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Chapter8
CAM DESIGN
It is much easier to design than to perform
SAMUEL JOHNSON

8.0 INTRODUCTION View the lecture video (50:42)†

Cam-follower systems are frequently used in all kinds of machines.  The valves in your 
automobile engine are opened by cams.  Machines used in the manufacture of many con-
sumer goods are full of cams.*  Compared to linkages, cams are easier to design to give 
a specific output function, but they are much more difficult and expensive to make than a 
linkage.  Cams are a form of degenerate fourbar linkage in which the coupler link has been 
replaced by a half joint as shown in Figure 8-1.  This topic was discussed in Section 2.10 
on linkage transformation (see also Figure 2-12).  For any one instantaneous position of 
cam and follower, we can substitute an effective linkage that will, for that instantaneous 
position, have the same motion as the original.  In effect, the cam-follower is a fourbar 
linkage with variable-length (effective) links.  It is this conceptual difference that makes 
the cam-follower such a versatile and useful function generator.  We can specify virtually 
any output function we desire and quite likely create a curved surface on the cam to gener-
ate that function in the motion of the follower.  We are not limited to fixed-length links as 
we were in linkage synthesis.  The cam-follower is an extremely useful mechanical device, 
without which the machine designer’s tasks would be more difficult to accomplish.  But, 
as with everything else in engineering, there are trade-offs. These will be discussed in later 
sections.  A list of the variables used in this chapter is provided in Table 8-1.

This chapter will present the proper approach to designing a cam-follower system, 
and in the process also present some less than proper designs as examples of the prob-
lems that inexperienced cam designers often get into.  Theoretical considerations of the 
mathematical functions commonly used for cam curves will be discussed.  Methods for 
the derivation of custom polynomial functions, to suit any set of boundary conditions, 
will be presented.  The task of sizing the cam with considerations of pressure angle and 
radius of curvature will be addressed, and manufacturing processes and their limitations 
discussed.  The computer program DYNACAM will be used throughout the chapter as a tool 

 

* View the video http://
www.designofmachinery.
com/DOM/Pick_and_
Place_Mechanism.mp4 to 
see an example of a cam 
driven mechanism from an 
actual production machine.

† http://www.designof-
machinery.com/DOM/
Cam_Design_I.mp4
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to present and illustrate design concepts and solutions.  Information about this program 
is in Appendix A.  

8.1 CAM TERMINOLOGY

Cam-follower systems can be classified in several ways:  by type of follower motion, either 
translating or rotating (oscillating);  by type of cam, radial, cylindrical, three-dimension-
al;  by type of joint closure, either force- or form-closed;  by type of follower, curved or 
flat, rolling or sliding;  by type of motion constraints, critical extreme position (CEP), 
critical path motion (CPM);  by type of motion program, rise-fall (RF), rise-fall-dwell 
(RFD), rise-dwell-fall-dwell (RDFD).  We will now discuss each of these classification 
schemes in greater detail.

Type of Follower Motion
Figure 8-1a shows a system with an oscillating, or rotating, follower.  Figure 8-1b shows 
a translating follower.  These are analogous to the crank-rocker fourbar and the crank-

 Notation Used in This Chapter
t = time, seconds

θ = camshaft angle, degrees or radians (rad)

ω = camshaft angular velocity, rad/sec

β = total angle of any segment, rise, fall, or dwell, degrees or rad
h = total lift (rise or fall) of any one segment, length units
s or S = follower displacement, length units
v = ds/dθ = follower velocity, length/rad
V = dS/dt = follower velocity, length/sec
a = dv/dθ = follower acceleration, length/rad2

A = dV/dt = follower acceleration, length/sec2

j = da/dθ = follower jerk, length/rad3

J = dA/dt = follower jerk, length/sec3

s v a j refers to the group of diagrams, length units versus radians 
S V A J refers to the group of diagrams, length units versus time 
Rb = base circle radius, length units
Rp = prime circle radius, length units
Rf = roller follower radius, length units

ε = eccentricity of cam-follower, length units

φ = pressure angle, degrees or radians

ρ = radius of curvature of cam surface, length units

ρpitch = radius of curvature of pitch curve, length units

ρmin = minimum radius of curvature of pitch curve or cam surface, length units
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slider fourbar linkages, respectively.  An effective fourbar linkage can be substituted for 
the cam-follower system for any instantaneous position.  The lengths of the effective links 
are determined by the instantaneous locations of the centers of curvature of cam and fol-
lower as shown in Figure 8-1.  The velocities and accelerations of the cam-follower system 
can be found by analyzing the behavior of the effective linkage for any position.  A proof 
of this can be found in reference [1].  Of course, the effective links change length as the 
cam-follower moves, giving it an advantage over a pure linkage as this allows greater 
flexibility in meeting the desired motion constraints.

The choice between these two forms of the cam-follower is usually dictated by the 
type of output motion desired.  If true rectilinear translation is required, then the translat-
ing follower is dictated.  If pure rotation output is needed, then the oscillator is the obvious 
choice.  There are advantages to each of these approaches, separate from their motion 
characteristics, depending on the type of follower chosen.  These will be discussed in a 
later section.
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( a )  An oscillating cam-follower has an effective pin-jointed fourbar equivalent

FIGURE 8-1
Effective linkages in the cam-follower mechanism

(b)  A translating cam-follower has an effective fourbar slider-crank equivalent
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Type of Joint Closure
Force and form closure were discussed in Section 2.3 on the subject of joints and have 
the same meaning here.  Force closure, as shown in Figure 8-1, requires an external 
force be applied to the joint in order to keep the two links, cam and follower, physically 
in contact.  This force is usually provided by a spring.  This force, defined as positive in a 
direction that closes the joint, cannot be allowed to become negative.  If it does, the links 
have lost contact because a force-closed joint can only push, not pull.  Form closure, as 
shown in Figure 8-2, closes the joint by geometry.  No external force is required.  There 
are really two cam surfaces in this arrangement, one surface on each side of the follower.  
Each surface pushes, in its turn, to drive the follower in both directions.

Figure 8-2a and b shows track or groove cams that capture a single follower in the 
groove and both push and pull on the follower.  Figure 8-2c shows another variety of form-
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FIGURE 8-2
Form-closed cam-follower systems

(c )  Conjugate cams on common shaft

( (a )  Form-closed cam with translating follower b)  Form-closed cam with oscillating follower
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closed cam-follower arrangement, called conjugate cams.  There are two cams fixed on 
a common shaft that are mathematical conjugates of one another.  Two roller followers, 
attached to a common arm, are each pushed in opposite directions by the conjugate cams.  
When form-closed cams are used in automobile or motorcycle engine valve trains, they 
are called desmodromic* cams.  There are advantages and disadvantages to both force- 
and form-closed arrangements that are discussed in Section 8-7.

Type of Follower
Follower, in this context, refers only to that part of the follower link that contacts the 
cam.  Figure 8-3 shows three common arrangements, flat-faced, mushroom (curved), and 
roller.  The roller follower has the advantage of lower (rolling) friction than the sliding 
contact of the other two but can be more expensive.  Flat-faced followers can package 
smaller than roller followers for some cam designs and are often favored for that reason 
as well as cost for automotive valve trains.  Roller followers are most frequently used 
in production machinery where their ease of replacement and availability from bearing 
manufacturers’ stock in any quantities are advantages.  Grooved or track cams require 
roller followers.  Roller followers are essentially ball or roller bearings with customized 
mounting details.  Figure 8-5a shows two common types of commercial roller followers.  
Flat-faced or mushroom followers are usually custom-designed and manufactured for 
each application.  For high-volume applications such as automobile engines, the quantities 
are high enough to warrant a custom-designed follower.

Type of Cam
The direction of the follower’s motion relative to the axis of rotation of the cam determines 
whether it is a radial or axial cam.  All cams shown in Figures 8-1 to 8-3 are radial cams 

* More information on 
desmodromic cam-follower 
mechanisms can be found 
at http://members.chello.
nl/~wgj.jansen/ where a 
number of models of their 
commercial implementa-
tions can be viewed in 
operation as movies.

Follower

Spring

( ( (a )  Roller follower b)  Mushroom follower c)  Flat-faced follower

Spring

Cam

Follower

Spring

Cam Cam

Follower

ωcam ωcam ωcam

Vfollower Vfollower Vfollower

FIGURE 8-3
Three common types of cam followers
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because the follower motion is generally in a radial direction.  Open radial cams are also 
called plate cams.

Figure 8-4 shows an axial cam whose follower moves parallel to the axis of cam rota-
tion.  This arrangement is also called a face cam if open (force-closed) and a cylindrical 
or barrel cam if grooved or ribbed (form-closed).

Figure 8-5b shows a selection of cams of various types.*  Clockwise from the lower 
left, they are: an open (force-closed) axial or face cam; an axial grooved (track) cam 
(form-closed) with external gear; an open radial, or plate cam (force-closed); a ribbed 
axial cam (form-closed); an axial grooved (barrel) cam.

Three-dimensional cams (Figure 8-5c) are a combination of radial and axial cams.    
The input rotation of the cam drives a follower train having both radial and axial motion.  
The follower motion has two coupled degrees of freedom.  

Type of Motion Constraints
There are two general categories of motion constraint, critical extreme position (CEP;  
also called endpoint specification) and critical path motion (CPM).  Critical extreme 
position refers to the case in which the design specifications define the start and finish 
positions of the follower (i.e., extreme positions) but do not specify any constraints on 
the path motion between the extreme positions.  This case is discussed in Sections 8.3 
and 8.4 and is the easier of the two to design as the designer has great freedom to choose 
the cam functions that control the motion between extremes.  Critical path motion is 
a more constrained problem than CEP because the path motion and/or one or more of 
its derivatives are defined over all or part of the interval of motion.  This is analogous to 
function generation in the linkage design case except that with a cam we can achieve a 
continuous output function for the follower.  Section 8.5 discusses this CPM case.  It may 
only be possible to create an approximation of the specified function and still maintain 
suitable dynamic behavior.

