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Chapter7
ACCELERATION ANALYSIS
Take it to warp five, Mr. Sulu
CAPTAIN KIRK

7.0 INTRODUCTION View the lecture video (41:39)†

Once a velocity analysis is done, the next step is to determine the accelerations of all links 
and points of interest in the mechanism or machine.  We need to know the accelerations 
to calculate the dynamic forces from F = ma.  The dynamic forces will contribute to the 
stresses in the links and other components.  Many methods and approaches exist to find 
accelerations in mechanisms.  We will examine only a few of these methods here.  We 
will first develop a manual graphical method, which is often useful as a check on the more 
complete and accurate analytical solution.  Then we will derive the analytical solution for 
accelerations in the fourbar and inverted crank-slider linkages as examples of the general 
vector loop equation solution to acceleration analysis problems.

7.1 DEFINITION OF ACCELERATION

Acceleration is defined as the rate of change of velocity with respect to time.  Velocity 
(V, �) is a vector quantity and so is acceleration.  Accelerations can be angular or linear.  
Angular acceleration will be denoted as � and linear acceleration as A.

α =
ω

=; (7.1)d
dt

d
dt

A V

Figure 7-1 shows a link PA in pure rotation, pivoted at point A in the xy plane.  We 
are interested in the acceleration of point P when the link is subjected to an angular ve-
locity � and an angular acceleration �, which need not have the same sense.  The link’s 
position is defined by the position vector R, and the velocity of point P is VPA.  These 
vectors were defined in equations 6.2 and 6.3 which are repeated here for convenience.  
(See also Figure 6-1.)

357

† http://www.designofma-
chinery.com/DOM/Accel-
eration_Analysis.mp4
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(6.2)pePA
jR = θ

(6.3)d
dt

p je d
dt

p jePA
PA j jV R

= =
θ
= ωθ θ

where p is the scalar length of the vector RPA.  We can easily differentiate equation 6.3 to 
obtain an expression for the acceleration of point P:

( )
= =

ω

=
ω
+ω

θ⎛
⎝⎜

⎞
⎠⎟

= α − ω

= +

θ

θ θ

θ θ

(7.2)
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Note that there are two functions of time in equation 6.3, 
 and �.  Thus there are 
two terms in the expression for acceleration, the tangential component of acceleration  
involving � and the normal (or centripetal) component A

nA  involving �2.  As a result 
of the differentiation, the tangential component is multiplied by the (constant) complex 
operator j.  This causes a rotation of this acceleration vector through 90� with respect to 
the original position vector.  (See also Figure 4-8b.)  This 90� rotation is nominally posi-
tive, or counterclockwise (CCW).  However, the tangential component is also multiplied 
by �, which may be either positive or negative.  As a result, the tangential component of 
acceleration will be rotated 90� from the angle 
 of the position vector in a direction 
dictated by the sign of �.  This is just mathematical verification of what you already 
knew, namely that tangential acceleration is always in a direction perpendicular to the 
radius of rotation and is thus tangent to the path of motion as shown in Figure 7-1.  The 
normal, or centripetal, acceleration component is multiplied by j2, or –1.  This directs the 
centripetal component at 180��to the angle 
 of the original  position vector, i.e., toward 
the center (centripetal means toward the center).  The total acceleration APA of point P 
is the vector sum of the tangential A

tA  and normal A
nA  components as shown in Figure 

7-1 and equation 7.2.

FIGURE 7-1
Acceleration of a link in pure rotation with a positive (CCW)  α2 and a negative (CW)  ω2
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Substituting the Euler identity (equation 4.4a) into equations 7.2 gives us the real and 
imaginary (or x and y) components of the acceleration vector.

( ) ( )= α − θ + θ − ω θ+ θsin cos cos sin (7.3)2p j p jPAA

The acceleration APA in Figure 7-1 can be referred to as an absolute acceleration 
since it is referenced to A, which is the origin of the global coordinate axes in that system.  
As such, we could have referred to it as AP, with the absence of the second subscript 
implying reference to the global coordinate system.

Figure 7-2a shows a different and slightly more complicated system in which the 
pivot A is no longer stationary.  It has a known linear acceleration AA as part of the trans-
lating carriage, link 3.  If � is unchanged, the acceleration of point P versus A will be the 
same as before, but APA can no longer be considered an absolute acceleration.  It is now 
an acceleration difference and must carry the second subscript as APA.  The absolute 
acceleration AP must now be found from the acceleration difference equation whose 
graphical solution is shown in Figure 7-2b:

( ) ( ) ( )
= +

+ = + + +
(7.4)

P A PA

P
t

P
n

A
t

A
n

PA
t

PA
n

A A A

A A A A A A

Note the similarity of equations 7.4 to the velocity difference equation (equation 
6.5).  Note also that the solution for AP in equation 7.4 can be found by adding either the 
resultant vector APA or its normal and tangential components PA

nA  and PA
tA  to  the vector 

AA in Figure 7-2b.  The vector AA has a zero normal component in this example because 
link 3 is in pure translation.

Figure 7-3 shows two independent bodies P and A, which could be two automobiles, 
moving in the same plane.  Auto #1 is turning and accelerating into the path of auto #2, 
that is decelerating to avoid a crash.  If their independent accelerations AP and AA are 
known, their relative acceleration APA can be found from equation 7.4 arranged alge-
braically as:

FIGURE 7-2
Acceleration difference in a system with a positive (CCW) α2 and a negative (CW) ω
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= − (7.5)PA P AA A A

The graphical solution to this equation is shown in Figure 7-3b.

As we did for velocity analysis, we give these two cases different names despite the 
fact that the same equation applies.  Repeating the definition from Section 6.1, modified 
to refer to acceleration:

CASE 1: Two points in the same body => acceleration difference

CASE 2: Two points in different bodies => relative acceleration

7.2 GRAPHICAL ACCELERATION ANALYSIS

The comments made in regard to graphical velocity analysis in Section 6.2 apply as well 
to graphical acceleration analysis.  Historically, graphical methods were the only practical 
way to solve these acceleration analysis problems.  With some practice, and with proper 
tools such as a drafting machine, drafting instruments, or a CAD package, one can fairly 
rapidly solve for the accelerations of particular points in a mechanism for any one input 
position by drawing vector diagrams.  However, if accelerations for many positions of the 
mechanism are to be found, each new position requires a completely new set of vector 
diagrams be drawn.  Very little of the work done to solve for the accelerations at position 1 
carries over to position 2, etc.  This is an even more tedious process than that for graphical 
velocity analysis because there are more components to draw. Nevertheless, this method 
still has more than historical value as it can provide a quick check on the results from a 
computer program solution.  Such a check only needs to be done for a few positions to 
prove the validity of the program.

To solve any acceleration analysis problem graphically, we need only three equations, 
equation 7.4 and equations 7.6 (which are merely the scalar magnitudes of the terms in 
equation 7.2):

(7.6)
2

A r

A r

t t

n n

A

A

= = α

= = ω

FIGURE 7-3
Relative acceleration
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Note that the scalar equations 7.6 define only the magnitudes (At, An) of the compo-
nents of acceleration of any point in rotation.  In a CASE 1 graphical  analysis, the direc-
tions of the vectors due to the centripetal and tangential components of the acceleration 
difference must be understood from equation 7.2 to be perpendicular to and along the 
radius of rotation, respectively.  Thus, if the center of rotation is known or assumed, the 
directions of the acceleration difference components due to that rotation are known and 
their senses will be consistent with the angular velocity � and angular acceleration ��of 
the body.

Figure 7-4 shows a fourbar linkage in one particular position.  We wish to solve for 
the angular accelerations of links 3 and 4 (�3, �4) and the linear accelerations of points A, 
B, and C (AA, AB, AC).  Point C represents any general point of interest such as a coupler 
point.  The solution method is valid for any point on any link.  To solve this problem, we 
need to know the lengths of all the links, the angular positions of all the links, the angu-
lar velocities of all the links, and the instantaneous input acceleration of any one driving 
link or driving point.  Assuming that we have designed this linkage, we will know or can 
measure the link lengths.  We must also first do a complete position and velocity analysis 
to find the link angles 
3 and 
4 and angular velocities �3 and �4 given the input link’s 
position 
2, input angular velocity �2, and input acceleration �2.  This can be done by any 
of the methods in Chapters 4 and 6.  In general we must solve these problems in stages, 
first for link positions, then for velocities, and finally for accelerations.  For the following 
example, we will assume that a complete position and velocity analysis has been done and 
that the input is to link 2 with known 
2, �2, and �2 for this one “freeze-frame” position 
of the moving linkage.

✍EXAMPLE 7-1

Graphical Acceleration Analysis for One Position of a Fourbar Linkage.

Problem: Given 
2, 
3, 
4, �2, �3, �4, �2, find �3, �4, AA, AB, AP by graphical methods.

Solution: (See Figure 7-4.)

 1 Start at the end of the linkage about which you have the most information.  Calculate the mag-
nitudes of the centripetal and tangential components of acceleration of point A using scalar 
equations 7.6.

( ) ( )= ω = α; ( )2 2
2

2 2A AO A AO aA
n

A
t

2 On the linkage diagram, Figure 7-4a, draw the acceleration component vectors A
nA   and A

tA
with their lengths equal to their magnitudes at some convenient scale.  Place their roots at point 
A with their directions respectively along and perpendicular to the radius AO2.  The sense of 

A
tA is defined by that of �2 (according to the right-hand rule), and the sense of A

nA  is the op-
posite of that of the position vector RA as shown in Figure 7-4a.

 3 Move next to a point about which you have some information, such as B on link 4.  Note that 
the directions of the tangential and normal components of acceleration of point B are predict-
able since this link is in pure rotation about point O4.  Draw the construction line pp through 
point B perpendicular to BO4, to represent the direction of B

tA  as shown in Figure 7-4a.
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 4 Write the acceleration difference vector equation 7.4 for point B versus point A.

= + ( )bB A BAA A A

  Substitute the normal and tangential components  for each term:

( ) ( ) ( )+ = + + + ( )cB
t

B
n

A
t

A
n

BA
t

BA
nA A A A A A

  We will use point A as the reference point to find AB because A is in the same link as B and we 
have already solved for A

tA  and A
nA .  Any two-dimensional vector equation can be solved 

for two unknowns.  Each term has two parameters, namely magnitude and direction.  There are 
then potentially twelve unknowns in this equation, two per term.  We must know ten of them 
to solve it.  We know both the magnitudes and directions of A

tA and A
nA  and the directions 

of B
tA  and B

nA  that are along line pp and line BO4, respectively.  We can also calculate the 

( a )  Vector construction

FIGURE 7-4

(b )  Vector polygon ( 2X size )

( c )  Vector polygon (2X size) (d )  Resultant vectors
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magnitude of B
nA  from equation 7.6 since we know �4.  This provides seven known values.  

We need to know three more parameters to solve the equation.

 5 The term ABA represents the acceleration difference of B with respect to A.  This has two 
components.  The normal component BA

nA  is directed along the line BA because we are us-
ing point A as the reference center of rotation for the free vector �3, and its magnitude can be 
calculated from equation 7.6.  The direction of BA

tA must then be perpendicular to the line BA.  
Draw construction line qq through point B and perpendicular to BA to represent the direction 
of BA

tA  as shown in Figure 7-4a.  The calculated magnitude and direction of component BA
nA

and the known direction of BA
tA provide the needed additional three parameters.

 6 Now the vector equation can be solved graphically by drawing a vector diagram as shown in 
Figure 7-4b. Either drafting tools or a CAD package is necessary for this step.  The strategy 
is to first draw all vectors for which we know both magnitude and direction, being careful to 
arrange their senses according to equation 7.4.

   First draw acceleration vectors ( A
tA ) and ( A

nA ) tip to tail, carefully to some scale, main-
taining their directions.  (They are drawn twice size in the figure.)  Note that the sum of these 
two components is the vector AA.  The equation in step 4 says to add ABA to AA. We know 

BA
nA , so we can draw that component at the end of AA.  We also know B

nA , but this component 
is on the left side of equation 7.4, so we must subtract it.  Draw the negative (opposite sense) 
of B

nA  at the end of BA
nA .

   This exhausts our supply of components for which we know both magnitude and direc-
tion.  Our two remaining knowns are the directions of B

tA  and BA
tA  that lie along the lines pp 

and qq, respectively.  Draw a line parallel to line qq across the tip of the vector representing 
minus B

nA .  The resultant, or left side of the equation, must close the vector diagram, from the 
tail of the first vector drawn (AA) to the tip of the last, so draw a line parallel to pp across the 
tail of AA.  The intersection of these lines parallel to pp and qq defines the lengths of B

tA  and 
BA
tA .  The senses of these vectors are determined from reference to equation 7.4.  Vector AA

was added to ABA, so their components must be arranged tip to tail.  Vector AB is the resultant, 
so its component B

tA  must be from the tail of the first to the tip of the last.  The resultant vec-
tors are shown in Figure 7-4b and d.

7 The angular accelerations of links 3 and 4 can be calculated from equation 7.6:

α = α = ( )4
4

3
A
BO

A
BA

dB
t

BA
t

  Note that the acceleration difference term BA
tA  represents the rotational component of ac-

celeration of link 3 due to �3.  The rotational acceleration � of any body is a “free vector” 
which has no particular point of application to the body.  It exists everywhere on the body.

 8 Finally we can solve for AC using equation 7.4 again. We select any point in link 3 for which 
we know the absolute velocity to use as the reference, such as point A.

= + ( )eC A CAA A A

  In this case, we can calculate the magnitude of CA
tA from equation 7.6 as we have already found 

�3, 

= α ( )3A c fCA
t
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  The magnitude of the component CA
nA can be found from equation 7.6 using �3.

= ω ( )3
2A c gCA

n

  Since both AA and ACA are known, the vector diagram can be directly drawn as shown in 
Figure 7-4c.  Vector AC is the resultant that closes the vector diagram.  Figure 7-4d shows the 
calculated acceleration vectors on the linkage diagram.

The above example contains some interesting and significant principles that deserve 
further emphasis.  Equations 7.4 are repeated here for discussion.

( ) ( ) ( )
= +

+ = + + +
(7.4)

P A PA

P
t

P
n

A
t

A
n

PA
t

PA
n

A A A

A A A A A A

These equations represent the absolute acceleration of some general point P referenced 
to the origin of the global coordinate system.  The right side defines it as the sum of the 
absolute acceleration of some other reference point A in the same system and the accelera-
tion difference (or relative acceleration) of point P versus point A.  These terms are then 
further broken down into their normal (centripetal) and tangential components that have 
definitions as shown in equation 7.2.

