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Chapter4
POSITION ANALYSIS
Theory is the distilled essence of practice
RANKINE

4.0 INTRODUCTION View the lecture video (49:48)†

Once a tentative mechanism design has been synthesized, it must then be analyzed.  A 
principal goal of kinematic analysis is to determine the accelerations of all the moving 
parts in the assembly.  Dynamic forces are proportional to acceleration, from Newton’s  
second law.  We need to know the dynamic forces in order to calculate the stresses in the 
components.  The design engineer must ensure that the proposed mechanism or machine 
will not fail under its operating conditions. Thus the stresses in the materials must be 
kept well below allowable levels.  To calculate the stresses, we need to know the static 
and dynamic forces on the parts.  To calculate the dynamic forces, we need to know the 
accelerations.  In order to calculate the accelerations, we must first find the positions of 
all the links or elements in the mechanism for each increment of input motion, and then 
differentiate the position equations versus time to find velocities, and then differentiate 
again to obtain the expressions for acceleration.  For example, in a simple Grashof fourbar 
linkage, we would probably want to calculate the positions, velocities, and accelerations 
of the output links (coupler and rocker) for perhaps every two degrees (180 positions) of 
input crank position for one revolution of the crank.

This can be done by any of several methods.  We could use a graphical approach
to determine the position, velocity, and acceleration of the output links for all 180 posi-
tions of interest, or we could derive the general equations of motion for any position, 
differentiate for velocity and acceleration, and then solve these analytical expressions
for our 180 (or more) crank locations.  A computer will make this latter task much more 
palatable.  If we choose to use the graphical approach to analysis, we will have to do an in-
dependent graphical solution for each of the positions of interest.  None of the information 
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obtained graphically for the first position will be applicable to the second position or to 
any others.  In contrast, once the analytical solution is derived for a particular mechanism, 
it can be quickly solved (with a computer) for all positions.  If you want information for 
more than 180 positions, it only means you will have to wait longer for the computer to 
generate those data. The derived equations are the same.  So, have another cup of coffee 
while the computer crunches the numbers!  In this chapter, we will present and derive 
analytical solutions to the position analysis problem for various planar mechanisms.  We 
will also discuss graphical solutions which are useful for checking your analytical results.  
In Chapters 6 and 7 we will do the same for velocity and acceleration analysis of planar 
mechanisms.

It is interesting to note that graphical position analysis of linkages is a truly trivial 
exercise, while the algebraic approach to position analysis is much more complicated.  
If you can draw the linkage to scale, you have then solved the position analysis problem 
graphically.  It only remains to measure the link angles on the scale drawing to protractor 
accuracy.  But the converse is true for velocity and especially for acceleration analysis.  
Analytical solutions for these are less complicated to derive than is the analytical position 
solution.  However, graphical velocity and acceleration analysis becomes quite complex 
and difficult.  Moreover, the graphical vector diagrams must be redone de novo (meaning 
literally from new) for each of the linkage positions of interest.  This is a very tedious 
exercise and was the only practical method available in the days B.C. (Before Computer), 
not so long ago.  The proliferation of inexpensive microcomputers in recent years has 
truly revolutionized the practice of engineering.  As a graduate engineer, you will never 
be far from a computer of sufficient power to solve this type of problem and may even 
have one in your pocket.  Thus, in this text we will emphasize analytical solutions which 
are easily solved with a microcomputer.  The computer programs provided with this text 
use the same analytical techniques as derived in the text.

Geez Joe, - now I wish I took that programming course!

Computer Skills
Mandatory

Apply Within

ENGINEERS WANTED
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4.1 COORDINATE SYSTEMS
Coordinate systems and reference frames exist for the convenience of the engineer who 
defines them.  In the next chapters we will provide our systems with multiple coordinate 
systems as needed, to aid in understanding and solving the problem.  We will denote one 
of these as the global or absolute coordinate system, and the others will be local coordi-
nate systems within the global framework.  The global system is often taken to be attached 
to Mother Earth, though it could as well be attached to another ground plane such as the 
frame of an automobile.  If our goal is to analyze the motion of a windshield wiper blade, 
we may not care to include the gross motion of the automobile in the analysis.  In that case 
a global coordinate system (GCS—denoted as X,Y) attached to the car would be useful, 
and we could consider it to be an absolute coordinate system.  Even if we use the earth as 
an absolute reference frame, we must realize that it is not stationary either, and as such is 
not very useful as a reference frame for a space probe.  Though we will speak of absolute 
positions, velocities, and accelerations, keep in mind that ultimately, until we discover 
some stationary point in the universe, all motions are really relative.  The term inertial 
reference frame is used to denote a system which itself has no acceleration. All angles 
in this text will be measured according to the right-hand rule.  That is, counterclockwise 
angles, angular velocities, and angular accelerations are positive in sign.

Local coordinate systems are typically attached to a link at some point of interest.  
This might be a pin joint, a center of gravity, or a line of centers of a link.  These local 
coordinate systems may be either rotating or nonrotating as we desire.  If we want to 
measure the angle of a link as it rotates in the global system, we probably will want to 
attach a local nonrotating coordinate system (LNCS—denoted as x, y) to some point on 
the link (say a pin joint).  This nonrotating system will move with its origin on the link 
but remains always parallel to the global system.  If we want to measure some parameters 
within a link, independent of its rotation, then we will want to construct a local rotating  
coordinate system (LRCS—denoted as x’, y’) along some line on the link.  This system 
will both move and rotate with the link in the global system.  Most often we will need to 
have both types of local coordinate systems (LNCS and LRCS) on our moving links to 
do a complete analysis.  Obviously we must define the angles and/or positions of these 
moving, local coordinate systems in the global system at all positions of interest.

4.2 POSITION AND DISPLACEMENT

Position
The position of a point in the plane can be defined by the use of a position vector as 
shown in Figure 4-1.  The choice of reference axes is arbitrary and is selected to suit the 
observer.  Figure 4-1a shows a point in the plane defined in a global coordinate system 
and Figure 4-1b shows the same point defined in a local coordinate system with its origin 
coincident with the global system  A two-dimensional vector has two attributes, which 
can be expressed in either polar or cartesian coordinates.  The polar form provides the 
magnitude and the angle of the vector.  The cartesian form provides the X and Y compo-
nents of the vector.  Each form is directly convertible into the other by*

* Note that a two-argument 
arctangent function must 
be used to obtain angles 
in all four quadrants.  The 
single-argument arctangent 
function found in most 
calculators and computer 
programming languages 
returns angle values in only 
the first and fourth quad-
rants.  You can calculate 
your own two-argument 
arctangent function very 
easily by testing the sign of 
the  x component of the ar-
guments and,  if x is minus, 
adding � radians or 180� to 
the result obtained from the 
available single-argument 
arctangent function.  

For example (in Fortran):

FUNCTION Atan2( x, y )
IF x <> 0 THEN Q = y / x
Temp = ATAN(Q)
IF x < 0 THEN 
 Atan2 = Temp + 3.14159
ELSE
 Atan2 = Temp
END IF
RETURN
END

The above code assumes 
that the language used has 
a built-in single-argument 
arctangent function called 
ATAN(x) which returns an 
angle between ± �/2 radians 
when given a signed argu-
ment representing the value 
of the tangent of that angle.



POSITION ANALYSIS 181

4

= +

θ =
⎛
⎝⎜

⎞
⎠⎟

the Pythagorean theorem:

and trigonometry: (4.0a)

arctan

2 2R R R

R
R

A X Y

Y

X

Equations 4.0a are shown in global coordinates but could as well be expressed in local 
coordinates.

Coordinate Transformation
It is often necessary to transform the coordinates of a point defined in one system to co-
ordinates in another.  If the system’s origins are coincident as shown in Figure 4-1b and 
the required transformation is a rotation, it can be expressed in terms of the original coor-
dinates and the signed angle � between the coordinate systems.  If the position of point A 
in Figure 4-1b is expressed in the local xy system as Rx, Ry, and it is desired to transform 
its coordinates to RX, RY in the global XY system, the equations are:

= δ − δ

= δ + δ

cos sin
(4.0b)

sin cos

R R R

R R R
X x y

Y x y

Displacement
Displacement of a point is the change in its position and can be defined as the straight-line 
distance between the initial and final position of a point which has moved in the reference 
frame.  Note that displacement is not necessarily the same as the path length which the 
point may have traveled to get from its initial to final position.  Figure 4-2a shows a point 
in two positions, A and B.  The curved line depicts the path along which the point traveled. 
The position vector RBA defines the displacement of the point B with respect to point A.  

FIGURE 4-1
A position vector in the plane - expressed in both global and local coordinates

(a )  Global coordinate system XY (b )  Local coordinate system xy
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Figure 4-2b defines this situation more rigorously and with respect to a reference frame 
XY.  The notation R will be used to denote a position vector.  The vectors RA and RB de-
fine, respectively, the absolute positions of points A and B with respect to this  global XY 
reference frame.  The vector RBA denotes the difference in position, or the displacement, 
between A and B.  This can be expressed as the position difference equation:

= −R R R (4.1a)BA B A

This expression is read: The position of B with respect to A is equal to the (absolute) 
position of B minus the (absolute) position of A, where absolute means with respect to the 
origin of the global reference frame.  This expression could also be written as:

= −R R R (4.1b)BA BO AO

with the second subscript O denoting the origin of the XY reference frame.  When a 
position vector is rooted at the origin of the reference frame, it is customary to omit the 
second subscript.  It is understood, in its absence, to be the origin.  Also, a vector referred 
to the origin, such as RA, is often called an absolute vector.  This means that it is taken 
with respect to a reference frame which is assumed to be stationary, e.g., the ground.  It 
is important to realize, however, that the ground is usually also in motion in some larger 
frame of reference.  Figure 4-2c shows a graphical solution to equations 4.1.

FIGURE 4-2
Position difference and relative position
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In our example of Figure 4-2, we have tacitly assumed so far that this point, which is 
first located at A and later at B, is, in fact, the same particle, moving within the reference 
frame. It could be, for example, one automobile moving along the road from A to B.  With 
that assumption, it is conventional to refer to the vector RBA as a position difference.  
There is, however, another situation which leads to the same diagram and equation but 
needs a different name.  Assume now that points A and B in Figure 4-2b represent not 
the same particle but two independent particles moving in the same reference frame, as 
perhaps two automobiles traveling on the same road.  The vector equations 4.1 and the 
diagram in Figure 4-2b still are valid, but we now refer to RBA as a relative position, or 
apparent position.   We will use the relative position term here.  A more formal way to 
distinguish between these two cases is as follows:

CASE 1:  One body in two successive positions  => position difference

CASE 2:  Two bodies simultaneously in separate positions => relative position

This may seem a rather fine point to distinguish, but the distinction will prove useful, 
and the reasons for it more clear, when we analyze velocities and accelerations, especially 
when we encounter (Case 2 type) situations in which the two bodies occupy the same 
position at the same time  but have different motions.

4.3 TRANSLATION, ROTATION, AND COMPLEX MOTION

So far we have been dealing with a particle, or point, in plane motion.  It is more interest-
ing to consider the motion of a rigid body, or link, which involves both the position of a 
point on the link and the orientation of a line on the link, sometimes called the POSE of 
the link.  Figure 4-3a shows a link AB denoted by a position vector RBA.  An axis system 
has been set up at the root of the vector, at point A, for convenience.

Translation
Figure 4-3b shows link AB moved to a new position A’B’ by translation through the dis-
placement AA’ or BB’ which are equal, i.e., A A B BR R=′ ′ .

A definition of translation is:
All points on the body have the same displacement.

As a result the link retains its angular orientation.  Note that the translation need not 
be along a straight path.  The curved lines from A to A’ and B to B’ are the curvilinear 
translation path of the link.  There is no rotation of the link if these paths are parallel.  If 
the path happens to be straight, then it will be the special case of rectilinear translation, 
and the path and the displacement will be the same.

Rotation
Figure 4-3c shows the same link AB moved from its original position at the origin by 
rotation through an angle.  Point A remains at the origin, but B moves through the position 
difference vector  = −′ ′R R RB B B A BA .
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A definition of rotation is:
Different points in the body undergo different displacements and thus there is a displace-
ment difference between any two points chosen.

The link now changes its angular orientation in the reference frame, and all points have 
different displacements.

Complex Motion
The general case of complex motion is the sum of the translation and rotation compo-
nents.  Figure 4-3d shows the same link moved through both a translation and a rotation.  
Note  that the order in which these two components are added is immaterial.  The resulting 
complex displacement will be the same whether you first rotate and then translate or vice 
versa.  This is so because the two factors are independent.  The total complex displace-
ment of point B is defined by the following expression:

(a )

FIGURE 4-3
Translation, rotation, and complex motion
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Total displacement  = translation component + rotation component  
= +′′ ′ ′′ ′R R R (4.1c)B B B B B B

The new absolute position of point B referred to the origin at A is:
= +′′ ′ ′′ ′R R R (4.1d)B A A A B A

Note that the above two formulas are merely applications of the position difference 
equation 4.1a.  See also Section 2.2 for definitions and discussion of rotation, translation,
and complex motion.  These motion states can be expressed as the following theorems.