View a video
http://www.designof-

machinery.com/DOM/
cylindrical_cam.avi

 

* View the video http://
www.designofmachinery.
com/DOM/Spring_Manu-
facturing.mp4 to see an 
example of spring manufac-
turing machinery that uses 
many cams.

FIGURE 8-4
Axial, cylindrical, or barrel cam with form-closed, translating follower
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ωcam

Vfollower

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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Type of Motion Program
The motion programs rise-fall (RF), rise-fall-dwell (RFD), and rise-dwell-fall-dwell
(RDFD) all refer mainly to the CEP case of motion constraint and in effect define how 
many dwells are present in the full cycle of motion, none (RF), one (RFD), or more than 
one (RDFD).  Dwells, defined as no output motion for a specified period of input motion, 

(a )  Commercial roller followers

FIGURE 8-5
Cams and roller followers

(b )  Commercial cams and a motorcycle camshaft 

Courtesy of McGill Manufacturing Co.
           South Bend, IN

(c )  Three-dimensional cams

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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are an important feature of cam-follower systems because it is very easy to create exact 
dwells in these mechanisms.  The cam-follower is the design type of choice whenever a 
dwell is required.  We saw in Section 3.9 how to design dwell linkages and found that at 
best we could obtain only an approximate dwell.  The resulting single- or double-dwell 
linkages tend to be quite large for their output motion and are somewhat difficult to 
design.  (See program LINKAGES for some built-in examples of these dwell linkages.)  
Cam-follower systems tend to be more compact than linkages for the same output motion.

If your need is for a rise-fall (RF) CEP motion, with no dwell, then you should really 
be considering a crank-rocker linkage rather than a cam-follower to obtain all the link-
age’s advantages over cams of reliability, ease of construction, and lower cost that were 
discussed in Section 2.18.  If your needs for compactness outweigh those considerations, 
then the choice of a cam-follower in the RF case may be justified.  Also, if you have a 
CPM design specification, and the motion or its derivatives are defined over the interval, 
then a cam-follower system is the logical choice in the RF case.

The rise-fall-dwell (RFD) and rise-dwell-fall-dwell (RDFD) cases are obvious 
choices for cam-followers for the reasons discussed above.  However, each of these two 
cases has its own set of constraints on the behavior of the cam functions at the interfaces 
between the segments that control the rise, the fall, and the dwells.  In general, we must 
match the boundary conditions (BCs) of the functions and their derivatives at all inter-
faces between the segments of the cam.  This topic will be thoroughly discussed in the 
following sections.

8.2 S V A J  DIAGRAMS

The first task faced by the cam designer is to select the mathematical functions to be used 
to define the motion of the follower.  The easiest approach to this process is to “linear-
ize” the cam, i.e., “unwrap it” from its circular shape and consider it as a function plotted 
on cartesian axes.  We plot the displacement function s, its first derivative velocity v, 
its second derivative acceleration a, and its third derivative jerk j, all on aligned axes as 
a function of camshaft angle � as shown in Figure 8-6.  Note that we can consider the 
independent variable in these plots to be either time t or shaft angle �	 as we know the 
constant angular velocity 
�of the camshaft and can easily convert from angle to time and 
vice versa.

θ = ω (8.1)t

Figure 8-6a shows the specifications for a four-dwell cam that has eight segments, 
RDFDRDFDRDFD.  Figure 8-6b shows the s v a j curves for the whole cam over 360 degrees 
of camshaft rotation.  A cam design begins with a definition of the required cam functions 
and their s v a j diagrams.  Functions for the nondwell cam segments should be chosen 
based on their velocity, acceleration, and jerk characteristics and the relationships at the 
interfaces between adjacent segments including the dwells.  These function characteristics 
can be conveniently and quickly investigated with program DYNACAM which generated 
the data and plots shown in Figure 8-6.
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8.3 DOUBLE-DWELL CAM DESIGN—CHOOSING S V A J  

FUNCTIONS

Many cam design applications require multiple dwells.  The double-dwell case is quite 
common.  Perhaps a double-dwell cam is driving a part feeding station on a production 
machine that makes toothpaste.  This hypothetical cam’s follower is fed an empty tooth-
paste tube (during the low dwell), then moves the empty tube into a loading station (during 
the rise), holds the tube absolutely still in a critical extreme position (CEP) while tooth-
paste is squirted into the open bottom of the tube (during the high dwell), and then retracts 
the filled tube back to the starting (zero) position and holds it in this other critical extreme 
position.  At this point, another mechanism (during the low dwell) picks the tube up and 
carries it to the next operation, which might be to seal the bottom of the tube.  A similar 
cam could be used to feed, align, and retract the tube at the bottom-sealing station as well.

Cam specifications such as this are often depicted on a timing diagram as shown in 
Figure 8-7 which is a graphical representation of the specified events in the machine cycle.  
A machine’s cycle is defined as one revolution of its master driveshaft.  In a complicated 
machine, such as our toothpaste maker, there will be a timing diagram for each subas-
sembly in the machine.  The time relationships among all subassemblies are defined by 
their timing diagrams which are all drawn on a common time axis.  Obviously all these 
operations must be kept in precise synchrony and time phase for the machine to work.

This simple example in Figure 8-7 is a critical extreme position (CEP) case, because 
nothing is specified about the functions to be used to get from the low dwell position 
(one extreme) to the high dwell position (other extreme).  The designer is free to choose 
any function that will do the job.  Note that these specifications contain only information 
about the displacement function.  The higher derivatives are not specifically constrained 
in this example.  We will now use this problem to investigate several different ways to 
meet the specifications.

FIGURE 8-6
Cycloidal, modified sine, modified trapezoid, and simple harmonic motion functions on a four-dwell cam
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( a )  Cam program specifications

(b )  Plots of cam-follower's s v a j diagrams    
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✍EXAMPLE 8-1 
Naive Cam Design—A Bad Cam.

Problem: Consider the following cam design CEP specification:

dwell at zero displacement for 90 degrees (low dwell)
rise 1 in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall  1 in (25 mm) in 90 degrees
cam 
� 2� rad/sec = 1 rev/sec

Solution:

 1 The naive or inexperienced cam designer might proceed with a design as shown in Figure 8-8a. 
Taking the given specifications literally, it is tempting to merely “connect the dots” on the tim-
ing diagram to create the displacement (s) diagram.  (After all, when we wrap this s diagram 
around a circle to create the actual cam, it will look quite smooth despite the sharp corners on 
the s diagram.)  The mistake our beginning designer is making here is to ignore the effect on 
the higher derivatives of the displacement function that results from this simplistic approach.

 2 Figure 8-8b, c, and d shows the problem.  Note that we have to treat each segment of the cam 
(rise, fall, dwell) as a separate entity in developing mathematical functions for the cam.  Tak-
ing the rise segment (#2) first, the displacement function in Figure 8-8a during this portion is 
a straight line, or first-degree polynomial.  The general equation for a straight line is:

= + (8.2)y mx b

  where m is the slope of the line and b is the y intercept.  Substituting variables appropriate to 
this example in equation 8.2, angle � replaces the independent variable x, and the displacement 
s replaces the dependent variable y.  By definition, the constant slope m of the displacement is 
the velocity constant Kv.

 3 For the rise segment, the y intercept b is zero because the low dwell position typically is taken 
as zero displacement by convention.  Equation 8.2 then becomes:

= θ (8.3)s Kv

FIGURE 8-7
Cam timing diagram

1

0

Motion
mm or in

Low
dwell

High
dwell

Rise Fall

1.00.25 0.50 0.750 Time sec
90 180 270 3600 Cam angle θ   deg

t



CAM DESIGN 419

8

4 Differentiating with respect to � gives a function for velocity during the rise.


 
 constant (8.4)v Kv

5 Differentiating again with respect to � gives a function for acceleration during the rise.


 0 (8.5)a

This seems too good to be true (and it is).  Zero acceleration means zero dynamic 
force.  This cam appears to have no dynamic forces or stresses in it!

Figure 8-8 shows what is really happening here.  If we return to the displacement 
function and graphically differentiate it twice, we will observe that, from the definition of 
the derivative as the instantaneous slope of the function, the acceleration is in fact zero 
during the interval.  But, at the boundaries of the interval, where rise meets low dwell on 
one side and high dwell on the other, note that the velocity function is multivalued.  There 
are discontinuities at these boundaries.  The effect of these discontinuities is to create a 
portion of the velocity curve that has infinite slope and zero duration.  This results in the 
infinite spikes of acceleration shown at those points.  

FIGURE 8-8
The s v a j diagrams of a "bad" cam design   
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These spikes are more properly called Dirac delta functions.  Infinite acceleration 
cannot really be obtained, as it requires infinite force.  Clearly the dynamic forces will be 
very large at these boundaries and will create high stresses and rapid wear.   In fact, if this 
cam were built and run at any significant speeds, the sharp corners on the displacement 
diagram that are creating these theoretical infinite accelerations would be quickly worn 
to a smoother contour by the unsustainable stresses generated in the materials.  This is an 
unacceptable design.

The unacceptability of this design is reinforced by the jerk diagram which shows 
theoretical values of ±infinity at the discontinuities (the doublet function).  The prob-
lem has been engendered by an inappropriate choice of displacement function.  In fact, 
the cam designer should not be as concerned with the displacement function as with its 
higher derivatives.

