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Acceptable stability, and medium fastness of response

What is the aim of the
controller tuning? If it was
possible to obtain, we would
like to obtain both of the
following for the control
system:

« Fast responses, and
« Good stability

 The faster response, the
worse stability, and

* The better stability, the
slower response.

Setploint (a step) !

-4 - ——
]

- [ | | )
I Acceptabie stabilily and medium fastness (good compromise)




PID Controllers

Introduction

More than half of the industrial controllers in use today utilize
PID or modified PID control schemes.

Many different types of tuning rules have been proposed in the
literature.

<= Manual tuning on-site
<= On-line automatic tuning
<= Gain scheduling

When the mathematical model of the plant is not known and

therefore analytical design methods cannot be used, PID
controls prove to be most useful.



PID Controller Design (Tuning)

/

K (1 + Tl—_+ T,s) pp—| Plant
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Figure 10-1 PID control of a plant.

Design PID control
- Know mathematical model <= various design technigues

- Plant 1s complicated, can’t obtain mathematical model <~
experimental approaches to the tuning of PID controllers




PID Controller Structure
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PID Controller Structure
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Ziegler-Nichols Rules for Tuning PID Controllers

-Zlegler and Nichols proposed rules for determining values of the
proportional gain K, integral time T;, and derivative time T,
based on the transient response characteristics of a given plant.

-Such determination of the parameters of PID controllers or

tuning of PID controllers can be made by engineers on-site by
experiments on the plant.

-Such rules suggest a set of values of K, T;, and T, that will give a

stable operation of the system. However, the resulting system

may exhibit a large maximum overshoot in the step response,
which is unacceptable.

- We need series of fine tunings until an acceptable result is
obtained.



Ziegler-Nichols 15t Method of Tuning Rule

: We obtain experimentally the response of the plant to a
unit-step input, as shown in Figure 10-2.

-The plant involves neither integrator(s) nor dominant complex-
conjugate poles.

-This method applies if the response to a step input exhibits an S-
shaped curve.

- Such step-response curves may be generated
experimentally or from a dynamic simulation of the plant.
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Figure 10-2 Unit-step response of a plant.



Ziegler-Nichols 15t Method of Tuning Rule

Needs to identify the system using a step response
by putting the controller in manual mode
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Figure 10-3 S-shaped response curve.



_ C(s) Ke™
Transfer function: UG) ~Ts 71

Ziegler and Nichols suggested to set the values of K, T;, and T, according to the formula
shown in Table 10-1.

Table 8-1 Ziegler—Nichols Tuning Rule Based on Step Response of Plant (First

Method)
Type of
Controller K, T; T
P % o0 ()
PI 0.9 L L 0
L 0.3
T
PID 1.2 7 2L 0.5L




Notice that the PID controller tuned by the first method of Ziegler-Nichols rules
gives

1
G(s) = Kp(l + Ts + Tds)
2Ls

A)

= 1'2% (1 + L + O.SLS)

= 0.6T

Thus, the PID controller has a pole at the origin and double zeros at s = —1/L.



Ziegler-Nichols 2" Method of Tuning Rule

1. We first set T, = coand T, = 0. Using the proportional control
action only (see Figure 10-4).

Figure 10-4 Closed-loop system with a proportional controller.



2. Increase K, from 0 to a critical value K, at which the output
first exhibits sustained oscillations.

c(t) A

o
ANANA N
| VARVARE

Figure 8-5 Sustained oscillation with period P,. (P, Is measured in sec.)




< Ziegler and Nichols suggested that we set the values
ofvthe parameters K,, T,, and Td according to the formula shown

In Table 10-2.

Table 10-2 Ziegler—Nichols Tuning Rule Based on Critical Gain K, and
Critical Period P, (Second Method)

Type of
Controller K, T 1,
P 05K, o0 0
Pl 045K 1 P 0
ol cr 12 cr
PID 0.6K,, 03P, 0.125P,




Ziegler-Nichols 2" Method of Tuning Rule

1. Bring the process to (or as close to as possible) the specified
operating point of the control system to ensure that the controller
during the tuning is “feeling” representative process dynamic® and to
minimize the chance that variables during the tuning reach himits.
You can bring the process to the operating point by manually
adjusting the control variable. with the controller in manual mode.
until the process variable 1s approximately equal to the setpoint.

2. Turn the PID controller into a P controller by setting set T; = oo’
and Ty = 0. Imtially set gain A, = 0. Close the control loop by
setting the controller in automatic mode.

