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Chapter Outline

Shigley’s Mechanical Engineering Design



Types of Lubrication

 Hydrodynamic

 Hydrostatic

 Elastohydrodynamic

 Boundary

 Solid film
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Viscosity

 Shear stress in a fluid is proportional to the rate of change of 

velocity with respect to y

 m is absolute viscosity, also called dynamic viscosity
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Viscosity

 For most lubricating fluids, the rate of shear is constant, thus

 Fluids exhibiting this characteristic are called Newtonian fluids

Shigley’s Mechanical Engineering DesignFig. 12–1



Units of Viscosity

 Units of absolute viscosity

◦ ips units:  reyn = lbf·s/in2

◦ SI units: Pa·s = N·s/m2

◦ cgs units: Poise =dyn·s/cm2

 cgs units are discouraged, but common historically in lubrication

 Viscosity in cgs is often expressed in centipoise (cP), designated 

by Z

 Conversion from cgs to SI and ips: 
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Units of Viscosity

 In ips units, the microreyn (mreyn) is often convenient.

 The symbol m' is used to designate viscosity in mreyn
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Measurement of Viscosity

 Saybolt Universal Viscosimeter used to measure viscosity

 Measures time in seconds for 60 mL of lubricant at specified 

temperature to run through a tube 17.6 mm in diameter and 12.25 

mm long

 Result is kinematic viscosity

 Unit is stoke = cm2/s

 Using Hagen-Poiseuille law kinematic viscosity based on seconds 

Saybolt, also called Saybolt Universal viscosity (SUV) in seconds 

is

 where Zk is in centistokes (cSt) and t is the number of seconds 

Saybolt
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Measurement of Viscosity

 In SI, kinematic viscosity n has units of m2/s

 Conversion is

 Eq. (12–3) in SI units,

 To convert to dynamic viscosity, multiply n by density in SI units

 where r is in kg/m3 and m is in pascal-seconds
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Comparison of Absolute Viscosities of Various Fluids
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Petroff’s Lightly Loaded Journal Bearing

  
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Petroff’s Equation
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Important Dimensionless Parameters

 Some important dimensionless parameters used in lubrication

◦ r/c:  radial clearance ratio

◦ mN/P: Bearing characteristic

◦ Sommerfeld number or bearing characteristic number

 Interesting relation
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Stable Lubrication

 To the right of AB, changes in 

conditions are self-correcting 

and results in stable lubrication

 To the left of AB, changes in 

conditions tend to get worse 

and results in unstable 

lubrication

 Point C represents the 

approximate transition between 

metal-to-metal contact and 

thick film separation of the 

parts

 Common design constraint for 

point B,
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Thick Film Lubrication

 Formation of a film
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 Center of journal at O

 Center of bearing at O'

 Eccentricity e

 Minimum film thickness h0 

occurs at line of centers

 Film thickness anywhere is h

 Eccentricity ratio

 Partial bearing has b < 360

 Full bearing has b = 360

 Fitted bearing has equal 

radii of bushing and journal

Nomenclature of a Journal Bearing
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Hydrodynamic Theory

 Present theory originated with experimentation of Beauchamp 

Tower in early 1880s
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Pressure Distribution Curves of Tower

  
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Reynolds Plane Slider Simplification

 Reynolds realized fluid films were so thin in comparison with 

bearing radius that curvature could be neglected

 Replaced curved bearing with flat bearing

 Called plane slider bearing
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Derivation of Velocity Distribution
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Derivation of Velocity Distribution
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Velocity Distribution

 Velocity distribution superposes parabolic distribution onto 

linear distribution

 When pressure is maximum, dp/dx = 0 and
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Derivation of Reynolds Equation

Shigley’s Mechanical Engineering Design



Reynolds Equation

 Classical Reynolds equation for one-dimensional flow, neglecting 

side leakage,

 With side leakage included,

 No general analytical solutions

 One important approximate solution by Sommerfeld,
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Design Considerations

 Variables either given or under control of designer

 Dependent variables, or performance factors
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Significant Angular Speed

 Angular speed N that is significant to hydrodynamic film bearing 

performance is
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Trumpler’s Design Criteria

 Trumpler, a well-known bearing designer, recommended a set of 

design criteria.

 Minimum film thickness to prevent accumulation of ground off 

surface particles

 Maximum temperature to prevent vaporization of lighter lubricant 

components

 Maximum starting load to limit wear at startup when there is 

metal-to-metal contact

 Minimum design factor on running load
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The Relations of the Variables

 Albert Raymondi and John Boyd used an iteration technique to 

solve Reynolds’ equation.