The Fundamental Law of Cam Design
Any cam designed for operation at other than very low speeds must be designed with the 
following constraints:

The cam function must be continuous through the first and second derivatives of displace-
ment across the entire interval (360 degrees).

Corollary:
The jerk function must be finite across the entire interval (360 degrees).

In any but the simplest of cams, the cam motion program cannot be defined by a 
single mathematical expression, but rather must be defined by several separate functions, 
each of which defines the follower behavior over one segment, or piece, of the cam.  These 
expressions are sometimes called piecewise functions.  These functions must have third-
order continuity (the function plus two derivatives) at all boundaries.  The displace-
ment, velocity, and acceleration functions must have no discontinuities in them.*

If any discontinuities exist in the acceleration function, then there will be infinite 
spikes, or Dirac delta functions, appearing in the derivative of acceleration, jerk.  Thus the 
corollary merely restates the fundamental law of cam design.  Our naive designer failed 
to recognize that by starting with a low-degree (linear) polynomial as the displacement 
function, discontinuities would appear in the upper derivatives.

Polynomial functions are one of the best choices for cams as we shall shortly see, 
but they do have one fault that can lead to trouble in this application.  Each time they 
are differentiated, they reduce by one degree.  Eventually, after enough differentiations, 
polynomials degenerate to zero degree (a constant value) as the velocity function in Figure 
8-8b shows.  Thus, by starting with a first-degree polynomial as a displacement function, 
it was inevitable that discontinuities would soon appear in its derivatives.  

In order to obey the fundamental law of cam design, one must start with at least a 
fifth-degree polynomial (quintic) as the displacement function for a double-dwell cam.  
This will degenerate to a cubic function in the acceleration.  The parabolic jerk function 
will have discontinuities, and the (unnamed) derivative of jerk will have infinite spikes in 
it.  This is acceptable, as the jerk is still finite.

* This rule is stated by 
Neklutin[2] but is disputed 
by some other authors.[3],[4]  
Nevertheless, this author 
believes that it is a good 
(and simple) rule to follow 
in order to get accept-
able dynamic results with 
high-speed cams.  There 
are clear simulation data 
and experimental evidence 
that smooth jerk functions 
reduce residual vibrations in 
cam-follower systems.[10]



CAM DESIGN 421

8

Simple Harmonic Motion (SHM)
Our naive cam designer recognized his mistake in choosing a straight-line function for the 
displacement.  He also remembered a family of functions he had met in a calculus course 
that have the property of remaining continuous throughout any number of differentiations. 
These are the harmonic functions.  On repeated differentiation, sine becomes cosine, 
which becomes negative sine, which becomes negative cosine, etc., ad infinitum.  One 
never runs out of derivatives with the harmonic family of curves.  In fact, differentiation 
of a harmonic function really only amounts to a 90� phase shift of the function.  It is as 
though, when you differentiated it, you cut out, with a scissors, a different portion of the 
same continuous sine wave function, which is defined from minus infinity to plus infinity.  
The equations of simple harmonic motion (SHM) for a rise motion are:

β
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where h is the total rise, or lift, � is the camshaft angle, and � is the total angle of the rise 
interval.

We have here introduced a notation to simplify the expressions.  The independent 
variable in our cam functions is �, the camshaft angle.  The period of any one segment is 
defined as the angle �.  Its value can, of course, be different for each segment.  We normal-
ize the independent variable � by dividing it by the period of the segment �.  Both � and 
� are measured in radians (or both in degrees).  The value of �/� will then vary from 0 
to 1 over any segment. It is a dimensionless ratio.  Equations 8.6 define simple harmonic 
motion and its derivatives for this rise segment in terms of �/�.

This family of harmonic functions appears, at first glance, to be well suited to the 
cam design problem of Figure 8-7.  If we define the displacement function to be one of 
the harmonic functions, we should not “run out of derivatives” before reaching the ac-
celeration function.

✍EXAMPLE 8-2 
Sophomoric* Cam Design—Simple Harmonic Motion—Still a Bad Cam.

Problem: Consider the same cam design CEP specification as in Example 8-1:

dwell at zero displacement for 90 degrees (low dwell)
rise 1 in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall  1 in (25 mm) in 90 degrees
cam 
� 2� rad/sec = 1 rev/sec

*  Sophomoric, from 
sophomore, def.  wise fool, 
from the Greek, sophos = 
wisdom, moros = fool.
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Solution:

1 Figure 8-9 shows a full-rise simple harmonic function* applied to the rise segment of our cam 
design problem.  

 2 Note that the velocity function is continuous, as it matches the zero velocity of the dwells at 
each end.  The peak value is 6.28 in/sec (160 mm/sec) at the midpoint of the rise.

 3 The acceleration function, however, is not continuous.  It is a half-period cosine curve and has 
nonzero values at start and finish that are ±78.8 in/sec2 (2.0 m/sec2).  

 4 Unfortunately, the dwell functions, which adjoin this rise on each side, have zero acceleration 
as can be seen in Figure 8-6.  Thus there are discontinuities in the acceleration at each end 
of the interval that uses this simple harmonic displacement function.  

 5 This violates the fundamental law of cam design and creates infinite spikes of jerk at the ends 
of this fall interval.  This is also an unacceptable design.

What went wrong?  While it is true that harmonic functions are differentiable ad 
infinitum, we are not dealing here with single harmonic functions.  Our cam function 
over the entire interval is a piecewise function (Figure 8-6) made up of several segments, 
some of which may be dwell portions or other functions.  A dwell will always have zero 
velocity and zero acceleration.  Thus we must match the dwells’ zero values at the ends 
of those derivatives of any nondwell segments that adjoin them.  The simple harmonic 
displacement function, when used with dwells, does not satisfy the fundamental law of 
cam design.  Its second derivative, acceleration, is nonzero at its ends and thus does not 
match the dwells required in this example.  

The only case in which the simple harmonic displacement function will satisfy the 
fundamental law is the non-quick-return RF case, i.e., rise in 180� and fall in 180� with 
no dwells.  Then the cam profile, if run against a flat-faced follower, becomes an eccentric 
as shown in Figure 8-10.  As a single continuous (not piecewise) function, its derivatives 
are continuous also.  Figure 8-11 shows the displacement (in inches) and acceleration 
functions (in g’s) of an eccentric cam as actually measured on the follower.  The noise, 
or “ripple,” on the acceleration curve is due to small, unavoidable, manufacturing errors.  
Manufacturing limitations will be discussed in a later section.

Cycloidal Displacement View the lecture video (51:17)†

The two bad examples of cam design described above should lead the cam designer to the 
conclusion that consideration only of the displacement function when designing a cam 
is erroneous.  The better approach is to start with consideration of the higher derivatives, 
especially acceleration.  The acceleration function, and to a lesser extent the jerk function, 
should be the principal concern of the designer.  In some cases, especially when the mass 
of the follower train is large, or when there is a specification on velocity, that function 
must be carefully designed as well.

*   Though this is actually 
a half-period cosine wave, 
we will call it a full-rise (or 
full-fall) simple harmonic 
function to differentiate 
it from the half-rise (and 
half-fall) simple harmonic 
function which is actually a 
quarter-period cosine.

0 β

s

v

a

j

cam angle θ

FIGURE 8-9
Simple harmonic
motion with dwells
has discontinuous
acceleration.

† http://www.designof-
machinery.com/DOM/
Cam_Design_II.mp4
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* If a roller follower is 
used instead of a flat-faced 
follower, then the trace of 
the roller follower center 
will still be a true eccentric, 
but the cam surface will not.  
This is due to the lead-lag 
error of the contact point of 
the roller with the cam sur-
face.  When going “uphill,” 
the contact point leads the 
follower center and when 
going “downhill,” it lags 
the center.  This distorts the 
cam surface shape from that 
of a true eccentric circle.  
However, the motion of 
the follower will be simple 
harmonic motion as defined 
in Figure 8-10 regardless of 
follower type.

With this in mind, we will redesign the cam for the same example specifications as 
above.  This time we will start with the acceleration function.  The harmonic family of 
functions still has advantages that make them attractive for these applications.  Figure 8-12 
shows a full-period sinusoid applied as the acceleration function.  It meets the constraint 
of zero magnitude at each end to match the dwell segments that adjoin it.  The equation 
for a sine wave is:

= π
θ
β

⎛
⎝⎜

⎞
⎠⎟

sin 2 (8.7)a C

We have again normalized the independent variable � by dividing it by the period of 
the segment � with both � and � measured in radians.  The value of ��� ranges from 0 to 
1 over any segment and is a dimensionless ratio.  Since we want a full-cycle sine wave, 
we must multiply the argument by 2�.  The argument of the sine function will then vary 
between 0 and 2� regardless of the value of �.  The constant C defines the amplitude of 
the sine wave.

