 http://www.designofma-
chinery.com/DOM/Posi-
tion_Analysis.mp4
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Chapter

POSITION ANALYSIS

Theory is the distilled essence of practice
RANKINE

4.0 INTRODUCTION View the lecture video (49:48)%

Once a tentative mechanism design has been synthesized, it must then be analyzed. A
principal goal of kinematic analysis is to determine the accelerations of all the moving
parts in the assembly. Dynamic forces are proportional to acceleration, from Newton’s
second law. We need to know the dynamic forces in order to calculate the stresses in the
components. The design engineer must ensure that the proposed mechanism or machine
will not fail under its operating conditions. Thus the stresses in the materials must be
kept well below allowable levels. To calculate the stresses, we need to know the static
and dynamic forces on the parts. To calculate the dynamic forces, we need to know the
accelerations. In order to calculate the accelerations, we must first find the positions of
all the links or elements in the mechanism for each increment of input motion, and then
differentiate the position equations versus time to find velocities, and then differentiate
again to obtain the expressions for acceleration. For example, in a simple Grashof fourbar
linkage, we would probably want to calculate the positions, velocities, and accelerations
of the output links (coupler and rocker) for perhaps every two degrees (180 positions) of
input crank position for one revolution of the crank.

This can be done by any of several methods. We could use a graphical approach
to determine the position, velocity, and acceleration of the output links for all 180 posi-
tions of interest, or we could derive the general equations of motion for any position,
differentiate for velocity and acceleration, and then solve these analytical expressions
for our 180 (or more) crank locations. A computer will make this latter task much more
palatable. If we choose to use the graphical approach to analysis, we will have to do an in-
dependent graphical solution for each of the positions of interest. None of the information
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obtained graphically for the first position will be applicable to the second position or to
any others. In contrast, once the analytical solution is derived for a particular mechanism,
it can be quickly solved (with a computer) for all positions. If you want information for
more than 180 positions, it only means you will have to wait longer for the computer to
generate those data. The derived equations are the same. So, have another cup of coffee
while the computer crunches the numbers! In this chapter, we will present and derive
analytical solutions to the position analysis problem for various planar mechanisms. We
will also discuss graphical solutions which are useful for checking your analytical results.
In Chapters 6 and 7 we will do the same for velocity and acceleration analysis of planar
mechanisms.

It is interesting to note that graphical position analysis of linkages is a truly trivial
exercise, while the algebraic approach to position analysis is much more complicated.
If you can draw the linkage to scale, you have then solved the position analysis problem
graphically. It only remains to measure the link angles on the scale drawing to protractor
accuracy. But the converse is true for velocity and especially for acceleration analysis.
Analytical solutions for these are less complicated to derive than is the analytical position
solution. However, graphical velocity and acceleration analysis becomes quite complex
and difficult. Moreover, the graphical vector diagrams must be redone de novo (meaning
literally from new) for each of the linkage positions of interest. This is a very tedious
exercise and was the only practical method available in the days B.C. (Before Computer),
not so long ago. The proliferation of inexpensive microcomputers in recent years has
truly revolutionized the practice of engineering. As a graduate engineer, you will never
be far from a computer of sufficient power to solve this type of problem and may even
have one in your pocket. Thus, in this text we will emphasize analytical solutions which
are easily solved with a microcomputer. The computer programs provided with this text
use the same analytical techniques as derived in the text.

ENGINEERS WANTED

Computer Skills
Mandatory

Apply Within

Geez Joe, - now | wish | took that programming course!
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* Note that a two-argument
arctangent function must
be used to obtain angles

in all four quadrants. The
single-argument arctangent
function found in most
calculators and computer
programming languages
returns angle values in only
the first and fourth quad-
rants. You can calculate
your own two-argument
arctangent function very
easily by testing the sign of
the x component of the ar-
guments and, if x is minus,
adding w radians or 180° to
the result obtained from the
available single-argument
arctangent function.

For example (in Fortran):

FUNCTION Atan2(x,y )
IFx<>0THENQ=y/x
Temp = ATAN(Q)
IF x < 0 THEN

Atan2 = Temp + 3.14159
ELSE

Atan2 = Temp
END IF
RETURN
END

The above code assumes
that the language used has
a built-in single-argument
arctangent function called
ATAN(X) which returns an
angle between + /2 radians
when given a signed argu-
ment representing the value
of the tangent of that angle.
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41 COORDINATE SYSTEMS

Coordinate systems and reference frames exist for the convenience of the engineer who
defines them. In the next chapters we will provide our systems with multiple coordinate
systems as needed, to aid in understanding and solving the problem. We will denote one
of these as the global or absolute coordinate system, and the others will be local coordi-
nate systems within the global framework. The global system is often taken to be attached
to Mother Earth, though it could as well be attached to another ground plane such as the
frame of an automobile. If our goal is to analyze the motion of a windshield wiper blade,
we may not care to include the gross motion of the automobile in the analysis. In that case
a global coordinate system (GCS—denoted as X,Y) attached to the car would be useful,
and we could consider it to be an absolute coordinate system. Even if we use the earth as
an absolute reference frame, we must realize that it is not stationary either, and as such is
not very useful as a reference frame for a space probe. Though we will speak of absolute
positions, velocities, and accelerations, keep in mind that ultimately, until we discover
some stationary point in the universe, all motions are really relative. The term inertial
reference frame is used to denote a system which itself has no acceleration. All angles
in this text will be measured according to the right-hand rule. That is, counterclockwise
angles, angular velocities, and angular accelerations are positive in sign.

Local coordinate systems are typically attached to a link at some point of interest.
This might be a pin joint, a center of gravity, or a line of centers of a link. These local
coordinate systems may be either rotating or nonrotating as we desire. If we want to
measure the angle of a link as it rotates in the global system, we probably will want to
attach a local nonrotating coordinate system (LNCS—denoted as x, y) to some point on
the link (say a pin joint). This nonrotating system will move with its origin on the link
but remains always parallel to the global system. If we want to measure some parameters
within a link, independent of its rotation, then we will want to construct a local rotating
coordinate system (LRCS—denoted as x’, y’) along some line on the link. This system
will both move and rotate with the link in the global system. Most often we will need to
have both types of local coordinate systems (LNCS and LRCS) on our moving links to
do a complete analysis. Obviously we must define the angles and/or positions of these
moving, local coordinate systems in the global system at all positions of interest.

4.2 POSITION AND DISPLACEMENT

Position

The position of a point in the plane can be defined by the use of a position vector as
shown in Figure 4-1. The choice of reference axes is arbitrary and is selected to suit the
observer. Figure 4-1a shows a point in the plane defined in a global coordinate system
and Figure 4-1b shows the same point defined in a local coordinate system with its origin
coincident with the global system A two-dimensional vector has two attributes, which
can be expressed in either polar or cartesian coordinates. The polar form provides the
magnitude and the angle of the vector. The cartesian form provides the X and Y compo-
nents of the vector. Each form is directly convertible into the other by™
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Yy 4Y A
i 7 Polar form: i ‘ ‘
Ry Ra| @ @ Ry
Ry 5 Cartesian form: Ry [0} i

\ R Ry 8\ N

VX o

Ry - Rx -
(a) Global coordinate system XY (b) Local coordinate system xy
FIGURE 4-1

A position vector in the plane - expressed in both global and local coordinates

the Pythagorean theorem:

R, =R% +RZ

and trigonometry: (4.0a)

0 = arctan R—Y
Rx

Equations 4.0a are shown in global coordinates but could as well be expressed in local
coordinates.

Coordinate Transformation

It is often necessary to transform the coordinates of a point defined in one system to co-
ordinates in another. If the system’s origins are coincident as shown in Figure 4-1b and
the required transformation is a rotation, it can be expressed in terms of the original coor-
dinates and the signed angle & between the coordinate systems. If the position of point A
in Figure 4-1b is expressed in the local xy system as Ry, Ry, and it is desired to transform
its coordinates to Ry, Ry in the global XY system, the equations are:

Rx =R, cosd—R,sind

. (4.0b)
Ry =R, sind+ R, cosd

Displacement

Displacement of a point is the change in its position and can be defined as the straight-line
distance between the initial and final position of a point which has moved in the reference
frame. Note that displacement is not necessarily the same as the path length which the
point may have traveled to get from its initial to final position. Figure 4-2a shows a point
in two positions, A and B. The curved line depicts the path along which the point traveled.
The position vector Rpy defines the displacement of the point B with respect to point A.
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Rp
_RA

0l

FIGURE 4-2

Position difference and relative position

Figure 4-2b defines this situation more rigorously and with respect to a reference frame
XY. The notation R will be used to denote a position vector. The vectors R4 and Rp de-
fine, respectively, the absolute positions of points A and B with respect to this global XY
reference frame. The vector Rpy denotes the difference in position, or the displacement,
between A and B. This can be expressed as the position difference equation:

RBA :RB_RA (4.13)

This expression is read: The position of B with respect to A is equal to the (absolute)
position of B minus the (absolute) position of A, where absolute means with respect to the
origin of the global reference frame. This expression could also be written as:

Rps=Rpp-Rypo (4.1b)

with the second subscript O denoting the origin of the XY reference frame. When a
position vector is rooted at the origin of the reference frame, it is customary to omit the
second subscript. It is understood, in its absence, to be the origin. Also, a vector referred
to the origin, such as Ry, is often called an absolute vector. This means that it is taken
with respect to a reference frame which is assumed to be stationary, e.g., the ground. It
is important to realize, however, that the ground is usually also in motion in some larger
frame of reference. Figure 4-2c shows a graphical solution to equations 4.1.



POSITION ANALYSIS

In our example of Figure 4-2, we have tacitly assumed so far that this point, which is
first located at A and later at B, is, in fact, the same particle, moving within the reference
frame. It could be, for example, one automobile moving along the road from A to B. With
that assumption, it is conventional to refer to the vector Rg, as a position difference.
There is, however, another situation which leads to the same diagram and equation but
needs a different name. Assume now that points A and B in Figure 4-2b represent not
the same particle but two independent particles moving in the same reference frame, as
perhaps two automobiles traveling on the same road. The vector equations 4.1 and the
diagram in Figure 4-2b still are valid, but we now refer to Rpy as a relative position, or
apparent position. We will use the relative position term here. A more formal way to
distinguish between these two cases is as follows:

CASE 1: One body in two successive positions => position difference
CASE 2: Two bodies simultaneously in separate positions => relative position

This may seem a rather fine point to distinguish, but the distinction will prove useful,
and the reasons for it more clear, when we analyze velocities and accelerations, especially
when we encounter (Case 2 type) situations in which the two bodies occupy the same
position at the same time but have different motions.

4.3 TRANSLATION, ROTATION, AND COMPLEX MOTION

So far we have been dealing with a particle, or point, in plane motion. It is more interest-
ing to consider the motion of a rigid body, or link, which involves both the position of a
point on the link and the orientation of a line on the link, sometimes called the POSE of
the link. Figure 4-3a shows a link AB denoted by a position vector Rg4. An axis system
has been set up at the root of the vector, at point A, for convenience.

Translation

Figure 4-3b shows link AB moved to a new position A’B’ by translation through the dis-
placement AA’ or BB’ which are equal, i.e., R4, =Rgp .

A definition of translation is:

All points on the body have the same displacement.

As a result the link retains its angular orientation. Note that the translation need not
be along a straight path. The curved lines from A to A’ and B to B’ are the curvilinear
translation path of the link. There is no rotation of the link if these paths are parallel. If
the path happens to be straight, then it will be the special case of rectilinear translation,
and the path and the displacement will be the same.

Rotation

Figure 4-3c shows the same link AB moved from its original position at the origin by
rotation through an angle. Point A remains at the origin, but B moves through the position
difference vector Ry =R, -Rg, .
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FIGURE 4-3

(a)

)
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Rpa

(d)

Translation, rotation, and complex motion

A definition of rotation is:

Different points in the body undergo different displacements and thus there is a displace-
ment difference between any two points chosen.

The link now changes its angular orientation in the reference frame, and all points have
different displacements.

Complex Motion

The general case of complex motion is the sum of the translation and rotation compo-
nents. Figure 4-3d shows the same link moved through both a translation and a rotation.
Note that the order in which these two components are added is immaterial. The resulting
complex displacement will be the same whether you first rotate and then translate or vice
versa. This is so because the two factors are independent. The total complex displace-
ment of point B is defined by the following expression:



POSITION ANALYSIS

Total displacement = translation component + rotation component
Rpp=Rpp+Ryp (4.1¢)

The new absolute position of point B referred to the origin at A is:
Rpiy =Ry +Rpny (4.1d)

Note that the above two formulas are merely applications of the position difference
equation 4.1a. See also Section 2.2 for definitions and discussion of rotation, translation,
and complex motion. These motion states can be expressed as the following theorems.

