
Lecture Slides

Chapter 17

Flexible Mechanical Elements

Tenth Edition in SI Units

Shigley's Mechanical Engineering Design

Richard G. BUDYNAS • J. Keith NISBETT

Chapter Outline

17-1

Belts **872**

17-2

Flat- and Round-Belt Drives **875**

17-3

V Belts **890**

17-4

Timing Belts **898**

17-5

Roller Chain **899**

17-6

Wire Rope **908**

17-7

Flexible Shafts **916**

Characteristics of Some Common Belt Types

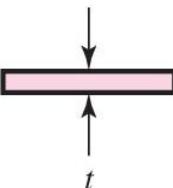
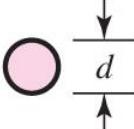
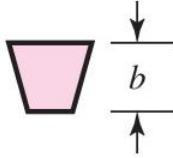
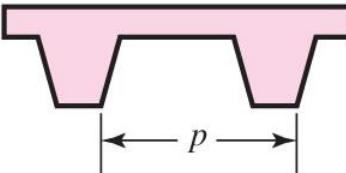




Belt Type	Figure	Joint	Size Range	Center Distance
Flat		Yes	$t = \begin{cases} 0.03 \text{ to } 0.20 \text{ in} \\ 0.75 \text{ to } 5 \text{ mm} \end{cases}$	No upper limit
Round		Yes	$d = \frac{1}{8} \text{ to } \frac{3}{4} \text{ in}$	No upper limit
V		None	$b = \begin{cases} 0.31 \text{ to } 0.91 \text{ in} \\ 8 \text{ to } 19 \text{ mm} \end{cases}$	Limited
Timing		None	$p = 2 \text{ mm and up}$	Limited

Table 17–1

Flat-Belt Geometry – Open Belt

$$\theta_d = \pi - 2 \sin^{-1} \frac{D - d}{2C}$$

$$\theta_D = \pi + 2 \sin^{-1} \frac{D - d}{2C}$$

$$L = \sqrt{4C^2 - (D - d)^2} + \frac{1}{2}(D\theta_D + d\theta_d)$$

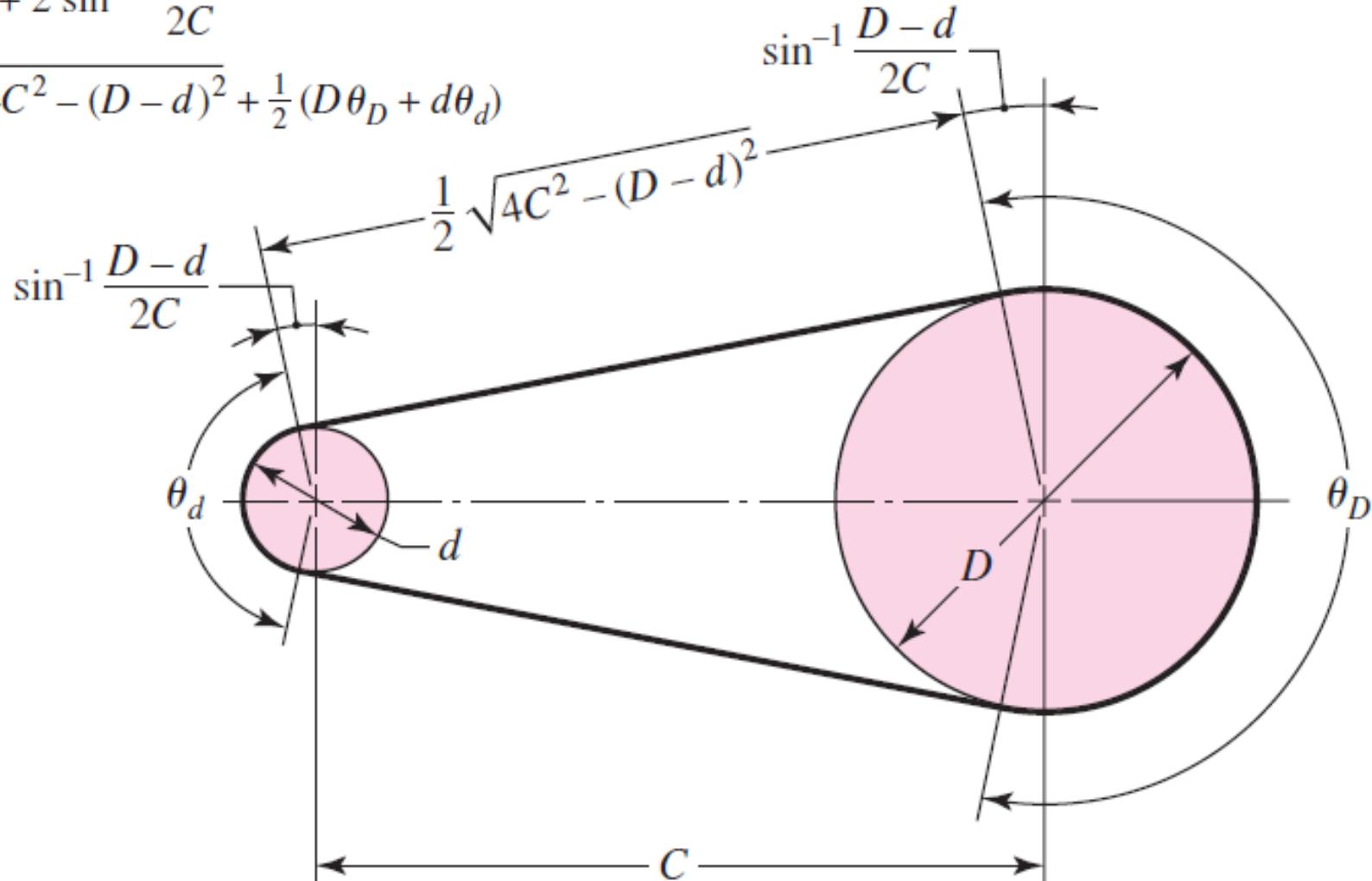


Fig.17-1a

Flat-Belt Geometry – Crossed Belt

$$\theta = \pi + 2 \sin^{-1} \frac{D + d}{2C}$$

$$L = \sqrt{4C^2 - (D + d)^2} + \frac{1}{2}(D + d)\theta$$

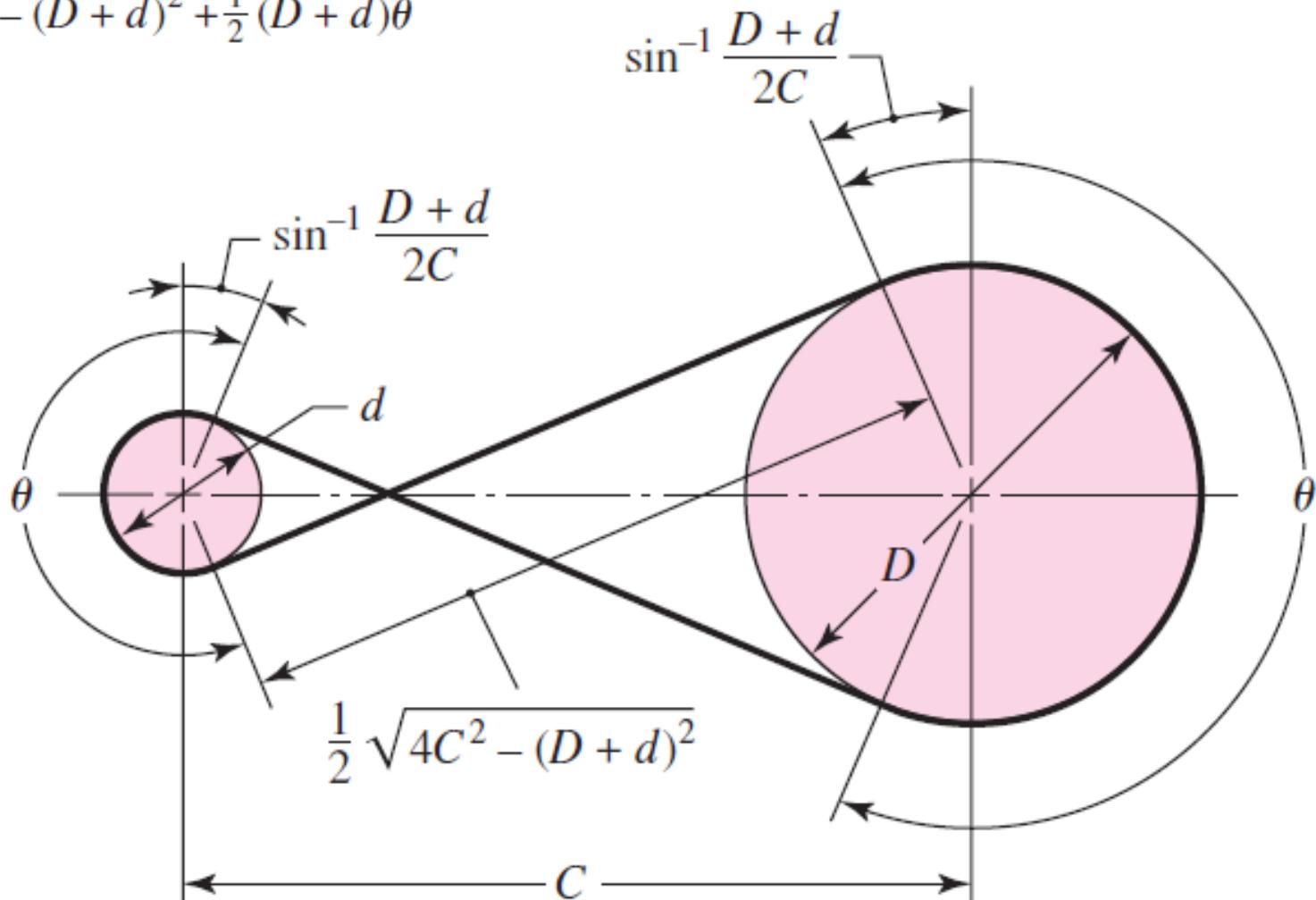


Fig.17-1b

Reversing Belts

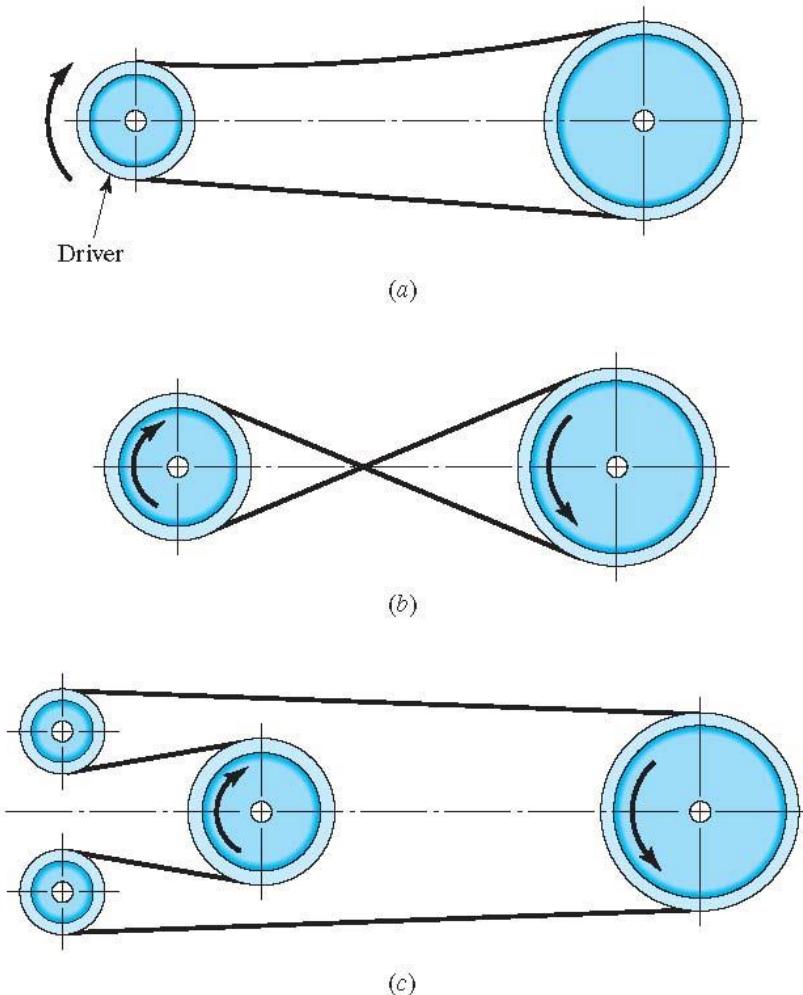


Fig.17-2

Flat-belt with Out-of-plane Pulleys

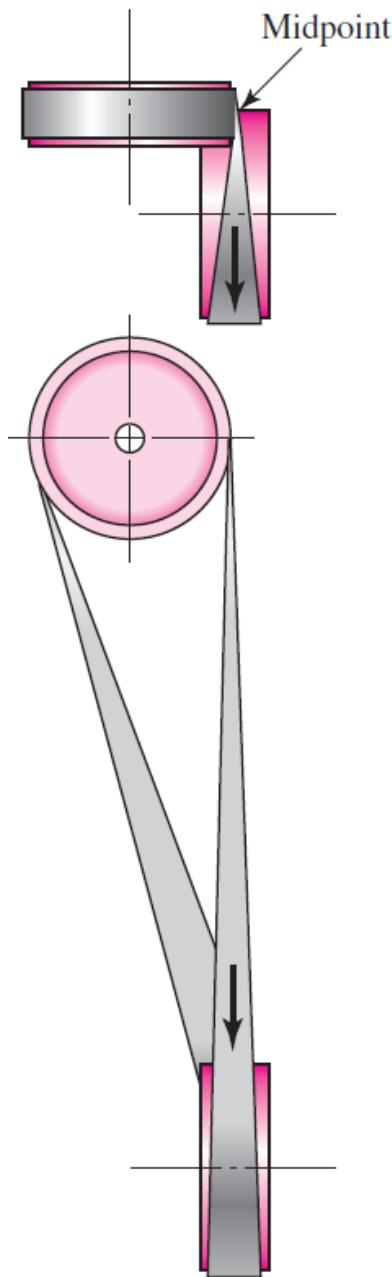


Fig.17-3

Flat-belt Shifting Without Clutch

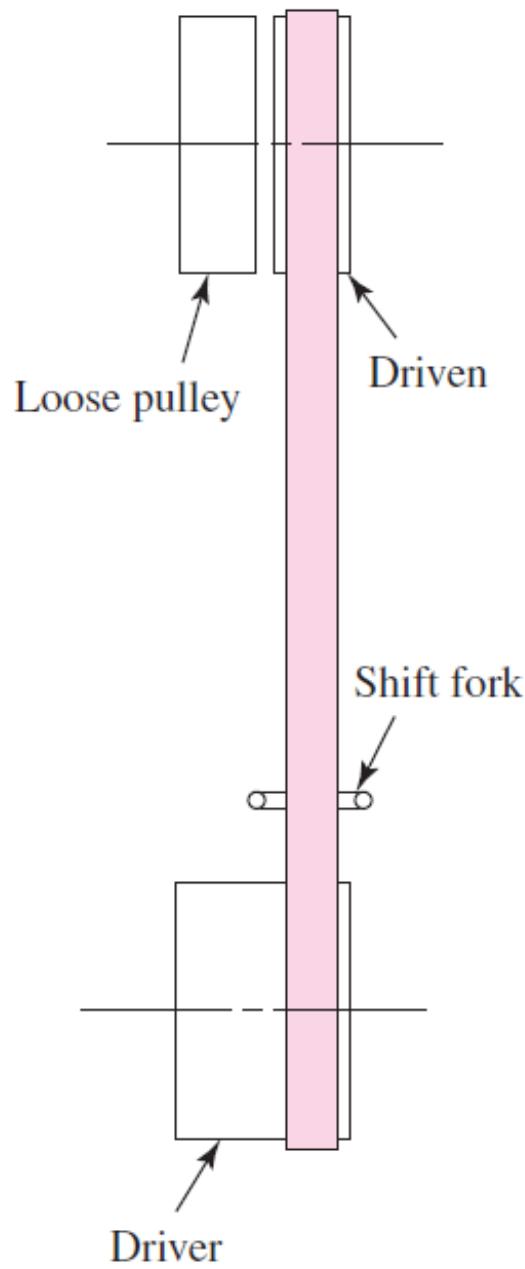
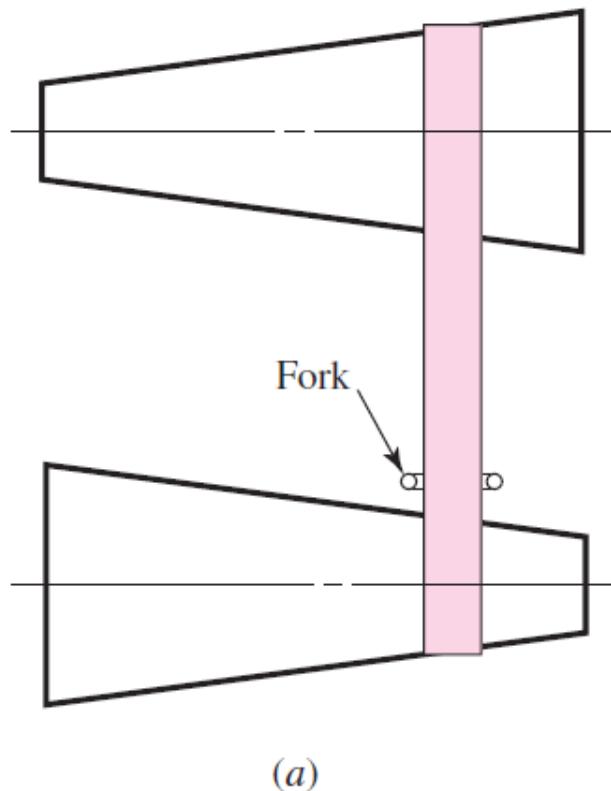