 Published 45 charts and 6 tables

 This text includes charts from Part III of Raymondi and Boyd

◦ Assumes infinitely long bearings, thus no side leakage

◦ Assumes full bearing

◦ Assumes oil film is ruptured when film pressure becomes zero
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Viscosity Charts

 Viscosity is clearly a function of temperature

 Viscosity charts of common lubricants are given in Figs. 12–12 

through 12–14

 Raymondi and Boyd assumed constant viscosity through the 

loading zone

 Not completely true since temperature rises as work is done on the 

lubricant passing through the loading zone

 Use average temperature to find a viscosity
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Viscosity-Temperature Chart in U.S. Customary Units
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Fig. 12–12



Viscosity-Temperature Chart in Metric Units
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Viscosity-Temperature Chart for Multi-viscosity Lubricants
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Curve Fits for Viscosity-Temperature Chart

 Approximate curve fit for Fig. 12–12 is given by
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Table 12–1



Notation of Raimondi and Boyd

 Polar diagram of the film 

pressure distribution showing 

notation used by Raimondi and 

Boyd
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Minimum Film Thickness and Eccentricity Ratio
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Position of Minimum Film Thickness

Shigley’s Mechanical Engineering Design

Fig. 12–17



Coefficient of Friction Variable
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Flow Variable
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Flow Ratio of Side Flow to Total Flow
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Maximum Film Pressure
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Terminating Position of Film
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Example 12–1
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Example 12–1 (continued)
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Example 12–2
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Example 12–3
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Example 12–4
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Finding Temperature Rise from Energy Considerations

  
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Finding Temperature Rise from Energy Considerations
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Finding Temperature Rise from Energy Considerations
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Combined Temperature Rise Chart
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Interpolation Equation

 Raimondi and Boyd provide interpolation equation for l/d ratios 

other than given in charts
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Steady-State Conditions in Self-Contained Bearings

 Previous analysis assumes lubricant carries away all enthalpy 

increase

 Bearings in which warm lubricant stays within bearing housing are 

called self-contained bearings

 Heat is dissipated from the housing to the surroundings
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Heat Dissipated From Bearing Housing

 Heat given up by bearing housing
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Overall Coefficient of Heat Transfer

 Overall coefficient of radiation and convection depends on 

material, surface coating, geometry, roughness, temperature 

difference between housing and surroundings, and air velocity

 Some representative values
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Difference in Housing and Ambient Temperatures

 The difference between housing and ambient temperatures is 

given by 
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Housing Temperature

 Bearing heat loss to surroundings

 Housing surface temperature
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Heat Generation Rate
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Example 12–5
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Example 12–5
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Example 12–5
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Example 12–5
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Example 12–5
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Effect of Clearance on Example Problems

 Some performance characteristics from Examples 12–1 to 12–4, 

plotted versus radial clearance
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Clearance
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Temperature Limits
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Pressure-Fed Bearings

 Temperature rise can be reduced with increased lubricant flow

 Pressure-fed bearings increase the lubricant flow with an external 

pump

 Common practice is to use circumferential groove at center of 

bearing

 Effectively creates two half-bearings
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Flow of Lubricant From Central Groove
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Derivation of Velocity Equation with Pressure-Fed Groove
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Derivation of Velocity Equation with Pressure-Fed Groove
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Distribution of Velocity
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Side Flow Notation
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Derivation of Side Flow with Force-fed Groove
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Characteristic Pressure

 The characteristic pressure in each of the two bearings that 

constitute the pressure-fed bearing assembly is
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Typical Plumbing with Pressure-fed Groove
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Derivation of Temperature Rise with Pressure-Fed Groove
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Derivation of Temperature Rise with Pressure-Fed Groove
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Example 12–6
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Example 12–6

Shigley’s Mechanical Engineering Design



Example 12–6

Shigley’s Mechanical Engineering Design



Example 12–6
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Typical Range of Unit Loads for Sleeve Bearings
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Some Characteristics of Bearing Alloys
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Bearing Types
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Typical Groove Patterns
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Thrust Bearings
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Pressure Distribution in a Thrust Bearing
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Flanged Sleeve Bearing

 Flanged sleeve bearing can take both radial and thrust loads

 Not hydrodynamically lubricated since clearance space is not 

wedge-shaped
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Boundary-Lubricated Bearings

 Relative motion between two surfaces with only a partial lubricant 

film (not hydrodynamic) is called boundary lubrication or thin-

film lubrication.

 Even hydrodynamic lubrication will have times when it is in thin-

film mode, such as at startup.

 Some bearings are boundary lubricated (or dry) at all times.

 Such bearings are much more limited by load, temperature, and 

speed.
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Limits on Some Materials for Boundary-Lubricated Bearings
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Linear Sliding Wear
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Wear Factors in U.S. Customary Units
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Coefficients of Friction
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Wear Equation with Practical Modifying Factors

 It is useful to include two modifying factors in the linear wear 

equation

◦ f1 to account for motion type, load, and speed (Table 12–10)

◦ f2 to account for temperature and cleanliness conditions (Table 

12–11)
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Motion-Related Factor f1
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Environmental Factor f2
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Pressure Distribution on Boundary-Lubricated Bearing

 Nominal pressure is

 

 Pressure distribution is given by

 Vertical component of p dA is

 Integrating gives F,
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Pressure and Velocity

 Using nominal pressure,

 Velocity in ft/min,

 Gives PV in psi·ft/min

 Note that PV is independent of D
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Bushing Wear

 Combining Eqs. (12–29), (12–31), and (12–27), an expression for 

bushing wear is
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Length/Diameter Ratio

 Recommended design constraints on length/diameter ratio
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Example 12–7
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Example 12–7
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Example 12–7
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Table 12–12



Example 12–7
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Temperature Rise for Boundary-Lubrication

Shigley’s Mechanical Engineering Design



Example 12–8
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Example 12–8
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Table 12–13



Example 12–8
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Example 12–8
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Example 12–8
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