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Nomenclature of Spur-Gear Teeth
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Tooth Size

N
P = = (13-1)
d
p=%=ﬂm “3_3)
pP=m (13-4)

where P = diametral pitch, teeth per inch
N = number of teeth
d = pitch diameter, in or mm
= module., mm

m
p = circular pitch, in or mm
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Tooth Sizes In General Use

Diametral Pitch

Coarse 2,21,23,3,4,6,8,10, 12, 16
Fine 20, 24, 32, 40, 48, 64, 80, 96, 120, 150, 200

Preferred 1,1.25,1.5,2,25,3,4,5,6, 8, 10, 12, 16, 20, 25, 32, 40, 50

Next Choice 1,125, 1.375, 175, 225, 2,75, 3.9, 439, 39, 1,9, 11, 14, 18,
22, 28, 36, 45

Table 13-2
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Standardized Tooth Systems (Spur Gears)

Tooth System Pressure Angle ¢, deg Addendum a Dedendum b

Full depth 20 1/Py or Im 1:25/P4 or 1.25m
1.35/P; or 1.35m
221 1/P; or 1m 1.25/P; or 1.25m
1.35/P; ot 1.35m
25 1/Py or 1m 1.25/P4 or 1.25m
1.35/P; or 1.35m
Stub 20 0.8/P4 or 0.8m 1/P; orlm

Table 13-1
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Standardized Tooth Systems

o Common pressure angle ¢ : 20° and 25°
e Old pressure angle: 14 %2°
e Common face width:

3p<F<5p

T

pZE

3—7Z<F<5—7T
P P



Conjugate Action

» When surfaces roll/slide
against each other and
produce constant angular
velocity ratio, they are said
to have conjugate action.

o Can be accomplished if
Instant center of velocity
between the two bodies
remains stationary between
the grounded instant centers.




Conjugate Action

o Forces are transmitted on
line of action which iIs
normal to the contacting
surfaces.

» Angular velocity ratio is
Inversely proportional to the
radii to point P, the pitch
point.

o)

0]

"2

1

 Circles drawn through P
from each fixed pivot are
pitch circles, each with a
pitch radius.




Involute Profile

» The most common conjugate profile is the involute profile.

» Can be generated by unwrapping a string from a cylinder, keeping
the string taut and tangent to the cylinder.

o Circle is called base circle.

Base circle
//' Involute
)




Involute Profile Producing Conjugate Action
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Circles of a Gear Layout
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Sequence of Gear Layout

Pitch circles in contact

Pressure line at desired
pressure angle

Base circles tangent to
pressure line

Involute profile from
base circle

Cap teeth at addendum
circle at 1/P from pitch
circle

Root of teeth at
dedendum

circle at 1.25/P from
pitch circle

Tooth spacing from
circular pitch,p=z/P

\‘"{ Dedendum circle
||

Pitch circle
Base circle
Involute

Addendum circles

Involute

o ~

d

Pitch circle

Base circle

(
\ H \"‘ Dedendum Oy

circle
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Relation of Base Circle to Pressure Angle

I'p = F COS @

(13-6)

Base circle

Pitch circle

Pressure line

dB

Fig. 13-10

-
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First point of
contact at a
where flank of
pinion touches
tip of gear
Last point of
contact at b
where tip of
pinion touches
flank of gear

Line ab is line of
action

Angle of action
Is sum of angle
of approach and
angle of recess

Tooth Action
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Rack

o Arack is a spur gear with an pitch diameter of infinity.

» The sides of the teeth are straight lines making an angle to the line
of centers equal to the pressure angle.

» The base pitch and circular pitch, shown in Fig. 13-13, are related
by Pb = P COSQ (13-7)

Base pitch

K
- l’b”)\l

B A

Circular
pitch

1\ Fig. 13-13
+_




Internal Gear
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Contact Ratio

 Arc of action g, Is the sum of the arc of approach g, and the arc of
recess g,., thatis g, =q, + q,

» The contact ratio m, iIs the ratio of the arc of action and the circular
pltCh g1

me =

P
» The contact ratio is the average number of pairs of teeth in contact.

(13-8)
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Contact Ratio

» Contact ratio can also be found from the length of the line of action

L,
p CDZqﬁ 13-9)

m, =

e The contact ratio should be at least 1.2

Arc of Arc of
approach g, recess ¢,

g S
\ \
e
2 T Addendum
S o | e T circle

e
Pitch circle

Adde?lézl_r_n— circle

_——-—-——_ﬂ
Motion
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Interference

» Contact of portions of \
tooth profiles that are not |
conjugate is called
Interference.

