is called an improper integral and, by definition. is evaluated according to the rule

oo /i
j e ey de = lim J- e f(e) dt.
0 Tacodg
Hence our convenient notation means
o T
—&t P ! -5t : ! =sT ! (V] I
e dt=1lim | - —e =lim | ——e g | Y (s > 0.
o T—ce £ o T—= s ¥ ¥
We shall use this notation throughout this chapter. =

Laplace Transform ¥£(e™) of the Exponential Function ¢
Let f(r) = e when r = 0. where a is a constant. Find %( f).

Solution. Again by (1),

= =)

.‘k’(eat) - f Q—stea: dr = e—(s—m:. :
0 a-—s 0

hence, when s — a = 0,

(e = =, |
=
Must we go on in this fashion and obtain the transform of one function after another
directly from the definition? The answer is no. And the reason is that new transforms can
be found from known ones by the use of the many general properties of the Laplace
transform. Above all, the Laplace transform is a “linear operation,” just as differentiation
and integration. By this we mean the following.

| Linearity of the Laplace Transform

| The Laplace transform is a linear operation; that is, for any functions f(r) and g(t) whose
[ transforms exist and any constants a and b the transform of af(t) + bg(t) exists, and

| Flaf(t) + bg(n} = a2{f()} + bZE{g®)}.

l

By the definition in (1),

o

| etaf + bg(on a
i}

Zlaf(r) + bg(n)}

oo

a | e fayd+b[ gy di = aR{fO) + bLLgD). ™
0 0

Il

Application of Theorem 1: Hyperbolic Functions

Find the transforms of cosh at and sinh at.

at 1

Solution. Since coshar = $(e™ + ¢~ and sinhar = (™ — ¢~%), we obtain from Example 2 and

Theorem |

§—ua 5§+ a

1 1
Ficosh at) = E{.gf(em] + Pe ) = E( - + : ) = ) 5

1
H(sinhar) = —-(£(e™) — F(e™) = ;( E__ : ) - - 5 L
£ L ¥=a ST a &=
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Cosine and Sine

Derive the formulas

5 L

Flcos wr) = —_—. Finw) = 5 .
.\‘2 + wz \\,2 + a;2

Solution by Calculus. We write L, = ¥(cos w¢) and L, = F(sin wr). Integrating by parts and noting that the
integral-free parts give no contribution from the upper limit =, we obtain

=5t =]

oc o
— e w coghus 1 w
L= e coswidl = coswt| — — e Usinwidt = — — —Lg,
o —§ o S o s 5
== —st oo o0
o e ] @ —st @
L = e Vsinwtdr = sinwt| + — e Vcoswtdt = —L,.
0 - 0 § Jg 5

By substituting L into the formula for L, on the right and then by substituting L, into the formula for Lg on
the right. we obtain

L.= : = wL Ll L FE @ I L :

e 5 5 Phed B (- 32 5 ¢ (I gz + w2
w 1 w o’ w w

Ls—? ?“TLR. LAl 4+ — '——;2— Lq F P

Solution by Transforins Using Derivatives. See next section.

Solution by Complex Methods. In Example 2, if we set a = iw with i = V' —1, we obtain

s+ iw s w

= +i— ;
52 + cuz 52 4 w2 .':"' + wx

L 1 + i
Sf(e“”t)‘-"- L 5+ iw =

5 — iw (s — fw)(s + iw)

Now by Theorem 1 and & = cos wr + i sin wt [see (11) in Sec. 2.2 with e/ instead of ¢] we have
Sf(ei“’t] = Ffcos wt + i sin wt) = Flcos wt) + i L(sin wi).

If we equate the real and imaginary parts of this and the previous equation, the result follows. (This formal
calculation can be justified in the theory of complex integration.) o

Basic transforms are listed in Table 6.1. We shall see that from these almost all the others
can be obtained by the use of the general properties of the Laplace transform. Formulas
1-3 are special cases of formula 4, which is proved by induction. Indeed, it is true for
n = 0 because of Example 1 and 0! = 1. We make the induction hypothesis that it holds
for any integer n = 0 and then get it for n + 1 directly from (1). Indeed, integration by
parts first gives

s o

n+1
- J- eS™ dt.
0

0 5
Now the integral-free part is zero and the last part is (n + 1)/s times £(:™). From this
and the induction hypothesis,

=

I
Eg{rn&]] = f e—-st|,n+1 dt = — _e—strn +1
0 §

n+1 n+1 n! (n+ 1!
i(rﬂ) = R +2

§ § § 8

Eg(tn-i 1} o=

This proves formula 4.
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THEOREM 2

CHAP. 6 Laplace Transforms

Table 6.1 Some Functions f(t) and Their Laplace Transforms &£(f)

o | L) f(n ‘ ZL(f)
1 1 I 7 0s Wi =
‘ ‘ iy COSs 52 & wz
2 ‘ 1/s2 8 sin wt <
52 + o
3 o 21/5% | 9 cosh at 2
52 _ a2
4 " a1l e inh -
‘ G =0,1; + ) T | sinh at . —
e Ta + 1) ‘ y s—a
| 5 (a positive) s 11 e cos wt =,
‘ 6 e I 12 €% sin wt M. —
§=d | | (s—a?+ o

I'(a + 1) in formula 5 is the so-called gamma function [(15) in Sec. 5.5 or (24) in
App. A3.1]. We get formula 5 from (1), setting st = .x:

2% = Lwe"“r“ dt = fxe"’ (i)a 2 alﬂ Jme"‘x“dx

0 5 A 5§ 0

where s > 0. The last integral is precisely that defining ['(a + 1), so we have
I'(a + 1)/s*"1, as claimed. (CAUTION! I'(a + 1) has x® in the integral, not x**1,)
Note the formula 4 also follows from 5 because I'(n + 1) = n! for integer n = 0.
Formulas 6-10 were proved in Examples 2—4. Formulas 11 and 12 will follow from 7
and 8 by “shifting,” to which we turn next.

s-Shifting: Replacing s by s — a in the Transform

The Laplace transform has the very useful property that if we know the transform of f(r),
we can immediately get that of ¢ f(1), as follows.

