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Take it to warp five, Mr. Sulu
CAPTAIN KIRK

7.0 INTRODUCTION View the lecture video (41:39)F

Once a velocity analysis is done, the next step is to determine the accelerations of all links
and points of interest in the mechanism or machine. We need to know the accelerations
to calculate the dynamic forces from F = ma. The dynamic forces will contribute to the
stresses in the links and other components. Many methods and approaches exist to find
accelerations in mechanisms. We will examine only a few of these methods here. We
will first develop a manual graphical method, which is often useful as a check on the more
complete and accurate analytical solution. Then we will derive the analytical solution for
accelerations in the fourbar and inverted crank-slider linkages as examples of the general
vector loop equation solution to acceleration analysis problems.

71 DEFINITION OF ACCELERATION

Acceleration is defined as the rate of change of velocity with respect to time. Velocity
(V, o) is a vector quantity and so is acceleration. Accelerations can be angular or linear.
Angular acceleration will be denoted as o and linear acceleration as A.

_do, A_dV

o=—y; =— 7.1
dt dt 7.1

Figure 7-1 shows a link PA in pure rotation, pivoted at point A in the xy plane. We
are interested in the acceleration of point P when the link is subjected to an angular ve-
locity ® and an angular acceleration o, which need not have the same sense. The link’s
position is defined by the position vector R, and the velocity of point P is Vps. These
vectors were defined in equations 6.2 and 6.3 which are repeated here for convenience.
(See also Figure 6-1.)
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FIGURE 7-1

Acceleration of a link in pure rotation with a positive (CCW) o, and a negative (CW) >

RPA = Peje (6'2)
Vo, =— 2 =pje’” —=pw je’ 6.3
PA= g TPJeT = PO) (6.3)

where p is the scalar length of the vector Rps. We can easily differentiate equation 6.3 to
obtain an expression for the acceleration of point P:

)
e

Ap, =jp(eje(jl—(;)+mjeje @J (7.2)

dt
Apy = pocjeje —poo2 el
t
Apy=Aps+Apy

Note that there are two functions of time in equation 6.3, 6 and . Thus there are
two terms in the expression for acceleration, the tangential component of acceleration
involving o and the normal (or centripetal) component A" involving ®?. As a result
of the differentiation, the tangential component is multiplied by the (constant) complex
operator j. This causes a rotation of this acceleration vector through 90° with respect to
the original position vector. (See also Figure 4-8b.) This 90° rotation is nominally posi-
tive, or counterclockwise (CCW). However, the tangential component is also multiplied
by o, which may be either positive or negative. As a result, the tangential component of
acceleration will be rotated 90° from the angle 6 of the position vector in a direction
dictated by the sign of o. This is just mathematical verification of what you already
knew, namely that tangential acceleration is always in a direction perpendicular to the
radius of rotation and is thus tangent to the path of motion as shown in Figure 7-1. The
normal, or centripetal, acceleration component is multiplied by j2, or —1. This directs the
centripetal component at 180° to the angle © of the original position vector, i.e., toward
the center (centripetal means foward the center). The total acceleration A py of point P
is the vector sum of the tangential A'; and normal A", components as shown in Figure
7-1 and equation 7.2.
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Substituting the Euler identity (equation 4.4a) into equations 7.2 gives us the real and
imaginary (or x and y) components of the acceleration vector.

Apy =p0c(—sin9+jcos€)—p0)2(cosG+jsin6) (7.3)

The acceleration Apy in Figure 7-1 can be referred to as an absolute acceleration
since it is referenced to A, which is the origin of the global coordinate axes in that system.
As such, we could have referred to it as Ap, with the absence of the second subscript
implying reference to the global coordinate system.

Figure 7-2a shows a different and slightly more complicated system in which the
pivot A is no longer stationary. It has a known linear acceleration A4 as part of the trans-
lating carriage, link 3. If o is unchanged, the acceleration of point P versus A will be the
same as before, but Aps can no longer be considered an absolute acceleration. It is now
an acceleration difference and must carry the second subscript as Aps. The absolute
acceleration Ap must now be found from the acceleration difference equation whose
graphical solution is shown in Figure 7-2b:

Ap=Ay+Apy
(7.4)
(b +Ap)=(A%+A%)+(Abs+ AL

Note the similarity of equations 7.4 to the velocity difference equation (equation
6.5). Note also that the solution for Ap in equation 7.4 can be found by adding either the
resultant vector A py or its normal and tangential components A%, and A%, to the vector
A4 in Figure 7-2b. The vector A4 has a zero normal component in this example because
link 3 is in pure translation.

Figure 7-3 shows two independent bodies P and A, which could be two automobiles,
moving in the same plane. Auto #1 is turning and accelerating into the path of auto #2,
that is decelerating to avoid a crash. If their independent accelerations Ap and A4 are
known, their relative acceleration Ap, can be found from equation 7.4 arranged alge-
braically as:

Ay

(a) (b)
FIGURE 7-2

Acceleration difference in a system with a positive (CCW) 0, and a negative (cw) ®
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Vp Auto # 1
—Ay
Y Auto # 2
Ap
: A
M dr "
€ i
Apa
0 X Ap
(a) (b)
FIGURE 7-3
Relative acceleration
Apa=Ap—Ay (7.5)

The graphical solution to this equation is shown in Figure 7-3b.

As we did for velocity analysis, we give these two cases different names despite the
fact that the same equation applies. Repeating the definition from Section 6.1, modified
to refer to acceleration:

CASE 1: Two points in the same body => acceleration difference

CASE 2: Two points in different bodies => relative acceleration

7.2 GRAPHICAL ACCELERATION ANALYSIS

The comments made in regard to graphical velocity analysis in Section 6.2 apply as well
to graphical acceleration analysis. Historically, graphical methods were the only practical
way to solve these acceleration analysis problems. With some practice, and with proper
tools such as a drafting machine, drafting instruments, or a CAD package, one can fairly
rapidly solve for the accelerations of particular points in a mechanism for any one input
position by drawing vector diagrams. However, if accelerations for many positions of the
mechanism are to be found, each new position requires a completely new set of vector
diagrams be drawn. Very little of the work done to solve for the accelerations at position 1
carries over to position 2, etc. This is an even more tedious process than that for graphical
velocity analysis because there are more components to draw. Nevertheless, this method
still has more than historical value as it can provide a quick check on the results from a
computer program solution. Such a check only needs to be done for a few positions to
prove the validity of the program.

To solve any acceleration analysis problem graphically, we need only three equations,
equation 7.4 and equations 7.6 (which are merely the scalar magnitudes of the terms in
equation 7.2):

A=A =ra
(7.6)

2

"= am=ro
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Note that the scalar equations 7.6 define only the magnitudes (A, A™) of the compo-
nents of acceleration of any point in rotation. In a CASE 1 graphical analysis, the direc-
tions of the vectors due to the centripetal and tangential components of the acceleration
difference must be understood from equation 7.2 to be perpendicular to and along the
radius of rotation, respectively. Thus, if the center of rotation is known or assumed, the
directions of the acceleration difference components due to that rotation are known and
their senses will be consistent with the angular velocity ® and angular acceleration o.of
the body.

Figure 7-4 shows a fourbar linkage in one particular position. We wish to solve for
the angular accelerations of links 3 and 4 (0.3, 0.4) and the linear accelerations of points A,
B, and C (A4, Ag, Ac). Point C represents any general point of interest such as a coupler
point. The solution method is valid for any point on any link. To solve this problem, we
need to know the lengths of all the links, the angular positions of all the links, the angu-
lar velocities of all the links, and the instantaneous input acceleration of any one driving
link or driving point. Assuming that we have designed this linkage, we will know or can
measure the link lengths. We must also first do a complete position and velocity analysis
to find the link angles 63 and 64 and angular velocities 3 and w4 given the input link’s
position 0;, input angular velocity ®,, and input acceleration o.,. This can be done by any
of the methods in Chapters 4 and 6. In general we must solve these problems in stages,
first for link positions, then for velocities, and finally for accelerations. For the following
example, we will assume that a complete position and velocity analysis has been done and
that the input is to link 2 with known 6,, ®,, and o, for this one “freeze-frame” position
of the moving linkage.

A DEXAMPLE 7-1

Graphical Acceleration Analysis for One Position of a Fourbar Linkage.
Problem: Given 05, 03, 04, ), 03, O4, 0, find 03, 04, Ay, A, Ap by graphical methods.
Solution: (See Figure 7-4.)

1 Start at the end of the linkage about which you have the most information. Calculate the mag-
nitudes of the centripetal and tangential components of acceleration of point A using scalar
equations 7.6.

A =(A0,)03; Al =(A0,)o, (a)

2 On the linkage diagram, Figure 7-4a, draw the acceleration component vectors A" and A’y
with their lengths equal to their magnitudes at some convenient scale. Place their roots at point
A with their directions respectively along and perpendicular to the radius AO;. The sense of
A, is defined by that of oy (according to the right-hand rule), and the sense of A" is the op-
posite of that of the position vector R4 as shown in Figure 7-4a.

3 Move next to a point about which you have some information, such as B on link 4. Note that
the directions of the tangential and normal components of acceleration of point B are predict-
able since this link is in pure rotation about point O4. Draw the construction line pp through
point B perpendicular to BOy, to represent the direction of A% as shown in Figure 7-4a.
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(a) Vector construction (b) Vector polygon ( 2X size)
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(c) Vector polygon (2X size) (d) Resultant vectors

FIGURE 7-4

Graphical solution for acceleration in a pin-jointed linkage with a negative (CW) o, and a positive (CCW ) ®,

4 Write the acceleration difference vector equation 7.4 for point B versus point A.

A=A, +Ap, (b)
Substitute the normal and tangential components for each term:
(Ah+AG)=(A% + A% )+(AL + AR ©

We will use point A as the reference point to find A g because A is in the same link as B and we
have already solved for A!, and A", . Any two-dimensional vector equation can be solved
for two unknowns. Each term has two parameters, namely magnitude and direction. There are
then potentially twelve unknowns in this equation, two per term. We must know ten of them
to solve it. We know both the magnitudes and directions of A’; and A"} and the directions
of Al; and A} that are along line pp and line BOy, respectively. We can also calculate the
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magnitude of A’} from equation 7.6 since we know 4. This provides seven known values.
We need to know three more parameters to solve the equation.

5 The term Apy represents the acceleration difference of B with respect to A. This has two
components. The normal component A%, is directed along the line BA because we are us-
ing point A as the reference center of rotation for the free vector w3, and its magnitude can be
calculated from equation 7.6. The direction of A%, must then be perpendicular to the line BA.
Draw construction line gq through point B and perpendicular to BA to represent the direction
of A%, asshown in Figure 7-4a. The calculated magnitude and direction of component Az,
and the known direction of A%, provide the needed additional three parameters.

6 Now the vector equation can be solved graphically by drawing a vector diagram as shown in
Figure 7-4b. Either drafting tools or a CAD package is necessary for this step. The strategy
is to first draw all vectors for which we know both magnitude and direction, being careful to
arrange their senses according to equation 7.4.

First draw acceleration vectors ( Af4 )and (A"} ) tip to tail, carefully to some scale, main-
taining their directions. (They are drawn twice size in the figure.) Note that the sum of these
two components is the vector A4. The equation in step 4 says to add Ags to A4. We know
A%, , so we can draw that component at the end of A4. We also know A’ , but this component
is on the left side of equation 7.4, so we must subtract it. Draw the negative (opposite sense)
of A% attheend of A%, .

This exhausts our supply of components for which we know both magnitude and direc-
tion. Our two remaining knowns are the directions of Aj and Al thatlie along the lines pp
and gq, respectively. Draw a line parallel to line gq across the tip of the vector representing
minus A . The resultant, or left side of the equation, must close the vector diagram, from the
tail of the first vector drawn (A,) to the tip of the last, so draw a line parallel to pp across the
tail of A4. The intersection of these lines parallel to pp and gq defines the lengths of Al and
Al . The senses of these vectors are determined from reference to equation 7.4. Vector Ay
was added to A gy, so their components must be arranged tip to tail. Vector Ag is the resultant,
so its component A% must be from the tail of the first to the tip of the last. The resultant vec-
tors are shown in Figure 7-4b and d.

7 The angular accelerations of links 3 and 4 can be calculated from equation 7.6:

Al Al
o, = B oy = Z7BA (d)
BO, BA

Note that the acceleration difference term Ak, represents the rotational component of ac-
celeration of link 3 due to 3. The rotational acceleration o of any body is a “free vector”
which has no particular point of application to the body. It exists everywhere on the body.

8 Finally we can solve for A using equation 7.4 again. We select any point in link 3 for which
we know the absolute velocity to use as the reference, such as point A.
Ac=A, +Apy (e)

In this case, we can calculate the magnitude of AL, from equation 7.6 as we have already found
a3,

App =coy €2
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The magnitude of the component A%, can be found from equation 7.6 using ;.
Aly = co3 (8)

Since both A4 and Ay are known, the vector diagram can be directly drawn as shown in
Figure 7-4c. Vector A is the resultant that closes the vector diagram. Figure 7-4d shows the
calculated acceleration vectors on the linkage diagram.

The above example contains some interesting and significant principles that deserve
further emphasis. Equations 7.4 are repeated here for discussion.