Integrate to obtain velocity,

∫∫

=
θ

= π
θ
β

⎛
⎝⎜

⎞
⎠⎟

= π
θ
β

⎛
⎝⎜

⎞
⎠⎟

θ

= −
β

π
π

θ
β

⎛
⎝⎜

⎞
⎠⎟

+

sin 2

sin 2 (8.8)

2
cos 2 1

a dv
d

C

dv C d

v C k

ω

a cos ω t

r

a

FIGURE 8-10
A flat-faced follower
on an eccentric cam
has simple harmonic
motion.*

FIGURE 8-11
Displacement and acceleration as measured on the follower of an eccentric cam

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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where k1 is the constant of integration.  To evaluate k1, substitute the boundary condi-
tion v = 0 at � = 0, since we must match the zero velocity of the dwell at that point.  The 
constant of integration is then:

=
β

π

=
β

π
− π

θ
β

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

and:
2

(8.9)

2
1 cos 2

1k C

v C

Note that substituting the boundary values at the other end of the interval, v = 0, � = �	
will give the same result for k1.  Integrate again to obtain displacement:

∫ ∫

=
θ

=
β

π
− π

θ
β

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
β

π
− π

θ
β

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
θ

=
β

π
θ −

β
π

π
θ
β

⎛
⎝⎜

⎞
⎠⎟

+

2
1 cos 2

2
1 cos 2 (8.10)

2 4
sin 2

2

2 2

v ds
d

C

ds C d

s C C k

To evaluate k2, substitute the boundary condition s = 0 at � = 0, since we must match 
the zero displacement of the dwell at that point.  To evaluate the amplitude constant C, 
substitute the boundary condition s = h at � = �, where h is the maximum follower rise 
(or lift) required over the interval and is a constant for any one cam specification.

=

= π
β

0 (8.11)
2

2

2

k

C h

Substituting the value of the constant C in equation 8.7 for acceleration gives:

= π
β

π
θ
β

⎛
⎝⎜

⎞
⎠⎟

2 sin 2 (8.12a)2a h

Differentiating with respect to � gives the expression for jerk.

= π
β

π
θ
β

⎛
⎝⎜

⎞
⎠⎟

4 cos 2 (8.12b)2
3j h

Substituting the values of the constants C and k1 in equation 8.9 for velocity gives:

=
β

− π
θ
β

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥1 cos 2 (8.12c)v h

This velocity function is the sum of a negative cosine term and a constant term.  The 
coefficient of the cosine term is equal to the constant term.  This results in a velocity curve 
that starts and ends at zero and reaches a maximum magnitude at �/2 as can be seen in 
Figure 8-12.  Substituting the values of the constants C, k1, and k2 in equation 8.10 for 
displacement gives:
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=
θ
β

−
π

π
θ
β

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1
2

sin 2 (8.12d)s h

Note that this displacement expression is the sum of a straight line of slope h and a nega-
tive sine wave.  The sine wave is, in effect, “wrapped around” the straight line as can be 
seen in Figure 8-12.  Equation 8.12d is the expression for a cycloid.  This cam function is 
referred to either as cycloidal displacement or sinusoidal acceleration.

In the form presented, with � (in radians) as the independent variable, the units of 
equation 8.12d are length, of equation 8.12c length/rad, of equation 8.12a length/rad2, 
and of equation 8.12b length/rad3.  To convert these equations to a time base, multiply 
velocity v by the camshaft angular velocity 
 (in rad/sec), multiply acceleration a by 
2, 
and jerk j by 
3.

✍EXAMPLE 8-3 
Junior Cam Design—Cycloidal Displacement—An Acceptable Cam.

Problem: Consider the same cam design CEP specification as in Examples 8-1 and 8-2:

dwell at zero displacement for 90 degrees (low dwell)
rise 1 in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall  1 in (25 mm) in 90 degrees
cam 
� 2� rad/sec = 1 rev/sec

Solution:

 1 The cycloidal displacement function is an acceptable one for this double-dwell cam specifica-
tion.  Its derivatives are continuous through the acceleration function as seen in Figure 8-12.  
The peak acceleration is 100.4 in/sec2 (2.55 m/sec2).

 2 The jerk curve in Figure 8-12 is discontinuous at its boundaries but is of finite magnitude, and 
this is acceptable.  Its peak value is 2523 in/sec3 (64 m/sec3).

 3 The velocity is smooth and matches the zeros of the dwell at each end.  Its peak value is 8 in/
sec (0.2 m/sec).

 4 The only drawback to this function is that it has relatively large magnitudes of peak accelera-
tion and peak velocity compared to some other possible functions for the double-dwell case.

The reader may open the file E08-03.cam in program DYNACAM to investigate this 
example in more detail.

Combined Functions
Dynamic force is proportional to acceleration.  We generally would like to minimize 
dynamic forces, and thus should be looking to minimize the magnitude of the accelera-
tion function as well as to keep it continuous.  Kinetic energy is proportional to velocity 

0 β
cam angle θ

FIGURE 8-12
Sinusoidal
acceleration gives
cycloidal
displacement.

s

v

a

j
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8 squared.  We also would like to minimize stored kinetic energy, especially with large mass 
follower trains, and so are concerned with the magnitude of the velocity function as well.

CONSTANT ACCELERATION If we wish to minimize the peak value of the magni-
tude of the acceleration function for a given problem, the function that would best satisfy 
this constraint is the square wave as shown in Figure 8-13.  This function is also called 
constant acceleration.  The square wave has the property of minimum peak value for a 
given area in a given interval.  However, this function is not continuous.  It has discontinui-
ties at the beginning, middle, and end of the interval, so, by itself, this is unacceptable 
as a cam acceleration function.

TRAPEZOIDAL ACCELERATION The square wave’s discontinuities can be removed 
by simply “knocking the corners off” the square wave function and creating the trapezoi-
dal acceleration function shown in Figure 8-14a.  The area lost from the “knocked off 
corners” must be replaced by increasing the peak magnitude above that of the original 
square wave in order to maintain the required specifications on lift and duration.  But, this 
increase in peak magnitude is small, and the theoretical maximum acceleration can be 
significantly less than the theoretical peak value of the sinusoidal acceleration (cycloidal 
displacement) function.  One disadvantage of this trapezoidal function is its discontinu-
ous jerk function, as shown in Figure 8-14b.  Ragged jerk functions such as this tend to 
excite vibratory behavior in the follower train due to their high harmonic content.  The 
cycloidal’s sinusoidal acceleration has a relatively smoother cosine jerk function with only 
two discontinuities in the interval and is preferable to the trapezoid’s square waves of jerk. 
But the cycloidal’s theoretical peak acceleration will be larger, which is not desirable.  So, 
trade-offs must be made in selecting the cam functions.

MODIFIED TRAPEZOIDAL ACCELERATION An improvement can be made to the 
trapezoidal acceleration function by substituting pieces of sine waves for the sloped sides 

FIGURE 8-13
Constant acceleration gives infinite jerk.

(a )

(b )

Low
dwell

High
dwellRisea

0

j
∞

∞

∞

θ

θ

maxa

mina

0

0 β

0 β
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* Developed by C. N. 
Neklutin of Universal 
Match Corp.  See ref. [2].

of the trapezoids as shown in Figure 8-15.  This function is called the modified trapezoi-
dal acceleration curve.*  This function is a marriage of the sine acceleration and constant 
acceleration curves.  Conceptually, a full period sine wave is cut into fourths and “pasted 
into” the square wave to provide a smooth transition from the zeros at the endpoints to 
the maximum and minimum peak values, and to make the transition from maximum to 
minimum in the center of the interval.  The portions of the total segment period (�' used 
for the sinusoidal parts of the function can be varied.  The most common arrangement 
is to cut the square wave at �/8, 3�/8, 5�/8, and 7�/8 to insert the pieces of sine wave as 
shown in Figure 8-15.  

The modified trapezoidal function defined above is one of many combined functions 
created for cams by piecing together various functions, while being careful to match the 
values of the s, v, and a curves at all the interfaces between the joined functions.  It has the 
advantage of relatively low theoretical peak acceleration, and reasonably rapid, smooth 
transitions at the beginning and end of the interval.   The modified trapezoidal cam func-
tion has been a popular and often used program for double-dwell cams.  

MODIFIED SINUSOIDAL ACCELERATION† The sine acceleration curve (cycloidal 
displacement) has the advantage of smoothness (less ragged jerk curve) compared to 
the modified trapezoid but has higher theoretical peak acceleration.  By combining two 
harmonic (sinusoid) curves of different frequencies, we can retain some of the smooth-
ness characteristics of the cycloid and also reduce the peak acceleration compared to the 
cycloid.  As an added bonus we will find that the peak velocity is also lower than in either 
the cycloidal or modified trapezoid.  Figure 8-16 shows how the modified sine accelera-
tion curve is made up of pieces of two sinusoid functions, one of higher frequency than 
the other.  The first and last quarters of the high-frequency (short period, �/() sine curve 

† Developed by E. H. 
Schmidt of DuPont.

FIGURE 8-14
Trapezoidal acceleration gives finite jerk.

(a )

(b )

a

0

j

0

θ

θ

Low
dwell

High
dwell

Rise

maxa

0 β

mina

Trapezoidal
acceleration

β/8

Constant acceleration
(for comparison)
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( a )  Take a sine wave

FIGURE 8-15
Creating the modified trapezoidal acceleration function

(b)  Split the sine
        wave apart

( c )  Take a constant
        acceleration
        square wave

(d )  Combine the two

(e)  Modified trapezoidal
       acceleration

A B C D

θ

θ

β/2 β0

A B C D

θ

A B C DE F

θ

A B C DE F

θ

β/8 3β/8 β/2 β0 5β/8 7β/8

β/8 3β/8 β/2 β0 5β/8 7β/8

β/8 3β/8 β/2 β0 5β/8 7β/8

β/2
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are used for the first and last eighths of the combined function.  The center half of the 
low-frequency (long period, 3�/() sine wave is used to fill in the center three-fourths of 
the combined curve.  Obviously, the magnitudes of the two curves and their derivatives 
must be matched at their interfaces in order to avoid discontinuities.  

The SCCA Family of Double-Dwell Functions
SCCA stands for Sine-Constant-Cosine-Acceleration and refers to a family of accelera-
tion functions that includes constant acceleration, simple harmonic, modified trapezoid, 
modified sine, and cycloidal curves.[11]  These very different looking curves can all be 
defined by the same equation with only a change of numeric parameters.  In like fashion, 
the equations for displacement, velocity, and jerk for all these SCCA functions differ only 
by their parametric values.