First Shifting Theorem, s-Shifting

If f(1) has the transform F(s) (where s > k for some k), then e®* f(t) has the transform
F(s — a) (where s — a > k). In formulas,

‘ Z{e”f(} = F(s — a)
|

‘ or, if we take the inverse on both sides,

| ef(t) = LTHF(s — a)).
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PROOF We obtain F(s — a) by replacing s with s — « in the integral in (1), so that
oo 20
F(s —a) = f ¢ Ty df = f e S e®f(0)] dt = L{™f(1)}.
0 0

If F(s) exists (i.e., is finite) for s greater than some k, then our first integral exists for

s — a > k. Now take the inverse on both sides of this formula to obtain the second formula

in the theorem. (CAUTION! —a in F(s — a) but +a in ¢ f(1).) =
EXAMPLE 5 s-Shifting: Damped Vibrations. Completing the Square

From Example 4 and the first shifting theorem we immediately obtain formulas 11 and 12 in Table 6.1,

s—a w
Flecoswt) = ———5— . FleMsinwt) = ———F—
(s —a) + w s—af +w

For instance, use these formulas to find the inverse of the transform

3s — 137

)= s2 4+ 25 + 401

Solution. Applying the inverse transform, using its linearity (Prob. 28), and completing the square, we obtain

- y—l{ s+ 1) — 140 } B 3&8@{ s+1 } 73_1{ 20 }
Tl s+ 1%+ 400 (s + 1% + 202 (s + D% +20% |

‘We now see that the inverse of the right side is the damped vibration (Fig. 113)

(1) = e7Y3 cos 207 — 7 sin 201). m
6 —i.I
- ||
4 —|| I
| [l
NN
=i
| | | L1 II | II|l|'. ;'Ir\I'J_ -l A WA A,
0 5||lQI15 20‘»’25 ST

| 1ol
-H || \| VY
II i' v
A

V

e

Fig. 13, Vibrations in Example 5

Existence and Uniqueness of Laplace Transforms

This is not a big practical problem because in most cases we can check the solution of
an ODE without too much trouble. Nevertheless we should be aware of some basic facts.

A function f(f) has a Laplace transform if it does not grow too fast, say, if for all
t = 0 and some constants M and £ it satisfies the “growth restriction”

) [f()| = me*.
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(The growth restriction (2) is sometimes called “growth of exponential order,” which may
be misleading since it hides that the exponent must be &z, not k#* or similar.)

f(#) need not be continuous, but it should not be too bad. The technical term (generally
used in mathematics) is piecewise continuity. f(1) is piecewise continuous on a finite interval
a =1 = b where f is defined. if this interval can be divided into finitely many subintervals
in each of which f is continuous and has finite limits as r approaches either endpoint of such
a subinterval from the interior. This then gives finite jumps as in Fig. 1 14 as the only possible
discontinuities, but this suffices in most applications, and so does the following theorem.

Fig. 114, Example of a piecewise continuous function f{(t).
(The dots mark the function values at the jumps.)

THEOREM 3 Existence Theorem for Laplace Transforms

If f(1) is defined and piecewise continuous on every finite interval on the semi-axis
t = 0 and satisfies (2) for all t = 0 and some constants M and k, then the Laplace
transform <L(f) exists for all s > k.

PROOF Since f(r) is piecewise continuous, ¢ >*f(z) is integrable over any finite interval on the
r-axis. From (2), assuming that s > k (to be needed for the existence of the last of the
following integrals), we obtain the proof of the existence of £(f) from

= =}

f e S0 dt

0

M
s—k’

|| = [

= J; ]f(!)le_“ dr = J; Mek:e—st dt =

Note that (2) can be readily checked. For instance, cosh < ¢°, 1™ < nle' (because 1"/n!
is a single term of the Maclaurin series), and so on. A function that does not satisfy (2)
for any M and £ is e’ (take logarithms to see it). We mention that the conditions in
Theorem 3 are sufficient rather than necessary (see Prob. 22).

Uniqueness. If the Laplace transform of a given function exists, it is uniquely
determined. Conversely, it can be shown that if two functions (both defined on the positive
real axis) have the same transform, these functions cannot differ over an interval of positive
length, although they may differ at isolated points (see Ref. [A14] in App. 1). Hence we
may say that the inverse of a given transform is essentially unique. In particular, if two
continuous functions have the same transform, they are completely identical.

[1-20] LAPLACE TRANSFORMS 3. cos 2t 4. sin® 4t
Find the Laplace transforms of the following functions. 5. e cosht 6. ¢~ " sinh 5¢
Show the details of your work. (a, b, k, w, 6 are constants.) 7. cos (wt + 6) 8. sin (3r — 3)

122 = 2y 2. (12 - 3)? g, pPa—=2bt 10. —8 sin 0.2¢
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11. sin t cos ¢ 12. (r + 1) 28. (Inverse transform) Prove that £~! is linear. Hint.
Use the fact that & is linear.

13. 14.
kI: kE —— R
| | | Il‘}—é{}_ INVERSE LAPLACE TRANSFORMS
{I, ——!—é— Given F(s) = £(f), find f(1). Show the details. (L, n, k, a,
¢ b are constants.)
15. 1= 16. E 29 4s — 37 30 25 + 16
/_/ I ~ "2+ " 216
|
2 b - =352+ 12 - 10
' 5 A ——
17. 18. § 2¢ + V2
ar | R : % nl 33 20
I ! "R+ P CG-Dist+ 4
| b
8 Sk + 1)?
b
e 36. 2 —s
19. 20. §° + 4ds ey STE
i N T sz, =12
. : | T s = V3)s + V5) To95% — ]
e L X8 I I 1
il 39, - 40, ————
s2+5 s+5 (s + a)s + b)

21

Using £(f) in Prob. 13, find £(f,), where fy(r) = 0 if |41_54 APPLICATIONS OF THE FIRST SHIFTING
t=2and fy() = 1ifr>2. THEOREM (s-SHIFTING)

(Existence) Show that #£(1/V = Vals. [Use In Probs. 41-46 find the transform. In Probs. 47-54 find
(30) I'}) = V7 in App. 3.1.] Conclude from this that the inverse transform. Show the details.

the conditions in Theorem 3 are sufficient but not 41. 3.87024 42, — 3120051

necessary for the existence of a Laplace transform.