Ap=Ay +Apy 74
(Ah+ap)=(al+A%)+(Aby+A%)

These equations represent the absolute acceleration of some general point P referenced
to the origin of the global coordinate system. The right side defines it as the sum of the
absolute acceleration of some other reference point A in the same system and the accelera-
tion difference (or relative acceleration) of point P versus point A. These terms are then
further broken down into their normal (centripetal) and tangential components that have
definitions as shown in equation 7.2.

Let us review what was done in Example 7-1 in order to extract the general strategy
for solution of this class of problem. We started at the input side of the mechanism, as that
is where the driving angular acceleration oy was defined. We first looked for a point (4)
for which the motion was pure rotation. We then solved for the absolute acceleration of
that point (A4) using equations 7.4 and 7.6 by breaking A4 into its normal and tangential
components. (Steps I and 2)

We then used the point (A) just solved for as a reference point to define the translation
component in equation 7.4 written for a new point (B). Note that we needed to choose
a second point (B) in the same rigid body as the reference point (A) that we had already
solved, and about which we could predict some aspect of the new point’s (B’s) accelera-
tion components. In this example, we knew the direction of the component Al , though
we did not yet know its magnitude. We could also calculate both magnitude and direction
of the centripetal component, A%, since we knew my4 and the link length. In general this
situation will obtain for any point on a link that is jointed to ground (as is link 4). In this
example, we could not have solved for point C until we solved for B, because point C is
on a floating link for which we do not yet know the angular acceleration or absolute ac-
celeration direction. (Steps 3 and 4)

To solve the equation for the second point (B), we also needed to recognize that the
tangential component of the acceleration difference A%, is always directed perpendicu-
lar to the line connecting the two related points in the link (B and A in the example). In
addition, you will always know the magnitude and direction of the centripetal accelera-
tion components in equation 7.4 if it represents an acceleration difference (CASE 1)
situation. If the two points are in the same rigid body, then that acceleration difference
centripetal component has a magnitude of ro? and is always directed along the line con-
necting the two points, pointing toward the reference point as the center (see Figure 7-2).
These observations will be true regardless of the two points selected. But, note this is not
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true in a CASE 2 situation as shown in Figure 7-3a where the normal component of accel-
eration of auto #2 is not directed along the line connecting points A and P. (Steps 5 and 6)

Once we found the absolute acceleration of point B (Ag), we could solve for oy, the
angular acceleration of link 4 using the tangential component of Ap in equation (d). Be-
cause points A and B are both on link 3, we could also determine the angular acceleration
of link 3 using the tangential component of the acceleration difference A g4 between points
B and A, in equation (d). Once the angular accelerations of all the links were known,
we could then solve for the linear acceleration of any point (such as C) in any link using
equation 7.4. To do so, we had to understand the concept of angular acceleration as a free
vector, which means that it exists everywhere on the link at any given instant. It has no
particular center. It has an infinity of potential centers. The link simply has an angular
acceleration. It is this property that allows us to solve equation 7.4 for literally any point
on a rigid body in complex motion referenced to any other point on that body. (Steps
7and8)

73 ANALYTICAL SOLUTIONS FOR ACCELERATION ANALYSIS

The Fourbar Pin-Jointed Linkage

The position equations for the fourbar pin-jointed linkage were derived in Section 4.5.
The linkage was shown in Figure 4-6 and is shown again in Figure 7-5a on which we also
show an input angular acceleration 0., applied to link 2. This input angular acceleration
o may vary with time. The vector loop equation was shown in equations 4.5a and c,
repeated here for your convenience.

R,+R;-R,-R, =0 (4.52)

As before, we substitute the complex number notation for the vectors, denoting their
scalar lengths as a, b, ¢, d as shown in Figure 7-5.

ae’® +pel® —cel® —de =0 (4.5¢)

In Section 6.7, we differentiated equation 4.5¢ versus time to get an expression for
velocity which is repeated here.

jaoozej62 +jbu)3ej03 —jcw4eje4 =0 (6.14¢c)

We will now differentiate equation 6.14c versus time to obtain an expression for ac-
celerations in the linkage. Each term in equation 6.14c contains two functions of time, 6
and o. Differentiating with the chain rule in this example will result in two terms in the
acceleration expression for each term in the velocity equation.

(jzaw§ /% + jao, /% )+ (jzbwg /% +jbos /% )—(jzco)ft e/% + jeoy /% )= 0 (7.72)
Simplifying and grouping terms:

(aoc2 jel%2 —aw? e/% )+ (ba3 jel% —bw3 e/ )— (coc4 jel% —cw3 e/ ) =0 (7.7b)
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FIGURE 7-5
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1
o3 - AB A

W3

(b)

Position vector loop for a fourbar linkage showing acceleration vectors

Compare the terms grouped in parentheses with equations 7.2. Equation 7.7 contains
the tangential and normal components of the accelerations of points A and B and of the
acceleration difference of B to A. Note that these are the same relationships that we used
to solve this problem graphically in Section 7.2. Equation 7.7 is, in fact, the acceleration
difference equation 7.4 which, with the labels used here, is:

AA+ABA_AB:0 (7.83)
where: Ay = (Ai, +A';,) =(a0c2 je’® —aw3 ejez)
Apy=(Al, +A§A)=(ba3jef°3 —bw? e193) (7.8b)

Ag= (A% +A,’§): (ccx4 jel% —cw? eje“)

The vector diagram in Figure 7-5b shows these components and is a graphical solu-
tion to equation 7.8a. The vector components are also shown acting at their respective
points on Figure 7-5a.

We now need to solve equation 7.7 for o3 and 0y, knowing the input angular ac-
celeration 0Ly, the link lengths, all link angles, and angular velocities. Thus, the position
analysis derived in Section 4.5 and the velocity analysis from Section 6.7 must be done
first to determine the link angles and angular velocities before this acceleration analysis
can be completed. We wish to solve equations 7.8 to get expressions in this form:

OL3 :f(a, b, c, d, 62, 63, 64, (Dz, 0)3, (04, 062) (7.93)
oy =g(a,b,c,d,0,,05,04,0,, 05, 04,0,) (7.9b)

The strategy of solution will be the same as was done for the position and velocity
analysis. First, substitute the Euler identity from equation 4.4a in each term of equation 7.7:
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[ act; j(cos8, + jsin®,)—aw3 (cos6, + jsin, )|
+ [boc3j(cose3 +jsin93)—bm§ (00593 + jsin6; )} (7.10a)
- [coc4 j(cos®y, + jsing, ) - cwj (cos@y +jsin94)} =0
Multiply by the operator j and rearrange:
[ acty (~sin6, + jcosd, ) - aw3 (cos6, + jsin6, ) |
+[ by (~sin; + jeosd; )~ b3 (cos; + jsin; ) | (7.10b)

- [coc4(—sin94 +jcos8, ) —coj (cosb, +jsin94)J: 0

We can now separate this vector equation into its two components by collecting all
real and all imaginary terms separately:

real part (x component):

—aoL, sin®, — am3 cosH, — bo;sin®; — bm% cosB; +co, sinB, +co3 cosd, =0 (7.11a)
imaginary part ( y component):
oL, cos 0, — aw3 sin®, +boi; cosB; — b3 sinO; — o,y cosO, +cwssind, =0 (7.11b)

Note that the j’s have canceled in equation 7.11b. We can solve equations 7.11a and
7.11b simultaneously to get:

CD- AF
Oy =— (7.12a)
AE -BD
CE -BF
Oy =——— (7.12b)
AE —-BD
where:
A=csinb,
B=bsin0;
C = ao., sin®, + am3 cosh, + b3 cosh; — cw3 cosh,
D =ccosf, (7.12c)

E =bcos0y

F =ao, cosO, — am% sin@, — bco% sin03 + cmi sin@,

Once we have solved for o3 and 04, we can then solve for the linear accelerations by
substituting the Euler identity into equations 7.8b,
A, = . . 2 ..
A = a0 (—sin®, + jcosh, ) — aws (cosO, + jsin®, )
_ . _ 2 _ _ 2 .

A, =-0a0,sin8; —aw; cosb, AAy = a0, cos0, —am; sinb, (7.13a)

Ap,=boy (—sine3 +jcos93)—bo)§ (cose3 + jsin93)
Apy =-boysinb; —b(o% cos03 ABAy =boi; cosO; —b(;)% sin0; (7.13b)

Ap=coy (—sin94 +jcos(94)—00342t (cose4 +jsin94)
Ap =—coysinb, —cm?cosh, ABy =col, cosO, —cm?sind
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where the real and imaginary terms are the x and y components, respectively. Equations
7.12 and 7.13 provide a complete solution for the angular accelerations of the links and
the linear accelerations of the joints in the pin-jointed fourbar linkage.

ZDEXAMPLE 7-2

Acceleration Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem: Given a fourbar linkage with the link lengths L = d = 100 mm, L, = a = 40 mm,

Lz = b =120 mm, Ly = ¢ = 80 mm. For 6, = 40°, w, = 25 rad/sec, and o, = 15
rad/sec? find the values of o3 and o, A4, Agy, and Ap for the open circuit of the
linkage. Use the angles and angular velocities found for the same linkage and
position in Example 6-7.

Solution: (See Figure 7-5 for nomenclature.)

1

3

O3

Oy

Example 4-1 found the link angles for the open circuit of this linkage in this position to be
03 = 20.298° and 64 = 57.325°. Example 6-7 found the angular velocities at this position to
be w3 =—4.121 and w4 = 6.998 rad/sec.

Use these angles, angular velocities, and equations 7.12 to find o3 and oy for the open circuit.
First find the parameters in equation 7.12c.

A=csin, =80sin57.325° = 67.340
B =bsin0; =120sin20.298° = 41.628
C=ao0,sin6, + aw% cosf, + bw% cos03 — C(Di cosfy,
= 40(15)sin 40°+ 40(25)” cos 40° +120(—4.121)” c0s20.298° — 80(6.998)° cos 57.325°
=19332.98
D =ccos0, =80c0857.325° = 43.190 (a)
E =bcos0; =120¢c0s20.298° =112.548

F = ao, cos®, — a3 sinB, — bo3 sinB; + coj sin 6,
= 40(15)cos 40° — 40(25)” sin 40° —120(—4.121)” sin 20.298° + 80(6.998)” sin 57.325°
=-13019.25

Then find a3 and oy with equations 7.12a and b.

CD- AF 19332.98(43.190)— 67.340(~13 019.25)
T AE-BD 67.340(112.548) — 41.628(43.190)

CE—-BF 19332.98(112.548) - 41.628(—13019.25)
TAE-BD  67.340(112.548)— 41.628(43.190)

=296.089 rad/sec’ (b)

= 470.134 rad/sec? (©)

4 Use equations 7.13 to find the linear accelerations of points A and B.

A, =-ao0,sin®, - a3 cosB, = —40(15)sin 40°— 40(25)” cos 40° = 19.537 m/sec’
()
AAy =ao, cosO, — aw% sin@, = 40(15)cos 40°— 40(25)2 sin 40° = —15.617 m/sec?
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: 2
Apy =—bosinB; —bw3 cosb; ,
=-120(269.089)sin 20.298° —120(—4.121)" c0520.298° = ~14 237 m/sec’

(e)
ABAy =boiycos03 —bm% sin03
= 120(269.089)c020.298°— 120 (—4.121)° sin 20.298° = 32.617 m/sec?
Ap =-—coysin6, - cwi cosf,
= —80(470.134)sin 57.325° — 80(6.998)” c0s 57.325° = —33.774 m/sec?
o))

ABy =c0, Ccos0, —cu)i sinf,

= 80(470.134)c0s 57.325° — 80(6.998)” sin 57.325° = 17.007 m/sec?

The Fourbar Crank-Slider

The first inversion of the offset crank-slider has its slider block sliding against the ground
plane as shown in Figure 7-6a. Its accelerations can be solved for in similar manner as
was done for the pin-jointed fourbar.

The position equations for the fourbar offset crank-slider linkage (inversion #1) were
derived in Section 4.6. The linkage was shown in Figures 4-9 and 6-21 and is shown
again in Figure 7-6a on which we also show an input angular acceleration o, applied to
link 2. This o, can be a time-varying input acceleration. The vector loop equations 4.14
are repeated here for your convenience.

R2 —R3 —R4 _Rl =0 (4.143)

ael® —pel® _ el _ gl = (4.14b)

Ap
Ap
ABa /\ Al
n A[
ABA A
(a) (b)

FIGURE 7-6

Position vector loop for a fourbar crank-slider linkage showing acceleration vectors
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In Section 6.7 we differentiated equation 4.14b with respect to time noting that a, b, c,
01, and 04 are constant but the length of link d varies with time in this inversion.

jawzejez —jbw3ej63 -d=0 (6.20a)

The term d is the linear velocity of the slider block. Equation 6.20a is the velocity
difference equation.

We now will differentiate equation 6.20a with respect to time to get an expression for
acceleration in this inversion of the crank-slider mechanism.