\
» Occurs when contact NN
occurs below the base .
circle

Driven gear 3

This portion of profile
is not an involute

generating process (rather
than stamping), thenthe - p
generating process

/ Interference is on flank
/ of driver during approach

Base circle \ \

removes the interfering \
portion; known as
UnderCUtti ng . N / Driving gear 2

L

{

Fig. 13-16



Interference of Spur Gears

e On spur and gear with one-to-one gear ratio, smallest number of
teeth which will not have interference is

2k ,f’l )
Np = - 1 ++/1 4+ 3sin° ) (13-10
i 3sin” ¢ ( v Sin” ¢ ]

o k =1 for full depth teeth. k = 0.8 for stub teeth

e On spur meshed with larger gear with gear ratio mg = Ng/Np = m,
the smallest number of teeth which will not have interference is

2k

AIP — )
(I 4+ 2m)sin” ¢

(m + v*furj + (1 4 2m) sin? q‘;) (13-11)



Interference of Spur Gears

 Largest gear with a specified pinion that is interference-free is
_ Njsin® ¢ — 4k

— 13-12
4k — 2Np sin® ¢ ( )

Ng

» Smallest spur pinion that is interference-free with a rack Is

2(k
Np = (k) (13-13)

sin? ¢




Example 13-1

A gearset consists of a 16-tooth pinion driving a 40-tooth gear. The diametral pitch 1s 2,
and the addendum and dedendum are 1/P and 1.25/P. respectively. The gears are cut

using a pressure angle of 20°.
(a) Compute the circular pitch, the center distance, and the radii of the base circles.

() In mounting these gears, the center distance was incorrectly made % in larger.
Compute the new values of the pressure angle and the pitch-circle diameters.

Solution
(a) p:%:%:l.ﬁ?in
The pitch diameters of the pinion and gear are, respectively,
16 40
dp=?=8in dg=?=201[1

Therefore the center distance is

dp + dg 8 4+ 20 )
— — 14 1n
2 2

Shigley’s Mechanical Engineering Design



Example 13-1

Since the teeth were cut on the 20° pressure angle, the base-circle radii are found to be,
using rp = r cos ¢,

rp (pinion) = 7 cos 20° = 3.76 in

20
rp (gear) = 0 c0s20° =9.40 1n

Shigley’s Mechanical Engineering Design



Example 13-1

(b) Designating d}, and di; as the new pitch-circle diameters, the %-in increase in the
center distance requires that
dp +dg
2

— 14.250 (1)

Also, the velocity ratio does not change, and hence
d 16
i, =1 e
G

Solving Egs. (1) and (2) simultaneously yields

dy =8.143in  d, =20.357 in

Since rp = r cos ¢, the new pressure angle is

N1 3.76
_1 I'p (p1nion) — cos!

_ — 22.56°
d,/2 8.143/2

¢’ = cos

Shigley’s Mechanical Engineering Design



Interference

» For 20° pressure angle, the most useful values from Eqgs. (13-11)
and (13-12) are calculated and shown in the table below.

Minimum Np Max Ng Integer Max N | Max Gear Ratio
Ms= Ng/Np

16.45 1.23
14 26.12 26 1.86
15 45.49 45 3
16 101.07 101 6.31

17 1309.86 1309 77

Shigley’s Mechanical Engineering Design



Interference

* Increasing the pressure angle to 25° allows smaller numbers of

teeth
Minimum Np Max Ng Integer Max Ng | Max Gear Ratio
M= Ng/Np
13.33 1.44
10 32.39 32 3.2

11 249.23 249 22.64

Shigley’s Mechanical Engineering Design



Interference

Interference can be eliminated by using more teeth on the pinion.

However, if tooth size (that is diametral pitch P) is to be
maintained, then an increase in teeth means an increase in
diameter, since P = N/d.

Interference can also be eliminated by using a larger pressure
angle. This results in a smaller base circle, so more of the tooth
profile is involute.

This iIs the primary reason for larger pressure angle.

Note that the disadvantage of a larger pressure angle Is an increase
In radial force for the same amount of transmitted force.



Forming of Gear Teeth

o Common ways of forming gear teeth
> Sand casting

Shell molding

Investment casting

Permanent-mold casting

Die casting

Centrifugal casting

Powder-metallurgy

Extrusion

Injection molding (for thermoplastics)

Cold forming

0]

0]

o

o

o

o

o

o

o



Cutting of Gear Teeth

» Common ways of cutting gear teeth
> Milling
> Shaping
> Hobbing

Shigley’s Mechanical Engineering Design



Shaping with Pinion Cutter




Shaping with a Rack

Gear blank rotates

in this direction

Rack cutter reciprocates in a direction
perpendicular to this page

Fig. 13-18
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Hobbing a Worm Gear




Straight Bevel Gears

e To transmit motion between
Intersecting shafts

Shigley’s Mechanical Engineering Design



Straight Bevel Gears

Np NG
tan y = Vo tan [ =N, (13-14)
» The shape of teeth, T

projected on back \,_c( |

cone, is same as in 0@0/\ 7 \
a spur gear with @ . A
radius ry, \/ e <» - |

i e

e Virtual number of
teeth in this virtual

spur gear Is | | | ‘ ‘
| \ / N
N =% (135 N

!} — Pitch diameter D; —

\ / Back-cone

Back radius, r,,
\< cone 7 d
Fig. 13-20 X//

L.
>

A




Parallel Helical Gears

o Similar to spur gears,
but with teeth making
a helix angle with

N
respect to the gear // ;L\ ' / o \\
centerline —- - +\ — -
‘ @
- Adds axial force W N |
component to shaft \ 7

and bearings ' L

of force between

« Smoother transition [ 0

mating teeth due to ﬂ////////////:/‘//://////////////

gradual engagement

. Fig. 13-2
and disengagement °



Parallel Helical Gears

 Tooth shape is involute helicoid

Involute
Edge of paper
+ -
Base helix
angle
Base cylinder Fig. 13-21
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Parallel Helical Gears