22

43. 5¢7% sin wt 44. ¢73" cos mt
23. (Change of scale) If £(f(1)) = F(s) and ¢ is any 45. ¢~ **(a cos t + b sin 1)

positive constant, show that £(f(ct)) = F(s/¢)/e. (Hint:

. e Hap + ayt + - - w:
Use (1).) Use this to obtain B(cos wf) from L(cos ). o (f;" o T 2t
m
24. (Nonexistence) Show that e does not satisfy a &t 48, ———
(s — 1)? (s + m?
condition of the form (2). .- ' 5
25. (Nonexistence) Give simple examples of functions 49, T 50. S—2
(defined for all x = 0) that have no Laplace transtorm. (s + \/i) (s— 1" +4
26. (Table 6.1) Derive formula 6 from formulas 9 and 10. 51 15 5 4s — 2
27. (Table 6.1) Convert Table 6.1 from a table for finding s?+4s+29 s? — 65 + 18
transforms to a table for finding inverse transforms (with T 54 25 — 56
obvious changes. e.g., £ (1/5™) = " Y(n — 1)!, etc.). T2+ 107s + 2477 T —4s— 12

6.2 Transforms of Derivatives and Integrals.
ODEs

The Laplace transform is a method of solving ODEs and initial value problems. The crucial
idea is that operations of calculus on functions are replaced by operations of algebra
on transforms. Roughly, differentiation of f(t) will correspond to multiplication of L(f)
by s (see Theorems | and 2) and integration of f(1) to division of £(f) by s. To solve
ODEs, we must first consider the Laplace transform of derivatives.
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THEOREM 1

PROOF

THEOREM 2

EXAMPLE 1

CHAP. 6 Laplace Transforms

Laplace Transform of Derivatives

| The transforms of the first and second derivatives of f(t) satisfy

(1) L(f") = sLf) — F(O)
2) L(f") = s2L(f) — sF©0) — £'(0).

Formula (1) holds if () is continuous for all t = 0 and satisfies the growth restriction

(2) in Sec. 6.1 and f'(1) is piecewise continuous on every finite interval on the semi-
‘ axis t = 0. Similarly, (2) holds if f and f' are continuous for all t = 0 and satisfy

the growth restriction and f" is piecewise continuous on every finite interval on the
| semi-axis t = 0.

We prove (1) first under the additional assumption that f' is continuous. Then by the
definition and integration by parts,

o

L) = fo S (1) dt = [e=H (D))

oo k==

- sj e St (1) dt.
0

0

Since f satisfies (2) in Sec. 6.1, the integrated part on the right is zero at the upper limit
when s > k, and at the lower limit it contributes — f(0). The last integral is £(f). It exists
for s > k because of Theorem 3 in Sec. 6.1. Hence £(f') exists when s > k and (1) holds.
If ' is merely piecewise continuous, the proof is similar. In this case the interval of
integration of f’ must be broken up into parts such that f' is continuous in each such part.
The proof of (2) now follows by applying (1) to f” and then substituting (1), that is

L") = sL(F') = £1(0) = slsL(f) — fO)] = s*L(f) — 5f(0) — f'(0). o

Continuing by substitution as in the proof of (2) and using induction, we obtain the
following extension of Theorem 1.

Laplace Transform of the Derivative f " of Any Order

| Let f, f', -+ -, ™V be continuous for all t = 0 and satisfy the growth restriction
(2) in Sec. 6.1. Furthermore, let f™ be piecewise continuous on every finite interval ‘
on the semi-axis t = 0. Then the transform of f™ satisfies ‘
|

@) L™) = sME(f) — sTO) — s20) — - - - — FD0).

Transform of a Resonance Term (Sec. 2.8)

Let f(1) = 1 sin wr. Then f(0) = 0. f'(.') = sin wr + wtcos r.ur.f'{OJ =0, f" = 2w cos wt — ’t sin wr. Hence

by (2),

copit 5 R - g B 2ws
Ef) = 2w Tt ot L(f) = s=L(f), thus L) = Lt sin wr) = m . |
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EXAMPLE 2

THEOREM 3

PROOF

EXAMPLE 3

Formulas 7 and 8 in Table 6.1, Sec. 6.1

This is a third derivation of ¥(cos ) and #(sin w1); cf. Example 4 in Sec. 6.1. Let f(r) = cos wt. Then
f0) =1, f'(0) = 0, f'() = —® cos wt. From this and (2) we obtain

A

L") = 2L — 5 = —2 LS. By algebra, Hlcos wn) = 35— .

Similarly, let g = sin wt. Then g(0) = 0, g' = @ cos wt. From this and (1) we obtain

w
P = s¥(g) = wF(cos wt). Hence F(sin wr) = EE(COS wl) = — R [
& 5 ]

Laplace Transform of the Integral of a Function

Differentiation and integration are inverse operations, and so are multiplication and division.
Since differentiation of a function f(f) (roughly) corresponds to multiplication of its
transform £(f) by s. we expect integration of f(1) to correspond to division of £(f) by s:

Laplace Transform of Integral

Let F(s) denote the transform of a function f(f) which is piecewise continuous for
t = 0 and satisfies a growth restriction (2), Sec. 6.1. Then, for s > 0, s > k, and
t=0,

; 1 4 1
4 .S"i{j f(n d’?‘] = —F(s), thus ff(fr) dr = ,52'1{~F(.5‘)} P
0 § 0 S

Denote the integral in (4) by g(r). Since f(7) is piecewise continuous, g(#) is continuous,
and (2), Sec. 6.1, gives

t t M M
= [lf@ldarsm [ Frar= @ -n= =& k>0
0 0 k

lg(n)| = z

fo 't dr

This shows that g(¢) also satisfies a growth restriction. Also, g' (1) = f(1), except at points
at which f(¢) is discontinuous. Hence g’ (¢) is piecewise continuous on each finite interval
and, by Theorem 1, since g(0) = 0 (the integral from 0 to 0 is zero)

L) = L{g' () = sL{g)) — g(0) = sL{g(®)}.

Division by s and interchange of the left and right sides gives the first formula in (4),
from which the second follows by taking the inverse transform on both sides.

Application of Theorem 3: Formulas 19 and 20 in the Table of Sec. 6.9
1 1

= 5~ and il
s + o) 52(.:.‘2 + wz)

Using Theorem 3, find the inverse of

Solution. From Table 6.1 in Sec. 6.1 and the integration in (4) (second formula with the sides interchanged)
we obtain

t
1 sin wt 1 sin wr 1

£ F1= i .sr‘———-=f—— = —5 (1 — cos w).