To reveal this similitude, it is first necessary to normalize the variables in the equa-
tions.  We have already normalized the independent variable, cam angle �, dividing it by 
the interval period �.  We will further simplify the notation by defining

=
θ
β

(8.13a)x

The normalized variable x then runs from 0 to 1 over any interval.  The normalized fol-
lower displacement is


 (8.13b)y s
h

where s is the instantaneous follower displacement and h is the total lift. The normalized 
variable y then runs from 0 to 1 over any follower displacement.  

The general shapes of the s v a j functions of the SCCA family are shown in Figure 
8-17.  The interval � is divided into five zones, numbered 1 through 5.  Zones 0 and 6 rep-
resent the dwells on either side of the rise (or fall).  The widths of zones 1 to 5 are defined 
in terms of � and one of three parameters, b, c, d.  The values of these three parameters 
define the shape of the curve and define its identity within the family of functions.  The 
normalized velocity, acceleration, and jerk are denoted, respectively, as:

′ = ′′ = ′′′ = (8.14)
2

2

3

3y dy
dx

y d y
dx

y d y
dx

In zone 0, all functions are zero.  The expressions for the functions within each other 
zone of Figure 8-17 are as follows:

≤ ≤ ≠

=
π

−
π

⎛
⎝⎜

⎞
⎠⎟

π⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Zone 1: 0
2

: 0

sin (8.15a)
2

x b b

y C b x b
b

xa

′ =
π

−
π

π⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥cos (8.15b)y C b b

b
xa
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FIGURE 8-16
Creating the modified sine acceleration function
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8′′ =
π⎛

⎝⎜
⎞
⎠⎟

sin (8.15c)y C
b

xa

′′′ =
π π⎛

⎝⎜
⎞
⎠⎟

cos (8.15d)y C
b b

xa

≤ ≤
−

= +
π

−⎛
⎝⎜

⎞
⎠⎟

+ −
π

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Zone 2:
2

1
2

2
1 1

2
1
8

1 (8.16a)
2

2
2

b x d

y C x b x ba

′ = +
π

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1 1
2

(8.16b)y C x ba

′′ = (8.16c)y Ca

′′′ = 0 (8.16d)y

( )

−
≤ ≤

+
≠

=
π

+⎛
⎝⎜

⎞
⎠⎟

+
π

⎛
⎝⎜

⎞
⎠⎟

+ −
π

⎛
⎝⎜

⎞
⎠⎟

−
−

−
π

⎛
⎝⎜

⎞
⎠⎟

π
−

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Zone 3: 1
2

1
2

: 0

2
1
8

1 1
8

cos 1
2

(8.17a)
2

2
2

2 2

d x d d

y C b c x d b
d d

d
x d

a

′ =
π

+ +
π

π
−

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪2
sin 1

2
(8.17b)y C b c d

d
x d
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FIGURE 8-17
Parameters for the normalized SCCA family of curves
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′′ =
π

−
−⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥cos 1

2
(8.17c)y C

d
x d

a

′′′ = −
π π

−
−⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥sin 1

2
(8.17d)y C

d d
x d

a

( )

+
≤ ≤ −

= − +
π

+ −⎛
⎝⎜

⎞
⎠⎟

+ −
π

−⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Zone 4: 1
2

1
2

2
1

2
2 1 1

8
1
4

(8.18a)
2

2 2
2

d x b

y C x b b x d ba

′ = − +
π

+ −⎛
⎝⎜

⎞
⎠⎟

1
2

(8.18b)y C x b b
a

′′ = − (8.18c)y Ca

′′′ = 0 (8.18d)y

( ) ( ) ( )

− ≤ ≤ ≠

=
π

+
−

π
+

− −
−

π
⎛
⎝⎜

⎞
⎠⎟

π
−⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Zone 5: 1
2

1 : 0

2 1
4

sin 1 (8.19a)
2 2

2

2 2 2

b x b

y C b x
d b b d b

b
xa

( )′ =
π

−
π

π
−⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

cos 1 (8.19b)y C b b
b

xa

( )′′ =
π

−⎡
⎣⎢

⎤
⎦⎥

sin 1 (8.19c)y C
b

xa

( )′′′ =
π π

−⎡
⎣⎢

⎤
⎦⎥

cos 1 (8.19d)y C
b b

xa

>
= ′ = ′′ = ′′′ =

Zone 6: 1
1, 0 (8.20)

x
y y y y

The coefficient Ca is a dimensionless peak acceleration factor.  It can be evaluated from 
the fact that, at the end of the rise in zone 5 when x = 1, the expression for displacement 
(equation 8.19a) must have y = 1 to match the dwell in zone 6.  Setting the right side of 
equation 8.19a equal to 1 gives:

( )( ) ( )
=

π

π − − − π π − + π

4
8 2 2

(8.21a)
2

2 2 2 2
C

b d b
a

We can also define dimensionless peak factors (coefficients) for velocity (Cv) and jerk 
(Cj) in terms of Ca.  The velocity is a maximum at x = 0.5.  Thus Cv will equal the right 
side of equation 8.17b when x = 0.5.
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=
+
π

+⎛
⎝⎜

⎞
⎠⎟2

(8.21b)C C b d c
v a

The jerk is a maximum at x = 0.  Setting the right side of equation 8.15d to zero gives:

=
π

≠ 0 (8.21c)C C
b

bj a

Table 8-2 shows the values of b, c, d and the resulting factors Cv, Ca, and Cj for the 
five standard members of the SCCA family.  There is an infinity of related functions with 
values of these parameters between those shown.  Figure 8-18 shows these five members 
of the “acceleration family” superposed with their design parameters noted.  Note that all 
the functions shown in Figure 8-18 were generated with the same set of equations (8.15 
through 8.21) with only changes to the values of the parameters b, c, and d.  A TKSolver 
file (SCCA.tk) that is provided calculates and plots any of the SCCA family of normalized 
functions, along with their coefficients Cv, Ca, and Cj, in response to the input of values 
for b, c, and d.  Note also that there is an infinity of family members as b, c, and d can take 
on any set of values that add to 1.

FIGURE 8-18
Comparison of five acceleration functions in the SCCA family

Acceleration

θ
β

Cycloidal (b = 0.5, c = 0, d = 0.5)

Modified sine
(b = 0.25, c = 0, d = 0.75)

0

Ca = 6.28
Ca = 5.53 Ca = 4.89

Ca = 4.93Modified trapezoid
(b = 0.25, c = 0.5, d = 0.25)

Simple harmonic
(b = 0, c = 0, d = 1)

Ca = 4.00

Constant acceleration
(b = 0, c = 1, d = 0)

     1.00
      0.50
      0.00
      0.00
      0.00

0.00
0.25
1.00
0.75
0.50

Constant acceleration      0.00
Modified trapezoid      0.25
Simple harmonic      0.00
Modified sine       0.25
Cycloidal displacement       0.50

    2.0000
    2.0000
    1.5708
    1.7596
    2.0000

    4.0000
    4.8881
    4.9348
    5.5280
    6.2832

infinite
61.426
infinite
69.466
39.478

Function b c d Cv Ca Cj

TABLE  8-2 Parameters and Coefficients for the SCCA Family of Functions
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To apply the SCCA functions to an actual cam design problem only requires that 
they be multiplied or divided by factors appropriate to the particular problem, namely the 
actual rise h, the actual duration � (rad), and the cam velocity 
 (rad/sec).

= =

=
β

′ = ω

=
β

′′ = ω

=
β

′′′ = ω

length length

length/rad length/sec
(8.22)

length/rad length/sec

length/rad length/sec

2
2 2 2

3
3 3 3

s hy S s

v h y V v

a h y A a

j h y J j
  

FIGURE 8-19
Comparison of five acceptable double-dwell cam acceleration functions
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FIGURE 8-20
Comparison of five double-dwell cam jerk functions
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Figure 8-19 shows a comparison of the shapes and relative magnitudes of five accept-
able cam acceleration programs including the cycloidal, modified trapezoid, and modified 
sine acceleration curves.*  The cycloidal curve has a theoretical peak acceleration that 
is approximately 1.3 times that of the modified trapezoid’s peak value for the same cam 
specification.  The peak value of acceleration for the modified sine is between those of 
the cycloidal and modified trapezoids.  Table 8-3 lists the peak values of acceleration, 
velocity, and jerk for these functions in terms of the total rise h and period �.  

Figure 8-20 compares the jerk curves for the same functions.  The modified sine jerk 
is somewhat less ragged than the modified trapezoid jerk but not as smooth as that of the 
cycloid, which is a full-period cosine.  Figure 8-21 compares their velocity curves.  The 
peak velocities of the cycloidal and modified trapezoid functions are the same, so each 
will store the same peak kinetic energy in the follower train.  The peak velocity of the 
modified sine is the lowest of the five functions shown.  This is the principal advantage 

 

* The 3-4-5 and 4-5-6-7 
polynomial functions also 
shown in the figure will be 
discussed in a later section.

Function Max. Veloc. Max. Accel. Max. Jerk Comments

Constant accel. 2.000 h/β 4.000 h/β2 Infinite ∞  jerk—not acceptable
Harmonic disp. 1.571 h/β 4.945 h/β2 Infinite ∞  jerk—not acceptable
Trapezoid accel. 2.000 h/β 5.300 h/β2 44 h/β3 Not as good as mod. trap.
Mod. trap. accel. 2.000 h/β 4.888 h/β2 61 h/β3 Low accel. but rough jerk
Mod. sine accel. 1.760 h/β 5.528 h/β2 69 h/β3 Low  veloc., good accel.
3-4-5 poly. disp. 1.875 h/β 5.777 h/β2 60 h/β3 Good compromise
Cycloidal disp. 2.000 h/β 6.283 h/β2 40 h/β3 Smooth accel. and jerk
4-5-6-7 poly. disp. 2.188 h/β 7.526 h/β2 52 h/β3 Smooth jerk, high accel.

