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Chapter Outline
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Types of Gears
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Spur Helical

Bevel Worm
Figs. 13–1 to 13–4



Nomenclature of Spur-Gear Teeth
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Tooth Size
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Tooth Sizes in General Use
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Table 13–2



Standardized Tooth Systems (Spur Gears)
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Table 13–1



Standardized Tooth Systems

 Common pressure angle f : 20º and 25º

 Old pressure angle: 14 ½º

 Common face width:
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Conjugate Action

 When surfaces roll/slide 

against each other and 

produce constant angular 

velocity ratio, they are said 

to have conjugate action.

 Can be accomplished if 

instant center of velocity 

between the two bodies 

remains stationary between 

the grounded instant centers.
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Conjugate Action

 Forces are transmitted on 

line of action which is 

normal to the contacting 

surfaces.

 Angular velocity ratio is 

inversely proportional to the 

radii to point P, the pitch 

point.

 Circles drawn through P 

from each fixed pivot are 

pitch circles, each with a 

pitch radius.
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Involute Profile

 The most common conjugate profile is the involute profile.

 Can be generated by unwrapping a string from a cylinder, keeping 

the string taut and tangent to the cylinder.

 Circle is called base circle.
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Involute Profile Producing Conjugate Action
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Circles of a Gear Layout
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Sequence of Gear Layout

• Pitch circles in contact

• Pressure line at desired 
pressure angle

• Base circles tangent to 
pressure line

• Involute profile from 
base circle

• Cap teeth at addendum 
circle at 1/P from pitch 
circle

• Root of teeth at 
dedendum 
circle at 1.25/P from 
pitch circle

• Tooth spacing from 
circular pitch, p =  / P

Shigley’s Mechanical Engineering Design

Fig. 13–9



Relation of Base Circle to Pressure Angle
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Tooth Action

 First point of 
contact at a 
where flank of 
pinion touches 
tip of gear

 Last point of 
contact at b 
where tip of 
pinion touches 
flank of gear

 Line ab is line of 
action

 Angle of action 
is sum of angle 
of approach and 
angle of recess
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Rack

 A rack is a spur gear with an pitch diameter of infinity.

 The sides of the teeth are straight lines making an angle to the line 

of centers equal to the pressure angle.

 The base pitch and circular pitch, shown in Fig. 13–13, are related 

by
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Internal Gear
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Fig. 13–14



Contact Ratio

 Arc of action qt is the sum of the arc of approach qa and the arc of 

recess qr., that is   qt = qa + qr

 The contact ratio mc is the ratio of the arc of action and the circular 

pitch.

 The contact ratio is the average number of pairs of teeth in contact.
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Contact Ratio

 Contact ratio can also be found from the length of the line of action

 The contact ratio should be at least 1.2 
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Interference

 Contact of portions of 

tooth profiles that are not 

conjugate is called 

interference.

 Occurs when contact 

occurs below the base 

circle

 If teeth were produced by 

generating process (rather 

than stamping), then the 

generating process 

removes the interfering 

portion; known as 

undercutting. 

Shigley’s Mechanical Engineering DesignFig. 13–16



Interference of Spur Gears

 On spur and gear with one-to-one gear ratio, smallest number of 

teeth which will not have interference is

 k =1 for full depth teeth.  k = 0.8 for stub teeth

 On spur meshed with larger gear with gear ratio mG = NG/NP = m, 

the smallest number of teeth which will not have interference is
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Interference of Spur Gears

 Largest gear with a specified pinion that is interference-free is

 Smallest spur pinion that is interference-free with a rack is
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Example 13–1
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Interference
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Minimum NP Max NG Integer Max NG Max Gear Ratio 

mG= NG/NP

13 16.45 16 1.23

14 26.12 26 1.86

15 45.49 45 3

16 101.07 101 6.31

17 1309.86 1309 77

 For 20º pressure angle, the most useful values from Eqs. (13–11) 

and (13–12) are calculated and shown in the table below.



Interference
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Minimum NP Max NG Integer Max NG Max Gear Ratio 

mG= NG/NP

9 13.33 13 1.44

10 32.39 32 3.2

11 249.23 249 22.64

 Increasing the pressure angle to 25º allows smaller numbers of 

teeth



Interference

 Interference can be eliminated by using more teeth on the pinion.

 However, if tooth size (that is diametral pitch P) is to be 

maintained, then an increase in teeth means an increase in 

diameter, since P = N/d.

 Interference can also be eliminated by using a larger pressure 

angle. This results in a smaller base circle, so more of the tooth 

profile is involute.

 This is the primary reason for larger pressure angle.

