
Chapter6
VELOCITY ANALYSIS
The faster I go, the behinder I get
ANON. PENN. DUTCH

6.0 INTRODUCTION View the lecture video (28:44)†

Once a position analysis is done, the next step is to determine the velocities of all links and 
points of interest in the mechanism.  We need to know the velocities in our mechanism or 
machine, both to calculate the stored kinetic energy from 22mV  and also as a step on the 
way to the determination of the link’s accelerations that are needed for the dynamic force 
calculations.  Many methods and approaches exist to find velocities in mechanisms.  We 
will examine only a few of these methods here.  We will first develop manual graphical 
methods, which are often useful as a check on the more complete and accurate analytical 
solution.  We will also investigate the properties of the instant center of velocity which 
can shed much light on a mechanism’s velocity behavior with very little effort.  Finally, 
we will derive the analytical solution for the fourbar and inverted crank-slider as examples 
of the general vector loop equation solution to velocity analysis problems.  From these 
calculations we will be able to establish some indices of merit to judge our designs while 
they are still on the drawing board (or in the computer).

6.1 DEFINITION OF VELOCITY

Velocity is defined as the rate of change of position with respect to time.  Position (R) is a 
vector quantity and so is velocity.  Velocity can be angular or linear.  Angular velocity
will be denoted as � and linear velocity as V.

; (6.1)d
dt

d
dt

V R=ω
θ

=

Figure 6-1 shows a link PA in pure rotation, pivoted at point A in the xy plane.  Its 
position is defined by the position vector RPA.  We are interested in the velocity of point 

† http://www.designofma-
chinery.com/DOM/Veloc-
ity_Analysis_with_ICs.mp4
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P when the link is subjected to an angular velocity �.  If we represent the position vector 
RPA as a complex number in polar form,

(6.2)pePA
jR = θ

where p is the scalar length of the vector.  We can easily differentiate it to obtain:

(6.3)d
dt

p je d
dt

p jePA
PA j jV R

= =
θ
= ωθ θ

Compare the right side of equation 6.3 to the right side of equation 6.2.  Note that as 
a result of the differentiation, the velocity expression has been multiplied by the (constant) 
complex operator j. This causes a rotation of this velocity vector through 90 degrees with 
respect to the original position vector. (See also Figure 4-8b.)  This 90-degree rotation is 
positive, or counterclockwise.  However, the velocity expression is also multiplied by �, 
which may be either positive or negative.  As a result, the velocity vector will be rotated 
90 degrees from the angle � of the position vector in a direction dictated by the sign of 
�.  This is just mathematical verification of what you already knew, namely that velocity 
is always in a direction perpendicular to the radius of rotation and is tangent to the path 
of motion as shown in Figure 6-1.

Substituting the Euler identity (equation 4.4a) into equation 6.3 gives us the real and 
imaginary (or x and y) components of the velocity vector.

cos sin sin cos (6.4)p j j p jPAV ( ) ( )= ω θ + θ = ω − θ + θ

Note that the sine and cosine terms have swapped positions between the real and 
imaginary terms, due to multiplying by the j coefficient.  This is evidence of the 90-degree 
rotation of the velocity vector versus the position vector.  The former x component has 
become the y component, and the former y component has become a minus x component.  
Study Figure 4-8b to review why this is so.

The velocity VPA in Figure 6-1 can be referred to as an absolute velocity since it 
is referenced to A, which is the origin of the global coordinate axes in that system.  As 
such, we could have referred to it as VP, with the absence of the second subscript imply-
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FIGURE 6-1
A link in pure rotation
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ing reference to the global coordinate system.  Figure 6-2a shows a different and slightly 
more complicated system in which the pivot A is no longer stationary.  It has a known 
linear velocity VA as part of the translating carriage, link 3.  If � is unchanged, the velocity 
of point P versus A will be the same as before, but VPA can no longer be considered an 
absolute velocity.  It is now a velocity difference and must carry the second subscript as 
VPA.  The absolute velocity VP must now be found from the velocity difference equation 
whose graphical solution is shown in Figure 6-2b:

rearranging:
(6.5a)

(6.5b)

PA P A

P A PA

V V V

V V V

= −

= +

Note the similarity of equations 6.5 to the position difference equation 4.1.

Figure 6-3 shows two independent bodies P and A, which could be two automobiles, 
moving in the same plane.  If their independent velocities VP and VA are known, their 
relative velocity VPA can be found from equations 6.5 arranged algebraically as:

(6.6)PA P AV V V= −

The graphical solution to this equation is shown in Figure 6-3b.  Note that it is similar 
to Figure 6-2b except for a different vector being the resultant.

As we did for position analysis, we give these two cases different names despite the 
fact that the same equation applies.  Repeating the definition from Section 4.2, modified 
to refer to velocity:

CASE 1:   Two points in the same body  =>  velocity difference
 CASE 2:   Two points in different bodies  =>  relative velocity
We will find use for this semantic distinction when we analyze both linkage velocities and 
the velocity of slip later in this chapter.

( a )
FIGURE 6-2
Velocity difference
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6.2 GRAPHICAL VELOCITY ANALYSIS

Before programmable calculators and computers became universally available to engi-
neers, graphical methods were the only practical way to solve these velocity analysis  
problems.  With some practice and with proper tools such as a drafting machine or CAD 
package, one can fairly rapidly solve for the velocities of particular points in a mechanism 
for any one input position by drawing vector diagrams.  However, it is a tedious process if 
velocities for many positions of the mechanism are to be found, because each new position 
requires a completely new set of vector diagrams be drawn.  Very little of the work done 
to solve for the velocities at position 1 carries over to position 2, etc.  Nevertheless, this 
method still has more than historical value as it can provide a quick check on the results 
from a computer program solution.  Such a check needs only be done for a few positions 
to prove the validity of the program.  Also, graphical solutions provide the beginning 
student some visual feedback on the solution that can help develop an understanding of 
the underlying principles.  It is principally for this last reason that graphical solutions are 
included in this text even in this “age of the computer.”

To solve any velocity analysis problem graphically, we need only two equations, 6.5 
and 6.7 (which is merely the scalar form of equation 6.3):

(6.7)v rV = = ω

Note that the scalar equation 6.7 defines only the magnitude (v) of the velocity of 
any point on a body that is in pure rotation.  In a graphical CASE 1 analysis, the direc-
tion of the vector due to the rotation component must be understood from equation 6.3 
to be perpendicular to the radius of rotation.  Thus, if the center of rotation is known, the 
direction of the velocity component due to that rotation is known and its sense will be 
consistent with the angular velocity � of the body.

(a )
FIGURE 6-3
Relative velocity

(b )
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Figure 6-4 shows a fourbar linkage in a particular position.  We wish to solve for the 
angular velocities of links 3 and 4 (�3, �4) and the linear velocities of points A, B, and 
C (VA, VB, VC).  Point C represents any general point of interest.  Perhaps C is a coupler 
point.  The solution method is valid for any point on any link.  To solve this problem, we 
need to know the lengths of all the links, the angular positions of all the links, and the 
instantaneous input velocity of any one driving link or driving point.  Assuming we have 
designed this linkage, we will know or can measure the link lengths.  We must also first 
do a complete position analysis to find the link angles �3 and �4 given the input link’s 
position �2.  This can be done by any of the methods in Chapter 4.  In general we must 
solve these problems in stages, first for link positions, then for velocities, and finally for 
accelerations. For the following example, we will assume that a complete position analysis 
has been done and that the input is to link 2 with known �2 and �2 for this one “freeze 
frame” position of the moving linkage.
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FIGURE 6-4
Graphical solution for velocities in a pin-jointed linkage
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✍EXAMPLE 6-1

Graphical Velocity Analysis for One Position of Linkage.

Problem: Given �2, �3, �4, �2, find �3, �4, VA, VB, VC by graphical methods.

Solution: (See Figure 6-4.)

1 Start at the end of the linkage about which you have the most information.  Calculate the 
magnitude of the velocity of point A using scalar equation 6.7.

( )2 2v AO aa ( )= ω

 2 Draw the velocity vector VA with its length equal to its magnitude vA at some convenient scale 
with its root at point A and its direction perpendicular to the radius AO2.  Its sense is the same 
as that of �2 as shown in Figure 6-4a.

 3 Move next to a point about which you have some information.  Note that the direction of the 
velocity of point B is predictable since it is pivoting in pure rotation about point O4.  Draw the 
construction line pp through point B perpendicular to BO4, to represent the direction of VB as 
shown in Figure 6-4a.

 4 Write the velocity difference vector equation 6.5 for point B versus point A.

( )bB A BAV V V= +

  We will use point A as the reference point to find VB because A is in the same link as B and 
we have already solved for VA.  Any two-dimensional vector equation can be solved for two 
unknowns.  Each term has two parameters, namely magnitude and direction.  There are then 
potentially six unknowns in this equation, two per term.  We must know four of them to solve 
it.  We know both magnitude and direction of VA and the direction of VB.  We need to know 
one more parameter.

 5 The term VBA represents the velocity of B with respect to A.  If we assume that the link BA is 
rigid, then there can be no component of VBA that is directed along the line BA, because point 
B cannot move toward or away from point A without shrinking or stretching the rigid link!  
Therefore, the direction of VBA must be perpendicular to the line BA.  Draw construction line 
qq through point B and perpendicular to BA to represent the direction of VBA, as shown in 
Figure 6-4a.

 6 Now the vector equation can be solved graphically by drawing a vector diagram as shown in 
Figure 6-4b.  Either drafting tools or a CAD package is needed for this step.  Draw velocity 
vector VA carefully to some scale, maintaining its direction.  (It is drawn twice its size in the 
figure.)  The equation in step 4 says to add VBA to VA, so draw a line parallel to line qq across 
the tip of VA.  The resultant, or left side of the equation, must close the vector diagram, from 
the tail of the first vector drawn (VA) to the tip of the last, so draw a line parallel to pp across 
the tail of VA.  The intersection of these lines parallel to pp and qq defines the lengths of VB
and VBA.  The senses of the vectors are determined from reference to the equation.  VA was 
added to VBA, so they must be arranged tip to tail.  VB is the resultant, so it must be from the 
tail of the first to the tip of the last.  The resultant vectors are shown in Figure 6-4b and d.
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7 The angular velocities of links 3 and 4 can be calculated from equation 6.7:

( )and4
4

3ω = ω =
v
BO

v
BA

cB BA

  Note that the velocity difference term VBA represents the rotational component of velocity of 
link 3 due to �3.  This must be true if point B cannot move toward or away from point A.  The 
only velocity difference they can have, one to the other, is due to rotation of the line connecting 
them.  You may think of point B on the line BA rotating about point A as a center, or point A 
on the line AB rotating about B as a center.  The rotational velocity � of any body is a “free 
vector” that has no particular point of application to the body.  It exists everywhere on the body.

 8 Finally we can solve for VC, again using equation 6.5. We select any point in link 3 for which 
we know the absolute velocity to use as the reference, such as point A.

( )dC A CAV V V= +

  In this case, we can calculate the magnitude of VCA from equation 6.7 as we have already found 
�3,

( )3v c eca = ω

  Since both VA and VCA are known, the vector diagram can be directly drawn as shown in Figure 
6-4c. VC  is the resultant that closes the vector diagram.  Figure 6-4d shows the calculated veloc-
ity vectors on the linkage diagram.  Note that the velocity difference vector VCA is perpendicular 
to line CA (along line rr) for the same reasons as discussed in step 7 above.

The above example contains some interesting and significant principles that deserve 
further emphasis.  Equation 6.5a is repeated here for discussion.

(6.5a)P A PAV V V= +

This equation represents the absolute velocity VP of some general point P referenced to the 
origin of the global coordinate system.  The right side defines it as the sum of the absolute 
velocity VA of some other reference point A in the same system and the velocity difference 
(or relative velocity) VPA of point P versus point A.  This equation could also be written:

Velocity = translation component + rotation component

These are the same two components of motion defined by Chasles’ theorem, and 
introduced for displacement in Section 4.3.  Chasles’ theorem holds for velocity as well.  
These two components of motion, translation and rotation, are independent of one another. 
If either is zero in a particular example, the complex motion will reduce to one of the 
special cases of pure translation or pure rotation.  When both are present, the total velocity 
is merely their vector sum.

Let us review what was done in Example 6-1 in order to extract the general strategy 
for solution of this class of problem.  We started at the input side of the mechanism, as 
that is where the driving angular velocity is defined.  We first looked for a point (A) for 
which the motion was pure rotation so that one of the terms in equation 6.5 would be zero.  
(We could as easily have looked for a point in pure translation to bootstrap the solution.)  
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We then solved for the absolute velocity of that point (VA) using equations 6.5 and 6.7.  
(Steps 1 and 2)

We then used the point (A) just solved for as a reference point to define the translation 
component in equation 6.5 written for a new point (B).  Note that we needed to choose a 
second point (B) that was in the same rigid body as the reference point (A) which we had 
already solved and about which we could predict some aspect of the new point’s (B’s) 
velocity.  In this example, we knew the direction of the velocity VB.  In general this condi-
tion will be satisfied by any point on a link that is jointed to ground (as is link 4).  In this 
example, we could not have solved for point C until we solved for B, because point C is on 
a floating link for which point we do not yet know the velocity direction.  (Steps 3 and 4)

To solve the equation for the second point (B), we also needed to recognize that the 
rotation component of velocity is directed perpendicular to the line connecting the two 
points in the link (B and A in the example).  You will always know the direction of the 
rotation component in equation 6.5 if it represents a velocity difference (CASE 1) 
situation.  If the rotation component relates two points in the same rigid body, then that 
velocity difference component is always perpendicular to the line connecting those two 
points (see Figure 6-2).  This will be true regardless of the two points selected.  But, this 
is not true in a CASE 2 situation (see Figure 6-3).  (Steps 5 and 6)

Once we found the absolute velocity (VB) of a second point on the same link (CASE
1),  we could solve for the angular velocity of that link.  (Note that points A and B are both 
on link 3 and the velocity of point O4 is zero.)  Once the angular velocities of all the links 
were known, we could solve for the linear velocity of any point (such as C) in any link 
using equation 6.5.  To do so, we had to understand the concept of angular velocity as a 
free vector, meaning that it exists everywhere on the link at any given instant.  It has no 
particular center. It has an infinity of potential centers.  The link simply has an angular 
velocity, just as does a frisbee thrown and spun across the lawn.

All points on a frisbee, if spinning while flying, obey equation 6.5.  Left to its own 
devices, the frisbee will spin about its center of gravity (CG), which is close to the center 
of its circular shape.  But if you are an expert frisbee player (and have rather pointed 
fingers), you can imagine catching that flying frisbee between your two index fingers in 
some off-center location (not at the CG), such that the frisbee continues to spin about your 
fingertips.  In this somewhat far-fetched example of championship frisbee play, you will 
have taken the translation component of the frisbee’s motion to zero, but its independent 
rotation component will still be present.  Moreover, it will now be spinning about a dif-
ferent center (your fingers) than it was in flight (its CG).  Thus this free vector of angular 
velocity (�) is happy to attach itself to any point on the body.  The body still has the same 
�, regardless of the assumed center of rotation.  It is this property that allows us to solve 
equation 6.5 for literally any point on a rigid body in complex motion referenced to any 
other point on that body.  (Steps 7 and 8)

6.3 INSTANT CENTERS OF VELOCITY View a tutorial video (28:55)†

The definition of an instant center of velocity is a point, common to two bodies in plane 
motion, which point has the same instantaneous velocity in each body.  Instant centers 
are sometimes also called centros or poles.  Since it takes two bodies or links to create an 

† http://www.designofma-
chinery.com/DOM/Instant_
Centers_Tutorial.mp4
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† Note that this graph is not 
a plot of points on an x, y 
coordinate system.  Rather 
it is a linear graph from the 
fascinating branch of math-
ematics called graph theory, 
which is itself a branch of 
topology.  Linear graphs 
are often used to depict 
interrelationships between 
various phenomena.  They 
have many applications in 
kinematics especially as a 
way to classify linkages and 
to find isomers.