Fig.17-4

Driver

Variable-Speed Belt Drives

(a)

Fig.17-5

(b)

Free Body of Infinitesimal Element of Flat Belt

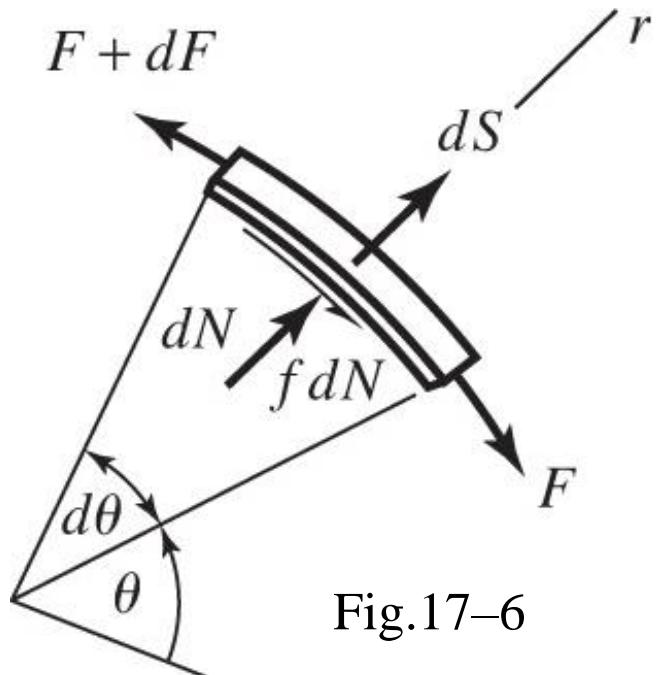


Fig.17-6

$$dS = (mr d\theta)r\omega^2 = mr^2\omega^2 d\theta = mV^2 d\theta = F_c d\theta \quad (a)$$

$$\sum F_r = -(F + dF)\frac{d\theta}{2} - F\frac{d\theta}{2} + dN + dS = 0$$

$$dN = F d\theta - dS \quad (b)$$

Free Body of Infinitesimal Element of Flat Belt

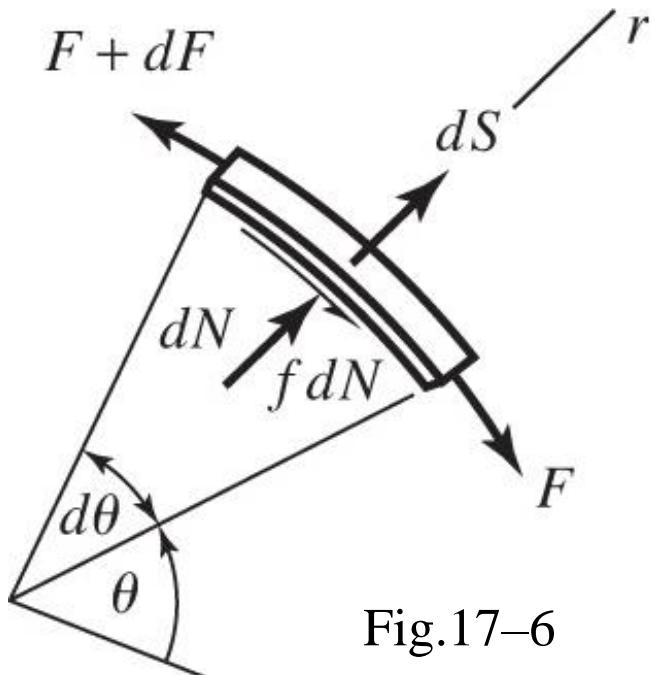


Fig.17-6

$$\sum F_t = -f dN - F + (F + dF) = 0$$

$$dF = f dN = f F d\theta - f dS = f F d\theta - f m r^2 \omega^2 d\theta$$

$$\frac{dF}{d\theta} - f F = -f m r^2 \omega^2 \quad (c)$$

Analysis of Flat Belt

$$\frac{dF}{d\theta} - fF = -fmr^2\omega^2 \quad (c)$$

$$F = A \exp(f\theta) + mr^2\omega^2 \quad (d)$$

F at $\theta = 0$ equals F_2 gives $A = F_2 - mr^2\omega^2$

$$F = (F_2 - mr^2\omega^2) \exp(f\theta) + mr^2\omega^2 \quad (17-5)$$

$$F|_{\theta=\phi} = F_1 = (F_2 - mr^2\omega^2) \exp(f\phi) + mr^2\omega^2 \quad (17-6)$$

$$\frac{F_1 - mr^2\omega^2}{F_2 - mr^2\omega^2} = \frac{F_1 - F_c}{F_2 - F_c} = \exp(f\phi) \quad (17-7)$$

$$F_c = mr^2\omega^2$$

$$F_1 - F_2 = (F_1 - F_c) \frac{\exp(f\phi) - 1}{\exp(f\phi)} \quad (17-8)$$

Hoop Tension Due to Centrifugal Force

$$F_c = \frac{w}{g} \left(\frac{V}{60} \right)^2 = \frac{w}{32.17} \left(\frac{V}{60} \right)^2 \quad (e)$$

$w = 12\gamma bt$ lbf/ft where b and t are in inches

$$V = \pi dn/12 \quad \text{ft/min}$$

Forces and Torques on a Pulley

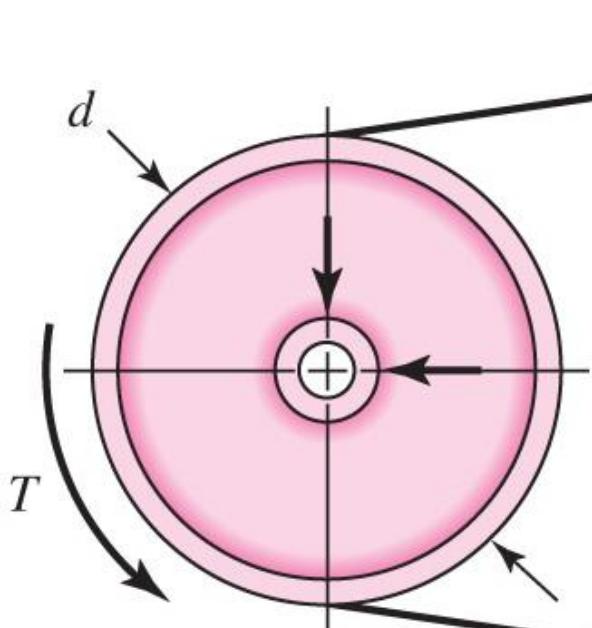


Figure 17-7 shows a pulley of diameter d with a clockwise torque T applied at the left edge. The pulley has a pink shaded region representing the hoop. A vertical force F_i acts downwards at the center, and a horizontal force F_c acts to the left at the center. A tension force T acts to the left at the top edge. A horizontal force F_1 acts to the right at the top edge, and a horizontal force F_2 acts to the left at the bottom edge.

$$F_1 = F_i + F_c + \Delta F/2$$
$$= F_i + F_c + \frac{T}{d}$$
$$F_2 = F_i + F_c - \Delta F/2$$
$$= F_i + F_c - \frac{T}{d}$$

F_i = initial tension

F_c = hoop tension due to centrifugal force

$\Delta F/2$ = tension due to the transmitted torque T

d = diameter of the pulley

Initial Tension

$$F_1 - F_2 = \frac{2T}{d} \quad (h)$$

$$F_1 + F_2 = 2F_i + 2F_c$$

$$F_i = \frac{F_1 + F_2}{2} - F_c \quad (i)$$

$$\frac{F_i}{T/d} = \frac{(F_1 + F_2)/2 - F_c}{(F_1 - F_2)/2} = \frac{F_1 + F_2 - 2F_c}{F_1 - F_2} = \frac{(F_1 - F_c) + (F_2 - F_c)}{(F_1 - F_c) - (F_2 - F_c)}$$

$$= \frac{(F_1 - F_c)/(F_2 - F_c) + 1}{(F_1 - F_c)/(F_2 - F_c) - 1} = \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$$

$$F_i = \frac{T}{d} \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1} \quad (17-9)$$

Flat Belt Tensions

$$\begin{aligned} F_1 &= F_i + F_c + \frac{T}{d} = F_c + F_i + F_i \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1} \\ &= F_c + \frac{F_i[\exp(f\phi) + 1] + F_i[\exp(f\phi) - 1]}{\exp(f\phi) + 1} \\ F_1 &= F_c + F_i \frac{2 \exp(f\phi)}{\exp(f\phi) + 1} \end{aligned} \tag{17-10}$$

$$\begin{aligned} F_2 &= F_i + F_c - \frac{T}{d} = F_c + F_i - F_i \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1} \\ &= F_c + \frac{F_i[\exp(f\phi) + 1] - F_i[\exp(f\phi) - 1]}{\exp(f\phi) + 1} \\ F_2 &= F_c + F_i \frac{2}{\exp(f\phi) + 1} \end{aligned} \tag{17-11}$$

Plot of Belt Tension vs. Initial Tension

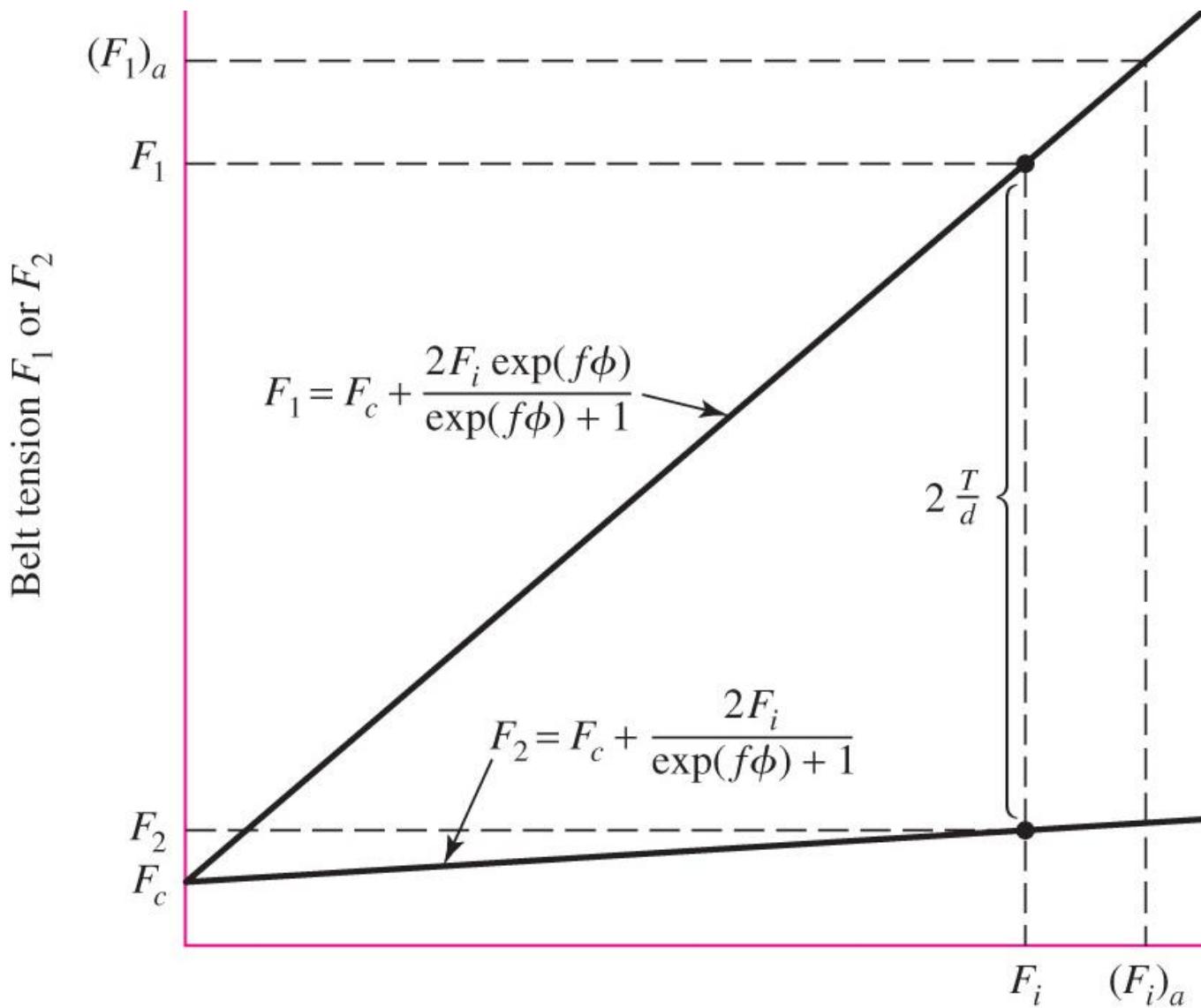


Fig.17-8

Initial tension F_i

Transmitted Horsepower

$$H = \frac{(F_1 - F_2)V}{33\,000} \quad (j)$$

Correction Factors

$$(F_1)_a = bF_aC_pC_v \quad (17-12)$$

where $(F_1)_a$ = allowable largest tension, lbf

b = belt width, in

F_a = manufacturer's allowed tension, lbf/in

C_p = pulley correction factor (Table 17-4)

C_v = velocity correction factor

Velocity Correction Factor C_v for Leather Belts

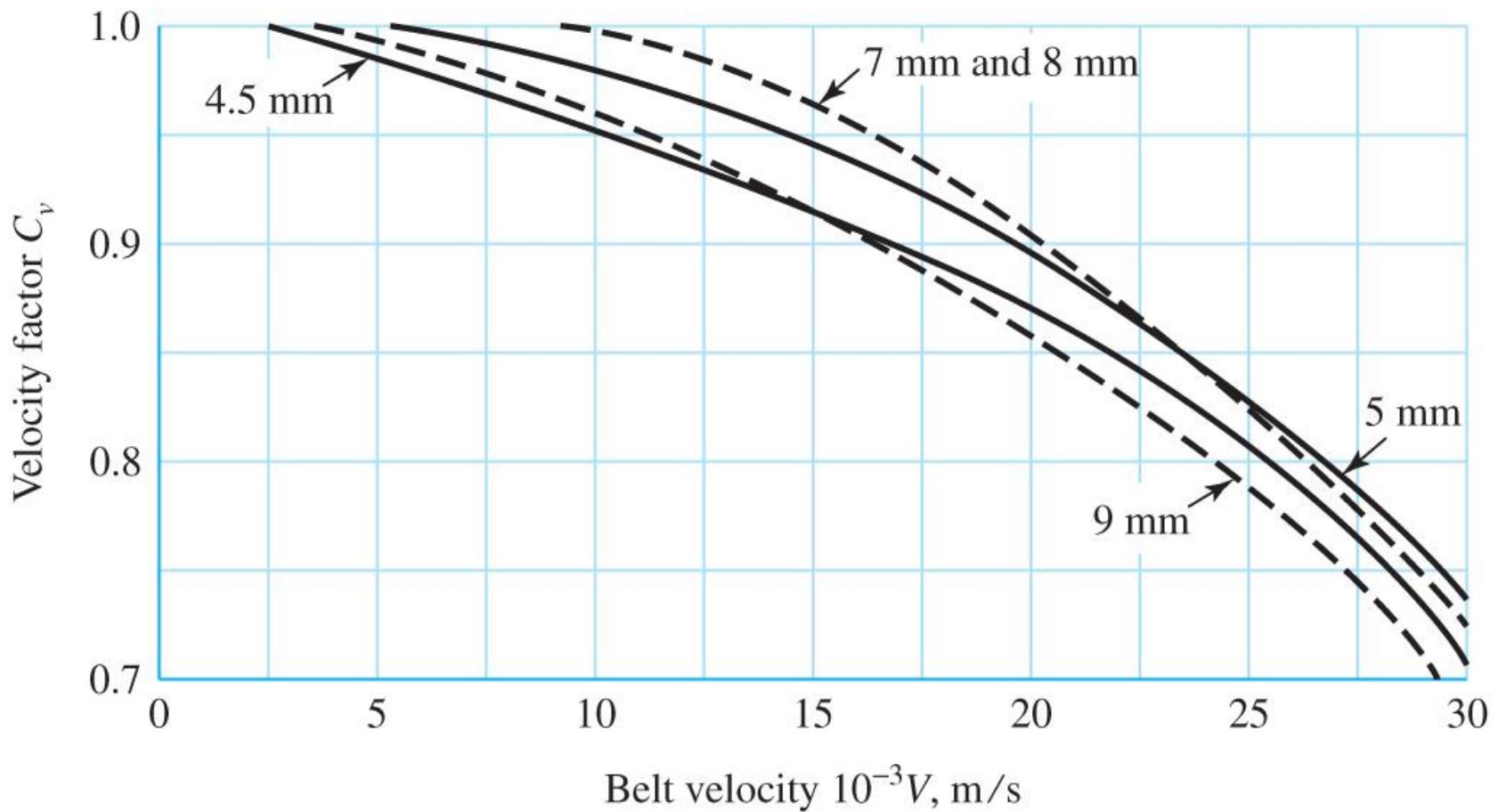


Fig.17-9

Pulley Correction Factor C_P for Flat Belts

Table 17-4

Pulley Correction Factor C_P for Flat Belts*

Material	Small-Pulley Diameter, in					
	1.6 to 4	4.5 to 8	9 to 12.5	14, 16	18 to 31.5	Over 31.5
Leather	0.5	0.6	0.7	0.8	0.9	1.0
Polyamide, F-0	0.95	1.0	1.0	1.0	1.0	1.0
F-1	0.70	0.92	0.95	1.0	1.0	1.0
F-2	0.73	0.86	0.96	1.0	1.0	1.0
A-2	0.73	0.86	0.96	1.0	1.0	1.0
A-3	—	0.70	0.87	0.94	0.96	1.0
A-4	—	—	0.71	0.80	0.85	0.92
A-5	—	—	—	0.72	0.77	0.91