3. Increase I\, until there are sustained oscillations 1n the signals in the
control syvstem. e.g. in the process measurement. after an excitation
of the system. (The sustained oscillations corresponds to the system
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Notice that the PID controller tuned by the second method of Ziegler—Nichols rules
gives

1
G.(s) = Kp(l + T + Tds)

1
= U. ‘ + 0.
06&,(1 * 05Ps 0125}1,5)
4 2
(5 %)
A

Thus, the PID controller has a pole at the origin and double zeros at s = —4/P,,.

= 0.075K., P,

Note that if the system has a known mathematical model (such as the transfer func-
tion), then we can use the root-locus method to find the critical gain K and the fre-
quency of the sustained oscillations w,,, where 27 /w,., = P... These values can be found
from the crossing points of the root-locus branches with the jw axis. (Obviously, if the
root-locus branches do not cross the jw axis, this method does not apply.)

Comments. Ziegler-Nichols tuning rules (and other tuning rules presented in the
literature) have been widely used to tune PID controllers in process control systems
where the plant dynamics are not precisely known. Over many years, such tuning rules
proved to be very useful. Ziegler-Nichols tuning rules can, of course, be applied to plants
whose dynamics are known. (If the plant dynamics are known, many analytical and
graphical approaches to the design of PID controllers are available, in addition to
Ziegler-Nichols tuning rules.)



EXAMPLE 10-1

Consider the control system shown in Figure 10-6 in which a PID controller is used to control the
system. The PID controller has the transfer function

1
G.(s) = Kp(l + Ts + Tds)

Although many analytical methods are available for the design of a PID controller for the pres-
ent system, let us apply a Ziegler-Nichols tuning rule for the determination of the values of pa-
rameters K, T;, and T, Then obtain a unit-step response curve and check to see if the designed
system exhibits approximately 25% maximum overshoot. If the maximum overshoot is excessive
(40% or more), make a fine tuning and reduce the amount of the maximum overshoot to ap-
proximately 25% or less.

R(s) C(s)

1
s(s+ 1)(s+95)

G(S) [

PID
controller

Figure 10-6 PID-controlled system.



Since the plant has an integrator, we use the second method of Ziegler—Nichols tuning rules.
By setting T, = oo and T, = 0, we obtain the closed-loop transfer function as follows:

C(s) _ K,
R(s) s(s+1)(s+5 +K,

The value of K, that makes the system marginally stable so that sustained oscillation occurs can
"be obtained by use of Routh’s stability criterion. Since the characteristic equation for the
closed-loop system is

s3+6.s'z+55+Kp=0

the Routh array becomes as follows:

3 1 5
2 6 K,
g 30 - K,

6
s° K,,

Examining the coefficients of the first column of the Routh table, we find that sustained oscilla-
tion will occur if K, = 30. Thus, the critical gain K, is

K. = 30

With gain K, set equal to K, (= 30), the characteristic equation becomes

S+ 65+ 55 +30=0




To find the frequency of the sustained oscxllauon we substitute s = je into this characteristic
equation as follows:

(jo)® + 6(jw)* + 5(jw) +30 =0
or

65 — wz) + jo(5 — wz) =0

from which we find the frequency of the sustained oscillation to be »* = 5 of @ = V5. Hence, the
period of sustained oscillation is

2@ 27

Pc,-_- =7

= 2.8099

(0]

Referring to Table 10-2, we determine K, T}, and 7 as follows:

pr Lis

K, = 06K, = 18
T, = 0.5P, = 1.405
T, = 0.125P, = 0.35124




The transfer function of the PID controller is thus

fl

1
G.(s) Kp(l + o+ r,,s)

’

- 18(1 — 0.351243)

1.405s
6.3223(s + 1.4235)?

A)

The PID controller has a pole at the origin and double zero at s = —1.4235. A block diagram of
the control system with the designed PID controller is shown in Figure 10-7.

R(s) 6.3223 (s + 1.4235)? 1 C(s)
P P —
s s(s+ 1)(s+5)
PID controller

Figure 10-7 Block diagram of the system with PID controller designed by use of
the Ziegler—Nichols tuning rule (second method).



Next, let us examine the unit-step response of the system. The closed-loop transfer function
C(s)/R(s) is given by

C(s) _ 6.3223s + 185 + 12.811
R(s) s*+ 65 + 11.3223s% + 18s + 12.811

MATLAB Program 10-1
Y% -------—- Unit-step response ----------

num=[0 0 6.3223 18 12.811];
den=1[1 6 11.3223 18 12.811]};
step(num,den)

grid

title('Unit-Step Response')




Unit-Step Response
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Figure 10-8 Unit-step response curve of PID-controlled system designed by use of
the Ziegler—Nichols tuning rule (second method).



