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Introduction

In this Lecture, you will learn: The Inverse Laplace Transform

e Simple Forms

The Partial Fraction Expansion
e How poles relate to dominant modes
e Expansion using single poles
¢ Repeated Poles
e Complex Pairs of Poles

» Inverse Laplace
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Recall: The Inverse Laplace Transform of a Signal

To go from a frequency domain signal, 4(s), to the time-domain signal, u(t), we

use the

Definition 1.

The Inverse Laplace Transform of a signal 4(s) is denoted u(t) = A=t

u.

u(t) = A"t = / et (w)dw
0

e Like A, the inverse Laplace Transform A~' is also a Linear system.
e ldentity: A~'Au = u.

e Calculating the Inverse Laplace Transform can be tricky. e.g.

sP+s24+25—1

y:54+3537252+s+1
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Poles and Rational Functions

Definition 2.

A Rational Function is the ratio of two polynomials:

Most transfer functions are rational.
Definition 3.

The point s, is a Pole of the rational function 4(s) = "(S; if d(sp) = 0.

d(s

e |t is convenient to write a rational function using its poles

n(s) _ n(s)
d(s)  (s—p1)(s—p2) (s —pn)
e The Inverse Laplace Transform of an isolated pole is easy:

1
a(s) = means u(t) = et
s+p
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Partial Fraction Expansion

Definition 4.

The Degree of a polynomial n(s), is the highest power of s with a nonzero
coefficient.

Example: The degree of n(s) is 4

n(s) =s*+ 552+ 1

Definition 5.
A rational function 4(s) = Z((j; is Strictly Proper if the degree of n(s) is less
than the degree of d(s).

e We assume that n(s) has lower degree than d(s)
e Otherwise, perform long division until we have a strictly proper remainder
2 4+252+6s+7

- 1ae 2
s2+s+5 st Jr52—&-5—1—5
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Poles and Inverse Laplace Transforms

A Strictly Proper Rational Function is The Sum of Poles: We can usually
find coefficients r; such that

n(s) 1 T

Gop)G-p2) G-p) s-pm T s5—pm

e Except in the case of repeated poles.

Poles Dominate the Motion: Because a signal is the sum of poles, The
inverse Laplace has the form

u(t) = riePrt 4.+ r,efrt
e p; may be complex.

> If p; are complex, r; may be complex.

e Doesn't hold for repeated poles.
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Examples

Simple State-Space: Step Response

) s—1 2 1
y(s)_(erl)s_erl s
y(t) = et~ 2100)

Suspension System: Impulse Response

=il __1/2 1 1
T Jg2_ Mg T g\ Magl Mgl Mgl
S P \s— /2L s+
y(t):J /Mgl(\/W e W)
Simple State-Space: Sinusoid Response
i(s) = s—1 - s 1
yisr = +1)(s2+1) \s2+1 s+1

(s
y(t) = %

1
cost — —e~ !
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Partial Fraction Expansion

Conclusion: If we can find coefficients r; such that

i) - M) n(s)
d(s) (s =p1)(s —p2)--- (s = pn)
™ Tn

++ s
s—Dp1 S —Pn

then this is the of a(s).

We will address several cases of increasing complexity:
1. d(s) has all real, non-repeating roots.
2. d(s) has all real roots, some repeating.

3. d(s) has complex, repeated roots.
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Case 1: Real, Non-repeated Roots

This case is the easiest:

where p,, are all real and distinct.
Theorem 6.
For case 1, §(s) can always be written as
1 T'n

B =t
S—P1 S — Pn

where the r; are all real constants

The trick is to solve for the r;
e There are n unknowns - the r;.

e To solve for the r;, we evaluate the equation for values of s.
» Potentially unlimited equations.
» We only need n equations.
» We will evaluate at the points s = p;.
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Case 1: Real, Non-repeated Roots
Solving

We want to solve
T1 Tn

g(s) = +-+ for r, o, ...
s—D S —Pn
For each r;, we
N S — P S —DP; S —p;
Gs)(s —pi) =P SRy 2T
s—D1 S —D; S — Dn
s —p; PR
=r pz+"'+7"i+"'+7"n bi
S—Dp1 S — Dn
Evaluate the Right Hand Side at s = p;: We get
rlpi—pi +"'+7‘¢+"'+7‘npi_pi
pi—n1 DPi —Pn
0 0
=71 Fo i =y
Pi — D1 Pi — DPn

Setting LHS = RHS, we get a simple formula for r;:
7 = 9(8)(s — pi)ls=ps
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Case 1: Real, Non-repeated Roots

Calculating r;
So we can find all the coefficients:

ri = 9(s)(s _pi)|8=pi

o n(s) .
O e e PO Pommasy T ppen ooy bopy e I )
n(s)

(s =p1) -+~ (s =pi-1)(s = piv1) -~ (s —pn)

e This is ¢ with the pole s — p; removed.