*Average values of C_P for the given ranges were approximated from curves in the *Habasit Engineering Manual*, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

Steps for Flat-Belt Analysis

- 1 Find $\exp(f\phi)$ from belt-drive geometry and friction
- 2 From belt geometry and speed find F_c
- 3 From $T = 63\ 025 H_{\text{nom}} K_s n_d / n$ find necessary torque
- 4 From torque T find the necessary $(F_1)_a - F_2 = 2T/d$
- 5 From Tables 17–2 and 17–4, and Eq. (17–12) determine $(F_1)_a$.
- 6 Find F_2 from $(F_1)_a - [(F_1)_a - F_2]$
- 7 From Eq. (i) find the necessary initial tension F_i
- 8 Check the friction development, $f' < f$. Use Eq. (17–7) solved for f' :

$$f' = \frac{1}{\phi} \ln \frac{(F_1)_a - F_c}{F_2 - F_c}$$

- 9 Find the factor of safety from $n_{fs} = H_a / (H_{\text{nom}} K_s)$

Properties of Some Flat- and Round-Belt Materials

Material	Specification	Size, mm	Minimum Pulley Diameter, mm	Allowable Tension per Unit Width at 3 m/s, (10^3) N/m	Specific Weight, kN/m ³	Coefficient of Friction
Leather	1 ply	$t = 4.5$	75	5	9.5–12.2	0.4
		$t = 5$	90	6	9.5–12.2	0.4
	2 ply	$t = 7$	115	7	9.5–12.2	0.4
		$t = 8$	150	9	9.5–12.2	0.4
		$t = 9$	230	10	9.5–12.2	0.4
Polyamide ^b	F-0 ^c	$t = 0.8$	15	1.8	9.5	0.5
	F-1 ^c	$t = 1.3$	25	6	9.5	0.5
	F-2 ^c	$t = 1.8$	60	10	13.8	0.5
	A-2 ^c	$t = 2.8$	60	10	10.0	0.8
	A-3 ^c	$t = 3.3$	110	18	11.4	0.8
	A-4 ^c	$t = 5.0$	240	30	10.6	0.8
	A-5 ^c	$t = 6.4$	340	48	10.6	0.8
Urethane ^d	$w = 12.7$	$t = 1.6$	See	1.0 ^e	10.3–12.2	0.7
	$w = 19$	$t = 2.0$	Table	1.7 ^e	10.3–12.2	0.7
	$w = 32$	$t = 2.3$	17–3	3.3 ^e	10.3–12.2	0.7
	Round	$d = 6$	See	1.4 ^e	10.3–12.2	0.7
		$d = 10$	Table	3.3 ^e	10.3–12.2	0.7
		$d = 12$	17–3	5.8 ^e	10.3–12.2	0.7
		$d = 20$		13 ^e	10.3–12.2	0.7

Properties of Some Flat- and Round-Belt Materials

^aAdd 2 in to pulley size for belts 8 in wide or more.

^bSource: *Habasit Engineering Manual*, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

^cFriction cover of acrylonitrile-butadiene rubber on both sides.

^dSource: Eagle Belting Co., Des Plaines, Ill.

^eAt 6% elongation; 12% is maximum allowable value.

Table 17-2

Minimum Pulley Sizes for Flat and Round Urethane Belts

Belt Style	Belt Size, mm	<i>Ratio of Pulley Speed to Belt Length, rev/(m · s)</i>		
		Up to 14	14 to 27	28 — 55
Flat	12.7 × 1.6	9.7	11.2	12.7
	19 × 2.0	12.7	16	19
	32 × 2.3	12.7	16	19
Round	6	38.1	44.5	50.8
	10	57.1	66.5	76.2
	12	76.2	88.9	101.6
	20	127	152	177.8

Table 17-3

Crown Height and ISO Pulley Diameters for Flat Belts

ISO Crown Pulley Diameter, mm	ISO Height, mm	Pulley Diameter, mm	Crown Height, in	
			$w \leq 250 \text{ mm}$	$w > 250 \text{ mm}$
40, 50, 62	0.3	315, 355	0.75	0.75
70, 80	0.3	315, 355	1.0	1.0
90, 100, 115	0.3	570, 635, 710	1.3	1.3
125, 142	0.4	800, 900	1.3	1.5
160, 180	0.5	1015	1.3	1.5
200, 230	0.6	1140, 1270, 1420	1.5	2.0
250, 285	0.75	1600, 1800, 2030	1.8	2.5

*Crown should be rounded, not angled; maximum roughness is $R_a = \text{AA } 1500 \mu\text{mm}$.

Table 17–5

Example 17-1

A polyamide A-3 flat belt 150 mm wide is used to transmit 11 kW under light shock conditions where $K_s = 1.25$, and a factor of safety equal to or greater than 1.1 is appropriate. The pulley rotational axes are parallel and in the horizontal plane. The shafts are 2.4 m apart. The 150-mm driving pulley rotates at 1750 rev/min in such a way that the loose side is on top. The driven pulley is 450 mm in diameter. See Fig. 17-10. The factor of safety is for unquantifiable exigencies.

- Estimate the centrifugal tension F_c and the torque T .
- Estimate the allowable F_1 , F_2 , F_i and allowable power H_a .
- Estimate the factor of safety. Is it satisfactory?

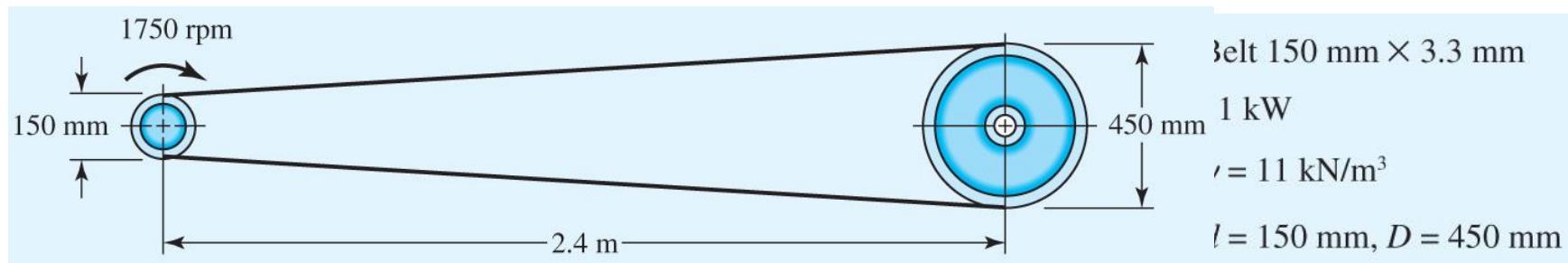


Fig.17-10

Example 17–1

Solution

(a) Eq. (17–1): $\phi = \theta_d = \pi - 2 \sin^{-1} \left[\frac{450 - 150}{2(2400)} \right] = 3.0165 \text{ rad}$

$$\exp(f\phi) = \exp[0.8(3.0165)] = 11.17$$

$$V = \pi(0.15)1750/60 = 13.7 \text{ m/s}$$

Table 17–2: $w = \gamma bt = 11\ 000(0.15)0.0033 = 5.4 \text{ N/m}$

Eq. (e): $F_c = \frac{w}{g} V^2 = \frac{5.4}{9.81} (13.7)^2 = 103.3 \text{ N}$

$$T = \frac{H_{\text{nom}} K_s n_d}{2\pi n} = \frac{1.25(1.1)11000}{2\pi 1750/60}$$
$$= 82.5 \text{ N} \cdot \text{m}$$

(b) The necessary $(F_1)_a - F_2$ to transmit the torque T , from Eq. (h), is

Example 17-1

$$(F_1)_a - F_2 = \frac{2T}{d} = \frac{2(82)}{0.15} = 1093.3 \text{ N}$$

From Table 17-2 $F_a = 18 \text{ kN/m}$. For polyamide belts $C_v = 1$, and from Table 17-4 $C_p = 0.70$. From Eq. (17-12) the allowable largest belt tension $(F_1)_a$ is

$$(F_1)_a = bF_aC_pC_v = 0.15(18000)0.70(1) = 1890 \text{ N} \quad \text{Answer}$$

then

$$F_2 = (F_1)_a - [(F_1)_a - F_2] = 1890 - 1093 = 796.7 \text{ N}$$

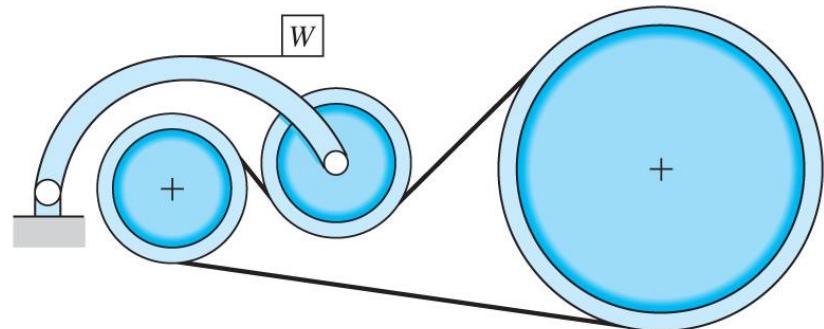
and from Eq. (i)

$$F_i = \frac{(F_1)_a + F_2}{2} - F_c = \frac{1890 + 796.7}{2} - 103 = 1240.4 \text{ N} \quad \text{Answer}$$

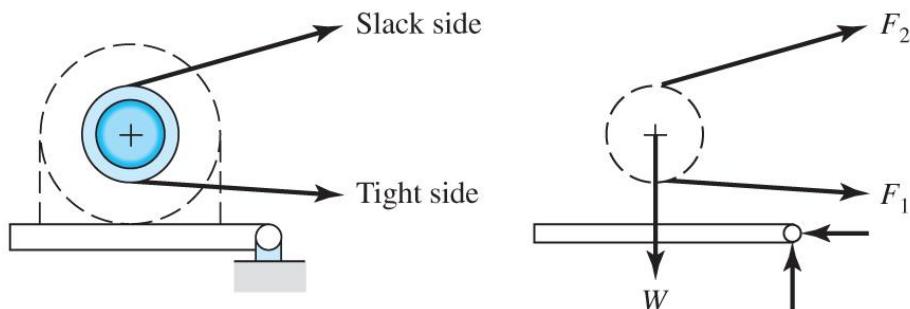
Example 17–1

The combination $(F_1)_a$, F_2 , and F_i will transmit the design power of $11(1.25)(1.1) = 15.125$ kW and protect the belt. We check the friction development by solving Eq. (17–7) for f' :

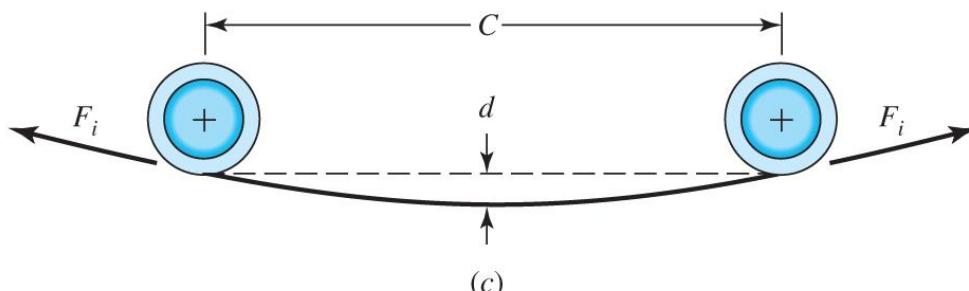
$$f' = \frac{1}{\phi} \ln \frac{(F_1)_a - F_c}{F_2 - F_c} = \frac{1}{3.0165} \ln \frac{1890 - 103}{797 - 103} = 0.314 \quad \text{Answer}$$


From Table 17–2, $f = 0.8$. Since $f' < f$, that is, $0.314 < 0.80$, there is no danger of slipping.

(c)


$$n_{fs} = \frac{H}{H_{\text{nom}} K_s} = \frac{15.125}{11(1.25)} = 1.1 \quad \text{(as expected)} \quad \text{Answer}$$

The belt is satisfactory and the maximum allowable belt tension exists. If the initial tension is maintained, the capacity is the design power of 15.125 kW.


Belt-Tensioning Schemes

(a)

(b)

(c)

Fig.17-11

Relation of Dip to Initial Tension

$$d = \frac{L^2 w}{8F_i} \quad (17-13)$$

where dip = dip, in

C = center-to-center distance, in

w = weight per foot of the belt, lbf/ft

F_i = initial tension, lbf

Example 17–2

Design a flat-belt drive to connect horizontal shafts on 4.8 m centers. The velocity ratio is to be 2.25:1. The angular speed of the small driving pulley is 860 rev/min, and the nominal power transmission is to be 44 760 W under very light shock.

Solution

- Function: $H_{\text{nom}} = 44\ 760\ \text{W}$, 860 rev/min, 2.25:1 ratio, $K_s = 1.15$, $C = 4.8\ \text{m}$
- Design factor: $n_d = 1.05$
- Initial tension maintenance: catenary
- Belt material: polyamide
- Drive geometry, d, D
- Belt thickness: t
- Belt width: b

The last four could be design variables. Let's make a few more a priori decisions.

$$d = 400\ \text{mm}, D = 2.25d = 900\ \text{mm}.$$

Example 17–2

Use polyamide A-3 belt; therefore $t = 3.3$ mm and $C_v = 1$.

Now there is one design decision remaining to be made, the belt width b .

Table 17–2: $\gamma = 11.4$ kN/m³ $f = 0.8$ $F_a = 18$ kN/m at 600 rev/min

Table 17–4: $C_p = 0.94$

Eq. (17–12): $F_{1a} = b(18\ 000)0.94(1) = 16\ 920b$ N (1)

$$H_d = H_{\text{nom}} K_s n_d = 44\ 760(1.15)1.05 = 54\ 048 \text{ W}$$

$$T = \frac{H_d}{2\pi n} = \frac{54\ 048}{2\pi 860/60} = 600 \text{ N} \cdot \text{m}$$

Estimate $\exp(f\phi)$ for full friction development:

Eq. (17–1): $\phi = \theta_d = \pi - 2 \sin^{-1} \frac{900 - 400}{2(4800)} = 3.037 \text{ rad}$

$$\exp(f\phi) = \exp[0.80(3.037)] = 11.35$$

Example 17–2

Estimate centrifugal tension F_c in terms of belt width b :

$$w = \gamma bt = (11\ 400)b(0.0033) = 37.6b \text{ N/m}$$

$$V = \pi dn = \pi(0.4)860/60 = 18 \text{ m/s}$$

Eq. (e): $F_c = \frac{w}{g} V^2 = \frac{(37.6)b(18)^2}{9.81} = 1241.8b \text{ N}$ (2)

For design conditions, that is, at H_d power level, using Eq. (h) gives

$$(F_1)_a - F_2 = 2T/d = 2(600)/0.4 = 3000 \text{ N} \quad (3)$$

$$F_2 = (F_1)_a - [(F_1)_a - F_2] = 16\ 920b - 3000 \text{ N} \quad (4)$$

Using Eq. (i) gives

$$F_i = \frac{(F_1)_a + F_2}{2} - F_c = \frac{16\ 920b + 16\ 920b - 3000}{2} - 1241.8b = 15\ 678.2b - 1500 \text{ N} \quad (5)$$

Example 17–2

Place friction development at its highest level, using Eq. (17–7):

$$f\phi = \ln \frac{(F_1)_a - F_c}{F_2 - F_c} = \ln \frac{16\,920b - 1241.8b}{16\,920b - 3000 - 1241.8b} = \ln \frac{15\,678.2b}{15\,678.2b - 3000}$$

Solving the preceding equation for belt width b at which friction is fully developed gives

$$b = \frac{3000}{15\,678.2} \frac{\exp(f\phi)}{\exp(f\phi) - 1} = \frac{3000}{15\,678.2} \frac{11.38}{11.38 - 1} = 0.210 \text{ m} = 210 \text{ mm}$$

A belt width greater than 210 mm will develop friction less than $f = 0.80$. The manufacturer's data indicate that the next available larger width is 250 mm.

Use 250 mm-wide belt.