Let us review what was done in Example 7-1 in order to extract the general strategy 
for solution of this class of problem.  We started at the input side of the mechanism, as that 
is where the driving angular acceleration �2 was defined.  We first looked for a point (A) 
for which the motion was pure rotation.  We then solved for the absolute acceleration of 
that point (AA) using equations 7.4 and 7.6 by breaking AA into its normal and tangential 
components.  (Steps 1 and 2)

We then used the point (A) just solved for as a reference point to define the translation 
component in equation 7.4 written for a new point (B).  Note that we needed to choose 
a second point (B) in the same rigid body as the reference point (A) that we had already 
solved, and about which we could predict some aspect of the new point’s (B’s) accelera-
tion components.  In this example, we knew the direction of the component B

tA , though 
we did not yet know its magnitude.  We could also calculate both magnitude and direction 
of the centripetal component, B

nA , since we knew �4 and the link length.  In general this 
situation will obtain for any point on a link that is jointed to ground (as is link 4).  In this 
example, we could not have solved for point C until we solved for B, because point C is 
on a floating link for which we do not yet know the angular acceleration or absolute ac-
celeration direction.  (Steps 3 and 4)

To solve the equation for the second point (B), we also needed to recognize that the 
tangential component of the acceleration difference BA

tA  is always directed perpendicu-
lar to the line connecting the two related points in the link (B and A in the example).  In 
addition, you will always know the magnitude and direction of the centripetal accelera-
tion components in equation 7.4 if it represents an acceleration difference (CASE 1) 
situation.  If the two points are in the same rigid body, then that acceleration difference 
centripetal component has a magnitude of r�2 and is always directed along the line con-
necting the two points, pointing toward the reference point as the center (see Figure 7-2).  
These observations will be true regardless of the two points selected.  But, note this is not 
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true in a CASE 2 situation as shown in Figure 7-3a where the normal component of accel-
eration of auto #2 is not directed along the line connecting points A and P.  (Steps 5 and 6)

Once we found the absolute acceleration of point B (AB), we could solve for �4, the 
angular acceleration of link 4 using the tangential component of AB in equation (d).  Be-
cause points A and B are both on link 3, we could also determine the angular acceleration 
of link 3 using the tangential component of the acceleration difference ABA between points 
B and A, in equation (d).  Once the angular accelerations of all the links were known, 
we could then solve for the linear acceleration of any point (such as C) in any link using 
equation 7.4.  To do so, we had to understand the concept of angular acceleration as a free 
vector, which means that it exists everywhere on the link at any given instant.  It has no 
particular center.  It has an infinity of potential centers.  The link simply has an angular 
acceleration.  It is this property that allows us to solve equation 7.4 for literally any point 
on a rigid body in complex motion referenced to any other point on that body.  (Steps 
7 and 8)

7.3 ANALYTICAL SOLUTIONS FOR ACCELERATION ANALYSIS

The Fourbar Pin-Jointed Linkage
The position equations for the fourbar pin-jointed linkage were derived in Section 4.5.  
The linkage was shown in Figure 4-6 and is shown again in Figure 7-5a on which we also 
show an input angular acceleration �2 applied to link 2.  This input angular acceleration 
�2 may vary with time.  The vector loop equation was shown in equations 4.5a and c, 
repeated here for your convenience.

+ − − = 0 (4.5a)2 3 4 1R R R R

As before, we substitute the complex number notation for the vectors, denoting their 
scalar lengths as a, b, c, d as shown in Figure 7-5.

0 (4.5c)2 3 4 1ae be ce dej j j j+ − − =θ θ θ θ

In Section 6.7, we differentiated equation 4.5c versus time to get an expression for 
velocity which is repeated here.

0 (6.14c)2 3 42 3 4ja e jb e jc ej j jω + ω − ω =θ θ θ

We will now differentiate equation 6.14c versus time to obtain an expression for ac-
celerations in the linkage.  Each term in equation 6.14c contains two functions of time, 
 
and �.  Differentiating with the chain rule in this example will result in two terms in the 
acceleration expression for each term in the velocity equation.

( )( ) ( )ω + α + ω + α − ω + α =θ θ θ θ θ θ 0 (7.7a)2
2
2

2
2

3
2

3
2

4
2

42 2 3 3 4 4j a e ja e j b e jb e j c e jc ej j j j j j

Simplifying and grouping terms:

( )( ) ( )α − ω + α − ω − α − ω =θ θ θ θ θ θ 0 (7.7b)2 2
2

3 3
2

4 4
22 2 3 3 4 4a je a e b je b e c je c ej j j j j j
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Compare the terms grouped in parentheses with equations 7.2.  Equation 7.7 contains 
the tangential and normal components of the accelerations of points A and B and of the 
acceleration difference of B to A.  Note that these are the same relationships that we used 
to solve this problem graphically in Section 7.2.  Equation 7.7 is, in fact, the acceleration 
difference equation 7.4 which, with the labels used here, is:

+ − = 0 (7.8a)A BA BA A A

( )
( ) ( )
( )
( ) ( )

= + = α − ω

= + = α − ω

= + = α − ω

θ θ

θ θ

θ θ

where:

(7.8b)

2 2
2

3 3
2

4 4
2

2 2

3 3

4 4

a je a e

b je b e

c je c e

A A
t

A
n j j

BA BA
t

BA
n j j

B B
t

B
n j j

A A A

A A A

A A A

The vector diagram in Figure 7-5b shows these components and is a graphical solu-
tion to equation 7.8a.  The vector components are also shown acting at their respective 
points on Figure 7-5a.

We now need to solve equation 7.7 for �3 and �4, knowing the input angular ac-
celeration �2, the link lengths, all link angles, and angular velocities.  Thus, the position 
analysis derived in Section 4.5 and the velocity analysis from Section 6.7 must be done 
first to determine the link angles and angular velocities before this acceleration analysis 
can be completed.  We wish to solve equations 7.8 to get expressions in this form:

( )
( )

α = θ θ θ ω ω ω α

α = θ θ θ ω ω ω α

, , , , , , , , , , (7.9a)

, , , , , , , , , , (7.9b)
3 2 3 4 2 3 4 2

4 2 3 4 2 3 4 2

f a b c d

g a b c d

The strategy of solution will be the same as was done for the position and velocity 
analysis.  First, substitute the Euler identity from equation 4.4a in each term of equation 7.7:
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FIGURE 7-5
Position vector loop for a fourbar linkage showing acceleration vectors
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( ) ( )
( ) ( )

( ) ( )

α θ + θ − ω θ + θ⎡
⎣

⎤
⎦

+ α θ + θ − ω θ + θ⎡
⎣

⎤
⎦

− α θ + θ − ω θ + θ⎡
⎣

⎤
⎦ =

cos sin cos sin

cos sin cos sin (7.10a)

cos sin cos sin 0

2 2 2 2
2

2 2

3 3 3 3
2

3 3

4 4 4 4
2

4 4

a j j a j

b j j b j

c j j c j

Multiply by the operator j and rearrange:

( ) ( )
( ) ( )

( ) ( )

α − θ + θ − ω θ + θ⎡
⎣

⎤
⎦

+ α − θ + θ − ω θ + θ⎡
⎣

⎤
⎦

− α − θ + θ − ω θ + θ⎡
⎣

⎤
⎦ =

sin cos cos sin

sin cos cos sin (7.10b)

sin cos cos sin 0

2 2 2 2
2

2 2

3 3 3 3
2

3 3

4 4 4 4
2

4 4

a j a j

b j b j

c j c j

We can now separate this vector equation into its two components by collecting all 
real and all imaginary terms separately:

real part (x component):

− α θ − ω θ − α θ − ω θ + α θ + ω θ =sin cos sin cos sin cos 0 (7.11a)2 2 2
2

2 3 3 3
2

3 4 4 4
2

4a a b b c c

imaginary part ( y component):

α θ − ω θ + α θ − ω θ − α θ + ω θ =cos sin cos sin cos sin 0 (7.11b)2 2 2
2

2 3 3 3
2

3 4 4 4
2

4a a b b c c

Note that the j’s have canceled in equation 7.11b.  We can solve equations 7.11a and 
7.11b simultaneously to get:

α =
−
−

α =
−
−

(7.12a)

(7.12b)

3

4

CD AF
AE BD
CE BF
AE BD

where:
= θ
= θ

= α θ + ω θ + ω θ − ω θ
= θ
= θ

= α θ − ω θ − ω θ + ω θ

sin
sin

sin cos cos cos
cos (7.12c)
cos

cos sin sin sin

4

3

2 2 2
2

2 3
2

3 4
2

4

4

3

2 2 2
2

2 3
2

3 4
2

4

A c
B b

C a a b c
D c
E b

F a a b c

Once we have solved for �3 and �4, we can then solve for the linear accelerations by 
substituting the Euler identity into equations 7.8b,

( ) ( )

( ) ( )

( ) ( )

= α − θ + θ − ω θ + θ
= − α θ − ω θ = α θ − ω θ

= α − θ + θ − ω θ + θ
= − α θ − ω θ = α θ − ω θ

= α − θ + θ − ω θ + θ
= − α θ − ω θ = α θ − ω θ

sin cos cos sin
sin cos cos sin (7.13a)

sin cos cos sin
sin cos cos sin (7.13b)

sin cos cos sin
sin cos cos sin

2 2 2 2
2

2 2

2 2 2
2

2 2 2 2
2

2

3 3 3 3
2

3 3

3 3 3
2

3 3 3 3
2

3

4 4 4 4
2

4 4

4 4 4
2

4 4 4 4
2

a j a j
a a a a

b j b j
b b b b

c j c j
c c c c

A

A A

BA

BA BA

B

B B

x y

x y

x y

A
A A

A
A A

A
A A
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where the real and imaginary terms are the x and y components, respectively.  Equations 
7.12 and 7.13 provide a complete solution for the angular accelerations of the links and 
the linear accelerations of the joints in the pin-jointed fourbar linkage.

✍EXAMPLE 7-2

Acceleration Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem: Given a fourbar linkage with the link lengths L1 = d = 100 mm, L2 = a = 40 mm,  
L3 = b = 120 mm, L4 = c = 80 mm. For 
2 = 40�� �2 = 25 rad/sec, and �2 = 15 
rad/sec2 find the values of �3 and �4, AA, ABA, and AB for the open circuit of the 
linkage.  Use the angles and angular velocities found for the same linkage and 
position in Example 6-7. 

Solution: (See Figure 7-5 for nomenclature.)

 1 Example 4-1 found the link angles for the open circuit of this linkage in this position to be  

3 = 20.298� and 
4 = 57.325�.  Example 6-7 found the angular velocities at this position to 
be �3 = –4.121 and �4 = 6.998 rad/sec.

 2 Use these angles, angular velocities, and equations 7.12 to find �3 and �4 for the open circuit.  
First find the parameters in equation 7.12c.

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= θ = ° =
= θ = ° =

= α θ + ω θ + ω θ − ω θ

= ° + ° + − ° − °
=
= θ = ° =
= θ = ° =

= α θ − ω θ − ω θ + ω θ

= ° − ° − − ° + °
= −

sin 80sin57.325 67.340
sin 120sin20.298 41.628

sin cos cos cos

40 15 sin 40 40 25 cos 40 120 4.121 cos20.298 80 6.998 cos57.325
19332.98

cos 80cos57.325 43.190 ( )
cos 120cos20.298 112.548

cos sin sin sin

40 15 cos 40 40 25 sin 40 120 4.121 sin20.298 80 6.998 sin57.325
13 019.25

4

3

2 2 2
2

2 3
2

3 4
2

4
2 2 2

4

3

2 2 2
2

2 3
2

3 4
2

4
2 2 2

A c
B b

C a a b c

D c a
E b

F a a b c

 3 Then find �3 and �4 with equations 7.12a and b.

( )

( )

( )
( ) ( )
( )
( ) ( )

α =
−
−

=
− −
−

=

α =
−
−

=
− −
−

=

19332.98 43.190 67.340 13 019.25
67.340 112.548 41.628 43.190

296.089 rad/sec ( )

19332.98 112.548 41.628 13 019.25
67.340 112.548 41.628 43.190

470.134 rad/sec ( )

3
2

4
2

CD AF
AE BD

b

CE BF
AE BD

c

 4 Use equations 7.13 to find the linear accelerations of points A and B.

( ) ( )
( ) ( )

= − α θ − ω θ = − °− ° = −

= α θ − ω θ = °− ° = −

sin cos 40 15 sin 40 40 25 cos 40 19.537 m/sec
( )

cos sin 40 15 cos 40 40 25 sin 40 15.617 m/sec

2 2 2
2

2
2 2

2 2 2
2

2
2 2

a a
d

a a

A

A

x

y

A

A
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( ) ( )

( ) ( )

= − α θ − ω θ
= − ° − − ° = −

= α θ − ω θ

= °− − ° =

sin cos
120 269.089 sin20.298 120 4.121 cos20.298 14 237 m/sec

( )
cos sin

120 269.089 cos20.298 120 4.121 sin20.298 32.617 m/sec

3 3 3
2

3
2 2

3 3 3
2

3
2 2

b b

e
b b

BA

BA

x

y

A

A

( ) ( )

( ) ( )

= − α θ − ω θ
= − ° − ° = −

= α θ − ω θ

= ° − ° =

sin cos
80 470.134 sin57.325 80 6.998 cos57.325 33.774 m/sec

( )
cos sin

80 470.134 cos57.325 80 6.998 sin57.325 17.007 m/sec

4 4 4
2

4
2 2

4 4 4
2

4
2 2

c c

f
c c

B

B

x

y

A

A

The Fourbar Crank-Slider
The first inversion of the offset crank-slider has its slider block sliding against the ground 
plane as shown in Figure 7-6a.  Its accelerations can be solved for in similar manner as 
was done for the pin-jointed fourbar.

The position equations for the fourbar offset crank-slider linkage (inversion #1) were 
derived in Section 4.6.  The linkage was shown in Figures 4-9 and 6-21 and is shown 
again in Figure 7-6a on which we also show an input angular acceleration �2 applied to 
link 2.  This �2 can be a time-varying input acceleration.  The vector loop equations 4.14 
are repeated here for your convenience.