Theorems
Euler’s theorem: 
The general displacement of a rigid body with one point fixed is a rotation about some 
axis.  

This applies to pure rotation as defined above and in Section 2.2.  Chasles (1793-1880) 
provided a corollary to Euler’s theorem now known as: 

Chasles’ theorem:[6] *

Any displacement of a rigid body is equivalent to the sum of a translation of any one point 
on that body and a rotation of the body about an axis through that point.

This describes complex motion as defined above and in Section 2.2.  Note that equation 
4.1c is an expression of Chasles’ theorem.

4.4 GRAPHICAL POSITION ANALYSIS OF LINKAGES

For any one-DOF linkage, such as a fourbar, only one parameter is needed to completely 
define the positions of all the links.  The parameter usually chosen is the angle of the input 
link.  This is shown as �2 in Figure 4-4.  We want to find �3 and��4.  The link lengths are 
known.  Note that we will consistently number the ground link as 1 and the driver link as 
2 in these examples.

The graphical analysis of this problem is trivial and can be done using only high-
school geometry.  If we draw the linkage carefully to scale with rule, compass, and pro-
tractor in a particular position (given �2), then it is only necessary to measure the angles 
of links 3 and 4 with the protractor.  Note that all link angles are measured from a positive 
X axis.  In Figure 4-4, a local xy axis system, parallel to the global XY system, has been 
created at point A to measure �3.  The accuracy of this graphical solution will be limited 
by our care and drafting ability and by the crudity of the protractor used.  Nevertheless, a 
very rapid approximate solution can be found for any one position.  

Figure 4-5 shows the construction of the graphical position solution.  The four link 
lengths  a, b, c, d and the angle �2 of the input link are given.  First, the ground link (1) 
and the input link (2) are drawn to a convenient scale such that they intersect at the origin 
O2 of the global XY coordinate system with link 2 placed at the input angle �2.  Link 1 is 
drawn along the X axis for convenience.  The compass is set to the scaled length of link 3, 
and an arc of that radius is swung about the end of link 2 (point A).  Then the compass is 
set to the scaled length of link 4, and a second arc is swung about the end of link 1 (point 

* Ceccarelli[7] points out 
that Chasles’ theorem 
(Paris, 1830) was put forth 
earlier (Naples, 1763) by 
Mozzi[8] but the latter’s 
work was apparently un-
known or ignored in the rest 
of Europe, and the theorem 
became associated with 
Chasles’ name.
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O4).  These two arcs will have two intersections at B and B’ that define the two solutions 
to the position problem for a fourbar linkage which can be assembled in two configura-
tions, called circuits, labeled open and crossed in Figure 4-5.  Circuits in linkages will be 
discussed in a later section.  

The angles of links 3 and 4 can be measured with a protractor.  One circuit has angles 
�3 and �4, the other �3’ and �4’.  A graphical solution is only valid for the particular value 
of  input angle used.  For each additional position analysis we must completely redraw 
the linkage.  This can become burdensome if we need a complete analysis at every 1- or 
2-degree increment of �2.  In that case we will be better off to derive an analytical solution 
for �3 and �4 that can be solved by computer.  

FIGURE 4-4
Measurement of angles in the fourbar linkage
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FIGURE 4-5
Graphical position solution to the open and crossed configurations of the fourbar linkage
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4.5 ALGEBRAIC POSITION ANALYSIS OF LINKAGES

The same procedure that was used in Figure 4-5 to solve geometrically for the intersec-
tions B and B’ and angles of links 3 and 4 can be encoded into an algebraic algorithm. 
The coordinates of point A are found from 

= θ

= θ

cos
(4.2a)

sin

2

2

A a

A a

x

y

The coordinates of point B are found using the equations of circles about A and O4.

( )( )= − + − (4.2b)2 2 2
b B A B Ax x y y

( )= − + (4.2c)2 2 2c B d Bx y

which provide a pair of simultaneous equations in Bx and By.

Subtracting equation 4.2c from 4.2b gives an expression for Bx.
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Substituting equation 4.2d into 4.2c gives a quadratic equation in By which has two 
solutions corresponding to those in Figure 4-5.
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This can be solved with the familiar expression for the roots of a quadratic equation,
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Note that the solutions to this equation set can be real or imaginary.  If the latter, it 
indicates that the links cannot connect at the given input angle or at all.  Once the two 
values of By are found (if real), they can be substituted into equation 4.2d to find their 
corresponding x components.  The link angles for this position can then be found from

θ =
−
−

⎛
⎝⎜

⎞
⎠⎟

θ =
−

⎛
⎝⎜

⎞
⎠⎟

−

−

tan

(4.2g)

tan

3
1

4
1

B A
B A

B
B d

y y

x x

y

x



4

DESIGN OF MACHINERY 6ed      CHAPTER 4188

A two-argument arctangent function must be used to solve equations 4.2g since the angles 
can be in any quadrant.  Equations 4.2 can be encoded in any computer language or 
equation solver, and the value of 	2 varied over the linkage’s usable range to find all cor-
responding values of the other two link angles.

Vector Loop Representation of Linkages
An alternate approach to linkage position analysis creates a vector loop (or loops) around 
the linkage as first proposed by Raven.[9]  This approach offers some advantages in the 
synthesis of linkages which will be addressed in Chapter 5.  The links are represented as 
position vectors.  Figure 4-6 shows the same fourbar linkage as in Figure 4-4, but the 
links are now drawn as position vectors that form a vector loop.  This loop closes on itself, 
making the sum of the vectors around the loop zero.  The lengths of the vectors are the 
link lengths, which are known.  The current linkage position is defined by the input angle 
	2 as it is a one-DOF mechanism.  We want to solve for the unknown angles
	3 and 	4.  
To do so we need a convenient notation to represent the vectors.

Complex Numbers as Vectors
There are many ways to represent vectors.  They may be defined in polar coordinates, 
by their magnitude and angle, or in cartesian coordinates as x and y components.  These 
forms are of course easily convertible from one to the other using equations 4.0a.  The 
position vectors in Figure 4-6 can be represented as any of these expressions:

∠θ θ + θ

θ+ θθ

i j
Polar form Cartesian form

@ cos ˆ sin ˆ (4.3a)

cos sin (4.3b)

R r r

r e r j rj

Equation 4.3a uses unit vectors to represent  the x and y vector component direc-
tions in the cartesian form.  Figure 4-7 shows the unit vector notation for a position vec-
tor.  Equation 4.3b uses complex number notation wherein the X direction component 
is called the real portion and the Y direction component is called the imaginary portion.  
This unfortunate term imaginary comes about because of the use of the notation j to 
represent the square root of minus one, which of course cannot be evaluated numerically.  

FIGURE 4-6
Position vector loop for a fourbar linkage
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However, this imaginary number is used in a complex number as an operator, not as 
a value.  Figure 4-8a shows the complex plane in which the real axis represents the 
X-directed component of the vector in the plane, and the imaginary axis represents the 
Y-directed component of the same vector.  So, any term in a complex number which has 
no j operator is an x component, and a j indicates a y component.

Note in Figure 4-8b that each multiplication of the vector RA by the operator j results 
in a counterclockwise rotation of the vector through 90 degrees.  The vector RB = jRA
is directed along the positive imaginary or j axis.  The vector RC = j2 RA is directed 
along the negative real axis because j2 = –1 and thus RC = –RA.  In similar fashion,  
RD = j3 RA = –jRA and this component is directed along the negative j axis.

One advantage of using this complex number notation to represent planar vectors 
comes from the Euler identity:

= θ ± θ± θ cos sin (4.4a)e jj

Any two-dimensional vector can be represented by the compact polar notation on the 
left side of equation 4.4a.  There is no easier function to differentiate or integrate, since 
it is its own derivative:

θ
=

θ
θ (4.4b)de

d
je

j
j

We will use this complex number notation for vectors to develop and derive the 
equations for position, velocity, and acceleration of linkages.

The Vector Loop Equation for a Fourbar Linkage
The directions of the position vectors in Figure 4-6 are chosen so as to define their angles 
where we desire them to be measured.  By definition, the angle of a vector is always 
measured at its root, not at its head.  We would like angle 	4 to be measured at the fixed 
pivot O4, so vector R4 is arranged to have its root at that point.  We would like to measure 
angle 	3 at the point where links 2 and 3 join, so vector R3 is rooted there.  A similar logic 
dictates the arrangement of vectors R1 and R2.  Note that the X (real) axis is taken for 
convenience along link 1 and the origin of the global coordinate system is taken at point 

FIGURE 4-7
Unit vector notation for position vectors
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O2,  the root of the input link vector R2.  These choices of vector directions and senses, 
as indicated by their arrowheads, lead to this vector loop equation:

+ − − = 0 (4.5a)2 3 4 1R R R R

An alternate notation for these position vectors is to use the labels of the points at 
the vector tips and roots (in that order) as subscripts.  The second subscript is convention-
ally omitted if it is the origin of the global coordinate system (point O2):

+ − − =R R R R 0 (4.5b)
4 4A BA BO O

Next, we substitute the complex number notation for each position vector.  To sim-
plify the notation and minimize the use of subscripts, we will denote the scalar lengths 
of the four links as a, b, c, and d.  These are so labeled in Figure 4-6.  The equation then 
becomes:

0 (4.5c)2 3 4 1ae be c e dej j j j+ − − =θ θ θ θ

These are three forms of the same vector equation, and as such can be solved for two 
unknowns.  There are four variables in this equation, namely the four link angles.  The 
link lengths are all constant in this particular linkage.  Also, the value of the angle of link 
1 is fixed (at zero) since this is the ground link.  The independent variable is 	2 which we 
will control with a motor or other driver device.  That leaves the angles of link 3 and 4
to 
be found.  We need algebraic expressions which define 	3 and
	4 as functions only of the 
constant link lengths and the one input angle, 	2.  These expressions will be of the form:

( a )  Complex number representation of a position vector

FIGURE 4-8
Complex number representation of vectors in the plane

(b )  Vector rotations in the complex plane

Real

Imaginary
j

A

B

C

D

O

+θ

= jR

= j  R = –R2

= j  R = – jR3

RC

RA

RB

RD

R =

Polar form: R e jθ

Cartesian form: +

RA

R cos θ  j R sinθ

A

Real

Imaginary

j

θ

RA

R cos θ

 j R sinθ
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4

{ }
{ }

θ = θ

θ = θ

, , , ,
(4.5d)

, , , ,

3 2

4 2

f a b c d

g a b c d

To solve the polar form, vector equation 4.5c, we must substitute the Euler equivalents
(equation 4.4a) for the e j	 terms, and then separate the resulting cartesian form vector 
equation into two scalar equations which can be solved simultaneously for 	3 and 	4.  
Substituting equation 4.4a into equation 4.5c:

( )( ) ( ) ( )θ + θ + θ + θ − θ + θ − θ + θ =cos sin cos sin cos sin cos sin 0 (4.5e)2 2 3 3 4 4 1 1a j b j c j d j

This equation can now be separated into its real and imaginary parts and each set to zero.

real part (x component):

θ + θ − θ − θ =
θ =

θ + θ − θ − =

cos cos cos cos 0
but: 0, so: (4.6a)

cos cos cos 0

2 3 4 1

1

2 3 4

a b c d w

a b c d

imaginary part (y component):

θ + θ − θ − θ =

θ =

θ + θ − θ =

sin sin sin sin 0

but: 0, and the 's divide out, so: (4.6b)

sin sin sin 0

2 3 4 1

1

2 3 4

ja jb jc jd

j

a b c

The scalar equations 4.6a and 4.6b can now be solved simultaneously for 	3 and 
	4.  To solve this set of two simultaneous trigonometric equations is straightforward but 
tedious.  Some substitution of trigonometric identities will simplify the expressions.  The 
first step is to rewrite equations 4.6a and 4.6b so as to isolate one of the two unknowns on 
the left side.  We will isolate 	3 and solve for 	4 in this example.

θ = − θ + θ +
θ = − θ + θ

cos cos cos (4.6c)
sin sin sin (4.6d)

3 2 4

3 2 4

b a c d
b a c

Now square both sides of equations 4.6c and 4.6d and add them:

( ) ( ) ( )θ + θ = − θ + θ + − θ + θ +sin cos sin sin cos cos (4.7a)2 2
3

2
3 2 4

2
2 4

2b a c a c d

Note that the quantity in parentheses on the left side is equal to 1, eliminating 	3 from 
the equation, leaving only 	4 which can now be solved for.

( ) ( )= − θ + θ + − θ + θ +sin sin cos cos (4.7b)2
2 4

2
2 4

2b a c a c d

Expand this expression and collect terms. 

( )= + + − θ + θ − θ θ + θ θ2 cos 2 cos 2 sin sin cos cos (4.7c)2 2 2 2
2 4 2 4 2 4b a c d ad cd ac

Divide through by 2ac and rearrange to get:
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θ − θ +
− + +

= θ θ + θ θcos cos
2

sin sin cos cos (4.7d)4 2

2 2 2 2

2 4 2 4
d
a

d
c

a b c d
ac

 To further simplify this expression,  the constants K1, K2, and K3 are defined in terms 
of the constant link lengths in equation 4.7d:

= = =
− + +

θ − θ + = θ θ + θ θ

2
(4.8a)

and:
cos cos cos cos sin sin (4.8b)

1 2 3

2 2 2 2

1 4 2 2 3 2 4 2 4

K d
a

K d
c

K a b c d
ac

K K K

If we substitute the identity ( )θ − θ = θ θ + θ θcos cos cos sin sin2 4 2 4 2 4 , we get the form  
known as Freudenstein’s equation. 