Theorems

Euler’s theorem:

The general displacement of a rigid body with one point fixed is a rotation about some
axis.

This applies to pure rotation as defined above and in Section 2.2. Chasles (1793-1880)
provided a corollary to Euler’s theorem now known as:

Chasles’ theorem:[01 *

Any displacement of a rigid body is equivalent to the sum of a translation of any one point
on that body and a rotation of the body about an axis through that point.

This describes complex motion as defined above and in Section 2.2. Note that equation
4.1c is an expression of Chasles’ theorem.

4.4 GRAPHICAL POSITION ANALYSIS OF LINKAGES

For any one-DOF linkage, such as a fourbar, only one parameter is needed to completely
define the positions of all the links. The parameter usually chosen is the angle of the input
link. This is shown as 0, in Figure 4-4. We want to find 03 and64. The link lengths are
known. Note that we will consistently number the ground link as 1 and the driver link as
2 in these examples.

The graphical analysis of this problem is trivial and can be done using only high-
school geometry. If we draw the linkage carefully to scale with rule, compass, and pro-
tractor in a particular position (given 0,), then it is only necessary to measure the angles
of links 3 and 4 with the protractor. Note that all link angles are measured from a positive
X axis. In Figure 4-4, a local xy axis system, parallel to the global XY system, has been
created at point A to measure 63. The accuracy of this graphical solution will be limited
by our care and drafting ability and by the crudity of the protractor used. Nevertheless, a
very rapid approximate solution can be found for any one position.

Figure 4-5 shows the construction of the graphical position solution. The four link
lengths a, b, ¢, d and the angle 0, of the input link are given. First, the ground link (1)
and the input link (2) are drawn to a convenient scale such that they intersect at the origin
0, of the global XY coordinate system with link 2 placed at the input angle 6,. Link 1 is
drawn along the X axis for convenience. The compass is set to the scaled length of link 3,
and an arc of that radius is swung about the end of link 2 (point A). Then the compass is
set to the scaled length of link 4, and a second arc is swung about the end of link 1 (point

185

# Ceccarellil”] points out
that Chasles’ theorem
(Paris, 1830) was put forth
earlier (Naples, 1763) by
Mozzil8] but the latter’s
work was apparently un-
known or ignored in the rest
of Europe, and the theorem
became associated with
Chasles’ name.
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02

FIGURE 4-4

Measurement of angles in the fourbar linkage

0y4). These two arcs will have two intersections at B and B’ that define the two solutions
to the position problem for a fourbar linkage which can be assembled in two configura-
tions, called circuits, labeled open and crossed in Figure 4-5. Circuits in linkages will be
discussed in a later section.

The angles of links 3 and 4 can be measured with a protractor. One circuit has angles
03 and 04, the other 03> and 64°. A graphical solution is only valid for the particular value
of input angle used. For each additional position analysis we must completely redraw
the linkage. This can become burdensome if we need a complete analysis at every 1- or
2-degree increment of 0,. In that case we will be better off to derive an analytical solution
for 63 and 64 that can be solved by computer.

Crossed

Bey
B\

FIGURE 4-5
Graphical position solution to the open and crossed configurations of the fourbar linkage
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4.5 ALGEBRAIC POSITION ANALYSIS OF LINKAGES

The same procedure that was used in Figure 4-5 to solve geometrically for the intersec-
tions B and B’ and angles of links 3 and 4 can be encoded into an algebraic algorithm.
The coordinates of point A are found from

A, =acosf, (423)
2a

A, =asinb,

The coordinates of point B are found using the equations of circles about A and Oj.
b =(By - A.) + (B, -4, )2 (4.2b)
¢? = (B, —d) +B? (4.20)
which provide a pair of simultaneous equations in By and B,,.
Subtracting equation 4.2¢ from 4.2b gives an expression for B,.
- +cP-d®  24,B, 2A,B,

T —d) 2A-d)  2(A-d) (420

Substituting equation 4.2d into 4.2¢ gives a quadratic equation in B, which has two
solutions corresponding to those in Figure 4-5.

2
A,B
B§+[s_ﬁ_dJ o (4.20)
-

This can be solved with the familiar expression for the roots of a quadratic equation,

J— 2 p—
B, = ZQENQ —4PR (4.26)

Y 2P
where:
A2 24,(d-S
P=——+1 Qz—y( )
(Ax_d) Ax—d
2 32,2 22
R=(d-S)*-¢? Szw
2(A, —d)

Note that the solutions to this equation set can be real or imaginary. If the latter, it
indicates that the links cannot connect at the given input angle or at all. Once the two
values of By are found (if real), they can be substituted into equation 4.2d to find their
corresponding x components. The link angles for this position can then be found from

B,-A
93=tan1[ Y yJ
Bx_Ax

B
94=tan1[ J ]
B, —d

(4.2g)

187



188

DESIGN OF MACHINERY 6ed CHAPTER 4

A two-argument arctangent function must be used to solve equations 4.2g since the angles
can be in any quadrant. Equations 4.2 can be encoded in any computer language or
equation solver, and the value of 0, varied over the linkage’s usable range to find all cor-
responding values of the other two link angles.

Vector Loop Representation of Linkages

An alternate approach to linkage position analysis creates a vector loop (or loops) around
the linkage as first proposed by Raven.[9] This approach offers some advantages in the
synthesis of linkages which will be addressed in Chapter 5. The links are represented as
position vectors. Figure 4-6 shows the same fourbar linkage as in Figure 4-4, but the
links are now drawn as position vectors that form a vector loop. This loop closes on itself,
making the sum of the vectors around the loop zero. The lengths of the vectors are the
link lengths, which are known. The current linkage position is defined by the input angle
0, as it is a one-DOF mechanism. We want to solve for the unknown angles 63 and 6.
To do so we need a convenient notation to represent the vectors.

Complex Numbers as Vectors

There are many ways to represent vectors. They may be defined in polar coordinates,
by their magnitude and angle, or in cartesian coordinates as x and y components. These
forms are of course easily convertible from one to the other using equations 4.0a. The
position vectors in Figure 4-6 can be represented as any of these expressions:

Polar form Cartesian form
R@«£0 rcos6i+rsinej (4.3a)
rel® rcos0+ jrsin® (4.3b)

Equation 4.3a uses unit vectors to represent the x and y vector component direc-
tions in the cartesian form. Figure 4-7 shows the unit vector notation for a position vec-
tor. Equation 4.3b uses complex number notation wherein the X direction component
is called the real portion and the Y direction component is called the imaginary portion.
This unfortunate term imaginary comes about because of the use of the notation j to
represent the square root of minus one, which of course cannot be evaluated numerically.

Yy B

y Rj3
b R,

A 93 X

C

Ry 04
a \e
[ d
; > X
(0)) Ry X O4
FIGURE 4-6

Position vector loop for a fourbar linkage
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However, this imaginary number is used in a complex number as an operator, not as
a value. Figure 4-8a shows the complex plane in which the real axis represents the
X-directed component of the vector in the plane, and the imaginary axis represents the
Y-directed component of the same vector. So, any term in a complex number which has
no j operator is an x component, and a j indicates a y component.

Note in Figure 4-8b that each multiplication of the vector R4 by the operator j results
in a counterclockwise rotation of the vector through 90 degrees. The vector Rg = jR4
is directed along the positive imaginary or j axis. The vector R¢ = j2 Ry is directed
along the negative real axis because j2 = —1 and thus Rc = -R,. In similar fashion,
Rp =j3 Ry = —jR4 and this component is directed along the negative j axis.

One advantage of using this complex number notation to represent planar vectors
comes from the Euler identity:

e 9= cosp + jsin® (4.4a)

Any two-dimensional vector can be represented by the compact polar notation on the
left side of equation 4.4a. There is no easier function to differentiate or integrate, since
it is its own derivative:

de’®

= jel® 4.4b
o e (4.4b)

We will use this complex number notation for vectors to develop and derive the
equations for position, velocity, and acceleration of linkages.

The Vector Loop Equation for a Fourbar Linkage

The directions of the position vectors in Figure 4-6 are chosen so as to define their angles
where we desire them to be measured. By definition, the angle of a vector is always
measured at its root, not at its head. We would like angle 6, to be measured at the fixed
pivot Oy, so vector Ry is arranged to have its root at that point. We would like to measure
angle 03 at the point where links 2 and 3 join, so vector Rj is rooted there. A similar logic
dictates the arrangement of vectors R and R,. Note that the X (real) axis is taken for
convenience along link 1 and the origin of the global coordinate system is taken at point

A
YA Polar form:
/ 2
Ral@ /o
A o |Ral@ /6
A J
Rsin®j ] . 0 Cartesian form:
i A A
= > X RcosO i, RsinB]
-
RcosO i

FIGURE 4-7

Unit vector notation for position vectors

189



190

DESIGN OF MACHINERY 6ed CHAPTER 4

Polar form: Re/®
Cartesian form: Rcos© +jRsin6 Imaginary
A
. R = ‘ RA‘ J
Imaginary B 4

J

A

/ B I

J
' JjRsin®

.2
> Rc =jR=-R +0
\\ ,
Ra - (= 0

0 C 0} Real

(a) Complex number representation of a position vector

FIGURE 4-8

Complex number representation of vectors in the plane

\ - / Ry

]
Real Rp =j’R=-jR

> D
RcosH %

(b) Vector rotations in the complex plane

05, the root of the input link vector Ry. These choices of vector directions and senses,
as indicated by their arrowheads, lead to this vector loop equation:

R2 +R3 —R4 _Rl =0 (4.53)

An alternate notation for these position vectors is to use the labels of the points at
the vector tips and roots (in that order) as subscripts. The second subscript is convention-
ally omitted if it is the origin of the global coordinate system (point O,):

RA+RBA_RBO4_RO4=0 (4.5b)

Next, we substitute the complex number notation for each position vector. To sim-
plify the notation and minimize the use of subscripts, we will denote the scalar lengths
of the four links as a, b, ¢, and d. These are so labeled in Figure 4-6. The equation then
becomes:

ae® +pel® —cel®s _ el =g (4.5¢)

These are three forms of the same vector equation, and as such can be solved for two
unknowns. There are four variables in this equation, namely the four link angles. The
link lengths are all constant in this particular linkage. Also, the value of the angle of link
1 is fixed (at zero) since this is the ground link. The independent variable is 6, which we
will control with a motor or other driver device. That leaves the angles of link 3 and 4 to
be found. We need algebraic expressions which define 63 and 64 as functions only of the
constant link lengths and the one input angle, 6,. These expressions will be of the form:
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0;=f{a,b,c,d,0,}

0,=g{a,b,c,d,0,}

(4.5d)

To solve the polar form, vector equation 4.5c, we must substitute the Euler equivalents
(equation 4.4a) for the e/ terms, and then separate the resulting cartesian form vector
equation into two scalar equations which can be solved simultaneously for 63 and 64.
Substituting equation 4.4a into equation 4.5c:

a(00562 +jsin62)+b(cose3 +jsin63)—c(cose4 +jsin64)—d(cos61 +jsin61)= 0 (4.5e)
This equation can now be separated into its real and imaginary parts and each set to zero.

real part (x component):

acos6, +bcosB; —ccosB, —dcosO; =0w

but: 6, =0, so: (4.62)

acos0, +bcosB; —ccosO, —d=0

imaginary part (y component):

jasin®, + jbsin®; — jesin®, — jdsin6; =0
but: 6, =0, and the j's divide out, so: (4.6b)

asin®, +bsinB; —csinB, =0
The scalar equations 4.6a and 4.6b can now be solved simultaneously for 63 and
04. To solve this set of two simultaneous trigonometric equations is straightforward but
tedious. Some substitution of trigonometric identities will simplify the expressions. The

first step is to rewrite equations 4.6a and 4.6b so as to isolate one of the two unknowns on
the left side. We will isolate 63 and solve for 6,4 in this example.

bcosB; =—acos6, +ccosO, +d (4.6¢)
bsin®; =—asin®, +csin6, (4.6d)

Now square both sides of equations 4.6¢ and 4.6d and add them:
b? (sin2 05 +cos” 05 ) = (—asin62 +csin6, )2 +(—acos®, +ccoshy, + d)2 (4.7a)

Note that the quantity in parentheses on the left side is equal to 1, eliminating 63 from
the equation, leaving only 64 which can now be solved for.

b? = (—asinez +csin6y )2 + (—a cos0, +ccosf, + d)2 (4.7b)
Expand this expression and collect terms.
b* =a® +c* +d* —2adcos6, +2cdcosb, —2ac(sin®, sin@, +cos6, cose, ) (4.7¢)

Divide through by 2ac and rearrange to get:
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a-b?++d?