Definition 7.
The Residue of § at s = p; is the value of §(p;) with the pole s — p; removed.
Thus we have

n(p;)
(pi —p1) - (i = Pi—1)(Pi — Pig1) -~ (P — Pn)

i = 9(5)(5 = pi)ls=p; =
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Example: Case 1

R _ 25+ 6
1= DG
We first separate g into parts:
N 25+6 r1 T2
§ls) = (s+1)(s+2) T s+l + s+2
Residue 1: we calculate:
25+ 6 25+ 6 -2+6 4

= — 1 ] = e 1 = —_ = 4
N i eyt T s e s s T
Residue 2: we calculate:
25 +6 25+ 6 —44+6 2
e S —————— 2 §=—2 = —/—|g=—2 = = — = —2
"2 (s+1)(s+2)(5+ Nomz =gl = 53 = 3
Thus "
i(s) 4 n —2 1
s) = “
Y s+1 s+2 E
Concluding, o
y(t) = 4e™t — 272 .
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Case 2: Real, Repeated Roots

Sometimes § has a repeated pole:

(s =p1)4(s —p2)- (s —pn)

9(s) =

In this case, we CAN NOT use simple expansion (As in case 1). Instead we

have
N n(s
4(s) = 7 (&)
(s =p1)i(s —p2) - (s —pn)
T11 T12 T1q T2 Tn
= + + - + +-+
((S—Pl) (s —p1)? (S—pl)q> S5 — P2 S —DPn
e The r;; are still real-valued.
Example: Find the r;;
s+ 3)2 r r
( ) _ ' + 12 + 13 + 721 + 722
(s+2)3(s+1)2 s+2 (s+2)2 (s+2)3 s+1 (s+1)2
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Case 2: Real, Repeated Roots

Problem: We have more coefficients to find.

e ¢ coefficients for each repeated root.

First Step: Solve for ro,--- ,r, as before:
If p; is not a repeated root, then
n(pi)
(pi —p1)®- -+ (pi — pi1)(Pi — Pit1) -~ (Pi — Pn)

r, =
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Case 2: Real, Repeated Roots

New Step: Multiply by (s — p1)? to get the coefficient 71,.

+...+tr~1q

) (s = )7 = (run 2 4y B2 ey

+7r
(s—p1) (s —p1)? (s —p1)?
s — )4 s — 1 )d
N Clnd ) S it Vi
S — P2 S — Pn
= (7’11(5*171)'171 +T12(5*p1)q72+"'+7’1q)
s — )4 s —m)d
U Clnd ) I it Vi
S —p2 S —DPn

and evaluate at the point s = p; to get .

T1q = y(s)(s — pl)q|s:p1

® 714 is §(p1) with the repeated pole removed.
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Case 2: Real, Repeated Roots

To find the remaining coefficients, we

g(s)(s —p1)? = (rin(s —p1)" "+ r1a(s —p) T2+ 11g)

_ q _ q
+T2(s P1) _'_”._'_Tn(s p1)
s — P2 S — Pn
to get
d .
s (9(s)(s —p1)?)

= ((g— Dria(s —p) ">+ (¢ = 2)r12(s = 1) > + -+ + 71, 4-1))
d T Tn
+d8(s—p1)q< S T )

§— P2 S —DPn

Evaluating at the point s = py.
d . q
2 s =)D gy = 71-)
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Case 2: Real, Repeated Roots

If we differentiate again, we get

2
o ()5~ )

= ((@=1(g = 2ruls —p)?™> + -+ 211, 4-2))

d T9 T
—|-ds2(5—p1)q( + -+ )

§— P2 S —DPn

Evaluating at s — p;, we get
1d*
T1,(¢—2) = 9 ds? (y(s)(s - pl)q) ‘s:m
Extending this indefinitely

T ) =) L

"=

Of course, calculating this derivative is often difficult.
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Example: Real, Repeated Roots

Expand a simple example

N o s+3 o 11 12 T2
ils) = (s +2)2(s+1) _s+2+(s+2)2+s+1

First Step: Calculate ro
543 —-1+3 2

=0—lg=—1 == —-—= 2
Al s A
Second Step: Calculate 719
s+3 -2+3 1 1

ne= ket T o

The Difficult Step: Calculate r1:

., _i s+3 |
B gs\sr1) =2

(1 S48\ 243 _ 1 1_
T \s+1 (s+1)2) T 241 (—2412 1 1
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Example: Real, Repeated Roots

So now we have

R s+ 3 2 -1
4(s) =

2
(s+2)2(s+1)

s+2+(s+2)2+5+1

Question: what is the Inverse Fourier Transform of ( +12)2
Recall the Power Exponential:

1 . tm—le—at
(s+a)™ (m—1)!