 
‡  Discovered independently 
by Aronhold in Germany, 
in 1872, and by Kennedy 
in England, in 1886.  Ken-
nedy[3] states in his preface, 
“The theorem of the three 
virtual (instant) centers … 
was first given, I believe, 
by Aronhold, although its 
previous publication was 
unknown to me until some 
years after I had given it in 
my lectures.”  It tends to be 
attributed to Kennedy in the 
English-speaking world and 
to Aronhold in the German-
speaking world.

instant center (IC), we can easily predict the quantity of instant centers to expect from any 
collection of links.  The combination formula for n things taken r at a time is:

�1 2 1
!

(6.8a)C
n n n n r

r
( )( ) ( )

=
− − − +

For our case r = 2 and it reduces to:

1
2

(6.8b)C
n n( )

=
−

From equation 6.8b we can see that a fourbar linkage has 6 instant centers, a sixbar has 
15, and an eightbar has 28.

Figure 6-5 shows a fourbar linkage in an arbitrary position.  It also shows a linear 
graph† that is useful for keeping track of which ICs have been found.  This particular 
graph can be created by drawing a circle on which we mark off as many points as there 
are links in our assembly.  We will then draw a line between the dots representing the link 
pairs each time we find an instant center.  The resulting linear graph is the set of lines con-
necting the dots.  It does not include the circle that was used only to place the dots.  This 
graph is actually a geometric solution to equation 6.8b, since connecting all the points in 
pairs gives all the possible combinations of points taken two at a time.

Some ICs can be found by inspection, using only the definition of the instant center.  
Note in Figure 6-5a that the four pin joints each satisfy the definition.  They clearly must 
have the same velocity in both links at all times.  These have been labeled I1,2, I2,3, I3,4, 
and I1,4.  The order of the subscripts is immaterial. Instant center I2,1 is the same as I1,2.
These pin-joint ICs are sometimes called “permanent” instant centers as they remain in 
the same location for all positions of the linkage.  In general, instant centers will move to 
new locations as the linkage changes position, thus the adjective instant.  In this fourbar 
example there are two more ICs to be found.  It will help to use the Aronhold-Kennedy 
theorem,‡ also called Kennedy’s rule,[3] to locate them.

Kennedy’s rule: 
Any three bodies in plane motion will have exactly three instant centers, and they will lie 
on the same straight line.

The first part of this rule is just a restatement of equation 6.8b for n = 3.  It is the second 
clause in this rule that is most useful.  Note that this rule does not require that the three 
bodies be connected in any way.  We can use this rule, in conjunction with the linear graph, 
to find the remaining ICs that are not obvious from inspection.  Figure 6.5b shows the 
construction necessary to find instant center I1,3.  Figure 6-5c shows the construction nec-
essary to find instant center I2,4.  The following example describes the procedure in detail.

✍EXAMPLE 6-2 
Finding All Instant Centers for a Fourbar Linkage.

Problem: Given a fourbar linkage in one position, find all ICs by graphical methods.
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Solution: (See Figure 6-5 and the video Instant Centers and Centrodes.)

1 Draw a circle with all links numbered around the circumference as shown in Figure 6-5a.

2 Locate as many ICs as possible by inspection.  All pin joints will be permanent ICs.  Connect 
the link numbers on the circle to create a linear graph and record those ICs found, as shown in 
Figure 6-5a.

3 Identify a link combination on the linear graph for which the IC has not been found, and draw 
a dotted line connecting those two link numbers.  Identify two triangles on the graph that each 
contain the dotted line and whose other two sides are solid lines representing ICs already found. 

ω
θ2

( a )

FIGURE 6-5
Locating instant centers in the pin-jointed linkage
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On the graph in Figure 6-5b, link numbers 1 and 3 have been connected with a dotted line.  
This line forms one triangle with sides  13, 34, 14 and another with sides  13, 23, 12.  These 
triangles define trios of ICs that obey Kennedy’s rule.  Thus ICs 13, 34, and 14 must lie on 
the same straight line.  Also ICs 13, 23 and 12 will lie on a different straight line.

4 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  Repeat for the other trio.  In Figure 6-5b, a line has been drawn through I1,2 and  
I2,3 and extended.  I1,3 must lie on this line.  Another line has been drawn through I1,4 and I3,4
and extended to intersect the first line.  By Kennedy’s  rule, instant center  I1,3 must also lie on 
this line, so their intersection is I1,3.

 5 Connect link numbers 2 and 4 with a dotted line on the linear graph as shown in Figure 6-5c.  
This line forms one triangle with sides 24, 23, 34 and another with sides 24, 12, 14.  These 
sides represent trios of ICs that obey Kennedy’s rule.  Thus ICs 24, 23, and 34 must lie on the 
same straight line.  Also ICs 24, 12, and 14 lie on a different straight line.

 6 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  Repeat for the other trio.  In Figure 6-5c, a line has been drawn through I1,2 and 
I1,4 and extended.  I2,4 must lie on this line.  Another line has been drawn through I2,3 and I3,4
and extended to intersect the first line.  By Kennedy’s  rule, instant center I2,4 must also lie on 
this line, so their intersection is I2,4.

 7 If there were more links, this procedure would be repeated until all ICs were found.

The presence of slider joints makes finding the instant centers a little more subtle as 
is shown in the next example.  Figure 6-6a shows a fourbar crank-slider linkage.  Note 
that there are only three pin joints in this linkage.  All pin joints are permanent instant 
centers.  But the joint between links 1 and 4 is a rectilinear, sliding full joint.  A sliding 
joint is kinematically equivalent to an infinitely long link, “pivoted” at infinity.  Figure 
6-6b shows a nearly equivalent pin-jointed version of the crank-slider in which link 4 is a 
very long rocker.  Point B now swings through a shallow arc that is nearly a straight line.  
It is clear in Figure 6-6b that, in this linkage, I1,4 is at pivot O4.  Now imagine increasing 
the length of this long, link 4 rocker even more.  In the limit, link 4 approaches infinite 
length, the pivot O4 approaches infinity along the line that was originally the long rocker, 
and the arc motion of point B approaches a straight line.  Thus, a slider joint will have its 
instant center at infinity along a line perpendicular to the direction of sliding as shown 
in Figure 6-6a. 

✍EXAMPLE 6-3

Finding All Instant Centers for a Crank-Slider Linkage.

Problem: Given a crank-slider linkage in one position, find all ICs by graphical methods.

Solution: (See Figure 6-7, and the video Instant Centers and Centrodes.)

 1 Draw a circle with all links numbered around the circumference as shown in Figure 6-7a.

 2 Locate all ICs possible by inspection.  All pin joints will be permanent ICs.  The slider joint’s 
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instant center will be at infinity along a line perpendicular to the axis of sliding.  Connect the 
link numbers on the circle to create a linear graph and record those ICs found, as shown in 
Figure 6-7a.

3 Identify a link combination on the linear graph for which the IC has not been found, and draw 
a dotted line connecting those two link numbers.  Identify two triangles on the graph that each 
contain the dotted line and whose other two sides are solid lines representing ICs already found. 
In the graph on Figure 6-7b, link numbers 1 and 3 have been connected with a dotted line.  This 
line forms one triangle with sides 13, 34, 14 and another with sides  13, 23, 12.  These sides 
represent trios of ICs that obey Kennedy’s rule.  Thus ICs 13, 34, and 14 must lie on the same 
straight line.  Also ICs 13, 23, and 12 lie on a different straight line.

4 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  Repeat for the other trio.  In Figure 6-7b, a line has been drawn from I1,2 through 
I2,3 and extended.  I1,3 must lie on this line.  Another line has been drawn from I1,4 (at infinity) 
through I3,4 and extended to intersect the first line.  By Kennedy’s rule, instant center I1,3 must 
also lie on this line, so their intersection is I1,3.

 5 Connect link numbers 2 and 4 with a dotted line on the graph as shown in Figure 6-7c.  This 
line forms one triangle with sides 24, 23, 34 and another with sides 24, 12, 14.  These sides 
also represent trios of ICs that obey Kennedy’s rule.  Thus ICs 24, 23, and 34 must lie on the 
same straight line.  Also ICs 24, 12, and 14 lie on a different straight line.

 6 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  Repeat for the other trio.  In Figure 6-7c, a line has been drawn from I1,2 to intersect 
I1,4, and extended.  Note  that the only way to “intersect” I1,4 at infinity is to draw a line parallel 
to the line I3,4 I1,4 since all parallel lines intersect at infinity.  Instant center I2,4 must lie on this 

( a )  Crank-slider linkage

FIGURE 6-6
A rectilinear slider's instant center is at infinity

(b )  Crank-rocker linkage
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parallel line.  Another line has been drawn through I2,3 and I3,4 and extended to intersect the 
first line.  By Kennedy’s rule, instant center I2,4 must also lie on this line, so their intersection 
is I2,4.

 7 If there were more links, this procedure would be repeated until all ICs were found.
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FIGURE 6-7
Locating instant centers in the slider-crank linkage
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The procedure in this slider example is identical to that used in the pin-jointed fourbar, 
except that it is complicated by the presence of instant centers located at infinity.

In Section 2.10 and Figure 2-12c we showed that a cam-follower mechanism is really 
a fourbar linkage in disguise.  As such it will also possess instant centers.  The presence of 
the half joint in this, or any linkage, makes the location of the instant centers a little more 
complicated.  We have to recognize that the instant center between any two links will be 
along a line that is perpendicular to the relative velocity vector between the links at the 
half joint, as shown in the following example.  Figure 6-8 shows the same cam-follower 
mechanism as in Figure 2-12c.  The effective links 2, 3, and 4 are also shown.

✍EXAMPLE 6-4

Finding All Instant Centers for a Cam-Follower Mechanism.

Problem: Given a cam and follower in one position, find all ICs by graphical methods.

Solution: (See Figure 6-8.)

 1 Draw a circle with all links numbered around the circumference as shown in Figure 6-8b.  In 
this case there are only three links and thus only three ICs to be found as shown by equation 
6.8.  Note that the links are numbered 1, 2, and 4.  The missing link 3 is the variable-length 
effective coupler.

 2 Locate all ICs possible by inspection.  All pin joints will be permanent ICs. The two fixed 
pivots I1,2 and I1,4 are the only pin joints here.  Connect the link numbers on the circle to create 
a linear graph and record those ICs found, as shown in Figure 6-8b.  The only link combination 
on the linear graph for which the IC has not been found is I2,4, so draw a dotted line connecting 
those two link numbers.

 3 Kennedy’s rule says that all three ICs must lie on the same straight line; thus the remaining 
instant center I2,4 must lie on the line I1,2 I1,4 extended.  Unfortunately in this example, we 
have too few links to find a second line on which I2,4 must lie. 

 4 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  In Figure 6-8c, a line has been drawn from I1,2 through I1,4  and extended.  This 
is, of course, link 1.  By Kennedy’s rule, I2,4 must lie on this line.

 5 Looking at Figure 6-8c that shows the effective links of the equivalent fourbar linkage for 
this position, we can extend effective link 3 until it intersects link 1 extended.  Just as in the 
“pure” fourbar linkage, instant center 2,4 lies on the intersection of links 1 and 3 extended (see 
Example 6-2). 

 6 Figure 6-8d shows that it is not necessary to construct the effective fourbar linkage to find I2,4.  
Note that the common tangent to links 2 and 4 at their contact point (the half joint) has been 
drawn.  This line is also called the axis of slip because it is the line along which all relative 
(slip) velocity will occur between the two links.  Thus the velocity of link 4 versus 2, V42, is 
directed along the axis of slip.  Instant center I2,4 must therefore lie along a line perpendicular 
to the common tangent, called the common normal.  Note that this line is the same as the 
effective link 3 line in Figure 6-8c.
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6.4 VELOCITY ANALYSIS WITH INSTANT CENTERS

Once the ICs have been found, they can be used to do a very rapid graphical velocity 
analysis of the linkage.  Note that, depending on the particular position of the linkage 
being analyzed, some of the ICs may be very far removed from the links.  For example, 
if links 2 and 4 are nearly parallel, their extended lines will intersect at a point far away 
and not be practically available for velocity analysis.  Figure 6-9 shows the same linkage 
as Figure 6-5 with I1,3 located and labeled.  From the definition of the instant center, both 
links sharing the instant center will have identical velocity at that point.  Instant center I1,3
involves the coupler (link 3), which is in complex motion, and the ground link 1, which is 
stationary.  All points on link 1 have zero velocity in the global coordinate system, which 
is embedded in link 1.  Therefore, I1,3 must have zero velocity at this instant.  If I1,3 has 
zero velocity, then it can be considered to be an instantaneous “fixed pivot” about which 
link 3 is in pure rotation with respect to link 1.  A moment later, I1,3 will move to a new 
location and link 3 will be “pivoting” about a new instant center.

( a )  The cam and follower

V42

FIGURE 6-8
Locating instant centers in the cam-follower mechanism

(b)  The linkage graph (c )  The instantaneously equivalent "effective linkage"

(d )  Finding I2,4 without using the effective linkage
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The velocity of point A is shown on Figure 6-9.  The magnitude of VA can be com-
puted from equation 6.7.  Its direction and sense can be determined by inspection as was 
done in Example 6-1.  Note that point A is also instant center I2,3.  It has the same velocity 
as part of link 2 and as part of link 3.  Since link 3 is effectively pivoting about I1,3 at this 
instant, the angular velocity �3 can be found by rearranging equation 6.7:

(6.9a)3
1,3

v
AI
A

( )ω =

Once �3 is known, the magnitude of VB can also be found from equation 6.7:

(6.9b)1,3 3v BIB ( )= ω

Once VB is known, �4 can also be found from equation 6.7:

(6.9c)4
4

v
BO
B

( )ω =

Finally, the magnitude of VC (or the velocity of any other point on the coupler) can be 
found from equation 6.7:

(6.9d)1,3 3v CIC ( )= ω

Note that equations 6.7 and 6.9 provide only the scalar magnitude of these velocity 
vectors.  We have to determine their direction from the information in the scale diagram 
(Figure 6-9).  Since we know the location of I1,3, which is an instantaneous “fixed” pivot 
for link 3, all of that link’s absolute velocity vectors for this instant will be perpendicular 

θ2
ω2

ω3

ω4

FIGURE 6-9
Velocity analysis using instant centers
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to their radii from I1,3 to the point in question.  VB and VC can be seen to be perpen-
dicular to their radii from I1,3.  Note that VB is also perpendicular to the radius from O4
because B is also pivoting about that point as part of link 4.

A rapid graphical solution to equations 6.9 is shown in the figure.  Arcs centered at 
I1,3 are swung from points B and C to intersect line AI1,3.  The magnitudes of velocities 
VB’ and VC ’ are found from the vectors drawn perpendicular to that line at the intersec-
tions of the arcs and line AI1,3.  The lengths of the vectors are defined by the line from the 
tip of VA to the instant center I1,3.  These vectors can then be slid along their arcs back 
to points B and C, maintaining their tangency to the arcs.