< The maximum overshoot in the unit-step response Is
approximately 62%.The amount of maximum overshoot is
excessive. It can be reduced by fine tuning the controller
parameters. Such fine tuning can be made on the computer. We
find that by keeping K = 18 and by moving the double zero of
the PID controller to s = -0.65, that is, using the PID controller

1 (s + 0.65)°

3.077s (10-1)

+ 0.76925) = 13.846

G.(s) = 18(1 +

the maximum overshoot in the unit-step.response can be reduced to approximately 18%

< See Figure 10-9
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Figure 10-9 Unit-step response of the system shown in Figure 8-6 with PID
controller having parameters K, =18, T; =3.077, and T4 = 0.7692.



If the proportional gain X, is increased to 39.42, without cﬁhnging the location of the

double zero (s = ~0.65), that is, using the PID controller
(s + 0.65)

G.s) = 39.42(1 + - 0.76925) = 30.322 (10-2)

3.077s
then the speed of response is increased, but the maximum overshoot is also increased to approx-
imately 28%, as shown in Figure 10-10.
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Since the maximum overshoot in this case is fairly close

to 25% and the response is faster than the system with G_.(s) given by Equation (10-1), we may

consider G,(s) as given by Equation (10-2) as acceptable. Then the tuned values of K, T,and T,
become

K,=3942, T, =3077, T,=07692

It is interesting to observe that these values respectively are approximately twice the values sug-
gested by the second method of the Ziegler—Nichols tuning rule. The important thing to note here

is that the Ziegler—Nichols tuning rule has provided a starting point for fine tuning.
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- Varying the value of K (from 6
to 30) will not change the
damping ratio of the dominant
closed-loop poles very much.

Figure 10-11 Root-locus diagram of system when PID controller has double zero
ats =-1.4235.
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Figure 10-12 Root-locus diagram of system when PID controller has double zero
at s =-0.65. K = 13.846 corresponds to G.(s) given by Equation (10—
1) and K = 30.322 corresponds to G(s) given by Equation (10-2).



10-3 COMPUTATIONAL APPROACH TO OBTAIN OPTIMAL SETS
OF PARAMETER VALUES
EXAMPLE 10-2

Consider the PID-controlled system shown in Figure 10-13. The PID controller is given by

(s + a)2
A

G.(s) = K

It is desired to find a combination of K and a such that the closed-loop system is underdamped
and the maximum overshoot in the unit-step response is less than 10%, but more than 5%, to
avoid an overdamped or a close-to-overdamped response. (Other conditions can be included,
such as that the settling time be less than a specified value and the rise time be less than a cer-

tain specified value.)

R(s) (s + a)? 1.2 e
K— ™1 0365° + 1.8652 + 2.55 + 1
PID
controller

Figure 10-13 PID-controlled system.



2=K=5 and 05=a=15

To avoid an overly large amount of computation in this problem, let us choose the step size to be
reasonable—say, 0.2 for both K and a.

MATLAB Program 10-2

t =0:0.01:8;
for K = 5:-0.2:2; % Starts the outer loop to vary the K values
for a = 1.5:-0.2:0.5; % Starts the inner loop to vary the a values
num = [0 0 1.2*K 2.4*K*a 1.2*K*a"2];
den = [0.36 1.86 2.5+1.2*K 1+2.4*K*a 1.2*K*a’2];
y = step(num,den,t);
m = max(y);
ifm<1.1&m>1.05
break; % Breaks the inner loop
end
end
ifm<1.1&m>1.05
break; % Breaks the outer loop
end
end




plotit,y)

grid

title('Unit-Step Response')

xlabel('t Sec')

ylabel('Output')

KK = num2str(K); % String value of K to be printed on plot
aa = num2str(a); % String value of a to be printed on plot
text(4.25,0.54,'K = '), text(4.75,0.54,KK)

text(4.25,0.46,'a = '), text(4.75,0.46,aa)

sol = [K;a;m]

Sol =

4.2000
0.7000
1.0962




Figure 10-14
Unit-step response
curve obtained by
use of MATLAB
Program 10-2.

Output

1.4

08

Unit-5tep Response

B N T

’ g :  K=42
: P oa=07
ﬂ.d .:'- ,-'.............i.




MATLAB Program 10-3 is basically the same as MATLAB Program 10-2.