Transverse circular pitch p; Is
In the plane of rotation

Normal circular pitch p,, Is In
the plane perpendicular to the
teeth

Pn = Pt COS ')!f (13-16)

(a)

Axial pitch p, is along the
direction of the shaft axis

Py * b)
e = — (13-17) I
Px = tan )
Normal diametral pitch /
B b,
Py = 1 W/\
"= o8 7 (13-18) _// \\_//_\\_//—\\_ i
Pn PH = T Section A-A

Fig. 13-22



Parallel Helical Gears

 Relationship between angles

tan ¢,
tan ¢

cosyr =

(13-19)

Y

Section B-B

b Pn

d

N

W

SANNRNNNY

Jre
Py *

e

N

N\Y&
_

B »¢/,\

l

—q

Section A-A
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Parallel Helical Gears

» Viewing along the teeth, the apparent
pitch radius Is greater than when
viewed along the shaft.

o The greater virtual R has a greater
virtual number of teeth N'

N

cos3

N' = (13-20)

» Allows fewer teeth on helical gears
without undercutting.

b
\ I 1/

\ f
AT
|

(a)

e

/

VAR
N

(b)
Fig. 13-23



Example 13-2

A stock helical gear has a normal pressure angle of 22°, a helix angle of 32°, and a
transverse diametral pitch of 3.0 mm, and has 24 teeth. Find:

(a) The pitch diameter

(b) The transverse, the normal, and the axial pitches

(c¢) The normal diametral pitch

(d) The transverse pressure angle

Solution

Answer

(a) d = Nm, = 24(3) = 72 mm
Answer

(b) p; = mm, = w(3) = 9.42478 mm

Shigley’s Mechanical Engineering Design



Example 13-2

Pn = prcos i = 9.42478 = 9.42478 cos (32) = 7.99267 mm

0.42478
P = tﬁtab = = 1508280 mm
Answer 4 .
() m, = m; cos ¥ = 3 cos 32° = 2.54414 mm
Answer

cos 32°

d) by = tan"1<tan (ZI) — tan“l(tan 220) = 25.47402°

Shigley’s Mechanical Engineering Design



Interference with Helical Gears

e On spur and gear with one-to-one gear ratio, smallest number of
teeth which will not have interference is

2k cos / .,
(] + \’f] + 3 sin” q‘;r) (13-21)

Np =

~ 3sin? Oy

o k =1 for full depth teeth. k = 0.8 for stub teeth

e On spur meshed with larger gear with gear ratio mg = Ng/Np = m,
the smallest number of teeth which will not have interference is
2k cos Y

(1 4+ 2m)sin® Oy

Np

|:m + Jurj + (1 + 2m) sin’ q‘;,} (13-22)



Interference with Helical Gears

 Largest gear with a specified pinion that is interference-free is
_ N?D sin’ by — 4k* cos? U

4k cos Y —2Np sin” by

Ng (13-23)

» Smallest spur pinion that is interference-free with a rack Is

_ 2kcosy

Np — (13-24)

sin’ ¢y



Worm Gears

Pitch diameter d

e Common to specify

lead angle A for worm R Pichcyinder
and helix angle y for - : gy X J /\/ "
gear. f (g@\/\ /
_ X // I \/ /A
» Common to specify A&M‘%y L _

iy, helix angle

\— Lead angle A
Lead L

axial pitch p, for worm Mﬂ«
and transverse circular ~ wom
pitch p, for gear.

 Pitch diameter of gear
IS measured on plane T
containing worm axis j

A
Y

Axial pitch p

Pitch diameter d;

dG _ J'F\"rlf_? Dt (] 3_25) Worm gear |

T

Fig. 13-24 %1

N\ d

R4



Worm Gears

Worm may have any pitch diameter.
Should be same as hob used to cut the gear teeth

Recommended range for worm pitch diameter as a function of
center distance C,
C-U.H?i C-D.STS

50 =W =37 113-26)
Relation between lead L and lead angle A,
L = p:Nw (13-27)
L
tan h = —— (13-28)

wd W



Standard and Commonly Used Tooth Systems for Spur Gears

Tooth System Pressure Angle ¢, deg Addendum a Dedendum b

Full depth 20 1/P or m 1.25/P or 1.25m
1.35/P or 1.35m
225 1/P or m 1.25/P or 1.25m
1.35/P or 1.35m
25 1/P or m 1.25/P or 1.25m
1.35/P or 1.35m
Stub 20 0.8/P or 0.8m I/P  orm

Table 13-1
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Tooth Sizes In General Use

Diametral Pitch P(teeth/in)

Coarse 2,21 21 34,6, 8, 10, 12, 16

Fine 20, 24, 32, 40, 48, 64, 80, 96, 120. 150, 200

Module m(mm/tooth)

Preferred I, 1.25, 1.5, 2, 2.5, 3, 4,5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50

Next Choice 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 45,55, 7,9, 11, 14, 18,
22, 28, 36, 45