Thus, we have in only a few steps found all the same velocities that were found using 
the more tedious method of Example 6-1.  The instant center method is a quick graphical 
method to analyze velocities, but it will only work if the instant centers are in reachable 
locations for the particular linkage position analyzed.  However, the graphical method 
using the velocity difference equation shown in Example 6-1 will always work, regardless 
of linkage position.

Angular Velocity Ratio
The angular velocity ratio mV is defined as the output angular velocity divided by the 
input angular velocity.  For a fourbar mechanism this is expressed as:

(6.10)4

2
mV =

ω
ω

We can derive this ratio for any linkage by constructing a pair of effective links
as shown in Figure 6-10a.  The definition of effective link pairs is two lines, mutually 
parallel, drawn through the fixed pivots and intersecting the coupler extended.  These are 
shown as O2A ’ and O4B ’ in Figure 6-10a.  Note that there is an infinity of possible effec-
tive link pairs.  They must be parallel to one another but may make any angle with link 3.  
In the figure they are shown perpendicular to link 3 for convenience in the derivation to 
follow.  The angle between links 2 and 3 is shown as ��  The transmission angle between 
links 3 and 4 is �.  We will now derive an expression for the angular velocity ratio using 
these effective links, the actual link lengths, and angles � and �.

From geometry:

sin sin (6.11a)2 2 4 4O A O A B O BΟ( ) ( )′ = ν ′ = μ

From equation 6.7

(6.11b)2 2V O AA ( )= ′ ω′

The component of velocity VA’ lies along the link AB.  Just as with a two-force mem-
ber in which a force applied at one end transmits only its component that lies along the 
link to the other end, this velocity component can be transmitted along the link to point 
B.  This is sometimes called the principle of transmissibility.  We can then equate these 
components at either end of the link.

(6.11c)V VA B=′ ′
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Then:
(6.11d)2 2 4 4O A O B′ω = ′ω

rearranging:

(6.11e)4

2

2

4

O A
O B

ω
ω

=
′
′

and substituting:
sin
sin

(6.11f )4

2

2

4

O A
O B

mV
ω
ω

=
ν
μ
=
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FIGURE 6-10
Effective links and the angular velocity ratio

(a )
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Note in equation 6.11f that as angle � goes through zero, the angular velocity ratio 
will be zero regardless of the values of �2 or the link lengths, and thus �4 will be zero.  
When angle � is zero, links 2 and 3 will be colinear and thus be in their toggle positions.  
We learned in Section 3.3 that the limiting positions of link 4 are defined by these toggle 
conditions.  We should expect that the velocity of link 4 will be zero when it has come 
to the end of its travel.  An even more interesting situation obtains if we allow angle � 
to go to zero.  Equation 6.11f shows that �4 will go to infinity when � = 0, regardless 
of the values of �2 or the link lengths.  We clearly cannot allow � to reach zero.  In fact, 
we learned in Section 3.3 that we should keep this transmission angle � above about 40 
degrees to maintain good quality of motion and force transmission.*

Figure 6-10b shows the same linkage as in Figure 6-10a, but the effective links have 
now been drawn so that they are not only parallel but are also colinear, and thus lie on top 
of one another.  Both intersect the extended coupler at the same point, which is instant 
center I2,4.  So, A’ and B’ of Figure 6-10a are now coincident at I2,4.  This allows us to 
write an equation for the angular velocity ratio in terms of the distances from the fixed 
pivots to instant center I2,4.

(6.11g)4

2

2 2,4

4 2,4
m

O I
O IV =

ω
ω

=

Thus, the instant center I2,4 can be used to determine the angular velocity ratio.

Mechanical Advantage
The power P in a mechanical system can be defined as the dot or scalar product of the 
force vector F and the velocity vector V at any point:

(6.12a)P F V F Vx x y yF V= ⋅ = +

For a rotating system, power P becomes the product of torque T and angular velocity � 
that, in two dimensions, have the same (z) direction:

(6.12b)P T= ω

The power flows through a passive system and:

(6.12c)P P lossesin out= +

Mechanical efficiency can be defined as:

(6.12d)P
P
out

in
ε =

Linkage systems can be very efficient if they are well made with low friction bearings 
on all pivots.  Losses are often less than 10%.  For simplicity in the following analysis we 
will assume that the losses are zero (i.e., a conservative system).  Then, letting Tin and 
�in represent input torque and angular velocity, and Tout and �out represent output torque 
and angular velocity,

 
* This limitation on 
transmission angle is only 
critical if the output load 
is applied to a link that 
is pivoted to ground (i.e., 
to link 4 in the case of a 
fourbar linkage).  If the load 
is applied to a floating link 
(e.g., a coupler), then other 
measures of the quality of 
force transmission than the 
transmission angle are more 
appropriate, as discussed in 
Chapter 11, Section 11.12, 
where the joint force index 
is defined.
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(6.12e)
P T

P T

in in in

out out out

= ω

= ω

and:

(6.12f )

P P
T T

T
T

out in

out out in in

out

in

in

out

=
ω = ω

=
ω
ω

Note that the torque ratio (mT = Tout /Tin) is the inverse of the angular velocity ratio.

Mechanical advantage (mA) can be defined as:

(6.13a)m
F
FA
out

in
�

Assuming that the input and output forces are applied at some radii rin and rout, perpen-
dicular to their respective force vectors, 

(6.13b)

F
T
r

F
T
r

out
out

out

in
in

in

�

�

substituting equations 6.13b in 6.13a gives an expression in terms of torque.

(6.13c)m
T
T

r
rA

out

in

in

out
=
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

Substituting equation 6.12f in 6.13c gives

(6.13d)m
r
rA

in

out

in

out
=

ω
ω

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

and substituting equation 6.11f gives

sin
sin

(6.13e)4

2
m

O B
O A

r
rA
in

out
=

μ
ν

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

See Figure 6-11 and compare equation 6.13e to equation 6.11f and its discussion un-
der angular velocity ratio.  Equation 6.13e shows that for any choice of rin and rout, the 
mechanical advantage responds to changes in angles � and � in opposite fashion to that of 
the angular velocity ratio.  If the transmission angle � goes to zero (which we don’t want it 
to do), the mechanical advantage also goes to zero regardless of the amount of input force 
or torque applied.  But, when angle � goes to zero (which it can and does, twice per cycle 
in a Grashof linkage), the mechanical advantage becomes infinite!  This is the principle 
of a rock-crusher mechanism as shown in Figure 6-11.  A quite moderate force applied to 
link 2 can generate a huge force on link 4 to crush the rock.  Of course, we cannot expect 
to achieve the theoretical output of infinite force or torque magnitude, as the strengths of 
the links and joints will limit the maximum forces and torques obtainable.  Another com-
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mon example of a linkage that takes advantage of this theoretically infinite mechanical 
advantage at the toggle position is a ViseGrip locking pliers (see Figure P6-21).

These two ratios, angular velocity ratio and mechanical advantage, provide use-
ful, dimensionless indices of merit by which we can judge the relative quality of various 
linkage designs that may be proposed as solutions.

Using Instant Centers in Linkage Design
In addition to providing a quick numerical velocity analysis, instant center analysis more 
importantly gives the designer a remarkable overview of the linkage’s global behavior.  
It is quite difficult to mentally visualize the complex motion of a “floating” coupler link 
even in a simple fourbar linkage, unless you build a model or run a computer simulation.  
Because this complex coupler motion in fact reduces to an instantaneous pure rotation 
about the instant center I1,3, finding that center allows the designer to visualize the motion 
of the coupler as a pure rotation.  One can literally see the motion and the directions of 
velocities of any points of interest by relating them to the instant center.  It is only neces-
sary to draw the linkage in a few positions of interest, showing the instant center locations 
for each position.

Figure 6-12 shows a practical example of how this visual, qualitative analysis tech-
nique could be applied to the design of an automobile rear suspension system.  Most 
automobile suspension mechanisms are either fourbar linkages or fourbar crank-sliders, 
with the wheel assembly carried on the coupler (as was also shown in Figure 3-19).  Fig-
ure 6-12a shows a rear suspension design from a domestic car of 1970s vintage that was 
later redesigned because of a disturbing tendency to “bump steer,” i.e., turn the rear axle 
when hitting a bump on one side of the car.  The figure is a view looking from the center 
of the car outward, showing the fourbar linkage that controls the up and down motion of 
one side of the rear axle and one wheel.  Links 2 and 4 are pivoted to the frame of the car 
which is link 1.  The wheel and axle assembly is rigidly attached to the coupler, link 3.  
Thus the wheel assembly has complex motion in the vertical plane.  Ideally, one would 
like the wheel to move up and down in a straight vertical line when hitting a bum  Figure 
6-12b shows the motion of the wheel and the new instant center (I1,3) location for the 
situation when one wheel has hit a bum  The velocity vector for the center of the wheel in 
each position is drawn perpendicular to its radius from I1,3.  You can see that the wheel 
center has a significant horizontal component of motion as it moves up over the bump.  

Tout = Fout rout

FIGURE 6-11
"Rock-crusher" toggle mechanism
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This horizontal component causes the wheel center on that side of the car to move forward 
while it moves upward, thus turning the axle (about a vertical axis) and steering the car 
with the rear wheels in the same way that you steer a toy wagon.  Viewing the path of 
the instant center over some range of motion gives a clear picture of the behavior of the 
coupler link.  The undesirable behavior of this suspension linkage system could have been 
predicted from this simple instant center analysis before ever building the mechanism.

Another practical example of the effective use of instant centers in linkage design is 
shown in Figure 6-13, which is an optical adjusting mechanism used to position a mirror 
and allow a small amount of rotational adjustment.[1]  A more detailed account of this 
design case study[2] is provided in Chapter 1.  The designer, K. Towfigh, recognized that 
I1,3 at point E is an instantaneous “fixed pivot” and will allow very small pure rotations 
about that point with very small translational error.  He then designed a one-piece, plastic 
fourbar linkage whose “pin joints” are thin webs of plastic that flex to allow slight rota-

( a )

FIGURE 6-12
“Bump steer” due to shift in instant center location

(b )
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View as a video
http://www.designofmachinery.com/

DOM/bump_steer.mp4
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* See also Section 2.16  
for more information on 
compliant mechanisms.

tion.  This is termed a compliant linkage,* one that uses elastic deformations of the links 
as hinges instead of pin joints.  He then placed the mirror on the coupler at I1,3.  Even the 
fixed link 1 is the same piece as the “movable links” and has a small set screw to provide 
the adjustment.  A simple and elegant design.

6.5 CENTRODES View a tutorial video (21:01)†

Figure 6-14 illustrates the fact that the successive positions of an instant center (or centro) 
form a path of their own.  This path, or locus, of the instant center is called the centrode.  
Since there are two links needed to create an instant center, there will be two centrodes 
associated with any one instant center.  These are formed by projecting the path of the 
instant center first on one link and then on the other.  Figure 6-14a shows the locus of 
instant center I1,3 as projected onto link 1.  Because link 1 is stationary, or fixed, this is 
called the fixed centrode.  By temporarily inverting the mechanism and fixing link 3 as 
the ground link, as shown in Figure 6-14b, we can move link 1 as the coupler and project 
the locus of I1,3 onto link 3.  In the original linkage, link 3 was the moving coupler, so this 
is called the moving centrode.  Figure 6-14c shows the original linkage with both fixed 
and moving centrodes superposed.

The definition of the instant center says that both links have the same velocity at that 
point, at that instant.  Link 1 has zero velocity everywhere, as does the fixed centrode.  
So, as the linkage moves, the moving centrode must roll against the fixed centrode with-
out slipping.  If you cut the fixed and moving centrodes out of metal, as shown in Figure 
6-14d, and roll the moving centrode (which is link 3) against the fixed centrode (which is 
link 1), the complex motion of link 3 will be identical to that of the original linkage.  All 
of the coupler curves of points on link 3 will have the same path shapes as in the original 
linkage.  We now have, in effect, a “linkless” fourbar linkage, really one composed of two 
bodies that have these centrode shapes rolling against one another.  Links 2 and 4 have 

An optical adjustment compliant linkage Reproduced from reference [2] with permission

FIGURE 6-13

† http://www.designofma-
chinery.com/DOM/Cen-
trodes.mp4
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been eliminated.  Note that the example shown in Figure 6-14 is a non-Grashof fourbar.  
The lengths of its centrodes are limited by the double-rocker toggle positions.

( a )  The fixed centrode

FIGURE 6-14
Open-loop fixed and moving centrodes (or polodes) of a fourbar linkage

(b)  The moving centrode

(c )  The centrodes in contact (d )  Roll the moving centrode against the
        fixed centrode to produce the same
        coupler motion as the original linkage
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All instant centers of a linkage will have centrodes.*  If the links are directly con-
nected by a joint, such as I2,3, I3,4, I1,2, and I1,4, their fixed and moving centrodes will 
degenerate to a point at that location on each link.  The most interesting centrodes are 
those involving links not directly connected to one another such as I1,3 and I2,4.  If we look 
at the double-crank linkage in Figure 6-15a in which links 2 and 4 both revolve fully, we 
see that the centrodes of I1,3 form closed curves.  The motion of link 3 with respect to link 
1 could be duplicated by causing these two centrodes to roll against one another without 
slipping.  Note that there are two loops to the moving centrode.  Both must roll on the 
single-loop fixed centrode to complete the motion of the equivalent double-crank linkage.

We have so far dealt largely with the instant center I1,3.  Instant center I2,4 involves 
two links that are each in pure rotation and not directly connected to one another. If we 
use a special-case Grashof linkage with the links crossed (sometimes called an antiparal-
lelogram linkage), the centrodes of I2,4 become ellipses as shown in Figure 6-15b.  To 
guarantee no slip, it will probably be necessary to put meshing teeth on each centrode.  
We then will have a pair of elliptical, noncircular gears, or gearset, which gives the same 
output motion as the original double-crank linkage and will have the same variations in 
the angular velocity ratio and mechanical advantage as the linkage had.  Thus we can see 
that gearsets are also just fourbar linkages in disguise.  Noncircular gears find much use 
in machinery, such as printing presses, where rollers must be speeded and slowed with 
some pattern during each cycle or revolution.  More complicated shapes of noncircular 
gears are analogous to cams and followers in that the equivalent fourbar linkage must 

 

* Since instant centers are 
called poles as well as cen-
tros, centrodes are some-
times also called polodes.  
We will use the centro and 
centrode nomenclature in 
this text.

( a )  Closed-loop centrodes of I 1,3
       for a Grashof double-crank linkage

FIGURE 6-15
Closed-loop fixed and moving centrodes

(b )  Ellipsoidal centrodes of I 2,4
        for a special-case Grashof
        anti-parallelogram linkage
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View as a video

http://www.designofmachinery.
com/DOM/centrodes_ellipsoid.avi

http://www.designofma-
chinery.com/DOM/cen-
trodes_in_contact.avi
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have variable-length links.  Circular gears are just a special case of noncircular gears 
that give a constant angular velocity ratio and are widely used in all machines.  Gears 
and gearsets will be dealt with in greater detail in Chapter 9.

In general, centrodes of crank-rockers and double- or triple-rockers will be open 
curves with asymptotes.  Centrodes of double-crank linkages will be closed curves.  Pro-
gram LINKAGES will calculate and draw the fixed and moving centrodes for any linkage 
input to it.  Open the files F06-14.4br, F06-15a.4br, and F06-15b.4br in program LINK-
AGES to see the centrodes of these linkages drawn as the linkages rotate.