=sin®, sin0, + cosO, cosO, (4.7d)
2ac

EcosG4 —gcosez +
a c

To further simplify this expression, the constants K|, K>, and K3 are defined in terms
of the constant link lengths in equation 4.7d:

d d -b*+c’+d’
K== K== k=22 T T (4.82)
a c 2ac
and:
K, cos6, — K, cos0, + K5 = cos0, cos, +sinb, sin6, (4.8b)

If we substitute the identity cos(6, —6,)=cos6, cos6, +sin6, sin6, , we get the form
known as Freudenstein’s equation.

K; cos0, — K, cos0, + K3 = cos(62 - 64) (4.8¢)

In order to reduce equation 4.8b to a more tractable form for solution, it will be use-
ful to substitute the half-angle identities which will convert the sin 04 and cos 64 terms

to tan 04 terms:
2tan 94 1—tan? L8
2 2

1+ tan? [9—4) 1+ tan? (9—4)
2 2

This results in the following simplified form, where the link lengths and known input
value (0,) terms have been collected as constants A, B, and C.

sin, = cosf, = 4.9)

A tan? (674)+B tan(%j+C: 0

(4.10a)
where: A=cosf, - K; — K, cos0, + K;
B=-2sin6,
C=K; - (K, +1)cos6, +K;3

Note that equation 4.10a is quadratic in form, and the solution is:

[ 84 | ~BEVB? —4AC
- 24
(4.10b)

—-B++B?-4AC
04  =2arctan| —————
12 24
Equation 4.10b has two solutions, obtained from the + conditions on the radical.
These two solutions, as with any quadratic equation, may be of three types: real and equal,
real and unequal, complex conjugate. If the discriminant under the radical is negative,
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then the solution is complex conjugate, which simply means that the link lengths chosen
are not capable of connection for the chosen value of the input angle 6,. This can occur
either when the link lengths are completely incapable of connection in any position or, in
a non-Grashof linkage, when the input angle is beyond a toggle limit position. There is
then no real solution for that value of input angle 6,. Excepting this situation, the solu-
tion will usually be real and unequal, meaning there are two values of 64 corresponding
to any one value of 68,. These are referred to as the crossed and open configurations of
the linkage and also as the two circuits of the linkage.” In the fourbar linkage, the minus
solution gives 64 for the open configuration and the positive solution gives 0,4 for the
crossed configuration.

Figure 4-5 shows both crossed and open solutions for a Grashof crank-rocker linkage.
The terms crossed and open are based on the assumption that the input link 2, for which
0, is defined, is placed in the first quadrant (i.e., 0 < 0, < 7/2). A Grashof linkage is then
defined as crossed if the two links adjacent to the shortest link cross one another, and as
open if they do not cross one another in this position. Note that the configuration of the
linkage, either crossed or open, is solely dependent upon the way that the links are as-
sembled. You cannot predict, based on link lengths alone, which of the solutions will be
the desired one. In other words, you can obtain either solution with the same linkage by
simply taking apart the pin which connects links 3 and 4 in Figure 4-5, and moving those
links to the only other positions at which the pin will again connect them. In so doing,
you will have switched from one position solution, or circuit, to the other.

The solution for angle 03 is essentially similar to that for 64. Returning to equations
4.6, we can rearrange them to isolate 6, on the left side.

ccosB, =acos6b, +bcosO; —d (4.6e)
csin®, =asin®, +bsinO; (4.6f)
Squaring and adding these equations will eliminate 64. The resulting equation can be

solved for 03 as was done above for 0,4, yielding this expression:

K; cos0;3 + K, cos0, + K5 = cos0, cos0; +sin 0, sin 03 (4.11a)

The constant K is the same as defined in equation 4.8b, and K4 and K are:

d ¢ —d*-a® -b?
K,=— Kg=r———— 4.11b
‘b : 2ab (4110)
This also reduces to a quadratic form:
0 0
Dtan? [73)+Etan(73]+F=O
(4.12)
where D =cos0, — K; + K, cos6, +Kj;
E= —ZSin92

F=K; +(K, —1)cos0, + K

and the solution is:
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—E++\E*-4DF
6312 =2arctan —>p (4.13)

As with the angle 04, this also has two solutions, corresponding to the crossed and
open circuits of the linkage, as shown in Figure 4-5.

A DEXAMPLE 41

Position Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem: Given a fourbar linkage with the link lengths L; = d = 100 mm, L, = a = 40 mm,
Lz =b=120mm, L4 = ¢ = 80 mm. For 6, = 40° find all possible values of 65 and 04.

Solution: (See Figure 4-6 for nomenclature.)

1 Using equation 4.8a, calculate the link ratios K, K> and K3.
d_100_

Kl =—= 2.5
a 40
d 100
K,=—=—=125 a
277 80 (@)
a?-b*+2+d>  40% —120% +80% +100%
Ky = = =0.562
2ac 2(40)(80)

2 Use these link ratios to find the intermediate parameters A, B, and C from equation 4.10a.

A=cosb, — K; — K, cos6, + K3 = cos(40°) — 2.5 - 1.25cos(40°) +0.562 = —2.129
B=-2sinH, =—2sin(40°) =-1.286 (b)
C=K; —(K, +1)cos6, + K3 =2.5—(1.25+1)cos(40°) +0.562 = 1.339

3 Use equation 4.10b to find 0,4 for both the open and crossed configurations.

_B-+JB?—44C 1.286— \/—1.2862 —4(-2.129)(1.339)

0, =2arctan| —————— |=2arctan
open 2A 2(-2.129)
=57.33°
(©)
_B++B?—4AC 1.286+\/—1.2862 —4(-2.129)(1.339)
0, =2arctan| ————————— |=2arctan
crossed 2A 2(—2129)

=-98.01°
4 Use equation 4.11b to find the ratios K4 and K.
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B

A Y
circuit 1
(open)

641 = 57.330
0,
X
3’ 4 circuit 2
(crossed)
B
FIGURE 4-9
Solution to Example 4-1
d 100
L =—=—=0833
b 120
—d*—a?-b*  80*-100? — 40% —120%
Ks = = =-2.042 (d)
2ab 2(40)(120)

5 Use equation 4.12 to find the intermediate parameters D, E, and F.

D =cos0, — K| + K, cos0, + K5 = cos(40°) — 2.5+ 0.833(40°) - 2.042 = -3.137

E =-2sin6, =—2sin(40°) =-1.286 (e)
F=K, +(K; —1)cos0, + K5 =2.5+(0.833—1)cos(40°) —2.042 = 0.331
6 Use equation 4.13 to find 03 for both the open and crossed configurations.
_E-+E?—4DF 1.286—\/—1.2862 —4(-3.137)(0.331)
0;  =2arctan| ————— |[=2arctan
open 2D 2(-3.137)
=20.30° @)
_E++E%_4DF 1.286+\/—1.2862 -4(-3.137)(0.331)
0 =2arctan| ————  [=2arctan
Serossed 2D 2(-3.137)
=-60.98°

7 The solution is shown in Figure 4-9.
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FIGURE 4-10

Position vector loop for a fourbar crank-slider or slider-crank linkage

4.6 THE FOURBAR CRANK-SLIDER POSITION SOLUTION

The same vector loop approach as used for the pure pin-jointed fourbar can be applied
to a linkage containing sliders. Figure 4-10 shows an offset fourbar crank-slider linkage,
inversion #1. The term offset means that the slider axis extended does not pass through
the crank pivot. This is the general case. (The nonoffset crank-slider linkages shown in
Figure 2-15 are the special cases.) This linkage could be represented by only three posi-
tion vectors, Ry, R3, and Ry, but one of them (Ry) will be a vector of varying magnitude
and angle. It will be easier to use four vectors, Ry, Ry, R3, and R4 with R arranged paral-
lel to the axis of sliding and Ry perpendicular. In effect the pair of vectors R and R4 are
orthogonal components of the position vector Ry from the origin to the slider.

It simplifies the analysis to arrange one coordinate axis parallel to the axis of sliding.
The variable-length, constant-direction vector R then represents the slider position with
magnitude d. The vector R, is orthogonal to R and defines the constant magnitude offset
of the linkage. Note that for the special-case, nonoffset version, the vector R4 will be zero
and Ry = R;. The vectors R, and R3 complete the vector loop. The coupler’s position
vector Rz is placed with its root at the slider which then defines its angle 05 at point B.
This particular arrangement of position vectors leads to a vector loop equation similar to
the pin-jointed fourbar example:

R2 —R3 —R4 _Rl =0 (4143)

Compare equation 4.14a to equation 4.5a and note that the only difference is the sign
of R3. This is due solely to the somewhat arbitrary choice of the sense of the position
vector Rj3 in each case. The angle 03 must always be measured at the root of vector Rj,
and in this example it will be convenient to have that angle 03 at the joint labeled B. Once
these arbitrary choices are made it is crucial that the resulting algebraic signs be carefully
observed in the equations, or the results will be completely erroneous. Letting the vec-
tor magnitudes (link lengths) be represented by a, b, ¢, d as shown, we can substitute the
complex number equivalents for the position vectors.

ael® —pel® — el _gel® = (4.14b)
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Substitute the Euler equivalents:
a(cos®, + jsin®, )—b(cosO; + jsin6;)
—c(cose4 +jsin94)—d(<:ose1 +jsin91): 0 (4.14¢c)
Separate the real and imaginary components:

real part (x component):
acos®, —bcosB; —ccosB, —dcos6; =0
but: 6, =0, so: acos0, —bcosB; —ccosB, —d=0 (4.152)
imaginary part (y component):
jasin®, — jbsin®; — jcsin®, — jdsin®; =0
but: 6, =0, and the j's divide out, so: (4.15b)
asin®, —bsin6; —csinB, =0
We want to solve equations 4.15 simultaneously for the two unknowns, link length d
and link angle 03. The independent variable is crank angle 6,. Link lengths a and b, the
offset ¢, and angle 04 are known. But note that since we set up the coordinate system to
be parallel and perpendicular to the axis of the slider block, the angle 0 is zero and 0y is

90°. Equation 4.15b can be solved for 63 and the result substituted into equation 4.15a to
solve for d. The solution is:

931 = arcsin(%ez_cj (4.16a)
d=acos6, —bcosO; (4.16b)

Note that there are again two valid solutions corresponding to the two circuits of the
linkage. The arcsine function is multivalued. Its evaluation will give a value between
190° representing only one circuit of the linkage. The value of d is dependent on the
calculated value of 03. The value of 05 for the second circuit of the linkage can be found
from:

632 = arcsin(—%oz_cj +T 4.17)

,@DEXAMPLE 4-2

Position Analysis of a Fourbar Crank-Slider Linkage with the Vector Loop Method.

Problem: Given a fourbar crank-slider linkage with the link lengths L, = a = 40 mm, L3 =

b =120 mm, offset = ¢ = -20 mm. For 6, = 60° find all possible values of 65 and
slider position d.

Solution: (See Figure 4-10 for nomenclature.)

1 Using equation 4.16a, calculate the link coupler angle 03 for the open configuration.
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Y A
circuit 2 a circuit 1
(crossed) b AN b (open)
92 = 60O
02 \
- X
,/e_: =152.91°
03 =27.09° offset ¢ = -20 mm
Jcrossed
B
e R i T N SR 3 B
' slider ax'sf
~——— deroged = —-86.84 mm ————— d;,,,, = 126.84 mm ———>
FIGURE 4-11
Solution to Example 4-2
in, — 40sin(60°)—(—20
0, = arcsin(m) = arcsin[MJ =152.91° (a)
open b 120

2 Using equation 4.16b and the result from step 1, calculate slider position d for open linkage.
d =acos®, —bcosO; = 40cos(60°)—120cos(152.91°) =126.84 mm (b)
3 Using equation 4.17, calculate the link coupler angle 053 for the crossed configuration.

40sin(60°)—(—20)
120

. asin®, —c
3 =arcsm| ——————
crossed

+n= arcsin[— J+ T =27.09° (c)

4 Using equation 4.16b and the result from step 3, calculate slider position d for crossed linkage.
d =acos®, —bcosO; = 40cos(60°) —120cos(27.09°) = —86.84 mm (d)

5 Note that 03 is measured at the slider end of the coupler as shown in Figure 4-11.

4.7 THE FOURBAR SLIDER-CRANK POSITION SOLUTION

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section. The name change indicates that it will be
driven with the slider as input and the crank as output. This is sometimes referred to as a
“back-driven” crank-slider. We will use the term slider-crank to define it as slider-driven.
This is a very commonly used linkage configuration. Every internal-combustion piston
engine has as many of these as it has cylinders. The vector loop is as shown in Figure
4-10, and the vector loop equation is identical to equation 4.14a. But now we must solve
this equation for 6, as a function of slider position d.