It follows that for a 250-mm-wide belt

$$\text{Eq. (2):} \quad F_c = 1241.8(0.25) = 310 \text{ N}$$

$$\text{Eq. (1):} \quad (F_1)_a = 16\,920(0.25) = 4230 \text{ N}$$

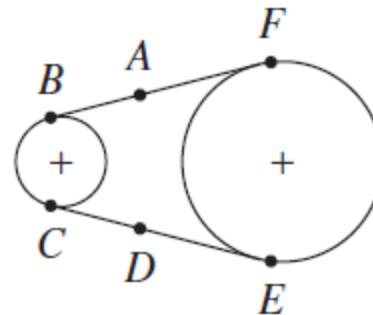
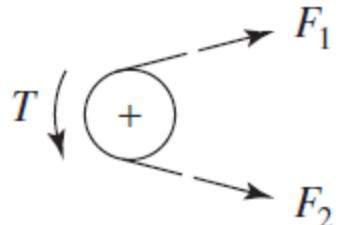
Example 17–2

Eq. (4): $F_2 = 4230 - 3000 = 1230 \text{ N}$

Eq. (5): $F_i = 15678.2(0.25) - 1500 = 2420 \text{ N}$

The transmitted power, from Eq. (3), is

$$H_t = [(F_1)_a - F_2]V = 3000(18) = 54000 \text{ W}$$



and the level of friction development f' , from Eq. (17–7) is

$$f' = \frac{1}{\phi} \ln \frac{(F_1)_a - F_c}{F_2 - F_c} = \frac{1}{3.037} \ln \frac{4230 - 310}{1230 - 310} = 0.477$$

which is less than $f = 0.8$, and thus is satisfactory. Had a 225-mm belt width been available, the analysis would show $(F_1)_a = 3807 \text{ N}$, $F_2 = 807 \text{ N}$, $F_i = 2028 \text{ N}$, and $f' = 0.63$. With a figure of merit available reflecting cost, thicker belts (A-4 or A-5) could be examined to ascertain which of the satisfactory alternatives is best. From Eq. (17–13) the catenary dip is

$$\text{dip} = \frac{L^2 w}{8F_i} = \frac{4.8^2(37.6)0.25}{8(2420)} = 0.011 \text{ m} = 11 \text{ mm}$$

Variation of Flat-Belt Tensions at Some Cardinal Points

(a)

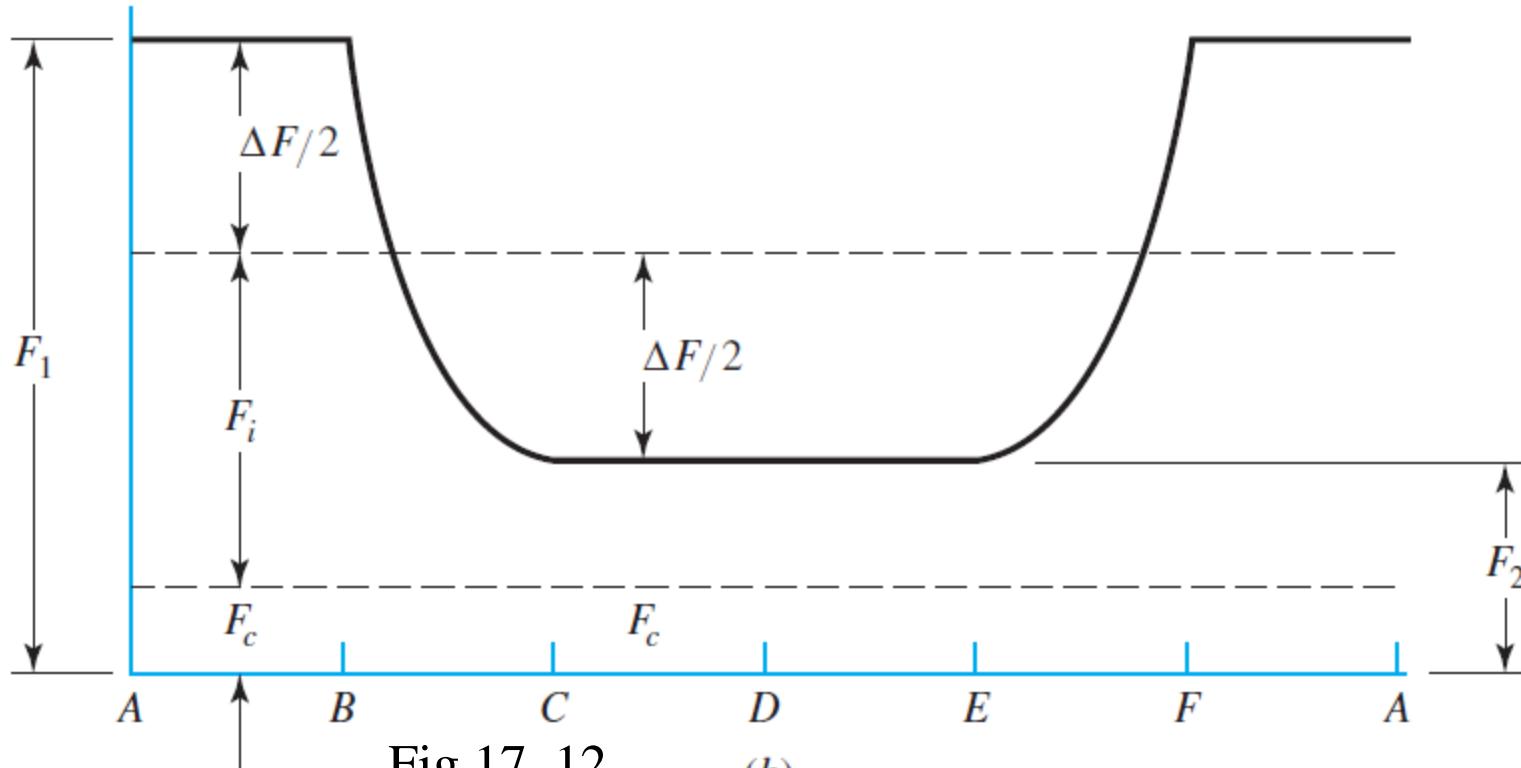
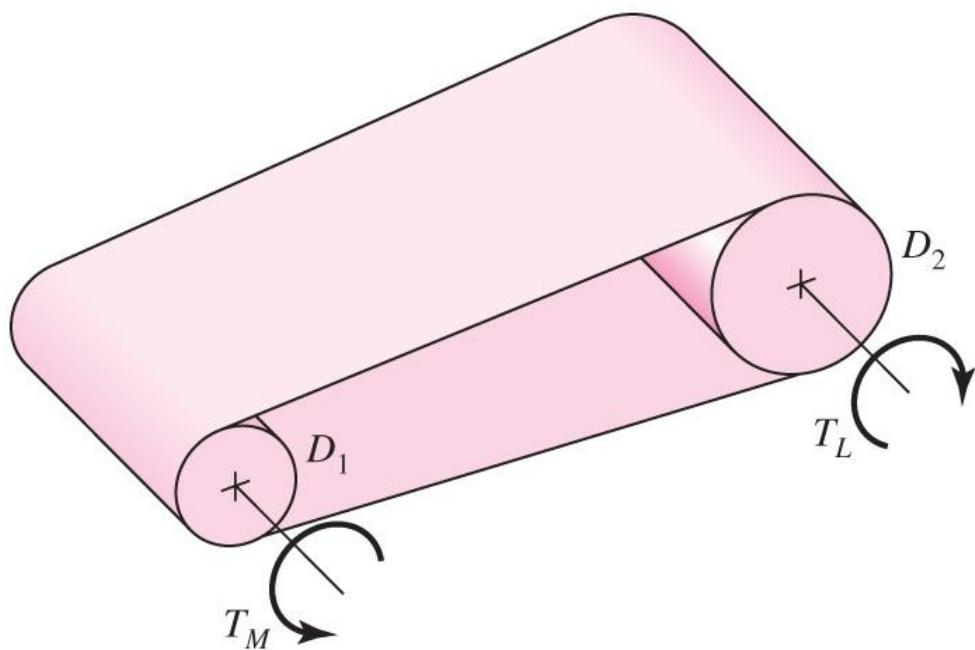
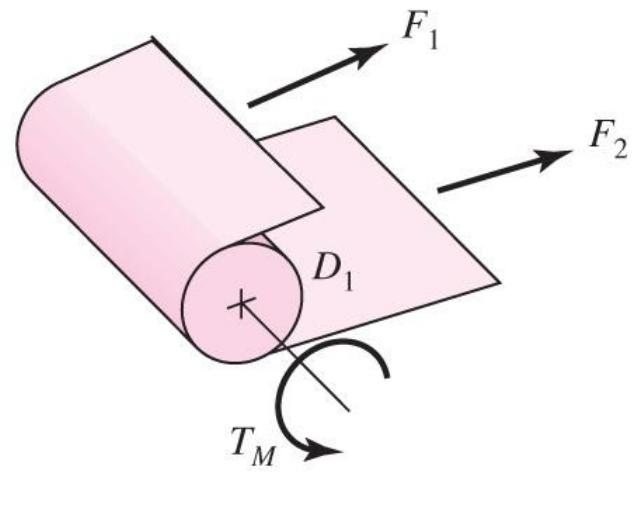


Fig.17-12


(b)

Flat Metal Belts



- Thin metal belts exhibit
 - High strength-to-weight ratio
 - Dimensional stability
 - Accurate timing
 - Usefulness to temperatures up to 700°F
 - Good electrical and thermal conduction properties

Tensions and Torques in Thin Flat Metal Belt

(a)

(b)

Fig.17-13

Bending Stress in Flat Metal Belt

$$\sigma_b = \frac{Et}{(1 - \nu^2)D} = \frac{E}{(1 - \nu^2)(D/t)} \quad (17-14)$$

where E = Young's modulus

t = belt thickness

ν = Poisson's ratio

D = pulley diameter

Tensile Stresses in Flat Metal Belt

$$(\sigma)_1 = F_1/(bt)$$

$$(\sigma)_2 = F_2/(bt)$$

Largest tensile stress during a belt pass:

$$(\sigma_b)_1 + F_1/(bt)$$

Smallest tensile stress during a belt pass:

$$(\sigma_b)_2 + F_2/(bt)$$

Belt Life for Stainless Steel Friction Drives

$\frac{D}{t}$	Belt Passes
625	$\geq 10^6$
400	$0.500 \cdot 10^6$
333	$0.165 \cdot 10^6$
200	$0.085 \cdot 10^6$

Table 17–6

Regression Line for Stress and Passes

$$\sigma = 14\ 169\ 982 N_p^{-0.407} = 14.17(10^6) N_p^{-0.407} \quad (17-15)$$

Minimum Pulley Diameter

Belt Thickness, mm	Minimum Pulley Diameter, mm
0.05	30
0.08	45
0.13	75
0.20	125
0.25	150
0.38	255
0.50	315
1.00	635

*Data courtesy of Belt Technologies, Agawam, Mass.

Table 17-7

Typical Material Properties for Metal Belts

Alloy	Yield Strength, MPa	Young's Modulus, GPa	Poisson's Ratio
301 or 302 stainless steel	1206	193	0.285
BeCu	1170	117	0.220
1075 or 1095 carbon steel	1585	207	0.287
Titanium	1034	103	—
Inconel	1103	207	0.284

*Data courtesy of Belt Technologies, Agawam, Mass.

Table 17-8

Steps for Selection of Metal Flat Belt

1 Find $\exp(f\phi)$ from geometry and friction

2 Find endurance strength

$$S_f = 14.17(10^6)N_p^{-0.407} \quad \text{301, 302 stainless}$$

$$S_f = S_y/3 \quad \text{others}$$

3 Allowable tension

$$(F_1)_a = \left[S_f - \frac{Et}{(1 - \nu^2)D} \right] tb = ab$$

4 $\Delta F = 2T/D$

5 $F_2 = (F_1)_a - \Delta F = ab - \Delta F$

6 $F_i = \frac{(F_1)_a + F_2}{2} = \frac{ab + ab - \Delta F}{2} = ab - \frac{\Delta F}{2}$

Steps for Selection of Metal Flat Belt

7 $b_{\min} = \frac{\Delta F}{a} \frac{\exp(f\phi)}{\exp(f\phi) - 1}$

8 Choose $b > b_{\min}$, $(F_1)_a = ab$, $F_2 = ab - \Delta F$,

$$F_i = ab - \Delta F/2, T = \Delta F D/2$$

9 Check frictional development f' :

$$f' = \frac{1}{\phi} \ln \frac{(F_1)_a}{F_2} \quad f' < f$$

Example 17-3

A friction-drive stainless steel metal belt runs over two 100-mm metal pulleys ($f = 0.35$). The belt thickness is to be 0.08 mm. For a life exceeding 10^6 belt passes with smooth torque ($K_s = 1$), (a) select the belt if the torque is to be 3.5 N · m, and (b) find the initial tension F_i .

Solution

(a) From step 1, $\phi = \theta_d = \pi$, therefore $\exp(0.35\pi) = 3.00$. From step 2,

$$(S_f)_{10^6} = 97\ 702(10^6)^{-0.407} = 353 \text{ MPa}$$

From steps 3, 4, 5, and 6,

$$F_{1a} = \left[353(10^6) - \frac{193(10^9)0.08(10^{-3})}{(1 - 0.285^2)0.1} \right] 0.08(10^{-3})b = 14\ 796b \text{ N} \quad (1)$$

$$\Delta F = 2T/D = 2(3.5)/0.1 = 70 \text{ N} \cdot \text{m}$$

$$F_2 = F_{1a} - \Delta F = 14\ 796b - 70 \text{ N} \quad (2)$$

$$F_i = \frac{F_{1a} + F_2}{2} = \frac{14\ 796b + 70}{2} \text{ N} \quad (3)$$

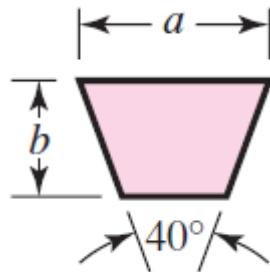
From step 7,

Example 17-3

$$b_{\min} = \frac{\Delta F}{a} \frac{\exp(f\phi)}{\exp(f\phi) - 1} = \frac{70}{14796} \frac{3.00}{3.00 - 1} = 0.0071 \text{ m} = 7.1 \text{ mm}$$

Select an available 19-mm-wide belt 0.08 mm thick.

Eq. (1): $F_{1a} = 14796(0.019) = 281 \text{ N}$


Eq. (2): $F_2 = 281 - 70 = 211 \text{ N}$

Eq. (3): $F_i = (281 + 211)/2 = 246 \text{ N}$

$$f' = \frac{1}{\phi} \ln \frac{F_1}{F_2} = \frac{1}{\pi} \ln \frac{281}{211} = 0.0912$$

Note $f' < f$, that is, $0.0882 < 0.35$.

Standard V-Belt Sections

Belt Section	Width a , mm	Thickness b , mm	Minimum Sheave Diameter, mm	kW Range, One or More Belts
A	12	8.5	75	0.2–7.5
B	16	11	135	0.7–18.5
C	22	13	230	11–75
D	30	19	325	37–186
E	38	25	540	75 and up

Table 17–9

Inside Circumferences of Standard V-Belts

Section	Circumference, mm
A	650, 775, 825, 875, 950, 1050, 1150, 1200, 1275, 1325, 1375, 1425, 1500, 1550, 1600, 1650, 1700, 1775, 1875, 1950, 2000, 2125, 2250, 2400, 2625, 2800, 3000, 3200
B	875, 950, 1050, 1150, 1200, 1275, 1325, 1375, 1425, 1500, 1550, 1600, 1650, 1700, 1775, 1875, 1950, 2000, 2125, 2250, 2400, 2625, 2800, 3000, 3200, 3275, 3400, 3450, 3950, 4325, 4500, 4875, 5250, 6000, 6750, 7500
C	1275, 1500, 1700, 1875, 2025, 2125, 2250, 2400, 2625, 2800, 3000, 3200, 3400, 3600, 3950, 4050, 4350, 4500, 4875, 5250, 6000, 6750, 7500, 8250, 9000, 9750, 10 500
D	3000, 3200, 3600, 3950, 4050, 4350, 4500, 4875, 5250, 6000, 6750, 7500, 8250, 9000, 9750, 10 500, 12 000, 13 500, 15 000, 16 500
E	4500, 4875, 5250, 6000, 6750, 7500, 8250, 9000, 9750, 10 500, 12 000, 13 500, 15 000, 16 500

Table 17–10

Length Conversion Dimensions

Table 17-11

Length Conversion Dimensions (Add the listed quantity to the inside circumference to obtain the pitch length in mm).