− − − =R R R R 0 (4.14a)2 3 4 1

− − − =θ θ θ θ 0 (4.14b)2 3 4 1ae be ce dej j j j

R1

R3

R4

R2

FIGURE 7-6
Position vector loop for a fourbar crank-slider linkage showing acceleration vectors

O2

ω2θ2

θ3

θ4α2

α3
ω3

(a ) ( b )

AA

ABA
t

ABA
nAA

t

AA
n

AB

A

X

Y

d

b

a
c

x

y

4B

AB

ABA
t

ABA
n AA

t
AA

n

AA
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In Section 6.7 we differentiated equation 4.14b with respect to time noting that a, b, c, 

1, and 
4 are constant but the length of link d varies with time in this inversion.

� 0 (6.20a)2 32 3ja e jb e dj jω − ω − =θ θ

The term �d  is the linear velocity of the slider block.  Equation 6.20a is the velocity 
difference equation.

We now will differentiate equation 6.20a with respect to time to get an expression for 
acceleration in this inversion of the crank-slider mechanism.

α α( )( )+ ω − + ω − =θ θ θ θ �� 0 (7.14a)2
2

2
2

3
2

3
22 2 3 3ja e j a e jb e j b e dj j j j

Simplifying:

( )( )α − ω − α − ω − =θ θ θ θ �� 0 (7.14b)2 2
2

3 3
22 2 3 3a je a e b je b e dj j j j

Note that equation 7.14 is again the acceleration difference equation:

− − =
= −
= +

0
(7.15a)

A AB B

BA AB

B A BA

A A A
A A
A A A

( )
( ) ( )
( )

= + = α − ω

= + = α − ω

= =

θ θ

θ θ

��

(7.15b)

2 2
2

3 3
2

2 2

3 3

a je a e

b je b e

d

A A
t

A
n j j

BA BA
t

BA
n j j

B B
t

A A A

A A A

A A

In this mechanism, link 4 is in pure translation and so has zero �4 and zero �4.  The 
acceleration of link 4 has only a “tangential” component of acceleration along its path.

The two unknowns in the vector equation 7.14 are the angular acceleration of link 
3, �3, and the linear acceleration of link 4, ��d .  To solve for them, substitute the Euler 
identity,

( ) ( )
( ) ( )α − θ + θ − ω θ + θ

− α − θ + θ + ω θ + θ − =��

sin cos cos sin

sin cos cos sin 0 (7.16a)
2 2 2 2

2
2 2

3 3 3 3
2

3 3

a j a j

b j b j d

and separate the real (x) and imaginary (y) components:

real part (x component):

− α θ − ω θ + α θ + ω θ − =��sin cos sin cos 0 (7.16b)2 2 2
2

2 3 3 3
2

3a a b b d

imaginary part (y component):

α θ − ω θ − α θ + ω θ =cos sin cos sin 0 (7.16c)2 2 2
2

2 3 3 3
2

3a a b b

Equation 7.16c can be solved directly for �3 and the result substituted in equation 
7.16b to find ��d .
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α =
α θ − ω θ + ω θ

θ

= − α θ − ω θ + α θ + ω θ��

cos sin sin
cos

(7.16d)

sin cos sin cos (7.16e)

3
2 2 2

2
2 3

2
3

3

2 2 2
2

2 3 3 3
2

3

a a b
b

d a a b b

The other linear accelerations can be found from equation 7.15b and are shown in 
the vector diagram of Figure 7-6b.

✍EXAMPLE 7-3

Acceleration Analysis of a Fourbar Crank-Slider Linkage with a Vector Loop Method.

Problem: Given a fourbar crank-slider linkage with the link lengths L2 = a = 40 mm,  
L3 = b = 120 mm, offset = c = –20 mm. For 
2 = 60�, �2 = –30 rad/sec, and �2 = 
20 rad/sec2, find �3 and linear acceleration of the slider for the open circuit.  Use 
the angles, positions, and angular velocities found for the same linkage in Examples 
4-2 and 6-8. 

Solution: (See Figure 7-6 for nomenclature.)

 1 Example 4-2 found angle 
3 = 152.91� and slider position d = 126.84 mm for the open circuit. 
Example 6-8 found the the coupler angular velocity �3 to be 5.616 rad/sec.

 2 Using equation 7.16d and the data from step 1, calculate the coupler angular acceleration �3.

α
α

( ) ( ) ( )

=
θ − ω θ + ω θ

θ

=
° − − ° + °

°
=

cos sin sin
cos

40 20 cos60 40 30 sin60 120 5.616 sin152.91
120cos152.91

271.94 rad/sec ( )

3
2 2 2

2
2 3

2
3

3
2 2

2

a a b
b

a

 3 Using equation 7.16e and the data from steps 1 and 3, calculate the slider acceleration ��d .

α α

( ) ( ) ( ) ( )
= − θ − ω θ + θ + ω θ

= − ° − − ° + ° + °

= −

�� sin cos sin cos

40 20 sin60 40 30 cos60 120 271.94 sin152.91 120 5.616 cos152.91

7.203 m/sec ( )

2 2 2
2

2 3 3 3
2

3
2 2

2

d a a b b

b

The Fourbar Slider-Crank
The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section.  The name change indicates that it will be 
driven with the slider as input and the crank as output.  This is sometimes referred to as a 
“back-driven” crank-slider.  We will use the term slider-crank to define it as slider-driven. 
This is a very commonly used linkage configuration.  Every internal-combustion, piston 
engine has as many of these as it has cylinders.  The vector loop is as shown in Figure 7-6 
and the vector loop equation is identical to that of the crank-slider (equation 4.14a).  The 
derivation for 
2 and �2 as a function of slider position d and slider velocity �dwere done, 
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respectively, in Sections 4-7 and 6-7.  Now we want to solve for �2 and �3 as a function of 
slider acceleration ��d  and the known lengths, angles, and angular velocities of the links.

We can start with equations 7.16b and c, which also apply to this linkage:

− α θ − ω θ + α θ + ω θ − =

α θ − ω θ − α θ + ω θ =

��sin cos sin cos 0 (7.16b)

cos sin cos sin 0 (7.16c)
2 2 2

2
2 3 3 3

2
3

2 2 2
2

2 3 3 3
2

3

a a b b d

a a b b

Solve equation 7.16c for �3 in terms of �2.

α =
α θ − ω θ + ω θ

θ
cos sin sin

cos
(7.17a)3

2 2 2
2

2 3
2

3

3

a a b
b

Substitute equation 7.17a for �3 in equation 7.16b and solve for �2.

( )
( )α =

ω θ θ + θ θ − ω + θ
θ θ − θ θ

��cos cos sin sin cos
cos sin sin cos

(7.17b)2
2
2

2 3 2 3 3
2

3

2 3 2 3

a b d
a

The circuit of the linkage depends on the value of d chosen and the angular accelerations 
will be for the branch represented by the values of 
2 and 
3 used from equation 4.21.*

✍EXAMPLE 7-4

Acceleration Analysis of a Fourbar Slider-Crank Linkage with a Vector Loop Method.

Problem: Given a fourbar slider-crank linkage with the link lengths L2 = a = 40 mm, 
L3 = b = 120 mm, offset = c = –20 mm. For d = 100 mm and ��d  = 900 mm/sec2, 
find �2 and �3 for both branches of one circuit of the linkage.  Use the angles and 
angular velocities found for the same linkage in Example 4-3 and Example 6-9, 
respectively. 

Solution: (See Figure 7-6 for nomenclature.)

 1 Example 4-3 found angles 
21 = 95.80�, 
31 = 150.11� for branch 1 of this linkage.  Example 
6-9 found the the angular velocities to be �21 = –32.023 and �31 = –1.244 rad/sec for branch 1.

 2 Using equation 7.17b and the data from step 1, calculate the crank angular acceleration �21.

( )
( )
( )

( )
( ) ( )

α =
ω θ θ + θ θ − ω + θ

θ θ − θ θ

α =

α =

− ° ° + ° ° − − + °

° ° − ° °

��cos cos sin sin cos

cos sin sin cos

706.753 rad/sec ( )

40 32.023 cos95.80 cos150.11 sin 95.80 sin150.11 120 1.244 900cos150.11
40 cos95.80 sin150.11 sin 95.80 cos150.11

2
2
2

2 3 2 3 3
2

3

2 3 2 3

2

2
2

1
1 1 1 1 1 1 1

1 1 1 1

1

2 2

1

a b d

a

a

 3 Using equation 7.17a and the data from steps 1 and 2, calculate the coupler angular accelera-
tion �31.

 
* The crank-slider and 
slider-crank linkage 
both have two circuits or 
configurations in which 
they can be independently 
assembled, sometimes 
called open and crossed.   
Because effective link 4 is 
always perpendicular to the 
slider axis, it is parallel to 
itself on both circuits.  This 
results in the two circuits 
being mirror images of one 
another, mirrored about a 
line through the crank pivot 
and perpendicular to the 
slide axis.  Thus, the choice 
of value of slider position 
d in the calculation of the 
slider-crank linkage deter-
mines which circuit is being 
analyzed.  But, because of 
the change points at TDC 
and BDC, the slider-crank 
has two branches on each 
circuit and the two solutions 
obtained from equation 4.21 
represent the two branches 
on the one circuit being 
analyzed.  In contrast, the 
crank-slider has only one 
branch per circuit because 
when the crank is driven, it 
can make a full revolution 
and there are no change 
points to separate branches.  
See Section 4.13 for a 
more complete discussion 
of circuits and branches in 
linkages.
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( ) ( )( )

α =
α θ − ω θ + ω θ

θ

α =
− ° − − ° + − °

°

α =

cos sin sin
cos

40 706.753 cos95.80 40 32.023 sin95.80 120 1.244 sin150.11
120cos150.11

418.804 rad/sec ( )

3
2 2 2

2
2 3

2
3

3

3

2 2

3
2

1
1 1 1 1 1

1

1

1

a a b
b

b

 4 Example 4-3 found angles 
22 = –118.42�, 
32 = 187.27� for branch 2 of this linkage.  Example 
6-9 found the the angular velocities to be �22 = 36.64 and �32 = 5.86 rad/sec for branch 2.  
Using equation 7.17b and the data from step 3, calculate the crank angular acceleration �22
for branch 2.

( )
( )

[ ]
( )( ) ( )

( ) ( )

α =
ω θ θ + θ θ − ω + θ

θ θ − θ θ

α =

α = −

− ° ° + − ° ° − + °

− ° ° − − ° °

��cos cos sin sin cos

cos sin sin cos

809.801 rad/sec ( )

40 36.64 cos 118.42 cos187.27 sin 118.42 sin187.27 120 5.86 900cos187.27
40 cos 118.42 sin187.27 sin 118.42 cos187.27

2
2
2

2 3 2 3 3
2

3

2 3 2 3

2

2
2

2
2 2 2 2 2 2 2

2 2 2 2

2

2 2

2

a b d

a

c

 5 Using equation 7.17a and the data from steps 3 and 4, calculate the coupler angular accelera-
tion �32.

( ) ( )( )

α =
α θ − ω θ + ω θ

θ

α =
− − ° − − ° + °

°

α = −

cos sin sin
cos

40 809.801 cos 118.42 40 36.64 sin 118.42 120 5.859 sin187.27
120cos187.27

521.852 rad/sec ( )

3
2 2 2

2
2 3

2
3

3

3

2 2

3
2

2
2 2 2 2 2

2

2

2

a a b
b

d

Coriolis Acceleration
The examples used for acceleration analysis above have involved only pin-jointed link-
ages or the inversion of the crank-slider in which the slider block has no rotation.  When 
a sliding joint is present on a rotating link, an additional component of acceleration will 
be present, called the Coriolis component, after its discoverer.  Figure 7-7a shows a 
simple, two-link system consisting of a link with a radial slot and a slider block free to 
slip within that slot.

The instantaneous location of the block is defined by a position vector (RP) refer-
enced to the global origin at the link center.  This vector is both rotating and changing 
length as the system moves.  As shown this is a two-degree-of-freedom system.  The two 
inputs to the system are the angular acceleration (�� of the link and the relative linear slip 
velocity (VPslip) of the block versus the disk.  The angular velocity � is a result of the time 
history of the angular acceleration.  The situation shown, with a counterclockwise � and 
a clockwise �, implies that earlier in time the link had been accelerated up to a clockwise 
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angular velocity and is now being slowed down.  The transmission component of veloc-
ity (VPtrans) is a result of the � of the link acting at the radius RP whose magnitude is p.

We show the situation in Figure 7-7 at one instant of time.  However, the equations to 
be derived will be valid for all time.  We want to determine the acceleration at the center 
of the block (P) under this combined motion of rotation and sliding.  To do so, we first 
write the expression for the position vector RP that locates point P.

= θ (7.18a)2peP
jR

Note that there are two functions of time in equation 7.17, p and 
.  When we 
differentiate versus time, we get two terms in the velocity expression:

= ω +θ θ� (7.18b)2 2 2p je peP
j jV

These are the transmission component and the slip component of velocity.

= + (7.18c)P P Ptrans slip
V V V

The p� term is the transmission component and is directed at 90 degrees to the axis 
of slip that, in this example, is coincident with the  position vector RP.  The �p  term is the 
slip component and is directed along the axis of slip in the same direction as the position 
vector in this example.  Their vector sum is VP as shown in Figure 7-7a.

To get an expression for acceleration, we must differentiate equation 7.18 versus 
time.  Note that the transmission component has three functions of time in it, p, �, and 
.  
The chain rule will yield three terms for this one term.  The slip component of velocity 
contains two functions of time, p and 
��yielding two terms in the derivative for a total of 
five terms, two of which turn out to be the same.

( ) ( )= α + ω + ω + ω +θ θ θ θ θ� � �� (7.19a)2 2
2 2

2 22 2 2 2 2p je p j e p je p je peP
j j j j jA

FIGURE 7-7
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α2
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VPslip

( a ) (b ) ( c )
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2
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The Coriolis component of acceleration shown in a system with a positive (CCW) α  and a negative (CW) ω

+

–

AP
n

AP
t

VPtrans

O2

APslip

APcoriolis

APcoriolis

APslip

AP
n

AP
t
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Simplifying and collecting terms:

= α − ω + ω +θ θ θ θ� ��2 (7.19b)2 2
2

22 2 2 2p je p e p je peP
j j j jA

These terms represent the following components:

= + + + (7.19c)tangential normal coriolis slipP P P P PA A A A A

Note that the Coriolis term has appeared in the acceleration expression as a result of 
the differentiation simply because the length of the vector p is a function of time.  The 
Coriolis component magnitude is twice the product of the velocity of slip (equation 7.18) 
and the angular velocity of the link containing the slider slot.  Its direction is rotated 90 
degrees from that of the original position vector RP either clockwise or counterclockwise 
depending on the sense of �.*  (Note that we chose to align the position vector RP with 
the axis of slip in Figure 7-7 which can always be done regardless of the location of the 
center of rotation—also see Figure 7-6 where R1 is aligned with the axis of slip.)  All 
four components from equations 7.19 are shown acting on point P in Figure 7-7b.  The 
total acceleration AP is the vector sum of the four terms as shown in Figure 7-7c.   Note 
that the normal acceleration term in equation 7.19b is negative in sign, so it becomes a 
subtraction when substituted in equation 7.19c.