Table 13-2

Shigley’s Mechanical Engineering Design



Tooth Proportions for 20° Straight Bevel-Gear Teeth

Working depth hy = 2.0/P [=2.0m]
Clearance ¢ = (0.188/P) + 0.002 in [= 0.188 m + 0.05 mm]

0.54 0.460
Addendum of gear 4, = + _ 0.46 m

P P(m90)2 = 0.54m + (m90)2
Gear ratio mg = Ng/Np
Equivalent 90° ratio  mgg = mg when I' = 90°
moy = . /mg —Y. when T % 90°
cosI’
i1 . A,

Face width F =03Apor F = ik whichever is smaller |F—= 3 orF=10m

Pinion | 16 15 14 13
Minimum number of teeth

Gear l 16 17 20 30

Tab I € 13_3 Shigley’s Mechanical Engineering Design



Standard Tooth Proportions for Helical Gears

Quantity* Quantity*
1.00
Addendum External gears:
Py
1.25 , D+d
Dedendum Standard center distance @~ ————
Py 2
L . Np o
Pinion pitch diameter _ Gear outside diameter D + 2a
P, cosyr
. : Ng . .
Gear pitch diameter —_— Pinion outside diameter d + 2a
Py, cosyr
. T T BH .
Normal arc tooth thickness R Gear root diameter D —2b
n
Pinion base diameter d cos ¢ Pinion root diameter d —2b
Internal gears:
: : D—d
Gear base diameter D cos ¢ Center distance ——
Base helix angle tan—! (tan Y cos¢y) Inside diameter D — 2a
Root diameter D+ 2b

Shigley’s Mechanical Engineering Design



Standard Tooth Proportions for Helical Gears

*All dimensions are in inches, and angles are in degrees.

"B, is the normal backlash.

Table 13-4
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Recommended Pressure Angles and Tooth Depths
for Worm Gearing

Lead Angle A, Pressure Angle Addendum Dedendum

deg a be
0-15 14 0.3683p, 0.3683p,
15-30 20 0.3683py 0.3683py

30-35 25 0.2865py 0.3314p,

35-40 25 0.2546py 0.2947px

40-45 30 0.2228py 0.2578px

Table 13-5

Shigley’s Mechanical Engineering Design



Face Width of Worm Gear

» Face width F of a worm gear should
be equal to the length of a tangent to
the worm pitch circle between its
points of intersection with the
addendum circle

Fig. 13-25



Gear Trains

» For a pinion 2 driving a gear 3, the speed of the driven gear is

N, dy
N3y = |—MN>p —1

(13-29)
N3 dy

where n = revolutions or rev/min
N = number of teeth

d = pitch diameter

Shigley’s Mechanical Engineering Design



Relations for Crossed Helical Gears

N

Driver s o]

(b)
Right hand

Thrust

(d)

Left hand
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Train Value

Fig. 13-27

N> N3 Ns
— 1
N3y Ny N °

Hg =

. product of driving tooth numbers (13-30)

product of driven tooth numbers
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Compound Gear Train

» A practical limit on train value for one pair of gearsis 10 to 1
» To obtain more, compound two gears onto the same shaft

R
\
R
§
i \
D v, s
g
S—
© =y

Fig. 13-28



Example 13-3

A gearbox is needed to provide a 30:1 (& | percent) increase in speed, while minimiz-
ing the overall gearbox size. Specify appropriate teeth numbers.

Solution

Since the ratio 1s greater than 10:1, but less than 100:1, a two-stage compound gear
train, such as in Figure 13-28, is needed. The portion to be accomplished in each stage
is +/30 = 5.4772. For this ratio, assuming a typical 20° pressure angle, the minimum
number of teeth to avoid interference is 16, according to Eq. (13—11). The number of
teeth necessary for the mating gears is

164/30 = 87.64 =88
From Eq. (13-30), the overall train value 1s
e = (88/16)(88/16) = 30.25

This 1s within the | percent tolerance. If a closer tolerance 1s desired, then increase the
pinion size to the next integer and try again.

Shigley’s Mechanical Engineering Design



Example 13-4

A gearbox 1s needed to provide an exact 30:1 increase in speed, while minimizing the
overall gearbox size. Specity appropriate teeth numbers.

Solution
The previous example demonstrated the difficulty with finding integer numbers of teeth

to provide an exact ratio. In order to obtain integers, factor the overall ratio into two
integer stages.

e =30 =(6)(5)
NQ/N?,:G and N.—_;/Nj =35
With two equations and four unknown numbers of teeth, two free choices are avail-

able. Choose N3 and N5 to be as small as possible without interference. Assuming a 20°
pressure angle, Eq. (13—11) gives the minimum as 16.

Shigley’s Mechanical Engineering Design



Example 13-4

Then

N, =6N; =6(16) =96
Ny=5Ns=5(16) =80 Answer

The overall train value 1s then exact.

e = (96/16)(80/16) = (6)(5) = 30

Shigley’s Mechanical Engineering Design



Compound Reverted Gear Train

» A compound gear train with input and output shafts in-line
o Geometry condition must be satisfied
dr /2 +d3/2 = dy/2 4 ds/2
P = N/d
N>/(2P) + N3/(2P) = N4/(2P) + Ns/(2P)
N> + N3 = Ny + Ns

@& _

b

W

3

Fig. 13-29 4




Example 13-5

A gearbox is needed to provide an exact 30:1 increase in speed. while minimizing the
overall gearbox size. The input and output shafts should be in-line. Specity appropriate
teeth numbers.