MATLAB Program 10-3

t = 0:0.01:8;
for K = 5:-0.2:2; % Starts the outer loop to vary the K values
for a = 1.5:-0.2:0.5; % Starts the inner loop to vary the a values
numl = K*[1 2*a a”2|;
den1 =[0 1 O];
tf1 = tfilnum1, den1);
num2=[0 0 0 1.2];
den2 =[0.36 1.86 2.5 1};
tf2 = tf(hnum2,den2);
tf3 = tf1*tf2;
sys = feedbacki(tf3,1);
y = step(sys,t);
m = maxly);
ifm<1.1 &m>1.05;
plot(t,y);
grid;
title('Unit-Step Response')
xlabel('t Sec')
ylabel('Output')
sol = [K;a;m]
break; % Breaks the inner loop
end
~ end
ifm<1.1&m>1.05;
break; % Breaks the outer loop
end
end




sol =
4.2000
0.7000
1.0962

text(6.2, 0.35,'K = '), text(6.65, 0.35,num2str(K))
text(6.2, 0.25,'a = '), text(6.65, 0.25,num2str(a))

Unit-Step Response

1.4

Output

Figure 10-15
Unit-step response
curve obtained by 02 b
use of MATLAB
Program 10-3.
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EXAMPLE 10-3

In Example 10-2 we wrote MATLAB programs to find the first set of parameters to satisfy the
given specifications. There may be more than one set of parameters that satisfy the specifications.
In this example, we shall obtain all sets of parameters that satisfy the given specifications.

Consider the same system as in Example 10-2, except that the problem here is to find all sets
of K and a that will satisfy the given specification that the maximum overshoot in the unit-step
response be less than 10%. (This means that overdamped systems are included.) Assume the
search region to be

2RK=S5 0554515
In the actual design process, the step size should be sufficiently small. In this example problem,

however, we choose a fairly large step size to make the total number of search points reasonable.
Thus, we choose the step size for both K and a to be 0.2.

To solve this problem it is possible to write many different MATLAB programs. We present
here one such program, MATLAB Program 10-4.



MATLAB Program 10-4

%'K"' and 'a' values to test

K=[2.0 2.2 2.4 2.6 2.8 3.0];
a=[0.5 0.7 09 1.1 1.3 1.5];

% Evaluate closed-loop unit-step response at each 'K' and 'a' combination
% that will yield the maximum overshoot less than 10%

t=0:0.01:5;
g=tf([0 0 0 1.2],[0.36 1.86 2.5 1]);
k=0;
fori=1:6;
for j= 1:6;
ge = tf(K(i)*[1 2*a(j) a(j)~2], [0 1 O]); % controller
G =gc*g/(1 + ge*g); % closed-loop transfer function
y = step(G,t);

m = max(y);
ifm<1.10
k =k+1;
solution(k,:) = [K(i) a(j) m};
end
end
end
solution % Print solution table




solution =

2.0000 0.5000 0.9002
2.0000 0.7000 0.9807
2.0000 0.9000 1.0614
2.2000 0.5000 0.9114
2.2000 0.7000 0.9837
2.2000 0.9000 1.0772
2.4000 0.5000 0.9207
2.4000 0.7000 0.9859
2.4000 0.9000 1.0923
2.6000 0.5000 0.9283
2.6000 0.7000 0.9877
2.8000 0.5000 0.9348
2.8000 0.7000 1.0024
3.0000 0.5000 0.9402
3.0000 0.7000 1.0177
sortsolution = sortrows(solution,3) % Print solution table sorted by
% column 3

sortsolution =

2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
2.0000
2.2000
2.4000

0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.9000
0.9000
0.9000

0.9002
0.9114
0.9207
0.9283
0.9348
0.9402
0.9807
0.9837
0.9859
0.9877
1.0024
1.0177
1.0614
1.0772
1.0923




% Plot the response with the largest overshoot that is less than 10%
K = sortsolution(k, 1)
K=
2.4000
a = sortsolution(k,2)
a=
0.9000
gc =th(K*[1 2*a a~2], [0 1 0]);
G = gc*g/(1 + gc*g);

step(G,t)
grid % See Figure 10-16




% If you wish to plot the response with the smallest overshoot that is
% greater than 0%, then enter the following values of 'K' and 'a'

K = sortsolution(11,1)
K=
2.8000
a = sortsolution(11,2)
a=
0.7000
gc = tfK*[1 2*a aA2], [0 1 O});
G =gc*g/(1 + gc*g);

step(G,t)
grid % See Figure 10-17




Note that for a specification that the maximum overshoot be between 10% and 5%, there
would be three sets of solutions:

K = 2.0000, a = 0.9000, m = 1.0614
K = 2.2000, a = 0.9000, m = 10772
K = 2.4000, a = 0.9000, m = 1.0923

Unit-step response curves for these three cases are shown in Figure 10-18. Notice that the
system with a larger gain K has a smaller rise time and larger maximum overshoot. Which one of

these three systems is best depends on the system’s objective.

Unit-Step Response Curves
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