Start with equation 4.14a, make the substitutions of equation 4.14b and the simpli-
fications of equations 4.15 to get the same simultaneous equation set:
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acosO, —bcosB; —ccosf, —d=0 (4.152)
asin®, —bsinO; —csin6, =0 (4.15b)
but
0, =90° ... sinB, =1, cosO, =0
SO
acosf, —bcosO; —d=0 (4.18a)
asin®, —bsinB; —c=0 (4.18b)

As was done in the fourbar linkage solution, isolate the 83 terms on one side, square
both equations, and add them to eliminate 05.

bcosB; =acos6, —d

bsin®; = asin®, —c
square: b cos” 05 = (acos, - d)2
b*sin®6; = (asinez - c)2
add:  b? (sin2 05 + cos” 0, ) =(acos0, — d)2 +(asin®, - c)2
b* =(acos, - d)2 +(asin®, —c)2
b? = a® cos? 0, —2adcos 8, +d* +a’sin® B, —2acsin B, + >
b =a? (sin2 0, +cos® 0, ) —2adcos, —2acsin®, +c* +d*
a® —b* +c? +d* —2acsin®, —2adcos6, =0 (4.19)
To simplify, create some constant parameters:
let K, =a*-b* +c* +d*, K, =-2ac, K;=—2ad
then K; +K,sin6, + K3 cos6, =0 (4.20)

As we did for the fourbar linkage, substitute the tangent half-angle identities (equa-
tion 4.9) for sin 0, and cos 0, to get the equation in terms of one trigonometric function.

0 0
2tan—2 1-tan® 2
Ki+Ky| ——=%— |+ K, 792 =0
1+tan® -2 1+ tan® -2
. . 292 92
simplify (KI—K3)tan 7+2K2 tan7+(K1 +K3):0
let A=K, -K;, B=2K,, C=K, +K,
0 0
then Atan272+Btan72+C:0
—B+\B?-4AC
and 6,,, =2arctan| ————— (4.21)

2A

Once 0, is known for a given value of d, 63 can be found from either equation 4.18a or
4.18b.
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* The crank-slider and
slider-crank linkage

both have two circuits or
configurations in which
they can be independently
assembled, sometimes
called open and crossed.
Because effective link 4 is
always perpendicular to the
slider axis, it is parallel to
itself on both circuits. This
results in the two circuits
being mirror images of one
another, mirrored about a
line through the crank pivot
and perpendicular to the
slide axis. Thus, the choice
of value of slider position
d in the calculation of the
slider-crank linkage deter-
mines which circuit is being
analyzed. But, because of
the change points at TDC
and BDC, the slider-crank
has two branches on each
circuit, and the two solu-
tions obtained from equa-
tion 4.21 represent the two
branches on the one circuit
being analyzed. In contrast,
the crank-slider has only
one branch per circuit
because when the crank is
driven, it can make a full
revolution and there are no
change points to separate
branches. See Section

4.13 for a more complete
discussion of circuits and
branches in linkages.

DESIGN OF MACHINERY 6ed CHAPTER 4

Note that there are two solutions to equation 4.21 representing the two branches
of the linkage on the circuit to which the given value of slider position d applies.” The
equation will fail when the backdriven slider-crank is at either top dead center (TDC) or
bottom dead center (BDC). These are indeterminate change points between the branches
at which the mathematics cannot predict which branch the linkage will go to next. A real
slider-crank linkage can only make a full revolution of the crank if there is some stored
energy in the crank to carry it through the dead centers twice per revolution. This is why
you must spin a piston engine to start it and why they typically have a flywheel attached to
the crankshaft to provide the angular momentum needed to pass through TDC and BDC.

A DEXAMPLE 4-3

Position Analysis of a Fourbar Slider-Crank Linkage with the Vector Loop Method

Problem: Given a fourbar slider-crank linkage with the link lengths L, = a =40 mm, L3 = b
= 120 mm, offset = ¢ =20 mm. For d = 100 mm, find all possible values of 6, and
03 on the circuit defined by the given value of d.

Solution: (See Figure 4-9 for nomenclature.)
1 Find the TDC and BDC positions of the linkage.

(@)
dTDC =b+a=120+40=160 mm

The requested position of d = 100 mm is within the range of motion of the slider-crank linkage
and is neither TDC nor BDC, so equations 4.20 and 4.21 can be used.
2 Find the intermediate parameters needed from equations 4.20 and 4.21.
Ky = a® b+ +d>= 407 1207 +(-20)" +100% = 2400

K, =—2ac =-2(40)(-20)=1600
K5 =-2ad =-2(40)(100) = -8000

(b)
A=K, — K3 =-2400 - (~8000) = 5600
B =2K, =2(1600) = 3200
C =K, + K5 =—2400+(—-8000) = —10400
3 Find the two values of 6, from equation 4.21.
2
[ _B++B*—aacC .| =3200+/3200% — 4(5600)(~10400
0, =2tan'| — """ |=2tan"" \/ (5600 ) =95.798°
1 2A 2(5600)
()
_B_+JB*_aa —3200— /3200 — 4(5600)(~10400
6,, =2tan”" ZBoNB Z4AC | an \/ (5600 ) =-118.418°

24 2(5600)
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FIGURE 4-12

Solution to Example 4-3

4 Find the two values of 63 from either equation 4.16a or 4.17. Calculate 63 with both equations
for one value of 6, and then use equation 4.16b with that result to determine which of the two
equations gives the correct value of d to match the circuit of this linkage. Then use that equa-
tion with each of the 0, values to get the correct values of 03 for each branch of this circuit.
This example needs equation 4.17 for its circuit.

asin®, —c 40sin(95.798°)—(-20
0, =sin_1(—#]+n=sin_l(— ( )~ )J+n=150.113°

b 120
(d)
asin®, —c 40sin(—118.418°)—(-20
B;, = cos™ [#j+n:cos_l[ ( 120 )~ )J+1t:187.267°

5 The solution is shown in Figure 4-12.

4.8 AN INVERTED CRANK-SLIDER POSITION SOLUTION

Figure 4-13a" shows inversion #3 of the common fourbar crank-slider linkage in which the
sliding joint is between links 3 and 4 at point B. This is shown as an offset crank-slider
mechanism. The slider block has pure rotation with its center offset from the slide axis.
(Figure 2-15c¢, shows the nonoffset version of this linkage in which the vector Ry is zero.)

The global coordinate system is again taken with its origin at input crank pivot O, and
the positive X axis along link 1, the ground link. A local axis system has been placed at
point B in order to define 03. Note that there is a fixed angle y within link 4 which defines
the slot angle with respect to that link.

In Figure 4-13b, the links have been represented as position vectors having senses
consistent with the coordinate systems that were chosen for convenience in defining the
link angles. This particular arrangement of position vectors leads to the same vector loop
equation as the previous crank-slider example.
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FIGURE 4-13
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Inversion #3 of the slider-crank fourbar linkage

Equations 4.14 and 4.15 apply to this inversion as well. Note that the absolute posi-
tion of point B is defined by vector Rz which varies in both magnitude and direction as
the linkage moves. We choose to represent Rp as the vector difference R, — Rj3 in order
to use the actual links as the position vectors in the loop equation.

All slider linkages will have at least one link whose effective length between joints
will vary as the linkage moves. In this example the length of link 3 between points A and
B, designated as b, will change as it passes through the slider block on link 4. Thus the
value of b will be one of the variables to be solved for in this inversion. Another variable
will be 04, the angle of link 4. Note however, that we also have an unknown in 03, the
angle of link 3. This is a total of three unknowns. Equations 4.15 can only be solved for
two unknowns. Thus we require another equation to solve the system. There is a fixed
relationship between angles 63 and 0,4, shown as 7y in Figure 4-13, which gives the equa-
tions for the open and crossed configurations of the linkage, respectively:

open configuration: 6; =6, +7v;  crossed configuration: 6; =6, +y—n (4.22)

Repeating equations 4.15 and renumbering them for the reader’s convenience:

acosB, —bcosB; —ccosO, —d=0 (4.23a)
asin®, —bsinB; —csinf, =0 (4.23b)

These have only two unknowns and can be solved simultaneously for 64 and b. Equa-
tion 4.23b can be solved for link length » and substituted into equation 4.23a.
b= asin 62' —csinBy, (4.242)
Sin 65
asin®, —csinf,

acos0, — praps
3

cosB3; —ccosf, —d=0 (4.24b)
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Substitute equation 4.22, and after some algebraic manipulation, equation 4.24 can

be reduced to:
Psin®, +Qcos6, +R=0

where (4.25)
P =asin®, siny+(acosb, —d)cosy
Q=-asin®, cosy+(acos, —d)siny
R=-csiny

Note that the factors P, Q, R are constant for any input value of 6,. To solve this for
04, it is convenient to substitute the tangent half angle identities (equation 4.9) for the

sin 04 and cos 64 terms. This will result in a quadratic equation in tan (84/ 2) which can
be solved for the two values of 0.

mn( )

R R=0 (4.26a)
1+tan ( 4) 1+tan (—4)
2 2
This reduces to:
0y 04
(R-Q)tan* ~ | 2Ptan| =~ +(Q+R)=0
let
S=R-Q, T=2P, U=Q+R
then
04 0,
Stan? > +Ttan| — > +U=0 (4.26b)
and the solution is:
_T++T? -
6412 =2arctan ZTENT" —45U (4.26¢)

28

As was the case with the previous examples, this also has a crossed and an open so-
lution represented by the plus and minus signs on the radical, respectively. Note that we
must also calculate the values of link length b for each 04 by using equation 4.24a. The
coupler angle 03 is found from equations 4.22 for the open or crossed solution.

4.9 LINKAGES OF MORE THAN FOUR BARS

With some exceptions,” the same approach as shown here for the fourbar linkage can be
used for any number of links in a closed-loop configuration. More complicated linkages
may have multiple loops which will lead to more equations to be solved simultaneously
and may require an iterative solution. Alternatively, Wampler!!9] presents a new, general,
noniterative method for the analysis of planar mechanisms containing any number of rigid
links connected by rotational and/or translational joints.
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* Waldron and Sreeniva-
san(!l report that the
common solution methods
for position analysis are not
general, i.e., are not extend-
able to n-link mechanisms.
Conventional position
analysis methods, such as
those used here, rely on the
presence of a fourbar loop
in the mechanism that can
be solved first, followed

by a decomposition of the
remaining links into a series
of dyads. Not all mecha-
nisms contain fourbar loops.
(One eightbar, 1-DOF
linkage contains no fourbar
loops—see the 16th isomer
at lower right in Figure
2-11d). Even if there is a
fourbar loop, its pivots may
not be grounded, requiring
that the linkage be inverted
to start the solution. Also,
if the driving joint is not

in the fourbar loop, then
interpolation is needed to
solve for link positions.
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The Geared Fivebar Linkage

Another example, which can be reduced to two equations in two unknowns, is the geared
fivebar linkage or mechanism (GFBM), which was introduced in Section 2.14 and is
shown in Figure 4-14a and program LINKAGES disk file FO4-11.5br. The vector loop for
this linkage is shown in Figure 4-14b. It obviously has one more position vector than the
fourbar. Its vector loop equation is:

R2 +R3 —R4 _RS _Rl =0 (4.273)

Note that the vector senses are again chosen to suit the analyst’s desires to have the
vector angles defined at a convenient end of the respective link. Equation 4.27b substi-
tutes the complex polar notation for the position vectors in equation 4-23a, using a, b, c,
d, fto represent the scalar lengths of the links as shown in Figure 4-14.

ael® +hel% —cel® —del — fel =0 (4.27b)

Note also that this vector loop equation has three unknown variables in it, namely the
angles of links 3, 4, and 5. (The angle of link 2 is the input, or independent, variable, and
link 1 is fixed with constant angle.) Since a two-dimensional vector equation can only be
solved for two unknowns, we will need another equation to solve this system. Because this
is a geared fivebar linkage, there exists a relationship between the two geared links, here
links 2 and 5. Two factors determine how link 5 behaves with respect to link 2, namely,
the gear ratio A and the phase angle ¢. The relationship is:

05 =10, +0 (4227¢c)

This allows us to express 05 in terms of 6, in equation 4.27b and reduce the unknowns
to two by substituting equation 4.27¢ into equation 4.27b.

ae’® +pel® —cel®s _ gel02+9) —felfr=0 (4.28a)

Note that the gear ratio A is the ratio of the diameters of the gears connecting the
two links (A=dia, / dias ), and the phase angle ¢ is the initial angle of link 5 with respect
to link 2. When link 2 is at zero degrees, link 5 is at the phase angle ¢. Equation 4.27¢
defines the relationship between 6, and 65. Both A and ¢ are design parameters selected
by the design engineer along with the link lengths. With these parameters defined, the
only unknowns left in equation 4.28 are 03 and 0.

The behavior of the geared fivebar linkage can be modified by changing the link
lengths, the gear ratio, or the phase angle. The phase angle can be changed simply by
lifting the gears out of engagement, rotating one gear with respect to the other, and re-
engaging them. Since links 2 and 5 are rigidly attached to gears 2 and 5, respectively,
their relative angular rotations will be changed also. It is this fact that results in different
positions of links 3 and 4 with any change in phase angle. The coupler curve’s shapes
will also change with variation in any of these parameters as can be seen in Figure 3-23
and in Appendix E.