( )θ − θ + = θ − θcos cos cos (4.8c)1 4 2 2 3 2 4K K K

In order to reduce equation 4.8b to a more tractable form for solution, it will be use-
ful to substitute the half-angle identities which will convert the sin 	4 and cos
	4 terms 
to tan
	4 terms:

θ =

θ⎛
⎝⎜

⎞
⎠⎟

+
θ⎛

⎝⎜
⎞
⎠⎟

θ =
−

θ⎛
⎝⎜

⎞
⎠⎟

+
θ⎛

⎝⎜
⎞
⎠⎟

sin
2tan

2

1 tan
2

; cos
1 tan

2

1 tan
2

(4.9)4

4

2 4
4

2 4

2 4

This results in the following simplified form, where the link lengths and known input 
value (	2) terms have been collected as constants A, B, and C.

( )

θ⎛
⎝⎜

⎞
⎠⎟
+

θ⎛
⎝⎜

⎞
⎠⎟
+ =

= θ − − θ +
= − θ

= − + θ +

where:

tan
2

tan
2

0

(4.10a)
cos cos

2sin

1 cos

2 4 4

2 1 2 2 3

2

1 2 2 3

A B C

A K K K
B

C K K K

Note that equation 4.10a is quadratic in form, and the solution is:

θ⎛
⎝⎜

⎞
⎠⎟
=

− ± −

θ =
− ± −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

tan
2

4
2

(4.10b)

2arctan 4
2

4
2

4

2

1,2

B B AC
A

B B AC
A

Equation 4.10b has two solutions, obtained from the � conditions on the radical.  
These two solutions, as with any quadratic equation, may be of three types: real and equal, 
real and unequal, complex conjugate.  If the discriminant under the radical is negative, 
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4

then the solution is complex conjugate, which simply means that the link lengths chosen 
are not capable of connection for the chosen value of the input angle 	2.  This can occur 
either when the link lengths are completely incapable of connection in any position or, in 
a non-Grashof linkage, when the input angle is beyond a toggle limit position.  There is 
then no real solution for that value of input angle 	2.  Excepting this situation, the solu-
tion will usually be real and unequal, meaning there are two values of 	4 corresponding 
to any one value of 	2.  These are referred to as the crossed and open configurations of 
the linkage and also as the two circuits of the linkage.*  In the fourbar linkage, the minus 
solution gives 	4 for the open configuration and the positive solution gives 	4 for the 
crossed configuration.

Figure 4-5 shows both crossed and open solutions for a Grashof crank-rocker linkage. 
The terms crossed and open are based on the assumption that the input link 2, for which 
	2 is defined, is placed in the first quadrant (i.e., 0 < 	2 < 
/2).  A Grashof linkage is then 
defined as crossed if the two links adjacent to the shortest link cross one another, and as 
open if they do not cross one another in this position.  Note that the configuration of the 
linkage, either crossed or open, is solely dependent upon the way that the links are as-
sembled.  You cannot predict, based on link lengths alone, which of the solutions will be 
the desired one.  In other words, you can obtain either solution with the same linkage by 
simply taking apart the pin which connects links 3 and 4 in Figure 4-5, and moving those 
links to the only other positions at which the pin will again connect them.  In so doing, 
you will have switched from one position solution, or circuit, to the other.

The solution for angle 	3 is essentially similar to that for 	4.  Returning to equations 
4.6, we can rearrange them to isolate 	4 on the left side.

θ = θ + θ −
θ = θ + θ

cos cos cos (4.6e)
sin sin sin (4.6f)

4 2 3

4 2 3

c a b d
c a b

Squaring and adding these equations will eliminate 	4.  The resulting equation can be 
solved for 	3 as was done above for 	4, yielding this expression:

θ + θ + = θ θ + θ θcos cos cos cos sin sin (4.11a)1 3 4 2 5 2 3 2 3K K K

The constant K1 is the same as defined in equation 4.8b, and K4 and K5 are:

= =
− − −

2
(4.11b)4 5

2 2 2 2
K d

b
K c d a b

ab

This also reduces to a quadratic form:

( )

θ⎛
⎝⎜

⎞
⎠⎟
+

θ⎛
⎝⎜

⎞
⎠⎟
+ =

= θ − + θ +
= − θ

= + − θ +

where

tan
2

tan
2

0

(4.12)
cos cos

2sin

1 cos

2 3 3

2 1 4 2 5

2

1 4 2 5

D E F

D K K K
E

F K K K

and the solution is:

* See Section 4-13 for a 
more complete discussion 
of circuits and branches in 
linkages.
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θ =
− ± −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2arctan 4
2

(4.13)3

2

1,2
E E DF

D

As with the angle 	4, this also has two solutions, corresponding to the crossed and 
open circuits of the linkage, as shown in Figure 4-5.

✍EXAMPLE 4-1

Position Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem: Given a fourbar linkage with the link lengths L1 = d = 100 mm, L2 = a = 40 mm,  
L3 = b = 120 mm, L4 = c = 80 mm. For 	2 = 40� find all possible values of 	3 and 	4.

Solution: (See Figure 4-6 for nomenclature.)

 1 Using equation 4.8a, calculate the link ratios K1, K2 and K3.

( )( )

= = =

= = =

=
− + +

=
− + +

=

100
40

2.5

100
80

1.25 ( )

2
40 120 80 100

2 40 80
0.562

1

2

3

2 2 2 2 2 2 2 2

K d
a

K d
c

a

K a b c d
ac

 2 Use these link ratios to find the intermediate parameters A, B, and C from equation 4.10a.

( )

( ) ( )
( )

( ) ( )

= θ − − θ + = − − + = −

= − θ = − = −

= − + θ + = − + + =

cos cos cos 40° 2.5 1.25cos 40° 0.562 2.129

2sin 2sin 40° 1.286 ( )

1 cos 2.5 1.25 1 cos 40° 0.562 1.339

2 1 2 2 3

2

1 2 2 3

A K K K

B b

C K K K

 3 Use equation 4.10b to find 	4 for both the open and crossed configurations.

( )( )
( )

( )( )
( )

θ =
− − −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

− − − −
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

θ =
− + −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

+ − − −
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= −

2arctan 4
2

2arctan
1.286 1.286 4 2.129 1.339

2 2.129

57.33°
( )

2arctan 4
2

2arctan
1.286 1.286 4 2.129 1.339

2 2.129

98.01°

4

2 2

4

2 2

B B AC
A

c

B B AC
A

open

crossed

4 Use equation 4.11b to find the ratios K4 and K5.
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4

( )( )

= = =

=
− − −

=
− − −

= −

100
120

0.833

2
80 100 40 120

2 40 120
2.042 ( )

4

5

2 2 2 2 2 2 2 2

K d
b

K c d a b
ab

d

 5 Use equation 4.12 to find the intermediate parameters D, E, and F.

( )

( ) ( )
( )

( ) ( )

= θ − + θ + = − + − = −

= − θ = − = −

= + − θ + = + − − =

cos cos cos 40° 2.5 0.833 40° 2.042 3.137

2sin 2sin 40° 1.286 ( )

1 cos 2.5 0.833 1 cos 40° 2.042 0.331

2 1 4 2 5

2

1 4 2 5

D K K K

E e

F K K K

 6 Use equation 4.13 to find 	3 for both the open and crossed configurations.

( )( )
( )

( )( )
( )

θ =
− − −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

− − − −
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

θ =
− + −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

+ − − −
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= −

2arctan 4
2

2arctan
1.286 1.286 4 3.137 0.331

2 3.137

20.30° ( )

2arctan 4
2

2arctan
1.286 1.286 4 3.137 0.331

2 3.137

60.98°

3

2 2

3

2 2

E E DF
D

f

E E DF
D

open

crossed

7 The solution is shown in Figure 4-9.

= 40°

= 57.33°

= 20.30°

= –60.98°

B

3 circuit 1
(open)

θ31

b

A

Y

2

3'

O2 θ2

a

c

1 d

4

4'

B'

O4
X

circuit 2
(crossed)

θ32 θ41

= –98.01°θ42

FIGURE 4-9
Solution to Example 4-1
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4.6 THE FOURBAR CRANK-SLIDER POSITION SOLUTION

The same vector loop approach as used for the pure pin-jointed fourbar can be applied 
to a linkage containing sliders.  Figure 4-10 shows an offset fourbar crank-slider linkage, 
inversion #1.  The term offset means that the slider axis extended does not pass through 
the crank pivot.  This is the general case.  (The nonoffset crank-slider linkages shown in 
Figure 2-15 are the special cases.)  This linkage could be represented by only three posi-
tion vectors, R2, R3, and Rs, but one of them (Rs) will be a vector of varying magnitude 
and angle.  It will be easier to use four vectors, R1, R2, R3, and R4 with R1 arranged paral-
lel to the axis of sliding and R4 perpendicular.  In effect the pair of vectors R1 and R4 are 
orthogonal components of the position vector Rs from the origin to the slider.

It simplifies the analysis to arrange one coordinate axis parallel to the axis of sliding.  
The variable-length, constant-direction vector R1 then represents the slider position with 
magnitude d.  The vector R4 is orthogonal to R1 and defines the constant magnitude offset 
of the linkage.  Note that for the special-case, nonoffset version, the vector R4 will be zero 
and R1 = Rs.  The vectors R2 and R3 complete the vector loop.  The coupler’s position 
vector R3 is placed with its root at the slider which then defines its angle 	3 at point B.  
This particular arrangement of position vectors leads to a vector loop equation similar to 
the pin-jointed fourbar example:

− − − =R R R R 0 (4.14a)2 3 4 1

Compare equation 4.14a to equation 4.5a and note that the only difference is the sign 
of R3.  This is due solely to the somewhat arbitrary choice of the sense of the position 
vector R3 in each case.  The angle 	3 must always be measured at the root of vector R3, 
and in this example it will be convenient to have that angle 	3
at the joint labeled B.  Once 
these arbitrary choices are made it is crucial that the resulting algebraic signs be carefully 
observed in the equations, or the results will be completely erroneous.  Letting the vec-
tor magnitudes (link lengths) be represented by a, b, c, d as shown, we can substitute the 
complex number equivalents for the position vectors.

− − − =θ θ θ θ 0 (4.14b)2 3 4 1ae be c e dej j j j

slider axis

offset
Rs

θ3

θ2

FIGURE 4-10
Position vector loop for a fourbar crank-slider or slider-crank linkage

O2

A

X

Y

d

b

a
c

x

y

R1

R3

R4

R2
θ4

B
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4

Substitute the Euler equivalents:

( )( )
( ) ( )

θ + θ − θ + θ

− θ + θ − θ + θ =

cos sin cos sin

cos sin cos sin 0 (4.14c)
2 2 3 3

4 4 1 1

a j b j

c j d j

Separate the real and imaginary components:

real part (x component):

θ − θ − θ − θ =
θ = θ − θ − θ − =but:

cos cos cos cos 0
0, so: cos cos cos 0 (4.15a)

2 3 4 1

1 2 3 4

a b c d
a b c d

imaginary part (y component):

θ − θ − θ − θ =

θ =

θ − θ − θ =

sin sin sin sin 0

but: 0, and the ' divide out, so: (4.15b)

sin sin sin 0

2 3 4 1

1

2 3 4

ja jb jc jd

j s

a b c

We want to solve equations 4.15 simultaneously for the two unknowns, link length d 
and link angle 	3.  The independent variable is crank angle 	2.  Link lengths a and b, the 
offset c, and angle 	4 are known.  But note that since we set up the coordinate system to 
be parallel and perpendicular to the axis of the slider block, the angle 	1 is zero and 	4 is 
90�.  Equation 4.15b can be solved for 	3 and the result substituted into equation 4.15a to 
solve for d.  The solution is:

θ =
θ −⎛

⎝⎜
⎞
⎠⎟

= θ − θ

arcsin
sin

(4.16a)

cos cos (4.16b)

3
2

2 3

1

a c
b

d a b

Note that there are again two valid solutions corresponding to the two circuits of the 
linkage.  The arcsine function is multivalued.  Its evaluation will give a value between 
�90� representing only one circuit of the linkage.  The value of d is dependent on the 
calculated value of 	3.  The value of 	3 for the second circuit of the linkage can be found 
from:

θ = −
θ −⎛

⎝⎜
⎞
⎠⎟
+ πarcsin

sin
(4.17)3

2
2

a c
b

✍EXAMPLE 4-2

Position Analysis of a Fourbar Crank-Slider Linkage with the Vector Loop Method.

Problem: Given a fourbar crank-slider linkage with the link lengths L2 = a = 40 mm, L3 = 
b = 120 mm, offset = c = –20 mm. For 	2 = 60� find all possible values of 	3 and 
slider position d.

Solution: (See Figure 4-10 for nomenclature.)