()

Finally, we have:

y(t) = =22 —te 2 4 2¢7

M. Peet
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Case 3: Complex Roots

Most signals have complex roots (More common than repeated roots).

N 3
§ls) = s(s?2+2s+5)

has roots at s =0, s = —1 — 21, and s = —1 + 2..
Note that:

e Complex roots come in pairs.
e Simple partial fractions will work, but NOT RECOMMENDED

» Coefficients will be complex.
» Solutions will be complex exponentials.
» Require conversion to real functions.

Best to Separate out the Complex pairs as:

n(s)

g(s) = (52 +as+b)(5 —p1)~"(3_pn)
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Case 3: Complex Roots

Complex pairs have the expansion

n(s) kis+ ko el T
3 = 3 + +...+
(s24+as+b)(s—p1) - (s—pn) s2+as+b s—p $—DPn

Note that there are two coefficients for each pair: ki and ks.

There are several different methods for finding k1 and ks.
First Step: Solve for 9, ,r, as normal.
Second Step: Clear the denominator. Multiply equation by all poles.

kis+k r r
1 2 L
s2+as+b  s—p; 5—pn

n(s) = (s*+as+b)(s—p1)---(s—pn) (

Third Step: Solve for k1 and ko by examining the coefficients of powers of s.

Warning: May get complicated or impossible for multiple complex pairs.
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Case 3 Example

Take the example

A(S)— 2(S+2) . k1s + ko 1
4 C(s+1)(s2+4) s2+4 s+1

First Step: Find the simple coefficient ry.

2(s+2)| o142 12
244 TP 214 5 B

T =

Next Step: Multiply through by (s +4)(s + 1).
205 +2) = (s + 1) (ks + ko) +r1(s> +4)
Expanding and using r; = 2/5 gives:

25+ 4 = (ky +2/5)8* + (ko + k1)s + ko + 8/5
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Case 3 Example

Recall the equation

25 +4 = (ky +2/5)s* + (ko + k1)s + ko + 8/5

Equating coefficients gives 3 equations:
e s2term-0=Fk; +2/5
e sterm-2="Fky+ k;
o s' term-4=Fky+8/5

An over-determined system of equations (but consistent)
e First term gives k; = —2/5
e Second term gives ko =2 — k; = 10/5+2/5 =12/5
o Double-Check with last term: 4 = 12/5+8/5 = 20/5
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Case 3 Example

So we have

. 2(s+2) 2 1 s—6
§ls) = (s+1)( +4) 5<s+132+4>

2 R
5 s+1 s2+4 s2+4
2

= (™" — cos(2t) + 3sin(2t))
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Case 3 Example

Now consider the solution to A Different Numerical Example: (Nise)

3 3/5 3 s+2

s(s24+2s+5) s 5s2+25+5

What to do with term:
s+ 2 o

s2425+5"

We can rewrite as the combination of a frequency shift and a sinusoid:

s+2 s+2 o (s+D)+1
$2+25+5 s2+2s+1+4 (s+1)2+4
o (s+1) _'_1 2
(s+1)2+4 2(s+1)2+4
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Case 3 Example

s+2  (s+1) +1 2
$24+2s+5  (s+1)24+4 2(s+1)2+4

o _(st1)
(s+1)2+4
e s — s+ 1 means multiplication by e~

_ +1) A s _
A 1 (S — tA 1 — t 2%
((s+1>2+4> ‘ <82+4> ©o

2 L
(S-i—l)2—|—4) =€ sin 2t

is the sinusoid ;%7 shifted by s — s+ 1.

tin the time-domain.

o Likewise A1 (

08 -

06 -

04 -

¥

02l . . . . 4

oF

o2k 4

04 I L L L L I I
0 1 3 4 5 6 7 8

2 ‘ 1
AL _sts =e ' cos2t + —sin 2t
s24+2s5+5 2
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Summary

What have we learned today?
In this Lecture, you will learn: The Inverse Laplace Transform

e Simple Forms

The Partial Fraction Expansion
e How poles relate to dominant modes
e Expansion using single poles
e Repeated Poles

e Complex Pairs of Poles
> Inverse Laplace

Next Lecture: Important Properties of the Response
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