(jaazejez +jam3e’® )—(jba3eje3 +j2bwle® )—iiz 0 (7.14a)
Simplifying:

(aoc2 je!% —awle’® )— (b 0 jel% b el )— d=0 (7.14b)

Note that equation 7.14 is again the acceleration difference equation:
Apy=—A,p (7.152)
A=A, +Apy
A,= (A’A +A'Iﬁ,) = (a(xz jel® —aw3 e/® )
Apa =(A§3A+AgA)=(ba3jef"3 —bw? eje3) (7.15b)
Ap=AL=d
In this mechanism, link 4 is in pure translation and so has zero w4 and zero oy. The
acceleration of link 4 has only a “tangential” component of acceleration along its path.

The two unknowns in the vector equation 7.14 are the angular acceleration of link

3, 03, and the linear acceleration of link 4, d. To solve for them, substitute the Euler
identity,

ao, (—sine2 +jcosez)—am% (cose2 +jsin62)
—-boy (—sin63 +jcos63)+bw§ (00563 + jsin63)— d=0 (7.16a)
and separate the real (x) and imaginary (y) components:
real part (x component):
—a 0., sin6, —am3 cosO, +boi; sinB; + bw3 cosO; — d=0 (7.16b)
imaginary part (y component):
ao, cos, —ams sind, —boi; cosO; +bm3sinB; =0 (7.16¢)

Equation 7.16c can be solved directly for o3 and the result substituted in equation
7.16b to find d.
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ao,, cos®, —aws sind, +bwj sinb,

o 7.16d
} bcosB; ( )

d=—-aa,sin®, — a3 cosd, + boi;sin®; + b3 cos, (7.16e)

The other linear accelerations can be found from equation 7.15b and are shown in
the vector diagram of Figure 7-6b.

A DEXAMPLE 7-3

Acceleration Analysis of a Fourbar Crank-Slider Linkage with a Vector Loop Method.

Problem: Given a fourbar crank-slider linkage with the link lengths Ly = a = 40 mm,
Lz = b =120 mm, offset = ¢ = 20 mm. For 8, = 60°, m, = —30 rad/sec, and o, =
20 rad/sec?, find o3 and linear acceleration of the slider for the open circuit. Use
the angles, positions, and angular velocities found for the same linkage in Examples
4-2 and 6-8.

Solution: (See Figure 7-6 for nomenclature.)

1 Example 4-2 found angle 63 = 152.91° and slider position d = 126.84 mm for the open circuit.
Example 6-8 found the the coupler angular velocity w3 to be 5.616 rad/sec.

2 Using equation 7.16d and the data from step 1, calculate the coupler angular acceleration 3.

aa, cosh, —awssinh, +bw§ sin 6
bcosB,

o3

40(20)cos60° — 40(~30)” sin 60° +120(5.616)” sin152.91° )
= =271.94 rad/sec (a)
120c0s152.91°

3 Using equation 7.16e and the data from steps 1 and 3, calculate the slider acceleration d.

d= —a 0, sin0, — am3 cos, +ba sin®; +bw? cos,
= —40(20)sin 60° — 40(—30)° cos 60° +120(271.94)sin 152.91° +120(5.616)° cos152.91°
=-7.203 m/sec’ (b)

The Fourbar Slider-Crank

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section. The name change indicates that it will be
driven with the slider as input and the crank as output. This is sometimes referred to as a
“back-driven” crank-slider. We will use the term slider-crank to define it as slider-driven.
This is a very commonly used linkage configuration. Every internal-combustion, piston
engine has as many of these as it has cylinders. The vector loop is as shown in Figure 7-6
and the vector loop equation is identical to that of the crank-slider (equation 4.14a). The

derivation for 6, and ®, as a function of slider position d and slider velocity d were done,
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* The crank-slider and
slider-crank linkage

both have two circuits or
configurations in which
they can be independently
assembled, sometimes
called open and crossed.
Because effective link 4 is
always perpendicular to the
slider axis, it is parallel to
itself on both circuits. This
results in the two circuits
being mirror images of one
another, mirrored about a
line through the crank pivot
and perpendicular to the
slide axis. Thus, the choice
of value of slider position
d in the calculation of the
slider-crank linkage deter-
mines which circuit is being
analyzed. But, because of
the change points at TDC
and BDC, the slider-crank
has two branches on each
circuit and the two solutions
obtained from equation 4.21
represent the two branches
on the one circuit being
analyzed. In contrast, the
crank-slider has only one
branch per circuit because
when the crank is driven, it
can make a full revolution
and there are no change
points to separate branches.
See Section 4.13 for a
more complete discussion
of circuits and branches in
linkages.
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respectively, in Sections 4-7 and 6-7. Now we want to solve for o, and 013 as a function of
slider acceleration d and the known lengths, angles, and angular velocities of the links.

We can start with equations 7.16b and ¢, which also apply to this linkage:

—a 0., sin®, — a3 cosO, +bai; sinB; + b3 cosO; — d=0 (7.16b)

acl, cos, —awssin®, —boi; cosO; +bw3sind; =0 (7.16¢)
Solve equation 7.16c for o3 in terms of ol,.

ao, cosf, —ams sind, +bm3 sinbs

o 7.17a
? bcosB, ( )
Substitute equation 7.17a for o3 in equation 7.16b and solve for o,.
5 ) ) ,
am; (cos O, cosO; +sinb, sinb; )—bw3 +dcosO
oy = 2( 2 3 2 3) 3 3 (7.17b)

a(cos@z sinB; —sin6, cosG3)

The circuit of the linkage depends on the value of d chosen and the angular accelerations
will be for the branch represented by the values of 6, and 05 used from equation 4.21.”

A DEXAMPLE 7-4

Acceleration Analysis of a Fourbar Slider-Crank Linkage with a Vector Loop Method.

Problem: Given a fourbar slider-crank linkage with the link lengths L, = a = 40 mm,
Lz = b =120 mm, offset = ¢ = -20 mm. For d = 100 mm and d =900 mm/sec?,
find 0,y and o3 for both branches of one circuit of the linkage. Use the angles and
angular velocities found for the same linkage in Example 4-3 and Example 6-9,
respectively.

Solution: (See Figure 7-6 for nomenclature.)

1 Example 4-3 found angles 8, = 95.80°, 83, = 150.11° for branch 1 of this linkage. Example
6-9 found the the angular velocities to be ¢y, =-32.023 and 3, =~1.244 rad/sec for branch 1.

2 Using equation 7.17b and the data from step 1, calculate the crank angular acceleration o,

am%1 (cosez1 cosB3 +sinb, sinBs )—bm%l +dcosts

az -
! a(003621 sin®; —sin6,, c0s931)
40(~32.023)” (c0s95.80°cos150.11° + sin 95.80° sin 150.11°) — 120(~1.244)” +900c0s150.11°
o =
21 40(c0$95.80°5in150.11° —$in 95.80° c0s 150.11°)
o, =706.753 rad/sec? (a)

3 Using equation 7.17a and the data from steps 1 and 2, calculate the coupler angular accelera-
tion o3 .
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o = aoy, cosb, — aw%l sin©, +bo)?,1 sin®s
3 =

1 bcosOs
40( - 706.753)c0s95.80° — 40(~32.023)’ 5in 95.80° +120( — 1.244)” sin150.11°
Ol =
% 120c0s150.11°
03, = 418.804 rad/sec? (b)

4 Example 4-3 found angles 6, = -1 18.42°, 03, = 187.27° for branch 2 of this linkage. Example
6-9 found the the angular velocities to be ,, = 36.64 and w3, = 5.86 rad/sec for branch 2.
Using equation 7.17b and the data from step 3, calculate the crank angular acceleration 0,
for branch 2.

aw%2 (cos922 cosO3, +sin,, sinBs;, )—b(:o%2 +dcos6;,

(Xz -
: a(cosez2 sinB; —sin®,, cosB;, )
40(36.64) (cos—118.42°cos187.27° + sin— 118.42° sin 187.27°) —120(5.86)” + 900 c0s187.27°
[0 =
2 40| cos(~118.42°)sin 187.27° —sin (~118.42°) cos 187.27° |
o,, =—809.801 rad/sec? (¢)

5 Using equation 7.17a and the data from steps 3 and 4, calculate the coupler angular accelera-
tion o33,

= aoy, cosh,, —a(x)%2 sin®, +b(1)§2 sin6s,
3=

2 bcosBs,
40( —809.801) cos—118.42° — 40(36.64)” sin—118.42° +120( 5.859)" sin 187.27°
O, =
% 120c0s187.27°
o3, =—521.852 rad/sec? (d)

Coriolis Acceleration

The examples used for acceleration analysis above have involved only pin-jointed link-
ages or the inversion of the crank-slider in which the slider block has no rotation. When
a sliding joint is present on a rotating link, an additional component of acceleration will
be present, called the Coriolis component, after its discoverer. Figure 7-7a shows a
simple, two-link system consisting of a link with a radial slot and a slider block free to
slip within that slot.

The instantaneous location of the block is defined by a position vector (Rp) refer-
enced to the global origin at the link center. This vector is both rotating and changing
length as the system moves. As shown this is a two-degree-of-freedom system. The two
inputs to the system are the angular acceleration (o) of the link and the relative linear slip
velocity (V pgjip) of the block versus the disk. The angular velocity @ is a result of the time
history of the angular acceleration. The situation shown, with a counterclockwise o and
a clockwise m, implies that earlier in time the link had been accelerated up to a clockwise
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angular velocity and is now being slowed down. The transmission component of veloc-
ity (Vpyrans) 18 a result of the o of the link acting at the radius Rp whose magnitude is p.

We show the situation in Figure 7-7 at one instant of time. However, the equations to
be derived will be valid for all time. We want to determine the acceleration at the center
of the block (P) under this combined motion of rotation and sliding. To do so, we first
write the expression for the position vector Rp that locates point P.

Rp= pejez (7.18a)

Note that there are two functions of time in equation 7.17, p and 6. When we
differentiate versus time, we get two terms in the velocity expression:

Vp = po, jel®2 + pel® (7.18b)
These are the transmission component and the slip component of velocity.

VP = VPtrans + VPSlip (7.180)

The pw term is the transmission component and is directed at 90 degrees to the axis
of slip that, in this example, is coincident with the position vector Rp. The p term is the
slip component and is directed along the axis of slip in the same direction as the position

vector in this example. Their vector sum is Vp as shown in Figure 7-7a.

To get an expression for acceleration, we must differentiate equation 7.18 versus
time. Note that the transmission component has three functions of time in it, p, ®, and 6.
The chain rule will yield three terms for this one term. The slip component of velocity
contains two functions of time, p and 0, yielding two terms in the derivative for a total of
five terms, two of which turn out to be the same.

Ap =(poc2jej92 + pw3je’® + po, jel® )+(pu)2jeje2 + pel® ) (7.192)

Ap

coriolis

FIGURE 7-7

The Coriolis component of acceleration shown in a system with a positive (CCw) o, and a negative(CW) ®
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Simplifying and collecting terms:
Ap = po, jel® — pw3el® +2pw, jel® + pel®2 (7.19b)
These terms represent the following components:

Ap +A (7.19¢)

= APtangemial + AP normal Feoriolis + APslip

Note that the Coriolis term has appeared in the acceleration expression as a result of
the differentiation simply because the length of the vector p is a function of time. The
Coriolis component magnitude is twice the product of the velocity of slip (equation 7.18)
and the angular velocity of the link containing the slider slot. Its direction is rotated 90
degrees from that of the original position vector Rp either clockwise or counterclockwise
depending on the sense of m.” (Note that we chose to align the position vector Rp with
the axis of slip in Figure 7-7 which can always be done regardless of the location of the
center of rotation—also see Figure 7-6 where R is aligned with the axis of slip.) All
four components from equations 7.19 are shown acting on point P in Figure 7-7b. The
total acceleration Ap is the vector sum of the four terms as shown in Figure 7-7c. Note
that the normal acceleration term in equation 7.19b is negative in sign, so it becomes a
subtraction when substituted in equation 7.19c.

This Coriolis component of acceleration will always be present when there is
a velocity of slip associated with any member that also has an angular velocity. In
the absence of either of those two factors the Coriolis component will be zero. You
have probably experienced Coriolis acceleration if you have ever ridden on a carousel or
merry-go-round. If you attempted to walk radially from the outside to the inside (or vice
versa) while the carousel was turning, you were thrown sideways by the inertial force
due to the Coriolis acceleration. You were the slider block in Figure 7-7, and your slip
velocity combined with the rotation of the carousel created the Coriolis component. As
you walked from a large radius to a smaller one, your tangential velocity had to change
to match that of the new location of your foot on the spinning carousel. Any change in
velocity requires an acceleration to accomplish. It was the “ghost of Coriolis” that pushed
you sideways on that carousel.