{sz + & } w {s(sz + wz) } 0 w dr @ a GoR it
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This is formula 19 in Sec. 6.9. Integrating this result again and using (4) as before, we obtain formula 20 in
Sec. 6.9:

t . 4 o
1 1 T Sin wT t sin wi
g1
o —de e M= =iy (1l—coswndr=|— - —— RPESS y
522 + o) w? 0 o’ w? o o> o®

It is typical that results such as these can be found in several ways. In this example. try partial fraction
reduction. 'S}

Differential Equations, Initial Value Problems_

We shall now discuss how the Laplace transform method solves ODEs and initial value
problems. We consider an initial value problem

(5) y' 4+ ay' + by = r(1), ¥(0) = K, v'(0) = K,

where a and b are constant. Here r(r) is the given input (driving force) applied to the
mechanical or electrical system and y(t) is the output (response to the input) to be obtained.
In Laplace’s method we do three steps:

Step 1. Setting up the subsidiary equation. This is an algebraic equation for the transform
Y = £(y) obtained by transforming (5) by means of (1) and (2), namely,

[s2Y = s3(0) — y"(0)] + alsY — y(0)] + bY = R(s)
where R(s) = £(r). Collecting the Y-terms, we have the subsidiary equation

(52 + as + b)Y = (s + a)y(0) + v'(0) + R(s).

Step 2. Solution of the subsidiary equation by algebra. We divide by s* + as + b and
use the so-called transfer function

1 1
s2+as+b (s+3a+b-1a"

(6) Qs) =

(Q is often denoted by H. but we need H much more frequently for other purposes.) This
gives the solution

) Y(s) = [(s + a)y(0) + y'(0)]Q(s) + R(s)Q(s).

If y(0) = y'(0) = 0, this is simply ¥ = RQ: hence

i Y(output)

Q= R S(input)

and this explains the name of Q. Note that Q depends neither on r(t) nor on the initial
conditions (but only on a and b).

Step 3. Inversion of Y to obtain y = £7'(Y). We reduce (7) (usually by partial fractions
as in calculus) to a sum of terms whose inverses can be found from the tables (e.g., in
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution y(1) = £ 1Y) of (5).
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EXAMPLE 4

EXAMPLE 5

Initial Value Problem: The Basic Laplace Steps

Solve
"

;i s W0y =1, () = 1.

Solution. Step 1. From (2) and Table 6.1 we get the subsidiary equation [with ¥ = £(y)]

$2Y — sy(0) — y'(0) — ¥ = /5%, thus

Step 2. The transfer function is 0 = /(s - 1), and (7) becomes

s+1 1

23 4
2 =1 S22 - 1)

1
Y=G6+HQ+—5 0=
&

Simplification and partial fraction expansion gives

5 1 ( | 1
= e
s =1 2 =1 52

Step 3. From this expression for ¥ and Table 6.1 we obtain the solution

1 1 1
) =2 Yy = ﬁ'l{ p— ] - 58'1[2——1} - 52”1{*5} =¢' + sinhr — 1,
== §—= s

The diagram in Fig. 115 summarizes our approach.

t-space s-5pace

(Z—DY=s+1+ 1%

Given problem Subsidiary equation
y-y=t (2-1)¥=g+1+ ls?
»(0) =1
¥ =1

Solution of given problem Solution of subsidiary equation

y(t)=e* +sinht—¢ - B Lt 10
L IS (R

Fig. 115.  Laplace transform method

Comparison with the Usual Method

Solve the initial value problem

r

vy 4+ 0y =0, ¥(0) = 0.16, y () =0

Solution. From (1) and (2) we see that the subsidiary equation is
52Y = 0.165 + s¥ — 0.16 + 9Y = 0, thus
The solution is

~ 046G+ 1) 0.6(s + 3) + 0.08

245 +9 (s + 12 + 2

Hence by the first shifting theorem and the formulas for cos and sin in Table 6.1 we obtain

35 0.08 35
¥ = a0 %) e"w‘(ﬂ.lé cos ,;'—4— T+ %W sin ‘4—1)

= ¢705%0,16 cos 2.961 + 0.027 sin 2.96¢).

This agrees with Example 2, Case (ITI) in Sec. 2.4. The work was less.

(52 + 5 + 9¥ = 0.16(s + 1).

231
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Advantages of the Laplace Method
1. Solving a nonhomogeneous ODE does not require first solving the
homogeneous ODE. See Example 4.
2. [Initial values are automatically taken care of. See Examples 4 and 5. [

3. Complicated inputs r(t) (right sides of linear ODEs) can be handled very
efficiently, as we show in the next sections.

EXAMPLE 6 Shifted Data Problems

This means initial value problems with initial conditions given at some r = 5 = 0 instead of 1+ = 0. For such
a problem set 1 = [ + fg, so that t = fg gives f = 0 and the Laplace transform can be applied. For instance.

solve
"

y' +y =2, y&m = im, y@m=2-V2

Solution. We have 1y = 1 and we set 1 = 7 + 1. Then the problem is
F' 4§ =27 + im), 50) = im, o =2-V2

where ¥(7) = y(r). Using (2) and Table 6.1 and denoting the transform of ¥ by ¥, we see that the subsidiary
equation of the “shifted” initial value problem is

il 2

thus  (*+ 17 = 5 + ==+ ms+2— V2

& IMIH

. = 2 1
Y —sdm—-Q2-V)+ ¥V =5+ 5
5
Solving this algebraically for ¥, we obtain
2 in 1ms 2-V2
2 2 T 3 t 3 + 3
(s° + 1)s (s + 1)s 5+ 1 59+ 1

?=

The inverse of the first two terms can be seen from Example 3 (with @ = 1), and the last two terms give cos
and sin,
§=92N¥)=27—sinf) + 3wl —cosT) +dmcosi+ (2 - V2 sint

=2+ ir— V2sint.

= < 1 P . o BT
Nowt=r— %’n’. sint = v;-(smr — cos 1), so that the answer (the solution) is

y =2t —sinf + cost. |

|1-8| OBTAINING TRANSFORMS BY expressing cos?%r in terms of cost, (b) by using
DIFFERENTIATION Prob. 3.
Using (1) or (2), find £(f) if f(r) equals:

10-24| INITIAL VALUE PROBLEMS

1. re®t 2. t cos 5t St
i o Solve the following initial value problems by the Laplace
3. sin” wr 4. cos™ transform. (If necessary, use partial fraction expansion as
5. sinh® at 6. cosh? 37 in Example 4. Show all details.)
7. t sin 37t 8. sin* 1 (Use Prob. 3.) 10. y' + 4y = 0, ¥(0) = 2.8
9. (Derivation by different methods) It is typical that 11 ' + 3y = 17 sin 2, ¥0) = -1
various transforms can be obtained by several methods, 12. y" — y" = 6y = 0, y(0) = 6,

Show this for Prob. 1. Show it for %(cos®31) (a) by y'(0) =13
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y'(0)=0
2.1,