Solution
The governing equations are

N»/N; =6
N4/Ns =5
N + N3 = Ny + Ns

With three equations and four unknown numbers of teeth, only one free choice is
available. Of the two smaller gears, N3 and N5, the free choice should be used to mini-
mize N3 since a greater gear ratio is to be achieved in this stage. To avoid interference,
the minimum for N3 1s 16.

Shigley’s Mechanical Engineering Design



Example 13-5
Applying the governing equations yields

N, = 6N; = 6(16) =96
Ny + N3 =964+16=112= Nys+ N5
Substituting Ny = 5N5 gives

112 = 5N5 + N5 = 6Ns
Ns = 112/6 = 18.67

It the train value need only be approximated, then this can be rounded to the nearest
integer. But for an exact solution, it 1s necessary to choose the initial free choice for
N3 such that solution of the rest of the teeth numbers results exactly in integers. This
can be done by trial and error, letting N3 = 17, then 18, etc., until it works. Or, the
problem can be normalized to quickly determine the minimum free choice. Beginning
again, let the free choice be N3 = 1. Applying the governing equations gives

Shigley’s Mechanical Engineering Design



Example 13-5

N, =6N3 =6(1)=6
N+ N3=6+1=7=Ns+ N5
Substituting Ny = S5Ns, we find

7T=35Ns+ Ns = 6N;s
Ns =7/6
This fraction could be eliminated if it were multiplied by a multiple of 6. The free

choice for the smallest gear N3 should be selected as a multiple of 6 that is greater than
the minimum allowed to avoid interference. This would indicate that N; = 18.

Shigley’s Mechanical Engineering Design



Example 13-5

Repeating the application of the governing equations for the final time yields

Ny = 6N; =6(18) = 108
Ny + N3 =108 + 18 = 126 = Ngy + N5

126 = 5N5s + Ns = 6N5

Ns =126/6 = 21

Ny =35Ns =5(21) =105

Thus,
N, = 108
Ny =18
Ny =105
Ns =21 Answer

Shigley’s Mechanical Engineering Design



Example 13-5

Checking, we calculate ¢ = (108/18)(105/21) = (6)(5) = 30.
And checking the geometry constraint for the in-line requirement, we calculate

Ny + N3 = N4+ N5
108 + 18 = 105 + 21
126 = 126
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Planetary Gear Train

Planetary, or epicyclic
gear trains allow the axis
of some of the gears to
move relative to the other
axes

Sun gear has fixed center
axis

Sun gear

' 80T

Planet gear has moving
center axis

Planet carrier or arm
carries planet axis
relative to sun axis

Allow for two degrees of
freedom (i.e. two inputs)

Ring gear

Fig. 13-30



Planetary Gear Trains

o Train value is relative to arm
. Hp — N4

¢ = ———— (13-32)

NEp — Ny
where nyp = rev/min of first gear in planetary train

ny = rev/min of last gear in planetary train

n4 = rev/min of arm
80T

5

Sun gear !

. Planet gear

Fig. 13-31

Ring gear

Fig. 13-30
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In Fig. 13-30 the sun gear is the input, and it is driven clockwise at 100 rev/min. The
ring gear 1s held stationary by being fastened to the frame. Find the rev/min and
direction of rotation of the arm and gear 4.

5

Sun gear !

80T

. Planet gear

Fig. 13-30

Ring gear
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Solution
Let np = ny = —100 rev/min, and n; = ns = 0. For e, unlock gear 5 and fix the

arm. Then, planet gear 4 and ring gear 5 rotate in the same direction, opposite of sun
gear 2. Thus, e 1s negative and

()

Substituting this value in Eq. (13-32) gives

025 ="
' (—100) — ny
or
ny = —20rev/min = 20 rev/min clockwise Answer
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To obtain the speed of gear 4, we follow the procedure outlined by Egs. (b), (¢).
and (d). Thus

g3 = Ng — N3 Rz = Hy — N3
and so
a3 _ Mg : n3 ()
N3 Ny — N3
But
n 20 2
e 2)
na3 30 3
Substituting the known values in Eq. (1) gives
2 mg— (220)
3 (—100) — (=20)
Solving gives
ny = +33% rev/min = 33% rev/min counter-clockwise Answer
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Force Analysis — Spur Gearing

/“

7

Gear 1, Fys
Ty X 5
\ )
3
b
¢
/ P P

Pinion \ P
B,

gineering Design



Force Analysis — Spur Gearing

» Transmitted load W, Is O F
the tangential load

W;=F§2 / FIU
,7 N L
i V4

e It is the useful component
of force, transmitting the

al
torque B Fa a
d
T =—=W, : J,
2 ________ F('13 2
Ful
N\
// d,

Fig. 13-33



Power in Spur Gearing

e Transmitted power H
H=Tw= Wd/2)w (13-33)

 Pitch-line velocity is the linear velocity of a point on the gear at the

radius of the pitch circle. It isa common term in tabulating gear
data.