Belt section	A	B	C	D	E
Quantity to be added	32	45	72	82	112

V-Belt Pitch Length and Center-to-Center Distance

$$L_p = 2C + \pi(D + d)/2 + (D - d)^2/(4C) \quad (17-16a)$$

$$C = 0.25 \left\{ \left[L_p - \frac{\pi}{2}(D + d) \right] + \sqrt{\left[L_p - \frac{\pi}{2}(D + d) \right]^2 - 2(D - d)^2} \right\} \quad (17-16b)$$

Horsepower Ratings of Standard V-Belts

Belt Section	Sheave Pitch Diameter, mm	Belt Speed, m/s				
		5	10	15	20	25
A	65	0.35	0.46	0.40	0.11	
	75	0.49	0.75	0.84	0.69	0.28
	85	0.60	0.98	1.17	1.64	0.84
	95	0.69	1.16	1.43	1.49	1.28
	105	0.77	1.30	1.64	1.78	1.63
	115	0.83	1.41	1.82	2.01	1.93
	125 and up	0.87	1.51	1.97	2.21	2.16
B	105	0.80	1.18	1.25	0.94	0.16
	115	0.95	1.48	1.71	1.55	0.92
	125	1.07	1.74	2.09	2.06	1.57
	135	1.19	1.95	2.42	2.49	2.10
	145	1.28	2.14	2.69	2.87	2.57
	155	1.36	2.31	2.94	3.19	2.98
	165	1.43	2.45	3.16	3.48	3.34
C	175 and up	1.50	2.58	3.35	3.74	3.66
	150	1.37	1.98	2.03	1.40	
	175	1.85	2.94	3.46	3.31	2.33
	200	2.21	3.66	4.54	4.74	4.12
	225	2.49	4.21	5.38	5.86	5.51
	250	2.72	4.66	6.05	7.16	6.63
	275	2.89	5.03	6.59	7.46	7.53
D	300 and up	3.05	5.33	7.06	8.13	8.28
	250	3.09	4.57	4.89	3.80	1.01
	275	3.73	5.84	6.80	6.34	4.19
	300	4.26	6.91	8.36	8.50	6.85
	325	4.71	7.83	9.70	10.30	9.10
	350	5.09	8.58	10.89	11.79	11.04
	375	5.42	9.25	11.86	13.13	12.68
E	400	5.71	9.85	12.76	14.32	14.17
	425 and up	5.98	10.37	13.50	15.37	15.44
	400	6.48	10.44	13.06	13.50	11.41
	450	7.40	12.46	15.82	17.16	16.04
	500	8.13	13.95	18.05	20.07	19.69
	550	8.73	15.14	19.84	22.53	22.75
	600	9.25	16.11	21.34	24.54	25.22
700 and up	650	9.70	17.01	22.60	26.19	27.38
	700 and up	10.00	17.68	23.72	27.68	29.17

Table 17-12

Adjusted Power

$$H_a = K_1 K_2 H_{\text{tab}} \quad (17-17)$$

where H_a = allowable power, per belt

K_1 = angle-of-wrap (ϕ) correction factor, Table 17-13

K_2 = belt length correction factor, Table 17-14

Angle of Wrap Correction Factor

$\frac{D-d}{c}$	$\theta, \text{ deg}$	VV	K_1
		V Flat	
0.00	180	1.00	0.75
0.10	174.3	0.99	0.76
0.20	166.5	0.97	0.78
0.30	162.7	0.96	0.79
0.40	156.9	0.94	0.80
0.50	151.0	0.93	0.81
0.60	145.1	0.91	0.83
0.70	139.0	0.89	0.84
0.80	132.8	0.87	0.85
0.90	126.5	0.85	0.85
1.00	120.0	0.82	0.82
1.10	113.3	0.80	0.80
1.20	106.3	0.77	0.77
1.30	98.9	0.73	0.73
1.40	91.1	0.70	0.70
1.50	82.8	0.65	0.65

Table 17–13

Belt-Length Correction Factor

Length Factor	Nominal Belt Length, m				
	A Belts	B Belts	C Belts	D Belts	E Belts
0.85	Up to 0.88	Up to 1.15	Up to 1.88	Up to 3.2	
0.90	0.95–1.15	1.2–1.5	2.03–2.4	3.6–4.05	Up to 4.88
0.95	1.2–1.38	1.55–1.88	2.63–3.0	4.33–5.25	5.25–6.0
1.00	1.5–1.88	1.95–2.43	3.2–3.95	6.0	6.75–7.5
1.05	1.95–2.25	2.63–3.0	4.05–4.88	6.75–8.25	8.25–9.75
1.10	2.4–2.8	3.2–3.6	5.25–6.0	9.0–10.5	10.5–12.0
1.15	3.0 and up	3.95–4.5	6.75–7.5	12.0	13.5–15.0
1.20		4.88 and up	8.25 and up	13.5 and up	16.5

*Multiply the rated power per belt by this factor to obtain the corrected power.

Table 17–14

Belting Equation for V-Belt

$$\frac{F_1 - F_c}{F_2 - F_c} = \exp(0.5123\phi) \quad (17-18)$$

Design Power for V-Belt

$$H_d = H_{\text{nom}} K_s n_d \quad (17-19)$$

where H_{nom} is the nominal power

K_s is the service factor given in Table 17-15

n_d is the design factor

Number of belts:

$$N_b \geq \frac{H_d}{H_a} \quad N_b = 1, 2, 3, \dots \quad (17-20)$$

Suggested Service Factors for V-Belt Drives

Driven Machinery	Source of Power	
	Normal Torque Characteristic	High or Nonuniform Torque
Uniform	1.0 to 1.2	1.1 to 1.3
Light shock	1.1 to 1.3	1.2 to 1.4
Medium shock	1.2 to 1.4	1.4 to 1.6
Heavy shock	1.3 to 1.5	1.5 to 1.8

Table 17-15

V-Belt Tensions

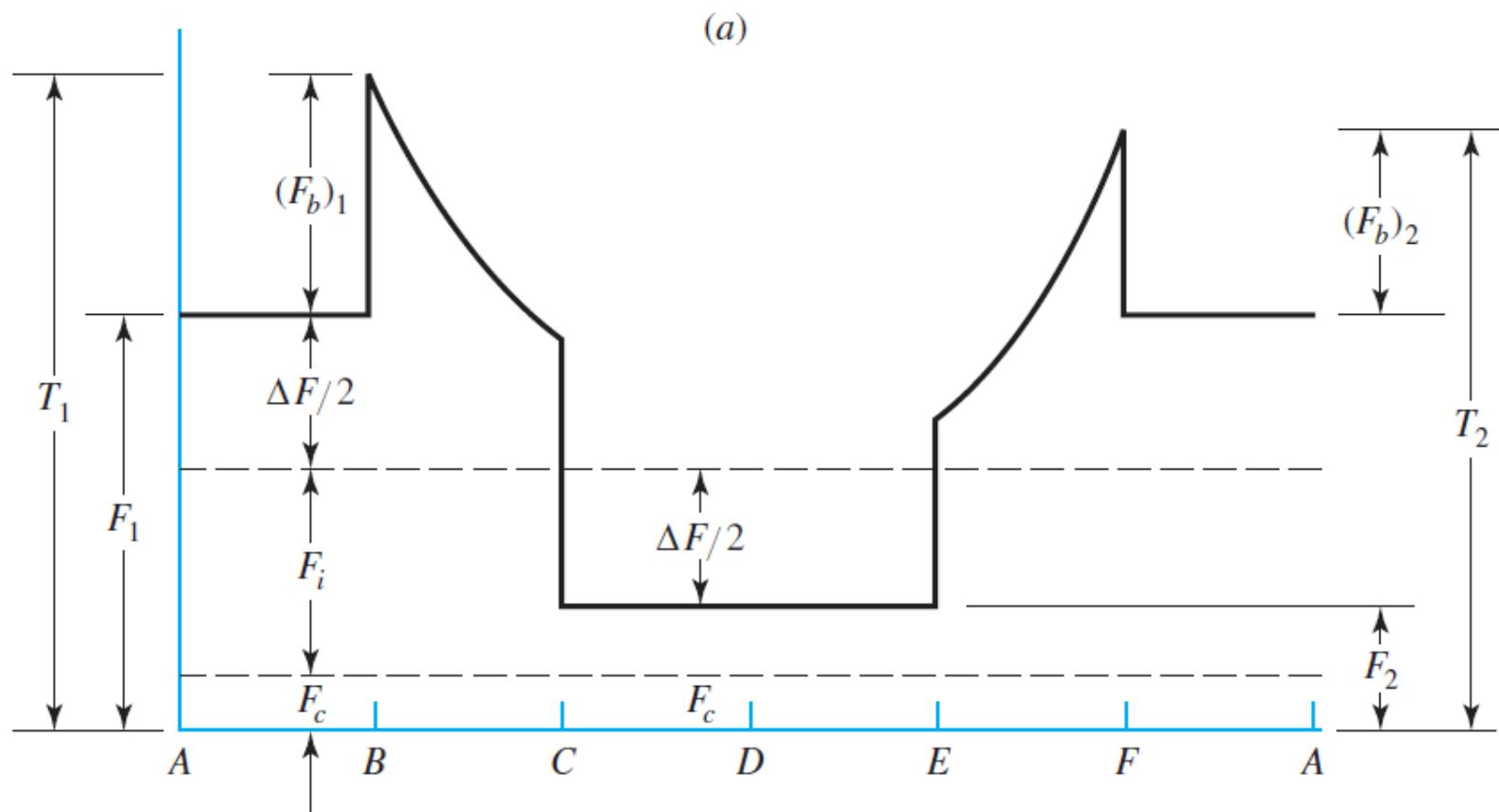
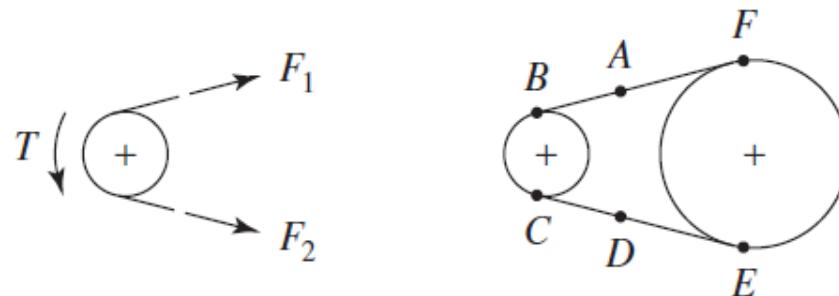



Fig.17-14

(b)

V-Belt Tensions

$$F_c = K_c \left(\frac{V}{1000} \right)^2 \quad (17-21)$$

where K_c is from Table 17-16

$$\Delta F = \frac{63,025 H_d / N_b}{n(d/2)} \quad (17-22)$$

$$F_1 = F_c + \frac{\Delta F \exp(f\phi)}{\exp(f\phi) - 1} \quad (17-23)$$

$$F_2 = F_1 - \Delta F \quad (17-24)$$

$$F_i = \frac{F_1 + F_2}{2} - F_c \quad (17-25)$$

Some V-Belt Parameters

Belt Section	K_b	K_c
A	220	0.561
B	576	0.965
C	1 600	1.716
D	5 680	3.498
E	10 850	5.041
3V	230	0.425
5V	1098	1.217
8V	4830	3.288

Table 17–16

V-Belt Factor of Safety

$$n_{fs} = \frac{H_a N_b}{H_{\text{nom}} K_s} \quad (17-26)$$

V-Belt Tension vs. Passes

$$T_1 = F_1 + (F_b)_1 = F_1 + \frac{K_b}{d}$$

$$T_2 = F_1 + (F_b)_2 = F_1 + \frac{K_b}{D}$$

where K_b is given in Table 17-16

$$T^b N_P = K^b$$

$$N_P = \left[\left(\frac{K}{T_1} \right)^{-b} + \left(\frac{K}{T_2} \right)^{-b} \right]^{-1} \quad (17-27)$$

$$t = \frac{N_P L_p}{720V} \quad (17-28)$$

Durability Parameters for Some V-Belt Sections

Belt Section	10 ⁸ to 10 ⁹ Force Peaks		10 ⁹ to 10 ¹⁰ Force Peaks		Minimum Sheave Diameter, mm
	K	b	K	b	
A	2999	11.089			75
B	5309	10.926			125
C	9069	11.173			215
D	18 726	11.105			325
E	26 791	11.100			540
3V	3240	12.464	4726	10.153	66
5V	7360	12.593	10 653	10.283	177
8V	16 189	12.629	23 376	10.319	312

Table 17–17

Example 17-4

A 7.46-kW split-phase motor running at 1750 rev/min is used to drive a rotary pump, which operates 24 hours per day. An engineer has specified a 188-mm small sheave, a 280-mm large sheave, and three B2800 belts. The service factor of 1.2 was augmented by 0.1 because of the continuous-duty requirement. Analyze the drive and estimate the belt life in passes and hours.

Solution

The peripheral speed V of the belt is

$$V = \pi d n = \pi(0.188)1750/60 = 17 \text{ m/s}$$

Table 17-11: $L_p = L + L_c = 2800 + 45 = 2845 \text{ mm}$

$$\begin{aligned} \text{Eq. (17-16b): } C &= 0.25 \left\{ \left[2845 - \frac{\pi}{2}(280 + 188) \right] \right. \\ &\quad \left. + \sqrt{\left[2845 - \frac{\pi}{2}(280 + 188) \right]^2 - 2(280 - 188)^2} \right\} \\ &= 1054 \text{ mm} \end{aligned}$$

Example 17-4

Eq. (17-1): $\phi = \theta_d = \pi - 2 \sin^{-1}(280 - 188)/[2(1054)] = 3.054 \text{ rad}$
 $\exp[0.5123(3.054)] = 4.781$

Interpolating in Table 17-12 for $V = 17 \text{ m/s}$ gives $H_{\text{tab}} = 3.5 \text{ kW}$. The wrap angle in degrees is $3.054(180)/\pi = 175^\circ$. From Table 17-13, $K_1 = 0.99$. From Table 17-14, $K_2 = 1.05$. Thus, from Eq. (17-17),

$$H_a = K_1 K_2 H_{\text{tab}} = 0.99(1.05)3.5 = 3.64 \text{ kW}$$

Eq. (17-19): $H_d = H_{\text{nom}} K_s n_d = 7.46(1.2 + 0.1)(1) = 9.7 \text{ kW}$

Eq. (17-20): $N_b \geq H_d / H_a = 9.7 / 3.64 = 2.67 \rightarrow 3$

From Table 17-16, $K_c = 0.965$. Thus, from Eq. (17-21),

$$F_c = 0.965(17/2.4)^2 = 48.4 \text{ N}$$

Eq.(17-22):
$$\Delta F = \frac{9700/3}{\pi(1750/60)0.188} = 188 \text{ N}$$

Eq. (17-23):
$$F_1 = 48.4 + \frac{188(4.781)}{4.781 - 1} = 286 \text{ N}$$

Example 17-4

Eq. (17-24):

$$F_2 = F_1 - \Delta F = 286 - 188 = 98 \text{ N}$$

Eq. (17-25):

$$F_i = \frac{286 + 98}{2} - 48.4 = 144 \text{ N}$$

Eq. (17-26):

$$n_{fs} = \frac{H_a N_b}{H_{\text{nom}} K_s} = \frac{3.64(3)}{7.46(1.3)} = 1.13$$

Life: From Table 17-16, $K_b = 576$.

$$F_{b1} = \frac{K_b}{d} = \frac{65}{0.188} = 346 \text{ N}$$

$$F_{b2} = 65/0.28 = 232 \text{ N}$$

Example 17-4

$$T_1 = F_1 + F_{b1} = 286 + 346 = 632 \text{ N}$$

$$T_2 = F_1 + F_{b2} = 286 + 232 = 518 \text{ N}$$

From Table 17-17, $K = 5309$ and $b = 10.926$.

Eq. (17-27): $N_P = \left[\left(\frac{5309}{632} \right)^{-10.926} + \left(\frac{5309}{518} \right)^{-10.926} \right]^{-1} = 11(10^9) \text{ passes}$

Answer

Since N_P is out of the validity range of Eq. (17-27), life is reported as greater than 10^9 passes. Then

Eq. (17-28): $t > \frac{10^9(2.845)}{3600(17)} = 46\ 487 \text{ h}$ **Answer**

Timing Belts

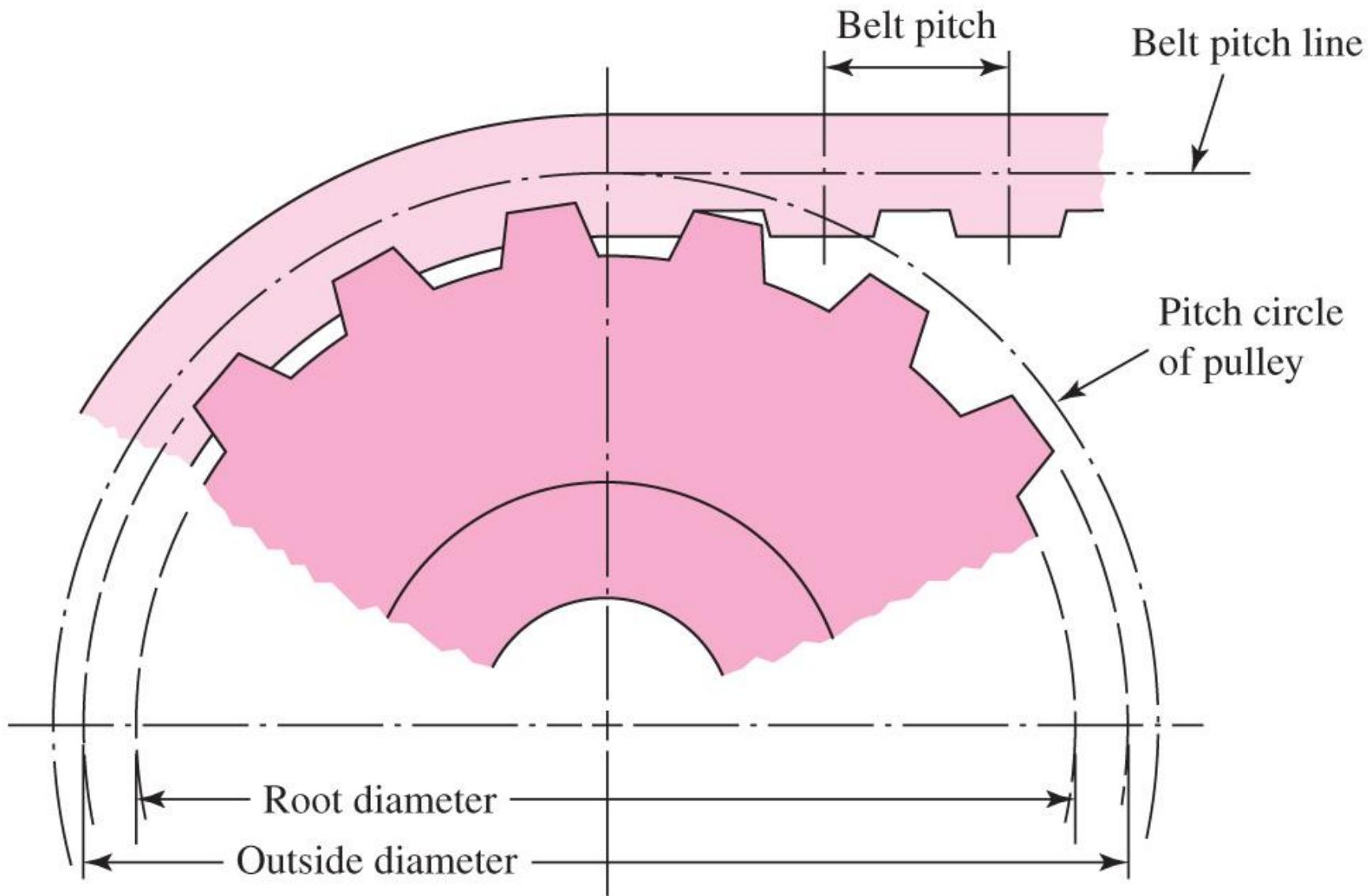


Fig.17-15

Standard Pitches of Timing Belts

Service	Designation	Pitch p , mm
Extra light	XL	5
Light	L	10
Heavy	H	12
Extra heavy	XH	22
Double extra heavy	XXH	30