A “Linkless” Linkage 
A common example of a mechanism made of centrodes is shown in Figure 6-16a.  You 
have probably rocked in a Boston or Hitchcock rocking chair and experienced the soothing 
motions that it delivers to your body.  You may have also rocked in a platform rocker as 
shown in Figure 6-16b and noticed that its motion did not feel as soothing.  

There are good kinematic reasons for the difference.  The platform rocker has a fixed 
pin joint between the seat and the base (floor).  Thus all parts of your body are in pure 
rotation along concentric arcs.  You are in effect riding on the rocker of a linkage. 

 The Boston rocker has a shaped (curved) base, or “runners,” which rolls against the 
floor.  These runners are usually not circular arcs.  They have a higher-order curve contour. 
They are, in fact, moving centrodes.  The floor is the fixed centrode.  When one is rolled 
against the other, the chair and its occupant experience coupler curve motion.  Every part 
of your body travels along a different sixth-order coupler curve that provides smooth ac-
celerations and velocities and feels better than the cruder second-order (circular) motion 
of the platform rocker.   Our ancestors, who carved these rocking chairs, probably had 
never heard of fourbar linkages and centrodes, but they knew intuitively how to create 
comfortable motions.

Cusps
Another example of a centrode that you probably use frequently is the path of the tire on 
your car or bicycle.  As your tire rolls against the road without slipping, the road becomes 
a fixed centrode, and the circumference of the tire is the moving centrode.  The tire is, in 
effect, the coupler of a linkless fourbar linkage.  All points on the contact surface of the 
tire move along cycloidal coupler curves and pass through a cusp of zero velocity when 
they reach the fixed centrode at the road surface as shown in Figure 6-17a.  All other points 
on the tire and wheel assembly travel along coupler curves that do not have cusps.  This 
last fact is a clue to a means to identify coupler points that will have cusps in their coupler 
curve.  If a coupler point is chosen to be on the moving centrode at one extreme of its path 
motion (i.e., at one of the positions of I1,3), then it will have a cusp in its coupler curve.  
Figure 6-17b shows a coupler curve of such a point, drawn with program LINKAGES.  The 
right end of the coupler path touches the moving centrode and as a result has a cusp at 
that point.  So, if you desire a cusp in your coupler motion, many are available.  Simply 
choose a coupler point on the moving centrode of link 3.  Open the file F06-17b.4br in 
program LINKAGES to animate that linkage with its coupler curve or centrodes.  Note in 
Figure 6-14 that choosing any location of instant center I1,3 on the coupler as the coupler 
point will provide a cusp at that point.

( a )  Boston rocker

FIGURE 6-16
Some rocking chairs
use centrodes of a 
fourbar linkage

(b)  Platform rocker

Coupler
 motion

Moving
centrode

Fixed
centrode

  Arc
motion

Spring

Pivot
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6.6 VELOCITY OF SLIP

When there is a sliding joint between two links and neither one is the ground link, the 
velocity analysis is more complicated.  Figure 6-18 shows an inversion of the fourbar 
crank-slider mechanism in which the sliding joint is floating, i.e., not grounded.  To solve 
for the velocity at the sliding joint A, we have to recognize that there is more than one 
point A at that joint.  There is a point A as part of link 2 (A2), a point A as part of link 3 
(A3), and a point A as part of link 4 (A4).  This is a CASE 2 situation in which we have at 
least two points belonging to different links but occupying the same location at a given 
instant.  Thus, the relative velocity equation 6.6 will apply.   We can usually solve for 
the velocity of at least one of these points directly from the known input information us-
ing equation 6.7. It and equation 6.6 are all that is needed to solve for everything else. In 

( a )  Cycloidal motion of a circular, moving centrode rolling on a straight, fixed centrode

FIGURE 6-17
Examples of centrodes

(b )  Coupler curve cusps exist only on the moving centrode

No slip

Fixed centrode

Cycloidal path motion Moving centrode

Cusp

3

2

4
Cusp

Fixed centrodeMoving centrode

Coupler curve

View as a video
http://www.designofmachinery.

com/DOM/cycloid.avi
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this example, link 2 is the driver, and �2 and �2 are given for the “freeze frame” position 
shown.  We wish to solve for �4, the angular velocity of link 4, and also for the velocity 
of slip at the joint labeled A.

In Figure 6-18 the axis of slip is shown to be tangent to the slider motion and is the 
line along which all sliding occurs between links 3 and 4.  The axis of transmission is 
defined to be perpendicular to the axis of slip and pass through the slider joint at A.  This 
axis of transmission is the only line along which we can transmit motion or force across 
the slider joint, except for friction.  We will assume friction to be negligible in this exam-
ple.  Any force or velocity vector applied to point A can be resolved into two components 
along these two axes that provide a translating and rotating, local coordinate system for 
analysis at the joint.  The component along the axis of transmission will do useful work 
at the joint.  But, the component along the axis of slip does no work, except friction work.

✍EXAMPLE 6-5

Graphical Velocity Analysis at a Sliding Joint.

Problem: Given �2, �3, �4, �2, find �3, �4, VA, by graphical methods.

Solution: (See Figure 6-18.)

 1 Start at the end of the linkage for which you have the most information.  Calculate the magni-
tude of the velocity of point A as part of link 2 (A2) using scalar equation 6.7.

( )2 22v AO aA ( )= ω

FIGURE 6-18
Ve locity of slip and velocity of transmission (note that the applied ω is negative as shown)

ω2

4

2

3

p

p

Axis of
transmission

Axis of slip

Effective link 4

A

O2

O4

VA2

VA4

VA4slip

VA2slip

Vslip42

Vtrans
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2 Draw the velocity vector VA2 with its length equal to its magnitude vA2 at some convenient 
scale and with its root at point A and its direction perpendicular to the radius AO2.  Its sense is 
the same as that of �2 as is shown in Figure 6-18.

 3 Draw the axis of slip and axis of transmission through point A.

 4 Project VA2 onto the axis of slip and onto the axis of transmission to create the components 
VA2slip and Vtrans of VA2 on the axes of slip and transmission, respectively.  Note that the 
transmission component is shared by all true velocity vectors at this point, as it is the only 
component that can transmit across the joint.

 5 Note  that link 3 is pin-jointed to link 2, so VA3 = VA2.

 6 Note that the direction of the velocity of point VA4 is predictable since all points on link 4 are 
pivoting in pure rotation about point O4.  Draw the line pp through point A and perpendicular 
to the effective link 4, AO4.  Line pp is the direction of velocity VA4.

 7 Construct the true magnitude of velocity vector VA4 by extending the projection of the trans-
mission component Vtrans until it intersects line p

 8 Project VA4 onto the axis of slip to create the slip component VA4slip.

 9 Write the relative velocity vector equation 6.6 for the slip components of point A2 versus point 
A4.

( )42 4 2V V V bslip A Aslip slip
= −

 

10 The angular velocities of links 3 and 4 are identical because they share the slider joint and must 
rotate together.  They can be calculated from equation 6.7:  

( )4 3
4

4V
AO

cAω = ω =

Instant center analysis also can be used to solve sliding-joint velocity problems.

✍EXAMPLE 6-6

Graphical Velocity Analysis of a Cam and Follower.

Problem: Given �2, �2, find �3, by graphical methods.

Solution: (See Figure 6-19.)

 1 Construct the effective radius of the cam R2 eff at the instantaneous point of contact with the 
follower for this position (point A in the figure).  Its length is distance O2A.  Calculate the 
magnitude of the velocity of point A as part of link 2 (A2) using scalar equation 6.7.

( )2 22v AO aA ( )= ω
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2 Draw the velocity vector VA2 with its length equal to its magnitude vA2 at some convenient 
scale and with its root at point A and its direction perpendicular to the radius O2A.  Its sense 
is the same as that of �2 as is shown in Figure 6-19. 

 3 Construct the axis of slip (common tangent to cam and follower) and its normal, the axis of 
transmission, as shown in Figure 6-19.

 4 Project VA2 onto the axis of transmission to create the component Vtrans.  Note that the trans-
mission component is shared by all true velocity vectors at this point, as it is the only com-
ponent that can transmit across the joint.

 5 Project VA2 onto the axis of slip to create the slip component VA2slip.

6 Note that the direction of the velocity of point VA3 is predictable since all points on link 3  are 
pivoting in pure rotation about point O3.  Construct the effective radius of the follower R3 eff
at the instantaneous point of contact with the follower for this position (point A in the figure).  
Its length is distance O3A. 

 7 Construct a line in the direction of VA3  perpendicular to R3 eff.  Construct the true magnitude 
of velocity vector VA3 by extending the projection of the transmission component Vtrans until 
it intersects the line of VA3.

 8 Project VA3 onto the axis of slip to create the slip component VA3slip.

9 The total slip velocity at A is the vector difference between the two slip components.  Write 
the relative velocity vector equation 6.6 for the slip components of point A3 versus A2.

( )32 3 2V V V bslip A Aslip slip
= −

10 The angular velocity of link 3 can be calculated from equation 6.7:

VA2

R3eff

FIGURE 6-19
Graphical velocity analysis of a cam and follower

O3

ω

2

3

A

VA3

VA2slip

VA3slip

R2eff

Vtrans

O2

Axis of transmission

Axis of slip

= –Vslip32 VA3slip VA2slip
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( )3
3

3V
AO

cAω =

The above examples show how mechanisms with sliding or half joints can be solved 
graphically for velocities at one position.  In the next section, we will develop the general 
solution using algebraic equations to solve similar problems.

6.7 ANALYTICAL SOLUTIONS FOR VELOCITY ANALYSIS  
View the lecture video (46:41)†

The Fourbar Pin-Jointed Linkage
The vector-loop position equations for the fourbar pin-jointed linkage were derived in 
Section 4.5.  The linkage was shown in Figure 4-6 and is shown again in Figure 6-20 
on which we also show an input angular velocity �2 applied to link 2.  This �2 can be 
a time-varying input velocity.  The vector loop equation is shown in equations 4.5a and 
4.5c, repeated here for your convenience.

+ − − = 0 (4.5a)2 3 4 1R R R R

As before, we substitute the complex number notation for the vectors, denoting their 
scalar lengths as a, b, c, d as shown in Figure 6-20a.

0 (4.5c)2 3 4 1ae be ce dej j j j+ − − =θ θ θ θ

To get an expression for velocity, differentiate equation 4.5c with respect to time.

0 (6.14a)2 3 42 3 4jae
d
dt

jbe
d
dt

jc e
d
dt

j j jθ
+

θ
−

θ
=θ θ θ

But,

; ; (6.14b)2
2

3
3

4
4

d
dt

d
dt

d
dt

θ
= ω

θ
= ω

θ
= ω

and:
0 (6.14c)2 3 42 3 4ja e jb e jc ej j jω + ω − ω =θ θ θ

Note that the �1 term has dropped out because that angle is a constant, and thus its 
derivative is zero.  Note also that equation 6.14 is, in fact, the relative velocity or velocity 
difference equation.

0 (6.15a)

where:

(6.15b)
2

3

4

2

3

4

ja e

jb e

jc e

A BA B

A
j

BA
j

B
j

V V V
V
V
V

+ − =

= ω

= ω

= ω

θ

θ

θ

Compare equations 6.15 to equations 6.3, 6.5, and 6.6.  This equation is solved graph-
ically in the vector diagram of Figure 6-20b.  Note the transmission angle ��drawn between 

† http://www.designofma-
chinery.com/DOM/Veloc-
ity_Analysis_with_Vectors.
mp4
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links 3 and 4 and also between VB and VBA.  This shows an alternate way to define the 
transmission angle using the velocity vectors at point B.

We now need to solve equation 6.14 for �3 and �4, knowing the input velocity �2, the 
link lengths, and all link angles.  Thus the position analysis derived in Section 4.5 must 
be done first to determine the link angles before this velocity analysis can be completed.  
We wish to solve equation 6.14 to get expressions in this form:

, , , , , , , , , , , , , , (6.16)3 2 3 4 2 4 2 3 4 2f a b c d g a b c d( ) ( )ω = θ θ θ ω ω = θ θ θ ω

The strategy of solution will be the same as was done for the position analysis.  First, 
substitute the Euler identity from equation 4.4a in each term of equation 6.14c:

cos sin cos sin

cos sin 0 (6.17a)
2 2 2 3 3 3

4 4 4

ja j jb j

jc j

( )( )
( )

ω θ + θ + ω θ + θ

− ω θ + θ =

Multiply through by the operator j:

cos sin cos sin

cos sin 0 (6.17b)

2 2
2

2 3 3
2

3

4 4
2

4

a j j b j j

c j j

( ) ( )
( )

ω θ + θ + ω θ + θ

− ω θ + θ =

The cosine terms have become the imaginary, or y-directed terms, and because j2 = –1, 
the sine terms have become real or x-directed.

sin cos sin cos

sin cos 0 (6.17c)
2 2 2 3 3 3

4 4 4

a j b j

c j

( )( )
( )

ω − θ + θ + ω − θ + θ

− ω − θ + θ =

We can now separate this vector equation into its two components by collecting all 
real and all imaginary terms separately:

ω2

θ2

θ3

θ4

ω3

ω4

�

�

( a )

R1

R3
R4

R2

FIGURE 6-20
Position vector loop for a fourbar linkage showing velocity vectors for a negative (cw) ω2

(b )

O2 O4

VA

VB

VBA

A

B

X

Y

x

y

d

b

ca
–

+

–

VB
VBA

VA
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real part (x component):

sin sin sin 0 (6.17d)2 2 3 3 4 4a b c− ω θ − ω θ + ω θ =

imaginary part (y component):

cos cos cos 0 (6.17e)2 2 3 3 4 4a b cω θ + ω θ − ω θ =

Note that the j’s have canceled in equation 6.17e.  We can solve these two equations, 
6.17d and 6.17e, simultaneously by direct substitution to get:

sin
sin

(6.18a)3
2 4 2

3 4

a
b ( )

( )
ω =

ω θ − θ
θ − θ

sin
sin

(6.18b)4
2 2 3

4 3

a
c

( )
( )ω =

ω θ − θ
θ − θ

Once we have solved for �3 and �4, we can then solve for the linear velocities by 
substituting the Euler identity into equations 6.15,

cos sin sin cos (6.19a)

cos sin sin cos (6.19b)

cos sin sin cos (6.19c)

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

ja j a j

jb j b j

jc j c j

A

BA

B

V
V
V

( ) ( )
( ) ( )

( ) ( )

= ω θ + θ = ω − θ + θ

= ω θ + θ = ω − θ + θ

= ω θ + θ = ω − θ + θ

where the real and imaginary terms are the x and y components, respectively.  Equations 
6.18 and 6.19 provide a complete solution for the angular velocities of the links and the 
linear velocities of the joints in the pin-jointed fourbar linkage.  Note that there are also 
two solutions to this velocity problem, corresponding to the open and crossed circuits of 
the linkage.  They are found by the substitution of the open or crossed circuit values of �3
and �4 obtained from equations 4.10 and 4.12-4.13 into equations 6.18 and 6.19.  Figure 
6-20a shows the open circuit.

✍EXAMPLE 6-7

Velocity Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem: Given a fourbar linkage with the link lengths L1 = d = 100 mm, L2 = a = 40 mm,  
L3 = b = 120 mm, L4 = c = 80 mm. For �2 = 40� and �2 = 25 rad/sec find the 
values of �3 and �4, VA, VBA, and VB for the open circuit of the linkage.  Use the 
angles found for the same linkage and position in Example 4-1. 