V =mdn/12 (13-34)

where V = pitch-line velocity, ft/min
d = gear diameter, in

n = gear speed, rev/min



Power in Spur Gearing

» Useful power relation in customary units,

H
W; = 33 0007 (13-35)
where  W; = transmitted load. Ibf
H = power, hp
V = pitch-line velocity, ft/min
e In Sl units,
60 000 H
W, = (13-36)
dn
where  W; = transmitted load, kN
H = power, kW

d = gear diameter, mm

n = speed, rev/min
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Example 13-7

Pinion 2 in Fig. 13-34a runs at 1750 rev/min and transmits 2.5 kW to idler gear 3. The
teeth are cut on the 20° full-depth system and have a module of m = 2.5 mm. Draw a
free-body diagram of gear 3 and show all the forces that act upon it.

Y
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Example 13-7
The pitch diameters of gears 2 and 3 are
dr = Nom = 20(2.5) = 50 mm
dz = N3m = 50(2.5) = 125 mm
From Eq. (13-36) we find the transmitted load to be

_ 60000H _ 60000(2.5)
"7 xdon  7(50)(1750)

= 0.546 kN

Thus, the tangential force of gear 2 on gear 3 is F3; = 0.546 kN, as shown in Fig. 13-34b.
Therefore

F; = F2f3 tan 20° = (0.546) tan 20° = 0.199 kN
and so
FéB B 0.546

Fry = —
= cos 20° cos 20°

= 0.581 kN
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Since gear 3 is an idler, it transmits no power (torque) to its shaft, and so the
tangential reaction of gear 4 on gear 3 is also equal to W;. Therefore

Fl,=0546kN  Fj,=0.199kN  F4 = 0.581 kN

and the directions are shown in Fig. 13-34b.
The shaft reactions in the x and y directions are

Ffy = —(Fl + Fly) = —(—0.546 4 0.199) = 0.347 kN

F;S - —(F£3 + FjB) = —(0.199 — 0.546) = 0.347 kN
The resultant shaft reaction is

Fps = v/ (0.347)2 4 (0.347)2 = 0.491 kN

These are shown on the figure.
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Force Analysis — Bevel Gearing

T
W, = —  (13-37)

jlﬂﬂ."iw'

W, = W;tan¢ cos y y
W, = W,tan¢siny (13-38)
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Example 13-8

The bevel pinion in Fig. 13-36a rotates at 600 rev/min in the direction shown and
transmits 3.75 kW to the gear. The mounting distances, the location of all bearings, and
the average pitch radii of the pinion and gear are shown in the figure. For simplicity,
the teeth have been replaced by pitch cones. Bearings A and C should take the thrust
loads. Find the bearing forces on the gearshaft.

y
< 165 T 75 ~i
< 9 > ! ‘
L |
__________ N\ 32 | | |
T 2 |
60 o L]
o |4 | B
y ] n - § 75 i I _Z _____ B
@ 4 4 _F - Y =
12_ R = L = | '
90  \ 15-tooth pinion /
€ T 5 module
45-tooth gear
L I
€
< 225 -
Fig. 13-36a
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The pitch angles are

75 225
y = tan”’ (—) =184° [T = tan™ (—) = 71.6°
225 75

The pitch-line velocity corresponding to the average pitch radius is

27 (32)(600)
V = 27'rrpn = = 2011 mm/s
60
Therefore the transmitted load is
H 3750
W — =  — 1865 N
vV 2.001

and from Eq. (13-38), with I" replacing y, we have

W. = W, tan ¢ cos I' = 1865 tan 20° cos 71.6° = 214 N
W, = W, tan ¢ cos I' = 1865 tan 20° sin 71.6° = 644 N
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Fig. 13-36b
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where W, acts in the positive x direction, W, in the —y direction, as illustrated in the
isometric sketch of Fig. 13-36b.

In preparing to take a sum of the moments about bearing D, define the position
vector from D to G as

Rs =901 — (60 + 32)j = 901 — 92;
We shall also require a vector from D to C:
Rc = —(60 + 90);] = —150;
Then, summing moments about D gives
R XW+ R XF-+T=0 (1)
When we place the details in Eq. (1), we get
(901 — 92j) X (—2141 — 644j + 1865k)

2)
+ (—150§) X (F&i + FLj + F2k) + Tj = 0 |
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After the two cross products are taken, the equation becomes
(—171580i — 167 8505 — 77 712k) + (—150F¢&i + 150Fck) + Tj =0
from which
T =168 N - m F¢ = 518N F¢= —1144 N (3)
Now sum the forces to zero. Thus
Fp + F-+ W =0 (4)
When the details are inserted, Eq. (4) becomes

(F5i + F5k) + (518i + FLj — 1144k) + (—214i — 644j + 1865k) = 0 (5)
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First we see that F. = 644 N, and so