13. y" =3y =0,
14, y" — 4_\" + 4y
y'(0) = 3.9
15. y" + 2y’ + 2y
y'(0) = -3

16. y" + ky' — 2k%y = 0,
y'(0) = 2k

17. y" + 7y + 12y = 213,
y'(0) = —10

18. y" + 9y = 107, y(0) = 0,

19. 3" + 3y’ + 2.25y = 9% + 64,
y'(0) = 31.5

20. y" — 6y’ + 5y = 29 cos 2t,
y'(0) = 6.2

21. (Shifted data) y' — 6y = 0,

22. y" — 2y =3y =0,
y'(1) = —17

23. y" + 3y’ — 4y = 6¥72,
y'i)y=5

24, y" + 2y’ + 5y
y'(3) = 14

y(0) = 4,
0, ¥(0)

Il
Il

Il
—

0, ¥(0)

»0) = 2,
y(0) = 3.5,

y'(0) =0
y(0) = 1,

¥(0) = 3.2,

y(2) =4
¥(1) = =3,

y(l) = 4,

50t — 150,

Il

v(3) = —4,

25. PROJECT. Comments on Sec. 6.2. (a) Give reasons

why Theorems 1 and 2 are more important than
Theorem 3.
(b) Extend Theorem | by showing that if f(r) is
continuous, except for an ordinary discontinuity (finite
jump) at some t = a (>0), the other conditions
remaining as in Theorem 1, then (see Fig. 116)

(1%) L(f') = sL(f) — f(0) = [fla + 0) — fla — 0)]e™™.

(c) Verify (1%) for f(f) = ¢ "if 0 <t <1 and 0 if
t>= 1

(d) Verify (1*) for two more complicated functions of
your choice.

(e) Compare the Laplace transform of solving ODEs
with the method in Chap. 2. Give examples of your

6.3 Unit Step Function.
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own to illustrate the advantages of the present method
(to the extent we have seen them so far).

£ :
i/f(a -0

je— fla +0)

Fig. 116. Formula (1*)

26. PROJECT. Further Results by Differentiation.
Proceeding as in Example 1, obtain
I .,
(a) Z£(tcoswt) = &+ w2)2

and from this and Example 1: (b) formula 21, (c) 22,
(d) 23 in Sec. 6.9,

_ 24 a?

(e) HArcoshar) = m i

. 2as
(f) P(rsinhar) = B—dp"

— a“

[27-34] OBTAINING TRANSFORMS BY

INTEGRATION

Using Theorem 3, find f(r) if £(f) equals:

1 10
# s2 4+ 52 5 5% — 752
S e

S X
% s — 55 = 5% + 9

1 1
X st — 457 - st + 7252

35. (Partial fractions) Solve Probs. 27, 29, and 31 by
using partial fractions.

t-Shifting

This section and the next one are extremely important because we shall now reach the point
where the Laplace transform method shows its real power in applications and its superiority
over the classical approach of Chap. 2. The reason is that we shall introduce two auxiliary
functions, the unit step function or Heaviside function u(t — a) (below) and Dirac’s delta
8(t — a) (in Sec. 6.4). These functions are suitable for solving ODEs with complicated
right sides of considerable engineering interest, such as single waves, inputs (driving forces)
that are discontinuous or act for some time only, periodic inputs more general than just
cosine and sine, or impulsive forces acting for an instant (hammerblows, for example).
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Unit Step Function (Heaviside Function) u(t — a)

The unit step function or Heaviside function u(r — «) is 0 for 1 < a. has a jump of size
I at r = a (where we can leave it undefined), and is 1 for 1 > @, in a formula:

0 ift<a
(1) u(t — a) = (a = 0).
1 ift>a

Figure 117 shows the special case u(z), which has its jump at zero, and Fig. 118 the general
case u(t — a) for an arbitrary positive a. (For Heaviside see Sec. 6.1.)
The transform of u(r — a) follows directly from the defining integral in Sec. 6.1,

—&t s

Plult — a)} = f e Su(t — a)dr = j el dt = — = :
0 a

§ t=a

here the integration begins at r = a (= 0) because u(r — a) is 0 for 1 < a. Hence

) Plikr—a)i= £ (s > 0).

The unit step function is a typical “engineering function” made to measure for
engineering applications, which often involve functions (mechanical or electrical
driving forces) that are either “off” or “on.” Multiplying functions f(r) with u(t — a),
we can produce all sorts of effects. The simple basic idea is illustrated in Figs. 119
and 120. In Fig. 119 the given function is shown in (A). In (B) it is switched off
between 1 = 0 and 1 = 2 (because u(t — 2) = 0 when t < 2) and is switched on
beginning at 1 = 2. In (C) it is shifted to the right by 2 units, say, for instance. by 2 secs,
so that it begins 2 secs later in the same fashion as before. More generally we have the
following.

Let f(1) = 0 for all negative t. Then f(t — a)u(t — a) with a = 0 is f(t) shifted
(translated) to the right by the amount a.

Figure 120 shows the effect of many unit step functions, three of them in (A) and
infinitely many in (B) when continued periodically to the right: this is the effect of a
rectifier that clips off the negative half-waves of a sinuosidal voltage. CAUTION! Make
sure that you fully understand these figures, in particular the difference between parts (B)
and (C) of Figure 119. Figure 119(C) will be applied next.

ult) ult —a)

I 1 —

I
i
| i |
0 t 0 a t
Fig. 117.  Unit step function u(t) Fig. 118. Unit step function u(t — a)
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L\ g

t 2 n+2 2I.'r:+2 t
\

5 \V

(A) f(t)=5sint

(B) fltult-2) (C) flt=2)ult-2)

Fig. 119, Effects of the unit step function: (A) Given function.
(B) Switching off and on. (C) Shift.
4 \ A
il . [ A
I .II | / \
gt a8 ‘ f o gtk
-] 0 2 4 6 8 10 t

(A) Rlult — 1) = 2ult — 4) + ult - 6)] (B) 4 sin Cat)lult) - ult - 2) + ult —4) — + -]

Fig. 120.  Use of many unit step functions.

Time Shifting (t-Shifting): Replacing t by t — a in f(t)

The first shifting theorem (“s-shifting”) in Sec. 6.1 concerned transforms F(s) = £{f(r)}
and F(s — a) = ${e*f(1)}. The second shifting theorem will concern functions f(r) and
f(r — a). Unit step functions are just tools, and the theorem will be needed to apply them
in connection with any other functions.