 1 Using equation 4.16a, calculate the link coupler angle 	3 for the open configuration.
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( ) ( )
θ =

θ −⎛
⎝⎜

⎞
⎠⎟
=

− −⎛

⎝⎜
⎞

⎠⎟
=arcsin

sin
arcsin

40sin 60° 20
120

152.91° ( )3
2a c

b
a

open

 2 Using equation 4.16b and the result from step 1, calculate slider position d for open linkage.

( ) ( )= θ − θ = − =cos cos 40cos 60° 120cos 152.91° 126.84 mm ( )2 3d a b b

 3 Using equation 4.17, calculate the link coupler angle 	3 for the crossed configuration.

( ) ( )
θ = −

θ −⎛
⎝⎜

⎞
⎠⎟
+ π = −

− −⎛

⎝⎜
⎞

⎠⎟
+ π =arcsin

sin
arcsin

40sin 60° 20
120

27.09° ( )3
2a c

b
c

crossed

 4 Using equation 4.16b and the result from step 3, calculate slider position d for crossed linkage.

( ) ( )= θ − θ = − = −cos cos 40cos 60° 120cos 27.09° 86.84 mm ( )2 3d a b d

 5 Note that 	3 is measured at the slider end of the coupler as shown in Figure 4-11.

4.7 THE FOURBAR SLIDER-CRANK POSITION SOLUTION

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section.  The name change indicates that it will be 
driven with the slider as input and the crank as output.  This is sometimes referred to as a 
“back-driven” crank-slider.  We will use the term slider-crank to define it as slider-driven. 
This is a very commonly used linkage configuration.  Every internal-combustion piston 
engine has as many of these as it has cylinders.  The vector loop is as shown in Figure 
4-10, and the vector loop equation is identical to equation 4.14a.  But now we must solve 
this equation for 	2 as a function of slider position d.

 Start with equation 4.14a, make the substitutions of equation 4.14b and the simpli-
fications of equations 4.15 to get the same simultaneous equation set:

= –20 mm

= –86.84 mm = 126.84 mm

= 152.91°
= 27.09°

= 60°

slider axis

offset

θ2O2

AY

dopen

b
a

θ3crossed B

X

c

b

dcrossed

θ3open

circuit 1
(open)

circuit 2
(crossed)

FIGURE 4-11
Solution to Example 4-2
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4

θ − θ − θ − =
θ − θ − θ =

θ = ° ∴ θ = θ =

θ − θ − =
θ − θ − =

cos cos cos 0 (4.15a)
sin sin sin 0 (4.15b)

but
90 sin 1, cos 0

so
cos cos 0 (4.18a)
sin sin 0 (4.18b)

2 3 4

2 3 4

4 4 4

2 3

2 3

a b c d
a b c

a b d
a b c

As was done in the fourbar linkage solution, isolate the 	3 terms on one side, square 
both equations, and add them to eliminate 	3.

( )

( )

( )
( )

( ) ( )
( ) ( )

θ = θ −
θ = θ −

θ = θ −

θ = θ −

θ + θ = θ − + θ −

= θ − + θ −

= θ − θ + + θ − θ +

= θ + θ − θ − θ + +

− + + − θ − θ =

cos cos
sin sin

square: cos cos

sin sin

add: sin cos cos sin

cos sin

cos 2 cos sin 2 sin

sin cos 2 cos 2 sin

2 sin 2 cos 0 (4.19)

3 2

3 2
2 2

3 2
2

2 2
3 2

2

2 2
3

2
3 2

2
2

2

2
2

2
2

2

2 2 2
2 2

2 2 2
2 2

2

2 2 2
2

2
2 2 2

2 2

2 2 2 2
2 2

b a d
b a c

b a d

b a c

b a d a c

b a d a c

b a ad d a ac c

b a ad ac c d

a b c d ac ad

To simplify, create some constant parameters:

= − + + = − = −
+ θ + θ =

let , 2 , 2
then sin cos 0 (4.20)

1
2 2 2 2

2 3

1 2 2 3 2

K a b c d K ac K ad
K K K

As we did for the fourbar linkage, substitute the tangent half-angle identities (equa-
tion 4.9) for sin 	2 and cos 	2 to get the equation in terms of one trigonometric function.

( ) ( )

+

θ

+
θ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

−
θ

+
θ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

−
θ

+
θ

+ + =

= − = = +
θ

+
θ

+ =

θ =
− ± −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2tan
2

1 tan
2

1 tan
2

1 tan
2

0

simplify tan
2

2 tan
2

0

let , 2 ,

then tan
2

tan
2

0

and 2arctan 4
2

(4.21)

1 2

2

2 2
3

2 2

2 2

1 3
2 2

2
2

1 3

1 3 2 1 3

2 2 2

2

2

1,2

K K K

K K K K K

A K K B K C K K

A B C

B B AC
A

Once 	2 is known for a given value of d, 	3 can be found from either equation 4.18a or 
4.18b.
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Note that there are two solutions to equation 4.21 representing the two branches 
of the linkage on the circuit to which the given value of slider position d applies.*  The 
equation will fail when the backdriven slider-crank is at either top dead center (TDC) or 
bottom dead center (BDC).  These are indeterminate change points between the branches 
at which the mathematics cannot predict which branch the linkage will go to next.  A real 
slider-crank linkage can only make a full revolution of the crank if there is some stored 
energy in the crank to carry it through the dead centers twice per revolution.  This is why 
you must spin a piston engine to start it and why they typically have a flywheel attached to 
the crankshaft to provide the angular momentum needed to pass through TDC and BDC.

✍EXAMPLE 4-3

Position Analysis of a Fourbar Slider-Crank Linkage with the Vector Loop Method

Problem: Given a fourbar slider-crank linkage with the link lengths L2 = a = 40 mm, L3 = b 
= 120 mm, offset = c = –20 mm. For d = 100 mm, find all possible values of 	2 and 
	3 on the circuit defined by the given value of d.

Solution: (See Figure 4-9 for nomenclature.)

 1 Find the TDC and BDC positions of the linkage.
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  The requested position of d = 100 mm is within the range of motion of the slider-crank linkage 
and is neither TDC nor BDC, so equations 4.20 and 4.21 can be used.

2 Find the intermediate parameters needed from equations 4.20 and 4.21.
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3 Find the two values of 	2 from equation 4.21.
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* The crank-slider and 
slider-crank linkage 
both have two circuits or 
configurations in which 
they can be independently 
assembled, sometimes 
called open and crossed.   
Because effective link 4 is 
always perpendicular to the 
slider axis, it is parallel to 
itself on both circuits.  This 
results in the two circuits 
being mirror images of one 
another, mirrored about a 
line through the crank pivot 
and perpendicular to the 
slide axis.  Thus, the choice 
of value of slider position 
d in the calculation of the 
slider-crank linkage deter-
mines which circuit is being 
analyzed.  But, because of 
the change points at TDC 
and BDC, the slider-crank 
has two branches on each 
circuit, and the two solu-
tions obtained from equa-
tion 4.21 represent the two 
branches on the one circuit 
being analyzed.  In contrast, 
the crank-slider has only 
one branch per circuit 
because when the crank is 
driven, it can make a full 
revolution and there are no 
change points to separate 
branches.  See Section 
4.13 for a more complete 
discussion of circuits and 
branches in linkages.
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4 Find the two values of 	3 from either equation 4.16a or 4.17.  Calculate 	3 with both equations 
for one value of 	2 and then use equation 4.16b with that result to determine which of the two 
equations gives the correct value of d to match the circuit of this linkage.  Then use that equa-
tion with each of the 	2 values to get the correct values of 	3 for each branch of this circuit.  
This example needs equation 4.17 for its circuit.

( ) ( )

( ) ( )

θ = −
θ −⎛

⎝⎜
⎞

⎠⎟
+ π = −

° − −⎛

⎝⎜
⎞

⎠⎟
+ π = °

θ =
θ −⎛

⎝⎜
⎞

⎠⎟
+ π =

− ° − −⎛

⎝⎜
⎞

⎠⎟
+ π = °

− −

− −

sin
sin

sin
40sin 95.798 20

120
150.113

( )

cos
sin

cos
40sin 118.418 20

120
187.267

3
1 2 1

3
1 2 1

1
1

2
2

a c
b

d
a c

b

 5 The solution is shown in Figure 4-12.

4.8 AN INVERTED CRANK-SLIDER POSITION SOLUTION

Figure 4-13a* shows inversion #3 of the common fourbar crank-slider linkage in which the 
sliding joint is between links 3 and 4 at point B.  This is shown as an offset crank-slider 
mechanism.  The slider block has pure rotation with its center offset from the slide axis.  
(Figure 2-15c, shows the nonoffset version of this linkage in which the vector R4 is zero.)

The global coordinate system is again taken with its origin at input crank pivot O2 and 
the positive X axis along link 1, the ground link.  A local axis system has been placed at 
point B in order to define 	3.  Note that there is a fixed angle � within link 4 which defines 
the slot angle with respect to that link.

In Figure 4-13b, the links have been represented as position vectors having senses 
consistent with the coordinate systems that were chosen for convenience in defining the 
link angles.  This particular arrangement of position vectors leads to the same vector loop 
equation as the previous crank-slider example.

 
* This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.
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FIGURE 4-12
Solution to Example 4-3
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Equations 4.14 and 4.15 apply to this inversion as well.  Note that the absolute posi-
tion of point B is defined by vector RB which varies in both magnitude and direction as 
the linkage moves.  We choose to represent RB as the vector difference R2 – R3 in order 
to use the actual links as the position vectors in the loop equation.

All slider linkages will have at least one link whose effective length between joints 
will vary as the linkage moves.  In this example the length of link 3 between points A and 
B, designated as b, will change as it passes through the slider block on link 4.  Thus the 
value of b will be one of the variables to be solved for in this inversion.  Another variable 
will be 	4, the angle of link 4.  Note however, that we also have an unknown in 	3, the 
angle of link 3.  This is a total of three unknowns.  Equations 4.15 can only be solved for 
two unknowns.  Thus we require another equation to solve the system.  There is a fixed 
relationship between angles 	3 and 	4, shown as �
 in Figure 4-13, which gives the equa-
tions for the open and crossed configurations of the linkage, respectively:

θ = θ + γ θ = θ + γ − πopen configuration: ; crossed configuration: (4.22)3 4 3 4

Repeating equations 4.15 and renumbering them for the reader’s convenience:

θ − θ − θ − =
θ − θ − θ =

cos cos cos 0 (4.23a)
sin sin sin 0 (4.23b)
2 3 4

2 3 4

a b c d
a b c

These have only two unknowns and can be solved simultaneously for 	4 and b.  Equa-
tion 4.23b can be solved for link length b and substituted into equation 4.23a.
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FIGURE 4-13
Inversion #3 of the slider-crank fourbar linkage
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Substitute equation 4.22, and after some algebraic manipulation, equation 4.24 can 
be reduced to:
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Note that the factors P, Q, R are constant for any input value of 	2.  To solve this for 
	4, it is convenient to substitute the tangent half angle identities (equation 4.9) for the 
sin 	4 and cos 	4 terms.  This will result in a quadratic equation in tan (	4 / 2) which can 
be solved for the two values of 	4.
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As was the case with the previous examples, this also has a crossed and an open so-
lution represented by the plus and minus signs on the radical, respectively.  Note that we 
must also calculate the values of link length b for each 	4 by using equation 4.24a.  The 
coupler angle 	3 is found from equations 4.22 for the open or crossed solution.

4.9 LINKAGES OF MORE THAN FOUR BARS

With some exceptions,* the same approach as shown here for the fourbar linkage can be 
used for any number of links in a closed-loop configuration.   More complicated linkages 
may have multiple loops which will lead to more equations to be solved simultaneously 
and may require an iterative solution.  Alternatively, Wampler[10] presents a new, general, 
noniterative method for the analysis of planar mechanisms containing any number of rigid 
links connected by rotational and/or translational joints.

* Waldron and Sreeniva-
san[1] report that the 
common solution methods 
for position analysis are not 
general, i.e., are not extend-
able to n-link mechanisms.  
Conventional position 
analysis methods, such as 
those used here, rely on the 
presence of a fourbar loop 
in the mechanism that can 
be solved first, followed 
by a decomposition of the 
remaining links into a series 
of dyads.  Not all mecha-
nisms contain fourbar loops. 
(One eightbar, 1-DOF 
linkage contains no fourbar 
loops —see the 16th isomer 
at lower right in Figure 
2-11d).  Even if there is a 
fourbar loop, its pivots may 
not be grounded, requiring 
that the linkage be inverted 
to start the solution.  Also, 
if the driving joint is not 
in the fourbar loop, then 
interpolation is needed to 
solve for link positions.  
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The Geared Fivebar Linkage
Another example, which can be reduced to two equations in two unknowns, is the geared 
fivebar linkage or mechanism (GFBM), which was introduced in Section 2.14 and is 
shown in Figure 4-14a and program LINKAGES disk file F04-11.5br.  The vector loop for 
this linkage is shown in Figure 4-14b.  It obviously has one more position vector than the 
fourbar.  Its vector loop equation is:

+ − − − =R R R R R 0 (4.27a)2 3 4 5 1

Note that the vector senses are again chosen to suit the analyst’s desires to have the 
vector angles defined at a convenient end of the respective link.  Equation 4.27b substi-
tutes the complex polar notation for the position vectors in equation 4-23a, using a, b, c, 
d, f to represent the scalar lengths of the links as shown in Figure 4-14.  