Answer Fo = 518i + 644j — 1144k N
Then, from Eq. (5),
Answer By = 3031 — 721k N

These are all shown in Fig. 13-36b in the proper directions. The analysis for the pinion

shaft 1s quite similar.
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Force Analysis — Helical Gearing
_ - |
W, = W sin ¢, (13-39) : .
W, = W cos ¢, cos :
W, = Wcos ¢, sin oy : 7
S e e N = e
A v
// i \>\ a
7 t A
//
14 ooln elemen
W, = W, tan o, f Tooth element
W, = W tany (13-40) 7
W
W |
COS ¢, COS Vr \
\\ . /" Pitch
‘\\ ’/ cylinder
Fig. 13-37
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Example 13-9

In Fig. 13-38 a 750-W an electric motor runs at 1800 rev/min in the clockwise direc-
tion, as viewed from the positive x axis. Keyed to the motor shaft is an 18-tooth helical
pinion having a normal pressure angle of 20°, a helix angle of 30°, and a normal mod-
ule of 3.0 mm. The hand of the helix is shown in the figure. Make a three-dimensional
sketch of the motor shaft and pinion, and show the forces acting on the pinion and the
bearing reactions at A and B. The thrust should be taken out at A.

From Eq. (13-19) we find

_. tan _ tan 20°
¢, = tan” ' P = tan ' >
CoSs cos 30

= 22.8°

Also, m, = m,/cos ¢ = 3/cos 30° =3.46 mm. Therefore the pitch diameter of the
pinion is d, = 18(3.46) = 62.3 mm. The pitch-line velocity is
m(62.3)(1800)

V = mwdn = > = 5871.6 mm/s = 5.87 m/s
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—

1 75 mm |
250 mm

Fig. 13-38
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Cy =—VW,
/FZA /
\ 250 mm 75 mm dP/ -

ryA p W, 1 /w,

Fig. 13-39
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The transmitted load i1s

H 750
V587

W, = = 128 N

From Eq. (13-40) we find
W. = W;tan ¢, = (128) tan 22.8° = 54 N
W, = W,tan ¢y = (128) tan 30° = 74 N

W = L — = = 157N
cos ¢, cosy  cos 20° cos 30°
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These three forces, W, = in the —y direction, W, = in the —x direction, and W, in
the +z direction, are shown acting at point C in Fig. 13-39. We assume bearing reac-
tions at A and B as shown. Then F; = W, = 74 N. Taking moments about the z axis,

62.3
—(54)(325) + (74)( 5 ) + 250F3 = 0

or F3 = 61 N. Summing forces in the y direction then gives F, = 7 N. Taking
moments about the y axis, next

250F — (128)(325) =0

or Fis = 166 N. Summing forces in the z direction and solving gives F; = 38 N. Also,
the torque is 7 = de/2 = 128(62.3/2) = 3982 N + mm.
For comparison, solve the problem again using vectors. The force at C is

W = —74i — 54j + 128k N
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Position vectors to B and C from origin A are
Rp = 2501 Rc = 3251 + 31.15j
Taking moments about A, we have
Rg XFg+T+RcXW=0
Using the directions assumed in Fig. 13-39 and substituting values gives
2501 X (Fpj — F2k) — Ti + (3251 + 31.15j) X (=741 — 54] + 128k) = O
When the cross products are evaluated we get
(250F 3k + 250F%)) — Ti + (3987i — 41 600j — 15 245k) = 0

obtaining 7 = 4 kN - mm, Fz = 61 N, and Fz = 166 N.
Next,

F, = —Fp — W,andsoF, = 741 — 7j + 38k N.
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Force Analysis — Worm Gearing

W' = W cos ¢, sin A
WY = W sin ¢, (13-41)
W* = W cos ¢, cos A

Pitch helix

Fig. 13-40
Pitch cylinder

Design




Force Analysis — Worm Gearing

Wy = —Wga = W
Ww, = —Wg, = W? (13-42)

Pitch helix

Fig. 13-40
Pitch cylinder

Design




Force Analysis — Worm Gearing

Relative motion in worm gearing is sliding action
Friction is much more significant than in other types of gears
Including friction components, Eq. (13-41) can be expanded to

W* = W(cos ¢, sink + f cosh)
WY = W sin ¢, (13-43)
W?* = W(cos ¢, cos L — fsink)

Combining with Egs. (13-42) and (13-43),
Wi

Wr=fW = — -
fsin A — cos ¢, cos A

(13-44)

COS @y sinA + [ cosA

Wy = Wgy (13-45)

[ sin A — cos ¢, cos A



Worm Gearing Efficiency

« Efficiency is defined as
B Ww; (without friction)
! Wy (with friction)

e From Eqg. (13-45) with f = 0 in the numerator,

_ cos¢y — ftana

n= (13-46)
cos @, + f cot A
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Worm Gearing Efficiency

» With typical value of f = 0.05, and ¢, = 20°, efficiency as a
function of lead angle is given in the table.