Second Shifting Theorem; Time Shifting
If f(1) has the transform F(s), then the “shifted function”

0 ift<a

3) f@0 = ft — ayutt — a) = {
ift>a

flt —a)
has the transform e “F(s). That is, if £{f(1)} = F(s), then
(4) F{ft — a)u(t — a)) = e”“F(s).

Or, if we take the inverse on both sides, we can write

(4%) f(t — a)u(t — a) = L™ He *F(s)).

Practically speaking. if we know F(s), we can obtain the transform of (3) by multiplying
F(s) by e~ In Fig. 119, the transform of 5 sin ¢ is F(s) = 5/(s% + 1), hence the shifted
function 5 sin (# — 2) u(t — 2) shown in Fig. 119(C) has the transform

e~ BF(s) = 5¢7 /(s + 1).
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PROOF

EXAMPLE 1

CHAP. 6 Laplace Transforms

We prove Theorem 1. In (4) on the right we use the definition of the Laplace transform,
writing 7 for ¢ (to have r available later). Then, taking ¢~“ inside the integral, we have

e =3 ==}

eBF(s) = " f e~ f(1) d7 = J’ e~ Of(7) dr.
0 0

Substituting 7+ a = 1, thus 7= 1 — a, d7 = dt, in the integral (CALUTION, the lower limit
changes!), we obtain

o0

e %R (s)= f e~ SHf(t — a) dt.

a

To make the right side into a Laplace transform, we must have an integral from 0 to =,
not from a to %, But this is easy. We multiply the integrand by u(+ — a). Then for 1 from
0 to a the integrand is 0, and we can write, with f as in (3),

o0 o0

e “F(s) = J’ et — ault — a) dt = f e_s“’fu(r) dr.
0 0

(Do you now see why u(r — a) appears?) This integral is the left side of (4), the Laplace
transform of f(r) in (3). This completes the proof. &)

Application of Theorem 1. Use of Unit Step Functions

Write the following function using unit step functions and find its transform.

2 ifo<r<1
fn = {42 if | <r<im (Fig. 121)
cost if 1> 3m

Solution. Step 1. In terms of unit step functions,

f6) =201 = u(t — 1)) + 2e%u(t = 1) — u(t — @) + (cos Hu(r — im).

Indeed, 2(1 — u(r — 1)) gives f(r) for 0 < ¢ < I, and so on.

Step 2. To apply Theorem 1, we must write each term in f(r) in the form f(r — a)u(r — a). Thus, 2(1 — u(r — 1))
remains as it is and gives the transform 2(1 — e™*)/s. Then

1 1 1 1 1 1
3{5:211[1 = ])} =££(5(r— 12+ - 1)+ 3)““ = l)} = (F + & e e
1 1 | I\ 1. A =\ { 1
37{512"(!— E'JT)} = EP{E (.'— 31?) + _..‘.l';r‘ (r — Eﬂ) =+ ?)n(l— 31’1‘)}

1 7 i
i (_3 Foile o _),maz
5 25 8s

- ]l - 2 3]~

Together,

£ =~

= |
|
e | ra
o
|
w
+
—_——
wv’|'_
+
e
\:l‘—
+
|~
N
™
]
n
|
—
w| =
4
| 9
+
oo |
s
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If the conversion of f(r) to f(r — a) is inconvenient, replace it by
(4%%) ZUf@Out — a)} = e L{f(t + a)}.
(4%*) follows from (4) by writing f(r — a) = g(), hence f(r) = g(¢ + a) and then again writing f for g. Thus,

Yo ol —sell P [ ) _ (2 1t 1
fﬁ{z.ru(r l)}—e £{2(1+1)}—e 58{2: + 4+ 2}—8 (33 4 3 { L_)

as before. Similarly for 9,’{:1_—,3‘21((1 - %17)}, Finally, by (4%%),

; _L — —ms2 i) — —TS2epy ot — =52
SZ[cosru(; 2 )} e ,J_’{cos (r+ 2”} e F{—sint) e ol

fle)

2

1 I//‘ /—F&\ /,-—h ~

0 1 I v | N L ) 1 \|\ ]
= }, 1 N \:’_/ 2% \\\___,-/ b Wy ~r

Fig. 121.  f(t) in Example 1

EXAMPLE 2 Application of Both Shifting Theorems. Inverse Transform

Find the inverse transform f(r) of

-5 e-—Zs e—SS

e
= t 4
s2+ 72 52+1r21‘(s+2)2

F(s) =

Solution. Without the exponential functions in the numerator the three terms of F(s) would have the inverses
(sin 7rt)/7, (sin wi)/m, and te 2" because 1/s2 has the inverse t, so that 1/(s + 2)2 has the inverse te™ 2! by the
first shifting theorem in Sec. 6.1. Hence by the second shifting theorem (r-shifting),

1 . L s —2(t—3)
f(t) = = sin (m(t — 1)) wult — 1) + = sin(mw(t— 2D u(t — 2) + (1 — e u(t — 3).

Now sin (7t — ) = —sin 7rt and sin (77t — 27) = sin ¢, so that the second and third terms cancel each other
when t > 2. Hence we obtain f(£) = 0if 0 < t < 1, —(sin mi)/mif 1 <t <2,0if2 <t <3, and (f — 3)e 2>
if t > 3. See Fig. 122. =
0.3 N\
_r'f \.
0.2 / \ ey
/ \ o Y
0.1 f \ / PR
/ \ / =N
0 I 1 i ! |
0 1 2 3 4 5 5] t

Fig. 122, f(t) in Example 2

EXAMPLE 2 Response of an RC-Circuit to a Single Rectangular Wave

Find the current i(s) in the RC-circuit in Fig. 123 if a single rectangular wave with voltage Vj, is applied. The
circuit is assumed to be quiescent before the wave is applied.
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c
vit) ilt)
J’—H——*
vit)
v, V,/R _
va» ’ L o —]
—_
R 0 a b t 4] a b[/. t

Fig. 123. RC-circuit, electromotive force v(t), and current in Example 3

Solution. The input is Volu(t — a) — u(t — b)]. Hence the circuit is modeled by the integro-differential
equation (see Sec. 2.9 and Fig. 123)

T
(t 1 ;
Ri(r) + a0 = Ri() + ~f i(7) dr = v(r) = Vylult — a) — u(r — b)].
G CJy
Using Theorem 3 in Sec. 6.2 and formula (1) in this section, we obtain the subsidiary equation

) Voo _ge _ps
RI(s) + o [e e ™).