+ − − − =θ θ θ θ θ 0 (4.27b)2 3 4 5 1ae be c e de f ej j j j j

Note also that this vector loop equation has three unknown variables in it, namely the 
angles of links 3, 4, and 5.  (The angle of link 2 is the input, or independent, variable, and 
link 1 is fixed with constant angle.)  Since a two-dimensional vector equation can only be 
solved for two unknowns, we will need another equation to solve this system.  Because this 
is a geared fivebar linkage, there exists a relationship between the two geared links, here 
links 2 and 5.  Two factors determine how link 5 behaves with respect to link 2, namely, 
the gear ratio � and the phase angle �.  The relationship is:

.θ = λθ + φ (4 27c)5 2

This allows us to express 	5 in terms of 	2 in equation 4.27b and reduce the unknowns 
to two by substituting equation 4.27c into equation 4.27b.

+ − − − =φ( )θ θ θ λθ + θ 0 (4.28a)2 3 4 2 1ae be c e de f ej j j j j

Note that the gear ratio � is the ratio of the diameters of the gears connecting the 
two links (�
�
dia2 / dia5 ), and the phase angle � is the initial angle of link 5 with respect 
to link 2.  When link 2 is at zero degrees, link 5 is at the phase angle �. Equation 4.27c 
defines the relationship between 	2 and 	5.  Both � and � are design parameters selected 
by the design engineer along with the link lengths.  With these parameters defined, the 
only unknowns left in equation 4.28 are 	3 and 	4.

The behavior of the geared fivebar linkage can be modified by changing the link 
lengths, the gear ratio, or the phase angle.  The phase angle can be changed simply by 
lifting the gears out of engagement, rotating one gear with respect to the other, and re-
engaging them.  Since links 2 and 5 are rigidly attached to gears 2 and 5, respectively, 
their relative angular rotations will be changed also.  It is this fact that results in different 
positions of links 3 and 4 with any change in phase angle.  The coupler curve’s shapes 
will also change with variation in any of these parameters as can be seen in Figure 3-23 
and in Appendix E.  

The procedure for solution of this vector loop equation is the same as that used for 
the fourbar linkage:  
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1 Substitute the Euler equivalent (equation 4.4a) into each term in the vector loop equa-
tion 4.28a.
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2 Separate the real and imaginary parts of the cartesian form of the vector loop  equa-
tion.
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3 Rearrange to isolate one unknown (either 	3 or 	4) in each scalar equation.  Note that 
	1 is zero.
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4 Square both equations and add them to eliminate one unknown, say 	3.
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FIGURE 4-14
The geared fivebar linkage and its vector loop
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 5 Substitute the tangent half-angle identities (equation 4.9) for the sine and cosine terms 
and manipulate the resulting equation in the same way as was done for the fourbar 
linkage in order to solve for 	4. 
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 6 Repeat steps 3 to 5 for the other unknown angle 	3.

( )
( )

( ) ( )
( )

= θ − λθ + φ −⎡⎣ ⎤⎦

= θ − λθ + φ⎡⎣ ⎤⎦

= + − + + − θ

− θ − λθ + φ

− θ λθ + φ

= − = = +

θ =
− ± −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 cos cos

2 sin sin

2 cos

2 cos cos

2 sin sin
; 2 ;

2arctan 4
2

(4.28i)

2 2

2 2

2 2 2 2 2
2

2 2

2 2

3

2

1,2

G b a d f

H b a d

K a b c d f af

d a f

ad
L K G M H N G K

M M LN
L

Note that these derivation steps are essentially identical to those for the pin-jointed 
fourbar linkage once 	2 is substituted for 	5 using equation 4.27c.

FIGURE 4-15
Watt’s sixbar linkage and vector loop
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Sixbar Linkages
WATT’S SIXBAR is essentially two fourbar linkages in series, as shown in Figure 4-15a, 
and can be analyzed as such.  Two vector loops are drawn as shown in Figure 4-15b.  
These vector loop equations can be solved in succession with the results of the first loop 
applied as input to the second loop.  Note that there is a constant angular relationship 
between vectors R4 and R5 within link 4.  The solution for the fourbar linkage (equations 
4.10 and 4.13, respectively)  is simply applied twice in this case.  Depending on the inver-
sion of the Watts linkage being analyzed, there may be two four-link loops or one four-link 
and one five-link loop.  (See Figure 2-16.)  In either case, if the four-link loop is analyzed 
first, there will not be more than two unknown link angles to be found at one time. 

STEPHENSON’S SIXBAR is a more complicated mechanism to analyze.  Two vector 
loops can be drawn, but depending on the inversion being analyzed, either one or both 
loops will have five links* and three unknown angles as shown in Figure 4-13a and b.  
However, the two loops will have at least one nonground link in common and so a solution 
can be found.  In the other cases an iterative solution such as a Newton-Raphson method 
(see Section 4.14) must be used to find the roots of the equations.  Program LINKAGES is 
limited to the inversions which allow a closed-form solution, one of which is shown in 
Figure 4-16, and it does not do the iterative solution.

4.10 POSITION OF ANY POINT ON A LINKAGE

Once the angles of all the links are found, it is simple and straightforward to define and 
calculate the position of any point on any link for any input position of the linkage.  Figure 
4-17 shows a fourbar linkage whose coupler, link 3, is enlarged to contain a coupler point 
P.  The crank and rocker have also been enlarged to show points S and U which might 
represent the centers of gravity of those links.  We want to develop algebraic expressions 
for the positions of these (or any) points on the links.

To find the position of point S, draw a position vector from the fixed pivot O2 to point 
S.  This vector RSO2 makes an angle �2 with the vector RAO2.  This angle �2 is completely 
defined by the geometry of link 2 and is constant.  The position vector for point S is then:

( a )

FIGURE 4-16
Stephenson’s sixbar linkage and vector loops
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* Waldron and Sreeniva-
san[1] report that the 
common solution methods 
for position analysis are not 
general, i.e., are not extend-
able to n-link mechanisms.  
Conventional position 
analysis methods, such as 
those used here, rely on the 
presence of a fourbar loop 
in the mechanism that can 
be solved first, followed 
by a decomposition of the 
remaining links into a series 
of dyads.  Not all mecha-
nisms contain fourbar loops. 
(One eightbar, 1-DOF 
linkage contains no fourbar 
loops —see the 16th isomer 
at lower right in Figure 
2-11d).  Even if there is a 
fourbar loop, its pivots may 
not be grounded, requiring 
that the linkage be inverted 
to start the solution.  Also, 
if the driving joint is not 
in the fourbar loop, then 
interpolation is needed to 
solve for link positions.  
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( ) ( )= = = θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δR R cos sin (4.29)2 2 2 22

2 2se s jSO S
j

The position of point U on link 4 is found in the same way, using the angle �4 which 
is a constant angular offset within the link.  The expression is:

( ) ( )= = θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δR cos sin (4.30)4 4 4 44

4 4ue u jUO
j

The position of point P on link 3 can be found from the addition of two position 
vectors RA and RPA.  Vector RA is already defined from our analysis of the link angles 
in equations 4.5.  Vector RPA is the relative position of point P with respect to point A.  
Vector RPA is defined in the same way as RS or RU, using the internal link offset angle �3
and the position angle of link 3, 	3.

( ) ( )= = θ + δ + θ + δ⎡⎣ ⎤⎦

= +

( )θ +δR

R R R

cos sin (4.31a)

(4.31b)

3 3 3 3
3 3pe p jPA

j

P A PA

Compare equation 4.31b with equations 4.1.  Equation 4.31b is the position difference 
equation.

4.11 TRANSMISSION ANGLES

The transmission angle was defined in Section 3.3 for a fourbar linkage.  That definition 
is repeated here for your convenience.

The transmission angle � is shown in Figure 3-3a and is defined as the angle between the 
output link and the coupler.  It is usually taken as the absolute value of the acute angle of the pair 
of angles at the intersection of the two links and varies continuously from some minimum to some 
maximum value as the linkage goes through its range of motion.  It is a measure of the quality of 
force transmission at the joint.*

* The transmission angle 
has limited application.  It 
only predicts the quality of 
force or torque transmission 
if the input and output links 
are pivoted to ground.  If 
the output force is taken 
from a floating link (cou-
pler), then the transmission 
angle is of no value.  A dif-
ferent index of merit called 
the joint force index (JFI) 
is presented in Chapter 11 
which discusses force analy-
sis in linkages.  (See Section 
11.12.)  The JFI is useful 
for situations in which the 
output link is floating as 
well as giving the same kind 
of information when the 
output is taken from a link 
rotating against the ground.  
However, the JFI requires a 
complete force analysis of 
the linkage be done whereas 
the transmission angle is 
determined from linkage 
geometry alone.

FIGURE 4-17
Positions of points on the links
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We will expand that definition here to represent the angle between any two links in a 
linkage, as a linkage can have many transmission angles. The angle between any output 
link and the coupler which drives it is a transmission angle. Now that we have developed 
the analytic expressions for the angles of all the links in a mechanism, it is easy to define 
the transmission angle algebraically.  It is merely the difference between the angles of the 
two joined links through which we wish to pass some force or velocity.  For our fourbar 
linkage example it will be the difference between 	3 and 	4.  By convention we take the 
absolute value of the difference and force it to be an acute angle.

θ = θ − θ

θ >
π

μ = π − θ μ = θif then
2

else (4.32)

3 4trans

trans trans trans

This computation can be done for any joint in a linkage by using the appropriate link 
angles.

Extreme Values of the Transmission Angle
For a Grashof crank-rocker fourbar linkage the minimum value of the transmission angle 
will occur when the crank is colinear with the ground link as shown in Figure 4-18.  The 
values of the transmission angle in these positions are easily calculated from the law 
of cosines since the linkage is then in a triangular configuration. The sides of the two 
triangles are link 3, link 4, and either the sum or difference of links 1 and 2.  Depending 
on the linkage geometry, the minimum value of the transmission angle �min will occur 
either when links 1 and 2 are colinear and overlapping as shown in Figure 4-18a or when 
links 1 and 2 are colinear and nonoverlapping as shown in Figure 4-18b.  Using notation 
consistent with Section 4.5 and Figure 4-6 we will label the links:

a = link 2, b = link 3, c = link 4, d = link 1

FIGURE 4-18
The minimum transmission angle in the Grashof crank-rocker fourbar linkage occurs in one of two positions
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For the overlapping case (Figure 4-18a) the cosine law gives

( )
μ = γ =

+ − −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

arccos
2

(4.33a)1 1

2 2 2b c d a
bc

and for the extended case, the cosine law gives

( )
μ = π − γ = π −

+ − +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

arccos
2

(4.33b)2 2

2 2 2b c d a
bc

The minimum transmission angle �min in a Grashof crank-rocker linkage is then the 
smaller of �1 and �2.

For a Grashof double-rocker linkage the transmission angle can vary from 0 to 90 
degrees because the coupler can make a full revolution with respect to the other links.  For 
a non-Grashof triple-rocker linkage the transmission angle will be zero degrees in the 
toggle positions which occur when the output rocker c and the coupler b are colinear as 
shown in Figure 4-19a.  In the other toggle positions when input rocker a and coupler b are 
colinear (Figure 4-19b), the transmission angle can be calculated from the cosine law as:

ν

μ
( )

( )

=

=
+ + −

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

when 0,

arccos
2

(4.34)
2 2 2a b c d

c a b

This is not the smallest value that the transmission angle � can have in a triple-rocker, 
as that will obviously be zero.  Of course, when analyzing any linkage, the transmission 

( a )  Toggle positions for links  and 

FIGURE 4-19
Non-Grashof triple-rocker linkages in toggle

(b )  Toggle positions for links  and 
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angles can easily be computed and plotted for all positions using equation 4.32.  Program 
LINKAGES does this.  The student should investigate the variation in transmission angle for 
the example linkages in those programs.  Disk file F04-15.4br can be opened in program 
LINKAGES to observe that linkage in motion.

4.12 TOGGLE POSITIONS

The input link angles which correspond to the toggle positions (stationary configurations) 
of the non-Grashof triple-rocker can be calculated by the following method, using trigo-
nometry.  Figure 4-20 shows a non-Grashof fourbar linkage in a general position.  A con-
struction line h has been drawn between points A and O4.  This divides the quadrilateral 
loop into two triangles, O2AO4 and ABO4.  Equation 4.35 uses the cosine law to express 
the transmission angle � in terms of link lengths and the input link angle 	2.

=

= + − θ

= + − μ

+ − θ = + − μ

μ
+ − −

+ θ

also:
so:

and:

2 cos

2 cos

2 cos 2 cos

cos
2

cos (4.35)

2 2 2
2

2 2 2

2 2
2

2 2

2 2 2 2

2

h a d ad

h b c bc

a d ad b c bc

b c a d
bc

ad
bc

To find the maximum and minimum values of input angle 	2, we can differentiate 
equation 4.35, form the derivative of 	2 with respect to �, and set it equal to zero.