This Coriolis component of acceleration will always be present when there is 
a velocity of slip associated with any member that also has an angular velocity.  In 
the absence of either of those two factors the Coriolis component will be zero.  You 
have probably experienced Coriolis acceleration if you have ever ridden on a carousel or 
merry-go-round.  If you attempted to walk radially from the outside to the inside (or vice 
versa) while the carousel was turning, you were thrown sideways by the inertial force 
due to the Coriolis acceleration.  You were the slider block in Figure 7-7, and your slip 
velocity combined with the rotation of the carousel created the Coriolis component.  As 
you walked from a large radius to a smaller one, your tangential velocity had to change 
to match that of the new location of your foot on the spinning carousel.  Any change in 
velocity requires an acceleration to accomplish.  It was the “ghost of Coriolis” that pushed 
you sideways on that carousel.

Another example of the Coriolis component is its effect on weather systems.  Large 
objects that exist in the earth’s lower atmosphere, such as hurricanes, span enough area 
to be subject to significantly different velocities at their northern and southern extremi-
ties.  The atmosphere turns with the earth.  The earth’s surface tangential velocity due to 
its angular velocity varies from zero at the poles to a maximum of about 1000 mph at the 
equator.  The winds of a storm system are attracted toward the low pressure at its center.  
These winds have a slip velocity with respect to the surface, which in combination with 
the earth’s � creates a Coriolis component of acceleration on the moving air masses.  
This Coriolis acceleration causes the inrushing air to rotate about the center, or “eye” of 
the storm system.  This rotation will be counterclockwise in the northern hemisphere and 
clockwise in the southern hemisphere.  The movement of the entire storm system from 
south to north also creates a Coriolis component that will tend to deviate the storm’s track 
eastward, though this effect is often overridden by the forces due to other large air masses 
such as high-pressure systems that can deflect a storm.  These complicated factors make 
it difficult to predict a large storm’s true track.

* This approach works in 
the 2-D case.  Coriolis ac-
celeration is the cross prod-
uct of 2� and the velocity 
of slip.  The cross product 
operation will define its 
magnitude, direction, and 
sense in the 3-D case.
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Note that in the analytical solution presented here, the Coriolis component will be 
accounted for automatically as long as the differentiations are correctly done.  However, 
when doing a graphical acceleration analysis, one must be on the alert to recognize the 
presence of this component, calculate it, and include it in the vector diagrams when its 
two constituents Vslip and � are both nonzero.

The Fourbar Inverted Crank-Slider
The position equations for the fourbar inverted crank-slider linkage were derived in Sec-
tion 4.7.  The linkage was shown in Figures 4-10 and 6-22 and is shown again in Figure 
7-8a on which we also show an input angular acceleration �2 applied to link 2.  This �2 
can vary with time.  The vector loop equations 4.14 are valid for this linkage as well.

All slider linkages will have at least one link whose effective length between joints 
varies as the linkage moves.  In this inversion the length of link 3 between points A and B, 
designated as b, will change as it passes through the slider block on link 4.  In Section 6.7 
we got an expression for velocity by differentiating equation 4.14b with respect to time, 
noting that a, c, d, and 
1 are constant and b, 
3, and 
4 vary with time.

� 0 (6.25a)2 3 42 3 3 4ja e jb e be jc ej j j jω − ω − − ω =θ θ θ θ

Differentiating this with respect to time will give an expression for accelerations in this 
inversion of the crank-slider mechanism.

( )
( )

( )
( )

α + ω − α + ω + ω

− + ω − α + ω =

θ θ θ θ θ

θ θ θ θ

�

�� � 0 (7.20a)

2
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Simplifying and collecting terms:

( )( )
( )

α − ω − α − ω + ω +

− α − ω =

θ θ θ θ θ θ

θ θ

� ��2

0 (7.20b)

2 2
2

3 3
2

3

4 4
2

2 2 3 3 3 3

4 4

a je a e b je b e b je be

c je c e

j j j j j j

j j

Equation 7.20 is in fact the acceleration difference equation (equation 7.4) and can 
be written in that notation as shown in equations 7.21.

− − =
= −
= +

but:
and:

0
(7.21a)

A AB B

BA AB

B A BA

A A A
A A
A A A

= +

= + + +

= +

(7.21b)
tangential normal

tangential normal coriolis slip

tangential normal

A A A

AB AB AB AB AB

B B B

A A A

A A A A A

A A A

= α = − ω

= α = − ω

= α = − ω

= ω =

θ θ

θ θ

θ θ

θ θ� ��

(7.21c)

2

2 2
2

4 4
2

3 3
2

3

tangential
2

normal
2

tangential
4

normal
4

tangential
3

normal
3

coriolis
3

slip
3

a je a e

c je c e

b je b e

b je be

A
j

A
j

B
j

B
j

AB
j

AB
j

AB
j

AB
j

A A

A A

A A

A A

Because this sliding link also has an angular velocity, there will be a nonzero Coriolis 
component of acceleration at point B which is the 2 �b  term in equation 7.20.  Since a 
complete velocity analysis was done before doing this acceleration analysis, the Coriolis 
component can be readily calculated at this point, knowing both � and Vslip from the 
velocity analysis.

The ��b  term in equations 7.20b and 7.21c is the slip component of acceleration.  This 
is one of the variables to be solved for in this acceleration analysis.  Another variable to 
be solved for is �4, the angular acceleration of link 4.  Note, however, that we also have 
an unknown in �3, the angular acceleration of link 3.  This is a total of three unknowns.  
Equation 7.20 can only be solved for two unknowns.  Thus we require another equation 
to solve the system.  There is a fixed relationship between angles 
3 and 
4, shown as � in 
Figure 7-8 and defined in equation 4.22, repeated here:

θ = θ + γ θ = θ + γ − πopen configuration: ; crossed configuration: (4.22)3 4 3 4

Differentiate it twice with respect to time to obtain:

ω = ω α = α; (7.22)3 4 3 4

We wish to solve equation 7.20 to get expressions in this form:

( )
( )

α = α = θ θ θ ω ω ω α

= = θ θ θ ω ω ω α

�

�� �

, , , , , , , , , , , (7.23a)

, , , , , , , , , , , (7.23b)

3 4 2 3 4 2 3 4 2

2

2 2 3 4 2 3 4 2

f a b b c d

d b
dt

b g a b b c d
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Substitution of the Euler identity (equation 4.4a) into equation 7.20 yields:

( ) ( )
( ) ( )

( ) ( )

( ) ( )

α θ + θ − ω θ + θ

− α θ + θ + ω θ + θ

− ω θ + θ − θ + θ

− α θ + θ + ω θ + θ =

� ��

cos sin cos sin

cos sin cos sin

2 cos sin cos sin (7.24a)

cos sin cos sin 0

2 2 2 2
2

2 2

3 3 3 3
2

3 3

3 3 3 3 3

4 4 4 4
2

4 4

a j j a j

b j j b j

b j j b j

c j j c j

Multiply by the operator j and substitute �4 for �3 from equation 7.22:

( ) ( )
( ) ( )

( ) ( )

( ) ( )

α − θ + θ − ω θ + θ

− α − θ + θ + ω θ + θ

− ω − θ + θ − θ + θ

− α − θ + θ + ω θ + θ =

� ��

sin cos cos sin

sin cos cos sin

2 sin cos cos sin (7.24b)

sin cos cos sin 0

2 2 2 2
2

2 2

4 3 3 3
2

3 3

3 3 3 3 3

4 4 4 4
2

4 4

a j a j

b j b j

b j b j

c j c j
 

We can now separate this vector equation 7.24b into its two components by collecting 
all real and all imaginary terms separately:

real part (x component):

− α θ − ω θ + α θ + ω θ

+ ω θ − θ + α θ + ω θ =� ��

sin cos sin cos

2 sin cos sin cos 0 (7.25a)
2 2 2

2
2 4 3 3

2
3

3 3 3 4 4 4
2

4

a a b b

b b c c

imaginary part (y component):

α θ − ω θ − α θ + ω θ

− ω θ − θ − α θ + ω θ =� ��

cos sin cos sin

2 cos sin cos sin 0 (7.25b)
2 2 2

2
2 4 3 3

2
3

3 3 3 4 4 4
2

4

a a b b

b b c c

Note that the j’s have canceled in equation 7.25b. We can solve equations 7.25  
simultaneously for the two unknowns, �4 and ��b .  The solution is:

( ) ( ) ( )
( )α =

α θ − θ +ω θ − θ⎡
⎣

⎤
⎦ + ω θ − θ − ω

+ θ − θ

�cos sin sin 2

cos
(7.26a)4

2 3 2 2
2

3 2 4
2

4 3 3

3 4

a c b

b c

( ) ( )
( ) ( )

( )

( ) ( )ω θ − θ + θ − θ⎡⎣ ⎤⎦ + α θ − θ − θ − θ⎡⎣ ⎤⎦

+ ω θ − θ −ω + + θ − θ⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+ θ − θ
��

�

= –

cos cos sin sin

2 sin 2 cos

cos
(7.26b)

2
2

3 2 4 2 2 2 3 4 2

4 4 3 4
2 2 2

4 3

3 4
b

a b c a b c

bc b c bc

b c

Equation 7.26a provides the angular acceleration of link 4.  Equation 7.26b pro-
vides the acceleration of slip at point B.  Once these variables are solved for, the linear 
accelerations at points A and B in the linkage of Figure 7-8 can be found by substituting 
the Euler identity into equations 7.21.
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( ) ( )
( ) ( )

( ) ( )

( ) ( )

= α − θ + θ − ω θ + θ

= α θ − θ + ω θ + θ

+ ω θ − θ − θ + θ

= − α θ − θ − ω θ + θ

� ��

sin cos cos sin (7.27a)

sin cos cos sin

2 sin cos cos sin (7.27b)

sin cos cos sin (7.27c)

2 2 2 2
2

2 2

3 3 3 3
2

3 3

3 3 3 3 3

4 4 4 4
2

4 4

a j a j

b j b j

b j b j

c j c j

A

BA

B

A

A

A

These components of these vectors are shown in Figure 7-8b.

7.4 ACCELERATION ANALYSIS OF THE GEARED FIVEBAR  
LINKAGE

The velocity equation for the geared fivebar mechanism was derived in Section 6.8 and is 
repeated here.  See Figure P7-4 for notation.

0 (6.32a)2 3 4 52 3 4 5a je b je c je d jej j j jω + ω − ω − ω =θ θ θ θ

Differentiate this with respect to time to get an expression for acceleration.

( )
( )

( )
( )

α − ω + α − ω

− α − ω − α − ω =

θ θ θ θ

θ θ θ θ 0 (7.28a)

2 2
2

3 3
2

4 4
2

5 5
2

2 2 3 3

4 4 5 5

a je a e b je b e

c je c e d je d e

j j j j

j j j j

Substitute the Euler equivalents:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

α − θ + θ − ω θ + θ

+ α − θ + θ − ω θ + θ

− α − θ + θ + ω θ + θ

− α − θ + θ + ω θ + θ =

sin cos cos sin

sin cos cos sin

sin cos cos sin

sin cos cos sin 0 (7.28b)

2 2 2 2
2

2 2

3 3 3 3
2

3 3

4 4 4 4
2

4 4

5 5 5 5
2

5 5

a j a j

b j b j

c j c j

d j d j

Note that the angle 
5 is defined in terms of 
2, the gear ratio  , and the phase angle !.  
This relationship and its derivatives are:

; ( . )θ = λθ + φ ω = λω α = λα 7 28c5 2 5 2; 5 2

Since a complete position and velocity analysis must be done before an acceleration 
analysis, we will assume that the values of 
5 and �5 have been found and will leave these 
equations in terms of 
5, �5, and �5.

Separating the real and imaginary terms in equation 7.28b:

real:

− α θ − ω θ − α θ − ω θ

+ α θ + ω θ + α θ + ω θ =

sin cos sin cos

sin cos sin cos 0 (7.28d)
2 2 2

2
2 3 3 3

2
3

4 4 4
2

4 5 5 5
2

5

a a b b

c c d d
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imaginary:

α θ − ω θ + α θ − ω θ

− α θ + ω θ − α θ + ω θ =

cos sin cos sin

cos sin cos sin 0 (7.28e)
2 2 2

2
2 3 3 3

2
3

4 4 4
2

4 5 5 5
2

5

a a b b

c c d d

The only two unknowns are �3 and �4.  Either equation 7.28d or 7.28e can be solved 
for one unknown and the result substituted in the other.  The solution for �3 is:

( ) ( )
( )

( )

( ) ( )

α =

− α θ − θ − ω θ − θ

− ω θ − θ + ω θ − θ

+ α θ − θ + ω

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

θ − θ

sin cos

cos cos

sin

sin
(7.29a)3

2 2 4 2
2

2 4

3
2

3 4 5
2

5 4

5 5 4 4
2

3 4

a a

b d

d c

b

and angular acceleration �4 is:

α

ω

ω ω

α ω

( ) ( )
( ) ( )

( )
( )=

α θ − θ + θ − θ

− θ − θ − θ − θ

+ θ − θ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

θ − θ

sin cos

cos cos

sin

sin
(7.29b)4

2 2 3 2
2

2 3

4
2

3 4 5
2

3 5

5 3 5 3
2

4 3

a a

c d

d b

c

With all link angles, angular velocities, and angular accelerations known, the linear 
accelerations for the pin joints can be found from:

( ) ( )
( ) ( )

( ) ( )= α − θ + θ − ω θ + θ

= α − θ + θ − ω θ + θ

= α − θ + θ − ω θ + θ

= +

sin cos cos sin (7.29c)

sin cos cos sin (7.29d)

sin cos cos sin (7.29e)
(7.29f)

2 2 2 2
2

2 2

3 3 3 3
2

3 3

5 5 5 5
2

5 5

a j a j

b j b j

c j c j

A

BA

C

B A BA

A

A

A
A A A

7.5 ACCELERATION OF ANY POINT ON A LINKAGE

Once the angular accelerations of all the links are found, it is easy to define and calculate 
the acceleration of any point on any link for any input position of the linkage.  Figure 
7-9 shows the fourbar linkage with its coupler, link 3, enlarged to contain a coupler point 
P.  The crank and rocker have also been enlarged to show points S and U which might 
represent the centers of gravity of those links.  We want to develop algebraic expressions 
for the accelerations of these (or any) points on the links.