Another example of the Coriolis component is its effect on weather systems. Large
objects that exist in the earth’s lower atmosphere, such as hurricanes, span enough area
to be subject to significantly different velocities at their northern and southern extremi-
ties. The atmosphere turns with the earth. The earth’s surface tangential velocity due to
its angular velocity varies from zero at the poles to a maximum of about 1000 mph at the
equator. The winds of a storm system are attracted toward the low pressure at its center.
These winds have a slip velocity with respect to the surface, which in combination with
the earth’s ® creates a Coriolis component of acceleration on the moving air masses.
This Coriolis acceleration causes the inrushing air to rotate about the center, or “eye” of
the storm system. This rotation will be counterclockwise in the northern hemisphere and
clockwise in the southern hemisphere. The movement of the entire storm system from
south to north also creates a Coriolis component that will tend to deviate the storm’s track
eastward, though this effect is often overridden by the forces due to other large air masses
such as high-pressure systems that can deflect a storm. These complicated factors make
it difficult to predict a large storm’s true track.
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* This approach works in
the 2-D case. Coriolis ac-
celeration is the cross prod-
uct of 2m and the velocity
of slip. The cross product
operation will define its
magnitude, direction, and
sense in the 3-D case.
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FIGURE 7-8

DESIGN OF MACHINERY 6ed CHAPTER 7

Note that in the analytical solution presented here, the Coriolis component will be
accounted for automatically as long as the differentiations are correctly done. However,
when doing a graphical acceleration analysis, one must be on the alert to recognize the
presence of this component, calculate it, and include it in the vector diagrams when its
two constituents V;, and o are both nonzero.

The Fourbar Inverted Crank-Slider

The position equations for the fourbar inverted crank-slider linkage were derived in Sec-
tion 4.7. The linkage was shown in Figures 4-10 and 6-22 and is shown again in Figure
7-8a on which we also show an input angular acceleration o, applied to link 2. This o
can vary with time. The vector loop equations 4.14 are valid for this linkage as well.

All slider linkages will have at least one link whose effective length between joints
varies as the linkage moves. In this inversion the length of link 3 between points A and B,
designated as b, will change as it passes through the slider block on link 4. In Section 6.7
we got an expression for velocity by differentiating equation 4.14b with respect to time,
noting that a, ¢, d, and 0 are constant and b, 63, and 64 vary with time.

ja(nzej92 —jb(ngeje3 —bel% —jcu)4ej94 =0 (6.252)

Differentiating this with respect to time will give an expression for accelerations in this
inversion of the crank-slider mechanism.

(jozoczej02 +j2aco%ej92 )—(jboc3eje3 +j2bm§eje3 +jb(o3eje3)

—(5ej93 +jbm3ej93 )—(jcoc4eje4 +j2cw3ej64 ):0 (7.20a)

coriolis

Acceleration analysis of a fourbar crank-slider-inversion #3 driven with positive (CCW) ., and negative (CW) ®,
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Simplifying and collecting terms:
(aocz jel® —a(u%ej92 )—(boc3 jel% —bm%ej93 +25033 jel% +5eje3)
- (coc4 jel% —cwlel® ): 0 (7.20b)

Equation 7.20 is in fact the acceleration difference equation (equation 7.4) and can
be written in that notation as shown in equations 7.21.

AA_AAB_AB=0

and: Ap=A,+Ap,
AA = AAtangential + AAnormal

AAB = AABtangential + AABnormal + AABcoriolis + AAleip (721b)

AB = ABtangential + ABnormal

Atangential =ao; jejez Apormal = —a(l)%ejez
Biangential =c0y jeje4 ABnormal ==¢ wiej%
A ABigngeniiat =0 %3 jel A pB oy = D03’ (7.21c)
AABcoriolis = Zb @3 jej93 AAleip = I;ejGS

Because this sliding link also has an angular velocity, there will be a nonzero Coriolis
component of acceleration at point B which is the 2b term in equation 7.20. Since a
complete velocity analysis was done before doing this acceleration analysis, the Coriolis
component can be readily calculated at this point, knowing both ® and Vg, from the
velocity analysis.

The b termin equations 7.20b and 7.21c is the slip component of acceleration. This
is one of the variables to be solved for in this acceleration analysis. Another variable to
be solved for is 04, the angular acceleration of link 4. Note, however, that we also have
an unknown in o3, the angular acceleration of link 3. This is a total of three unknowns.
Equation 7.20 can only be solved for two unknowns. Thus we require another equation
to solve the system. There is a fixed relationship between angles 63 and 0,4, shown as 7y in
Figure 7-8 and defined in equation 4.22, repeated here:

open configuration: 6; =6, +v;  crossed configuration: 63 =6, +y—-7 (4.22)
Differentiate it twice with respect to time to obtain:
W3 =Wy; Oz =0y (7.22)

We wish to solve equation 7.20 to get expressions in this form:

(X3 =(X4 = f(a, b, B, C, d, 62, 93,64, (1)2, (1)3,(,04,(Xz) (7233)

&2p - .

d—2=b=g(a, b, b, c, d, 92,93,64,032,0)3,(04,(12) (7.23b)
t
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Substitution of the Euler identity (equation 4.4a) into equation 7.20 yields:
ao, j(cosd, + jsin®, ) - aws (cos, + jsin®, )
— btz j(cosOs + jsin®s )+ b3 (cosb; + jsin®s)

—2ba, j(cose3 +jsin93)—b(cose3 +jsin93) (7.24a)
—cay j(cosBy + jsin®, ) +cwj (cosBy + jsin®, ) =0
Multiply by the operator j and substitute oy for o3 from equation 7.22:
ao, (-sin®, + jcosd, ) - aw3 (cos®, + jsin®, )
—bay (—sin93 +jcose3)+bw% (cose3 + jsin93)
—2bw, (—sin93 + jcos93)— l;(cos93 + jsin6; ) (7.24b)
—cory (—sinBy + jcosO, )+ cwj (cosby + jsin®, )=0
We can now separate this vector equation 7.24b into its two components by collecting
all real and all imaginary terms separately:
real part (x component):
—a o, sin6, —aw3 cosh, +ba, sin 6 +bu)§ cos6;
+2b W3 sinB3 — 5cose3 +c0l, Sin0, +coj cos, =0 (7.252)
imaginary part (y component):
ao, cosf, — aw% sin®, —boy, cosO3 + bco% sin0;
- 25(03 cos0; — Bsin63 —cot, cos0, +cwjsind, =0 (7.25b)
Note that the j’s have canceled in equation 7.25b. We can solve equations 7.25

simultaneously for the two unknowns, o4 and b . The solution is:

a[ocz cos(0; — 6, )+ w3 sin(0; -6, )}+ cw} sin(6, —6;)—2bw;

= b+ ccos(63 -0, ) (7:262)
a3 I:bcos(e3 -0, ) + ccos(94 -6, )] +ao, ':bsin(e2 -6; ) - csin(94 -0, )]
. +ZBcu)4 sin(64 —93)—(1)% [bz +c? +2bccos(94—03)}
b= (7.26b)

b+ccos(63 —64)

Equation 7.26a provides the angular acceleration of link 4. Equation 7.26b pro-
vides the acceleration of slip at point B. Once these variables are solved for, the linear
accelerations at points A and B in the linkage of Figure 7-8 can be found by substituting
the Euler identity into equations 7.21.
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A, = a0, (—sin®, + jcos, ) — aw3 (cosl, + jsin®,) (7.272)
Apy=boy (sin03 —jc0s63)+bw§(cose3 +jsin63)

+2130)3(sin93 —jcose3)—b(cose3 +jsin63) (7.27b)

Ag=—coy(sin®, — jcosb, ) —cwj(cos, + jsin6,) (7.27¢)

These components of these vectors are shown in Figure 7-8b.

74 ACCELERATION ANALYSIS OF THE GEARED FIVEBAR
LINKAGE

The velocity equation for the geared fivebar mechanism was derived in Section 6.8 and is
repeated here. See Figure P7-4 for notation.

am, je’® +bw,je’® —cw, je’® —dwsje’® =0 (6.32a)
Differentiate this with respect to time to get an expression for acceleration.
(aoczjej92 —am3e’® )+ (boc3jeje3 - boo%ej63 )
—(c oc4jej94 - cmiej94 )— (docsjej95 - dméejeS ) =0 (7.28a)
Substitute the Euler equivalents:
. . 2 ..
aol, (—sm92 +Jc0592)—a0)2 (00562 +]sm92)
+ boc3(—sin63 +jcos63)—bco§ (00893 +jsin63)
—couy (~sinBy + jcos, ) +cwj (cosby + jsin®, )
—das (—sine5 +jc0s65)+dco%3 (cosG5 +jsin05)= 0 (7.28b)

Note that the angle 05 is defined in terms of 0,, the gear ratio A, and the phase angle .
This relationship and its derivatives are:

05 =70, +0; 05 = AW, o5 = Ao, (728¢c)

Since a complete position and velocity analysis must be done before an acceleration

analysis, we will assume that the values of 05 and w5 have been found and will leave these
equations in terms of 05, W5, and Ols.

Separating the real and imaginary terms in equation 7.28b:
real:
—a0., sin6, — am3 cosO, —boi; sinO; — bw? cosH,

+cosin0, +cm? cosO, +dois sinOs + dm? cosBs =0 (7.28d)
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imaginary:
oty cos®, —ams sin®, +bot; cosO; — b3 sin B3
— oLy oS0, +cm3 sin®, —dais cosBs + dwZsinBs =0 (7.28e)

The only two unknowns are o3 and 04. Either equation 7.28d or 7.28e can be solved
for one unknown and the result substituted in the other. The solution for o3 is:

—ao., sin(Gz -0, ) - aw? cos(62 - 94)
— b3 cos(93 -0, ) +do? cos(95 - 94)

+dossin(65 — 0, ) +cwj

o = boin(0,~04) (7.29a)
and angular acceleration 0y is:
aol, sin(ez -0; ) +aw; 005(62 - 63)
—cwj cos(0; — 0, )~ dw? cos(8; - 5)
+das sin (03 — 05 )+ bw3
oy = (7.29b)

csin(64—63)

With all link angles, angular velocities, and angular accelerations known, the linear
accelerations for the pin joints can be found from:

A, = ao, (—sin®, + jcos®, ) — aw3 (cosl, + jsin®,) (7.29¢)
Apy=boy (—sin93 +jcose3)—b(o§ (c0s93 +jsir193) (7.29d)
A-=cos (—sin95 +jcos(95)—cu)§ (coses +jsin95) (7.29)
Ap=A,+Ap, (7.29%)

75 ACCELERATION OF ANY POINT ON A LINKAGE

Once the angular accelerations of all the links are found, it is easy to define and calculate
the acceleration of any point on any link for any input position of the linkage. Figure
7-9 shows the fourbar linkage with its coupler, link 3, enlarged to contain a coupler point
P. The crank and rocker have also been enlarged to show points S and U which might
represent the centers of gravity of those links. We want to develop algebraic expressions
for the accelerations of these (or any) points on the links.

To find the acceleration of point S, draw the position vector from the fixed pivot O,
to point S. This vector Rgp, makes an angle &, with the vector Ryp,. This angle 8; is
completely defined by the geometry of link 2 and is constant. The position vector for
point S is then:

Rgo, =Ry = sel02782) _ S[COS(GZ +8,)+jsin(6, +3, )] (4.29)
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Ap Ap

FIGURE 7-9

Finding the acceleration of any point on any link

We differentiated this position vector in Section 6.9 to find the velocity of that point.
The equation is repeated here for your convenience.

Vg = jsej(62+82)w2 =50, [—sin(ez +8,)+ jcos(6, +8, )] (6.34)

We can differentiate again versus time to find the acceleration of point S.

Ag =50, jej(62+62) - 503 oJ(02+82)
=50, [—sin(92 +8,)+ jcos(6, +8, )] (7.30)
— 503 [cos(ez +8,)+ jsin(6, +3, )]
The position of point U on link 4 is found in the same way, using the angle 8, which
is a constant angular offset within the link. The expression is:

Ryo, = ue/(04+94) _ u[cos(94 +8,)+ jsin(0, +3, )] (4.30)

We differentiated this position vector in Section 6.9 to find the velocity of that point.
The equation is repeated here for your convenience.

VU = juej(94+84)(1)4 =U®y [—Sin(94 + 64 ) +jCOS(94 + 64 )] (6.35)

We can differentiate again versus time to find the acceleration of point U.

Ay =uo, jej(94+54) j(64+84)

=uo, [—sin(94 +8,)+ jcos(6, +84)J (7.31)

—uwje

—uwj [cos(e4 +84)+ jsin(6, +64)}
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* The video Fourbar
Linkage Virtual Labora-
tory shows the measured
acceleration of the coupler
point on an actual link-
age mechanism and also
discusses the reasons for
differences between the
measured values and those
calculated with equation
7.32. The measured data
are also provided.
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The acceleration of point P on link 3 can be found from the addition of two accelera-
tion vectors, such as A4 and Apy. Vector Ay is already defined from our analysis of the
link accelerations. Apy is the acceleration difference of point P with respect to point A.
Point A is chosen as the reference point because angle 03 is defined at a local coordinate
system whose origin is at A. Position vector Rpy is defined in the same way as Ry; or Rg,
using the internal link offset angle 85 and the angle of link 3, 63. We previously analyzed
this position vector and differentiated it in Section 6.9 to find the velocity difference of
that point with respect to point A. Those equations are repeated here for your convenience.

Rp, = pej(93+53) = p[cos(93 +53)+jsin(93 +63)] (4.31a)
Rp=R,4+Rpy (4.31b)
Vpu = jpej(e3+53)u)3 = pw; [—sin(93 +83)+jcos(93 +83)J (6.36a)
VP = VA + VPA (6.36b)

We can differentiate equation 6.36 again versus time to find A p4, the acceleration of
point P versus A. This vector can then be added to the vector A4 already found to define
the absolute acceleration Ap of point P.

where:
Apy =poy jej(93+53) - pw3 l(03+%3)
= poi3 [—sin(93 + 83)+jcos(93 +83)J (7.32b)

- pw3 [cos(93 + 83)+ jsin(63 +93 )]

Compare equation 7.32 with equation 7.4. It is again the acceleration difference
equation. Note that this equation applies to any point on any link at any position for
which the positions and velocities are defined. It is a general solution for any rigid body.”