Solution: (See Figure 6-20 for nomenclature.)

 1 Example 4-1 found the link angles for the open circuit of this linkage to be �3 = 20.298� and 
�4 = 57.325�.

 2 Use these angles and equations 6.18 to find �3 and �4 for the open circuit.
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sin
sin

40 25
120

sin 57.325 40
sin 20.298 57.325

4.121 rad/sec

( )
sin
sin

40 25
80

sin 40 20.298
sin 57.325 20.298

6.998 rad/sec

3
2 4 2

3 4

4
2 2 3

4 3

a
b

a
a
c

( )
( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

ω =
ω θ − θ

θ − θ
=

° − °
° − °

= −

ω =
ω θ − θ

θ − θ
=

° − °
° − °

=

 3 Use the angular velocities and equations 6.19 to find the linear velocities of points A and B.

sin cos
40 25 sin40 cos40 642.79 766.04
642.79; 766.04; 1000 mm/sec; 130 ( )

2 2 2a j

j j
b

A

A A A Ax y mag ang

V

V V V V

( )
( )( )

= ω − θ + θ

= − ° + ° = − +
= − = = = °

sin cos
120 4.121 sin20.298 20.298 171.55 463.80
171.55; 463.80; 494.51 mm/sec; 69.70 ( )

3 3 3b j

j j
c

BA

BA BA BA BAx y mag ang

V

V V V V

( )
( )( )

= ω − θ + θ

= − − ° + ° = −
= = − = = − °

c j

j j
d

B

B B B Bx y mag ang

sin cos
80 6.998 sin57.325 cos57.325 471.242 302.243
471.242; 302.243; 559.84 mm/sec; 147.33 ( )

4 4 4( )
( )( )

= ω − θ + θ

= − + = − +
= − = = = °

V

V V V V

4 As an exercise, repeat the above process to find the velocities for the crossed circuit of the 
linkage.

The Fourbar Crank-Slider
The position equations for the fourbar offset crank-slider linkage (inversion #1) were 
derived in Section 4.6.  The linkage was shown in Figure 4-10 and is shown again in 
Figure 6-21a on which we also show an input angular velocity �2 applied to link 2.  This 
�2 can be a time-varying input velocity.  The vector loop equation 4.14 is repeated here 
for your convenience.

− − − =R R R R 0 (4.14a)2 3 4 1

− − − =θ θ θ θ 0 (4.14b)2 3 4 1ae be ce dej j j j

Differentiate equation 4.14b with respect to time noting that a, b, c, �1, and �4 are 
constant but the length of link d varies with time in this inversion.

� 0 (6.20a)2 32 3ja e jb e dj jω − ω − =θ θ

The term �d  is the linear velocity of the slider block.  Equation 6.20a is the velocity 
difference equation 6.5 and can be written in that form.
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or:
but:
then:

0

(6.20b)

A AB B

A B AB

AB BA

B A BA

V V V
V V V
V V
V V V

− − =
= +
= −
= +

Equation 6.20 is identical in form to equations 6.5 and 6.15a. Note that because we 
arranged the position vector R3 in Figure 4-10 and Figure 6-21 with its root at point B, 
directed from B to A, its derivative represents the velocity difference of point A with re-
spect to point B, the opposite of that in the previous fourbar example.  Compare this also 
to equation 6.15b noting that its vector R3 is directed from A to B.  Figure 6-21b shows 
the vector diagram of the graphical solution to equation 6.20b.

Substitute the Euler equivalent, equation 4.4a, in equation 6.20a,

�cos sin cos sin 0 (6.21a)2 2 2 3 3 3ja j jb j d( )( )ω θ + θ − ω θ + θ − =

simplify,
�sin cos sin cos 0 (6.21b)2 2 2 3 3 3a j b j d( )( )ω − θ + θ − ω − θ + θ − =

and separate into real and imaginary components.

real part (x component):

�sin sin 0 (6.21c)2 2 3 3a b d− ω θ + ω θ − =

imaginary part (y component):

cos cos 0 (6.21d)2 2 3 3a bω θ − ω θ =

 
* Note the transmission an-
gle � in Figure 6-21a drawn 
between link 3 and effective 
link 4 as previously defined.  
It is also shown drawn be-
tween vectors VB and VBA 
in Figure 6-21b, indicating 
an alternate way to define 
the transmission angle as 
the acute angle between 
the absolute velocity and 
velocity difference vectors 
at a point such as B.  This 
approach does not require 
construction of the slider’s 
effective link 4 to determine 
the transmission angle.

θ2 θ4

ω3

θ3

ω2

�

�

effective
link 4

to∞
(a )

Rs

R1

R3

R4

R2

FIGURE 6-21*
Position vector loop for a fourbar crank-slider linkage showing velocity vectors for a negative (CW ) ω2

(b )
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These are two simultaneous equations in the two unknowns, �d  and �3.  Equation 
6.21d can be solved for �3 and substituted into 6.21c to find �d .

cos
cos

(6.22a)3
2

3
2

a
b

ω =
θ
θ

ω

� sin sin (6.22b)2 2 3 3d a b= − ω θ + ω θ

The absolute velocity of point A and the velocity difference of point A versus point 
B are found from equation 6.20:

sin cos (6.23a)

sin cos (6.23b)
(6.23c)

2 2 2

3 3 3

a j

b j
A

AB

BA AB

V
V
V V

( )
( )= ω − θ + θ

= ω − θ + θ

= −

✍EXAMPLE 6-8

Velocity Analysis of a Fourbar Crank-Slider Linkage with the Vector Loop Method.

Problem: Given a fourbar crank-slider linkage with the link lengths L2 = a = 40 mm,  
L3 = b = 120 mm, offset = c = –20 mm. For �2 = 60� and �2 = –30 rad/sec, find 
�3 and linear velocities of points A and B for the open circuit.  Use the angles and 
positions found for the same linkage and its link 2 position in Example 4-2. 

Solution: (See Figure 6-21, for nomenclature.)

 1 Example 4-2 found angle �3 = 152.91� and slider position d = 126.84 mm for the open circuit.

 2 Using equation 6.22a and the data from step 1, calculate the coupler angular velocity �3.

cos
cos

40
120

cos60
cos152.91

30 5.616 rad/sec ( )3
2

3
2

a
b

a( )ω =
θ
θ

ω =
°
°
− =

 3 Using equation 6.22b and the data from steps 1 and 2, calculate the slider velocity �d .

� sin sin 40 30 sin60 120 5.616 sin152.91 1346 mm/sec ( )2 2 3 3d a b b( ) ( )= − ω θ + ω θ = − − ° + ° =

 4 Using equation 6.23 and the result from step 2, calculate the linear velocities VA and VBA.

sin cos 40 30 sin60 cos60 1039.23 600
1039.23; 600; 1200 mm/sec; 30 ( )

2 2 2a j j j
c

A

A A A Ax y mag ang

V
V V V V

( ) ( )( )= ω − θ + θ = − − ° + ° = −

= = − = = − °

sin cos
120 5.616 sin152.91 cos152.91 306.86 600

306.86 600
306.86; 600; 673.92 mm/sec; 62.91 ( )

3 3 3b j

j j
j

d

AB

AB

BA AB

BA BA BA BAx y mag ang

V
V
V V
V V V V

( )
( )( )

= ω − θ + θ

= − ° + ° = − −
= − = +
= = = = °
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The Fourbar Slider-Crank
The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section.  The name change indicates that it will be 
driven with the slider as input and the crank as output.  This is sometimes referred to as a 
“back-driven” crank-slider.  We will use the term slider-crank to define it as slider-driven. 
This is a very commonly used linkage configuration.  Every internal-combustion, piston 
engine has as many of these as it has cylinders.  The vector loop is as shown in Figure 6-21 
and the vector loop equation is identical to that of the crank-slider (equation 4.14a).  The 
derivation for �2 as a function of slider position d was done in Section 4-7.  Now we want 
to solve for �2 as a function of slider velocity �d  and the known link lengths and angles.

We can start with equations 6.21c and d, which also apply to this linkage:
�sin sin 0 (6.21c)

cos cos 0 (6.21d)
2 2 3 3

2 2 3 3

a b d
a b

− ω θ + ω θ − =
ω θ − ω θ =

Solve equation 6.21d for �3 in terms of �2.

cos
cos

(6.24a)3
2 2

3

a
b

ω =
ω θ

θ

Substitute equation 6.24a for �3 in equation 6.21c and solve for �2.

� cos
cos sin sin cos

(6.24b)2
3

2 3 2 3

d
a( )ω =

θ
θ θ − θ θ

The circuit of the linkage depends on the value of d chosen and the angular velocities will 
be for the circuit represented by the values of �2 and �3 used from equation 4.21.*

✍EXAMPLE 6-9

Velocity Analysis of a Fourbar Slider-Crank Linkage with the Vector Loop Method.

Problem: Given a fourbar slider-crank linkage with the link lengths L2 = a = 40 mm, 
L3 = b = 120 mm, offset = c = –20 mm. For d = 100 mm and �d  = 1200 mm/sec, 
find �2 and �3 for both branches of one circuit of the linkage.  Use the angles found 
for the same linkage in Example 4-3. 

Solution: (See Figure 6-21 for nomenclature.)

 1 Example 4-3 found angles �21 = 95.798�, �31 = 150.113� for branch 1 and �22 = –118.418�, 
�32 = 187.267� for branch 2 of this linkage.

 2 Using equation 6.24b and the data from step 1, calculate the crank angular velocity �21.

� cos

cos sin sin cos

1200cos150.113
40 cos95.798 sin150.113 sin95.798 cos150.113

32.023 rad/sec ( )

2
3

2 3 2 3
1

1

1 1 1 1

d

a

a

( )
( )

ω =
θ

θ θ − θ θ

=
°

° ° − ° °
= −

 
* The crank-slider and 
slider-crank linkage 
both have two circuits or 
configurations in which 
they can be independently 
assembled, sometimes 
called open and crossed.   
Because effective link 4 is 
always perpendicular to the 
slider axis, it is parallel to 
itself on both circuits.  This 
results in the two circuits 
being mirror images of one 
another, mirrored about a 
line through the crank pivot 
and perpendicular to the 
slide axis.  Thus, the choice 
of value of slider position 
d in the calculation of the 
slider-crank linkage deter-
mines which circuit is being 
analyzed.  But, because of 
the change points at TDC 
and BDC, the slider crank 
has two branches on each 
circuit and the two solutions 
obtained from equation 4.21 
represent the two branches 
on the one circuit being 
analyzed.  In contrast, the 
crank-slider has only one 
branch per circuit because 
when the crank is driven, it 
can make a full revolution 
and there are no change 
points to separate branches.  
See Section 4.13 for a 
more complete discussion 
of circuits and branches in 
linkages.
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3 Using equation 6.24a and data from steps 1 and 2, calculate coupler angular velocity �31.

cos
cos

40 32.023 cos95.798
120cos150.113

1.244 rad/sec ( )3
2 2

3
1

1 1

1

a
b

b
( )

ω =
ω θ

θ
=

− °
°

= −

 4 Example 4-3 found �22 = –118.418� and �32 = 187.267�  for branch 2 of this linkage.

 5 Using equation 6.24b and the data from step 2, calculate the crank angular velocity �22.

� cos

cos sin sin cos

1200cos 187.267
40 cos 118.418 sin 187.267 sin 118.418 cos 187.267

36.639 rad/sec ( )

2
3

2 3 2 3
2

2

2 2 2 2

d

a

c

( )
( )

( ) ( ) ( ) ( )

ω =
θ

θ θ − θ θ

=
°

− ° ° − − ° °⎡⎣ ⎤⎦
=

 6 Using equation 6.24a and the data from steps 3 and 4, calculate coupler angular velocity �32.

cos
cos

40 36.639 cos 118.418
120cos 187.267

5.859 rad/sec ( )3
2 2

3
2

2 2

2

a
b

d
( ) ( )

( )ω =
ω θ

θ
=

− °
°

=

The Fourbar Inverted Crank-Slider
The position equations for the fourbar inverted crank-slider linkage were derived in Sec-
tion 4.8.  The linkage was shown in Figure 4-13 and is shown again in Figure 6-22 on 
which we also show an input angular velocity �2 applied to link 2.  This �2 can vary with 
time.  The vector loop equations 4.14 are valid for this linkage as well.

All slider linkages will have at least one link whose effective length between joints 
varies as the linkage moves.  In this inversion the length of link 3 between points A and 
B, designated as b, will change as it passes through the slider block on link 4.  To get an 
expression for velocity, differentiate equation 4.14b with respect to time noting that a, c, 
d, and �1 are constant and b varies with time.

� 0 (6.25a)2 3 42 3 3 4ja e jb e be jc ej j j jω − ω − − ω =θ θ θ θ

The value of db/dt will be one of the variables to be solved for in this case and is 
the �b  term in the equation.  Another variable will be �4, the angular velocity of link 4.  
Note, however, that we also have an unknown in �3, the angular velocity of link 3.  There 
is a total of three unknowns.  Equation 6.25a can only be solved for two unknowns.  Thus 
we require another equation to solve the system.  There is a fixed relationship between 
angles �3 and �4, shown as �� in Figure 6-22 and defined in equation 4.22, repeated here:

θ = θ + γ θ = θ + γ − πopen configuration: ; crossed configuration: (4.22)3 4 3 4

Differentiate it with respect to time to obtain:

(6.25b)3 4ω = ω

We wish to solve equation 6.25a to get expressions in this form:
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�

, , , , , , ,
(6.26)

, , , , , , ,

3 4 2 3 4 2

2 3 4 2

f a b c d

db
dt

b g a b c d

( )

( )

ω = ω = θ θ θ ω

= = θ θ θ ω

Substitution of the Euler identity (equation 4.4a) into equation 6.25a yields:

�

cos sin cos sin

cos sin cos sin 0 (6.27a)
2 2 2 3 3 3

3 3 4 4 4

ja j jb j

b j jc j

( )
( )

( )
( )

ω θ + θ − ω θ + θ

− θ + θ − ω θ + θ =

Multiply by the operator j and substitute �4 for �3 from equation 6.25b:

�

sin cos sin cos

cos sin sin cos 0 (6.27b)
2 2 2 4 3 3

3 3 4 4 4

a j b j

b j c j

( )
( )

( )
( )

ω − θ + θ − ω − θ + θ

− θ + θ − ω − θ + θ =

We can now separate this vector equation into its two components by collecting all 
real and all imaginary terms separately:

real part (x component):

�sin sin cos sin 0 (6.28a)2 2 4 3 3 4 4a b b c− ω θ + ω θ − θ + ω θ =

imaginary part (y component):

�cos cos sin cos 0 (6.28b)2 2 4 3 3 4 4a b b cω θ − ω θ − θ − ω θ =

Collect terms and rearrange equations 6.28 to isolate one unknown on the left side.