θ
μ

=
μ
θ

=
sin
sin

0 (4.36)2

2

d
d

bc
ad

The link lengths a, b, c, d are never zero, so this expression can only be zero when 
sin � is zero.  This will be true when angle � in Figure 4-20 is either zero or 180�.  This 
is consistent with the definition of toggle given in Section 3.3.  If � is zero or 180� then 
cos � will be ±1.  Substituting these two values for cos � into equation 4.35 will give a 

FIGURE 4-20
Finding the crank angle corresponding to the toggle positions
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solution for the value of 	2 between zero and 180� which corresponds to the toggle posi-
tion of a triple-rocker linkage when driven from one rocker.

=μ
+ − −

+ θ = ±

θ =
+ − −

±

θ =
+ − −

±
⎛

⎝
⎜

⎞

⎠
⎟ ≤ θ ≤ π

or:

and:

cos
2

cos 1

cos
2

(4.37)

arccos
2

0

2 2 2 2

2

2

2 2 2 2

2

2 2 2 2

2

b c a d
bc

ad
bc

a d b c
ad

bc
ad

a d b c
ad

bc
adtoggle toggle

One of these � cases will produce an argument for the arccosine function which lies 
between �1.  The toggle angle which is in the first or second quadrant can be found from 
this value.  The other toggle angle will then be the negative of the one found, due to the 
mirror symmetry of the two toggle positions about the ground link as shown in Figure 
4-19.  Program LINKAGES computes the values of these toggle angles for any non-Grashof 
linkage.

4.13 CIRCUITS AND BRANCHES IN LINKAGES

In Section 4.5 it was noted that the fourbar linkage position problem has two solutions 
which correspond to the two circuits of the linkage.  This section will explore the topics 
of circuits and branches in linkages in greater detail.  

Chase and Mirth[2] define a circuit in a linkage as “all possible orientations of the 
links that can be realized without disconnecting any of the joints” and a branch as “a 
continuous series of positions of the mechanism on a circuit between two stationary con-
figurations . . .  .  The stationary configurations divide a circuit into a series of branches.”  
A linkage may have one or more circuits each of which may contain one or more branches. 
The number of circuits corresponds to the number of solutions possible from the position 
equations for the linkage.

Circuit defects are fatal to linkage operation, but branch defects are not.  A mecha-
nism that must change circuits to move from one desired position to the other (referred to 
as a circuit defect) is not useful as it cannot do so without disassembly and reassembly.  
A mechanism that changes branches when moving from one circuit to another (referred to 
as a branch defect) may or may not be usable depending on the designer’s intent.  

The tailgate linkage shown in Figure 3-2 is an example of a linkage with a deliberate 
branch defect in its range of motion (actually at the limit of its range of motion).  The 
toggle position (stationary configuration) that it reaches with the tailgate fully open serves 
to hold it open.  But the user can move it out of this stationary configuration by rotating 
one of the links out of toggle.  Folding chairs and tables often use a similar scheme as do 
fold-down seats in automobiles.  

Another example of a common linkage with a branch defect is the slider-crank link-
age (crankshaft, connecting rod, and slider driving) used in every piston engine and shown 
in Figure 13-3.  This linkage has two toggle positions (top and bottom dead center) giv-
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ing it two branches within one revolution of its crank.  It works nevertheless because it is 
carried through these stationary configurations by the angular momentum of the rotating 
crank and its attached flywheel.  One penalty is that the engine must be spun to start it in 
order to build sufficient momentum to carry it through these toggle positions.

The Watt sixbar linkage can have four circuits, and the Stephenson sixbar can have 
either four or six circuits depending on which link is driving.  Eightbar linkages can have 
as many as 16 or 18 circuits, not all of which may be real, however.[2]  

The number of circuits and branches in the fourbar linkage depends on its Grashof 
condition and the inversion used.  A non-Grashof, triple-rocker fourbar linkage has only 
one circuit but has two branches.  All Grashof fourbar linkages have two circuits, but the 
number of branches per circuit differs with the inversion.  The crank-rocker and double-
crank have only one branch within each circuit.  The double-rocker and rocker-crank have 
two branches within each circuit.  Table 4-1 summarizes these relationships.[2]  Table 4-2 
shows the circuits and branches for the two configurations of the fourbar slider linkage.  
Figure 4-21 shows the circuits for the Grashof fourbar linkage and the fourbar slider.

Any solution for the position of a linkage must take into account the number of pos-
sible circuits that it contains.  A closed-form solution, if available, will contain all the 
circuits.  An iterative solution such as is described in the next section will only yield the 
position data for one circuit, and it may not be the one you expect.

FIGURE 4-21
Circuits of the fourbar linkage
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4 TABLE  4-1
Circuits & Branches
In the Fourbar Linkage

Fourbar
Linkage
  Type

Number
    of
Circuits

Branches
     per
  Circui t

Non-
Grashof
triple-
rocker

1 2

Grashof *
crank-
rocker

2 1

Grashof *
double-
crank

2 1

Grashof *
double-
rocker

2 2

Grashof *
rocker -
crank

2 2

* Valid only for non-special-case
   Grashof linkages

TABLE  4-2
Circuits & Branches
In the Fourbar Slider

Fourbar
 Slider
  Type

Number
    of
Circuits

Branches
     per
  Circui t

Crank-
slider 2 1

Slider-
crank 2 2
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4.14 NEWTON-RAPHSON SOLUTION METHOD

The solution methods for position analysis shown so far in this chapter are all of “closed 
form,” meaning that they provide the solution with a direct, noniterative approach.*  In 
some situations, particularly with multiloop mechanisms, a closed-form solution may not 
be attainable.  Then an alternative approach is needed, and the Newton-Raphson method 
(sometimes just called Newton’s method) provides one that can solve sets of simultane-
ous nonlinear equations.  Any iterative solution method requires that one or more guess 
values be provided to start the computation.  It then uses the guess values to obtain a new 
solution that may be closer to the correct one.  This process is repeated until it converges 
to a solution close enough to the correct one for practical purposes.  However, there is no 
guarantee that an iterative method will converge at all.  It may diverge, taking successive 
solutions further from the correct one, especially if the initial guess is not sufficiently 
close to the real solution.  

Though we will need to use the multidimensional (Newton-Raphson) version of 
Newton’s method for these linkage problems, it is easier to understand how the algorithm 
works by first discussing the one-dimensional Newton method for finding the roots of a 
single nonlinear function in one independent variable.  Then we will discuss the multidi-
mensional Newton-Raphson method.

One-Dimensional Root-Finding (Newton’s Method)
A nonlinear function may have multiple roots, where a root is defined as the intersection 
of the function with any straight line.  Typically the zero axis of the independent variable 
is the straight line for which we desire the roots.  Take, for example, a cubic polynomial 
which will have three roots, with either one or all three being real.

= = − − + +( ) 2 50 60 (4.38)3 2y f x x x x

There is a closed-form solution for the roots of a cubic function† which allows us to 
calculate in advance that the roots of this particular cubic are all real and are x = –7.562, 
–1.177, and 6.740.  

Figure 4-22 shows this function plotted over a range of x.  In Figure 4-22a, an initial 
guess value of x1 = 1.8 is chosen.  Newton’s algorithm evaluates the function for this guess 
value, finding y1.  The value of y1 is compared to a user-selected tolerance (say 0.001) to 
see if it is close enough to zero to call x1 the root.  If not, then the slope (m) of the function 
at x1, y1 is calculated either by using an analytic expression for the derivative of the func-
tion or by doing a numerical differentiation (less desirable).  The equation of the tangent 
line is then evaluated to find its intercept at x2 which is used as a new guess value.  The 
above process is repeated, finding y2; testing it against the user selected tolerance; and, if 
it is too large, calculating another tangent line whose x intercept is used as a new guess 
value.  This process is repeated until the value of the function yi at the latest xi is close 
enough to zero to satisfy the user.  

The Newton algorithm described above can be expressed algebraically (in pseudo-
code) as shown in equation 4.39.  The function for which the roots are sought is f(x), and 
its derivative is f ’(x).  The slope m of the tangent line is equal to f ’(x) at the current point 
xi, yi.  

† Viete’s method from “De 
Emendatione” by Francois 
Viete (1615) as described in 
reference [4].

* Kramer [3] states that  “In 
theory, any nonlinear alge-
braic system of equations can 
be manipulated into the form 
of a single polynomial in one 
unknown.  The roots of this 
polynomial can then be used 
to determine all unknowns in 
the system.  However, if the 
derived polynomial is greater 
than degree four, factoring 
and/or some form of iteration 
are necessary to obtain the 
roots.  In general, systems 
that have more than a fourth 
degree polynomial associated 
with the eliminant of all but 
one variable must be solved 
by iteration.  However, if 
factoring of the polynomial 
into terms of degree four or 
less is possible, all roots may 
be found without iteration.  
Therefore the only truly sym-
bolic solutions are those that 
can be factored into terms of 
fourth degree or less.  This 
is the formal definition of a 
closed form solution.”
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+ +

step 1 ( )
step 2 IF THEN STOP
step 3 = ( )

step 4

step 5 ( )
step 6 IF THEN STOP

ELSE : : GOTO step 1 (4.39)
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+1
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y f x
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y f x
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i
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i
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If the initial guess value is close to a root, this algorithm will converge rapidly to the 
solution.  However, it is quite sensitive to the initial guess value.  Figure 4-22b shows the 
result of a slight change in the initial guess from x1 = 1.8 to x1 = 2.5.  With this slightly 
different guess, it converges to another root.  Note also that if we choose an initial guess 
of x1 = 3.579 which corresponds to a local maximum of this function, the tangent line 
will be horizontal and will not intersect the x axis at all.  The method fails in this situa-
tion.  Can you suggest a value of x1 that would cause it to converge to the root at x = 6.74?

So this method has its drawbacks.  It may fail to converge.  It may behave chaotically.*
It is sensitive to the guess value.  It also is incapable of distinguishing between multiple 
circuits in a linkage.  The circuit solution it finds is dependent on the initial guess.  It re-
quires that the function be differentiable, and the derivative as well as the function must 
be evaluated at every step.  Nevertheless, it is the method of choice for functions whose 
derivatives can be efficiently evaluated and which are continuous in the region of the root.  
Furthermore, it is about the only choice for systems of nonlinear equations.

*Kramer[3] points out that 
“the Newton Raphson al-
gorithm can exhibit chaotic 
behavior when there are 
multiple solutions to kine-
matic constraint equations.  
. . . Newton Raphson 
has no mechanism for 
distinguishing between the 
two solutions” (circuits).  
He does an experiment 
with just two links, exactly 
analogous to finding the 
angles of the coupler and 
rocker in the fourbar linkage 
position problem, and finds 
that the initial guess values 
need to be quite close to 
the desired solution (one of 
the two possible circuits) to 
avoid divergence or chaotic 
oscillation between the two 
solutions.
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( a )  A guess of   = 1.8 converges to the root at   = –1.177

FIGURE 4-22
Newton-Raphson method of solution for roots of nonlinear functions

(b )  A guess of   = 2.5 converges to the root at   = –7.562
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Multidimensional Root-Finding (Newton-Raphson Method)
The one-dimensional Newton method is easily extended to multiple, simultaneous, non-
linear equation sets and is then called the Newton-Raphson method.  First, let’s generalize 
the expression developed for the one-dimensional case in step 4 of equation 4.39.  Refer 
also to Figure 4-22.

$

$

( )= − − = −

= = ′ − =

′ ⋅ = −

+ +

+

or

but: ( ) ( )

substituting: ( ) ( ) (4.40)

1 1

1

x x
y
m

m x x y

y f x m f x x x x

f x x f x

i i
i

i i i

i i i i i

i i

Here a $x term is introduced which will approach zero as the solution converges.  The $x
term rather than yi will be tested against a selected tolerance in this case.  Note that this 
form of the equation avoids the division operation which is acceptable in a scalar equation 
but impossible with a matrix equation.

A multidimensional problem will have a set of equations of the form

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
= B

( , , , , )
( , , , , )

( , , , , )

(4.41)

1 1 2 3

2 1 2 3

1 2 3

f x x x x
f x x x x

f x x x x

n

n

n n

…

…

� �

…

where the set of equations constitutes a vector, here called B.

Partial derivatives are required to obtain the slope terms

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⎡
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⎢
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⎦
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⎥
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⎥

= A (4.42)
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�

� � �

�

which form the Jacobian matrix of the system, here called A.

The error terms are also a vector, here called X.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= X (4.43)

1

2

x
x

xn

�

$

$

$

Equation 4.40 then becomes a matrix equation for the multidimensional case.

= −AX B (4.44)

Equation 4.44 can be solved for X either by matrix inversion or by Gaussian elimination.  
The values of the elements of A and B are calculable for any assumed (guess) values of 
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the variables.  A criterion for convergence can be taken as the sum of the error vector X 
at each iteration where the sum approaches zero at a root.  

Let’s set up this Newton-Raphson solution for the fourbar linkage.

Newton-Raphson Solution for the Fourbar Linkage
The vector loop equation of the fourbar linkage, separated into its real and imaginary parts 
(equations 4.6a and 4.6b) provides the set of functions that define the two unknown link 
angles 	3 and 	4.  The link lengths, a, b, c, d, and the input angle 	2 are given.  