Lead Angle A, Efficiency 7,
deg %
1.0 25.2
2.5 45.7
5.0 62.6
7.5 71.3
10.0 76.6
15.0 82.7
20.0 85.6
30.0 88.7
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Worm Gearing Efficiency

» Coefficient of friction is Ep—
dependent on relative or ™ Gear
sliding velocity Vi

* Vg Is pitch line velocity of
gear

 V,, Is pitch line velocity of

7]

|\ Worm

L~

f

Gear axis

worm
Vw = Vg + Vg

%
Vg = —0 (13-47) 7
COS A ~—1— Worm axis

Fig. 13-41

Jl above
|
!
|
|
|
|

-




Coefficient of Friction for Worm Gearing

» Graph shows representative values

o Curve A is for when more friction is expected, such as when gears
are cast iron

» Curve B is for high-quality materials
0.10

« 0.08
]
;’ 0.06
% A
=
S 0.04
S
2 B .
© 002
0° : -
0 400 300 1200 1600 2000

Fig 13-42 Sliding velocity Vi, ft /min



Example 13-10

A 2-tooth right-hand worm transmits 1 hp at 1200 rev/min to a 30-tooth worm gear.
The gear has a transverse diametral pitch of 6 teeth/in and a face width of | in. The
worm has a pitch diameter of 2 in and a face width of 2% in. The normal pressure
angle is 1 4%0. The materials and quality of the gearing to be used are such that curve
B of Fig. 13-42 should be used to obtain the coefficient of friction.

(a) Find the axial pitch, the center distance, the lead, and the lead angle.

(b) Figure 13—43 is a drawing of the worm gear oriented with respect to the coordinate
system described earlier in this section; the gear is supported by bearings A and B.

Find the forces exerted by the bearings against the worm-gear shaft, and the output
torque.

| 1/

Worm pitch S | ,/

I ~
| cylinder
v o
' - 1200 rev/min
’|‘ % \ Gear pitch
e \/ cylinder
/g )~ ‘
/ ’ ‘ ' } = :

2 - A 7
\5/’ o~ X Flg ' 13_43 Shigley’s Mechanical Engineering Design
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(a) The axial pitch is the same as the transverse circular pitch of the gear, which is

T T .
Py =D = E = E = (0.5236 1n Answer

The pitch diameter of the gear is dg = Ng/P = 30/6 = 5 in. Therefore, the center
distance is

C=dW+dG=2+5=3.5in Answer
2 2
From Eq. (13-27), the lead 1s
L=pNy=(0.5236)(2) = 1.0472in Answer
Also using Eq. (13-28), we find
L 1.0472
A=tan"'— = tan™! = 0.46° Answer
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(b) Using the right-hand rule for the rotation of the worm, you will see that your
thumb points in the positive z direction. Now use the bolt-and-nut analogy (the worm
is right-handed, as is the screw thread of a bolt), and turn the bolt clockwise with the
right hand while preventing nut rotation with the left. The nut will move axially along
the bolt toward your right hand. Therefore the surface of the gear (Fig. 13—43) in
contact with the worm will move in the negative z direction. Thus, viewing the gear
in the negative x direction, the gear rotates clockwise about the x axis
The pitch-line velocity of the worm is

rdyny _ m(2)(1200)

AT 12
The speed of the gear is ng = (55)(1200) = 80 rev/min. Therefore the pitch-line

velocity of the gear is

= 628 ft/min

_ mdgng _ w(5)(80)

Ve = — 105 ft/mi
D 12 .
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Then, from Eq. (13-47), the sliding velocity Vg is found to be

Vi 628
Ve — = = 637 ft/mi
5 cos A cos 9.46° i

Getting to the forces now, we begin with the horsepower formula

~33000H  (33000)(1)
Vw 628

Wi = 52.5 Ibf

This force acts in the negative x direction, the same as in Fig. 13—40. Using Fig. 13-42,
we find f = 0.03. Then, the first equation of Eq. (13-43) gives

W.I
cos ¢, sin A + fcos A

= _ : 229 = 278 Ibf
cos 14.5° sin 9.46° + 0.03 cos 9.46°

W =

Shigley’s Mechanical Engineering Design
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Also, from Eq. (13-43),

WY = Wsin ¢, = 278 sin 14.5° = 69.6 1bf
W< = W(cos ¢, cos A — fsin A)
= 278(cos 14.5° cos 9.46° — 0.03 sin 9.46°) = 264 Ibf

We now identify the components acting on the gear as

—W* = 525 Ibf
—W? = —69.6 Ibf
—W*® = —264 Ibf

A free-body diagram showing the forces and torsion acting on the gearshaft is shown

in Fig. 13-44.
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We shall make B a thrust bearing in order to place the gearshaft in compression.
Thus, summing forces in the x direction gives

Fgp = —5251bf Answer

Taking moments about the z axis, we have

—(52.5)(2.5) — (69.6)(1.5) + 4FL =0  F,=589Ibf Answer

Taking moments about the y axis,

(264)(1.5) — 4F3 =0 Fi = 99 Ibf Answer

Shigley’s Mechanical Engineering Design
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Summing forces in the y direction,

—69.6 +589 + F, =0  F) = 10.7Ibf Answer
Similarly, summing forces in the z direction,
—264 +99 + F; =0  Fi=165Ibf Answer
We still have one more equation to write. Summing moments about x,
—(264)(25)+ T=0 T = 660 Ibf - in Answer

It 1s because of the frictional loss that this output torque is less than the product of
the gear ratio and the input torque.
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