�

�

cos sin sin sin (6.29a)

sin cos cos cos (6.29b)
3 2 2 4 3 4

3 2 2 4 3 4

b a b c

b a b c

( )
( )

θ = − ω θ +ω θ + θ

θ = ω θ −ω θ + θ

ω2

θ3
θ4

γ

θ2

ω4

ω3

�b

R1

R3
R4

R2

FIGURE 6-22
Velocity analysis of inversion #3 of the slider-crank fourbar linkage

O2 O4

VA VB4

a

b

c

d

A

X

Y

x

y

B axis of slip
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Either equation can be solved for �b  and the result substituted in the other.  Solving 
equation 6.29a:

� sin sin sin
cos

(6.30a)2 2 4 3 4

3
b

a b c( )
=
− ω θ +ω θ + θ

θ

Substitute in equation 6.29b and simplify:

cos
cos

(6.30b)4
2 2 3

4 3

a
b c

( )
( )ω =

ω θ − θ
+ θ − θ

Equation 6.30a provides the velocity of slip at point B.  Equation 6.30b gives the 
angular velocity of link 4.  Note that we can substitute 4 3=−γ θ − θ  from equation 4.18 
(for an open linkage) into equation 6.30b to further simplify it.  Note that cos(–�) = cos(�).

cos
cos

(6.30c)4
2 2 3a
b c

( )
ω =

ω θ − θ
+ γ

The velocity of slip from equation 6.30a is always directed along the axis of slip as 
shown in Figure 6-22.  There is also a component orthogonal to the axis of slip called 
the velocity of transmission.  This lies along the axis of transmission which is the only 
line along which any useful work can be transmitted across the sliding joint.  All energy 
associated with motion along the slip axis is converted to heat and lost.

The absolute linear velocity of point A is found from equation 6.23a.  We can find 
the absolute velocity of point B on link 4 since �4 is now known.  From equation 6.15b:

sin cos (6.31a)4 4 4 44
4jc e c jB
jV ( )= ω = ω − θ + θθ

The velocity of transmission is the component of Vb4 normal to the axis of slip.  The 
absolute velocity of point B on link 3 is found from equation 6.5 as

(6.31b)3 4 34 4 34B B B B slipV V V V V= + = +

6.8 VELOCITY ANALYSIS OF THE GEARED FIVEBAR LINKAGE

The position loop equation for the geared fivebar mechanism was derived in Section 4.9 
and is repeated here.  See Figure P6-4 for notation.

+ − − − =θ θ θ θ θ 0 (4.27b)2 3 4 5 1ae be ce de f ej j j j j

Differentiate this with respect to time to get an expression for velocity.

0 (6.32a)2 3 4 52 3 4 5a je b je c je d jej j j jω + ω − ω − ω =θ θ θ θ

Substitute the Euler equivalents:

cos sin cos sin

cos sin cos sin 0 (6.32b)
2 2 2 3 3 3

4 4 4 5 5 5

a j j b j j

c j j d j j

ω ω

ω ω

( )
( )

( )
( )

θ + θ + θ + θ

− θ + θ − θ + θ =
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Note that the angle �5 is defined in terms of �2, the gear ratio �, and the phase angle �.
.θ = λθ + φ (4 27c)5 2

Differentiate with respect to time:

(6.32c)5 2ω = λω

Since a complete position analysis must be done before a velocity analysis, we will 
assume that the values of �5 and �5 have been found and will leave these equations in 
terms of �5 and �5.

Separating the real and imaginary terms in equation 6.32b:

real: sin sin sin sin 0 (6.32d)2 2 3 3 4 4 5 5a b c d− ω θ − ω θ + ω θ + ω θ =

imaginary: cos cos cos cos 0 (6.32e)2 2 3 3 4 4 5 5a b c dω θ + ω θ − ω θ − ω θ =

The only two unknowns are �3 and �4.  Either equation 6.32d or 6.32e can be solved 
for one unknown and the result substituted in the other.  The solution for �3 is:

2sin sin sin

cos 2 cos
(6.33a)3

4 2 2 4 5 4 5

3 4 3

a d

b

( )
( )
( )

ω = −
θ ω θ − θ + ω θ − θ⎡⎣ ⎤⎦

θ − θ − θ⎡⎣ ⎤⎦

The angular velocity �4 can be found from equation 6.32d using �3.
sin sin sin

sin
(6.33b)4

2 2 3 3 5 5

4

a b d
c

ω =
ω θ + ω θ − ω θ

θ

With all link angles and angular velocities known, the linear velocities of the pin 
joints can be found from:

sin cos (6.33c)

sin cos (6.33d)

sin cos (6.33e)
(6.33f)

2 2 2

3 3 3

5 5 5

a j

b j

d j

A

BA

C

B A BA

V
V
V
V V V

( )
( )

( )= ω − θ + θ

= ω − θ + θ

= ω − θ + θ

= +

6.9 VELOCITY OF ANY POINT ON A LINKAGE

Once the angular velocities of all the links are found, it is easy to define and calculate 
the velocity of any point on any link for any input position of the linkage.  Figure 6-23 
shows the fourbar linkage with its coupler, link 3, enlarged to contain a coupler point   The 
crank and rocker have also been enlarged to show points S and U which might represent 
the centers of gravity of those links.  We want to develop algebraic expressions for the 
velocities of these (or any) points on the links.

To find the velocity of point S, draw the position vector from the fixed pivot O2 to 
point S.  This vector, RSO2 makes an angle "2 with the vector RAO2.  The angle "2 is 
completely defined by the geometry of link 2 and is constant.  The position vector for 
point S is then:

( ) ( )= = = θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δR R cos sin (4.29)2 2 2 22
2 2se s jSO S

j
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Differentiate this position vector to find the velocity of that point.

sin cos (6.34)2 2 2 2 2 2
2 2jse s jS

jV ω ω ( ) ( )= = − θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δ

The position of point U on link 4 is found in the same way, using the angle "4 which 
is a constant angular offset within the link.  The expression is:

( ) ( )= = θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δR cos sin (4.30)4 4 4 44

4 4ue u jUO
j

Differentiate this position vector to find the velocity of that point.

sin cos (6.35)4 4 4 4 4 4
4 4jue u jU

jV ( ) ( )= ω = ω − θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δ

The velocity of point P on link 3 can be found from the addition of two velocity vec-
tors, such as VA and VPA.  VA is already defined from our analysis of the link velocities.  
VPA is the velocity difference of point P with respect to point A.  Point A is chosen as the 
reference point because angle �3 is defined in a LNCS and  angle "3 is defined in a LRCS 
whose origins are both at A.  Position vector RPA is defined in the same way as RS or RU
using the internal link offset angle "3 and the angle of link 3, �3.  This was done in equa-
tions 4.31 (repeated here).

( ) ( )= = θ + δ + θ + δ⎡⎣ ⎤⎦

= +

( )θ +δR

R R R

cos sin (4.31a)

(4.31b)

3 3 3 3
3 3pe p jPA

j

P A PA

Differentiate equations 4.31 to find the velocity of point P.

sin cos (6.36a)

(6.36b)

3 3 3 3 3 3
3 3jpe p jPA

j

P A PA

V

V V V

( ) ( )= ω = ω − θ + δ + θ + δ⎡⎣ ⎤⎦

= +

( )θ +δ

θ2

θ3

θ4

ω2
δ2

δ3

ω3

ω4

δ4

VA VB

VS

VPA

A

B

Y

x

y

1

S
2

P

U

3

4

p

s
u

X
O2 O4

VU

VP VA
VPA

VP

( a )

Finding the velocities of points on the links

(b )

FIGURE 6-23
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Please compare equations 6.36 with equations 6.5 and 6.15.  It is, again, the velocity 
difference equation.

Note that if, for example, you wished to derive an equation for the velocity of a 
coupler point P on the crank-slider linkage as set up in Figure 6-21, or the inverted crank-
slider of Figure 6-22, both of which have the vector for link 3 defined with its root at point 
B rather than at point A, you might want to use point B as the reference point rather than 
point A, making equation 6.36b become:

(6.36c)3 3P B PBV V V= +

Angle �3 would then be defined in a LNCS at point B, and "3 in a LRCS at point B.

6.10 REFERENCES
1 Towfigh, K. (1969). “The Fourbar Linkage as an Adjustment Mechanism.” Proc. of Applied 

Mechanism Conference, Tulsa, OK, pp. 27-1 to 27-4.

 2 Wood, G. A. (1977). “Educating for Creativity in Engineering.” Proc. of ASEE 85th Annual Con-
ference, University of North Dakota, pp. 1-13.

 3 Kennedy, A. B. W. (1893). Mechanics of Machinery. Macmillan, London, pp. vii, 73.

6.11 PROBLEMS‡

6-1 Use the relative velocity equation and solve graphically or analytically.
a. A ship is steaming due north at 20 knots (nautical miles per hour).  A submarine is 

laying in wait 1/2 mile due west of the ship.  The sub fires a torpedo on a course of 
85 degrees.  The torpedo travels at a constant speed of 30 knots.  Will it strike the 
ship?  If not, by how many nautical miles will it miss?  

b. A plane is flying due south at 500 mph at 35,000 ft altitude, straight and level.  A 
second plane is initially 40 miles due east of the first plane, also at 35,000 feet al-
titude, flying straight and level and traveling at 550 mph.  Determine the compass 
angle at which the second plane would be on a collision course with the first.  How 
long will it take for the second plane to catch the first? 

6-2 A point is at a 6.5 in radius on a body in pure rotation with � = 100 rad/sec.  The rota-
tion center is at the origin of a coordinate system.  When the point is at position A, its 
position vector makes a 45� angle with the X axis.  At position B, its position vector 
makes a 75� angle with the X axis.  Draw this system to some convenient scale and:
a. Write an expression for the particle’s velocity vector in position A using complex 

number notation, in both polar and cartesian forms.
b. Write an expression for the particle’s velocity vector in position B using complex 

number notation, in both polar and cartesian forms.
c. Write a vector equation for the velocity difference between points B and A.  Substi-

tute the complex number notation for the vectors in this equation and solve for the 
position difference numerically.

d. Check the result of part c with a graphical method.
6-3 Repeat Problem 6-2 considering points A and B to be on separate bodies rotating about 

the origin with �’s of –50 (A) and +75 rad/sec (B).  Find their relative velocity.

 *6-4 A general fourbar linkage configuration and its notation are shown in Figure P6-1.  The 
link lengths, coupler point location, and the values of �2 and �2 for the same fourbar 

‡ All problem figures are 
provided as PDF files, and 
some are also provided as 
animated Working Model 
files.  PDF filenames are the 
same as the figure number.  
Run the file Animations.
html to access and run the 
animations.
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linkages as used for position analysis in Chapter 4 are redefined in Table P6-1, which is 
basically the same as Table P4-1. For the row(s) assigned, draw the linkage to scale and 
find the velocities of the pin joints A and B and of instant centers I1,3 and I2,4 using a 
graphical method.  Then calculate �3 and �4 and find the velocity of point P.

*†6-5 Repeat Problem 6-4 using an analytical method.  Draw the linkage to scale and label it 
before setting up the equations.

*6-6 The general linkage configuration and terminology for an offset fourbar crank-slider 
linkage are shown in Figure P6-2.  The link lengths and the values of �2 and �2  are 
defined in Table P6-2.  For the row(s) assigned, draw the linkage to scale and find the 
velocities of the pin joints A and B and the velocity of slip at the sliding joint using a 
graphical method.

 *†6-7 Repeat Problem 6-6 using an analytical method.  Draw the linkage to scale and label it 
before setting up the equations.

θ3

θ2

θ4

δ3

FIGURE P6-1
Configuration and terminology for the pin-jointed fourbar linkage of Problems 6-4 to 6-5

A

B

X

Y

x

y

2

3

4

RPA P

ω2

O2 O4
1

Row Link 1 Link 2 Link 3 Link 4 θ2 ω2 Rpa δ3

a 6 2 7 9 30 10 6 30
b 7 9 3 8 85 –12 9 25
c 3 10 6 8 45 –15 10 80
d 8 5 7 6 25 24 5 45
e 8 5 8 6 75 –50 9 300
f 5 8 8 9 15 –45 10 120
g 6 8 8 9 25 100 4 300
h 20 10 10 10 50 –65 6 20
i 4 5 2 5 80 25 9 80
j 20 10 5 1 0 33 25 1 0
k 4 6 10 7 88 –80 10 330
l 9 7 10 7 60 –90 5 180

m 9 7 11 8 50 75 10 90
n 9 7 11 6 120 15 15 60

TABLE  P6-1 Data for Problems 6-4 to 6-5 ‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.

Topic/Problem Matrix

6.1 Definition of Velocity
6-1, 6-2, 6-3

6.2 Graphical Velocity 
Analysis
Pin-Jointed Fourbar
6-17a, 6-24, 6-28,  
6-36, 6-39, 6-84a,  
6-87a, 6-94
Fourbar Crank-Slider
6-16a, 6-32, 6-43§

Fourbar Slider-Crank
6-110, 6-111
Other Fourbar
6-18a, 6-98§

Geared Fivebar
6-10
Sixbar
6-70a, 6-73a, 6-76a, 
6-99
Eightbar  6-103§

6.3 Instant Centers of 
Velocity
6-12, 6-13, 6-14,  
6-15, 6-68, 6-72,  
6-75, 6-78, 6-83,  
6-86, 6-88, 6-97, 
6-102, 6-104, 6-105

6.4 Velocity Analysis with 
Instant Centers
6-4, 6-16b, 6-17b,  
6-18b, 6-25, 6-29,  
6-33, 6-40, 6-70b,  
6-73b, 6-76b, 6-84b,  
6-87b, 6-92, 6-95,  
6-100
Mech. Advantage
6-21a, 6-21b, 6-22a,  
6-22b, 6-58

6.5 Centrodes
6-23, 6-63, 6-69,  
6-89

6.6 Velocity of Slip
6-6, 6-8, 6-19, 6-20, 
6-61, 6-64, 6-65, 
6-66, 6-91, 6-106 to 
6-109, 6-112, 6-113

§May be solved using 
either the velocity 
difference or instant 
center graphical 
method.

TABLE  P6-0 Part 1
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 *6-8 The general linkage configuration and terminology for an inverted fourbar crank-slider 
linkage are shown in Figure P6-3.  The link lengths and the values of �2, �2, and �  are 
defined in Table P6-3. For the row(s) assigned, draw the linkage to scale and find the ve-
locities of points A and B and velocity of slip at the sliding joint using a graphical method.

 *†6-9 Repeat Problem 6-8 using an analytical method.  Draw the linkage to scale and label it 
before setting up the equations.

 *6-10 The general linkage configuration and terminology for a geared fivebar linkage are 
shown in Figure P6-4.  The link lengths, gear ratio (�), phase angle (�), and the values 
of �2 and �2 are defined in Table P6-4.   For the row(s) assigned, draw the linkage to 
scale and find �3 and �4 using a graphical method.

 *†6-11 Repeat Problem 6-10 using an analytical method.  Draw the linkage to scale and label it 
before setting up the equations.

 6-12 Find all the instant centers of the linkages shown in Figure P6-5.

 6-13 Find all the instant centers of the linkages shown in Figure P6-6.

 6-14 Find all the instant centers of the linkages shown in Figure P6-7.

 
* Answers in Appendix F.
 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

θ3

ω2
θ4 = 90°θ2

�d

FIGURE P6-2
Configuration and terminology for Problems 6-6, 6-7, 6-110, 6-111

O2

Offset

A

B

X

Y

Slider position   d

Link 2

Link 3
x

y

4

Row Link 2 Link 3 Offset θ2 ω2

a 1.4 4 1 45 10
b 2 6 –3 60 –12
c 3 8 2 –30 –15
d 3.5 10 1 120 24
e 5 20 –5 225 –50
f 3 1 3 0 100 –45
g 7 25 1 0 330 100

TABLE  P6-2 Data for Problems 6-6 to 6-7‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.