Table 17–18

Roller Chain

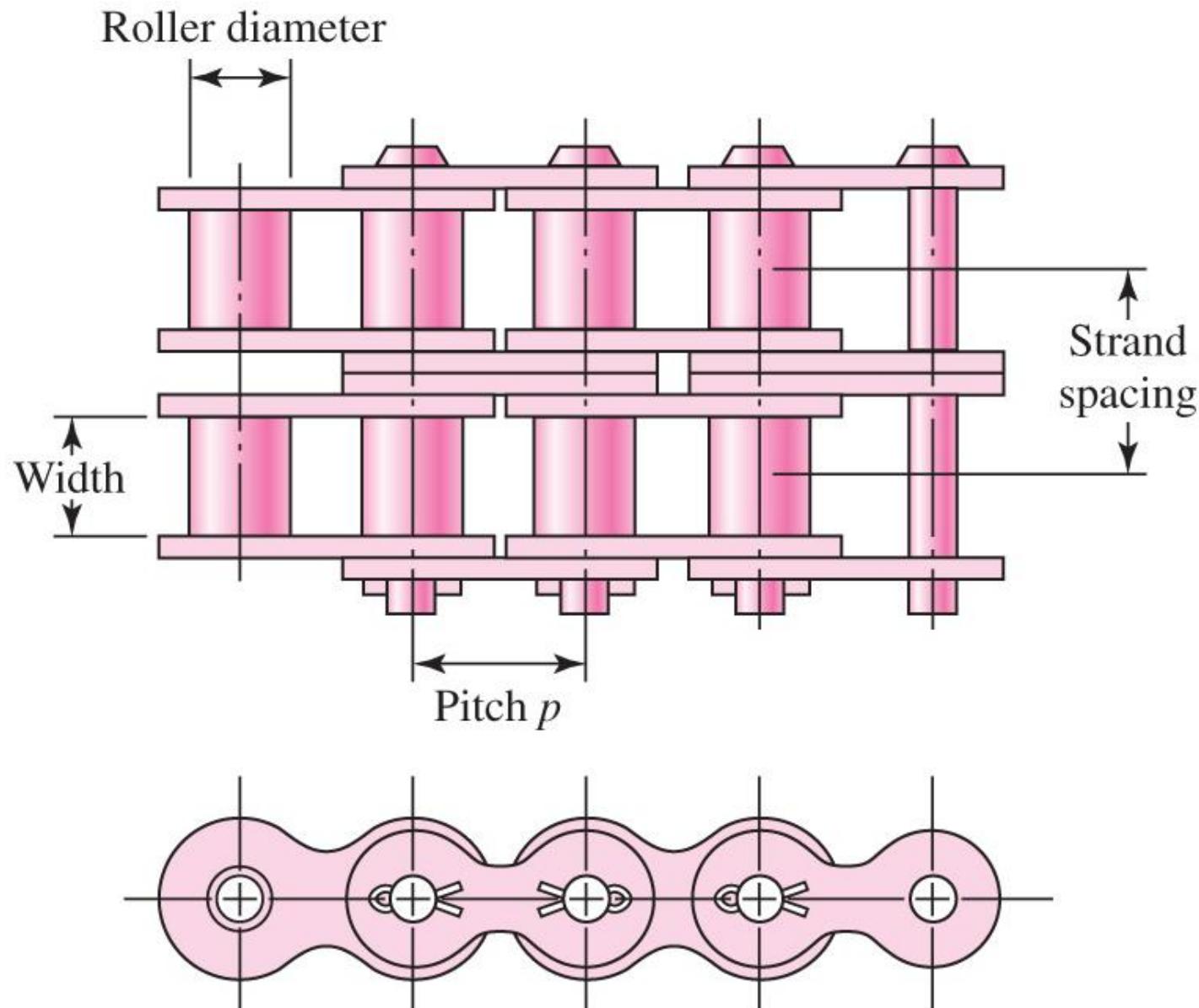


Fig.17-16

Dimensions of American Standard Roller Chains

ANSI Chain Number	Pitch, in (mm)	Width, in (mm)	Minimum Tensile Strength, lbf (N)	Average Weight, lbf/ft (N/m)	Roller Diameter, in (mm)	Multiple- Strand Spacing, in (mm)
25	0.250 (6.35)	0.125 (3.18)	780 (3 470)	0.09 (1.31)	0.130 (3.30)	0.252 (6.40)
35	0.375 (9.52)	0.188 (4.76)	1 760 (7 830)	0.21 (3.06)	0.200 (5.08)	0.399 (10.13)
41	0.500 (12.70)	0.25 (6.35)	1 500 (6 670)	0.25 (3.65)	0.306 (7.77)	— —
40	0.500 (12.70)	0.312 (7.94)	3 130 (13 920)	0.42 (6.13)	0.312 (7.92)	0.566 (14.38)
50	0.625 (15.88)	0.375 (9.52)	4 880 (21 700)	0.69 (10.1)	0.400 (10.16)	0.713 (18.11)
60	0.750 (19.05)	0.500 (12.7)	7 030 (31 300)	1.00 (14.6)	0.469 (11.91)	0.897 (22.78)
80	1.000 (25.40)	0.625 (15.88)	12 500 (55 600)	1.71 (25.0)	0.625 (15.87)	1.153 (29.29)
100	1.250 (31.75)	0.750 (19.05)	19 500 (86 700)	2.58 (37.7)	0.750 (19.05)	1.409 (35.76)
120	1.500 (38.10)	1.000 (25.40)	28 000 (124 500)	3.87 (56.5)	0.875 (22.22)	1.789 (45.44)
140	1.750 (44.45)	1.000 (25.40)	38 000 (169 000)	4.95 (72.2)	1.000 (25.40)	1.924 (48.87)
160	2.000 (50.80)	1.250 (31.75)	50 000 (222 000)	6.61 (96.5)	1.125 (28.57)	2.305 (58.55)
180	2.250 (57.15)	1.406 (35.71)	63 000 (280 000)	9.06 (132.2)	1.406 (35.71)	2.592 (65.84)
200	2.500 (63.50)	1.500 (38.10)	78 000 (347 000)	10.96 (159.9)	1.562 (39.67)	2.817 (71.55)
240	3.00 (76.70)	1.875 (47.63)	112 000 (498 000)	16.4 (239)	1.875 (47.62)	3.458 (87.83)

Table 17–19

Engagement of Chain and Sprocket

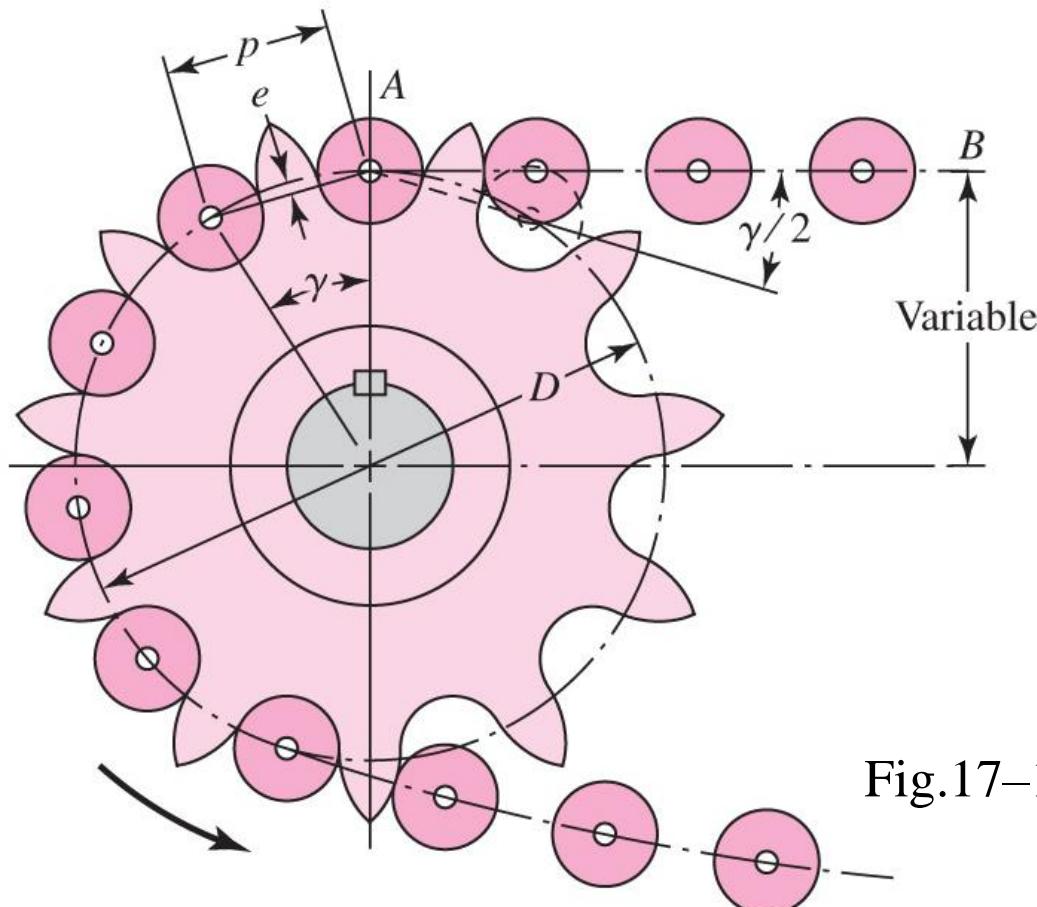


Fig.17-17

$$\sin \frac{\gamma}{2} = \frac{p/2}{D/2} \quad \text{or} \quad D = \frac{p}{\sin(\gamma/2)} \quad (a)$$

$$D = \frac{p}{\sin(180^\circ/N)} \quad (17-29)$$

Chain Velocity

$$V = \frac{Npn}{12} \text{ feet per minute} \quad (17-30)$$

where N = number of sprocket teeth

p = chain pitch, in

n = sprocket speed, rev/min

$$v_{\max} = \frac{\pi Dn}{12} = \frac{\pi np}{12 \sin(\gamma/2)} \quad (b)$$

$$d = D \cos \frac{\gamma}{2} \quad (c)$$

$$v_{\min} = \frac{\pi dn}{12} = \frac{\pi np}{12} \frac{\cos(\gamma/2)}{\sin(\gamma/2)} \quad (d)$$

Chordal Speed Variation

$$\frac{\Delta V}{V} = \frac{v_{\max} - v_{\min}}{V} = \frac{\pi}{N} \left[\frac{1}{\sin(180^\circ/N)} - \frac{1}{\tan(180^\circ/N)} \right] \quad (17-31)$$

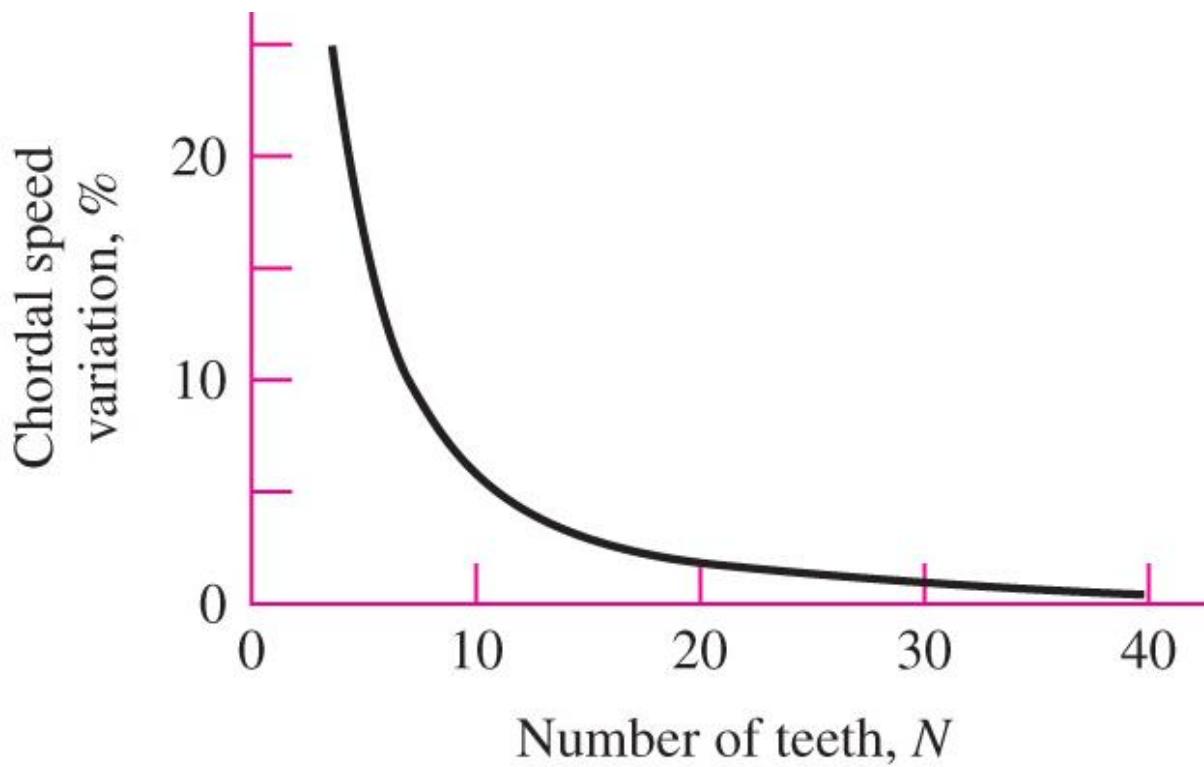


Fig.17-18

Roller Chain Rated Horsepower Capacity

Table 17-20

Rated Horsepower Capacity of Single-Strand Single-Pitch Roller Chain for a 17-Tooth Sprocket	Sprocket Speed, rev/min	ANSI Chain Number					
		25	35	40	41	50	60
50	0.05	0.16	0.37	0.20	0.72	1.24	
100	0.09	0.29	0.69	0.38	1.34	2.31	
150	0.13*	0.41*	0.99*	0.55*	1.92*	3.32	
200	0.16*	0.54*	1.29	0.71	2.50	4.30	
300	0.23	0.78	1.85	1.02	3.61	6.20	
400	0.30*	1.01*	2.40	1.32	4.67	8.03	
500	0.37	1.24	2.93	1.61	5.71	9.81	
600	0.44*	1.46*	3.45*	1.90*	6.72*	11.6	
700	0.50	1.68	3.97	2.18	7.73	13.3	
800	0.56*	1.89*	4.48*	2.46*	8.71*	15.0	
900	0.62	2.10	4.98	2.74	9.69	16.7	
1000	0.68*	2.31*	5.48	3.01	10.7	18.3	
1200	0.81	2.73	6.45	3.29	12.6	21.6	
1400	0.93*	3.13*	7.41	2.61	14.4	18.1	
1600	1.05*	3.53*	8.36	2.14	12.8	14.8	
1800	1.16	3.93	8.96	1.79	10.7	12.4	
2000	1.27*	4.32*	7.72*	1.52*	9.23*	10.6	
2500	1.56	5.28	5.51*	1.10*	6.58*	7.57	
3000	1.84	5.64	4.17	0.83	4.98	5.76	
	Type A	Type B		Type C			

Roller Chain Rated Horsepower Capacity

Table 17-20

Rated Horsepower Capacity of Single-Strand Single-Pitch Roller Chain for a 17-Tooth Sprocket
(Continued)

Sprocket Speed, rev/min	ANSI Chain Number								
	80	100	120	140	160	180	200	240	
50	Type A	2.88	5.52	9.33	14.4	20.9	28.9	38.4	61.8
		5.38	10.3	17.4	26.9	39.1	54.0	71.6	115
	Type B	7.75	14.8	25.1	38.8	56.3	77.7	103	166
		10.0	19.2	32.5	50.3	72.9	101	134	215
		14.5	27.7	46.8	72.4	105	145	193	310
		18.7	35.9	60.6	93.8	136	188	249	359
		22.9	43.9	74.1	115	166	204	222	0
		27.0	51.7	87.3	127	141	155	169	
		31.0	59.4	89.0	101	112	123	0	
		35.0	63.0	72.8	82.4	91.7	101		
		39.9	52.8	61.0	69.1	76.8	84.4		
		37.7	45.0	52.1	59.0	65.6	72.1		
		28.7	34.3	39.6	44.9	49.9	0		
		22.7	27.2	31.5	35.6	0			
1600	Type C	18.6	22.3	25.8	0				
		15.6	18.7	21.6					
		13.3	15.9	0					
		9.56	0.40						
		7.25	0						
				Type C'					