To find the acceleration of point S, draw the position vector from the fixed pivot O2 
to point S.  This vector RSO2 makes an angle &2 with the vector RAO2.  This angle &2 is 
completely defined by the geometry of link 2 and is constant.  The position vector for 
point S is then:

( ) ( )= = = θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δR R cos sin (4.29)2 2 2 22

2 2se s jSO S
j
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We differentiated this position vector in Section 6.9 to find the velocity of that point.  
The equation is repeated here for your convenience.

sin cos (6.34)2 2 2 2 2 2
2 2jse s jS

jV ω ω ( ) ( )= = − θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δ

We can differentiate again versus time to find the acceleration of point S.

A
sin cos (7.30)

cos sin

2 2
2

2 2 2 2 2

2
2

2 2 2 2

2 2 2 2s je s e

s j

s j

S
j j

( ) ( )
( ) ( )

= α − ω

= α − θ + δ + θ + δ⎡⎣ ⎤⎦

− ω θ + δ + θ + δ⎡⎣ ⎤⎦

( ) ( )θ +δ θ +δ

The position of point U on link 4 is found in the same way, using the angle &4 which 
is a constant angular offset within the link.  The expression is:

( ) ( )= = θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δR cos sin (4.30)4 4 4 44

4 4ue u jUO
j

We differentiated this position vector in Section 6.9 to find the velocity of that point.  
The equation is repeated here for your convenience.

sin cos (6.35)4 4 4 4 4 4
4 4jue u jU

jV ( ) ( )= ω = ω − θ + δ + θ + δ⎡⎣ ⎤⎦
( )θ +δ

We can differentiate again versus time to find the acceleration of point U.

( ) ( )
( ) ( )

= α − ω

= α − θ + δ + θ + δ⎡⎣ ⎤⎦

− ω θ + δ + θ + δ⎡⎣ ⎤⎦

( ) ( )θ +δ θ +δ

sin cos (7.31)

cos sin

4 4
2

4 4 4 4 4

4
2

4 4 4 4

4 4 4 4u je u e

u j

u j

U
j jA

FIGURE 7-9
Finding the acceleration of any point on any link
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The acceleration of point P on link 3 can be found from the addition of two accelera-
tion vectors, such as AA and APA.  Vector AA is already defined from our analysis of the 
link accelerations.  APA is the acceleration difference of point P with respect to point A.  
Point A is chosen as the reference point because angle 
3 is defined at a local coordinate 
system whose origin is at A.  Position vector RPA is defined in the same way as RU or RS,
using the internal link offset angle &3 and the angle of link 3, 
3.  We previously analyzed 
this position vector and differentiated it in Section 6.9 to find the velocity difference of 
that point with respect to point A.  Those equations are repeated here for your convenience.

( ) ( )

( ) ( )

= = θ + δ + θ + δ⎡⎣ ⎤⎦
= +

= ω = ω − θ + δ + θ + δ⎡⎣ ⎤⎦
= +

( )

( )

θ +δ

θ +δ

cos sin (4.31a)
(4.31b)

sin cos (6.36a)
(6.36b)

3 3 3 3

3 3 3 3 3 3

3 3

3 3

pe p j

jpe p j

PA
j

P A PA

PA
j

P A PA

R
R R R

V
V V V

We can differentiate equation 6.36 again versus time to find APA, the acceleration of 
point P versus A.  This vector can then be added to the vector AA already found to define 
the absolute acceleration AP of point P.

= + (7.32a)P A PAA A A

where:
ω

( ) ( )
( ) ( )

= α −

= α − θ + δ + θ + δ⎡⎣ ⎤⎦

− ω θ + δ + θ + δ⎡⎣ ⎤⎦

( ) ( )θ +δ θ +δ

sin cos (7.32b)

cos sin

3 3
2

3 3 3 3 3

3
2

3 3 3 3

3 3 3 3p je p e

p j

p j

PA
j jA

Compare equation 7.32 with equation 7.4.  It is again the acceleration difference 
equation.  Note that this equation applies to any point on any link at any position for 
which the positions and velocities are defined.  It is a general solution for any rigid body.*

7.6 HUMAN TOLERANCE OF ACCELERATION

It is interesting to note that the human body does not sense velocity, except with the eyes, 
but is very sensitive to acceleration.  Riding in an automobile, in the daylight, one can 
see the scenery passing by and have a sense of motion.  But, traveling at night in a com-
mercial airliner at a 500 mph constant velocity, we have no sensation of motion as long 
as the flight is smooth.  What we will sense in this situation is any change in velocity due 
to atmospheric turbulence, takeoffs, or landings.  The semicircular canals in the inner ear 
are sensitive accelerometers that report to us on any accelerations that we experience.  You 
have no doubt also experienced the sensation of acceleration when riding in an elevator 
and starting, stopping, or turning in an automobile.  Accelerations produce dynamic forces 
on physical systems, as expressed in Newton’s second law, F=ma.  Force is proportional 
to acceleration, for a constant mass.  The dynamic forces produced within the human body 
in response to acceleration can be harmful if excessive. The human body is, after all, not 
rigid.  It is a loosely coupled bag of water and tissue, most of which is quite internally 
mobile.  Accelerations in the headward or footward directions will tend to either starve or 
flood the brain with blood as this liquid responds to Newton’s law and effectively moves 

* The video Fourbar 
Linkage Virtual Labora-
tory shows the measured 
acceleration of the coupler 
point on an actual link-
age mechanism and also 
discusses the reasons for 
differences between the 
measured values and those 
calculated with equation 
7.32.  The measured data 
are also provided.
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within the body in a direction opposite to the imposed acceleration as it lags the motion 
of the skeleton.  Lack of blood supply to the brain causes blackout; excess blood supply 
causes redout.  Either results in death if sustained for a long enough period.

A great deal of research has been done, largely by the military and NASA, to de-
termine the limits of human tolerance to sustained accelerations in various directions.  
Figure 7-10 shows data developed from such tests.[1]  The units of linear acceleration 
were defined in Table 1-4 as in/sec2, ft/sec2, or m/sec2.  Another common unit for accel-
eration is the g, defined as the acceleration due to gravity, which on earth at sea level is 
approximately 386 in/sec2, 32.2 ft/sec2, or 9.8 m/sec2.    The g is a very convenient unit 
to use for accelerations involving the human as we live in a 1g environment.  Our weight, 
felt on our feet or buttocks, is defined by our mass times the acceleration due to gravity or 
mg.  Thus an imposed acceleration of 1g above the baseline of our gravity, or 2g’s, will 
be felt as a doubling of our weight.  At 6g’s we would feel six times as heavy as normal 
and would have great difficulty even moving our arms against that acceleration.  Figure 
7-10 shows that the body’s tolerance of acceleration is a function of its direction versus 
the body, its magnitude, and its duration.  Note also that the data used for this chart were 
developed from tests on young, healthy military personnel in prime physical condition.  
The general population, children and elderly in particular, should not be expected to be 
able to withstand such high levels of acceleration.  Since much machinery is designed for 
human use, these acceleration tolerance data should be of great interest and value to the 
machine designer.  Several references dealing with these human factors data are provided 
in the bibliography to Chapter 1.

FIGURE 7-10
Human tolerance of acceleration

– Gz

Footward

Headward

+ Gz

Backward

– Gx

0.02 min
Tolerance time

0.1
0.5

1 min
5
10
20

Tolerance time

Average levels of linear acceleration, in dif ferent directions that can be tolerated on a voluntary basis for specified periods .
Each curve shows the average G load that can be tolerated for the time indicated.  The data points obtained were actually
those on the axes;  the lines as such are extrapolated from the data points to form the concentric figures.

 (Source: Adapted from reference [1], Fig. 17-17, p. 505, reprinted with permission)
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Another useful benchmark when designing machinery for human occupation is to 
attempt to relate the magnitudes of accelerations that you commonly experience to the 
calculated values for your potential design.  Table 7-1 lists some approximate levels of 
acceleration, in g’s, that humans can experience in everyday life.  Your own experience 
of these will help you develop a “feel” for the values of acceleration that you encounter 
in designing machinery intended for human occupation.

Acceleration levels in machinery that does not carry humans is limited only by con-
siderations of the stresses in its parts.  These stresses are often generated in large part by 
the dynamic forces due to accelerations.  The range of acceleration values in such machin-
ery is so wide that it is not possible to comprehensively define any design guidelines for 
acceptable or unacceptable levels of acceleration.  If the moving mass is small, then very 
large numerical values of acceleration are reasonable.  If the mass is large, the dynamic 
stresses that the materials can sustain may limit the allowable accelerations to low values.  
Unfortunately, the designer usually does not know how much acceleration is too much in 
a design until completing it to the point of calculating stresses in the parts.  This usually 
requires a fairly complete and detailed design.  If the stresses turn out to be too high and 
are due to dynamic forces, then the only recourse is to iterate back through the design 
process and reduce the accelerations and/or masses in the design.  This is one reason that 
the design process is a circular and not a linear one.

As one point of reference, the acceleration of the piston in a small, four-cylinder 
economy car engine (about 1.5-L displacement) at idle speed is about 40g’s.  At highway 
speeds the piston acceleration can be as high as 700g’s.  At the engine’s top speed of 6000 
rpm the peak piston acceleration is 2000g’s!  As long as you’re not riding on the piston, 
this is acceptable.  These engines last a long time in spite of the high accelerations their 
components experience.  One key factor is the choice of proper part geometry and use 
of low-mass, high-strength, high-stiffness materials for the moving parts to minimize 
dynamic forces at high acceleration and enable the parts to tolerate the applied stresses.

Acceleration Levels Commonly Encountered in Human ActivitiesTABLE 7-1

Gentle acceleration in an automobile
Commercial jet aircraft on takeoff

NASA space shuttle on takeoff

     +0.1 g
+0.3 g

Hard acceleration in an automobile     +0.5 g
Panic stop in an automobile      –0.7 g
Fast cornering in a sports car (e.g., BMW, Corvette, Porsche, Ferrari)  +0.9 g to +1.0g
Formula 1 race car       +2.0 g, –4.0 g

Roller coasters (various)      ±3.5 to ±6.5 g*

+4.0 g
Top fuel dragster with drogue chute (>300 mph in 1/4 mile)   ±4.5 g
Military jet fighter (e.g., F-15, F-16, F-22, F-35—note: pilot wears a G-suit)  ±9.0 g

*Some U.S. state laws currently limit roller coaster accelerations to a maximum of 5.0 to 5.4 g.
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7.7 JERK

No, not you!  The time derivative of acceleration is called jerk, pulse, or shock.  The 
name is apt, as it conjures the proper image of this phenomenon.  Jerk is the time rate of 
change of acceleration.  Force is proportional to acceleration.  Rapidly changing accelera-
tion means a rapidly changing force.  Rapidly changing forces tend to “jerk” the object 
about!  You have probably experienced this phenomenon when riding in an automobile.  
If the driver is inclined to “jackrabbit” starts and accelerates violently away from the 
traffic light, you will suffer from large jerk because your acceleration will go from zero 
to a large value quite suddenly.  But, when Jeeves, the chauffeur, is driving the Rolls, he 
always attempts to minimize jerk by accelerating gently and smoothly, so that Madame is 
entirely unaware of the change.

Controlling and minimizing jerk in machine design is often of interest, especially if 
low vibration is desired.  Large magnitudes of jerk will tend to excite the natural frequen-
cies of vibration of the machine or structure to which it is attached and cause increased 
vibration and noise levels.  Jerk control is of greater interest in the design of cams than of 
linkages, and we will investigate it in greater detail in Chapter 8 on cam design.

The procedure for calculating the jerk in a linkage is a straightforward extension of 
the methods shown for acceleration analysis.  Let angular jerk be represented by:

ϕ α= d
dt

(7.33a)

and linear jerk by:

J A (7.33b)d
dt

,

To solve for jerk in a fourbar linkage, for example, the vector loop equation for ac-
celeration (equation 7.7) is differentiated versus time.  Refer to Figure 7-5 for notation.

− − + +

−

a je a e a j e a je

b

j j j jω ω α α ω ϕ

ω

θ θ θ θ
2
3

2 2 2 2
2

2

3
3

2 2 2 22

jje b e b j e b je

c je

j j j j

j

θ θ θ θ

θ

ω α α ω ϕ

ω

3 3 3 32 3 3 3 3
2

3

4
3

− + +

+ 44 4 4 42 04 4 4 4
2

4+ − − =c e c j e c jej j jω α α ω ϕθ θ θ (7.34a)

Collect terms and simplify:

− − +

− −

a je a e a je

b je b

j j j

j

ω ω α ϕ

ω ω α

θ θ θ

θ
2
3

2 2 2

3
3

3 3

2 2 2

3

3

3 ee b je

c je c e c je

j j

j j j

θ θ

θ θ θ

ϕ

ω ω α ϕ

3 3

4 4 4

3

4
3

4 4 43 0

+

+ + − = (77.34b)

Substitute the Euler identity and separate into x and y components:

real part (x component):

a a a

b b

ω θ ω α θ ϕ θ

ω θ ω α
2
3

2 2 2 2 2 2

3
3

3 3 3

3

3

sin cos sin

sin

− −

+ − ccos sin

sin cos sin

θ ϕ θ

ω θ ω α θ ϕ θ
3 3 3

4
3

4 4 4 4 4 43

−

− + + =

b

c c c 00 (7.35a)
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imaginary part (y component):

− − +

− −

a a a

b b

ω θ ω α θ ϕ θ

ω θ ω α
2
3

2 2 2 2 2 2

3
3

3 3

3

3

cos sin cos

cos 33 3 3 3

4
3

4 4 4 4 4 43

sin cos

cos sin cos

θ ϕ θ

ω θ ω α θ ϕ θ

+

+ + −

b

c c c == 0 (7.35b)

These can be solved simultaneously for -3 and -4, which are the only unknowns.  
The driving angular jerk, -2, if nonzero, must be known in order to solve the system.  All 
the other factors in equations 7.35 are defined or have been calculated from the position, 
velocity, and acceleration analyses.  To simplify these expressions we will set the known 
terms to temporary constants.