The procedure for solution of this vector loop equation is the same as that used for
the fourbar linkage:
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Gear 2 (a) (b)

FIGURE 4-14

The geared fivebar linkage and its vector loop

1

Substitute the Euler equivalent (equation 4.4a) into each term in the vector loop equa-
tion 4.28a.

a(cos, + jsin®, )+b(cosb; + jsin®; )—c(cosBy + jsin@, )
—d[cos(kez +¢)+jsin(7»92 +q))]—f(cose1 +jsin91)= 0 (4.28b)

Separate the real and imaginary parts of the cartesian form of the vector loop equa-
tion.

acos6, +bcos6; —ccosf, —dcos(ke2 +q))—f<:0s61 =0 (4.28¢)
asin®, +bsin@; —csin®, —dsin(A0, +¢)— fsind; =0 (4.28d)

Rearrange to isolate one unknown (either 03 or 0,4) in each scalar equation. Note that
0, is zero.

bcosB; =—acos6, +ccosO, + dcos(?uez + ¢)+ f (4.28¢)
bsin®; =—asin®, +csinf, + dsin(kez + ¢) (4.281)
Square both equations and add them to eliminate one unknown, say 6.
b? = 2c[dcos(?»92 +0)—acos6, + f:|cos94
+ 2c[dsin(k92 +0)—asin6, ]sin64
+a*+c® +d* + f2 —2af coso,
—2d(acos6, — f)cos(A6, +¢)
—2adsin®, sin (A6, +0)
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5 Substitute the tangent half-angle identities (equation 4.9) for the sine and cosine terms
and manipulate the resulting equation in the same way as was done for the fourbar
linkage in order to solve for 0.

A :2c|:dcos(k62 +0)—acos6, +f}
B=20[dsin(7»92 +q))—asin62J

C=a*-b*+c*+d* +f2 —2af cosO,
—2d(acos6, — f)cos(A0, +¢)—2adsin6, sin (A6, +¢)

D=C-A, E=2B, F=A+C
~E +\E? - 4DF
0,  =2arctan| ————— (4.28h)
12 2D
6 Repeat steps 3 to 5 for the other unknown angle 03.
G= Zb[acosez —dcos(A0, +0)— f}
H= 2b[asin92 —dsin (A0, + q>)]
K=a?+b*-c* +d? +f2 —2af cosO,
—2d(acos®, — f)cos(A8, +¢)
—2adsin®, sin (10, +¢)
L=K-G; M=2H; N=G+K
~M £y M? —4LN :
631, , =2arctan — . (4.28i)

Note that these derivation steps are essentially identical to those for the pin-jointed
fourbar linkage once 0 is substituted for 05 using equation 4.27c.

FIGURE 4-15
Watt’s sixbar linkage and vector loop
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(a) (b)
FIGURE 4-16

Stephenson’s sixbar linkage and vector loops

Sixbar Linkages

WATT’S SIXBAR is essentially two fourbar linkages in series, as shown in Figure 4-15a,
and can be analyzed as such. Two vector loops are drawn as shown in Figure 4-15b.
These vector loop equations can be solved in succession with the results of the first loop
applied as input to the second loop. Note that there is a constant angular relationship
between vectors Ry and Rs within link 4. The solution for the fourbar linkage (equations
4.10 and 4.13, respectively) is simply applied twice in this case. Depending on the inver-
sion of the Watts linkage being analyzed, there may be two four-link loops or one four-link
and one five-link loop. (See Figure 2-16.) In either case, if the four-link loop is analyzed
first, there will not be more than two unknown link angles to be found at one time.

STEPHENSON’S SIXBAR  is a more complicated mechanism to analyze. Two vector
loops can be drawn, but depending on the inversion being analyzed, either one or both
loops will have five links™ and three unknown angles as shown in Figure 4-13a and b.
However, the two loops will have at least one nonground link in common and so a solution
can be found. In the other cases an iterative solution such as a Newton-Raphson method
(see Section 4.14) must be used to find the roots of the equations. Program LINKAGES is
limited to the inversions which allow a closed-form solution, one of which is shown in
Figure 4-16, and it does not do the iterative solution.

410 POSITION OF ANY POINT ON A LINKAGE

Once the angles of all the links are found, it is simple and straightforward to define and
calculate the position of any point on any link for any input position of the linkage. Figure
4-17 shows a fourbar linkage whose coupler, link 3, is enlarged to contain a coupler point
P. The crank and rocker have also been enlarged to show points § and U which might
represent the centers of gravity of those links. We want to develop algebraic expressions
for the positions of these (or any) points on the links.

To find the position of point S, draw a position vector from the fixed pivot O; to point
S. This vector Rgp, makes an angle 6, with the vector Ryp,. This angle &, is completely
defined by the geometry of link 2 and is constant. The position vector for point S is then:
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* Waldron and Sreeniva-
sanl!! report that the
common solution methods
for position analysis are not
general, i.e., are not extend-
able to n-link mechanisms.
Conventional position
analysis methods, such as
those used here, rely on the
presence of a fourbar loop
in the mechanism that can
be solved first, followed

by a decomposition of the
remaining links into a series
of dyads. Not all mecha-
nisms contain fourbar loops.
(One eightbar, 1-DOF
linkage contains no fourbar
loops—see the 16th isomer
at lower right in Figure
2-11d). Even if there is a
fourbar loop, its pivots may
not be grounded, requiring
that the linkage be inverted
to start the solution. Also,
if the driving joint is not

in the fourbar loop, then
interpolation is needed to
solve for link positions.
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* The transmission angle
has limited application. It
only predicts the quality of
force or torque transmission
if the input and output links
are pivoted to ground. If
the output force is taken
from a floating link (cou-
pler), then the transmission
angle is of no value. A dif-
ferent index of merit called
the joint force index (JFI)

is presented in Chapter 11
which discusses force analy-
sis in linkages. (See Section
11.12.) The JFI is useful
for situations in which the
output link is floating as
well as giving the same kind
of information when the
output is taken from a link
rotating against the ground.
However, the JFI requires a
complete force analysis of
the linkage be done whereas
the transmission angle is
determined from linkage
geometry alone.
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FIGURE 4-17
Positions of points on the links
Rgo, =Ry = sel282) _ s[cos(ez +8,)+ jsin(6, +82)] (4.29)

The position of point U on link 4 is found in the same way, using the angle 84 which
is a constant angular offset within the link. The expression is:
Ryo, = ue!(%4+94) u[cos(64 +84)+ jsin(0, +64)] (4.30)
The position of point P on link 3 can be found from the addition of two position
vectors Ry and Rpy. Vector Ry is already defined from our analysis of the link angles
in equations 4.5. Vector Rpy is the relative position of point P with respect to point A.
Vector Rpy is defined in the same way as Rgor Ry, using the internal link offset angle 83
and the position angle of link 3, 65.

Rp, = pe](93+83) = p[cos(93 +83)+jsin(93 +83)] (4.31a)

Rp =R, +Rpy (4.31b)
Compare equation 4.31b with equations 4.1. Equation 4.31b is the position difference
equation.

a1 TRANSMISSION ANGLES
The transmission angle was defined in Section 3.3 for a fourbar linkage. That definition
is repeated here for your convenience.

The transmission angle 1 is shown in Figure 3-3a and is defined as the angle between the
output link and the coupler. 1t is usually taken as the absolute value of the acute angle of the pair
of angles at the intersection of the two links and varies continuously from some minimum to some
maximum value as the linkage goes through its range of motion. It is a measure of the quality of
force transmission at the joint.”
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We will expand that definition here to represent the angle between any two links in a
linkage, as a linkage can have many transmission angles. The angle between any output
link and the coupler which drives it is a transmission angle. Now that we have developed
the analytic expressions for the angles of all the links in a mechanism, it is easy to define
the transmission angle algebraically. It is merely the difference between the angles of the
two joined links through which we wish to pass some force or velocity. For our fourbar
linkage example it will be the difference between 63 and 64. By convention we take the
absolute value of the difference and force it to be an acute angle.

Otrans =|93 - e4|

. T
it Opgns > 5 then u=m—0,,, e€lse WL=0.,u (4.32)

This computation can be done for any joint in a linkage by using the appropriate link
angles.

Extreme Values of the Transmission Angle

For a Grashof crank-rocker fourbar linkage the minimum value of the transmission angle
will occur when the crank is colinear with the ground link as shown in Figure 4-18. The
values of the transmission angle in these positions are easily calculated from the law
of cosines since the linkage is then in a triangular configuration. The sides of the two
triangles are link 3, link 4, and either the sum or difference of links 1 and 2. Depending
on the linkage geometry, the minimum value of the transmission angle W,,;,, will occur
either when links 1 and 2 are colinear and overlapping as shown in Figure 4-18a or when
links 1 and 2 are colinear and nonoverlapping as shown in Figure 4-18b. Using notation
consistent with Section 4.5 and Figure 4-6 we will label the links:

a =link 2, b =link 3, c =link 4, d=link 1

(a) Overlapped (b) Extended
FIGURE 4-18
The minimum transmission angle in the Grashof crank-rocker fourbar linkage occurs in one of two positions
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(a) Toggle positions for links b and ¢ (b) Toggle positions for links @ and b

FIGURE 4-19

Non-Grashof triple-rocker linkages in toggle

For the overlapping case (Figure 4-18a) the cosine law gives

b? +¢* —(d-a)
Wy =7; =arccos| ————————— (4.33a)
2bc
and for the extended case, the cosine law gives
b+ —(d+a)
Uy = T—7Y, = TT—arccos b (4.33b)

The minimum transmission angle LL,,;, in a Grashof crank-rocker linkage is then the
smaller of || and ,.

For a Grashof double-rocker linkage the transmission angle can vary from 0 to 90
degrees because the coupler can make a full revolution with respect to the other links. For
a non-Grashof triple-rocker linkage the transmission angle will be zero degrees in the
toggle positions which occur when the output rocker ¢ and the coupler b are colinear as
shown in Figure 4-19a. In the other toggle positions when input rocker a and coupler b are
colinear (Figure 4-19b), the transmission angle can be calculated from the cosine law as:

when v=0,
+b) +c—d?
u} 434)

u= arccos[ 2c(a " b)

This is not the smallest value that the transmission angle [L can have in a triple-rocker,
as that will obviously be zero. Of course, when analyzing any linkage, the transmission
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FIGURE 4-20
Finding the crank angle corresponding to the toggle positions

angles can easily be computed and plotted for all positions using equation 4.32. Program
LINKAGES does this. The student should investigate the variation in transmission angle for
the example linkages in those programs. Disk file FO4-15.4br can be opened in program
LINKAGES to observe that linkage in motion.

412 TOGGLE POSITIONS

The input link angles which correspond to the toggle positions (stationary configurations)
of the non-Grashof triple-rocker can be calculated by the following method, using trigo-
nometry. Figure 4-20 shows a non-Grashof fourbar linkage in a general position. A con-
struction line / has been drawn between points A and O4. This divides the quadrilateral
loop into two triangles, O,AO04 and ABO,. Equation 4.35 uses the cosine law to express
the transmission angle [ in terms of link lengths and the input link angle 6,.

h? = a* + d* —2adcos®,

also: h? =b% + ¢ —2bccospt
So: a® +d* —2adcos®, =b* +c? —2bccosp
2,2 2 2
and: COS|L = brte—ar-d” + ﬂcos 6, (4.35)
2bc be

To find the maximum and minimum values of input angle 6,, we can differentiate
equation 4.35, form the derivative of 6, with respect to 1, and set it equal to zero.

49, _ be sinp _, (436)
du  adsin6,

The link lengths a, b, ¢, d are never zero, so this expression can only be zero when
sin W is zero. This will be true when angle W in Figure 4-20 is either zero or 180°. This
is consistent with the definition of toggle given in Section 3.3. If 1 is zero or 180° then
cos W will be +1. Substituting these two values for cos L into equation 4.35 will give a

21
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solution for the value of 0, between zero and 180° which corresponds to the toggle posi-
tion of a triple-rocker linkage when driven from one rocker.

PP+c?-a®>-d*> ad
COsSp = ——— +—c0s60, ==*1
2bc bc
or:
2,2 22 2
a“+d°—-b"—c bc
o8Py =————— +— (4.37)
2ad ad
and:
2,2 42 2
a“+d°—-b"—c bc
0, =arccos(—i— <06, <7
toggle 2ad ad toggle

One of these * cases will produce an argument for the arccosine function which lies
between 1. The toggle angle which is in the first or second quadrant can be found from
this value. The other toggle angle will then be the negative of the one found, due to the
mirror symmetry of the two toggle positions about the ground link as shown in Figure
4-19. Program LINKAGES computes the values of these toggle angles for any non-Grashof
linkage.