TABLE  8-3 Factors for Peak Velocity and Acceleration of Some Cam Functions

FIGURE 8-21
Comparison of five double-dwell cam velocity functions

Velocity

β

θ
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of the modified sine acceleration curve and the reason it is often chosen for applications 
in which the follower mass or moment of inertia is very large.

An example of such an application is shown in Figure 8-22 which is an indexing 
table drive used for automated assembly lines.  The round indexing table is mounted on a 
vertical spindle and driven as part of the rotary follower train by a form-closed barrel cam 
that moves it through some angular displacement, and then holds the table still in a dwell 

FIGURE 8-22
Six-stop rotary indexer.  Table carries tooling to make a product during the dwells.   

motor
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(called a “stop”) while an assembly operation is performed on the workpiece carried on 
the table.  These indexers may have three or more stops, each corresponding to an index 
position.  The table is solid steel and may be several feet in diameter; thus its mass moment 
of inertia is large.  To minimize the stored kinetic energy, which must be dissipated each 
time the table is brought to a stop, the manufacturers often use the modified sine program 
on these multidwell cams, because of its lower peak velocity.

Let us again try to improve the double-dwell cam example using the SCCA combined 
functions of modified trapezoid and modified sine acceleration.

✍EXAMPLE 8-4 
Senior Cam Design—Combined Functions—Better Cams.

Problem: Consider the same cam design CEP specification as in Examples 8-1 to 8-3:

dwell at zero displacement for 90 degrees (low dwell)
rise 1 in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall  1 in (25 mm) in 90 degrees
cam 
� 2� rad/sec = 1 rev/sec

Solution:

 1 The modified trapezoidal function is an acceptable one for this double-dwell cam specification. 
Its derivatives are continuous through the acceleration function as shown in Figure 8-19.  The 
peak acceleration is 78.1 in/sec2 (1.98 m/sec2).

 2 The modified trapezoidal jerk curve in Figure 8-20 is discontinuous at its boundaries but has 
finite magnitude of 3925 in/sec3 (100 m/sec3), and this is acceptable.

 3 The modified trapezoidal velocity in Figure 8-21 is smooth and matches the zeros of the dwell 
at each end.  Its peak magnitude is 8 in/sec (0.2 m/sec).

 4 The advantage of this modified trapezoidal function is that it has smaller theoretical peak ac-
celeration than the cycloidal but its peak velocity is identical to that of the cycloidal.

 5 The modified sinusoid function is also an acceptable one for this double-dwell cam specifica-
tion.  Its derivatives are also continuous through the acceleration function as shown in Figure 
8-19.  Its peak acceleration is 88.3 in/sec2 (2.24 m/sec2).

 6 The modified sine jerk curve in Figure 8-20 is discontinuous at its boundaries but is of finite 
magnitude and is larger in magnitude at 4439 in/sec3 (113 m/sec3) but smoother than that of 
the modified trapezoid.

 7 The modified sine velocity (Figure 8-21) is smooth, matches the zeros of the dwell at each 
end, and is lower in peak magnitude than either the cycloidal or modified trapezoidal at 7 in/
sec (0.178 m/sec).  This is an advantage for high-mass follower systems as it reduces stored 
kinetic energy.  This, coupled with a peak acceleration lower than the cycloidal (but higher 
than the modified trapezoidal), is its chief advantage.
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Figure 8-23 shows the displacement curves for these three cam programs.  (Open 

the file E08-04.cam in program DYNACAM to plot these also.)  Note how little difference 
there is between the displacement curves despite the large differences in their acceleration 
waveforms in Figure 8-19.  This is evidence of the smoothing effect of the integration pro-
cess.  Differentiating any two functions will exaggerate their differences.  Integration tends 
to mask their differences.  It is nearly impossible to recognize these very differently behav-
ing cam functions by looking only at their displacement curves.  This is further evidence 
of the folly of our earlier naive approach to cam design that dealt exclusively with the 
displacement function.   The cam designer must be concerned with the higher derivatives 
of displacement.  The displacement function is primarily of value to the manufacturer of 
the cam who needs its coordinate information in order to cut the cam.

FALL FUNCTIONS We have used only the rise portion of the cam for these ex-
amples.  The fall is handled similarly.  The rise functions presented here are applicable 
to the fall with slight modification.  To convert rise equations to fall equations, it is only 
necessary to subtract the rise displacement function s from the maximum lift h and to 
negate the higher derivatives, v, a, and j.

Polynomial Functions
The class of polynomial functions is one of the more versatile types that can be used 
for cam design.  They are not limited to single- or double-dwell applications and can be 
tailored to many design specifications.   The general form of a polynomial function is:

= + + + + + + + +� (8.23)0 1 2
2

3
3

4
4

5
5

6
6s C C x C x C x C x C x C x C xn

n

where s is the follower displacement; x is the independent variable, which in our case 
will be replaced by either �/� or time t.  The constant coefficients Cn are the unknowns to 

FIGURE 8-23
Comparison of three SCCA double-dwell cam displacement functions

h

θ
β

Displacement

Cycloidal

Modified sine

Modified trapezoid

0
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be determined in our development of the particular polynomial equation to suit a design 
specification.  The degree of a polynomial is defined as the highest power present in any 
term.  Note that a polynomial of degree n will have n + 1 terms because there is an x0 or 
constant term with coefficient C0, as well as coefficients through and including Cn.

We structure a polynomial cam design problem by deciding how many boundary 
conditions (BCs) we want to specify on the s v a j diagrams.  The number of BCs then 
determines the degree of the resulting polynomial.  We can write an independent equa-
tion for each BC by substituting it into equation 8.16 or one of its derivatives.  We will 
then have a system of linear equations that can be solved for the unknown coefficients C0, 
. . ., Cn.  If k represents the number of chosen boundary conditions, there will be k equa-
tions in k unknowns C0, . . ., Cn and the degree of the polynomial will be n = k – 1.  The 
order of the n-degree polynomial is equal to the number of terms, k.

Double-Dwell Applications of Polynomials
THE 3-4-5 POLYNOMIAL Reconsider the double-dwell problem of the previous three 
examples and solve it with polynomial functions.  Many different polynomial solutions are 
possible.  We will start with the simplest one possible for the double-dwell case.

✍EXAMPLE 8-5 
The 3-4-5 Polynomial for the Double-Dwell Case.

Problem: Consider the same cam design CEP specification as in Examples 8-1 to 8-4:

dwell at zero displacement for 90 degrees (low dwell)
rise 1 in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall  1 in (25 mm) in 90 degrees
cam 
� 2� rad/sec = 1 rev/sec

Solution:

 1 To satisfy the fundamental law of cam design the values of the rise (and fall) functions at their 
boundaries with the dwells must match with no discontinuities in, at a minimum, s, v, and a.

 2 Figure 8-24 shows the axes for the s v a j diagrams on which the known data have been drawn.  
The dwells are the only fully defined segments at this stage.  The requirement for continuity 
through the acceleration defines a minimum of six boundary conditions for the rise segment 
and six more for the fall in this problem.  They are shown as filled circles on the plots.  For 
generality, we will let the specified total rise be represented by the variable h.  The minimum 
set of required BCs for this example is then:

  for the rise:

θ = = = =

θ = β = = =

when 0; then 0, 0, 0
( )

when ; then , 0, 01

s v a
a

s h v a

  for the fall:
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θ = = = =

θ = β = = =

when 0; then , 0, 0
( )

when ; then 0, 0, 02

s h v a
b

s v a

 3 We will use the rise for an example solution. (The fall is a similar derivation.) We have six 
BCs on the rise.  This requires six terms in the equation.  The highest term will be fifth degree. 
We will use the normalized angle �/� as our independent variable, as before.  Because our 
boundary conditions involve velocity and acceleration as well as displacement, we need to 
differentiate equation 8.23 versus � to obtain expressions into which we can substitute those 
BCs.  Rewriting equation 8.23 to fit these constraints and differentiating twice, we get:

= +
θ
β

⎛
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 4 Substitute the boundary conditions ��
�0,  s = 0 into equation (c):

= + + +
=

�0 0 0
0 ( )

0

0

C
C f

 5 Substitute � 
 0, v = 0 into equation (d):

( )=
β

+ + +

=

�0 1 0 0

0 ( )

1

1

C
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 6 Substitute ��
�0, a = 0  into equation (e):

( )=
β

+ + +

=

�0 1 0 0

0 ( )

2 2

2

C

C h

7 Substitute ��
��, s = h into equation (c):

= + + ( )3 4 5h C C C i

8 Substitute ��
��, v = 0 into equation (d):

( )=
β

+ +0 1 3 4 5 ( )3 4 5C C C j

9 Substitute ��
��, a = 0  into equation (e):

( )=
β

+ +0 1 6 12 20 ( )2 3 4 5C C C k
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 10 Three of our unknowns are found to be zero, leaving three unknowns to be solved for, C3, C4, 
C5.  Equations  (i),  (j), and  (k) can be solved simultaneously to get:

= = − =10 ; 15 ; 6 ( )3 4 5C h C h C h l

 11 The equation for this cam design’s displacement is then:

=
θ
β

⎛
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θ
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⎛
⎝⎜

⎞
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+
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⎞
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⎡
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⎢

⎤

⎦
⎥
⎥

10 15 6 (8.24)
3 4 5

s h

 12 The expressions for velocity and acceleration can be obtained by substituting the values of C3, 
C4, and C5 into equations 8.18b and c.  This function is referred to as the 3-4-5 polynomial, 
after its exponents.  Open the file E08-07.cam in program DYNACAM to investigate this ex-
ample in more detail.