Solving this equation algebraically for I(s), we get

Vo/R vV
dis —as _ _=—bs s 0 -1 _ 20 —tirRO)
I(s) = Fis)(e g ) where Fi(s) s+ RO) and £ ) R € !

the last expression being obtained from Table 6.1 in Sec. 6.1. Hence Theorem | yields the solution (Fig, 123)
V. .
i =27 = £ Ye Fs)} — £~ PF(s)) = ?" [em@-ECyyy — g) — (~E—OWRCY; — py).

that is, i(r) = 0 if t < a, and

Ko YR ifa<t<b
i(r) =
By = Ka)a RO ifa=>b
where Ky = Ve BOUR and K, = Ve BOUR. i

Response of an RLC-Circuit to a Sinusoidal Input Acting Over a Time Interval

Find the response (the current) of the RLC-circuit in Fig. 124, where E(r) is sinusoidal, acting for a short time
interval only, say,

E(r) = 100 sin400¢ if 0 << 27w and Eny=0ifr>2m

and current and charge are initially zero.

Solution. The electromotive force E(f) can be represented by (100 sin 4001)(1 — w(t — 277)). Hence the
model for the current i(r) in the circuit is the integro-differential equation (see Sec. 2.9)

¢
0.1i" + 11i + 100 J- i(7) dv = (100 sin 400¢)(1 = ul(t = 27)), Wy =0, i'(0=0.
0

From Theorems 2 and 3 in Sec. 6.2 we obtain the subsidiary equation for /(s) = 2£(i)

1 100-400s (1 27
0.dsf + 117+ 100 — = — 3 4
L} 5+ 400 5 5
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Solving it algebraically and noting that 52+ 1105 + 1000 = (s + 10)(s + 100), we obtain

1000 - 400 ( 5 se_z"s)
I(s) = .

(s + 10)(s + 100) \ s + 400> 5% + 4002
For the first term in the parentheses (- - +) times the factor in front of them we use the partial fraction expansion

400 000s A B Ds + K
= + + ;
(s + 10)s + 100)(s® + 400%) s+ 10 s+ 100 52+ 4002

Now determine A, B, D, K by your favorite method or by a CAS or as follows. Multiplication by the common
denominator gives

400 0005 = A(s + 100)(s% + 400%) + B(s + 10)(s% + 400%) + (Ds + K)(s + 10)(s + 100).

We set s = —10 and — 100 and then equate the sums of the 5% and 52 terms to zero, obtaining (all
values rounded)

(s =—10) —4.000 000 = 90(10* + 400%)A, A = —0.27760
(s = —100) —40 000 000 = —90(100% + 400%)B, B = 2.6144
(s%-terms) 0=A-+B+D, D = —23368
(s-terms) 0= 1004 + 10B + 110D + K, K = 258.66.

Since K = 258.66 = (1.6467 - 400, we thus obtain for the first term [y in [ = Iy — Iy

I 0.2776 " 2.6144 2.3368s I 0.6467 - 400
L7 5410 7 s+100 52 + 4002 52+ 400%

From Table 6.1 in Sec. 6.1 we see that its inverse is
iy(1) = —0.2776e 10" + 2.6144¢719°" — 23368 cos 4001 + 0.6467 sin 400+

This is the current i(f) when 0 <t < 2. It agrees for 0 < t < 27 with that in Example 1 of Sec. 2.9 (except
for notation), which concerned the same RLC-circuit. Its graph in Fig. 62 in Sec. 2.9 shows that the exponential
terms decrease very rapidly. Note that the present amount of work was substantially less.

The second term /7 of [ differs from the first term by the factor €2 Since cos 400(1 — 2m) = cos 4001
and sin 400(r — 2a) = sin 400z, the second shifting theorem (Theorem 1) gives the inverse io(f) = 0 if
0 <1< 27 and for > 27 it gives

igt) = —0.2776e710¢=2™ 4 2 61447100021 _ 3 3368 cos 4007 + 0.6467 sin 4001,
Hence in i(r) the cosine and sine terms cancel, and the current for t = 2w is

i(t) = —02776(e™10t — ¢710¢=2m) 1 3 6144 (7100t — (1000 -2m)

It goes to zero very rapidly, practically within 0.5 sec. |
C=102F
C
E=11Q § L=01H
e
E(¢t)

Fig. 124, RLC-circuit in Example 4
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1. WRITING PROJECT. Shifting Theorem. Explain
and compare the different roles of the two shifting
theorems, using your own formulations and examples.

2-13| UNIT STEP FUNCTION AND SECOND

SHIFTING THEOREM

Sketch or graph the given function (which is assumed to
be zero outside the given interval). Represent it using unit
step functions. Find its transform. Show the details of your
work.

2, (0L < 1) et (0<t<?2)
d.sin3r(0<t1<m) S512(1<t<2)
6. 12 (+ > 3) 7.cos wt (L <t < 4)
B.1l—et(0<it<7 %it(5<1<10)

10. sin wi (1 = 67/ w) 11. 20 cos mr (3 <1< 6)
12, sinhr (0 < 1 < 2) 13 e®t (2= 1< 4)

[14-22] INVERSE TRANSFORMS BY THE
SECOND SHIFTING THEOREM

Find and sketch or graph f(r) if £(f) equals:

14. se”%/(s%2 + @?)

15, e~ 45/s2

16. 572 — (572 + s Y)e~s

17 (7% = 9% (5 + 1)

18. e~ ™/(s% + 25 + 2) 19. e~25/s°

20. (1 — e By /(s — k) 21. se™35/(s2 — 4)
22, 2.5(e” %8s — o285/

[23-34] INITIAL VALUE PROBLEMS, SOME WITH

DISCONTINUOUS INPUTS

Using the Laplace transform and showing the details, solve:

23.y" + 2y + 2y =0, v(0) = 0,
y'(0) =1

24. 9v" — 6y + vy =0,
y'(0) =1

25. v" + 4y’ + 13y = 145 cos 21,
v'(0) = 14

26. v" + 10y" + 24y = 14412, y(0) = 1,
y'(0) = -5

27. " 4+ 9y = #(1). r(1) = 8 sintif 0 < ¢t < 7 and 0
ift>m y0)=0,y(0) =4

28. "+ 3y + 2y =r(0). () = 1if0 <t <1 and

y(0) = 3,

»(0) = 10,

0ifr>1; y0) =0, y(0) =0
29.y" +y=r@), rt)=1if0<1t<1and0 if
t> 1 y(0)=y'(0) =0

30. " — 16y = r(1), r(1) = 482 if 0 <t < 4 and
0ifr > 4 ¥(0) = 3, y'(0) = —4

3. y" + y' — 2y = r(1), r(r) = 3 sint — cost if
0<t<2mand3sin2t —cos2tif r > 2m;
»0) =1, y'(0)y=0

32.v" + 8y + 15y = (1), (1) = 35> if
0<t<2and0ifr> 2; y(0) = 3,
y'(0) = -8

33. (Shifted data) y" + 4y = 8/2if0 < 1< 5and 0
ift>5y(1)=1+cos2, y' (1) =4 — 2sin2

34.v" + 2y +5y=10sintif 0 <1< 27 and 0 if
t>2my(m)y =1,y (7) = 27" — 2

MODELS OF ELECTRIC CIRCUITS

35. (Discharge) Using the Laplace transform, find the
charge ¢(f) on the capacitor of capacitance C in Fig. 125
if the capacitor is charged so that its potential is V,, and
the switch is closed at r = 0.