= θ + θ − θ − =

= θ + θ − θ =

cos cos cos 0
(4.45a)

sin sin sin 0

1 2 3 4

2 2 3 4

f a b c d

f a b c

=
θ + θ − θ −
θ + θ − θ

⎡

⎣
⎢

⎤

⎦
⎥B

cos cos cos
sin sin sin

(4.45b)2 3 4

2 3 4

a b c d
a b c

The error vector is:

=
θ
θ
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⎥
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− θ θ

θ − θ
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⎤

⎦
⎥A

sin sin
cos cos (4.47)

1

3

1

4

2

3

2

4

3 4

3 4

f f

f f
b c
b c

This matrix is known as the Jacobian of the system, and, in addition to its usefulness 
in this solution method, it also tells something about the solvability of the system.  The 
system of equations for position, velocity, and acceleration (in all of which the Jacobian 
appears) can only be solved if the value of the determinant of the Jacobian is nonzero.  

Substituting equations 4.45b, 4.46, and 4.47 into equation 4.44 gives:

− θ θ
θ − θ

⎡

⎣
⎢

⎤

⎦
⎥

θ
θ

⎡

⎣
⎢

⎤

⎦
⎥ = −

θ + θ − θ −
θ + θ − θ

⎡

⎣
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⎤

⎦
⎥

sin sin
cos cos

cos cos cos
sin sin sin

(4.48)3 4

3 4

3

4

2 3 4

2 3 4

b c
b c

a b c d
a b c

$

$

To solve this matrix equation, guess values will have to be provided for 	3 and 	4 and 
the two equations then solved simultaneously for $	3 and $	4.  For a larger system of 
equations, a matrix reduction algorithm will need to be used.  For this simple system in 
two unknowns, the two equations can be solved by combination and reduction.  The test 
described above which compares the sum of the values of $	3 and $	4 to a selected toler-
ance must be applied after each iteration to determine if a root has been found.

Equation Solvers
Some commercially available equation solver software packages include the ability to 
do a Newton-Raphson iterative solution on sets of nonlinear simultaneous equations.  
TKSolver* and Mathcad† are examples.  TKSolver automatically invokes its Newton-

*Universal Technical 
Systems, 1220 Rock St. 
Rockford, IL 61101, USA.  
(800) 435-7887
 
†PTC Inc., 140 Kendrick 
St., Needham, MA 02494 
(781) 370-5000
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Raphson solver when it cannot directly solve the presented equation set, provided that 
enough guess values have been supplied for the unknowns.  These equation solver tools 
are quite convenient in that the user need only supply the equations for the system in “raw” 
form such as equation 4.45a.  It is not necessary to arrange them into the Newton-Raphson 
algorithm as shown in the previous section.  Lacking such a commercial equation solver, 
you will have to write your own computer code to program the solution as described 
above.  Reference [5] is a useful aid in this regard.  The downloads with this text contain 
example TKSolver files for the solution of this fourbar position problem as well as others.
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4.16 PROBLEMS‡

4-1 A position vector is defined as having a length equal to your height in inches (or cen-
timeters).  The tangent of its angle is defined as your weight in pounds (or kilograms) 
divided by your age in years.  Calculate the data for this vector and:
a. Draw the position vector to scale on cartesian axes.
b. Write an expression for the position vector using unit vector notation.
c. Write an expression for the position vector using complex number notation, in both 

polar and cartesian forms.
4-2 A particle is traveling along an arc of 6.5-in radius.  The arc center is at the origin of 

a coordinate system.  When the particle is at position A, its position vector makes a 

‡ All problem figures are provided as PDF files, and some are also provided as animated AVI and Working 
Model files; PDF filenames are the same as the figure number.  Run the file Animations.html to access and run 
the animations.
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Topic/Problem Matrix

 4.2 Position and Dis-
placement  
4-53, 4-57

 4.5 Position Analysis of 
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4-1, 4-2, 4-3, 4-4, 4-5
Graphical 4-6
Analytical 4-7, 4-8, 
4-18d, 4-24, 4-36, 
4-39. 4-42, 4-45, 4-48, 
4-51, 4-58, 4-59

 4.6 Fourbar Crank-Slider 
Position Solution
Graphical 4-9
Analytical 4-10, 
4-18c, 4-18f,  
4-18h, 4-20, 4-63, 
4-66

 4.7 Fourbar Slider-Crank 
Position Solution
Graphical  4-60
Analytical  4-61

 4.8 Inverted Crank-Slider 
Position Solution
Graphical 4-11
Analytical 4-12, 4-48

 4.9 Linkages of More 
than Four Bars
Graphical GFBM 4-16
Analytical GFBM 4-17
Sixbar  4-34, 4-36, 
4-37, 4-39, 4-40, 4-42, 
4-49, 4-51
Eightbar  4-43, 4-45, 
4-62
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4-19, 4-22, 4-23, 
4-46, 4-67

 4.11 Transmission Angles
4-13, 4-14, 4-18b,  
4-18e, 4-35, 4-38, 4-41, 
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45� angle with the X axis.  At position B, its vector makes a 75� angle with the X axis.  
Draw this system to some convenient scale and:
a. Write an expression for the particle’s position vector in position A using complex 

number notation, in both polar and cartesian forms.
b. Write an expression for the particle’s position vector in position B using complex 

number notation, in both polar and cartesian forms.
c. Write a vector equation for the position difference between points B and A.  Substi-

tute the complex number notation for the vectors in this equation and solve for the 
position difference numerically.

d. Check the result of part c with a graphical method.

Row Link 1 Link 2 Link 3 Link 4 θ2

a 6 2 7 9 30
b 7 9 3 8 85
c 3 1 0 6 8 45
d 8 5 7 6 25
e 8 5 8 6 75
f 5 8 8 9 15
g 6 8 8 9 25
h 20 10 10 10 50
i 4 5 2 5 80
j 20 10 33
k 4 6 10 7 88
l 9 7 10 7 60

m 9 7 11 8 50
n 9 7 11 6 120

TABLE  P4-1 Data for Problems 4-6, 4-7 and 4-13 to 4-15‡

1010

‡ These problem figures are 
provided as PDF files, and 
some are also provided as 
animated AVI and Working 
Model files; PDF filenames 
are the same as the figure 
number.  Run the file Ani-
mations.html to access and 
run the animations.

FIGURE P4-1‡

Problems 4-6 to 4-7.  General configuration and terminology for the fourbar linkage

θ31

θ2

A

B

X

Y

x

y

2

3

4

3

4

Open

Crossed

θ32

θ42

θ41

 - Part 2
Topic/Problem Matrix

 4.14 Newton-Raphson 
Solution Method
4-31, 4-32, 4-33, 
4-64, 4-65
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4-3 Repeat problem 4-2 considering points A and B to represent separate particles, and find 
their relative position.

4-4  Repeat Problem 4-2 with the particle’s path defined as being along the line  
y = –2x + 10.

4-5 Repeat Problem 4-3 with the path of the particle defined as being along the curve 
y = –2x2 – 2x + 10.

*4-6 The link lengths and the value of 	2 for some fourbar linkages are defined in Table P4-1.  
The linkage configuration and terminology are shown in Figure P4-1.  For the rows 
assigned, draw the linkage to scale and graphically find all possible solutions (both open 
and crossed) for angles 	3 and 	4.  Determine the Grashof condition.

*†4-7  Repeat Problem 4-6 except solve by the vector loop method.

4-8 Expand equation 4.7b and prove that it reduces to equation 4.7c.

*4-9 The link lengths and the value of 	2 and offset for some fourbar crank-slider linkages 
are defined in Table P4-2. The linkage configuration and terminology are shown in 
Figure P4-2.  For the rows assigned, draw the linkage to scale and graphically find all 
possible solutions (both open and crossed) for angle
	3 and slider position d.

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program LINKAGES.

 
‡ These problem figures are 
provided as PDF files, and 
some are also provided as 
animated AVI and Working 
Model files; PDF filenames 
are the same as the figure 
number.  Run the file Ani-
mations.html to access and 
run the animations.

FIGURE P4-2
Problems 4-9, 4-10, 4-60, 4-61  Fourbar slider linkage open configuration and terminology 
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θ4 = 90°
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Slider position  d
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θ 2

Row Link 2 Link 3 Offset θ2

1.4
2
3
3.5
5
3
7

a
b
c
d
e

g
f

4
6
8

10
20
13

25

1
–3

2
1

–5
0

10

45
60

–30
120
225
100
330

TABLE  P4-2 Data for Problems 4-9 to 4-10 ‡
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* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program LINKAGES.

*†4-10 Repeat Problem 4-9 except solve by the vector loop method.
*4-11 The link lengths and the value of 	2 and � for some inverted fourbar crank-slider link-

ages are defined in Table P4-3. The linkage configuration and terminology are shown in 
Figure P4-3.  For the rows assigned, draw the linkage to scale and graphically find both 
open and crossed solutions for angles 	3 and 	4 and vector RB.

 *†4-12 Repeat Problem 4-11 except solve by the vector loop method.
*†4-13 Find the transmission angles of the linkages in the assigned rows in Table P4-1.
*†4-14 Find the minimum and maximum values of the transmission angle for all the Grashof 

crank-rocker linkages in Table P4-1.
*†4-15 Find the input angles corresponding to the toggle positions of the non-Grashof linkages 

in Table P4-1.  (For this problem, ignore the values of 	2 given in the table.)

 *4-16 The link lengths, gear ratio (�), phase angle (�), and the value of 	2 for some geared 
fivebar linkages are defined in Table P4-4.  The linkage configuration and terminology 
are shown in Figure P4-4.  For the rows assigned, draw the linkage to scale and graphi-
cally find all possible solutions for angles 	3 and 	4.

*†4-17 Repeat Problem 4-16 except solve by the vector loop method.

Row Link 1 Link 2 Link 4 γ θ2

a 3090426
b 8575397
c 4510 63 45
d 256058 3
e 7530248
f 90885 150

TABLE  P4-3 Data for Problems 4-11 to 4-12

FIGURE P4-3
Problems 4-11 to 4-12  Terminology for inversion #3 of the fourbar crank-slider linkage
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4-18 Figure P4-5 shows the mechanisms for the following problems, each of which refers 
to the part of the figure having the same letter.  Reference all calculated angles to the 
global XY axes.
a. The angle between the X and x axes is 25�.  Find the angular displacement of link 

4 when link 2 rotates clockwise from the position shown (+37�) to horizontal (0�).  
How does the transmission angle vary and what is its minimum between those two 
positions?  Find the toggle positions of this linkage in terms of the angle of link 2.

b. Find and plot the angular position of links 3 and 4 and the transmission angle as a 
function of the angle of link 2 as it rotates through one revolution.

c. Find and plot the position of any one piston as a function of the angle of crank 2 
as it rotates through one revolution.  Once one piston’s motion is defined, find the 

FIGURE P4-4
Problems 4-16 to 4-17  Open configuration and geared fivebar linkage terminology 

P

X

Y

x

y

x

y

A

B

C

θ3

θ2

θ4
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θ5

r2
r5

Phase angle:

Gear ratio: = __r2

r5
±λ

φ = λθ2–θ5

Row Link 1 Link 2 Link 3 Link 4 Link 5 λ φ θ2

a
b
c
d
e
f
g
h
i

6
6
3
4
5

10
15
12
9

1
5
5
5
9
2
7
8
7

7
7
7
7
11
7
9
7
8

9
8
8
8
8
5

11
9
9

4
4
4
4
8
3
4
4
4

3.2
1.5
2.5

–2.5

–2.5
–0.5

2

–1

–4

60
30
45
75

–39
120
75
55

100

30
60

0
120
–50

30
–90

60
120

TABLE  P4-4 Data for Problems 4-16 to 4-17
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(d )  Walking-beam conveyor (e)  Bellcrank mechanism (f )  Offset slider-crank
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FIGURE P4-5
Mechanisms for Problem 4-18

View as a video
http://www.designofmachinery.com/DOM/radial_engine.avi

View as a video
http://www.

designofmachin-
ery.com/DOM/
drum_brake.avi View as a video

http://www.designofmachinery.com/DOM/compression_chamber.avi

View as a video
http://www.designofmachinery.com/DOM/walking_beam.avi
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motions of the other two pistons and their phase relationship to the first piston.
d. Find the total angular displacement of link 3 and the total stroke of the box as link 

2 makes a complete revolution.
e. Determine the ratio of angular displacement between links 8 and 2 as a function of 

angular displacement of input crank 2.  Plot the transmission angle at point B for 
one revolution of crank 2.  Comment on the behavior of this linkage.  Can it make 
a full revolution as shown?

f. Find and plot the displacement of piston 4 and the angular displacement of link 3 as 
a function of the angular displacement of crank 2.

g. Find and plot the angular displacement of link 6 versus the angle of input link 2 as 
it is rotated from the position shown (+30�) to a vertical position (+90�).  Find the 
toggle positions of this linkage in terms of the angle of link 2.

h. Find link 4’s maximum displacement vertically downward from the position shown.  
What will the angle of input link 2 be at that position?