7.6 HUMAN TOLERANCE OF ACCELERATION

It is interesting to note that the human body does not sense velocity, except with the eyes,
but is very sensitive to acceleration. Riding in an automobile, in the daylight, one can
see the scenery passing by and have a sense of motion. But, traveling at night in a com-
mercial airliner at a 500 mph constant velocity, we have no sensation of motion as long
as the flight is smooth. What we will sense in this situation is any change in velocity due
to atmospheric turbulence, takeoffs, or landings. The semicircular canals in the inner ear
are sensitive accelerometers that report to us on any accelerations that we experience. You
have no doubt also experienced the sensation of acceleration when riding in an elevator
and starting, stopping, or turning in an automobile. Accelerations produce dynamic forces
on physical systems, as expressed in Newton’s second law, F=ma. Force is proportional
to acceleration, for a constant mass. The dynamic forces produced within the human body
in response to acceleration can be harmful if excessive. The human body is, after all, not
rigid. It is a loosely coupled bag of water and tissue, most of which is quite internally
mobile. Accelerations in the headward or footward directions will tend to either starve or
flood the brain with blood as this liquid responds to Newton’s law and effectively moves
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Tolerance time Headward Tolerance time
0.02 min
0.1

0.5

-

- Gx

Footward

Average levels of linear acceleration, in dif ferent directions that can be tolerated on a voluntary basis for specified periods .
Each curve shows the average G load that can be tolerated for the time indicated. The data points obtained were actually
those on the axes; the lines as such are extrapolated from the data points to form the concentric figures.

(Source: Adapted from reference [11, Fig. 17-17, p. 505, reprinted with permission)
FIGURE 7-10

Human tolerance of acceleration

within the body in a direction opposite to the imposed acceleration as it lags the motion
of the skeleton. Lack of blood supply to the brain causes blackout; excess blood supply
causes redout. Either results in death if sustained for a long enough period.

A great deal of research has been done, largely by the military and NASA, to de-
termine the limits of human tolerance to sustained accelerations in various directions.
Figure 7-10 shows data developed from such tests.[!] The units of linear acceleration
were defined in Table 1-4 as in/sec?, ft/sec2, or m/sec2. Another common unit for accel-
eration is the g, defined as the acceleration due to gravity, which on earth at sea level is
approximately 386 in/sec, 32.2 ft/sec2, or 9.8 m/sec2. The g is a very convenient unit
to use for accelerations involving the human as we live in a 1 g environment. Our weight,
felt on our feet or buttocks, is defined by our mass times the acceleration due to gravity or
mg. Thus an imposed acceleration of 1g above the baseline of our gravity, or 2g’s, will
be felt as a doubling of our weight. At 6g’s we would feel six times as heavy as normal
and would have great difficulty even moving our arms against that acceleration. Figure
7-10 shows that the body’s tolerance of acceleration is a function of its direction versus
the body, its magnitude, and its duration. Note also that the data used for this chart were
developed from tests on young, healthy military personnel in prime physical condition.
The general population, children and elderly in particular, should not be expected to be
able to withstand such high levels of acceleration. Since much machinery is designed for
human use, these acceleration tolerance data should be of great interest and value to the
machine designer. Several references dealing with these human factors data are provided
in the bibliography to Chapter 1.
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TABLE 7-1 Acceleration Levels Commonly Encountered in Human Activities
Gentle acceleration in an automobile +01g
Commercial jet aircraft on takeoff +0.3 g

Hard acceleration in an automobile +0.5¢g

Panic stop in an automobile -07¢g

Fast cornering in a sports car (e.g., BMW, Corvette, Porsche, Ferrari) +0.9 g to +1.0g
Formula 1race car +2.09,-40g
Roller coasters (various) +3.5t0+6.5g"
NASA space shuttle on takeoff +4.0g

Top fuel dragster with drogue chute (>300 mph in 1/4 mile) +45¢g

Military jet fighter (e.g., F-15, F-16, F-22, F-35—note: pilot wears a G-suit) 19.0g

*Some U.S. state laws currently limit roller coaster accelerations to a maximum of 5.0 to 5.4 g.

Another useful benchmark when designing machinery for human occupation is to
attempt to relate the magnitudes of accelerations that you commonly experience to the
calculated values for your potential design. Table 7-1 lists some approximate levels of
acceleration, in g’s, that humans can experience in everyday life. Your own experience
of these will help you develop a “feel” for the values of acceleration that you encounter
in designing machinery intended for human occupation.

Acceleration levels in machinery that does not carry humans is limited only by con-
siderations of the stresses in its parts. These stresses are often generated in large part by
the dynamic forces due to accelerations. The range of acceleration values in such machin-
ery is so wide that it is not possible to comprehensively define any design guidelines for
acceptable or unacceptable levels of acceleration. If the moving mass is small, then very
large numerical values of acceleration are reasonable. If the mass is large, the dynamic
stresses that the materials can sustain may limit the allowable accelerations to low values.
Unfortunately, the designer usually does not know how much acceleration is too much in
a design until completing it to the point of calculating stresses in the parts. This usually
requires a fairly complete and detailed design. If the stresses turn out to be too high and
are due to dynamic forces, then the only recourse is to iterate back through the design
process and reduce the accelerations and/or masses in the design. This is one reason that
the design process is a circular and not a linear one.

As one point of reference, the acceleration of the piston in a small, four-cylinder
economy car engine (about 1.5-L displacement) at idle speed is about 40g’s. At highway
speeds the piston acceleration can be as high as 700g’s. At the engine’s top speed of 6000
rpm the peak piston acceleration is 2000g’s! As long as you’re not riding on the piston,
this is acceptable. These engines last a long time in spite of the high accelerations their
components experience. One key factor is the choice of proper part geometry and use
of low-mass, high-strength, high-stiffness materials for the moving parts to minimize
dynamic forces at high acceleration and enable the parts to tolerate the applied stresses.
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77 JERK

No, not you! The time derivative of acceleration is called jerk, pulse, or shock. The
name is apt, as it conjures the proper image of this phenomenon. Jerk is the time rate of
change of acceleration. Force is proportional to acceleration. Rapidly changing accelera-
tion means a rapidly changing force. Rapidly changing forces tend to “jerk” the object
about! You have probably experienced this phenomenon when riding in an automobile.
If the driver is inclined to “jackrabbit” starts and accelerates violently away from the
traffic light, you will suffer from large jerk because your acceleration will go from zero
to a large value quite suddenly. But, when Jeeves, the chauffeur, is driving the Rolls, he
always attempts to minimize jerk by accelerating gently and smoothly, so that Madame is
entirely unaware of the change.

Controlling and minimizing jerk in machine design is often of interest, especially if
low vibration is desired. Large magnitudes of jerk will tend to excite the natural frequen-
cies of vibration of the machine or structure to which it is attached and cause increased
vibration and noise levels. Jerk control is of greater interest in the design of cams than of
linkages, and we will investigate it in greater detail in Chapter 8 on cam design.

The procedure for calculating the jerk in a linkage is a straightforward extension of
the methods shown for acceleration analysis. Let angular jerk be represented by:

do.
=— 7.33
=" (7.33a)
and linear jerk by:
dA
J=— 7.33b
o (7.33b)

To solve for jerk in a fourbar linkage, for example, the vector loop equation for ac-
celeration (equation 7.7) is differentiated versus time. Refer to Figure 7-5 for notation.

—aco%’jej92 —2aw2(x2ej92 + aa2m2j2ej92 + a(pzjejez
- bo)gjej93 - 2bw3oc3ej93 + ba3m3j2eje3 + b(p3jeje3
+ cwijeje“ +Zcu)40c4ej94 - coc4034j2eje4 - ccp4jeje4 =0 (7.34a)
Collect terms and simplify:
—aw3 je’®2 —3aw,0,e/% +ag, je’®
- bu)%jej63 - 3bu)3oc3ej93 + b(p3jej63
+ cmijej64 + 3cu)40c4ej64 - C(p4jej64 =0 (7.34b)
Substitute the Euler identity and separate into x and y components:
real part (x component):
aw% sin®, —3aw, 0, cos0, —a, sind,
+ b3 sin 85 — 3bw30L; c0sB; — b sin B3

— co3 sinB, +3cm,0,4 c0sO, +cp, sinB, =0 (7.35a)
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TABLE P7-0 Part1
Topic/Problem Matrix

71 Definition of Acceler-

ation
7-1,7-2,7-10, 7-56
7.2 Graphical Accelera-
tion Analysis
Pin-Jointed Fourbar
7-3,7-14a, 7-21,
7-24,7-30, 7-33,
7-70a, 7-72a, 7-77
Fourbar Crank-Slider
7-5,7-13a, 7-27,7-36,
7-89, 7-91
Fourbar Slider-Crank
7-93
Other Fourbar 7-15a

Fivebar 7-79
Sixbar
7-52,7-53,7-61a,
7-63a, 7-65a, 7-75,
7-82

Eightbar 7-86

7.3 Analytic Solutions for
Acceleration Analysis

Pin-Jointed Fourbar
7-22,7-23,7-25,
7-26, 7-34, 7-35,
7-41, 7-46, 7-51,
7-70b, 7-71, 7-72b
Fourbar Crank-Slider

7-6,7-28, 7-29, 7-37,

7-38, 7-45, 7-50,
7-58, 7-90, 7-92
Fourbar Slider-Crank
7-94

Coriolis Acceleration
7-12, 7-20

Fourbar Inverted
Crank-Slider
7-7,7-8,7-16, 7-59
Other Fourbar
7-15b, 7-74

Fivebar 7-80, 7-81
Sixbar

7-17,7-18, 7-19,
7-48, 7-54, 7-61b,
7-62, 7-63b, 7-64,
7-65b, 7-66, 7-76,
7-83, 7-84, 7-85
Eightbar 7-67

DESIGN OF MACHINERY 6ed CHAPTER 7

imaginary part (y component):
—am3 cos 0, —3am,0, sin b, +ap, coso,
- bmg cos03 —3bw;013Sin O3 + b5 cosO;

+cm3 cosB, +3cm 0, sin0, —c@, cosO, =0 (7.35b)

These can be solved simultaneously for @3 and ¢4, which are the only unknowns.
The driving angular jerk, @,, if nonzero, must be known in order to solve the system. All
the other factors in equations 7.35 are defined or have been calculated from the position,
velocity, and acceleration analyses. To simplify these expressions we will set the known
terms to temporary constants.

In equation 7.35a, let:

D=bw3sin6,

A=am;sin®, G =3cw40,, cosBy

B=3aw,0, cos6, E =3bw;015 cos 03 H =csin®, (7.36a)
C=a@,sin0, F=cojsind, K =bsin0;
Equation 7.35a then reduces to:
A-B-C+D-E-F+G+H
03 = Pe (7.36b)

K

Note that equation 7.36b defines angle @3 in terms of angle ¢4. We will now simplify
equation 7.35b and substitute equation 7.36b into it.

In equation 7.35b, let:
S=cwm} cos,

L= a3 cos0, P =bw3 cos6;,

M =3am,0., sin0, Q=3bw;01;5in06; T =3cm,0,sin0, (7.37a)
N =ag@, cosb, R=bcos0; U =ccosb,
Equation 7.35b then reduces to:
Ro;~U@,~L-M+N—-P-Q+S+T=0 (7.37b)

Substituting equation 7.36b in equation 7.35b:

R(A—B—C+D—E—F+G+H(p4

- ]—Uq)4—L—M+N—P—Q+S+T:0 (7.38)

The solution is:

_ KN-KL-KM—-KP-KQ+AR—-BR-CR+DR—ER-FR+GR+KS+KT
KU - HR

Py (7.39)

The result from equation 7.39 can be substituted into equation 7.36b to find @3. Once

the angular jerk values are found, the linear jerk at the pin joints can be found from:
Ju= —am%jej62 —3au)20c2ej92 +a(p2jej92
Jpa = —bov)gjej63 - 3bm3(x3eje3 + b(|>3jej63 (7.40)

T =—cwlje’® —3cm,o,e +co,jel%
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The same approach as used in Section 7.5 to find the acceleration of any point on any
link can be used to find the linear jerk at any point.

Jp=J,+7J 7.41
P=JAaTdpa

The jerk difference equation 7.41 can be applied to any point on any link if we let P
represent any arbitrary point on any link and A represent any reference point on the same
link for which we know the value of the jerk vector. Note that if you substitute equations
7.40 into 7.41, you will get equation 7.34.