Figure 8-25 shows the resulting s v a j diagrams for a 3-4-5 polynomial rise func-
tion.  Note that the acceleration is continuous but the jerk is not, because we did not place 
any constraints on the boundary values of the jerk function.  It is also interesting to note 
that the acceleration waveform looks very similar to the sinusoidal acceleration of the 
cycloidal function in Figure 8-12.  Figure 8-19 shows the relative peak accelerations of 
this 3-4-5 polynomial compared to four other functions with the same h and �.  Table 8-3 
lists factors for the maximum velocity, acceleration, and jerk of these functions. 

FIGURE 8-24
Minimum boundary conditions for the double-dwell case
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THE 4-5-6-7 POLYNOMIAL We left the jerk unconstrained in the previous example. 
We will now redesign the cam for the same specifications but will also constrain the jerk 
function to be zero at both ends of the rise.  It will then match the dwells in the jerk func-
tion with no discontinuities.  This gives eight boundary conditions and yields a seventh-
degree polynomial.  The  solution procedure to find the eight unknown coefficients is 
identical to that used in the previous example.  Write the polynomial with the appropriate 
number of terms.  Differentiate it to get expressions for all orders of boundary conditions.  
Substitute the boundary conditions and solve the resulting set of simultaneous equations.*
This problem reduces to four equations in four unknowns, as the coefficients C0, C1, C2, 
and C3 turn out to be zero.  For this set of boundary conditions the displacement equation 
for the rise is:

=
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s h

This is known as the 4-5-6-7 polynomial, after its exponents.  Figure 8-26 shows 
the s v a j diagrams for this function.  Compare these functions to the 3-4-5 polynomial 
functions shown in Figure 8-25.  Note that the acceleration of the 4-5-6-7 starts off slowly, 
with zero slope (as we demanded with our zero jerk BC), and as a result goes to a larger 
peak value of acceleration in order to replace the missing area in the leading edge.

This 4-5-6-7 polynomial function has the advantage of smoother jerk for better vibra-
tion control, compared to the 3-4-5 polynomial, the cycloidal, and all other functions so 
far discussed, but it pays a price in the form of higher peak theoretical acceleration than 
all those functions.  See also Table 8-3.

SUMMARY The previous two sections have attempted to present an approach to the 
selection of appropriate double-dwell cam functions, using the common rise-dwell-fall-
dwell cam as the example, and to point out some of the pitfalls awaiting the cam designer.  
The particular functions described are only a few of the ones that have been developed for 
this double-dwell case over many years, by many designers, but they are probably the most 
used and most popular among cam designers.  Most of them are also included in program 
DYNACAM.  There are many trade-offs to be considered in selecting a cam program for 
any application, some of which have already been mentioned, such as function continuity, 
peak values of velocity and acceleration, and smoothness of jerk.  There are many other 
trade-offs still to be discussed in later sections of this chapter, involving the sizing and 
the manufacturability of the cam.

8.4 SINGLE-DWELL CAM DESIGN—CHOOSING S V A J  
FUNCTIONS

Many applications in machinery require a single-dwell cam program, rise-fall-dwell
(RFD).  Perhaps a single-dwell cam is needed to lift and lower a roller that carries a mov-
ing paper web on a production machine that makes envelopes.  This cam’s follower lifts 
the paper up to one critical extreme position at the right time to contact a roller that applies 
a layer of glue to the envelope flap.  Without dwelling in the up position, it immediately re-
tracts the web back to the starting (zero) position and holds it in this other critical extreme 
position (low dwell) while the rest of the envelope passes by.  It repeats the cycle for the 

* Any matrix solving cal-
culator, equation solver such 
as Matlab, Mathcad, or 
TKSolver,  or programs MA-
TRIX  and DYNACAM (sup-
plied with this text) will do 
the simultaneous equation 
solution for you.  Programs 
MATRIX and DYNACAM are 
discussed in Appendix A.  
You need only to supply the 
desired boundary conditions 
to DYNACAM and the coef-
ficients will be computed. 
The reader is encouraged to 
do so and examine the ex-
ample problems presented 
here with the DYNACAM 
program.  

s

v
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j

0 β
cam angle θ

FIGURE 8-26
4-5-6-7 polynomial rise
whose jerk is piecewise
continuous with the
dwells
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next envelope as it comes by.  Another common example of a single-dwell application is 
the cam that opens the valves in your automobile engine.  This lifts the valve open on the 
rise, immediately closes it on the fall, and then keeps the valve closed in a dwell while the 
compression and combustion take place.

If we attempt to use the same type of cam programs as were defined for the double-
dwell case for a single-dwell application, we will achieve a solution that may work but 
is not optimal.  We will nevertheless do so here as an example in order to point out the 
problems that result.  Then we will redesign the cam to eliminate those problems.

✍EXAMPLE 8-6 
Using Cycloidal Motion for a Symmetrical Rise-Fall Single-Dwell Case.

Problem: Consider the following single-dwell cam specification:

rise 1 in (25 mm) in 90 degrees
fall  1 in (25 mm) in 90 degrees
dwell at zero displacement for 180 degrees (low dwell)
cam 
 15 rad/sec

Solution:

 1 Figure 8-27 shows a cycloidal displacement rise and separate cycloidal displacement fall ap-
plied to this single-dwell example.  Note that the displacement (s) diagram looks acceptable in 
that it moves the follower from the low to the high position and back in the required intervals.

 2 The velocity (v) also looks acceptable in shape in that it takes the follower from zero velocity 
at the low dwell to a peak value of 19.1 in/sec (0.49 m/sec) to zero again at the maximum 
displacement, where the glue is applied.

 3 Figure 8-27 also shows the acceleration function for this solution.  Its maximum absolute value 
is about 573 in/sec2.

FIGURE 8-27
Cycloidal motion (or any double-dwell program) is a poor choice for the single-dwell case.
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4 The problem is that this acceleration curve has an unnecessary return to zero at the end of the 
rise.  It is unnecessary because the acceleration during the first part of the fall is also negative.  
It would be better to keep it in the negative region at the end of the rise.

5 This unnecessary oscillation to zero in the acceleration causes the jerk to have more abrupt 
changes and discontinuities.  The only real justification for taking the acceleration to zero is the 
need to change its sign (as is the case halfway through the rise or fall) or to match an adjacent 
segment that has zero acceleration.

The reader may open the file E08-06.cam in program DYNACAM to investigate this 
example in more detail.

For the single-dwell case we would like a function for the rise that does not return its 
acceleration to zero at the end of the interval.  The function for the fall should begin with 
the same nonzero acceleration value as ended the rise and then be zero at its terminus to 
match the dwell.  One function that meets those criteria is the double harmonic which 
gets its name from its two cosine terms, one of which is a half-period harmonic and the 
other a full-period wave.  The equations for the double harmonic functions are:
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2
sin 2sin 2

2
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3

3

s h

v h

a h

j h

Note that these double harmonic functions should never be used for the double-dwell 
case because their acceleration is nonzero at one end of the interval.
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✍EXAMPLE 8-7

Double Harmonic Motion for Symmetrical Rise-Fall Single-Dwell Case.

Problem:  Consider the same single-dwell cam specification as in Example 8-5:

rise 1 in (25 mm) in 90 degrees
fall  1 in (25 mm) in 90 degrees
dwell at zero displacement for 180 degrees (low dwell)
cam 
 15 rad/sec

Solution:

 1 Figure 8-28 shows a double harmonic rise and a double harmonic fall.  The peak velocity is 
19.5 in/sec (0.50 m/sec) which is similar to that of the cycloidal solution of Example 8-6.

 2 Note that the acceleration of this double harmonic function does not return to zero at the end 
of the rise.  This makes it more suitable for a single-dwell case in that respect.

 3 The double harmonic jerk function peaks at 36 931 in/sec3 (938 m/sec3) and is quite smooth 
compared to the cycloidal solution.

 4 Unfortunately, the peak negative acceleration is 900 in/sec2, nearly twice that of the cycloidal 
solution.  This is a smoother function but will develop higher dynamic forces.  Open the file 
E08-07.cam in program DYNACAM to see this example in greater detail.

 5 Another limitation of this function is that it may only be used for the case of an equal time 
(symmetrical) rise and fall.  If the rise and fall times are different, the acceleration will be 
discontinuous at the juncture of rise and fall, violating the fundamental law of cam design.

FIGURE 8-28
Double harmonic motion can be used for the single-dwell case if rise and fall durations are equal.

Dwell

0 90 180 270 360

  Double
Harmonic
    Rise

  Double
Harmonic
     Fall

s

v

a

j

No unnecessary zero acceleration

Continuous jerk

– 900  in/sec2
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Neither of the solutions in Examples 8-6 and 8-7 is optimal.  We will now apply 
polynomial functions and redesign it to both improve its smoothness and reduce its peak 
acceleration.

Single-Dwell Applications of Polynomials
To solve the problem of Example 8-7 with a polynomial, we must decide on a suitable 
set of boundary conditions.  But first, we must decide how many segments to divide the 
cam cycle into. The problem statement seems to imply three segments, a rise, a fall, and 
a dwell.  We could use those three segments to create the functions as we did in the two 
previous examples, but a better approach is to use only two segments, one for the rise-fall 
combined and one for the dwell.  As a general rule we would like to minimize the number 
of segments in our polynomial cam functions.  Any dwell requires its own segment.  So, 
the minimum number possible in this case is two segments.