†4-19 For one revolution of driving link 2 of the walking-beam indexing and pick-and-place 
mechanism in Figure P4-6, find the horizontal stroke of link 3 for the portion of their 
motion where its tips are above the top of the platen.  Express the stroke as a percent-
age of the crank length O2A.  What portion of a revolution of link 2 does this stroke 
correspond to?  Also find the total angular displacement of link 6 over one revolution 
of link 2.  The vertical distance from O2 to the top of the platen is 64 mm.  The vertical 
distance from line AD to the top left corner Q of the leftmost pusher finger is 73 mm.  
The horizontal distance from point A to Q is 95 mm.  

 †4-20 Figure P4-7 shows a power hacksaw, used to cut metal.  Link 5 pivots at O5 and its 
weight forces the sawblade against the workpiece while the linkage moves the blade 
(link 4) back and forth on link 5 to cut the part.  It is an offset crank-slider mechanism.  
The dimensions are shown in the figure.  For one revolution of driving link 2 of the 

 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program LINKAGES.
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FIGURE P4-6
Problem 4-19  Walking-beam indexer with pick-and-place mechanism      

View as a video
http://www.designofmachinery.com/

DOM/pick_and_place.avi
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program LINKAGES.

* Answers in Appendix F.
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Problem 4-21
FIGURE P4-8
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L2 =75 mm

FIGURE P4-7
Problem 4-20   Power hacksaw 

View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi

hacksaw mechanism on the cutting stroke, find and plot the horizontal stroke of the 
sawblade as a function of the angle of link 2.  

*†4-21 For the linkage in Figure P4-8, find its limit (toggle) positions in terms of the angle of 
link O2A referenced to the line of centers O2O4 when driven from link O2A.  Then cal-
culate and plot the xy coordinates of coupler point P between those limits, referenced to 
the line of centers O2O4.

 †4-22 For the walking-beam mechanism of Figure P4-9, calculate and plot the x and y 
components of the position of the coupler point P for one complete revolution of the 
crank O2A.  Hint: Calculate them first with respect to the ground link O2O4 and then 
transform them into the global XY coordinate system (i.e., horizontal and vertical in the 
figure).  Scale the figure for any additional information needed.

B
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31°

L4 = 2.33
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L3 = 2.06

L2 = 1.0
A

L1 = 2.22

P’
O2

O4 O6
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FIGURE P4-9
Problem 4-22  Straight-line walking-beam eightbar transport mechanism

View as a video
http://www.designofma-
chinery.com/DOM/walk-
ing_beam_eight-bar.avi
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*†4-23 For the linkage in Figure P4-10, calculate and plot the angular displacement of links 3 
and 4 and the path coordinates of point P with respect to the angle of the input crank 
O2A for one revolution.

†4-24 For the linkage in Figure P4-11, calculate and plot the angular displacement of links 3 
and 4 with respect to the angle of the input crank O2A for one revolution.

 *†4-25 For the linkage in Figure P4-12, find its limit (toggle) positions in terms of the angle 
of link O2A referenced to the line of centers O2O4 when driven from link O2A.  Then 
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of 
point P with respect to the angle of the input crank O2A over its possible range of mo-
tion referenced to the line of centers O2O4.

 *†4-26 For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle 
of link O2A referenced to the line of centers O2O4 when driven from link O2A.  Then 
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of 
point P between those limits, with respect to the angle of the input crank O2A over its 
possible range of motion referenced to the line of centers O2O4.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program LINKAGES.

* Answers in Appendix F.
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Problem 4-24

View as a video
http://www.designof-

machinery.com/DOM/
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program LINKAGES.

* Answers in Appendix F.

†4-27 For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle 
of link O4B referenced to the line of centers O4O2 when driven from link O4B.  Then 
calculate and plot the angular displacement of links 2 and 3 and the path coordinates of 
point P between those limits, with respect to the angle of the input crank O4B over its 
possible range of motion referenced to the line of centers O4O2.

 †4-28 For the rocker-crank linkage in Figure P4-14, find the maximum angular displace-
ment possible for the treadle link (to which force F is applied).  Determine the toggle 
positions.  How does this work?  Explain why the grinding wheel is able to fully rotate 
despite the presence of toggle positions when driven from the treadle.  How would you 
get it started if it were in a toggle position?

*†4-29 For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle 
of link O2A referenced to the line of centers O2O4 when driven from link O2A.  Then 
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of 
point P between those limits, with respect to the angle of the input crank O2A over its 
possible range of motion referenced to the line of centers O2O4.

 *†4-30 For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle 
of link O4B referenced to the line of centers O4O2 when driven from link O4B.  Then 
calculate and plot the angular displacement of links 2 and 3 and the path coordinates of 
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FIGURE P4-13
Problems 4-26 to 4-27
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Problems 4-29 to 4-30
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Problem 4-28

View as a video
http://www.designof-

machinery.com/DOM/
treadle_wheel.avi
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.  In 
most cases, the  solution 
can be checked with the 
program LINKAGES.

point P between those limits, with respect to the angle of the input crank O4B over its 
possible range of motion referenced to the line of centers O4O2.

 *†4-31 Write a computer program (or use an equation solver such as Mathcad, Matlab, or 
TKSolver) to find the roots of y = 9x2 + 50x – 40.  Hint: Plot the function to determine 
good guess values.

 †4-32 Write a computer program (or use an equation solver such as Mathcad, Matlab, or 
TKSolver) to find the roots of y = –x3 – 4x2 + 80x – 40.  Hint: Plot the function to 
determine good guess values.

 †4-33 Figure 4-22 plots the cubic function from equation 4.38.  Write a computer program 
(or use an equation solver such as Mathcad, Matlab, or TKSolver to solve the matrix 
equation) to investigate the behavior of the Newton-Raphson algorithm as the initial 
guess value is varied from x = 1.8 to 2.5 in steps of 0.1.  Determine the guess value at 
which the convergence switches roots.  Explain this root-switching phenomenon based 
on your observations from this exercise.  

†4-34 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular position of link 4 and the position of slider 6 
in Figure 3-33 as a function of the angle of input link 2.  

†4-35 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the transmission angles at points B and C of the linkage 
in Figure 3-33 as a function of the angle of input link 2.

†4-36 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage 
shown in Figure 3-29f.  (Use LINKAGES to check your result.)

 †4-37 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 6 in Figure 3-34 as a function of 
the angle of input link 2.  

†4-38 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, C, and D of the linkage 
in Figure 3-34 as a function of the angle of input link 2.

†4-39 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage 
shown in Figure 3-29g.  (Use LINKAGES to check your result.)

 †4-40 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 6 in Figure 3-35 as a function of 
the angle of input link 2.  

†4-41 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, D, and E of the linkage 
in Figure 3-35 as a function of the angle of input link 2.

4-42 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage 
shown in Figure 3-29h.  (Use LINKAGES to check your result.)

 †4-43 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 8 in Figure 3-36 as a function of 
the angle of input link 2.  

* Answers in Appendix F.
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† Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than an 
overnight problem.  In most 
cases, the solution can be 
checked with the program 
LINKAGES.  

†4-44 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the transmission angles at points B, C, D, E, and F of the 
linkage in Figure 3-36 as a function of the angle of input link 2.

†4-45 Model the linkage shown in Figure 3-37a in LINKAGES.  Export the coupler curve coor-
dinates to EXCEL and calculate the error function versus a true circle.

 †4-46 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of point P in Figure 3-37a as a function of the 
angle of input link 2.  Also plot the variation (error) in the path of point P versus that of 
point A, i.e., how close to a perfect circle is point P’s path.

†4-47 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at point B of the linkage in Figure 
3-37a as a function of the angle of input link 2.

†4-48 Figure 3-29f shows Evan’s approximate straight-line linkage #1.  Determine the range 
of motion of link 2 for which point P varies no more than 0.0025 from the straight 
line x = 1.690 in a coordinate system with origin at O2 and its x axis rotated 60� from 
O2O4.

†4-49 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of point P in Figure 3-37b as a function of the 
angle of input link 2.  

†4-50 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, C, and D of the linkage 
in Figure 3-37b as a function of the angle of input link 2.

†4-51 Figure 3-29g shows Evan’s approximate straight-line linkage #2.  Determine the range 
of motion of link 2 for which point P varies no more than 0.005 from the straight line x 
= –0.500 in a coordinate system with origin at O2 and its x axis rotated 30� from O2O4.

 4-52 For the linkage in Figure P4-16, what are the angles that link 2 makes with the positive 
X axis when links 2 and 3 are in toggle positions?

 4-53 The coordinates of the point P1 on link 4 in Figure P4-16 are (114.68, 33.19) with re-
spect to the xy coordinate system when link 2 is in the position shown.  When link 2 is in 
another position, the coordinates of P2 with respect to the xy system are (100.41, 43.78).  
Calculate the coordinates of P1 and P2 in the XY system for the two positions of link 2.  
What is the salient feature of the coordinates of P1 and P2 in the XY system?

 †4-54 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular position of link 4 with respect to the XY 
coordinate frame and the transmission angle at point B of the linkage in Figure P4-16 
as a function of the angle of link 2 with respect to the XY frame.

4-55 For the linkage in Figure P4-17, calculate the maximum CW rotation of link 2 from the 
position shown, which is at –26� with respect to the local xy coordinate system.  What 
angles do link 3 and link 4 rotate through for that excursion of link 2?

†4-56 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the position of the coupler point P of the linkage in Figure 
P4-17 with respect to the XY coordinate system as a function of the angle of link 2 with 
respect to the XY system.  The position of the coupler point P on link 3 with respect to 
point A is: p = 15.00, �3 = 0�.
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† Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than an 
overnight problem.  In most 
cases, the solution can be 
checked with the program 
LINKAGES.  

 4-57 For the linkage in Figure P4-17, calculate the coordinates of the point P in the XY coor-
dinate system if its coordinates in the xy system are (12.816, 10.234).

 †4-58 The elliptical trammel in Figure P4-18 must be driven by rotating link 3 in a full circle.  
Derive analytical expressions for the positions of points A, B, and a point C on link 3 
midway between A and B as a function of 	3 and the length AB of link 3.  Use a vector 
loop equation.  (Hint:  Place the global origin off the mechanism, preferably below 
and to the left and use a total of 5 vectors.)  Code your solution in an equation solver 
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such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point C for one 
revolution of link 3.

 †4-59 Figure P4-19 shows a mechanism commonly used as a cabinet door hinge.  Write a 
computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to 
calculate and plot the angular position of link 6 in Figure P4-19 as a function of the 
angle of input link 2.  O2O4 = AB = BC = DE = 1.  O2A = O4B = BE = CD = 1.75.  
O4C = AE = 2.60.  Hint:  Because the linkage geometry is simple and symmetrical, the 
analysis can be done with simple trigonometry.

 4-60 The link lengths, offset, and value of d for some fourbar slider-crank linkages are 
defined in Table P4-5.  The linkage configuration and terminology are shown in Figure 
P4-2.  For the rows assigned, draw the linkage to scale and graphically find all possible 
solutions (both open and crossed) for angles 	2 and 	3.

 4-61 Repeat Problem 4-60 except solve by the vector loop method.

 4-62 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK 
Solver to calculate and plot the path of point P in Figure 3-29j as a function of the 
angle of input link 2 over the range 90° ≤ 	2 ≤ 270° for the following link lengths: L1 
= 12, L2 = 10, L3 = L4 = 22, and L5 = L6 = L7 = L8 = 6.5.  Hint: To make the analysis 
convenient, use the mirror image of the figure putting O4 to the right of O2 on the posi-
tive x-axis.

 4-63 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK 
Solver to calculate and plot the position of the slider in Figure P4-2 as a function of the 
crank angle using the data in row a of Table P4-2 for the link lengths and offset.  Check 
your solution by comparing it to a graphical solution at the value given for 	2.

 4-64 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK 
Solver to find the roots of y = 8x2 – 64x – 178.  Hint:  Plot the function to determine 
good guess values.

 4-65 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK 
Solver to find the roots of y = x3 – 9x2 – 8.  Hint:  Plot the function to determine good 
guess values.

 
† Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than an 
overnight problem.  In most 
cases, the solution can be 
checked with the program 
LINKAGES.  

Row Link 2 Link 3 Offset d

1.4
2
3
3.5
5
3
7

a
b
c
d
e

g
f

4
6
8

10
20
13

25

1
–3

2
1

–5
0

10

2.5
5
8

–8
15

–12
25

TABLE  P4-5 Data for Problems 4-60 to 4-61 ‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder on the book’s website
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4-66 Figure P4-20 shows a cut-away view of a mechanism that opens and closes a remote 
valve by means of a long rod (valve stem) that moves up and down.  The handle has 
two round bosses (eccentrics) whose centers are offset from the pivot by 6 mm.  The 
eccentrics are connected to the valve stem by a coupler consisting of two identical links 
whose pivot holes have a center distance of 46 mm.  It is an inline crank-slider mecha-
nism.  For the 180-degree-motion of the handle from closed to fully open, find and plot 
the stroke of the valve stem as a function of the angle of the handle.

4-67 For the linkage in Figure 3-32a, calculate and plot the angular displacement of links 3 
and 4 and the path coordinates of point P with respect to the angle of the input crank 
O2A for one revolution.  The link lengths and coupler point data are: L1 = 3.72, L2 = 
1.00, L3 = 1.94, L4 = 3.72, p = 3.06, and �' = −20°.−
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FIGURE P4-20
Problem 4-66
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