78 LINKAGES OF N BARS

The same analysis techniques presented here for position, velocity, acceleration, and jerk,
using the fourbar and fivebar linkage as the examples, can be extended to more complex
assemblies of links. Multiple vector loop equations can be written around a linkage of
arbitrary complexity. The resulting vector equations can be differentiated and solved
simultaneously for the variables of interest. In some cases, the solution will require
simultaneous solution of a set of nonlinear equations. A root-finding algorithm such as
the Newton-Raphson method will be needed to solve these more complicated cases. A
computer is necessary. An equation solver software package such as TKSolver or Mathcad
that will do an iterative root-finding solution will be a useful aid to the solution of any of
these analysis problems, including the examples shown here.
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710 PROBLEMSS

7-1 A point at a 6.5-in radius is on a body that is in pure rotation with ® = 100 rad/sec and
a constant o, = —500 rad/sec? at point A. The rotation center is at the origin of a coordi-
nate system. When the point is at position A, its position vector makes a 45° angle with
the X axis. It takes 0.01 sec to reach point B. Draw this system to some convenient
scale, calculate the 6 and ® of position B, and:

a.  Write an expression for the particle’s acceleration vector in position A using complex
number notation, in both polar and cartesian forms.

b.  Write an expression for the particle’s acceleration vector in position B using complex
number notation, in both polar and cartesian forms.

c.  Write a vector equation for the acceleration difference between points B and A.
Substitute the complex number notation for the vectors in this equation and solve
for the acceleration difference numerically.

d.  Check the result of part ¢ with a graphical method.

7-2 In problem 7-1 let A and B represent points on separate, rotating bodies both having the
given wand o att =0, 04 =45°, andOp = 120°. Find their relative acceleration.

*7-3  The link lengths, coupler point location, and the values of 85, @, and o for the same
fourbar linkages as used for position and velocity analysis in Chapters 4 and 6 are
redefined in Table P7-1, which is basically the same as Table P6-1. The general link-
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TABLE P7-0 Part 2
Topic/Problem Matrix

7.5 Acceleration of Any
Point on a Linkage

Pin-Jointed Fourbar
7-4,7-13b, 7-14b,
7-31, 7-32,7-39,
7-40, 7-42, 7-43,
7-44,7-49, 7-55,
7-68, 7-70b, 7-71,
7-72b,7-73,7-78
Other Fourbar
7-15b, 7-47
Geared Fivebar
7-9, 7-60
Sixbar
7-69, 7-87, 7-88
77 Jerk
7-11, 7-57

§ All problem figures are
provided as PDF files, and
some are also provided as
animated Working Model
files. PDF filenames are the
same as the figure number.
Run the file Animations.
html to access and run the
animations.

* Answers in Appendix F.
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* Answers in Appendix F.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

DESIGN OF MACHINERY 6ed CHAPTER 7

TABLE P7-1 Data for Problems 7-3, 7-4, and 7-11%

Row Link1 Link2 Link3 Link4 0, [a)) oy Rpa 83
a 6 2 7 9 30 10 0 6 30
b 7 9 3 8 85 -12 5 9 25
c 3 10 6 8 45 -15 -10 10 80
d 8 5 7 6 25 24 -4 5 45
e 8 5 8 6 75 =50 10 9 300
f 5 8 8 9 15 —45 50 10 120
g 6 8 8 9 25 100 18 4 300
h 20 10 10 10 50 -65 25 6 20
i 4 5 2 5 80 25 -25 9 80
j 20 10 5 10 33 25 —-40 1 0
k 4 6 10 7 88 -80 30 10 330
/ 9 7 10 7 60 -90 20 5 180
m 9 7 i 8 50 75 -5 10 90
n 9 7 il 6 120 15 - 65 15 60

iDrawings of these linkages are in the PDF Problem Workbook folder.

FIGURE P7-1
Configuration and terminology for Problems 7-3, 7-4, and 7-11

“17-4
“1-5

*7-6

age configuration and terminology are shown in Figure P7-1. For the row(s) assigned,
draw the linkage to scale and graphically find the accelerations of points A and B. Then
calculate o3 and o4 and the acceleration of point P.

Repeat Problem 7-3, solving by the analytical vector loop method of Section 7.3.

The link lengths and offset and the values of 8, m,, and o, for some noninverted,
offset fourbar crank-slider linkages are defined in Table P7-2. The general linkage con-
figuration and terminology are shown in Figure P7-2. For the row(s) assigned, draw
the linkage to scale and graphically find the accelerations of the pin joints A and B and
the acceleration of slip at the sliding joint.

Repeat Problem 7-5 using an analytical method.
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TABLE P7-2 Data for Problems 7-5 to 7-6 and 7-587F

Row Link 2 Link 3 Offset 0> (O} 02
a 14 4 1 45 10 0
b 2 6 -3 60 -12 5
c 3 8 2 -30 -15 -10
d 35 10 1 120 24 4
e 5 20 -5 225 -50 10
f 3 13 0 100 - 45 50
g 7 25 10 330 100 18

iDrawings of these linkages are in the PDF Problem Workbook folder.

o, VA
Y B
A N
Link 3
’ E A
2 Offset /<\
Link 2 02 84 = 90°
\ 1
0, Slider position d, d, d

FIGURE P7-2
Configuration and terminology for Problems 7-5 to 7-6, 7-58, and 7-93 to 7-94

177

*17-8
*7-9

77-10

The link lengths and the values of 85, ®,, and y for some inverted fourbar crank-slider
linkages are defined in Table P7-3. The general linkage configuration and terminology
are shown in Figure P7-3. For the row(s) assigned, find accelerations of the pin joints
A and the acceleration of slip at the sliding joint. Solve by the analytical vector loop
method of Section 7.3 for the open configuration of the linkage.

Repeat Problem 7-7 for the crossed configuration of the linkage.

The link lengths, gear ratio (L), phase angle (0), and the values of 6,, ®,, and o, for
some geared fivebar linkages are defined in Table P7-4. The general linkage configura-
tion and terminology are shown in Figure P7-4. For the row(s) assigned, find o3 and
o4 and the linear acceleration of point P.

An automobile driver took a curve too fast. The car spun out of control about its center
of gravity (CG) and slid off the road in a northeasterly direction. The friction of the
skidding tires provided a 0.25 g linear deceleration. The car rotated at 100 rpm. When
the car hit the tree head-on at 30 mph, it took 0.1 sec to come to rest.

a.  What was the acceleration experienced by the child seated on the middle of the rear
seat, 2 ft behind the car’s CG, just prior to impact?
b.  What force did the 100-Ib child exert on her seatbelt harness as a result of the
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* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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TABLE P7-3 Data for Problems 7-7 to 7-8 and 7-59

Row Link 1 Link 2 Link 4 Y 53 [a)) oo
a 6 2 4 90 30 10 -25
b 7 9 3 75 85 -15 -40
c 3 10 6 45 45 24 30
d 8 3 60 25 -50 20
e 8 2 30 75 -45 -5
f 5 8 8 90 150 100 -65

0
Y 3
A 04
y
Y
B
3
/ x
A Ve
;- i
4
2 - R
0 / P B
(O)) /92
Il »
: = X
0, 1 L Oy
FIGURE P7-3

Configuration and terminology for Problems 7-7 to 7-8 and 7-59

7-11

* Answers in Appendix F.

 These problems are suited

to solution using Mathcad, *7-12
Matlab, or TKSolver equa-

tion solver programs.

7-13

7-14

acceleration, just prior to impact?
c.  Assuming a constant deceleration during the 0.1 sec of impact, what was the mag-
nitude of the average deceleration felt by the passengers in that interval?

For the row(s) assigned in Table P7-1, find the angular jerk of links 3 and 4 and the
linear jerk of the pin joint between links 3 and 4 (point B). Assume an angular jerk of
zero on link 2. The linkage configuration and terminology are shown in Figure P7-1.

You are riding on a carousel that is rotating at a constant 12 rpm. It has an inside
radius of 4 ft and an outside radius of 12 ft. You begin to run from the inside to the
outside along a radius. Your peak velocity with respect to the carousel is 4 mph and
occurs at a radius of 8 ft. What are your maximum Coriolis acceleration magnitude
and its direction with respect to the carousel?

The linkage in Figure P7-5a has O,A = 0.8, AB = 1.93, AC = 1.33, and

offset = 0.38 in. The crank angle in the position shown is 34.3° and angle BAC =
38.6°. Find o3, As, A, and A for the position shown for w, = 15 rad/sec and oy = 10
rad/sec? in directions shown:

a. Using the acceleration difference graphical method.
b. Using an analytical method.

The linkage in Figure P7-5b has /15A = 0.75, AB = 1.5, and AC = 1.2 in. The effective
crank angle in the position shown is 77° and angle BAC = 30°. Find o ,A , A , and



ACCELERATION ANALYSIS 391

TABLE P7-4 Data for Problem 7-9 and 7-60

Row Link 1 Link 2 Link 3 Link 4 Link 5 A ] 0> (05 [¢3) Rpa 33
a 6 1 7 9 4 2.0 30 60 10 0 6 30
b 6 5 7 8 4 -25 60 30 -12 5 9 25
c 3 5 7 8 4 -05 0 45 -15 -10 10 80
d 4 5 7 8 4 -10 120 75 24 -4 5 45
e 5 9 1 8 8 32 -50 -39 -50 10 9 300
f 10 2 7 5 3 1.5 30 120 -45 50 10 120
g 15 7 9 " 4 25 -90 75 100 18 4 300
h 12 8 7 9 4 -25 60 55 -65 25 6 20
i 9 7 8 9 4 -4.0 120 100 25 -25 9 80

po ¥ B r
= i _

Gear ratio: )\
s

Phase angle: ¢ = 65 — A9,

4
y
93 )/_\
04
y
c |
A x X
i A
o 7 2 \ o) &
‘ |
. ¢
: /r

/o

r, rs

FIGURE P7-4

Configuration and terminology for Problems 7-9 and 7-60

7-15

7-16

A for the position shown for @, = 15 rad/sec and o, = 10 rad/sec? in the directions
shown:

a. Using the acceleration difference graphical method.

b. Using an analytical method. (Hint: Create an effective linkage for the position
shown and analyze it as a pin-jointed fourbar.)

The linkage in Figure P7-5c has AB = 1.8 and AC = 1.44 in. The angle of AB in the

position shown is 128° and angle BAC = 49°. The slider at B is at an angle of 59°.

Find 013, Ag, and A for the position shown for V4 = 10 in/sec and A4 = 15 in/sec? in

the directions shown:

a. Using the acceleration difference graphical method.
b. Using an analytical method.

The linkage in Figure P7-6a has OA = 5.6, AB=9.5, 04C =9.5,L; =388 mm. 6is  f These problems are suited
135° in the xy coordinate system. Write the vector loop equations; differentiate them, to solution using Marthcad,
and do a complete position, velocity, and acceleration analysis of the linkage. Assume Matlab, or TKSolver equa-
@, = 10 rad/sec and o, = 20 rad/sec?. tion solver programs.
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4
Assume rolling contact c 1 C
B
A
\Y 2 A
(a) (b) (c)

FIGURE P7-5
Problems 7-13 to 7-15

7-17 Repeat Problem 7-16 for the linkage shown in Figure P7-6b which has the dimensions:

" These problems are suited L1 =619,1,=15 L3 =458, Ly=18.1, Ls = 23.1 mm. 6, is 68.3° in the xy coordi-
to solution using Mathcad, nate system, which is at —23.3° in the XY coordinate system. The X component of O,C
Matlab, or TKSolver equa- is 59.2 mm.
tion solver programs.

7-18 Repeat Problem 7-16 for the linkage shown in Figure P7-6¢ which has the dimensions:

0A =117, 0,C =20, L3y =25, Ls = 25.9 mm. Point B is offset 3.7 mm from the x;
axis and point D is offset 24.7 mm from the x axis. 6, is at 13.3° in the x,y; coordi-
nate system.

7-19  Repeat Problem 7-16 for the linkage shown in Figure P7-6d which has the dimensions:
Ly, =15,L3=40.9, Ls =44.7 mm. 0, is 24.2° in the XY coordinate system.

FIGURE P7-6
Problems 7-16 to 7-19
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Viiip velocity diagram
D gcale 1 in =1 in/sec
Ve
FIGURE P7-7
Problem 7-20

7-20 Figure P7-7 shows a sixbar linkage with O,B =1, BD = 1.5, DC = 3.5, DOg = 3, and
h = 1.3 in. Find the angular acceleration of link 6 if ®, is a constant 1 rad/sec.

*7-21 The linkage in Figure P7-8a has link 1 at —25° and link 2 at 37° in the global XY co-
ordinate system. Find oy, A4, and Ap in the global coordinate system for the position
shown if @, = 15 rad/sec CW and o, = 25 rad/sec? ccw. Use the acceleration differ-
ence graphical method. (Print the figure from its PDF file and draw on it.)

77-22  The linkage in Figure P7-8a has link 1 at —25° and link 2 at 37° in the global XY co-
ordinate system. Find oy, A4, and Ap in the global coordinate system for the position
shown if m, = 15 rad/sec CW and o, = 25 rad/sec? cCW. Use an analytical method.

77-23  Att = 0, the non-Grashof linkage in Figure P7-8a has link 1 at —25° and link 2 at 37°

“7-24

77-25

77-26

7-27

1728

in the global XY coordinate system and ®m, = 0. Write a computer program or use an
equation solver to find and plot wy, 014, V4, Ay, Vp, and Ap in the local coordinate
system for the maximum range of motion that this linkage allows if o = 15 rad/sec
CW constant.