Topic/Problem Matrix

6.7 Analytic Solutions for 
Velocity Analysis
6-90
Pin-Jointed Fourbar
6-26, 6-27, 6-30, 
6-31, 6-37, 6-38, 
6-41, 6-42, 6-48,  
6-62
Fourbar Crank-Slider
6-7, 6-34, 6-35, 6-44, 
6-45, 6-52, 6-60
Fourbar Inverted 
Crank-Slider
6-9
Sixbar
6-70c, 6-71, 6-73c,  
6-74, 6-76c, 6-77,  
6-93, 6-101
Eightbar
6-79
Mechanical Advantage
6-55a, 6-55b, 6-57a,  
6-57b, 6-59a, 6-59b,  
6-67

6.8 Velocity Analysis of 
Geared Fivebar
6-11

6.9 Velocity of Any Point 
on a Linkage
6-5, 6-16c, 6-17c,  
6-18c, 6-46, 6-47,  
6-49, 6-50, 6-51, 
6-53, 6-54, 6-56, 
6-80, 6-81, 6-82, 
6-84c, 6-85,  
6-87c, 6-96

TABLE  P6-0 Part 2
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 6-15 Find all the instant centers of the linkages shown in Figure P6-8.

 *6-16 The linkage in Figure P6-5a has O2A = 0.8, AB = 1.93, AC = 1.33, and offset = 0.38 in.  
The crank angle in the position shown is 34.3� and angle BAC = 38.6�.  Find �3, VA, 
VB, and VC for the position shown for �2 = 15 rad/sec in the direction shown:
 a. Using the velocity difference graphical method.
 b. Using the instant center graphical method.
†c. Using an analytical method.

 6-17 The linkage in Figure P6-5c has I12A = 0.75, AB = 1.5, and AC = 1.2 in.  The effective 
crank angle in the position shown is 77� and angle BAC = 30�.  Find �3, �4, VA, VB, 
and VC for the position shown for �2 = 15 rad/sec in direction shown:
 a. Using the velocity difference graphical method.
 b. Using the instant center graphical method.
†c. Using an analytical method.  (Hint: Create an effective linkage for the position 

shown and analyze as a pin-jointed fourbar.)
 6-18 The linkage in Figure P6-5f has AB = 1.8 and AC = 1.44 in.  The angle of AB in the posi-

tion shown is 128� and angle BAC = 49�.  The slider at B is at an angle of 59�.  Find �3,  
VB, and VC for the position shown for VA = 10 in/sec in the direction shown:
 a. Using the velocity difference graphical method.
 b. Using the instant center graphical method.
†c. Using an analytical method.

* Answers in Appendix F.

θ3
θ4

γ

ω2 θ2

FIGURE P6-3
Configuration and terminology for Problems 6-8 to 6-9

RB

O2 O4

3

4

1

A

X

Y

x

y

B

2

Row Link 1 Link 2 Link 4 γ θ2 ω2

a 6 2 4 90 30 10
b 7 9 3 75 85 –15
c 3 1 0 6 45 45 24
d 8 5 3 60 25 –50
e 8 4 2 30 75 –45
f 5 8 8 90 150 100

TABLE  P6-3 Data for Problems 6-8 to 6-9
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6-19 The cam-follower in Figure P6-5d has O2A = 0.853 in.  Find V4, Vtrans, and Vslip for 
the position shown with �2 = 20 rad/sec in the direction shown.

 6-20 The cam-follower in Figure P6-5e has O2A = 0.980 in and O3A = 1.344 in.  Find �3, 
Vtrans, and Vslip for the position shown for �2 = 10 rad/sec in the direction shown.

 6-21 The linkage in Figure P6-6b has L1 = 61.9, L2 = 15, L3 = 45.8, L4 = 18.1,  
L5 = 23.1 mm.  �2 is 68.3� in the xy coordinate system, which is at –23.3� in the XY co-
ordinate system.   The X component of O2C is 59.2 mm.  For the position shown, find 
the velocity ratio VI5,6 / VI2,3 and the mechanical advantage from link 2 to link 6:
a. Using the velocity difference graphical method.
b. Using the instant center graphical method.

 6-22 Repeat Problem 6-21 for the mechanism in Figure P6-6d, which has the dimensions:  
L2 = 15, L3 = 40.9, L5 = 44.7 mm.  �2 is 24.2� in the XY coordinate system.

P

X

Y

x

y

x

y

A

B

C

O5O2

3 4

1

2 5

r2 r5

Phase angle  = –

Gear ratio

θ3

θ2

θ4

θ5
ω2

λ __r2

r5
= ±

φ 2λθ5θ

FIGURE P6-4
Configuration and terminology for Problems 6-10 and 6-11

Row Link 1 Link 2 Link 3 Link 4 Link 5 λ φ ω2 θ2

a 6 1 7 9 4 6010302.0
b 6 5 7 8 4 –2.5 60 –12 30
c 3 5 7 8 4 –0.5 0 –15 45
d 4 5 7 8 –1.0 120 24 75
e 5 9 11 8 8 3.2 –50 –50 –39
f 10 2 7 5 3 1.5 30 –45 120
g 15 7 9 11 4 2.5 –90 100 75
h 12 8 7 9 4 –2.0 60 –65 55
i 9 7 8 9 –4.04

4

120 25 100

TABLE  P6-4 Data for Problems 6-10 to 6-11
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†6-23 Generate and draw the fixed and moving centrodes of links 1 and 3 for the linkage in 
Figure P6-7a.

6-24 The linkage in Figure P6-8a has link 1 at –25� and O2A at 37� in the global XY coor-
dinate system.  Find �4, VA, and VB in the global coordinate system for the position 
shown if �2 = 15 rad/sec CW.  Use the velocity difference graphical method.  (Print the 
figure from its PDF file and draw on it.)

 6-25 The linkage in Figure P6-8a has link 1 at –25� and O2A at 37� in the global XY coor-
dinate system.  Find �4, VA, and VB in the global coordinate system for the position 
shown if �2 = 15 rad/sec CW.  Use the instant center graphical method.  (Print the 
figure from its PDF file and draw on it.)

 †6-26 The linkage in Figure P6-8a has �2 = 62� in the local x’y’ coordinate system.  The 
angle between the X and x axes is 25�.  Find �4, VA, and VB in the local coordinate 
system for the position shown if �2 = 15 rad/sec CW.  Use an analytical method.

 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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FIGURE P6-7 
Problems 6-14 and 6-23.
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 †6-27 For the linkage in Figure P6-8a, write a computer program or use an equation solver to 
find and plot �4, VA, and VB in the local coordinate system for the maximum range of 
motion that this linkage allows if �2 = 15 rad/sec CW.  

 6-28 The linkage in Figure P6-8b has link 1 at –36� and link 2 at 57� in the global XY co-
ordinate system.  Find �4, VA, and VB in the global coordinate system for the position 
shown if �2 = 20 rad/sec CCW.  Use the velocity difference graphical method.  (Print 
the figure from its PDF file and draw on it.)

 6-29 The linkage in Figure P6-8b has link 1 at –36� and link 2 at 57� in the global XY co-
ordinate system.  Find �4, VA, and VB in the global coordinate system for the position 
shown if �2 = 20 rad/sec CCW.  Use the instant center graphical method.  (Print the 
figure from its PDF file and draw on it.)

 †6-30 The linkage in Figure P6-8b has link 1 at –36� and link 2 at 57� in the global XY co-
ordinate system.  Find �4, VA, and VB in the global coordinate system for the position 
shown if �2 = 20 rad/sec CCW.  Use an analytical method.

 †6-31 The linkage in Figure P6-8b has link 1 at –36� in the global XY coordinate system.  
Write a computer program or use an equation solver to find and plot �4, VA, and VB in 
the local coordinate system for the maximum range of motion that this linkage allows if 
�2  = 20 rad/sec CCW.  

 6-32 The offset crank-slider linkage in Figure P6-8f has link 2 at 51� in the global XY coor-
dinate system.  Find VA and VB in the global coordinate system for the position shown 
if �2 = 25 rad/sec CW.  Use the velocity difference graphical method.  (Print the figure 
from its PDF file and draw on it.)

 6-33 The offset crank-slider linkage in Figure P6-8f has link 2 at 51� in the global XY coor-
dinate system.  Find VA and VB in the global coordinate system for the position shown 
if �2 = 25 rad/sec CW.  Use the instant center graphical method.  (Print the figure from 
its PDF file and draw on it.)

 †6-34 The offset crank-slider linkage in Figure P6-8f has link 2 at 51� in the global XY coordi-
nate system.  Find VA and VB in the global coordinate system for the position shown if 
�2 = 25 rad/sec CW.   Use an analytical method.

 †6-35 For the offset crank-slider linkage in Figure P6-8f , write a computer program or use 
an equation solver to find and plot VA and VB in the global coordinate system for the 
maximum range of motion that this linkage allows if �2 = 25 rad/sec CW.  

 6-36 The linkage in Figure P6-8d has link 2 at 58� in the global XY coordinate system.  Find 
VA, VB, and Vbox in the global coordinate system for the position shown if �2 = 30 
rad/sec CW.  Use the velocity difference graphical method.  (Make a copy of the figure 
from its PDF file and draw on it.)

 †6-37 The linkage in Figure P6-8d has link 2 at 58� in the global XY coordinate system.  Find 
VA, VB, and Vbox in the global coordinate system for the position shown if �2 = 30 rad/
sec CW.  Use an analytical method.

 †6-38 For the linkage in Figure P6-8d, write a computer program or use an equation solver to 
find and plot VA, VB, and Vbox  in the global coordinate system for the maximum range 
of motion that this linkage allows if �2 = 30 rad/sec CW.  

 6-39 The linkage in Figure P6-8g has the local xy axis at –119� and O2A at 29� in the global 
XY coordinate system.  Find �4, VA, and VB in the global coordinate system for the 
position shown if �2 = 15 rad/sec CW.  Use the velocity difference graphical method.  

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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Problems 6-15 and 6-24 to 6-45
FIGURE P6-8 

(c )  Radial compressor(b )  Fourbar linkage(a )  Fourbar linkage

(g )  Drum brake mechanism (h )  Symmetrical mechanism

(d )  W alking-beam conveyor (e )  Bellcrank mechanism (f )   Offset slider-crank

View as a video
http://www.

designofmachin-
ery.com/DOM/
drum_brake.avi

View as a video
http://www.designofmachinery.com/DOM/radial_engine.avi

View as a video
http://www.designofmachinery.com/DOM/walking_beam.avi

View as a video
http://www.designofmachinery.com/DOM/compression_chamber.avi
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6-40 The linkage in Figure P6-8g has the local xy axis at –119� and O2A at 29� in the global 
XY coordinate system.  Find �4, VA, and VB in the global coordinate system for the po-
sition shown if �2 = 15 rad/sec CW.  Use the instant center graphical method.  (Make a 
copy of the figure from its PDF file and draw on it.)

 †6-41 The linkage in Figure P6-8g has the local xy axis at –119� and O2A at 29� in the global 
XY coordinate system.  Find �4, VA, and VB in the global coordinate system for the 
position shown if �2 = 15 rad/sec CW.  Use an analytical method.

 †6-42 The linkage in Figure P6-8g has the local xy axis at –119� in the global XY coordinate 
system.  Write a computer program or use an equation solver to find and plot �4, VA, 
and VB in the local coordinate system for the maximum range of motion that this link-
age allows if �2 = 15 rad/sec CW.  

 6-43 The 3-cylinder radial compressor in Figure P6-8c has its cylinders equispaced at 120�.  
Find the piston velocities V6, V7, V8 with the crank at –53� using a graphical method if 
�2 = 15 rad/sec CW.  (Make a copy of the figure from its PDF file and draw on it.)

 †6-44 The 3-cylinder radial compressor in Figure P6-8c has its cylinders equispaced at 120�.  
Find the piston velocities V6, V7, V8 with the crank at –53�  using an analytical method 
if  �2 = 15 rad/sec CW.  

 †6-45 The 3-cylinder radial compressor in Figure P6-8c has its cylinders equispaced at 120�.   
Write a program or use an equation solver to find and plot the piston velocities V6, V7, 
V8 for one revolution of the crank  if  �2 = 15 rad/sec CW.

 6-46 Figure P6-9 shows a linkage in one position.  Find the instantaneous velocities of points 
A, B, and P if link O2A is rotating CW at 40 rad/sec.

*†6-47 Figure P6-10 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the velocity 
of the coupler point P at 2� increments of crank angle for �2 = 100 rpm.  Check your 
result with program LINKAGES.

 *†6-48 Figure P6-11 shows a linkage that operates at 500 crank rpm.  Write a computer program 
or use an equation solver to calculate and plot the magnitude and direction of the velocity 
of point B at 2� increments of crank angle.  Check the result with program LINKAGES.

 *†6-49 Figure P6-12 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the velocity of 

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

* Answers in Appendix F.

Problem 6-46
FIGURE P6-9
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Problem 6-47  A fourbar linkage with a double straight-line coupler curve
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View as a video
http://www.designof-
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

the coupler point P at 2� increments of crank angle for �2 = 20 rpm over the maximum 
range of motion possible.  Check your result with program LINKAGES.

 †6-50 Figure P6-13 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the velocity of 
the coupler point P at 2� increments of crank angle for �2 = 80 rpm over the maximum 
range of motion possible.  Check your result with program LINKAGES.

 *†6-51 Figure P6-14 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the velocity of 
the coupler point P at 2� increments of crank angle for �2 = 80 rpm over the maximum 
range of motion possible.  Check your result with program LINKAGES.

 †6-52 Figure P6-15 shows a power hacksaw, used to cut metal.  Link 5 pivots at O5 and its 
weight forces the sawblade against the workpiece while the linkage moves the blade 
(link 4) back and forth on link 5 to cut the part.  It is an offset crank-slider mechanism 
with the dimensions shown in the figure.  Draw an equivalent linkage diagram; then 
calculate and plot the velocity of the sawblade with respect to the piece being cut over 
one revolution of the crank at 50 rpm.

 
* Answers in Appendix F.
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FIGURE P6-13
Problem 6-50
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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FIGURE P6-14
Problem 6-51

°54°

†6-53 Figure P6-16 shows a walking-beam indexing and pick-and-place mechanism that can 
be analyzed as two fourbar linkages driven by a common crank.  The link lengths are 
given in the figure.  The phase angle between the two crankpins on links 4 and 5 is 
given.  The product cylinders being pushed have 60-mm diameters.  The point of con-
tact between the left vertical finger and the leftmost cylinder in the position shown is 58 
mm at 80� versus the left end of the parallelogram's coupler (point D).  Calculate and 
plot the absolute velocities of points E and P and the relative velocity between points E 
and P for one revolution of gear 2.