Available Sprocket Tooth Counts

Table 17-21

Single-Strand Sprocket Tooth Counts Available from One Supplier*

No.	Available Sprocket Tooth Counts
25	8-30, 32, 34, 35, 36, 40, 42, 45, 48, 54, 60, 64, 65, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
35	4-45, 48, 52, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
41	6-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
40	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
50	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
60	8-60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
80	8-60, 64, 65, 68, 70, 72, 76, 78, 80, 84, 90, 95, 96, 102, 112, 120
100	8-60, 64, 65, 67, 68, 70, 72, 74, 76, 80, 84, 90, 95, 96, 102, 112, 120
120	9-45, 46, 48, 50, 52, 54, 55, 57, 60, 64, 65, 67, 68, 70, 72, 76, 80, 84, 90, 96, 102, 112, 120
140	9-28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 48, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 96
160	8-30, 32-36, 38, 40, 45, 46, 50, 52, 53, 54, 56, 57, 60, 62, 63, 64, 65, 66, 68, 70, 72, 73, 80, 84, 96
180	13-25, 28, 35, 39, 40, 45, 54, 60
200	9-30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 54, 56, 58, 59, 60, 63, 64, 65, 68, 70, 72
240	9-30, 32, 35, 36, 40, 44, 45, 48, 52, 54, 60

Tooth Correction Factors K_1

Number of Teeth on Driving Sprocket	K_1 Pre-extreme Horsepower	K_1 Post-extreme Horsepower
11	0.62	0.52
12	0.69	0.59
13	0.75	0.67
14	0.81	0.75
15	0.87	0.83
16	0.94	0.91
17	1.00	1.00
18	1.06	1.09
19	1.13	1.18
20	1.19	1.28
N	$(N_1/17)^{1.08}$	$(N_1/17)^{1.5}$

Table 17-22

Multiple-Strand Factors K_2

Number of Strands	K_2
1	1.0
2	1.7
3	2.5
4	3.3
5	3.9
6	4.6
8	6.0

Table 17-23

Nominal Power Ratings for Chain

- From American Chain Association publication *Chains for Power Transmission and Materials Handling*
- For single-strand chain
- Nominal power, link-plate limited

$$H_1 = 0.003N_1^{1.08} n_1^{0.9} p^{(3-0.07p)} \quad \text{kW} \quad (17-32)$$

- Nominal power, roller-limited

$$H_2 = \frac{746K_r N_1^{1.5} p^{0.8}}{n_1^{1.5}} \quad \text{kW} \quad (17-33)$$

where N_1 = number of teeth in the smaller sprocket

n_1 = sprocket speed, rev/min

p = pitch of the chain, in

K_r = 29 for chain numbers 25, 35; 3.4 for chain 41;
and 17 for chains 40–240

Chain Dimensions

- Chain length in pitches

$$\frac{L}{p} \doteq \frac{2C}{p} + \frac{N_1 + N_2}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 C/p} \quad (17-34)$$

- Center-to-center distance

$$C = \frac{p}{4} \left[-A + \sqrt{A^2 - 8 \left(\frac{N_2 - N_1}{2\pi} \right)^2} \right] \quad (17-35)$$

$$A = \frac{N_1 + N_2}{2} - \frac{L}{p} \quad (17-36)$$

Chain Drive Power

- Allowable power

$$H_a = K_1 K_2 H_{\text{tab}} \quad (17-37)$$

where K_1 = correction factor for tooth number other than 17 (Table 17-22)

K_2 = strand correction (Table 17-23)

- Power that must be transmitted

$$H_d = H_{\text{nom}} K_s n_d \quad (17-38)$$

Variations in Tabulated Power Conditions

- Power ratings in Table 17–20 are for chains of 100 pitch length and 17-tooth sprocket.
- For deviations from this,

$$H_2 = 1000 \left[K_r \left(\frac{N_1}{n_1} \right)^{1.5} p^{0.8} \left(\frac{L_p}{100} \right)^{0.4} \left(\frac{15\,000}{h} \right)^{0.4} \right] \quad (17-39)$$

- From a deviation viewpoint,

$$\frac{H_2^{2.5} h}{N_1^{3.75} L_p} = \text{constant} \quad (17-40)$$

Recommended Maximum Chain Speed

$$n_1 \leq 1000 \left[\frac{82.5}{7.95^p (1.0278)^{N_1} (1.323)^{F/1000}} \right]^{1/(1.59 \log p + 1.873)} \text{ rev/min}$$

where F is the chain tension in pounds

Example 17-5

Select drive components for a 2:1 reduction, 68 kW input at 300 rev/min, moderate shock, an abnormally long 18-hour day, poor lubrication, cold temperatures, dirty surroundings, short drive $C/p = 25$.

Solution

Function: $H_{\text{nom}} = 6 \text{ kW}$, $n_1 = 300 \text{ rev/min}$, $C/p = 25$, $K_s = 1.3$

Design factor: $n_d = 1.5$

Sprocket teeth: $N_1 = 17$ teeth, $N_2 = 34$ teeth, $K_1 = 1$, $K_2 = 1, 1.7, 2.5, 3.3$

Chain number of strands:

$$H_{\text{tab}} = \frac{n_d K_s H_{\text{nom}}}{K_1 K_2} = \frac{1.5(1.3)68}{(1)K_2} = \frac{132.6}{K_2}$$

Form a table:

Number of Strands	132.6/K2 (Table 17-23)	Chain Number (Table 17-20)	Lubrication Type
1	$132.6/1 = 132.6$	200	C'
2	$132.6/1.7 = 78$	160	C
3	$132/2.5 = 53.04$	140	B
4	$132/3.3 = 40.18$	140	B

Example 17-5

3 strands of number 140 chain (H_{tab} is 54 kW).

Number of pitches in the chain:

$$\begin{aligned}\frac{L}{p} &= \frac{2C}{p} + \frac{N_1 + N_2}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 C/p} \\ &= 2(25) + \frac{17 + 34}{2} + \frac{(34 - 17)^2}{4\pi^2(25)} = 75.79 \text{ pitches}\end{aligned}$$

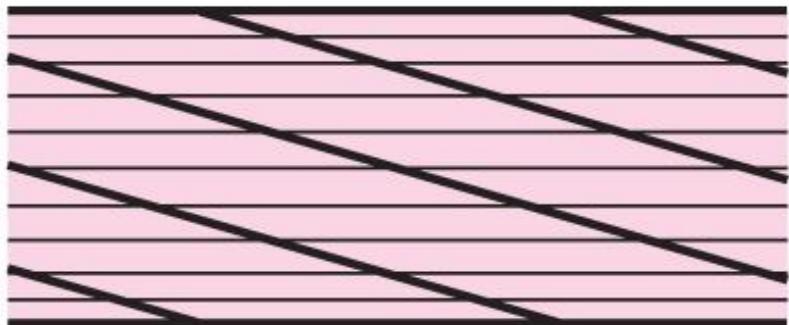
Use 76 pitches. Then $L/p = 76$.

Identify the center-to-center distance: From Eqs. (17-35) and (17-36),

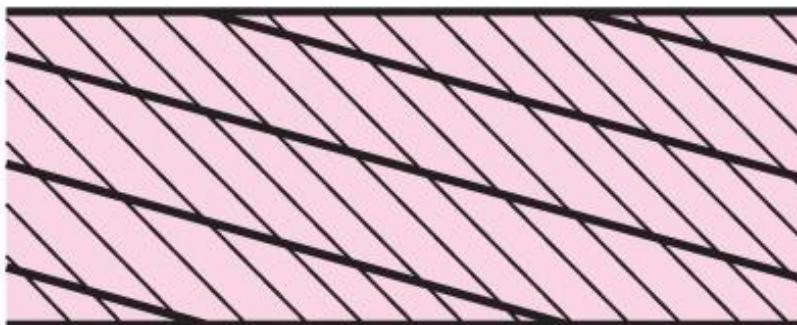
$$\begin{aligned}A &= \frac{N_1 + N_2}{2} - \frac{L}{p} = \frac{17 + 34}{2} - 76 = -50.5 \\ C &= \frac{p}{4} \left[-A + \sqrt{A^2 - 8 \left(\frac{N_2 - N_1}{2\pi} \right)^2} \right]\end{aligned}$$

Example 17–5

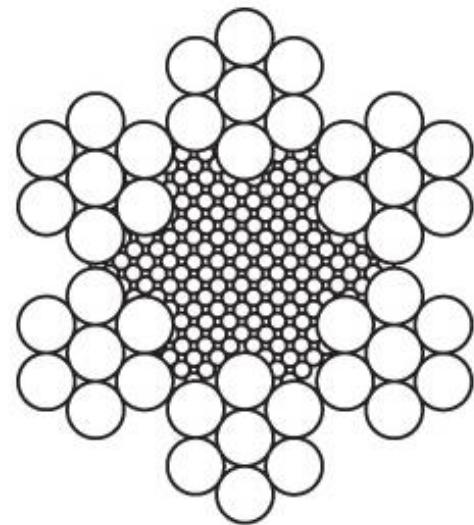
$$= \frac{p}{4} \left[50.5 + \sqrt{50.5^2 - 8 \left(\frac{34 - 17}{2\pi} \right)^2} \right] = 25.104p$$


For a 140 chain, $p = 44.45$ mm. Thus,

$$C = 25.104p = 25.104(44.45) = 1115.9 \text{ mm}$$


Lubrication: Type B

Comment: This is operating on the pre-extreme portion of the power, so durability estimates other than 15 000 h are not available. Given the poor operating conditions, life will be much shorter.


Types of Wire Rope

(a) Regular lay

(b) Lang lay

(c) Section of
 6×7 rope

Fig.17-19

Stress in Wire Rope

$$M = \frac{EI}{\rho} \quad \text{and} \quad M = \frac{\sigma I}{c} \quad (a)$$

$$\sigma = \frac{Ec}{\rho} \quad (b)$$
$$c = d_w/2$$

where d_w is the wire diameter

$$\sigma = E_r \frac{d_w}{D} \quad (c)$$

where E_r is the *modulus of elasticity of the rope*, not the wire

Wire-Rope Data

Rope	Weight per meter, $(10^{-3})N$	Minimum Sheave Diameter, mm	Standard Sizes d , mm	Material	Size of Outer Wires	Modulus of Elasticity,* GPa	Strength, [†] MPa
6 × 7 haulage	$33.92d^2$	$42d$	6–38	Monitor steel	$d/9$	96	690
				Plow steel	$d/9$	96	608
				Mild plow steel	$d/9$	96	524
6 × 19 standard hoisting	$36.18d^2$	$26d$ – $34d$	6–70	Monitor steel	$d/13$ – $d/16$	83	730
				Plow steel	$d/13$ – $d/16$	83	640
				Mild plow steel	$d/13$ – $d/16$	83	550
6 × 37 special flexible	$35.05d^2$	$18d$	6–90	Monitor steel	$d/22$	76	690
				Plow steel	$d/22$	76	608
8 × 19 extra flexible	$32.79d^2$	$21d$ – $26d$	6–38	Monitor steel	$d/15$ – $d/19$	69	634
				Plow steel	$d/15$ – $d/19$	69	550
7 × 7 aircraft	$38.45d^2$	—	1.6–10	Corrosion-resistant steel	—	—	850
				Carbon steel	—	—	850
7 × 9 aircraft	$39.58d^2$	—	3–36	Corrosion-resistant steel	—	—	930
				Carbon steel	—	—	986
19-wire aircraft	$48.62d^2$	—	0.8–8	Corrosion-resistant steel	—	—	1137
				Carbon steel	—	—	1137

*The modulus of elasticity is only approximate; it is affected by the loads on the rope and, in general, increases with the life of the rope.

[†]The strength is based on the nominal area of the rope. The figures given are only approximate and are based on 25-mm rope sizes and 6-mm aircraft-cable sizes.

Table 17–24

Equivalent Bending Load

- Wire rope tension giving same tensile stress as sheave bending is called *equivalent bending load* F_b

$$F_b = \sigma A_m = \frac{E_r d_w A_m}{D} \quad (17-41)$$

Percent Strength Loss

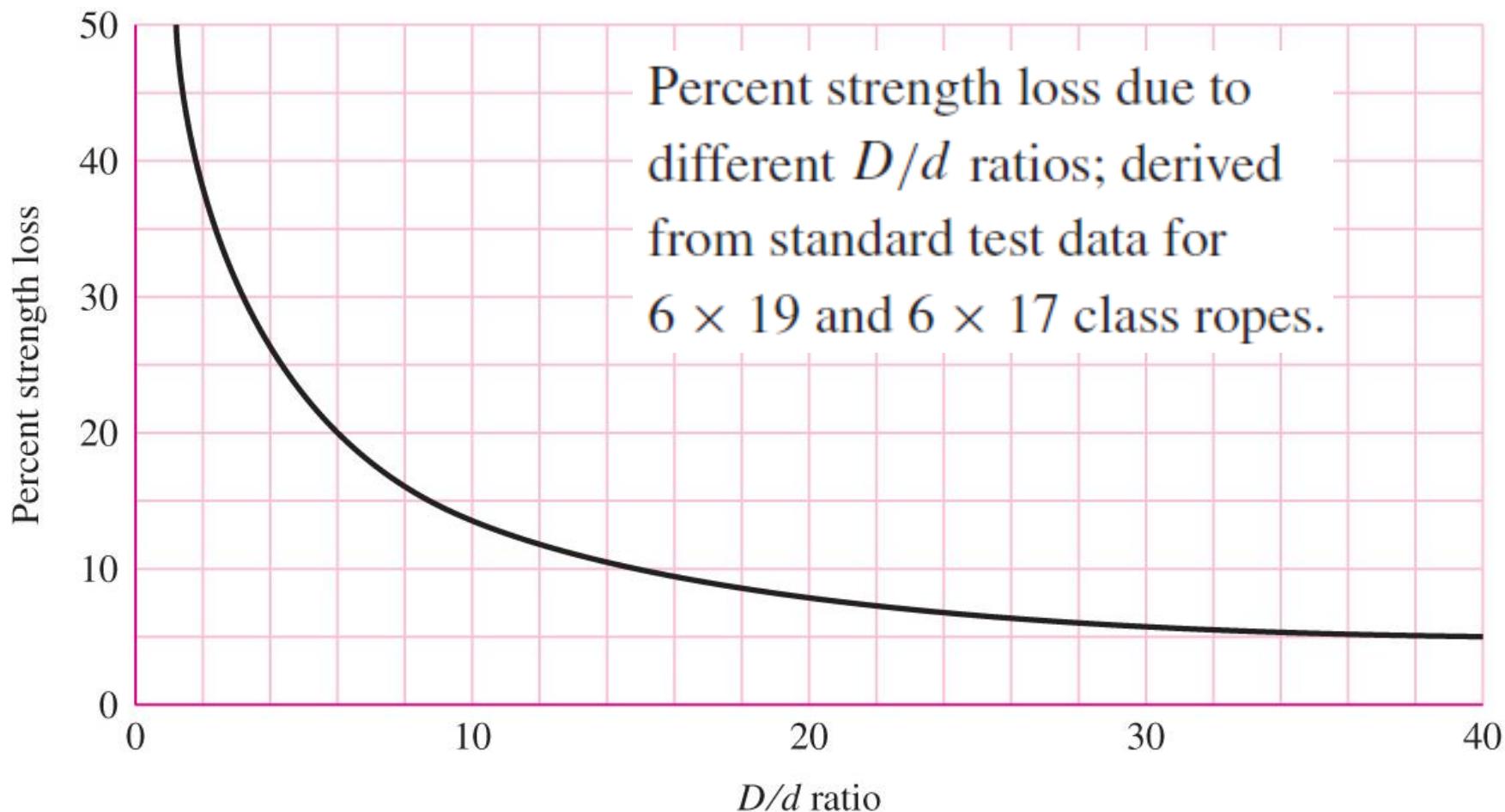


Fig.17-20

Minimum Factors of Safety for Wire Rope

Track cables	3.2	Passenger elevators, m/s:	
Guys	3.5	0.25	7.60
Mine shafts, m:		1.52	9.20
Up to 152.5	8.0	4.06	11.25
305–610	7.0	6.10	11.80
610–915	6.0	7.62	11.90
Over 915	5.0	Freight elevators, m/s:	
Hoisting	5.0	0.25	6.65
Haulage	6.0	1.52	8.20
Cranes and derricks	6.0	4.06	10.00
Electric hoists	7.0	6.10	10.50
Hand elevators	5.0	7.62	10.55
Private elevators	7.5	Powered dumbwaiters, m/s:	
Hand dumbwaiter	4.5	0.25	4.8
Grain elevators	7.5	1.52	6.6
		4.06	8.0

*Use of these factors does not preclude a fatigue failure.