In equation 7.35a, let:

A a D b G c
B a
= = =
=

ω θ ω θ ω α θ
ω α θ
2
3

2 3
3

3 4 4 4

2 2

3
3

sin sin cos
cos 22 3 3 3 4

2 2 4
3

3E b H c

C a F c

= =

= =

ω α θ θ

ϕ θ ω

cos sin

sin s

(7.36a)

iin sinθ θ4 3K b=

Equation 7.35a then reduces to:

ϕ
ϕ

3
4=

− − + − − + +A B C D E F G H
K

(7.36b)

Note that equation 7.36b defines angle -3 in terms of angle -4.  We will now simplify 
equation 7.35b and substitute equation 7.36b into it.

In equation 7.35b, let:

L a P b S c
M a Q

= = =
=

ω θ ω θ ω θ
ω α θ
2
3

2 3
3

3 4
3

4

2 2 23
cos cos cos

sin == =
= =

3 33 3 3 4 4 4

2 2

b T c
N a R b

ω α θ ω α θ
ϕ θ

sin sin
cos c

(7.37a)
oos cosθ θ3 4U c=

Equation 7.35b then reduces to:

R U L M N P Q S Tϕ ϕ3 4 0− − − + − − + + = (7.37b)

Substituting equation 7.36b in equation 7.35b:

R
A B C D E F G H

K
U L M N P Q S T

− − + − − + +⎛
⎝⎜

⎞
⎠⎟
− − − + − − + + =

ϕ
ϕ4

4 0 (7..38)

The solution is:

ϕ4 = − − − − + − − + − − + + +
−

KN KL KM KP KQ AR BR CR DR ER FR GR KS KT
KU HHR

( . )7 39

The result from equation 7.39 can be substituted into equation 7.36b to find -3.  Once 
the angular jerk values are found, the linear jerk at the pin joints can be found from:

J
J

A
j j j

BA
j

a je a e a je

b je

= − − +

= −

ω ω α ϕ

ω

θ θ θ

θ
2
3

2 2 2

3
3

2 2 2

3

3

−− +

= − −

3

3
3 3 3

4
3

4 4

3 3

4

b e b je

c je c

j j

B
j

ω α ϕ

ω ω α

θ θ

θ

(7.40)

J ee c jej jθ θϕ4 44+

Topic/Problem Matrix

7.1 Definition of Acceler-
ation
7-1, 7-2, 7-10, 7-56

 7.2 Graphical Accelera-
tion Analysis

Pin-Jointed Fourbar
7-3, 7-14a, 7-21,  
7-24, 7-30, 7-33,  
7-70a, 7-72a, 7-77
Fourbar Crank-Slider
7-5, 7-13a, 7-27, 7-36, 
7-89, 7-91
Fourbar Slider-Crank 
7-93
Other Fourbar  7-15a
Fivebar  7-79
Sixbar
7-52, 7-53, 7-61a, 
7-63a, 7-65a, 7-75,  
7-82
Eightbar  7-86

 7.3 Analytic Solutions for 
Acceleration Analysis

Pin-Jointed Fourbar
7-22, 7-23, 7-25,  
7-26, 7-34, 7-35,  
7-41, 7-46, 7-51,  
7-70b, 7-71, 7-72b
Fourbar Crank-Slider
7-6, 7-28, 7-29, 7-37, 
7-38, 7-45, 7-50, 
7-58, 7-90, 7-92
Fourbar Slider-Crank 
7-94
Coriolis Acceleration  
7-12, 7-20
Fourbar Inverted 
Crank-Slider
7-7, 7-8, 7-16, 7-59
Other Fourbar
7-15b, 7-74
Fivebar  7-80, 7-81
Sixbar
7-17, 7-18, 7-19,  
7-48, 7-54, 7-61b,  
7-62, 7-63b, 7-64,  
7-65b, 7-66, 7-76, 
7-83, 7-84, 7-85
Eightbar  7-67

TABLE  P7-0 Part 1
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The same approach as used in Section 7.5 to find the acceleration of any point on any 
link can be used to find the linear jerk at any point.

= + (7.41)P A PAJ J J

The jerk difference equation 7.41 can be applied to any point on any link if we let P 
represent any arbitrary point on any link and A represent any reference point on the same 
link for which we know the value of the jerk vector.  Note that if you substitute equations 
7.40 into 7.41, you will get equation 7.34.

7.8 LINKAGES OF N BARS

The same analysis techniques presented here for position, velocity, acceleration, and jerk, 
using the fourbar and fivebar linkage as the examples, can be extended to more complex 
assemblies of links.  Multiple vector loop equations can be written around a linkage of 
arbitrary complexity.  The resulting vector equations can be differentiated and solved 
simultaneously for the variables of interest.  In some cases, the solution will require 
simultaneous solution of a set of nonlinear equations.  A root-finding algorithm such as 
the Newton-Raphson method will be needed to solve these more complicated cases.  A 
computer is necessary.  An equation solver software package such as TKSolver or Mathcad
that will do an iterative root-finding solution will be a useful aid to the solution of any of 
these analysis problems, including the examples shown here.

7.9 REFERENCE
1 Sanders, M. S., and E. J. McCormick. (1987).  Human Factors in Engineering and Design, 6th 

ed., McGraw-Hill Co., New York. p. 505.

7.10 PROBLEMS§

7-1 A point at a 6.5-in radius is on a body that is in pure rotation with � = 100 rad/sec and 
a constant�� = –500 rad/sec2 at point A.  The rotation center is at the origin of a coordi-
nate system.  When the point is at position A, its position vector makes a 45� angle with 
the X axis.  It takes 0.01 sec to reach point B.  Draw this system to some convenient 
scale, calculate the 
 and � of position B, and:
a. Write an expression for the particle’s acceleration vector in position A using complex 

number notation, in both polar and cartesian forms.
b. Write an expression for the particle’s acceleration vector in position B using complex 

number notation, in both polar and cartesian forms.
c. Write a vector equation for the acceleration difference between points B and A.  

Substitute the complex number notation for the vectors in this equation and solve 
for the acceleration difference numerically.

d. Check the result of part c with a graphical method.
 7-2 In problem 7-1 let A and B represent points on separate, rotating bodies both having the 

given ��and � at t = 0,  
A = 45�, and�
B = 120�.  Find their relative acceleration. 

 *7-3 The link lengths, coupler point location, and the values of 
2, �2, and �2 for the same 
fourbar linkages as used for position and velocity analysis in Chapters 4 and 6 are 
redefined in Table P7-1, which is basically the same as Table P6-1.  The general link-

 
§ All problem figures are 
provided as PDF files, and 
some are also provided as 
animated Working Model 
files.  PDF filenames are the 
same as the figure number.  
Run the file Animations.
html to access and run the 
animations.

* Answers in Appendix F.

Topic/Problem Matrix

 7.5 Acceleration of Any 
Point on a Linkage

Pin-Jointed Fourbar
7-4, 7-13b, 7-14b, 
7-31, 7-32, 7-39, 
7-40, 7-42, 7-43, 
7-44, 7-49, 7-55, 
7-68, 7-70b, 7-71, 
7-72b, 7-73, 7-78
Other Fourbar
7-15b, 7-47
Geared Fivebar
7-9, 7-60
Sixbar
7-69, 7-87, 7-88

7.7 Jerk
7-11, 7-57

TABLE  P7-0 Part 2
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age configuration and terminology are shown in Figure P7-1.  For the row(s) assigned, 
draw the linkage to scale and graphically find the accelerations of points A and B.  Then 
calculate �3 and �4 and the acceleration of point P.

 *†7-4 Repeat Problem 7-3, solving by the analytical vector loop method of Section 7.3.

 *7-5 The link lengths and offset and the values of 
2, �2, and �2 for some noninverted, 
offset fourbar crank-slider linkages are defined in Table P7-2. The general linkage con-
figuration and terminology are shown in Figure P7-2.  For the row(s) assigned, draw 
the linkage to scale and graphically find the accelerations of the pin joints A and B and 
the acceleration of slip at the sliding joint.

 *†7-6 Repeat Problem 7-5 using an analytical method.

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P7-1
Configuration and terminology for Problems 7-3, 7-4, and 7-11

A

B

X

Y

x

y

2

3

4

RPA P

ω2

O2 O4
1

θ3

θ2

θ4

δ3

α2

Row Link 1 Link 2 Link 3 Link 4 θ2 ω2 α2 Rpa δ3

30
25
80
45

300
120
300

20
80

0
330
180
90
60

6
9

10
5
9

10
4
6
9
1

10
5

10
15

0
5

–10
– 4
10
50
18
25

– 25
– 40

30
20
– 5

– 65

10
– 12
– 15

24
– 50
– 45
100

– 65
25
25

– 80
– 90

75
15

30
85
45
25
75
15
25
50
80
33
88
60
50

120

9
8
8
6
6
9
9

10
5

10
7
7
8
6

7
3
6
7
8
8
8

10
2
5

10
10
11
11

2
9

10
5
5
8
8

10
5

10
6
7
7
7

6
7
3
8
8
5
6

20
4

20
4
9
9
9

a
b
c
d
e
f
g
h
i
j
k
l

m
n

TABLE  P7-1 Data for Problems 7-3, 7-4, and 7-11‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.
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*†7-7 The link lengths and the values of 
2, �2, and � for some inverted fourbar crank-slider 
linkages are defined in Table P7-3. The general linkage configuration and terminology 
are shown in Figure P7-3.  For the row(s) assigned, find accelerations of the pin joints 
A and the acceleration of slip at the sliding joint.   Solve by the analytical vector loop 
method of Section 7.3 for the open configuration of the linkage.

*†7-8 Repeat Problem 7-7 for the crossed configuration of the linkage.
*7-9 The link lengths, gear ratio ( ), phase angle (!), and the values of 
2, �2, and �2 for 

some geared fivebar linkages are defined in Table P7-4.  The general linkage configura-
tion and terminology are shown in Figure P7-4.  For the row(s) assigned, find �3 and 
�4 and the linear acceleration of point P.

 †7-10 An automobile driver took a curve too fast.  The car spun out of control about its center 
of gravity (CG) and slid off the road in a northeasterly direction.  The friction of the 
skidding tires provided a 0.25 g linear deceleration.  The car rotated at 100 rpm.  When 
the car hit the tree head-on at 30 mph, it took 0.1 sec to come to rest.
a. What was the acceleration experienced by the child seated on the middle of the rear 

seat, 2 ft behind the car’s CG, just prior to impact?
b. What force did the 100-lb child exert on her seatbelt harness as a result of the 

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P7-2
Configuration and terminology for Problems 7-5 to 7-6, 7-58, and 7-93 to 7-94

O2

θ3

θ4 = 90°
Offset

A

B

X

Y

2θ

Slider position   d,

Link 2

Link 3
x

y

ω2

α2

d, d
� ��

Row Link 2 Link 3 Offset θ2 ω2 α2

a
b
c
d
e
f
g

1.4
2
3
3.5
5
3
7

4
6
8

10
20
13

25

1
–3

2
1

–5
0

10

45
60

– 30
120
225
100
330

10
– 12
– 15

24
– 50
– 45
100

0
5

–10
– 4
10
50
18

TABLE  P7-2 Data for Problems 7-5 to 7-6 and 7-58‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.
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acceleration, just prior to impact?
c. Assuming a constant deceleration during the  0.1 sec of impact, what was the mag-

nitude of the average deceleration felt by the passengers in that interval?
 †7-11 For the row(s) assigned in Table P7-1, find the angular jerk of links 3 and 4 and the 

linear jerk of the pin joint between links 3 and 4 (point B).  Assume an angular jerk of 
zero on link 2.  The linkage configuration and terminology are shown in Figure P7-1.

 *†7-12 You are riding on a carousel that is rotating at a constant 12 rpm.  It has an inside 
radius of 4 ft and an outside radius of 12 ft.  You begin to run from the inside to the 
outside along a radius.  Your peak velocity with respect to the carousel is 4 mph and 
occurs at a radius of 8 ft.  What are your maximum Coriolis acceleration magnitude 
and its direction with respect to the carousel?

 7-13 The linkage in Figure P7-5a has O2A = 0.8, AB = 1.93, AC = 1.33, and  
offset = 0.38 in.  The crank angle in the position shown is 34.3� and angle BAC = 
38.6�.  Find �3, AA, AB, and AC for the position shown for �2 = 15 rad/sec and��2 = 10 
rad/sec2 in directions shown:
 a. Using the acceleration difference graphical method.
†b. Using an analytical method.

 7-14 The linkage in Figure P7-5b has I12A = 0.75, AB = 1.5, and AC = 1.2 in.  The effective 
crank angle in the position shown is 77� and angle BAC = 30�.  Find � , A , A , and 

θ3
θ4

γ

ω2 θ2

α2

FIGURE P7-3
Configuration and terminology for Problems 7-7 to 7-8 and 7-59

RB

O2 O4

3

4

1

A

X

Y

x

y

B

2

Row Link 1 Link 2 Link 4 γ θ2 ω2 α 2

a
b
c
d
e
f

6
7
3
8
8
5

2
9

10
5
4
8

4
3
6
3
2
8

90
75
45
60
30
90

30
85
45
25
75

150

10
–15
24

–50
–45
100

–25
–40

30
20
–5

–65

TABLE  P7-3 Data for Problems 7-7 to 7-8 and 7-59

 
* Answers in Appendix F.
 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

AC for the position shown for �2 = 15 rad/sec and �2 = 10 rad/sec2 in the directions 
shown:
 a. Using the acceleration difference graphical method.
†b. Using an analytical method.  (Hint: Create an effective linkage for the position 

shown and analyze it as a pin-jointed fourbar.)
 7-15 The linkage in Figure P7-5c has AB = 1.8 and AC = 1.44 in.  The angle of AB in the 

position shown is 128� and angle BAC = 49�.  The slider at B is at an angle of 59�.  
Find �3, AB, and AC for the position shown for VA = 10 in/sec and AA = 15 in/sec2 in 
the directions shown:
 a. Using the acceleration difference graphical method.
†b. Using an analytical method.