413 CIRCUITS AND BRANCHES IN LINKAGES

In Section 4.5 it was noted that the fourbar linkage position problem has two solutions
which correspond to the two circuits of the linkage. This section will explore the topics
of circuits and branches in linkages in greater detail.

Chase and Mirth[2] define a circuit in a linkage as “all possible orientations of the
links that can be realized without disconnecting any of the joints” and a branch as “a
continuous series of positions of the mechanism on a circuit between two stationary con-
figurations . . . . The stationary configurations divide a circuit into a series of branches.”
A linkage may have one or more circuits each of which may contain one or more branches.
The number of circuits corresponds to the number of solutions possible from the position
equations for the linkage.

Circuit defects are fatal to linkage operation, but branch defects are not. A mecha-
nism that must change circuits to move from one desired position to the other (referred to
as a circuit defect) is not useful as it cannot do so without disassembly and reassembly.
A mechanism that changes branches when moving from one circuit to another (referred to
as a branch defect) may or may not be usable depending on the designer’s intent.

The tailgate linkage shown in Figure 3-2 is an example of a linkage with a deliberate
branch defect in its range of motion (actually at the limit of its range of motion). The
toggle position (stationary configuration) that it reaches with the tailgate fully open serves
to hold it open. But the user can move it out of this stationary configuration by rotating
one of the links out of toggle. Folding chairs and tables often use a similar scheme as do
fold-down seats in automobiles.

Another example of a common linkage with a branch defect is the slider-crank link-
age (crankshaft, connecting rod, and slider driving) used in every piston engine and shown
in Figure 13-3. This linkage has two toggle positions (top and bottom dead center) giv-
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(a) Two circuits of the o
fourbar crank-rocker (b) Two circuits of the
fourbar double crank

circuit 2 circuit 1
4 4
=AS L 4l
: SO 1 :
i N , i
v T v
oo oo
effective effective
link 4 link 4
(c) Two circuits of the (d) Two circuits of the
fourbar double-rocker fourbar slider

FIGURE 4-21

Circuits of the fourbar linkage

ing it two branches within one revolution of its crank. It works nevertheless because it is
carried through these stationary configurations by the angular momentum of the rotating
crank and its attached flywheel. One penalty is that the engine must be spun to start it in
order to build sufficient momentum to carry it through these toggle positions.

The Watt sixbar linkage can have four circuits, and the Stephenson sixbar can have
either four or six circuits depending on which link is driving. Eightbar linkages can have
as many as 16 or 18 circuits, not all of which may be real, however.[2]

The number of circuits and branches in the fourbar linkage depends on its Grashof
condition and the inversion used. A non-Grashof, triple-rocker fourbar linkage has only
one circuit but has two branches. All Grashof fourbar linkages have two circuits, but the
number of branches per circuit differs with the inversion. The crank-rocker and double-
crank have only one branch within each circuit. The double-rocker and rocker-crank have
two branches within each circuit. Table 4-1 summarizes these relationships.[2! Table 4-2
shows the circuits and branches for the two configurations of the fourbar slider linkage.
Figure 4-21 shows the circuits for the Grashof fourbar linkage and the fourbar slider.

Any solution for the position of a linkage must take into account the number of pos-
sible circuits that it contains. A closed-form solution, if available, will contain all the
circuits. An iterative solution such as is described in the next section will only yield the
position data for one circuit, and it may not be the one you expect.
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TABLE 4-1

Circuits & Branches
In the Fourbar Linkage

Fourbar Number Branches
Linkage of per
Type Circuits Circuit

Non-

Grashof

triple- 1 2
rocker

Grashof *
crank- 2 1
rocker

Grashof *
double- 2 1
crank

Grashof *
double- 2 2
rocker

Grashof *
rocker - 2 2
crank

*Valid only for non-special-case
Grashof linkages

TABLE 4-2

Circuits & Branches
In the Fourbar Slider

Fourbar Number Branches
Slider of per
Type Circuits Circuit

Crank-

slider 2 1
Slider- 2 2
crank




214

* Kramer 3] states that “In
theory, any nonlinear alge-
braic system of equations can
be manipulated into the form
of a single polynomial in one
unknown. The roots of this
polynomial can then be used
to determine all unknowns in
the system. However, if the
derived polynomial is greater
than degree four, factoring
and/or some form of iteration
are necessary to obtain the
roots. In general, systems
that have more than a fourth
degree polynomial associated
with the eliminant of all but
one variable must be solved
by iteration. However, if
factoring of the polynomial
into terms of degree four or
less is possible, all roots may
be found without iteration.
Therefore the only truly sym-
bolic solutions are those that
can be factored into terms of
fourth degree or less. This

is the formal definition of a
closed form solution.”

T Viete’s method from “De
Emendatione” by Francois
Viete (1615) as described in
reference [4].
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414 NEWTON-RAPHSON SOLUTION METHOD

The solution methods for position analysis shown so far in this chapter are all of “closed
form,” meaning that they provide the solution with a direct, noniterative approach.” In
some situations, particularly with multiloop mechanisms, a closed-form solution may not
be attainable. Then an alternative approach is needed, and the Newton-Raphson method
(sometimes just called Newton’s method) provides one that can solve sets of simultane-
ous nonlinear equations. Any iterative solution method requires that one or more guess
values be provided to start the computation. It then uses the guess values to obtain a new
solution that may be closer to the correct one. This process is repeated until it converges
to a solution close enough to the correct one for practical purposes. However, there is no
guarantee that an iterative method will converge at all. It may diverge, taking successive
solutions further from the correct one, especially if the initial guess is not sufficiently
close to the real solution.

Though we will need to use the multidimensional (Newton-Raphson) version of
Newton’s method for these linkage problems, it is easier to understand how the algorithm
works by first discussing the one-dimensional Newton method for finding the roots of a
single nonlinear function in one independent variable. Then we will discuss the multidi-
mensional Newton-Raphson method.

One-Dimensional Root-Finding (Newton’s Method)

A nonlinear function may have multiple roots, where a root is defined as the intersection
of the function with any straight line. Typically the zero axis of the independent variable
is the straight line for which we desire the roots. Take, for example, a cubic polynomial
which will have three roots, with either one or all three being real.

y=f(x):—x3 —2x% +50x+ 60 (4.38)

There is a closed-form solution for the roots of a cubic function® which allows us to
calculate in advance that the roots of this particular cubic are all real and are x = —7.562,
—1.177, and 6.740.

Figure 4-22 shows this function plotted over a range of x. In Figure 4-22a, an initial
guess value of x| = 1.8 is chosen. Newton’s algorithm evaluates the function for this guess
value, finding y;. The value of y; is compared to a user-selected tolerance (say 0.001) to
see if it is close enough to zero to call x| the root. If not, then the slope (1) of the function
at x1, yp is calculated either by using an analytic expression for the derivative of the func-
tion or by doing a numerical differentiation (less desirable). The equation of the tangent
line is then evaluated to find its intercept at xo which is used as a new guess value. The
above process is repeated, finding y»; testing it against the user selected tolerance; and, if
it is too large, calculating another tangent line whose x intercept is used as a new guess
value. This process is repeated until the value of the function y; at the latest x; is close
enough to zero to satisfy the user.

The Newton algorithm described above can be expressed algebraically (in pseudo-
code) as shown in equation 4.39. The function for which the roots are sought is f(x), and
its derivative is f’(x). The slope m of the tangent line is equal to f’(x) at the current point

Xis Vi



POSITION ANALYSIS 215
Y tangent ., " _ tangent
1
uess
e X x
x1 = 18

-10 8 -6 4 -2 0 2 4 6 8 10 -10 -8

(a) A guess of x =1.8 converges to the root at x =-1.177

FIGURE 4-22

Newton-Raphson method of solution for roots of nonlinear functions

step 1 yi=f(x)
step 2 IF y; <tolerance THEN STOP
step 3 m=f"(x;)
step 4 X :xi—&
m
step 5 Yirr = f(Xi1)
step 6 IF y;,; <tolerance THEN STOP

ELSE Xx; =X;y; : GOTO step 1 (4.39)

Yi=DVin -

If the initial guess value is close to a root, this algorithm will converge rapidly to the
solution. However, it is quite sensitive to the initial guess value. Figure 4-22b shows the
result of a slight change in the initial guess from x; = 1.8 to x; = 2.5. With this slightly
different guess, it converges to another root. Note also that if we choose an initial guess
of x; = 3.579 which corresponds to a local maximum of this function, the tangent line
will be horizontal and will not intersect the x axis at all. The method fails in this situa-
tion. Can you suggest a value of x| that would cause it to converge to the root at x = 6.74?

So this method has its drawbacks. It may fail to converge. It may behave chaotically.”
It is sensitive to the guess value. It also is incapable of distinguishing between multiple
circuits in a linkage. The circuit solution it finds is dependent on the initial guess. It re-
quires that the function be differentiable, and the derivative as well as the function must
be evaluated at every step. Nevertheless, it is the method of choice for functions whose
derivatives can be efficiently evaluated and which are continuous in the region of the root.
Furthermore, it is about the only choice for systems of nonlinear equations.

6 4 2 0

(b) A guess of x =2.5 converges to the root at x = -7.562

“Kramerl3! points out that
“the Newton Raphson al-
gorithm can exhibit chaotic
behavior when there are
multiple solutions to kine-
matic constraint equations.
... Newton Raphson

has no mechanism for
distinguishing between the
two solutions” (circuits).
He does an experiment
with just two links, exactly
analogous to finding the
angles of the coupler and
rocker in the fourbar linkage
position problem, and finds
that the initial guess values
need to be quite close to
the desired solution (one of
the two possible circuits) to
avoid divergence or chaotic
oscillation between the two
solutions.
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Multidimensional Root-Finding (Newton-Raphson Method)

The one-dimensional Newton method is easily extended to multiple, simultaneous, non-
linear equation sets and is then called the Newton-Raphson method. First, let’s generalize
the expression developed for the one-dimensional case in step 4 of equation 4.39. Refer
also to Figure 4-22.

y.
Xig1 = X; —Zl or m(xi+1 _xi):_yi
but: yi=f(x) m= f'(x;) Xiy1 =X = AX
substituting: Fr(x) - ax=—f(x;) (4.40)

Here a Ax term is introduced which will approach zero as the solution converges. The Ax
term rather than y; will be tested against a selected tolerance in this case. Note that this
form of the equation avoids the division operation which is acceptable in a scalar equation
but impossible with a matrix equation.

A multidimensional problem will have a set of equations of the form
SO, x0,%3,..0, %)

X1 3X0, X3y ey X
sz 15X X3 - ) _B (441)

Jn O, x0,%3, .00 Xy)

where the set of equations constitutes a vector, here called B.

Partial derivatives are required to obtain the slope terms

Oh A . 9K
ox;  0x, oxy,
: : : =A (4.42)
Ofn n = Ofn
ox;  dx, 0x,

which form the Jacobian matrix of the system, here called A.

The error terms are also a vector, here called X.

=X (4.43)

Equation 4.40 then becomes a matrix equation for the multidimensional case.
AX=-B (4.44)

Equation 4.44 can be solved for X either by matrix inversion or by Gaussian elimination.
The values of the elements of A and B are calculable for any assumed (guess) values of
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the variables. A criterion for convergence can be taken as the sum of the error vector X
at each iteration where the sum approaches zero at a root.

Let’s set up this Newton-Raphson solution for the fourbar linkage.

Newton-Raphson Solution for the Fourbar Linkage

The vector loop equation of the fourbar linkage, separated into its real and imaginary parts
(equations 4.6a and 4.6b) provides the set of functions that define the two unknown link
angles 03 and 64. The link lengths, a, b, ¢, d, and the input angle 0, are given.

fi=acosB, +bcosb; —ccosb, —d=0

(4.45a)
f> =asin®, +bsinO; —csin6, =0
acos6, +bcosb; —ccosB, —d
= i ) (4.45b)
asin®, +bsin0; —csinb,
The error vector is:
[AB;
X = (4.46)
_A 64
oh ]
00; 06 —bsin®;  csinb
A=| T3 Tl 3 N (4.47)
af, dfh | | bcos®; —ccosby

This matrix is known as the Jacobian of the system, and, in addition to its usefulness
in this solution method, it also tells something about the solvability of the system. The
system of equations for position, velocity, and acceleration (in all of which the Jacobian
appears) can only be solved if the value of the determinant of the Jacobian is nonzero.

Substituting equations 4.45b, 4.46, and 4.47 into equation 4.44 gives:

—bsin® ¢sin6 AB acos0, +bcosO; —ccosO, —d
{ 3 4 H 3]:{ > 3 4 } (4.48)

bcos6; —ccosOy || AO, asin®, +bsin®; —csinO,

To solve this matrix equation, guess values will have to be provided for 83 and 64 and
the two equations then solved simultaneously for AG3 and A84. For a larger system of
equations, a matrix reduction algorithm will need to be used. For this simple system in
two unknowns, the two equations can be solved by combination and reduction. The test
described above which compares the sum of the values of AB3 and A4 to a selected toler-
ance must be applied after each iteration to determine if a root has been found.