†6-54 Figure P6-17 shows a paper roll off-loading mechanism driven by an air cylinder.  In 
the position shown, AO2 = 1.1 m at 178� and O4A is 0.3 m at 226�.  O2O4 = 0.93 m 
at 163�.  The V-links are rigidly attached to O4A.  The air cylinder is retracted at a 
constant velocity of 0.2 m/sec.  Draw a kinematic diagram of the mechanism, write the 
necessary equations, and calculate and plot the angular velocity of the paper roll and 
the linear velocity of its center as it rotates through 90� CCW from the position shown.
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Vblade 2

3

4 5 23 5
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workpiece

1 1

ω5

cut stroke 45 mm

L3 =170 mm
L2 =75 mm

FIGURE P6-15 
Problem 6-52   Power hacksaw

View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi
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†6-55 Figure P6-18 shows a powder compaction mechanism.  
a. Calculate its mechanical advantage for the position shown.
b. Calculate and plot its mechanical advantage as a function of the angle of link AC as 

it rotates from 15 to 60�.
†6-56 Figure P6-19 shows a walking-beam mechanism.  Calculate and plot the velocity Vout 

for one revolution of the input crank 2 rotating at 100 rpm.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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Problem 6-53   Walking-beam indexer with pick-and-place mechanism
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FIGURE P6-17
Problem 6-54
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View as a video
http://www.designofmachinery.com/
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†6-57 Figure P6-20 shows a crimping tool.  
a. Calculate its mechanical advantage for the position shown.
b. Calculate and plot its mechanical advantage as a function of the angle of link AB as 

it rotates from 60 to 45�.
†6-58 Figure P6-21 shows a locking pliers.  Calculate its mechanical advantage for the posi-

tion shown.  Scale the diagram for any needed dimensions.
†6-59 Figure P6-22 shows a fourbar toggle clamp used to hold a workpiece in place by clamp-

ing it at D.  O2A = 70, O2C = 138, AB = 35, O4B = 34, O4D = 82, and O2O4 = 48 mm.  
At the position shown, link 2 is at 104�.  Toggle occurs when link 2 reaches 90�.  
a. Calculate its mechanical advantage for the position shown.
b. Calculate and plot its mechanical advantage as a function of the angle of link AB as 

link 2 rotates from 120 to 90�.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P6-19

26°

B

AP = 3.06

31°

L4 = 2.33

P

L3 = 2.06

L2 = 1.0
A

L1 = 2.22

P'
O2

O4 O6

6

5

7

8

1

ω2 B'

A'

O2'
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FIGURE P6-18 
Problem 6-55  Adapted from P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design
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View as a video
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FIGURE P6-20
Problem 6-57  
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

†6-60 Figure P6-23 shows a surface grinder.  The workpiece is oscillated under the spin-
ning 90-mm-diameter grinding wheel by the crank-slider linkage which has a 22-mm 
crank, a 157-mm connecting rod, and a 40-mm offset.  The crank turns at 120 rpm, and 
the grinding wheel turns at 3450 rpm.  Calculate and plot the velocity of the grinding 
wheel contact point relative to the workpiece over one revolution of the crank.

6-61 Figure P6-24 shows an inverted crank-slider mechanism.  Link 2 is 2.5 in long.  The 
distance O4A is 4.1 in and O2O4 is 3.9 in.  Find �2, �3, �4, VA4, Vtrans, and Vslip for 
the position shown with VA2 = 20 in/sec in the direction shown.  

 *†6-62 Figure P6-25 shows a drag link mechanism with dimensions.  Write the necessary 
equations, and solve them to calculate the angular velocity of link 4 for an input of �2 
= 1 rad/sec.  Comment on uses for this mechanism.

 †6-63 Figure P6-25 shows a drag link mechanism with dimensions. Write the necessary equa-
tions, and solve them to calculate and plot the centrodes of instant center I2,4.

 
* Answers in Appendix F.

FIGURE P6-22
Problem 6-59
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View as a video
http://www.designofmachinery.com/DOM/crimping_tool.avi
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FIGURE P6-21 
Problem 6-58

View as a video
http://www.designofmachinery.com/

DOM/locking_toggle_pliers.avi
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* Answers in Appendix F.

 6-64 Figure P6-26 shows a mechanism with dimensions. Use a graphical method to calculate 
the velocities of points A, B, and C and the velocity of slip for the position shown.  �2 
= 20 rad/sec.

 *6-65 Figure P6-27 shows a cam and follower.  Distance O2A = 1.89 in and O3B = 1.645 in.  
Find the velocities of points A and B, the velocity of transmission, velocity of slip, and 
�3 if �2 = 50 rad/sec.  Use a graphical method.

 6-66 Figure P6-28 shows a quick-return mechanism with dimensions.  Use a graphical 
method to calculate the velocities of points A, B, and C and the velocity of slip for the 
position shown.  �2 = 10 rad/sec.

FIGURE P6-24 
Problem 6-61
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FIGURE P6-25 
Problems 6-62 and 6-63

FIGURE P6-26 
Problems 6-64, 6-106, 6-107
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 †6-67 Figure P6-29 shows a drum pedal mechanism.  O2A = 100 mm at 162� and rotates to 
171� at A’.  O2O4 = 56 mm, AB = 28 mm, AP = 124 mm, and O4B = 64 mm.  The 
distance from O4 to Fin is 48 mm.  Find and plot the mechanical advantage and the 
velocity ratio of the linkage over its range of motion.  If the input velocity Vin is a 
constant magnitude of 3 m/sec and Fin is constant at 50 N, find the output velocity and 
output force over the range of motion and the power in.

 6-68 Figure 3-33 shows a sixbar slider-crank linkage.  Find all its instant centers in the posi-
tion shown.

 †6-69 Calculate and plot the centrodes of instant center I24 of the linkage in Figure 3-33 so 
that a pair of noncircular gears can be made to replace the driver dyad 23.

 6-70 Find the velocity of the slider in Figure 3-33 for the position shown if �2 = 110� with 
respect to the global X axis assuming �2 = 1 rad/sec CW:
a. Using a graphical method.  
b. Using the method of instant centers.
c. Using an analytical method.†

 †6-71 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular velocity of link 4 and the linear velocity of 
slider 6 in the sixbar crank-slider linkage of Figure 3-33 as a function of the angle of 
input link 2 for a constant �2 = 1 rad/sec CW.  Plot Vc both as a function of �2 and 
separately as a function of slider position as shown in the figure.  Find the percent 
deviation from constant velocity over 240� <��2 < 270� and over 190� <��2 < 315�.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P6-28 
Problems 6-66, 6-108, 6-109
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 6-72 Figure 3-34 shows Stephenson’s sixbar mechanism.  Find all its instant centers in the 
position shown:
a. In part (a) of the figure.
b. In part (b) of the figure.
c. In part (c) of the figure.

 6-73 Find the angular velocity of link 6 of the linkage in Figure 3-34b for the position shown 
(�6 = 90� with respect to the x axis) assuming �2 = 10 rad/sec CW:
a. Using a graphical method.
b. Using the method of instant centers.
c. Using an analytical method.†

 †6-74 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure 
3-34 as a function of �2 for a constant �2 = 1 rad/sec CW.  

 6-75 Figure 3-35 shows a Watt II sixbar mechanism.  Find all its instant centers in the posi-
tion shown:
a. In part (a) of the figure.
b. In part (b) of the figure.

 6-76 Find the angular velocity of link 6 of the linkage in Figure 3-35 with �2 = 90� assum-
ing �2 = 10 rad/sec CCW:
a. Using a graphical method (use a compass and straightedge to draw the the linkage 

with link 2 at 90�).
b. Using the method of instant centers (use a compass and straightedge to draw the the 

linkage with link 2 at 90�).
c. Using an analytical method.†

 †6-77 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure 
3-35 as a function of �2 for a constant �2 = 1 rad/sec CCW.  

 6-78 Figure 3-36 shows an eightbar mechanism.  Find all its instant centers in the position 
shown in part (a) of the figure.

 †6-79 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular velocity of link 8 in the linkage of Figure 3-36 
as a function of �2 for a constant �2 = 1 rad/sec CCW.  

 †6-80 Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver 
to calculate and plot magnitude and direction of the velocity of point P in Figure 3-37a as a 
function of �2.  Also calculate and plot the velocity of point P versus point A.

 †6-81 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate the percent error of the deviation from a perfect circle for the path of 
point P in Figure 3-37a.

 †6-82 Repeat Problem 6-80 for the linkage in Figure 3-37b.

 6-83 Find all instant centers of the linkage in Figure P6-30 in the position shown.

 6-84 Find the angular velocities of links 3 and 4 and the linear velocities of points A, B and 
P1 in the XY coordinate system for the linkage in Figure P6-30 in the position shown.  
Assume that �2 = 45� in the XY coordinate system and �2 = 10 rad/sec.  The coor-
dinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate 
system:

 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.



DESIGN OF MACHINERY 6ed      CHAPTER  6352

6

a. Using a graphical method.
b. Using the method of instant centers.
c. Using an analytical method.†

 §6-85 Using the data from Problem 6-84, write a computer program or use an equation solver 
such as Mathcad, Matlab, or TKSolver to calculate and plot magnitude and direction of 
the absolute velocity of point P1 in Figure P6-30 as a function of �2.

 6-86 Find all instant centers of the linkage in Figure P6-31 in the position shown.

§ Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than 
an overnight problem.  In 
most cases, the solution can 
be checked with program 
LINKAGES.  
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FIGURE P6-31
Problems 6-86 and 6-87 An aircraft overhead bin mechanism—dimensions in inches

FIGURE P6-30
Problems 6-83  to 6-85  An oil field pump—dimensions in inches
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6-87 Find the angular velocities of links 3 and 4, and the linear velocity of point P in the XY 
coordinate system for the linkage in Figure P6-31 in the position shown.  Assume that 
�2 = –94.121� in the XY coordinate system and �2 = 1 rad/sec.  The position of the 
coupler point P on link 3 with respect to point A is: p = 15.00, "3 = 0�:
a. Using a graphical method.
b. Using the method of instant centers.
c. Using an analytical method.†

6-88 Figure P6-32 shows a fourbar double slider known as an elliptical trammel.  Find all its 
instant centers in the position shown.

6-89 The elliptical trammel in Figure P6-32 must be driven by rotating link 3 in a full circle.  
Points on line AB describe ellipses.  Find and draw (manually or with a computer) the fixed 
and moving centrodes of instant center I13.  (Hint:  These are called the Cardan circles.)

 6-90 Derive analytical expressions for the velocities of points A and B in Figure P6-32 as a 
function of �3 , �3,  and the length AB of link 3.  Use a vector loop equation.

 6-91 The linkage in Figure P6-33a has link 2 at 120� in the global XY coordinate system.  
Find �6 and VD in the global coordinate system for the position shown if �2 = 10 rad/
sec CCW.  Use the velocity difference graphical method.  (Print the figure from its PDF 
file and draw on it.)

 6-92 The linkage in Figure P6-33a has link 2 at 120� in the global XY coordinate system.  
Find �6 and VD in the global coordinate system for the position shown if �2 = 10 rad/
sec CCW.  Use the instant center graphical method.  (Print the figure from its PDF file 
and draw on it.)

 6-93 The linkage in Figure P6-33a has link 2 at 120� in the global XY coordinate system.  
Find �6 and VD in the global coordinate system for the position shown if �2 = 10 rad/
sec CCW.  Use an analytical method.

 6-94 The linkage in Figure P6-33b has link 3 perpendicular to the X axis and links 2 and 4 are 
parallel to each other.  Find �3, VA, VB, and VP if �2 = 15 rad/sec CW. Use the velocity 
difference graphical method.  (Print the figure’s PDF file and draw on it.)

6-95 The linkage in Figure P6-33b has link 3 perpendicular to the X axis and links 2 and 4 are 
parallel to each other.  Find �3, VA, VB, and VP if �2 = 15 rad/sec CW. Use the instant 
center graphical method.  (Print the figure from its PDF file and draw on it.)

6-96 The linkage in Figure P6-33b has link 3 perpendicular to the X axis and links 2 and 4 are 
parallel to each other.  Find �3, VA, VB, and VP if �2 = 15 rad/sec CW. Use an analytical 
method.

 6-97 The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at crossheads 2 
and 5.  Find instant centers I1,3 and I1,4.

 6-98 The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at crossheads 2 
and 5.  Find VB, VP3, and VP4 if the crossheads are each moving toward the origin of 
the XY coordinate system with a speed of 20 in/sec.  Use a graphical method of your 
choice. (Print the figure from its PDF file and draw on it.)

 6-99 The linkage in Figure P6-33d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis.  Find VA in the position shown if the veloc-
ity of the slider is 20 in/sec downward. Use the velocity difference graphical method.  
(Print the figure from its PDF file and draw on it.)
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FIGURE P6-32
Elliptical trammel 
Problems 6-88 to 6-90

View as a video
http://www.designof-

machinery.com/DOM/
elliptic_trammel.avi
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(c )  Dual crosshead mechanism (d )  Sixbar linkage

( f )  Eightbar mechanism(e)  Drag link slider-crank

FIGURE P6-33
Problems 6-91 to 6-103
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6-100 The linkage in Figure P6-33d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis.  Find VA in the position shown if the velocity 
of the slider is 20 in/sec downward. Use the instant center graphical method.  (Print the 
figure from its PDF file and draw on it.)

 6-101 For the linkage of Figure P6-33e, write a computer program or use an equation solver 
to find and plot VD in the global coordinate system for one revolution of link 2 if �2 = 
10 rad/sec CW.

6-102 For the linkage of Figure P6-33f, locate and identify all instant centers.

6-103 The linkage of Figure P6-33f has link 2 at 130� in the global XY coordinate system.  
Find VD in the global coordinate system for the position shown if  �2 = 15 rad/sec CW.  
Use any graphical method. (Print the figure from its PDF file and draw on it.)

6-104 For the linkage of Figure P6-34, locate and identify all instant centers.  O2O4 = AB = 
BC = DE = 1.  O2A = O4B = BE = CD = 1.75.  O4C = AE = 2.60.

 6-105 For the linkage of Figure P6-34, show that I1,6 is stationary for all positions of the link-
age.  O2O4 = AB = BC = DE = 1.  O2A = O4B = BE = CD = 1.75.  O4C = AE = 2.60.

 6-106 Figure P6-26 shows a mechanism with dimensions.   Use a graphical method to deter-
mine the velocities of points A and B, and the velocity of slip for the position shown if 
�2 = 24 rad/sec CW.  Ignore links 5 and 6.

 6-107 Repeat Problem 6-106 using an analytical method.

 6-108 Figure P6-28 shows a quick-return mechanism with dimensions. Use a graphical 
method to determine the velocities of points A and B and the velocity of slip for the 
position shown if �2 = 16 rad/sec CCW.  Ignore links 5 and 6.

 6-109 Repeat Problem 6-108 using an analytical method.

 6-110 The general linkage configuration and terminology for an offset fourbar slider-crank 
linkage are shown in Figure P6-2.  The link lengths and the values of d and �d  are 
defined in Table P6-5.  For the row(s) assigned, find the velocity of the pin joint A and 
the angular velocity of the crank using a graphical method.

 6-111 The general linkage configuration and terminology for an offset fourbar slider-crank 
linkage are shown in Figure P6-2.  The link lengths and the values of d and �d  are 
defined in Table P6-5.  For the rows assigned, find the velocity of pin joint A and the 
angular velocity of the crank using the analytic method.  Draw the linkage to scale and 
label it before setting up the equations.
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FIGURE P6-34
Problems 6-104, 6-105

Row Link 2 Link 3 Offset d

a 1.4 2.514 10
b –3 562 –12
c –158283
d 3.5 10 1 24–8
e –501520 –55
f –120133 –45
g 25257 10 100

TABLE  P6-5 Data for Problems 6-110 to 6-111‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.

�d
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6-112 Figure P6-7b shows an inversion of the fourbar crank-slider.   Use a graphical method 
to calculate the velocity of the moving joint, the velocity of slip, and the angular veloc-
ity of link 4 for the position shown.  L1 = 10.0 in, L2 = 8.0 in, and �2 =–140 in the LCS 
determined by O2 and O4. ��2 = 5 rad/sec.

 6-113 Figure P6-7b shows an inversion of the fourbar crank-slider.   Use an analytical method 
to calculate and plot the angular velocity of link 4 as a function of the crank angle over 
its full 360° of motion.  Use the dimensions given in Problem 6-112. ��2 = 5 rad/sec.