 Note that the disadvantage of a larger pressure angle is an increase 

in radial force for the same amount of transmitted force.
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Forming of Gear Teeth

 Common ways of forming gear teeth

◦ Sand casting

◦ Shell molding

◦ Investment casting

◦ Permanent-mold casting

◦ Die casting

◦ Centrifugal casting

◦ Powder-metallurgy

◦ Extrusion

◦ Injection molding (for thermoplastics)

◦ Cold forming
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Cutting of Gear Teeth

 Common ways of cutting gear teeth

◦ Milling

◦ Shaping

◦ Hobbing
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Shaping with Pinion Cutter
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Shaping with a Rack
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Hobbing a Worm Gear
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Straight Bevel Gears

 To transmit motion between 

intersecting shafts
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Straight Bevel Gears

 The shape of teeth, 

projected on back 

cone, is same as in 

a spur gear with 

radius rb

 Virtual number of 

teeth in this virtual 

spur gear is
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Parallel Helical Gears

 Similar to spur gears, 

but with teeth making 

a helix angle with 

respect to the gear 

centerline

 Adds axial force 

component to shaft 

and bearings

 Smoother transition 

of force between 

mating teeth due to 

gradual engagement 

and disengagement
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Parallel Helical Gears

 Tooth shape is involute helicoid
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Parallel Helical Gears

 Transverse circular pitch pt is 

in the plane of rotation

 Normal circular pitch pn is in 

the plane perpendicular to the 

teeth

 Axial pitch px is along the 

direction of the shaft axis

 Normal diametral pitch
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Parallel Helical Gears

 Relationship between angles
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Parallel Helical Gears

 Viewing along the teeth, the apparent 

pitch radius is greater than when 

viewed along the shaft.

 The greater virtual R has a greater 

virtual number of teeth N'

 Allows fewer teeth on helical gears 

without undercutting.
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Example 13–2
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Interference with Helical Gears

 On spur and gear with one-to-one gear ratio, smallest number of 

teeth which will not have interference is

 k =1 for full depth teeth.  k = 0.8 for stub teeth

 On spur meshed with larger gear with gear ratio mG = NG/NP = m, 

the smallest number of teeth which will not have interference is
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Interference with Helical Gears

 Largest gear with a specified pinion that is interference-free is

 Smallest spur pinion that is interference-free with a rack is
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Worm Gears

 Common to specify 

lead angle l for worm 

and helix angle G for 

gear.

 Common to specify 

axial pitch px for worm 

and transverse circular 

pitch pt for gear.

 Pitch diameter of gear 

is measured on plane 

containing worm axis
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Worm Gears

 Worm may have any pitch diameter.

 Should be same as hob used to cut the gear teeth

 Recommended range for worm pitch diameter as a function of 

center distance C,

 Relation between lead L and lead angle l,
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Standard and Commonly Used Tooth Systems for Spur Gears
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Table 13–1



Tooth Sizes in General Use
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Table 13–2



Tooth Proportions for 20º Straight Bevel-Gear Teeth
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Standard Tooth Proportions for Helical Gears
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Standard Tooth Proportions for Helical Gears
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Table 13–4
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Recommended Pressure Angles and Tooth Depths 

for Worm Gearing

Table 13–5



Face Width of Worm Gear

 Face width FG of a worm gear should 

be equal to the length of a tangent to 

the worm pitch circle between its 

points of intersection with the 

addendum circle
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Gear Trains

 For a pinion 2 driving a gear 3, the speed of the driven gear is 
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Relations for Crossed Helical Gears
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Train Value
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Compound Gear Train

 A practical limit on train value for one pair of gears is 10 to 1

 To obtain more, compound two gears onto the same shaft
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Compound Reverted Gear Train

 A compound gear train with input and output shafts in-line

 Geometry condition must be satisfied
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Planetary Gear Train

 Planetary, or epicyclic 

gear trains allow the axis 

of some of the gears to 

move relative to the other 

axes

 Sun gear has fixed center 

axis

 Planet gear has moving 

center axis

 Planet carrier or arm 

carries planet axis 

relative to sun axis

 Allow for two degrees of 

freedom (i.e. two inputs)
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Planetary Gear Trains

 Train value is relative to arm
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Force Analysis – Spur Gearing
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Force Analysis – Spur Gearing

 Transmitted load Wt is 

the tangential load

 It is the useful component 

of force, transmitting the 

torque
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Power in Spur Gearing

 Transmitted power H

 Pitch-line velocity is the linear velocity of a point on the gear at the 

radius of the pitch circle.  It is a common term in tabulating gear 

data.
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Power in Spur Gearing

 Useful power relation in customary units,

 In SI units,

Shigley’s Mechanical Engineering Design



Example 13–7
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Force Analysis – Bevel Gearing
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Force Analysis – Helical Gearing
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Example 13–9
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Force Analysis – Worm Gearing
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Force Analysis – Worm Gearing
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Force Analysis – Worm Gearing
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 Relative motion in worm gearing is sliding action

 Friction is much more significant than in other types of gears

 Including friction components, Eq. (13–41) can be expanded to

 Combining with Eqs. (13–42) and (13–43),



Worm Gearing Efficiency
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 Efficiency is defined as

 From Eq. (13–45) with f = 0 in the numerator,



Worm Gearing Efficiency
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 With typical value of f = 0.05, and fn = 20º, efficiency as a 

function of lead angle is given in the table.

Table 13–6



Worm Gearing Efficiency

Shigley’s Mechanical Engineering Design

 Coefficient of friction is 

dependent on relative or 

sliding velocity VS

 VG is pitch line velocity of 

gear

 VW is pitch line velocity of 

worm

Fig. 13–41



Coefficient of Friction for Worm Gearing

 Graph shows representative values

 Curve A is for when more friction is expected, such as when gears 

are cast iron

 Curve B is for high-quality materials
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