 †7-16 The linkage in Figure P7-6a has O2A = 5.6, AB = 9.5, O4C = 9.5, L1 = 38.8 mm.  
2 is 
135� in the xy coordinate system.  Write the vector loop equations; differentiate them, 
and do a complete position, velocity, and acceleration analysis of the linkage.  Assume 
�2 = 10 rad/sec and �2 = 20 rad/sec2.  

θ3

θ2

θ4

θ5
ω2

λ __r2

r5
= ±

φ 2λθ5θ

α2

FIGURE P7-4
Configuration and terminology for Problems 7-9 and 7-60

P

X

Y

x

y

x

y

A

B

C

O5O2

3 4

1

2 5

r2 r5

Phase angle:  = –

Gear ratio:

δ3

30
25
80
45

300
120
300

20
80

Rpa

6
9

10
5
9

10
4
6
9

α2

0
5

– 10
– 4
10
50
18
25

– 25

ω2

10
– 12
– 15

24
– 50
– 45
100

– 65
25

θ2

60
30
45
75

– 39
120
75
55

100

φ

30
60

0
120

– 50
30

– 90
60

120

λ

2.0
– 2.5
– 0.5
– 1.0

3.2
1.5
2.5

– 2.5
– 4.0

Link 5

4
4
4
4
8
3
4
4
4

Link 4

9
8
8
8
8
5
11
9
9

Link 3

7
7
7
7
11
7
9
7
8

Link 2

1
5
5
5
9
2
7
8
7

Link 1

6
6
3
4
5

10
15
12
9

Row

a
b
c
d
e
f
g
h
i

TABLE  P7-4 Data for Problem 7-9 and 7-60
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 †7-17 Repeat Problem 7-16 for the linkage shown in Figure P7-6b which has the dimensions:  
L1 = 61.9, L2 = 15, L3 = 45.8, L4 = 18.1, L5 = 23.1 mm.  
2 is 68.3� in the xy coordi-
nate system, which is at –23.3� in the XY coordinate system.   The X component of O2C 
is 59.2 mm.  

 †7-18 Repeat Problem 7-16 for the linkage shown in Figure P7-6c which has the dimensions: 
O2A = 11.7, O2C = 20, L3 = 25, L5 = 25.9 mm.  Point B is offset 3.7 mm from the x1 
axis and point D is offset 24.7 mm from the x2 axis.  
2 is at 13.3� in the x2y2 coordi-
nate system.

 †7-19 Repeat Problem 7-16 for the linkage shown in Figure P7-6d which has the dimensions: 
L2 = 15, L3 = 40.9, L5 = 44.7 mm.  
2 is 24.2� in the XY coordinate system.

( a ) (b )

( c ) (d )

2

3

4

5 6

2

3

4

5

6

2 3

4

5

6

12 3

4

A

B

C

A
B

C

Y

X

Y

X

y

x

O2

O4

O2

α2
ω2

α2
ω2

α2
ω2

α2
ω2

Y

X

Y

X

A
B

C

A

B

CD

O2

O4

O2

FIGURE P7-6
Problems 7-16 to 7-19

y1

x1

y

x

y2

x2

( a )

FIGURE P7-5
Problems 7-13 to 7-15

(b )

2
3

4

A

B

C
Assume rolling contact

( c )

O2

α2

ω2

2

3

4

A B

C

α2

ω2

VA
2

4

3

A

B

1

1 C

AA

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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†7-20 Figure P7-7 shows a sixbar linkage with O2B = 1, BD = 1.5, DC = 3.5, DO6 = 3, and 
h = 1.3 in.  Find the angular acceleration of link 6 if �2 is a constant 1 rad/sec.

 *7-21 The linkage in Figure P7-8a has link 1 at –25� and link 2 at 37� in the global XY co-
ordinate system.  Find �4, AA, and AB in the global coordinate system for the position 
shown if �2 = 15 rad/sec CW and �2 = 25 rad/sec2 CCW.  Use the acceleration differ-
ence graphical method.  (Print the figure from its PDF file and draw on it.)

†7-22 The linkage in Figure P7-8a has link 1 at –25� and link 2 at 37� in the global XY co-
ordinate system.  Find �4, AA, and AB in the global coordinate system for the position 
shown if �2 = 15 rad/sec CW and �2 = 25 rad/sec2 CCW.  Use an analytical method.

†7-23 At t = 0, the non-Grashof linkage in Figure P7-8a has link 1 at –25� and link 2 at 37� 
in the global XY coordinate system and �2 = 0.  Write a computer program or use an 
equation solver to find and plot �4, �4, VA, AA, VB, and AB in the local coordinate 
system for the maximum range of motion that this linkage allows if �2 = 15 rad/sec 
CW constant.  

 *7-24 The linkage in Figure P7-8b has link 1 at –36� and link 2 at 57� in the global XY co-
ordinate system.  Find �4, AA, and AB in the global coordinate system for the position 
shown if �2 = 20 rad/sec CCW, constant.  Use the acceleration difference graphical 
method.  (Print the figure from its PDF file and draw on it.)

 †7-25 The linkage in Figure P7-8b has link 1 at –36� and link 2 at 57� in the global XY co-
ordinate system.  Find �4, AA, and AB in the global coordinate system for the position 
shown if �2 = 20 rad/sec CCW, constant.  Use an analytical method.

 †7-26 For the linkage in Figure P7-8b, write a computer program or use an equation solver to 
find and plot �4, AA, and AB in the local coordinate system for the maximum range of 
motion that this linkage allows if �2 = 20 rad/sec CCW, constant.  

 7-27 The offset crank-slider linkage in Figure P7-8f has link 2 at 51� in the global XY coor-
dinate system.  Find AA and AB in the global coordinate system for the position shown 
if �2 = 25 rad/sec CW, constant.  Use the acceleration difference graphical method.  
(Print the figure from its PDF file and draw on it.)

 *†7-28 The offset crank-slider linkage in Figure P7-8f has link 2 at 51� in the global XY coordi-
nate system.  Find AA and AB in the global coordinate system for the position shown if 
�2 = 25 rad/sec CW, constant.  Use an analytical method.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

* Answers in Appendix F.
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View as a video
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†7-29 For the offset crank-slider linkage in Figure P7-8f, write a computer program or use 
an equation solver to find and plot AA and AB in the global coordinate system for the 
maximum range of motion that this linkage allows if �2 = 25 rad/sec CW, constant.  

 7-30 The linkage in Figure P7-8d has link 2 at 58� in the global XY coordinate system.  Find 
AA, AB, and Abox (the acceleration of the box) in the global coordinate system for the po-
sition shown if �2 = 30 rad/sec CW, constant.  Use the acceleration difference graphical 
method.  (Print the figure from its PDF file and draw on it.)

 †7-31 The linkage in Figure P7-8d has link 2 at 58� in the global XY coordinate system.  Find 
AA, AB, and Abox (the acceleration of the box) in the global coordinate system for the 
position shown if �2 = 30 rad/sec CW, constant.  Use an analytical method.

 †7-32 For the linkage in Figure P7-8d, write a computer program or use an equation solver 
to find and plot AA, AB, and Abox (the acceleration of the box) in the global coordinate 
system for the maximum range of motion that this linkage allows if �2 = 30 rad/sec 
CW, constant.  

 7-33 The linkage in Figure P7-8g has the local xy axis at –119� and O2A at 29� in the global 
XY coordinate system.  Find �4, AA, and AB in the global coordinate system for the 
position shown if �2 = 15 rad/sec CW, constant.  Use the acceleration difference 
graphical method.  (Print the figure from its PDF file and draw on it.)

 †7-34 The linkage in Figure P7-8g has the local xy axis at –119� and O2A at 29� in the global 
XY coordinate system.  Find �4, AA, and AB in the global coordinate system for the 
position shown if �2 = 15 rad/sec CW and �2 = 10 rad/sec CCW, constant.  Use an 
analytical method.

 †7-35 At t = 0, the non-Grashof linkage in Figure P7-8g has the local xy axis at –119� and 
O2A at 29� in the global XY coordinate system and �2 = 0.  Write a computer program 
or use an equation solver to find and plot �4, �4, VA, AA, VB, and AB in the local coor-
dinate system for the maximum range of motion that this linkage allows if �2 = 15 rad/
sec CCW, constant.  

 7-36 The 3-cylinder radial compressor in Figure P7-8c has its cylinders equispaced at 
120�.  Find the piston accelerations A6, A7, A8 with the crank at –53� using a graphical 
method if �2 = 15 rad/sec CW, constant.  (Print the figure’s PDF file and draw on it.)

 †7-37 The 3-cylinder radial compressor in Figure P7-8c has its cylinders equispaced at 120�.  
Find the piston accelerations A6, A7, A8 with the crank at –53� using an analytical 
method if �2 = 15 rad/sec CW, constant.

 †7-38 For the 3-cylinder radial compressor in Figure P7-8f, write a program or use an equa-
tion solver to find and plot the piston accelerations A6, A7, A8 for one revolution of the 
crank.

 *†7-39 Figure P7-9 shows a linkage in one position.  Find the instantaneous accelerations of 
points A, B, and P if link O2A is rotating CW at 40 rad/sec.

 *†7-40 Figure P7-10 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the acceleration 
of the coupler point P at 2� increments of crank angle for �2 = 100 rpm.  Check your 
result with program LINKAGES.

 *†7-41 Figure P7-11 shows a linkage that operates at 500 crank rpm.  Write a computer 
program or use an equation solver to calculate and plot the magnitude and direction 

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

* Answers in Appendix F.

Problem 7-39
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of the acceleration of point B at 2� increments of crank angle.  Check your result with 
program LINKAGES.

 *†7-42 Figure P7-12 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the accelera-
tion of the coupler point P at 2� increments of crank angle for �2 = 20 rpm over the 
maximum range of motion possible.  Check your result with program LINKAGES.

 †7-43 Figure P7-13 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the acceleration 
of the coupler point P at 2� increments of crank angle for �2 = 80 rpm over the maxi-
mum range of motion possible.  Check your result with program LINKAGES.

 *†7-44 Figure P7-14 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the accelera-
tion of the coupler point P at 2� increments of crank angle for �2 = 80 rpm over the 
maximum range of motion possible.  Check your result with program LINKAGES.

 †7-45 Figure P7-15 shows a power hacksaw, used to cut metal.  Link 5 pivots at O5 and its 
weight forces the sawblade against the workpiece while the linkage moves the blade 
(link 4) back and forth on link 5 to cut the part.  It is an offset crank-slider mechanism 

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

* Answers in Appendix F.
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

with the dimensions shown in the figure.  Draw an equivalent linkage diagram, and 
then calculate and plot the acceleration of the sawblade with respect to the piece being 
cut over one revolution of the crank at 50 rpm.

†7-46 Figure P7-16 shows a walking-beam indexing and pick-and-place mechanism that can be 
analyzed as two fourbar linkages driven by a common crank.  The link lengths are given 
in the figure.  The phase angle between the two crankpins on links 4 and 5 is indicated.  
The product cylinders being pushed have 60-mm diameters.  The point of contact between 
the left vertical finger and the leftmost cylinder in the position shown is 58 mm at 80� 
versus the left end of the parallelogram's coupler (point D).  Calculate and plot the relative 
acceleration between points E and P for one revolution of gear 2.

†7-47 Figure P7-17 shows a paper roll off-loading mechanism driven by an air cylinder.  In 
the position shown  O4A is 0.3 m at 226� and O2O4 = 0.93 m at 163.2�.  The V-links 
are rigidly attached to O4A.  The paper roll center is 0.707 m from O4 at –181� with 
respect to O4A.  The air cylinder is retracted at a constant acceleration of 0.1 m/sec2.  
Draw a kinematic diagram of the mechanism, write the necessary equations, and calcu-
late and plot the angular acceleration of the paper roll and the linear acceleration of its 
center as it rotates through 90� CCW from the position shown.
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 †7-48 Figure P7-18 shows a mechanism and its dimensions.  Find the accelerations of points 

A, B, and C for the position shown if �2 = 40 rad/min and �2 = –1500 rad/min2 as 
shown.

 †7-49 Figure P7-19 shows a walking-beam mechanism.  Calculate and plot the acceleration 
Aout for one revolution of the input crank 2 rotating at 100 rpm.

 †7-50 Figure P7-20 shows a surface grinder.  The workpiece is oscillated under the spinning 
90-mm-diameter grinding wheel by the crank-slider linkage which has a 22-mm crank, 
a 157-mm connecting rod, and a 40-mm offset.  The crank turns at 30 rpm, and the 

 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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Problem 7-45   Power hacksaw

View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi
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FIGURE P7-18
Problem 7-48 

θ2

O2

O4

ω2

5

6

2

4

A

B

C

Y

X
3.25 in

L4 = 2.97
L5 = 2.61

L2 = 0.80 in

 = 241°
 = 1.85O2O4 @ 278.5°

3

α2

1 m

FIGURE P7-17
Problem 7-47

V-links (4)

air cylinder (2)

rocker arm (4)

rod (3)

paper
rolling
machine

off-loading station



DESIGN OF MACHINERY 6ed     CHAPTER  7400

7
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

grinding wheel turns at 3450 rpm.  Calculate and plot the acceleration of the grinding 
wheel contact point relative to the workpiece over one revolution of the crank.

 †7-51 Figure P7-21 shows a drag link mechanism with dimensions.  Write the necessary 
equations and solve them to calculate the angular acceleration of link 4 for an input of 
�2 = 1 rad/sec.  Comment on uses for this mechanism.

 7-52 Figure P7-22 shows a mechanism with dimensions.  Use a graphical method to calculate 
the accelerations of points A, B, and C for the position shown.  �2 = 20 rad/sec.

 7-53 Figure P7-23 shows a quick-return mechanism with dimensions.  Use a graphical 
method to calculate the accelerations of points A, B, and C for the position shown.  �2 
= 10 rad/sec.

 †7-54 Figure P7-23 shows a quick-return mechanism with dimensions.  Use an analytical 
method to calculate the accelerations of points A, B, and C for one revolution of the 
input link.  �2 = 10 rad/sec.

FIGURE P7-20
Problem 7-50  A surface grinder
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FIGURE P7-19
Problem 7-49  Straight-line walking-beam eightbar transport mechanism
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FIGURE P7-21
Problem 7-51 

 
* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P7-22 
Problems 7-52 and 7-89 to 7-90
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†7-55 Figure P7-24 shows a drum-pedal mechanism.  O2A = 100 mm at 162� and rotates to 
171� at A’.  O2O4 = 56 mm, AB = 28 mm, AP = 124 mm, and O4B = 64 mm.  The 
distance from O4 to Fin is 48 mm.  If the input velocity Vin is a constant magnitude of 3 
m/sec, find the output acceleration over the range of motion.