Cc== R
s
Fig. 125.  Problem 35
36-38| RC-CIRCUIT

Using the Laplace transform and showing the details. find
the current i(f) in the circuit in Fig. 126 with R = 10 () and
C = 1072 F, where the current at t = 0 is assumed to be
zero, and:

36. v(r) = 100 V if 0.5 < r < 0.6 and 0 otherwise.

Why does i(r) have jumps?
37.v=0ifr<2and 100(: — 2) Vift > 2
3. v=0ifr <4 and 14+ 10%73 Vifr > 4

u(t)
Fig. 126. Problems 36-38

13941/ RL-CIRCUIT

Using the Laplace transform and showing the details, find
the current i(?) in the circuit in Fig. 127, assuming i(0) = 0
and:
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39.R=100,L=05H,v=200t Vit0<rt<2and
0ift >2

40, R=1kOQ (=10000),L=1H,v =0if
O0<t<mand40sint Vifr> =«

41. R =250,L=0.1 H, v = 490e~% V if
O0<t<landOifr=>1

vit)
Fig. 127. Problems 39—-41

[42-44] LC-CIRCUIT
Using the Laplace transform and showing the details, find
the current i(¢) in the circuit in Fig. 128, assuming zero
initial current and charge on the capacitor and:
42. L =1H,C=025F v =200(— i3 Vif
O0<tr<landOifr>1
43.L=1H,C=10"2F, v = —9900 cos t V if
7 < 1 < 37 and 0 otherwise
4. L=05H.C=005F, v="78sinrVif
O0<t<wmandOifsr> 7

ult)

Fig. 128. Problems 42-44

|45-47| RLC-CIRCUIT

Using the Laplace transform and showing the details, find

the current i(r) in the circuit in Fig. 129, assuming zero

initial current and charge and:

45.R=280,L=1H, C=05F v(r)=1kVif
0<t<2andOiftr>2

46.R=4Q0,L=1H,C=005F, v =34e 'V
if0<r<4andOifr =>4

47. R=20,L=1H,C=0.1F, v =255sint V
if0<t<2wand 0ift > 27w

C

—

e :

]
vit)

Fig. 129. Problems 45-47

6.4 Short Impulses. Dirac’s Delta Function.

Partial Fractions

Phenomena of an impulsive nature, such as the action of forces or voltages over short
intervals of time, arise in various applications, for instance, if a mechanical system is hit
by a hammerblow, an airplane makes a “hard” landing, a ship is hit by a single high wave,
or we hit a tennisball by a racket, and so on. Our goal is to show how such problems are
modeled by “Dirac’s delta function™ and can be solved very efficiently by the Laplace
transform.

To model situations of that type, we consider the function

1/k fa=t=a+k
(1 filt —a) = (Fig. 130)

0 otherwise

(and later its limit as k — 0). This function represents, for instance, a force of magnitude
I/k acting from t = a to t = a + k, where k is positive and small. In mechanics, the
integral of a force acting over a time interval @ = t = a + k is called the impulse of the
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force; similarly for electromotive forces E(f) acting on circuits. Since the blue rectangle
in Fig. 130 has area 1, the impulse of f}, in (1) is

a+lk

(2) IkZJ; fk(r——a)dr=f %d.f= :

a

To find out what will happen if k£ becomes smaller and smaller, we take the limit of f),
as k — 0 (k > 0). This limit is denoted by &(f — a), that is,

ot —a) = Eﬂﬂ, it — a).

8(r — a) is called the Dirac delta function® or the unit impulse function.

8(r — a) is not a function in the ordinary sense as used in calculus, but a so-called
generalized function.? To see this, we note that the impulse I, of f is 1, so that from (1)
and (2) by taking the limit as £k — 0 we obtain

e ift=a %0
3) 8t — a) = anid [ s¢-wa=1
0 otherwise 0

but from calculus we know that a function which is everywhere 0 except at a single point
must have the integral equal to 0. Nevertheless, in impulse problems it is convenient to
operate on 8(r — a) as though it were an ordinary function. In particular, for a continuous
function g(r) one uses the property [often called the sifting property of (7 — a), not to
be confused with shifting]

oc

4) f g é(t — a) dr = gla)
0

which is plausible by (2).
To obtain the Laplace transform of (1 — a), we write

1
fit —a) = 7 [u(t — a) — u(t — (a + k)]
Area=1
1/k

@ a+k t
Fig. 120.  The function f(t — a) in (1)

2PAUL DIRAC (1902-1984), English physicist. was awarded the Nobel Prize [jointly with the Austrian
ERWIN SCHRODINGER (1887-1961)] in 1933 for his work in quantum mechanics.

Generalized functions are also called distributions. Their theory was created in 1936 by the Russian
mathematician SERGEL L"VOVICH SOBOLEV (1908-1989). and in 1945, under wider aspects, by the French
mathematician LAURENT SCHWARTZ (1915-2002).
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EXAMPLE 1

and take the transform [see (2)]
1 | =g

< t — s —as __ ,,—(a+kls| — ,—as

L{frlt — a)} ™ [e e = %
We now take the limit as k — 0. By I'Hopital’s rule the quotient on the right has the limit
1 (differentiate the numerator and the denominator separately with respect to k, obtaining
se™* and s. respectively, and use se”*/s — 1 as k — 0). Hence the right side has the
limit ¢~“. This suggests defining the transform of 8(r — «) by this limit, that is,

(5 LL8(t — a)} = ™.

The unit step and unit impulse functions can now be used on the right side of ODEs
modeling mechanical or electrical systems, as we illustrate next.

M