Equation Solvers

Some commercially available equation solver software packages include the ability to
do a Newton-Raphson iterative solution on sets of nonlinear simultaneous equations.
TKSolver” and Mathcad' are examples. TKSolver automatically invokes its Newton-
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“Universal Technical
Systems, 1220 Rock St.
Rockford, IL 61101, USA.
(800) 435-7887
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TABLE P4-0 - Part 1
Topic/Problem Matrix

4.2 Position and Dis-
placement
4-53, 4-57

4.5 Position Analysis of
Fourbar Linkages
4-1,4-2,4-3,4-4,4-5
Graphical 4-6
Analytical 4-7,4-8,
4-18d, 4-24, 4-36,
4-39. 4-42, 4-45, 4-48,
4-51, 4-58, 4-59

4.6 Fourbar Crank-Slider
Position Solution
Graphical 4-9
Analytical 4-10,
4-18c, 4-18f,
4-18h, 4-20, 4-63,
4-66

4.7 Fourbar Slider-Crank
Position Solution
Graphical 4-60
Analytical 4-61

4.8 Inverted Crank-Slider
Position Solution
Graphical 4-1
Analytical 4-12, 4-48

4.9 Linkages of More
than Four Bars
Graphical GFBM 4-16
Analytical GFBM 4-17
Sixbar 4-34, 4-36,
4-37, 4-39, 4-40, 4-42,
4-49, 4-51
Eightbar 4-43, 4-45,
4-62

410 Position of Any Point
on a Linkage
4-19, 4-22, 4-23,
4-46, 4-67

411 Transmission Angles
4-13,4-14, 4-18b,
4-18e, 4-35, 4-38, 4-41,
4-44,4-47,4-50, 4-54

412 Toggle Positions
4-15, 4-18a, 4-18g,
4-21, 4-25, 4-26,
4-27, 4-28, 4-29,
4-30, 4-52, 4-55, 4-56

DESIGN OF MACHINERY 6ed CHAPTER 4

Raphson solver when it cannot directly solve the presented equation set, provided that
enough guess values have been supplied for the unknowns. These equation solver tools
are quite convenient in that the user need only supply the equations for the system in “raw”
form such as equation 4.45a. It is not necessary to arrange them into the Newton-Raphson
algorithm as shown in the previous section. Lacking such a commercial equation solver,
you will have to write your own computer code to program the solution as described
above. Reference [5] is a useful aid in this regard. The downloads with this text contain
example TKSolver files for the solution of this fourbar position problem as well as others.

415

1

10

416

4-1

42
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PROBLEMS*

A position vector is defined as having a length equal to your height in inches (or cen-
timeters). The tangent of its angle is defined as your weight in pounds (or kilograms)
divided by your age in years. Calculate the data for this vector and:

a.  Draw the position vector to scale on cartesian axes.

b.  Write an expression for the position vector using unit vector notation.

c.  Write an expression for the position vector using complex number notation, in both
polar and cartesian forms.

A particle is traveling along an arc of 6.5-in radius. The arc center is at the origin of
a coordinate system. When the particle is at position A, its position vector makes a

¥ All problem figures are provided as PDF files, and some are also provided as animated AVI and Working
Model files; PDF filenames are the same as the figure number. Run the file Animations.html to access and run
the animations.
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TABLE P4-1 Data for Problems 4-6, 4-7 and 4-13 to 4-15%

Row Link 1 Link 2 Link 3 Link 4 0,
a 6 2 7 9 30
b 7 9 3 8 85
c 3 10 6 8 45
d 8 5 7 6 25
e 8 5 8 6 75
f 5 8 8 9 15
g 6 8 8 9 25
h 20 10 10 10 50
i 4 5 2 5 80
j 20 10 10 10 33
k 4 6 10 7 88
/ 9 7 10 7 60
m 9 7 1 8 50
n 9 7 " 6 120

AY Open

Crossed

FIGURE P4-1%
Problems 4-6 to 4-7. General configuration and terminology for the fourbar linkage

45° angle with the X axis. At position B, its vector makes a 75° angle with the X axis.
Draw this system to some convenient scale and:

a.

b.

Write an expression for the particle’s position vector in position A using complex
number notation, in both polar and cartesian forms.

Write an expression for the particle’s position vector in position B using complex
number notation, in both polar and cartesian forms.

Write a vector equation for the position difference between points B and A. Substi-
tute the complex number notation for the vectors in this equation and solve for the
position difference numerically.

Check the result of part ¢ with a graphical method.
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TABLE P4-0 - Part 2
Topic/Problem Matrix

414 Newton-Raphson
Solution Method
4-31, 4-32,4-33,
4-64, 4-65

 These problem figures are
provided as PDF files, and
some are also provided as
animated AVI and Working
Model files; PDF filenames
are the same as the figure
number. Run the file Ani-
mations.html to access and
run the animations.
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 These problem figures are
provided as PDF files, and
some are also provided as
animated AVI and Working
Model files; PDF filenames
are the same as the figure
number. Run the file Ani-
mations.html to access and
run the animations.

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.

DESIGN OF MACHINERY 6ed CHAPTER 4
TABLE P4-2 Data for Problems 4-9 to 4-10%
Row Link 2 Link 3 Offset 0>
a 14 4 1 45
b 2 6 -3 60
c 3 8 2 -30
d 35 10 1 120
e 5 20 -5 225
f 3 13 0 100
g 7 25 10 330
0, VA
y B
A X
Link 3
A /
Link 2 o Offset = 0, = 90°
\ I T
0, Slider position d

FIGURE P4-2
Problems 4-9, 4-10, 4-60, 4-61 Fourbar slider linkage open configuration and terminology

4.3

4-4

4.7
4-8
4.9

Repeat problem 4-2 considering points A and B to represent separate particles, and find
their relative position.

Repeat Problem 4-2 with the particle’s path defined as being along the line
y=-2x+10.

Repeat Problem 4-3 with the path of the particle defined as being along the curve
y=-2x2-2x+ 10.

The link lengths and the value of 0, for some fourbar linkages are defined in Table P4-1.
The linkage configuration and terminology are shown in Figure P4-1. For the rows
assigned, draw the linkage to scale and graphically find all possible solutions (both open
and crossed) for angles 03 and 64. Determine the Grashof condition.

Repeat Problem 4-6 except solve by the vector loop method.
Expand equation 4.7b and prove that it reduces to equation 4.7c.

The link lengths and the value of 8, and offset for some fourbar crank-slider linkages
are defined in Table P4-2. The linkage configuration and terminology are shown in
Figure P4-2. For the rows assigned, draw the linkage to scale and graphically find all
possible solutions (both open and crossed) for angle 63 and slider position d.
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TABLE P4-3 Data for Problems 4-11to 4-12

Row Link 1 Link 2 Link 4 Y 05
a 6 2 4 90 30
b 7 9 3 75 85
c 3 10 6 45 45
d 8 3 60 25
e 8 2 30 75
f 5 8 90 150

FIGURE P4-3

Problems 4-11to 4-12 Terminology for inversion #3 of the fourbar crank-slider linkage

*14-10
"4-11

*4-12
*4-13
*i4-14

*14-15

"4-17

Repeat Problem 4-9 except solve by the vector loop method.

The link lengths and the value of 0, and y for some inverted fourbar crank-slider link-
ages are defined in Table P4-3. The linkage configuration and terminology are shown in
Figure P4-3. For the rows assigned, draw the linkage to scale and graphically find both
open and crossed solutions for angles 63 and 04 and vector Rp.

Repeat Problem 4-11 except solve by the vector loop method.
Find the transmission angles of the linkages in the assigned rows in Table P4-1.

Find the minimum and maximum values of the transmission angle for all the Grashof

crank-rocker linkages in Table P4-1.

Find the input angles corresponding to the toggle positions of the non-Grashof linkages
in Table P4-1. (For this problem, ignore the values of 6, given in the table.)

The link lengths, gear ratio (A), phase angle (¢), and the value of 6, for some geared
fivebar linkages are defined in Table P4-4. The linkage configuration and terminology
are shown in Figure P4-4. For the rows assigned, draw the linkage to scale and graphi-

cally find all possible solutions for angles 63 and 0.

Repeat Problem 4-16 except solve by the vector loop method.
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* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.
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TABLE P4-4 Data for Problems 4-16 to 4-17

Row Link1 Link 2 Llink 3  Link 4 Link 5 A [} 6>
a 6 1 7 9 4 2 30 60
b 6 5 7 8 4 -25 60 30
c 3 5 7 8 4 -0.5 0 45
d 4 5 7 8 4 =1 120 75
e 5 9 n 8 8 3.2 -50 -39
f 10 2 7 5 3 15 30 120
g 15 7 9 il 4 25 -90 75
h 12 8 7 9 4 -25 60 55
i 9 7 8 4 -4 120 100

. r
Gear ratio: ) = *—

Phase angle: ¢ = 05— A0,

Ts

r,

FIGURE P4-4

Problems 4-16 to 4-17 Open configuration and geared fivebar linkage terminology

4-18 Figure P4-5 shows the mechanisms for the following problems, each of which refers
to the part of the figure having the same letter. Reference all calculated angles to the
global XY axes.

a.

The angle between the X and x axes is 25°. Find the angular displacement of link
4 when link 2 rotates clockwise from the position shown (+37°) to horizontal (0°).
How does the transmission angle vary and what is its minimum between those two
positions? Find the toggle positions of this linkage in terms of the angle of link 2.

Find and plot the angular position of links 3 and 4 and the transmission angle as a
function of the angle of link 2 as it rotates through one revolution.

Find and plot the position of any one piston as a function of the angle of crank 2
as it rotates through one revolution. Once one piston’s motion is defined, find the
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Ay

L1 =162 Lp=40
Ly=122 L3=96

04

(a) Fourbar linkage (b) Fourbar linkage (c) Radial compressor

View as a video
http://www.designofmachinery.com/DOM/radial_engine.avi

‘ all dimensions in mm ‘

Ly =150 L, =30
L3 =150 Ly =130

D
0204 =L3 = L5 = 160
0304=Lg=17 =120|!| ¢ .
0,A=0,C=20 p=——

0,B=0,D =20
04,E=0,G=30
OgF=0gH=30 F

View as a video
http://www.designofmachinery.com/DOM/walking_beam.avi

(d) Walking-beam conveyor (e) Bellcrank mechanism (f) Offset slider-crank

- 229 —|wa— 229 —>

Ly =87 L1 =458
Ly =49 L, =198
Lz =100 L3 =194
Ly=153 Ly=383
Ls =100 Ls=133
Le=153 L7=133
Lg=19.8
D 4 E\O Lg=194
View as a video
 hupdiwww, 04 7 ‘ Z
de?izrr)l!f:l\;vcvgin— * ‘ > =45 typ.- -
ery.com/DOM/ (g) Drum brake mechanism (h) Symmetrical mechanism

drum_brake.avi View as a video
http://www.designofmachinery.com/DOM/compression_chamber.avi
FIGURE P4-5

Mechanisms for Problem 4-18
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View as a video

http://www.designofmachinery.com/

DOM/pick_and_place.avi

Gear ratio = -1
0,A=04D =40
0,0, =108 Ly=108
OsB = 13 = eccentric radius\\
0sC=92 L7=CB=193
O¢E =164 0405 =128

FIGURE P4-6

product

eccentric on gear 5 —

all dimensions in mm

Section X-X

Problem 4-19 Walking-beam indexer with pick-and-place mechanism

4-19

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.

420

motions of the other two pistons and their phase relationship to the first piston.

Find the total angular displacement of link 3 and the total stroke of the box as link
2 makes a complete revolution.

Determine the ratio of angular displacement between links 8 and 2 as a function of
angular displacement of input crank 2. Plot the transmission angle at point B for
one revolution of crank 2. Comment on the behavior of this linkage. Can it make
a full revolution as shown?

Find and plot the displacement of piston 4 and the angular displacement of link 3 as
a function of the angular displacement of crank 2.

Find and plot the angular displacement of link 6 versus the angle of input link 2 as
it is rotated from the position shown (+30°) to a vertical position (+90°). Find the
toggle positions of this linkage in terms of the angle of link 2.

Find link 4’s maximum displacement vertically downward from the position shown.

What will the angle of input link 2 be at that position?