 *†7-56 A tractor-trailer tipped over while negotiating an on-ramp to the New York Thruway.  
The road has a 50-ft radius at that point and tilts 3� toward the outside of the curve.  
The 45-ft-long by 8-ft-wide by 8.5-ft-high trailer box (13 ft from ground to top) was 
loaded with 44 415 lb of paper rolls in two rows by two layers as shown in Figure 
P7-25.  The rolls are 40 in diameter by 38 in long, and weigh about 900 lb each.  They 
are wedged against backward rolling but not against sideward sliding.  The empty 

FIGURE P7-24
Problem 7-55
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trailer weighed 14 000 lb.  The driver claims that he was traveling at less than 15 mph 
and that the load of paper shifted inside the trailer, struck the trailer sidewall, and tipped 
the truck.  The paper company that loaded the truck claims the load was properly stowed 
and would not shift at that speed.  Independent tests of the coefficient of friction between 
similar paper rolls and a similar trailer floor give a value of 0.43 ± 0.08.  The composite 
center of gravity of the loaded trailer is estimated to be 7.5 ft above the road.  Determine 
the truck speed that would cause the truck to just begin to tip and the speed at which the 
rolls will just begin to slide sideways.  What do you think caused the accident?

FIGURE P7-23 
Problems 7-53 to 7-54 and 7-91 to 7-92
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

 †7-57 Figure P7-26 shows a V-belt drive.  The sheaves have pitch diameters of 150 and 300 
mm, respectively.  The smaller sheave is driven at a constant 1750 rpm.  For a cross-
sectional differential element of the belt, write the equations of its acceleration for one 
complete trip around both sheaves including its travel between the sheaves.  Compute 
and plot the acceleration of the differential element versus time for one circuit around 
the belt path.  What does your analysis tell about the dynamic behavior of the belt?  
Relate your findings to your personal observation of a belt of this type in operation.  
(Look in your school’s machine shop or under the hood of an automobile—but mind 
your fingers!)

 †7-58 Write a program using an equation solver or any computer language to solve for the 
displacements, velocities, and accelerations in an offset crank-slider linkage as shown 
in Figure P7-2.  Plot the variation in all links’ angular and all pins’ linear positions, 
velocities, and accelerations with a constant angular velocity input to the crank over 
one revolution for both open and crossed configurations of the linkage.  To test the pro-
gram, use data from row a of Table P7-2.  Check your results with program LINKAGES.

 †7-59 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to solve for the displacements, velocities, and accelerations in an inverted crank-
slider linkage as shown in Figure P7-3.  Plot the variation in all links’ angular and all 
pins’ linear positions, velocities, and accelerations with a constant angular velocity 
input to the crank over one revolution for both open and crossed configurations of the 
linkage.  To test the program, use data from row e of Table P7-3 except for the value of 
�2 which will be set to zero for this exercise.

 †7-60 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to solve for the displacements, velocities, and accelerations in a geared fivebar 
linkage as shown in Figure P7-4.  Plot the variation in all links’ angular and all pins’ 
linear positions, velocities, and accelerations with a constant angular velocity input to 
the crank over one revolution for both open and crossed configurations of the link-
age.  To test the program, use data from row a of Table P7-4 .  Check your results with 
program LINKAGES.

 7-61 Find the acceleration of the slider in Figure 3-33 for the position shown if 
2 = 110� 
with respect to the global X axis assuming a constant �2 = 1 rad/sec CW:
a. Using a graphical method. †b.      Using an analytical method.

 †7-62 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular acceleration of link 4 and the linear acceleration 
of slider 6 in the sixbar crank-slider linkage of Figure 3-33 as a function of the angle 
of input link 2 for a constant �2 = 1 rad/sec CW.  Plot Ac both as a function of 
2 and 
separately as a function of slider position as shown in the figure.  

 7-63 Find the angular acceleration of link 6 of the linkage in Figure 3-34 part (b) for the position 
shown (
6 = 90� with respect to the x axis) assuming constant �2 = 10 rad/sec CW:
a. Using a graphical method. †b.      Using an analytical method.

 †7-64 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular acceleration of link 6 in the sixbar linkage of 
Figure 3-34 as a function of 
2 for a constant �2 = 1 rad/sec CW.  

 7-65 Use a compass and straightedge (ruler) to draw the linkage in Figure 3-35 with link 2 
at 90� and find the angular acceleration of link 6 of the linkage assuming constant �2 = 
10 rad/sec CCW when�
2 = 90�: 
a. Using a graphical method. †b.     Using an analytical method.

FIGURE P7-26 
Problem 7-57
V-belt drive  Courtesy of 
T.B. Wood’s Sons Co., 
Chambersburg, PA 
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†7-66 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular acceleration of link 6 in the sixbar linkage of 
Figure 3-35 as a function of 
2 for a constant �2 = 1 rad/sec CCW. 

 †7-67 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular acceleration of link 8 in the linkage of Figure 
3-36 as a function of 
2 for a constant �2 = 1 rad/sec CCW.  

 †7-68 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot magnitude and direction of the acceleration of point P 
in Figure 3-37a as a function of 
2.  Also calculate and plot the acceleration of point P 
versus point A.

 †7-69 Repeat Problem 7-68 for the linkage in Figure 3-37b.

7-70 Find the angular accelerations of links 3 and 4 and the linear accelerations of points A, 
B, and P1 in the XY coordinate system for the linkage in Figure P7-27 in the position 
shown.  Assume that 
2 = 45� in the XY coordinate system and �2 = 10 rad/sec, con-
stant.  The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the 
xy coordinate system:
a. Using a graphical method. †b.     Using an analytical method.

†7-71 Using the data from Problem 7-70, write a computer program or use an equation solver 
such as Mathcad, Matlab, or TKSolver to calculate and plot magnitude and direction of 
the absolute acceleration of point P1 in Figure P7-27 as a function of 
2.

 7-72 Find the angular accelerations of links 3 and 4, and the linear acceleration of point P in the 
XY coordinate system for the linkage in Figure P7-28 in the position shown.  Assume that 

2 = –94.121� in the XY coordinate system, �2 = 1 rad/sec, and �2 = 10 rad/sec2.  The 
position of the coupler point P on link 3 with respect to point A is: p = 15.00, &3 = 0�:
a. Using a graphical method. †b      Using an analytical method.

†7-73 For the linkage in Figure P7-28, write a computer program or use an equation solver 
such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity and 
acceleration of links 2 and 4, and the magnitude and direction of the velocity and ac-
celeration of point P as a function of 
2 through its possible range of motion starting at 
the position shown.  The position of the coupler point P on link 3 with respect to point 
A is: p = 15.00, &3 = 0�.  Assume that, @ t = 0, 
2 = –94.121� in the XY coordinate 
system, �2 = 0, and �2 = 10 rad/sec2, constant.  

 7-74 Derive analytical expressions for the accelerations of points A and B in Figure P7-29 
as a function of 
3 , �3, �3, and the length AB of link 3.  Use a vector loop equation.  
Code them in an equation solver or a programming language and plot them.

 7-75 The linkage in Figure P7-30a has link 2 at 120� in the global XY coordinate system.  
Find �6 and AD in the global coordinate system for the position shown if �2 = 10 rad/
sec CCW and �2 = 50 rad/sec2 CW.  Use the acceleration difference graphical method.  
(Print the figure from its PDF file and draw on it.)

 *7-76 The linkage in Figure P7-30a has link 2 at 120� in the global XY coordinate system.  
Find �6 and AD in the global coordinate system for the position shown if �2 = 10 rad/
sec CCW and �2 = 50 rad/sec2 CW.  Use an analytical method.

 7-77 The linkage in Figure P7-30b has link 3 perpendicular to the X axis and links 2 and 4 
are parallel to each other.  Find �4, AA, AB, and AP if �2 = 15 rad/sec CW and �2 = 

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

* Answers in Appendix F.
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* Answers in Appendix F.

100 rad/ sec2 CW. Use the acceleration difference graphical method.  (Print the figure 
from its PDF file and draw on it.)

 *7-78 The linkage in Figure P7-30b has link 3 perpendicular to the X axis and links 2 and 4 
are parallel to each other.  Find �4, AA, AB, and AP if �2 = 15 rad/sec CW and �2 = 
100 rad/sec2 CW. Use an analytical method.

O2

Y

X
y

x

16.948
9.174

2.79

9.573

2

4

3

PBA

O4

12.971

FIGURE P7-28
Problems 7-72 and 7-73 An aircraft overhead bin mechanism—dimensions in inches

FIGURE P7-27
Problems 7-70 to 7-71  An oil field pump—dimensions in inches
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51.26
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View as a video
http://www.designof-

machinery.com/DOM/
oil_pump.avi

2

3 4

ω3

A

B

FIGURE P7-29
Elliptical trammel 
Problem 7-74

View as a video
http://www.designof-

machinery.com/DOM/
elliptic_trammel.avi
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 7-79 The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2 
and 5.  Find AB, AP3, and AP4 if the crossheads are each moving toward the origin of the 
XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec2.  Use 
the acceleration difference method. (Print the figure from its PDF file and draw on it.)

 †7-80 The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2 
and 5.  Find AB, AP3, and AP4 if the crossheads are each moving toward the origin of 
the XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec2.  
Use an analytical method.

 †§7-81 The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2 
and 5.  At t = 0, crosshead 2 is at rest at the origin of the global XY coordinate system 
and crosshead 5 is at rest at (70, 0).  Write a computer program to find and plot AP3 and 
AP4 for the first 5 sec of motion if A2 = 0.5 in/sec2 upward and A5 = 0.5 in/sec2 to the 
left.

 7-82 The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis.  Find �2 and AA in the position shown if the 
velocity of the slider is constant at 20 in/sec downward.  Use the acceleration difference 
graphical method.  Print the figure’s PDF file and draw on it.

 †7-83 The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis.  Find �2 and AA in the position shown if the 
velocity of the slider is constant at 20 in/sec downward.  Use an analytical method.

 †7-84 The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis at t = 0.  Write a computer program or use an 
equation solver to find and plot AD as a function of 
2 over the possible range of mo-
tion of link 2 in the global XY coordinate system.

 †§7-85 For the linkage of Figure P7-30e, write a computer program or use an equation solver 
to find and plot AD in the global coordinate system for one revolution of link 2 if �2 is 
constant at 10 rad/sec CW.

 7-86 The linkage of Figure P7-30f has link 2 at 130� in the global XY coordinate system.  
Find AD in the global coordinate system for the position shown if �2 = 15 rad/sec CW 
and �2 = 50 rad/sec2 CW.  Use the acceleration difference graphical method.  (Print the 
figure from its PDF file and draw on it.)

 *7-87 Figure 3-14 shows a crank-shaper quick-return mechanism with the dimensions: L2 = 
4.80 in, L4 = 24.00 in, L5 = 19.50 in.  The distance from link 4’s pivot (O4) to link 2’s 
pivot (O2) is 16.50 in.  The vertical distance from O2 to point C on link 6 is 6.465 in.  
Use a graphical method to find the acceleration of point C on link 6 when the linkage is 
near the rightmost position shown with 
2 = 45� measured from an axis running from 
an origin at O2 through O4.  Assume that link 2 has a constant angular velocity of 2 
rad/sec CW.

 §7-88 Use the data in Problem 7-87 and an analytical method to calculate and plot the accel-
eration of point C on link 6 of that mechanism for one revolution of input crank 2.

 7-89 Figure P7-22 shows a mechanism with dimensions.  Use a graphical method to deter-
mine the acceleration of points A and B for the position shown for �2 = 24 rad/s CW.  
Ignore links 5 and 6.  

 
§ Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than 
an overnight problem.  In 
most cases, the solution can 
be checked with program 
LINKAGES.  

* Answers in Appendix F.

 
† These problems are 
suited to solution using 
Mathcad, Matlab, or 
TKSolver equation solver 
programs.
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( a )  Sixbar linkage (b )  Fourbar linkage

(c )  Dual crosshead mechanism (d )  Sixbar linkage

( f )  Eightbar mechanism(e)  Drag link slider-crank

FIGURE P7-30
Problems 7-75 to 7-86
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7-90 Figure P7-22 shows a mechanism with dimensions.   Use an analytical method to cal-
culate the accelerations of points A and B for the position shown for �2 = 24 rad/s CW.  
Ignore links 5 and 6.  

 7-91 Figure P7-23 shows a quick-return mechanism with dimensions. Use a graphical 
method to determine the accelerations of points A and B for the position shown for �2 
= 16 rad/s CCW.  Ignore links 5 and 6.  

 7-92 Figure P7-23 shows a quick-return mechanism with dimensions. Use an analytical 
method to calculate the accelerations of points A and B for the position shown for �2 = 
16 rad/s CCW.  Ignore links 5 and 6.  

 7-93 The general linkage configuration and terminology for an offset fourbar slider-crank 
linkage are shown in Figure P7-2.  The link lengths and the values of d, �d , and ��d  are 
defined in Table P7-5.  For the row(s) assigned, find the acceleration of the pin joint A 
and the angular acceleration of the crank using a graphical method.

 7-94 The general linkage configuration and terminology for an offset fourbar slider-crank 
linkage are shown in Figure P7-2.  The link lengths and the values of d, �d , and ��d  are 
defined in Table P7-5.  For the rows assigned, find the acceleration of pin joint A and 
the angular acceleration of the crank using the analytic method.  Draw the linkage to 
scale and label it before setting up the equations.

7.11 VIRTUAL LABORATORY View the video (35:38)†      View the lab §

L7-1 View the video Fourbar Linkage Virtual Laboratory.  Open the file Virtual Fourbar 
Linkage Lab 7-1.doc and follow the instructions as directed by your professor.

Row Link 2 Link 3 Offset d

a 1.4 4 1 2.5 10
b 2 6 –3 5 –12
c 3 8 2 8 –15
d 3.5 10 1 –8 24
e 5 20 –5 15 –50
f 3 1 3 0 –12 –45
g 7 25 1 0 25 100

0
5

–10
–4
10
50
18

TABLE  P7-5 Data for Problems 7-93 to 7-94‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.

�d ��d

† http://www.designofma-
chinery.com/DOM/Four-
bar_Machine_Virtual_labo-
ratory.mp4

§ http://www.designofma-
chinery.com/DOM/Four-
bar_Virtual_Lab.zip