The linkage in Figure P7-8b has link 1 at —36° and link 2 at 57° in the global XY co-
ordinate system. Find oy, Ay, and Ap in the global coordinate system for the position
shown if m, = 20 rad/sec CCW, constant. Use the acceleration difference graphical
method. (Print the figure from its PDF file and draw on it.)

The linkage in Figure P7-8b has link 1 at —36° and link 2 at 57° in the global XY co-
ordinate system. Find oy, A4, and Ap in the global coordinate system for the position
shown if ®, = 20 rad/sec CCW, constant. Use an analytical method.

For the linkage in Figure P7-8b, write a computer program or use an equation solver to
find and plot 0y, A4, and Ap in the local coordinate system for the maximum range of
motion that this linkage allows if m, = 20 rad/sec CCW, constant.

The offset crank-slider linkage in Figure P7-8f has link 2 at 51° in the global XY coor-
dinate system. Find A4 and Ap in the global coordinate system for the position shown
if my =25 rad/sec CW, constant. Use the acceleration difference graphical method.
(Print the figure from its PDF file and draw on it.)

The offset crank-slider linkage in Figure P7-8f has link 2 at 51° in the global XY coordi-
nate system. Find A4 and Ap in the global coordinate system for the position shown if
m, = 25 rad/sec CW, constant. Use an analytical method.
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

* Answers in Appendix F.
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L1 =162 Ly =40
Ly=122 L3 =96

(a) Fourbar linkage (b) Fourbar linkage (c) Radial compressor

View as a video
http://www.designofmachinery.com/DOM/radial_engine.avi

Ly =150 L, =30 [L—= ) [T
L3=150L4=30 box >02 5

0,4=0,C=20
0,B=0,D =20
0,E=0,G =30
Oy F=0gH = 30

all dimensions in mm ‘

View as a video
http://www.designofmachinery.com/DOM/walking beam.avi

(d) Walking-beam conveyor (e) Bellcrank mechanism (f) Offset slider-crank
- 229 —»|e— 229 —»
Ly =458
Ly =87
P A L, =198
L2 oo L3=19.4
e 53 fgg/@ L4=383
s = 100 &’% 5=
Io= 153 V fr=133
6= Lg=198
View as a video y D 4 E\O Lo=194
http://www.
designofmachin- ) ‘ %
ery.com/DOM/ X | |=—451typ.
drum_brake.avi  (g) Drum brake mechanism (h) Symmetrical mechanism
View as a video
FIGURE P7-8 http://www.designofmachinery.com/DOM/compression_chamber.avi

Problems 7-21to 7-38
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7-29

7-30

7-31

7-32

7-33

7-34

7-35

7-36

7-37

7-38

*17-39

*17-40

“7-41

For the offset crank-slider linkage in Figure P7-8f, write a computer program or use
an equation solver to find and plot A4 and Ap in the global coordinate system for the
maximum range of motion that this linkage allows if w; = 25 rad/sec CW, constant.

The linkage in Figure P7-8d has link 2 at 58° in the global XY coordinate system. Find
Ay, Ap, and Ay, (the acceleration of the box) in the global coordinate system for the po-
sition shown if @, = 30 rad/sec CW, constant. Use the acceleration difference graphical
method. (Print the figure from its PDF file and draw on it.)

The linkage in Figure P7-8d has link 2 at 58° in the global XY coordinate system. Find
Ay, Ap, and Ay, (the acceleration of the box) in the global coordinate system for the
position shown if 0, = 30 rad/sec CW, constant. Use an analytical method.

For the linkage in Figure P7-8d, write a computer program or use an equation solver
to find and plot A4, Ap, and Ay, (the acceleration of the box) in the global coordinate
system for the maximum range of motion that this linkage allows if w, = 30 rad/sec
CW, constant.

The linkage in Figure P7-8¢g has the local xy axis at —119° and O,A at 29° in the global
XY coordinate system. Find oy, A4, and Ap in the global coordinate system for the
position shown if 0, = 15 rad/sec CW, constant. Use the acceleration difference
graphical method. (Print the figure from its PDF file and draw on it.)

The linkage in Figure P7-8¢g has the local xy axis at —119° and O,A at 29° in the global
XY coordinate system. Find oy, A4, and Ap in the global coordinate system for the
position shown if 0, = 15 rad/sec CW and o, = 10 rad/sec CCW, constant. Use an
analytical method.

At t = 0, the non-Grashof linkage in Figure P7-8g has the local xy axis at —119° and
0,A at 29° in the global XY coordinate system and ®; = 0. Write a computer program
or use an equation solver to find and plot my, 04, V4, A4, Vg, and Ap in the local coor-
dinate system for the maximum range of motion that this linkage allows if o, = 15 rad/
sec CCW, constant.

The 3-cylinder radial compressor in Figure P7-8c has its cylinders equispaced at
120°. Find the piston accelerations Ag, A7, Ag with the crank at —53° using a graphical
method if 0, = 15 rad/sec CW, constant. (Print the figure’s PDF file and draw on it.)

The 3-cylinder radial compressor in Figure P7-8c has its cylinders equispaced at 120°.
Find the piston accelerations Ag, A7, Ag with the crank at —53° using an analytical
method if , = 15 rad/sec CW, constant.

For the 3-cylinder radial compressor in Figure P7-8f, write a program or use an equa-
tion solver to find and plot the piston accelerations Ag, A7, Ag for one revolution of the
crank.

Figure P7-9 shows a linkage in one position. Find the instantaneous accelerations of
points A, B, and P if link O,A is rotating CW at 40 rad/sec.

Figure P7-10 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the acceleration
of the coupler point P at 2° increments of crank angle for w, = 100 rpm. Check your
result with program LINKAGES.

Figure P7-11 shows a linkage that operates at 500 crank rpm. Write a computer
program or use an equation solver to calculate and plot the magnitude and direction

395

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P7-9
Problem 7-39

* Answers in Appendix F.
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396
L’_) = 1 0
FIGURE P7-10
Problem 7-40 A fourbar linkage with a double straight-line coupler curve
o; of the acceleration of point B at 2° increments of crank angle. Check your result with
m

program LINKAGES.

*¥7-42  Figure P7-12 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the accelera-
tion of the coupler point P at 2° increments of crank angle for ®, = 20 rpm over the

maximum range of motion possible. Check your result with program LINKAGES.

rocker
\7.187" 77-43  Figure P7-13 shows a linkage and its coupler curve. Write a computer program or use
ground AN an equation solver to calculate and plot the magnitude and direction of the acceleration
9.625" ’ of the coupler point P at 2° increments of crank angle for w, = 80 rpm over the maxi-
@ -43° mum range of motion possible. Check your result with program LINKAGES.
04 *¥7-44  Figure P7-14 shows a linkage and its coupler curve. Write a computer program or use
View as a video an equation solver to calculate and plot the magnitude and direction of the accelera-
http://www.designof- tion of the coupler point P at 2° increments of crank angle for @, = 80 rpm over the
machinery.com/DOM/ maximum range of motion possible. Check your result with program LINKAGES.
loom_laybar_drive.avi
77-45  Figure P7-15 shows a power hacksaw, used to cut metal. Link 5 pivots at Os and its

FIGURE P7-11

Problem 7-41 Loom
laybar drive

weight forces the sawblade against the workpiece while the linkage moves the blade
(link 4) back and forth on link 5 to cut the part. It is an offset crank-slider mechanism

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P7-12
Problem 7-42
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FIGURE P7-13
Problem 7-43

with the dimensions shown in the figure. Draw an equivalent linkage diagram, and
then calculate and plot the acceleration of the sawblade with respect to the piece being
cut over one revolution of the crank at 50 rpm.

77-46  Figure P7-16 shows a walking-beam indexing and pick-and-place mechanism that can be T These problems are suited
analyzed as two fourbar linkages driven by a common crank. The link lengths are given to solution using Marhcad,
in the figure. The phase angle between the two crankpins on links 4 and 5 is indicated. Matlab, or TKSolver equa-
The product cylinders being pushed have 60-mm diameters. The point of contact between  tion solver programs.
the left vertical finger and the leftmost cylinder in the position shown is 58 mm at 80°
versus the left end of the parallelogram's coupler (point D). Calculate and plot the relative
acceleration between points E and P for one revolution of gear 2.

77-47  Figure P7-17 shows a paper roll off-loading mechanism driven by an air cylinder. In
the position shown O4A is 0.3 m at 226° and 0,04 = 0.93 m at 163.2°. The V-links
are rigidly attached to O4A. The paper roll center is 0.707 m from Oy4 at —181° with
respect to O4A. The air cylinder is retracted at a constant acceleration of 0.1 m/sec2.
Draw a kinematic diagram of the mechanism, write the necessary equations, and calcu-
late and plot the angular acceleration of the paper roll and the linear acceleration of its
center as it rotates through 90° cCW from the position shown.

FIGURE P7-14
Problem 7-44
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/ C
4 S \777 Ly =75 mm
W5 : L3=170 mm

workpiece
View as a video
FIGURE P7-15 http://www.designofmachinery.com/DOM/power_hacksaw.avi
Problem 7-45 Power hacksaw
7-48  Figure P7-18 shows a mechanism and its dimensions. Find the accelerations of points
7 A, B, and C for the position shown if m, = 40 rad/min and oy, = —1500 rad/min? as
shown.

7-49  Figure P7-19 shows a walking-beam mechanism. Calculate and plot the acceleration

 These problems are suited . . .
P Ay for one revolution of the input crank 2 rotating at 100 rpm.

to solution using Mathcad,
Matlab, or TKSolver equa- 7-50

Figure P7-20 shows a surface grinder. The workpiece is oscillated under the spinning
tion solver programs.

90-mm-diameter grinding wheel by the crank-slider linkage which has a 22-mm crank,
a 157-mm connecting rod, and a 40-mm offset. The crank turns at 30 rpm, and the

View as a video
http://www.designofmachinery.com/ X=- -0
DOM/pick_and_place.avi i

product

Gear Ratio = -1

0,A =0,D = 40 \
0,0, =108 L3=108 -
O5B = 13 = eccentric radius "
0sC=92 L7=CB=193
O6E=164 0405=128 | o X =< g

eccentric on gear 5 — =Y

all dimensions in mm

185 ——————»

FIGURE P7-16 Section X-X

Problem 7-46 Walking-beam indexer with pick-and-place mechanism
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I'm .. V-links (4)

paper
rolling .
machine

............

|

off-loading station x air cylinder (2)
FIGURE P7-17

Problem 7-47

3.25in

Ly =0.80 in
Ly=2.97

Ls=2.61

0, =241°

0,04 =1.85@ 278.5°

FIGURE P7-18
Problem 7-48
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FIGURE P7-19 http://www.designofmachinery.com/DOM/walking_beam_eight-bar.avi

Problem 7-49 Straight-line walking-beam eightbar transport mechanism

grinding wheel turns at 3450 rpm. Calculate and plot the acceleration of the grinding
wheel contact point relative to the workpiece over one revolution of the crank.

¥7-51 Figure P7-21 shows a drag link mechanism with dimensions. Write the necessary
equations and solve them to calculate the angular acceleration of link 4 for an input of
w, = 1 rad/sec. Comment on uses for this mechanism.

7-52  Figure P7-22 shows a mechanism with dimensions. Use a graphical method to calculate
the accelerations of points A, B, and C for the position shown. ®, = 20 rad/sec.

7-53  Figure P7-23 shows a quick-return mechanism with dimensions. Use a graphical
method to calculate the accelerations of points A, B, and C for the position shown. ®;
= 10 rad/sec.

¥7-54  Figure P7-23 shows a quick-return mechanism with dimensions. Use an analytical
method to calculate the accelerations of points A, B, and C for one revolution of the
input link. @, = 10 rad/sec.

View as a video
http://www.designofmachinery.com/

DOM/surface_grinder.avi ®

grinding wheel \_5 \/(DS&

‘ Workpie;er ‘

+ F table 4 ﬁ

ffset 4
OI1Se /2 \\
/> 7

02\

S

FIGURE P7-20
Problem 7-50 A surface grinder
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Ly =0.68in
L, =138 in
Ly=122in
Ly=1.62in

FIGURE P7-21
Problem 7-51

77-55  Figure P7-24 shows a drum-pedal mechanism. O,A = 100 mm at 162° and rotates to
171°atA’. 0,04 =56 mm, AB =28 mm, AP = 124 mm, and O4B = 64 mm. The
distance from Oy to Fj, is 48 mm. If the input velocity V;, is a constant magnitude of 3
m/sec, find the output acceleration over the range of motion.