For one revolution of driving link 2 of the walking-beam indexing and pick-and-place
mechanism in Figure P4-6, find the horizontal stroke of link 3 for the portion of their
motion where its tips are above the top of the platen. Express the stroke as a percent-
age of the crank length O»A. What portion of a revolution of link 2 does this stroke
correspond to? Also find the total angular displacement of link 6 over one revolution
of link 2. The vertical distance from O, to the top of the platen is 64 mm. The vertical
distance from line AD to the top left corner Q of the leftmost pusher finger is 73 mm.
The horizontal distance from point A to Q is 95 mm.

Figure P4-7 shows a power hacksaw, used to cut metal. Link 5 pivots at Os and its
weight forces the sawblade against the workpiece while the linkage moves the blade
(link 4) back and forth on link 5 to cut the part. It is an offset crank-slider mechanism.
The dimensions are shown in the figure. For one revolution of driving link 2 of the
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/
r|
s
workpiece
View as a video
FIGURE P4-7 http://www.designofmachinery.com/DOM/power_hacksaw.avi

Problem 4-20 Power hacksaw

421

74-22

hacksaw mechanism on the cutting stroke, find and plot the horizontal stroke of the
sawblade as a function of the angle of link 2.

For the linkage in Figure P4-8, find its limit (toggle) positions in terms of the angle of
link O»A referenced to the line of centers 0,04 when driven from link O,A. Then cal-
culate and plot the xy coordinates of coupler point P between those limits, referenced to
the line of centers 0,04.

For the walking-beam mechanism of Figure P4-9, calculate and plot the x and y
components of the position of the coupler point P for one complete revolution of the
crank O,A. Hint: Calculate them first with respect to the ground link 0,0, and then
transform them into the global XY coordinate system (i.e., horizontal and vertical in the
figure). Scale the figure for any additional information needed.

View as a video
http://www.designofma-
chinery.com/DOM/walk-
ing_beam_eight-bar.avi

-

FIGURE P4-9

Problem 4-22 Straight-line walking-beam eightbar transport mechanism

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.

FIGURE P4-8
Problem 4-21
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FIGURE P4-10
Problem 4-23

* Answers in Appendix F. 14-23

 These problems are suited

to solution using Mathcad, 404
Matlab, or TKSolver equa-

tion solver programs. In

most cases, your solution *4.25
can be checked with the
program LINKAGES.

*4-26

View as a video
http://www.designot-
machinery.com/DOM/
loom_laybar_drive.avi

For the linkage in Figure P4-10, calculate and plot the angular displacement of links 3
and 4 and the path coordinates of point P with respect to the angle of the input crank
0,A for one revolution.

For the linkage in Figure P4-11, calculate and plot the angular displacement of links 3
and 4 with respect to the angle of the input crank O,A for one revolution.

For the linkage in Figure P4-12, find its limit (toggle) positions in terms of the angle

of link O»A referenced to the line of centers 0,04 when driven from link O,A. Then
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of
point P with respect to the angle of the input crank O,A over its possible range of mo-
tion referenced to the line of centers 0,0;.

For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle

of link O»A referenced to the line of centers 0,04 when driven from link O,A. Then
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of
point P between those limits, with respect to the angle of the input crank O»A over its
possible range of motion referenced to the line of centers 0,0;.

FIGURE P4-11 FIGURE P4-12
Problem 4-24 Problem 4-25
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FIGURE P4-13
Problems 4-26 to 4-27

74-27

74-28

*4-29

*14-30

For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle
of link O4B referenced to the line of centers 040, when driven from link O4B. Then
calculate and plot the angular displacement of links 2 and 3 and the path coordinates of
point P between those limits, with respect to the angle of the input crank O4B over its
possible range of motion referenced to the line of centers 040,.

For the rocker-crank linkage in Figure P4-14, find the maximum angular displace-
ment possible for the treadle link (to which force F is applied). Determine the toggle
positions. How does this work? Explain why the grinding wheel is able to fully rotate
despite the presence of toggle positions when driven from the treadle. How would you
get it started if it were in a toggle position?

For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle

of link O,A referenced to the line of centers 0,04 when driven from link O,A. Then
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of
point P between those limits, with respect to the angle of the input crank O,A over its
possible range of motion referenced to the line of centers 0,0y.

For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle
of link O4B referenced to the line of centers 040, when driven from link O4B. Then
calculate and plot the angular displacement of links 2 and 3 and the path coordinates of

FIGURE P4-15
Problems 4-29 to 4-30
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.

* Answers in Appendix F.

0.75m 0.13m

View as a video
http://www.designof-
machinery.com/DOM/

treadle_wheel.avi

FIGURE P4-14
Problem 4-28
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* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, the solution
can be checked with the
program LINKAGES.
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*14-31

4-32

4-33

434

4-35

4-36

4-37

4-38

4-39

4-40

441

4-42

4-43

point P between those limits, with respect to the angle of the input crank O4B over its
possible range of motion referenced to the line of centers 040;.

Write a computer program (or use an equation solver such as Mathcad, Matlab, or
TKSolver) to find the roots of y = 9x2 + 50x — 40. Hint: Plot the function to determine
good guess values.

Write a computer program (or use an equation solver such as Mathcad, Matlab, or
TKSolver) to find the roots of y = —x3 — 4x2 4+ 80x — 40. Hint: Plot the function to
determine good guess values.

Figure 4-22 plots the cubic function from equation 4.38. Write a computer program
(or use an equation solver such as Mathcad, Matlab, or TKSolver to solve the matrix
equation) to investigate the behavior of the Newton-Raphson algorithm as the initial
guess value is varied from x = 1.8 to 2.5 in steps of 0.1. Determine the guess value at
which the convergence switches roots. Explain this root-switching phenomenon based
on your observations from this exercise.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the angular position of link 4 and the position of slider 6
in Figure 3-33 as a function of the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the transmission angles at points B and C of the linkage
in Figure 3-33 as a function of the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage
shown in Figure 3-29f. (Use LINKAGES to check your result.)

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 6 in Figure 3-34 as a function of
the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, C, and D of the linkage
in Figure 3-34 as a function of the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage
shown in Figure 3-29g. (Use LINKAGES to check your result.)

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 6 in Figure 3-35 as a function of
the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, D, and E of the linkage
in Figure 3-35 as a function of the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage
shown in Figure 3-29h. (Use LINKAGES to check your result.)

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 8 in Figure 3-36 as a function of
the angle of input link 2.
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4-44

4-45

4-46

447

4-48

4-49

4-50

4-51

4-52

4-53

4-54

4-55

4-56

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the transmission angles at points B, C, D, E, and F of the
linkage in Figure 3-36 as a function of the angle of input link 2.

Model the linkage shown in Figure 3-37a in LINKAGES. Export the coupler curve coor-
dinates to EXCEL and calculate the error function versus a true circle.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the path of point P in Figure 3-37a as a function of the
angle of input link 2. Also plot the variation (error) in the path of point P versus that of
point A, i.e., how close to a perfect circle is point P’s path.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at point B of the linkage in Figure
3-37a as a function of the angle of input link 2.

Figure 3-29f shows Evan’s approximate straight-line linkage #1. Determine the range
of motion of link 2 for which point P varies no more than 0.0025 from the straight
line x = 1.690 in a coordinate system with origin at O; and its x axis rotated 60° from
0,04.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the path of point P in Figure 3-37b as a function of the
angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, C, and D of the linkage
in Figure 3-37b as a function of the angle of input link 2.

Figure 3-29g shows Evan’s approximate straight-line linkage #2. Determine the range
of motion of link 2 for which point P varies no more than 0.005 from the straight line x
=—0.500 in a coordinate system with origin at O, and its x axis rotated 30° from 0,0;.

For the linkage in Figure P4-16, what are the angles that link 2 makes with the positive
X axis when links 2 and 3 are in toggle positions?

The coordinates of the point P on link 4 in Figure P4-16 are (114.68, 33.19) with re-
spect to the xy coordinate system when link 2 is in the position shown. When link 2 is in
another position, the coordinates of P, with respect to the xy system are (100.41, 43.78).
Calculate the coordinates of P| and P; in the XY system for the two positions of link 2.
What is the salient feature of the coordinates of P and P in the XY system?

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the angular position of link 4 with respect to the XY
coordinate frame and the transmission angle at point B of the linkage in Figure P4-16
as a function of the angle of link 2 with respect to the XY frame.

For the linkage in Figure P4-17, calculate the maximum CW rotation of link 2 from the
position shown, which is at —26° with respect to the local xy coordinate system. What
angles do link 3 and link 4 rotate through for that excursion of link 2?

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the position of the coupler point P of the linkage in Figure
P4-17 with respect to the XY coordinate system as a function of the angle of link 2 with
respect to the XY system. The position of the coupler point P on link 3 with respect to
point A is: p = 15.00, 83 = 0°.
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T Note that these can be
long problems to solve and
may be more appropriate for
a project assignment than an
overnight problem. In most
cases, the solution can be
checked with the program
LINKAGES.
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View as a video
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FIGURE P4-16 :

Problems 4-52 to 4-54 An oil field pump—dimensions in inches

4-57 For the linkage in Figure P4-17, calculate the coordinates of the point P in the XY coor-
dinate system if its coordinates in the xy system are (12.816, 10.234).

T Note that these can be 4-58  The elliptical trammel in Figure P4-18 must be driven by rotating link 3 in a full circle.
long problems to solve and Derive analytical expressions for the positions of points A, B, and a point C on link 3
may be more appropriate for midway between A and B as a function of 03 and the length AB of link 3. Use a vector
a project assignment than an loop equation. (Hint: Place the global origin off the mechanism, preferably below
overnight problem. In most and to the left and use a total of 5 vectors.) Code your solution in an equation solver

cases, the solution can be
checked with the program
LINKAGES.

9.573

FIGURE P4-17

Problems 4-55 to 4-57 An aircraft overhead bin mechanism—dimensions in inches



POSITION ANALYSIS

TABLE P4-5 Data for Problems 4-60 to 4-61%

Row Link 2 Link 3 Offset d
a 14 4 1 25
b 2 6 -3 5
c 3 8 2
d 35 10 1 -8
e 5 20 -5 15
f 3 13 0] -12
g 7 25 10 25

f Drawings of these linkages are in the PDF Problem Workbook folder on the book’s website

74-59

4-60

4-61
4-62

4-63

4-64

4-65

such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point C for one
revolution of link 3.

Figure P4-19 shows a mechanism commonly used as a cabinet door hinge. Write a
computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to
calculate and plot the angular position of link 6 in Figure P4-19 as a function of the
angle of input link 2. 0,04=AB=BC=DE=1. O)A=048=BE=CD =1.75.
04C =AE =2.60. Hint: Because the linkage geometry is simple and symmetrical, the
analysis can be done with simple trigonometry.

The link lengths, offset, and value of d for some fourbar slider-crank linkages are
defined in Table P4-5. The linkage configuration and terminology are shown in Figure
P4-2. For the rows assigned, draw the linkage to scale and graphically find all possible
solutions (both open and crossed) for angles 0, and 0.

Repeat Problem 4-60 except solve by the vector loop method.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK
Solver to calculate and plot the path of point P in Figure 3-29j as a function of the
angle of input link 2 over the range 90° < 0, < 270° for the following link lengths: L;
=12,L,=10,L3 =Ly =22,and Ls = Lg = L7 = Lg = 6.5. Hint: To make the analysis
convenient, use the mirror image of the figure putting Oy to the right of O; on the posi-
tive x-axis.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK
Solver to calculate and plot the position of the slider in Figure P4-2 as a function of the
crank angle using the data in row a of Table P4-2 for the link lengths and offset. Check
your solution by comparing it to a graphical solution at the value given for 6,.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK
Solver to find the roots of y = 8x% — 64x — 178. Hint: Plot the function to determine
good guess values.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK
Solver to find the roots of y = x> — 9x2 — 8. Hint: Plot the function to determine good
guess values.
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FIGURE P4-18

Elliptical trammel—
Problem 4-58

 Note that these can be

long problems to solve and
may be more appropriate for
a project assignment than an
overnight problem. In most
cases, the solution can be
checked with the program

LINKAGES.

FIGURE P4-19
Problem 4-59
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FIGURE P4-20
Problem 4-66

4-66

4-67

Figure P4-20 shows a cut-away view of a mechanism that opens and closes a remote
valve by means of a long rod (valve stem) that moves up and down. The handle has
two round bosses (eccentrics) whose centers are offset from the pivot by 6 mm. The
eccentrics are connected to the valve stem by a coupler consisting of two identical links
whose pivot holes have a center distance of 46 mm. It is an inline crank-slider mecha-
nism. For the 180-degree-motion of the handle from closed to fully open, find and plot
the stroke of the valve stem as a function of the angle of the handle.

For the linkage in Figure 3-32a, calculate and plot the angular displacement of links 3
and 4 and the path coordinates of point P with respect to the angle of the input crank
0,A for one revolution. The link lengths and coupler point data are: L} =3.72, L =
1.00, Ly = 1.94, Ly = 3.72, p = 3.06, and &3 = —20°.—