Table 17–25

Bearing Pressure of Wire Rope in Sheave Groove

$$p = \frac{2F}{dD} \quad (17-42)$$

where F = tensile force on rope

d = rope diameter

D = sheave diameter

Maximum Allowable Bearing Pressures (in psi)

Rope	Sheave Material				
	Wood ^a	Cast Iron ^b	Cast Steel ^c	Chilled Cast Irons ^d	Manganese Steel ^e
Regular lay:					
6 × 7	1.0	2.1	3.8	4.5	10.1
6 × 19	1.7	3.3	6.2	7.6	16.6
6 × 37	2.1	4.0	7.4	9.1	20.7
8 × 19	2.4	4.7	8.7	10.7	24.1
Lang lay:					
6 × 7	1.1	2.4	4.1	4.9	11.4
6 × 19	1.9	3.8	6.9	8.3	19.0
6 × 37	2.3	4.6	8.1	10.0	22.8

^aOn end grain of beech, hickory, or gum.

^bFor H_B (min.) = 125.

^c30–40 carbon; H_B (min.) = 160.

^dUse only with uniform surface hardness.

^eFor high speeds with balanced sheaves having ground surfaces.

Table 17–26

Relation Between Fatigue Life of Wire Rope and Sheave Pressure

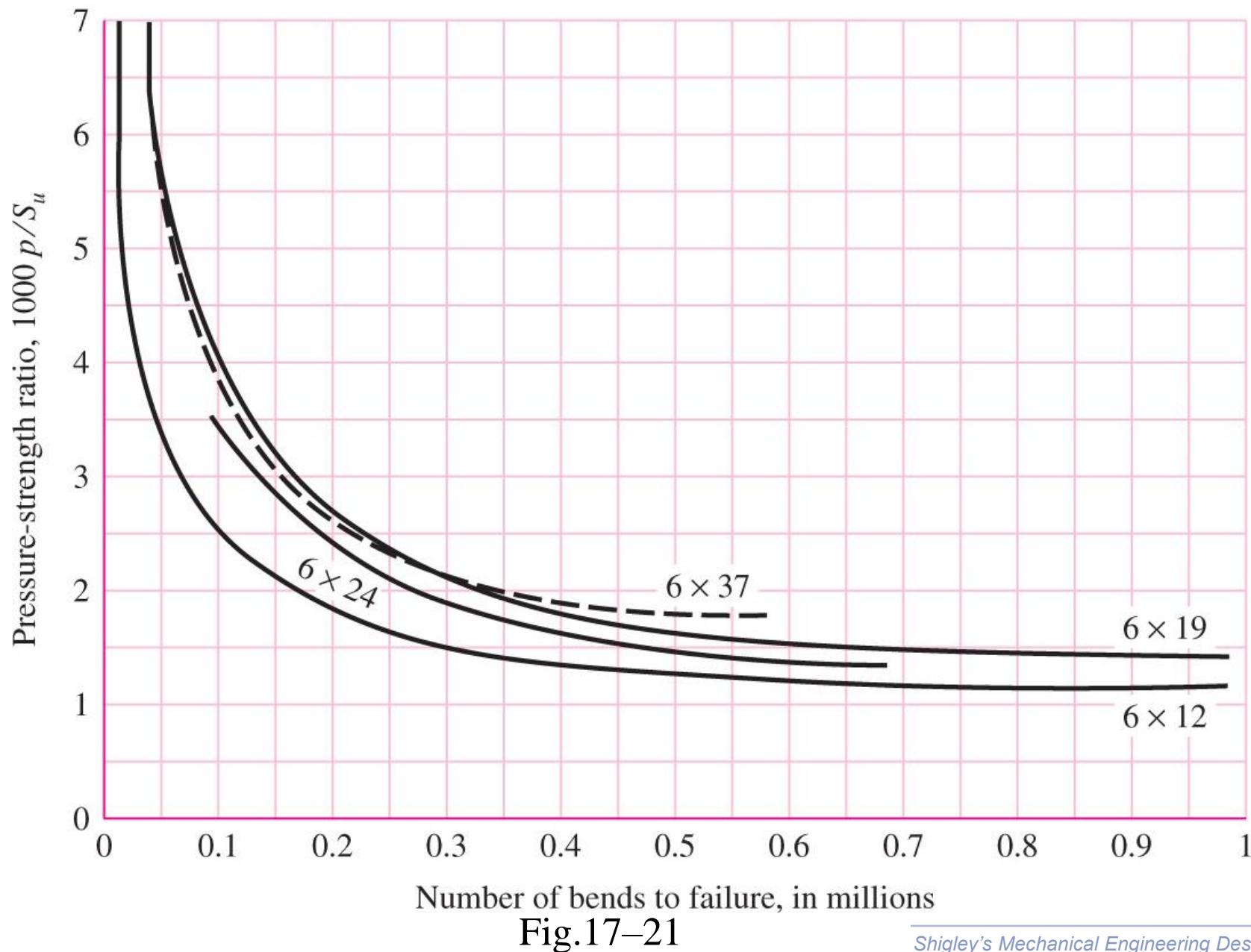


Fig.17-21

Fatigue of Wire Rope

- Fig. 17–21 does not preclude failure by fatigue or wear
- It does show long life if p/S_u is less than 0.001.
- Substituting this ratio in Eq. (17–42),

$$S_u = \frac{2000F}{dD} \quad (17-43)$$

- Dividing both sides of Eq. (17–42) by S_u and solving for F , gives allowable fatigue tension,

$$F_f = \frac{(p/S_u)S_u d D}{2} \quad (17-44)$$

- Factor of safety for fatigue is

$$n_f = \frac{F_f - F_b}{F_t} \quad (17-45)$$

Factor of Safety for Static Loading

- The factor of safety for static loading is

$$n_s = \frac{F_u - F_b}{F_t} \quad (17-46)$$

Typical Strength of Individual Wires

Improved plow steel (monitor)	$240 < S_u < 280$ kpsi
Plow steel	$210 < S_u < 240$ kpsi
Mild plow steel	$180 < S_u < 210$ kpsi

Service-Life Curve Based on Bending and Tensile Stresses

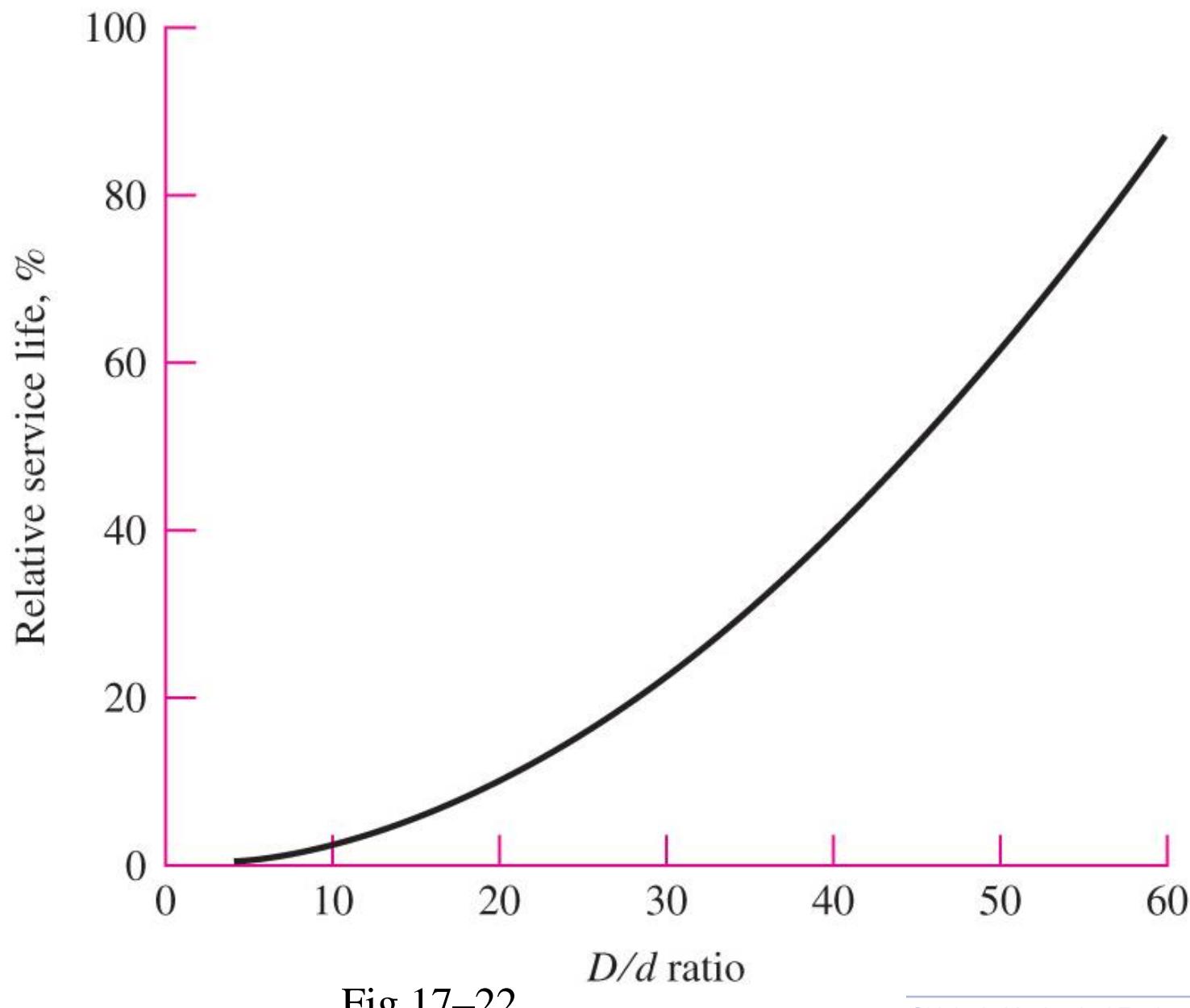


Fig.17-22

Some Wire-Rope Properties

Table 17-27

Some Useful Properties of 6×7 , 6×19 , and 6×37 Wire Ropes

Wire Rope	Weight per meter $w, (10^{-3}) \text{ N/m}$	Weight per meter Including Core $w, (10^{-3}) \text{ N/m}$	Minimum Sheave Diameter $D, \text{ mm}$	Better Sheave Diameter $D, \text{ mm}$	Diameter of Wires $d_w, \text{ mm}$	Area of Metal $A_m, \text{ mm}^2$	Rope Young's Modulus $E_r, \text{ GPa}$
6×7	$33.92d^2$		$42d$	$72d$	$0.111d$	$0.38d^2$	13×10^6
6×19	$36.18d^2$	$39.8d^2$	$30d$	$45d$	$0.067d$	$0.40d^2$	12×10^6
6×37	$35.05d^2$	$38.67d^2$	$18d$	$27d$	$0.048d$	$0.40d^2$	12×10^6

Working Equations for Mine-Hoist Problem

$$F_t = \left(\frac{W}{m} + wl \right) \left(1 + \frac{a}{g} \right) \quad (17-47)$$

where W = weight at the end of the rope (cage and load), lbf

m = number of wire ropes supporting the load

w = weight/foot of the wire rope, lbf/ft

l = maximum suspended length of rope, ft

a = maximum acceleration/deceleration experienced, ft/s^2

g = acceleration of gravity, ft/s^2

Working Equations for Mine-Hoist Problem

$$F_f = \frac{(p/S_u)S_u D d}{2} \quad (17-44)$$

where (p/S_u) = specified life, from Fig. 17-21

S_u = ultimate tensile strength of the wires, psi

D = sheave or winch drum diameter, in

d = nominal wire rope size, in

Working Equations for Mine-Hoist Problem

$$F_b = \frac{E_r d_w A_m}{D} \quad (17-41)$$

where E_r = Young's modulus for the wire rope, Table 17-24 or 17-27, psi

d_w = diameter of the wires, in

A_m = metal cross-sectional area, Table 17-27, in²

D = sheave or winch drum diameter, in

$$n_s = \frac{F_u - F_b}{F_t} \quad (17-46)$$

$$n_f = \frac{F_f - F_b}{F_t} \quad (17-45)$$

Example 17–6

A temporary construction elevator is to be designed to carry workers and materials to a height of 27 m. The maximum estimated load to be hoisted is 22 kN at a velocity not to exceed 0.6 m/s. For minimum sheave diameters and acceleration of 1.2 m/s², specify the number of ropes required if the 25-mm plow-steel 6 × 19 hoisting strand is used.

Since this is a design task, a decision set is useful.

A priori decisions:

- Function: load, height, acceleration, velocity, life goal
- Design Factor: n_d
- Material: IPS, PS, MPS or other
- Rope: Lay, number of strands, number of wires per strand

Example 17–6

Decision variables:

- Nominal wire size: d
- Number of load-supporting wires: m

From experience with Prob. 17–29, a 25-mm diameter rope is not likely to have much of a life, so approach the problem with the d and m decisions open.

Function: 22 kN load, 27 m lift, acceleration = 1.2 m/s², velocity = 0.6 m/s, life goal = 10^5 cycles

Design Factor: $n_d = 2$

Material: IPS

Rope: Regular lay, 25-mm plow-steel 6 × 19 hoisting

Example 17–6

Design variables

Choose 750 mm D_{min} . Table 17–27: $w = 0.0362d^2$ N/m

$$wl = 0.0362d^2 (27) = 0.253d^2 \text{ N, ea.}$$

Eq. (17–46):

$$\begin{aligned} F_t &= \left(\frac{W}{m} + wl \right) \left(1 + \frac{a}{g} \right) = \left(\frac{22\,000}{m} + 0.253d^2 \right) \left(1 + \frac{1.2}{9.81} \right) \\ &= \frac{24\,691}{m} + 0.284d^2 \text{ N, each wire} \end{aligned}$$

Eq. (17–47):

$$F_f = \frac{(p/S_u)S_u D d}{2}$$

From Fig. 17–21 for 10^5 cycles $p/S_u = 0.004$; $S_u = 1655$ MPa, based on metal area.

Example 17–6

$$F_f = \frac{0.004(1655)(750)d}{2} = 2482d \text{ N} \quad \text{each wire}$$

Eq. (17–48) and Table 17–27:

$$F_b = \frac{E_w d_w A_m}{D} = \frac{83\,000(0.067d)(0.4d^2)}{750} = 2.97d^3 \text{ N, each wire}$$

Eq. (17–45):

$$n_f = \frac{F_f - F_b}{F_t} = \frac{2482d - 2.97d^3}{(24\,691/m) + 0.284d^2}$$

We could use a computer program to build a table similar to that of Ex. 17–6. Alternatively, we could recognize that $0.284d^2$ is small compared to $24\,691/m$, and therefore eliminate the $0.284d^2$ term.

$$n_f \doteq \frac{2482d - 2.97d^3}{24\,691/m} = \frac{m}{24\,691}(2482d - 2.97d^3)$$

Maximize n_f ,

$$\frac{\partial n_f}{\partial d} = 0 = \frac{m}{24\,691}[2482 - 3(2.97)d^2]$$

Example 17–6

From which

$$d^* = \sqrt{\frac{2482}{8.91}} = 16.7 \text{ mm}$$

Back-substituting

$$n_f = \frac{m}{24691} [2482(16.7) - 2.97(16.7)^3] =$$

Thus $n_f = 1.12, 2.24, 3.35, 4.47$ for $m = 1, 2, 3, 4$ respectively. If we choose $d = 1.25$ mm, then $m = 2$.

$$n_f = \frac{2482(12.5) - 2.97(12.5)^3}{(24691/2) + 0.284(12.5)^2} = 2.036$$

This slightly less than $n_d = 2$

Decisions #1: $d = 12.5$ mm

Example 17–6

Answer

Decisions #2: $m = 2$ ropes supporting load. Rope should be inspected weekly for any signs of fatigue (broken outer wires).

Comment: Table 17–25 gives n for freight elevators in terms of velocity.

$$F_u = (S_u)_{\text{nom}} A_{\text{nom}} = 730 \left(\frac{\pi d^2}{4} \right) = 573.3d^2 \text{ N,} \quad \text{each wire}$$

$$n = \frac{F_u}{F_t} = \frac{573.3(12.5)^2}{(24\,691/2) + 2.97(12.5)^2} = 7.0$$

By comparison, interpolation for 0.6 m/s gives 7.08-close. The category of construction hoists is not addressed in Table 17–25. We should investigate this before proceeding further.

Flexible Shaft Configurations

Fig.17-24b

Flexible Shaft Construction Details

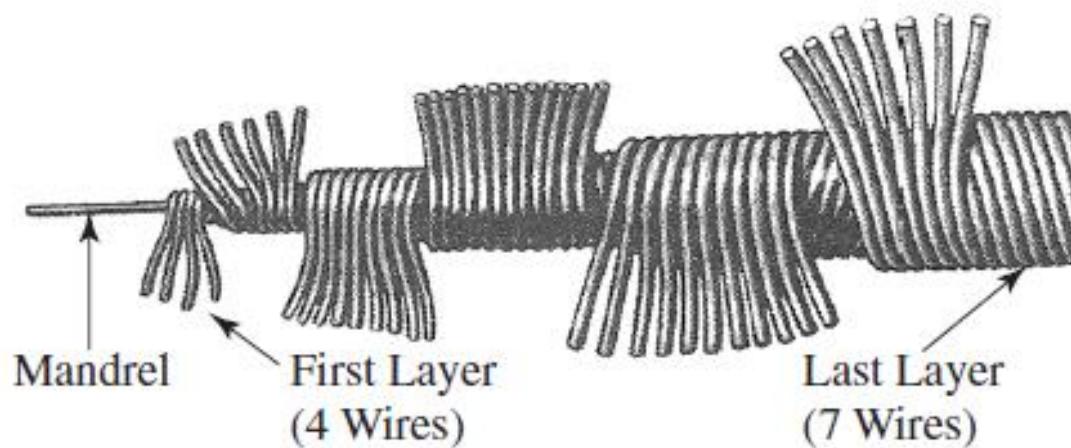


Fig.17-24a