*7-56 A tractor-trailer tipped over while negotiating an on-ramp to the New York Thruway.
The road has a 50-ft radius at that point and tilts 3° toward the outside of the curve.
The 45-ft-long by 8-ft-wide by 8.5-ft-high trailer box (13 ft from ground to top) was
loaded with 44 415 1b of paper rolls in two rows by two layers as shown in Figure
P7-25. The rolls are 40 in diameter by 38 in long, and weigh about 900 Ib each. They
are wedged against backward rolling but not against sideward sliding. The empty

s Ly=135in 0, = 14°
o Ly=136 06 = 88°

06 |-&A Ls=2.69 0,0, =1.22@ 56.5°
Lg =180 0604 =3.86@ 33°

FIGURE P7-22
Problems 7-52 and 7-89 to 7-90

401

drum

T04 0,

View as a video
http://www.designofma-
chinery.com/DOM/drum_
pedal.avi

FIGURE P7-24
Problem 7-55

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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Q)| B
5 4
6 @;

C
Ly=1.00in
Ly=4.776 2.86 in
Ls =455
0, =99°
040, =1.69 @ 15.5°

7
. FIGURE P7-23

Problems 7-53 to 7-54 and 7-91to 7-92

trailer weighed 14 000 1b. The driver claims that he was traveling at less than 15 mph
and that the load of paper shifted inside the trailer, struck the trailer sidewall, and tipped
the truck. The paper company that loaded the truck claims the load was properly stowed
and would not shift at that speed. Independent tests of the coefficient of friction between
similar paper rolls and a similar trailer floor give a value of 0.43 + 0.08. The composite
center of gravity of the loaded trailer is estimated to be 7.5 ft above the road. Determine
the truck speed that would cause the truck to just begin to tip and the speed at which the
rolls will just begin to slide sideways. What do you think caused the accident?

FIGURE P7-25
Problem 7-56
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7-57  Figure P7-26 shows a V-belt drive. The sheaves have pitch diameters of 150 and 300

mm, respectively. The smaller sheave is driven at a constant 1750 rpm. For a cross-
sectional differential element of the belt, write the equations of its acceleration for one
complete trip around both sheaves including its travel between the sheaves. Compute
and plot the acceleration of the differential element versus time for one circuit around
the belt path. What does your analysis tell about the dynamic behavior of the belt?
Relate your findings to your personal observation of a belt of this type in operation.
(Look in your school’s machine shop or under the hood of an automobile—but mind
your fingers!)

7-58  Write a program using an equation solver or any computer language to solve for the

displacements, velocities, and accelerations in an offset crank-slider linkage as shown
in Figure P7-2. Plot the variation in all links’ angular and all pins’ linear positions,
velocities, and accelerations with a constant angular velocity input to the crank over
one revolution for both open and crossed configurations of the linkage. To test the pro-
gram, use data from row a of Table P7-2. Check your results with program LINKAGES.

7-59  Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-

Solver to solve for the displacements, velocities, and accelerations in an inverted crank-
slider linkage as shown in Figure P7-3. Plot the variation in all links’” angular and all
pins’ linear positions, velocities, and accelerations with a constant angular velocity
input to the crank over one revolution for both open and crossed configurations of the
linkage. To test the program, use data from row e of Table P7-3 except for the value of
oy which will be set to zero for this exercise.

7-60  Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-

7-61

Solver to solve for the displacements, velocities, and accelerations in a geared fivebar
linkage as shown in Figure P7-4. Plot the variation in all links’ angular and all pins’
linear positions, velocities, and accelerations with a constant angular velocity input to
the crank over one revolution for both open and crossed configurations of the link-
age. To test the program, use data from row a of Table P7-4 . Check your results with
program LINKAGES.

Find the acceleration of the slider in Figure 3-33 for the position shown if 6, = 110°
with respect to the global X axis assuming a constant ®, = 1 rad/sec CW:

a. Using a graphical method. fb.  Using an analytical method.

7-62  Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-

Solver to calculate and plot the angular acceleration of link 4 and the linear acceleration
of slider 6 in the sixbar crank-slider linkage of Figure 3-33 as a function of the angle

of input link 2 for a constant w, = 1 rad/sec CW. Plot A, both as a function of 6, and
separately as a function of slider position as shown in the figure.

7-63  Find the angular acceleration of link 6 of the linkage in Figure 3-34 part (b) for the position

shown (B = 90° with respect to the x axis) assuming constant o, = 10 rad/sec CW:

a.  Using a graphical method. fb.  Using an analytical method.

7-64  Write a computer program or use an equation solver such as Mathcad, Matlab, or

TKSolver to calculate and plot the angular acceleration of link 6 in the sixbar linkage of
Figure 3-34 as a function of 0, for a constant m, = 1 rad/sec CW.

7-65 Use a compass and straightedge (ruler) to draw the linkage in Figure 3-35 with link 2

at 90° and find the angular acceleration of link 6 of the linkage assuming constant w, =
10 rad/sec cCW when 6, = 90°:

a.  Using a graphical method. fb.  Using an analytical method.

403

FIGURE P7-26

Problem 7-57

V-belt drive Courtesy of
T.B. Wood'’s Sons Co.,
Chambersburg, PA

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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7-66

7-67

7-68

77-69
7-70

7-71

7-72

7-73

7-74

7-75

*7-76

7-77

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the angular acceleration of link 6 in the sixbar linkage of
Figure 3-35 as a function of 6, for a constant , = 1 rad/sec CCW.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular acceleration of link 8 in the linkage of Figure
3-36 as a function of 6, for a constant w, = 1 rad/sec CCW.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot magnitude and direction of the acceleration of point P
in Figure 3-37a as a function of 6,. Also calculate and plot the acceleration of point P
versus point A.

Repeat Problem 7-68 for the linkage in Figure 3-37b.

Find the angular accelerations of links 3 and 4 and the linear accelerations of points A,
B, and P in the XY coordinate system for the linkage in Figure P7-27 in the position
shown. Assume that 6, = 45° in the XY coordinate system and ®m, = 10 rad/sec, con-
stant. The coordinates of the point P on link 4 are (114.68, 33.19) with respect to the
xy coordinate system:

a.  Using a graphical method. fb.  Using an analytical method.

Using the data from Problem 7-70, write a computer program or use an equation solver
such as Mathcad, Matlab, or TKSolver to calculate and plot magnitude and direction of
the absolute acceleration of point P in Figure P7-27 as a function of 0,.

Find the angular accelerations of links 3 and 4, and the linear acceleration of point P in the
XY coordinate system for the linkage in Figure P7-28 in the position shown. Assume that
0, =-94.121° in the XY coordinate system, 0, = 1 rad/sec, and oy = 10 rad/sec2. The
position of the coupler point P on link 3 with respect to point A is: p = 15.00, 83 = 0°:

a.  Using a graphical method. b Using an analytical method.

For the linkage in Figure P7-28, write a computer program or use an equation solver
such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity and
acceleration of links 2 and 4, and the magnitude and direction of the velocity and ac-
celeration of point P as a function of 0, through its possible range of motion starting at
the position shown. The position of the coupler point P on link 3 with respect to point
Ais: p=15.00, 83 = 0°. Assume that, @ t =0, 8, = -94.121° in the XY coordinate
system, @, = 0, and oy = 10 rad/sec?, constant.

Derive analytical expressions for the accelerations of points A and B in Figure P7-29
as a function of 03 , 3, a3, and the length AB of link 3. Use a vector loop equation.
Code them in an equation solver or a programming language and plot them.

The linkage in Figure P7-30a has link 2 at 120° in the global XY coordinate system.
Find 04 and Ap in the global coordinate system for the position shown if @, = 10 rad/
sec CCW and o) = 50 rad/sec2 CW. Use the acceleration difference graphical method.
(Print the figure from its PDF file and draw on it.)

The linkage in Figure P7-30a has link 2 at 120° in the global XY coordinate system.
Find 04 and Ap in the global coordinate system for the position shown if @, = 10 rad/
sec CCW and 0, = 50 rad/sec2 CW. Use an analytical method.

The linkage in Figure P7-30b has link 3 perpendicular to the X axis and links 2 and 4
are parallel to each other. Find oy, A, Ap, and Ap if @, = 15 rad/sec CW and o, =
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View as a video

http://www.designot-
machinery.com/DOM/
oil_pump.avi

80

76
12

T

FIGURE P7-27
Problems 7-70 to 7-71 An oil field pump—dimensions in inches

100 rad/ sec2 CW. Use the acceleration difference graphical method. (Print the figure
from its PDF file and draw on it.)

The linkage in Figure P7-30b has link 3 perpendicular to the X axis and links 2 and 4
are parallel to each other. Find oy, Ay, Ap, and Ap if @, = 15 rad/sec CW and o, =

100 rad/sec2 CW. Use an analytical method.

“7-78

9.573

FIGURE P7-28
Problems 7-72 and 7-73 An aircraft overhead bin mechanism—dimensions in inches
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View as a video
http://www.designof-
machinery.com/DOM/

elliptic_trammel.avi

FIGURE P7-29

Elliptical trammel
Problem 7-74

* Answers in Appendix F.
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§ Note that these can be
long problems to solve and
may be more appropriate for
a project assignment than

an overnight problem. In
most cases, the solution can
be checked with program

LINKAGES.

* Answers in Appendix F.

7-79

7-80

§7-81

7-82

7-83

7-84

787-85

7-86

*7-87

§7-88

7-89

The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2
and 5. Find Ap, Ap,, and Ap, if the crossheads are each moving toward the origin of the
XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec2. Use

the acceleration difference method. (Print the figure from its PDF file and draw on it.)

The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2
and 5. Find Ap, Ap,, and Ap, if the crossheads are each moving toward the origin of
the XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec?.
Use an analytical method.

The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2
and 5. Att =0, crosshead 2 is at rest at the origin of the global XY coordinate system
and crosshead 5 is at rest at (70, 0). Write a computer program to find and plot Ap, and
Ap, for the first 5 sec of motion if Ay = 0.5 in/sec? upward and A5 = 0.5 in/sec? to the
left.

The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis
and link 2 aligned with the global X axis. Find o and A4 in the position shown if the
velocity of the slider is constant at 20 in/sec downward. Use the acceleration difference
graphical method. Print the figure’s PDF file and draw on it.

The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis
and link 2 aligned with the global X axis. Find o, and A4 in the position shown if the
velocity of the slider is constant at 20 in/sec downward. Use an analytical method.

The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis
and link 2 aligned with the global X axis at r = 0. Write a computer program or use an
equation solver to find and plot Ap as a function of 0, over the possible range of mo-
tion of link 2 in the global XY coordinate system.

For the linkage of Figure P7-30e, write a computer program or use an equation solver
to find and plot Ap in the global coordinate system for one revolution of link 2 if ®; is
constant at 10 rad/sec CW.

The linkage of Figure P7-30f has link 2 at 130° in the global XY coordinate system.
Find Ap in the global coordinate system for the position shown if m, = 15 rad/sec CW
and oy = 50 rad/sec? CW. Use the acceleration difference graphical method. (Print the
figure from its PDF file and draw on it.)

Figure 3-14 shows a crank-shaper quick-return mechanism with the dimensions: L =
4.80in, Ly = 24.00 in, Ls = 19.50 in. The distance from link 4’s pivot (Oy) to link 2’s
pivot (O,) is 16.50 in. The vertical distance from O, to point C on link 6 is 6.465 in.
Use a graphical method to find the acceleration of point C on link 6 when the linkage is
near the rightmost position shown with 8, = 45° measured from an axis running from
an origin at O, through O4. Assume that link 2 has a constant angular velocity of 2
rad/sec CW.

Use the data in Problem 7-87 and an analytical method to calculate and plot the accel-
eration of point C on link 6 of that mechanism for one revolution of input crank 2.

Figure P7-22 shows a mechanism with dimensions. Use a graphical method to deter-
mine the acceleration of points A and B for the position shown for @, = 24 rad/s CW.
Ignore links 5 and 6.
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FIGURE P7-30
Problems 7-75 to 7-86
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TABLE P7-5 Data for Problems 7-93 to 7-94

Row Link 2 Link 3 Offset d d d
a 14 4 1 2.5 10
b 2 6 -3 5 12 5
c 3 8 2 8 15 -10
d 35 10 1 -8 24 4
e 5 20 5 15 _50 10
f 3 13 0 12 _45 50
g 7 25 10 25 100 18

iDrawings of these linkages are in the PDF Problem Workbook folder.

7-90

7-91

7-92

7-93

7-94

71

L7-1

Figure P7-22 shows a mechanism with dimensions. Use an analytical method to cal-
culate the accelerations of points A and B for the position shown for w, = 24 rad/s CW.
Ignore links 5 and 6.

Figure P7-23 shows a quick-return mechanism with dimensions. Use a graphical
method to determine the accelerations of points A and B for the position shown for w;
= 16 rad/s CCW. Ignore links 5 and 6.

Figure P7-23 shows a quick-return mechanism with dimensions. Use an analytical
method to calculate the accelerations of points A and B for the position shown for @, =
16 rad/s CCW. Ignore links 5 and 6.

The general linkage configuration and terminology for an offset fourbar slider-crank
linkage are shown in Figure P7-2. The link lengths and the values of d, d, and d are
defined in Table P7-5. For the row(s) assigned, find the acceleration of the pin joint A
and the angular acceleration of the crank using a graphical method.

The general linkage configuration and terminology for an offset fourbar slider-crank
linkage are shown in Figure P7-2. The link lengths and the values of d, d, and d are
defined in Table P7-5. For the rows assigned, find the acceleration of pin joint A and
the angular acceleration of the crank using the analytic method. Draw the linkage to
scale and label it before setting up the equations.

VIRTUAL LABORATORY View the video (35:38)7  View the lab $

View the video Fourbar Linkage Virtual Laboratory. Open the file Virtual Fourbar
Linkage Lab 7-1.doc and follow the instructions as directed by your professor.