Another rule of thumb is that we would like to minimize the number of boundary 
conditions specified because the degree of the polynomial is tied to the number of BCs.  
As the degree of the function increases, so will the number of its inflection points and 
its number of minima and maxima.  The polynomial derivation process will guarantee 
that the function will pass through all specified BCs but says nothing about the function’s 
behavior between the BCs.  A high-degree function may have undesirable oscillations 
between its BCs.

With these assumptions we can select a set of boundary conditions for a trial solution. 
First we will restate the problem to reflect our two-segment configuration.

✍EXAMPLE 8-8 
Designing a Polynomial for the Symmetrical Rise-Fall Single-Dwell Case.

Problem: Redefine the CEP specification from Examples 8-5 and 8-6.

rise-fall 1 in (25.4 mm) in 90� and fall 1 in (25.4 mm) in 90� over 180�
dwell at zero displacement for 180� (low dwell) 
cam 
 15 rad/sec

Solution:

 1 Figure 8-29 shows the minimum set of seven BCs for this symmetrical problem, which will 
give a sixth-degree polynomial.  The dwell on either side of the combined rise-fall segment 
has zero values of s, v, a, and j.  The fundamental law of cam design requires that we match 
these zero values, through the acceleration function, at each end of the rise-fall segment.  

 2 These then account for six BCs;  s, v, a = 0 at each end of the rise-fall segment.  

 3 We also must specify a value of displacement at the 1-in peak of the rise that occurs at � = 90�.  
This is the seventh BC.  Note that due to symmetry, it is not necessary to specify the velocity 
to be zero at the peak.  It will be anyway.

 4 Figure 8-29 also shows the coefficients of the displacement polynomial that result from the 
simultaneous solution of the equations for the chosen BCs.  For generality we have substituted 
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the variable h for the specified 1-in rise.  The function turns out to be a 3-4-5-6 polynomial 
whose equation is:

=
θ
β

⎛
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−
θ
β
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−
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
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64 192 192 64 ( )
3 4 5 6

s h a

Figure 8-30 shows the s v a j diagrams for this solution with its maximum values 
noted.  Compare these acceleration and s v a j curves to the double harmonic and cycloi-
dal solutions to the same problem in Figures 8-27 and 8-28.  Note that this sixth-degree 
polynomial function is as smooth as the double harmonic functions (Figure 8-28) and does 
not unnecessarily return the acceleration to zero at the top of the rise as does the cycloidal 
(Figure 8-27).  The polynomial has a peak acceleration of 547 in/sec2, which is less than 
that of either the cycloidal or double harmonic solution.  This 3-4-5-6 polynomial is a 

FIGURE 8-29
Boundary conditions and coefficients for a single-dwell polynomial application
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 number                 used             angle            angle            angle
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FIGURE 8-30
3-4-5-6 polynomial function for two-segment symmetrical rise-fall, single-dwell cam
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superior solution to either of those presented for the symmetrical rise-fall case and is an 
example of how polynomial functions can be easily tailored to particular design specifi-
cations.  The reader may open the file E08-08.cam in program DYNACAM to investigate 
this example in greater detail.

Effect of Asymmetry on the Rise-Fall Polynomial Solution
The examples so far presented in this section all had equal time for rise and fall, referred 
to as a symmetrical rise-fall curve.  What will happen if we need an asymmetric program 
and attempt to use a single polynomial as was done in the previous example?

✍EXAMPLE 8-9

Designing a Polynomial for an Asymmetrical Rise-Fall Single-Dwell Case.

Problem: Redefine the specification from Example 8-8 as:

rise-fall rise 1 in (25.4 mm) in 45� and fall 1 in (25.4 mm) in 135� over 180�
dwell at zero displacement for 180� (low dwell)
cam 
 15 rad/sec

Solution:

 1 Figure 8-31  shows the minimum set of seven BCs for this problem that will give a sixth-degree 
polynomial.  The dwell on either side of the combined rise-fall segment has zero values for 
S, V, A, and J.  The fundamental law of cam design requires that we match these zero values, 
through the acceleration function, at each end of the rise-fall segment.  

 2 The endpoints account for six BCs;  S = V = A = 0 at each end of the rise-fall segment.  

 3 We also must specify a value of displacement at the 1-in peak of the rise that occurs at � = 45�.  
This is the seventh BC.  

 4 Simultaneous solution of this equation set gives a 3-4-5-6 polynomial whose equation is:

=
θ
β

⎛
⎝⎜

⎞
⎠⎟

−
θ
β

⎛
⎝⎜

⎞
⎠⎟

+
θ
β

⎛
⎝⎜

⎞
⎠⎟
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⎢

⎤

⎦
⎥
⎥

151.704 455.111 455.111 151.704 ( )
3 4 5 6

s h a

  For generality we have substituted the variable h for the specified 1-in rise.  

 5 Figure 8-31 shows the S V A J diagrams for this solution with its maximum values noted.  Ob-
serve that the derived sixth-degree polynomial has obeyed the stated boundary conditions and 
does in fact pass through a displacement of 1 unit at 45�.  But note also that it overshoots that 
point and reaches a height of 2.37 units at its peak.  The acceleration peak is also 2.37 times 
that of the symmetrical case of Example 8-8.  Without any additional boundary conditions 
applied, the function seeks symmetry.  Note that the zero velocity point is still at 90� when we 
would like it to be at 45�.  We can try to force the velocity to zero with an additional boundary 
condition of V = 0 when � = 45�/

� 0� Figure 8-32 shows the S V A J diagrams for a seventh-degree polynomial having 8 BCs, S = V =  
A = 0 at � = 0�,  S = V = A = 0 at � =180�, S = 1, V = 0 at � = 45�/��Note that the resulting 
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elsewhere.  It now plunges to a  negative displacement of –3.934, and the peak acceleration 
is much larger.  This points out an inherent problem in polynomial functions, namely that 
their behavior between boundary conditions is not controllable and may create undesirable 
deviations in the follower motion.  This problem is exacerbated as the degree of the function 
increases since it then has more roots and inflection points, thus allowing more oscillations 
between the boundary conditions.

 7 Open the files Ex_08-09a and b in program DYNACAM to see this example in greater detail.

FIGURE 8-31
Unacceptable polynomial for a two-segment asymmetrical rise-fall, single-dwell cam
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FIGURE 8-32
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In this case, the rule of thumb to minimize the number of segments is in conflict with 
the rule of thumb to minimize the degree of the polynomial.  One alternative solution 
to this asymmetrical problem is to use three segments, one for the rise, one for the fall, 
and one for the dwell.   Adding segments will reduce the order of the functions and bring 
them under control.

✍EXAMPLE 8-10

Designing a Three-Segment Polynomial for an Asymmetrical Rise-Fall Single-Dwell Case 
Using Minimum Boundary Conditions.

Problem: Redefine the specification from Example 8-9 as:

rise 1 in (25.4 mm) in 45� 
fall  1 in (25.4 mm) in 135� 
dwell at zero displacement for 180� (low dwell) 
cam 
 15 rad/sec

Solution:

 1 The first attempt at this solution specifies 5 BCs;  S = V = A = 0 at the start of the rise (to 
match the dwell), S = 1 and V = 0 at the end of the rise.  Note that the rise segment BCs leave 
the acceleration at its end unspecified, but the fall segment BCs must include the value of the 
acceleration at the end of the rise that results from the calculation of  its acceleration.  Thus, 
the fall requires one more BC than the rise.

 2 This results in the following fourth degree equation for the rise segment:
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 3 Evaluating the acceleration at the end of rise gives –4377.11 in/sec2.  This value becomes a 
BC for the fall segment.  The set of 6 BCs for the fall is then:  S = 1, V = 0, A = –4377.11 at 
the start of the fall (to match the rise) and S = V = A = 0  at the end of the fall to match the 
dwell.  The fifth-degree equation for the fall is then:
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 4 Figure 8-33 shows the S V A J diagrams for this solution with its extreme values noted.  Ob-
serve that this polynomial on the fall also has a problem—the displacement still goes negative.

 5 The trick in this case (and in general) is to first calculate the segment with the smaller accel-
eration (here the second segment) because of  its larger duration angle �.  Then use its smaller 
acceleration value as a boundary condition on the first segment.  The 5 BCs for segment 2 are 
then  S = 1 and V = 0 at the start of the fall and S = V = A = 0 at the end of the fall (to match 
the dwell).  These give the following fourth-degree polynomial for the fall.
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 6 Evaluating the acceleration at the start of the fall gives –486.4 in/sec2.  This value becomes a 
BC for the rise segment.  The set of 6 BCs for the rise is then: S = V = A = 0  at the start of 
the rise to match the dwells, and S = 1, V = 0, A = –486.4 at the end of the rise (to match the 
fall).  The fifth-degree equation for the rise is then:
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 7 The resulting cam design is shown in Figure 8-34.  The displacement is now under control and 
the peak acceleration is much less than the previous design at about 2024 in/sec2.

 8 The design of Figure 8-34 is acceptable (though not optimum)* for this example.  Open the 
files Ex_08-10a and b in program DYNACAM to see this example in greater detail.

8.5 CRITICAL PATH MOTION  (CPM)

Probably the most common application of critical path motion (CPM) specifications in 
production machinery design is the need for constant velocity motion.  There are two 

FIGURE 8-33
Uacceptable polynomials for a three-segment asymmetrical rise-fall, single-dwell cam
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* An  optimum solution to 
this  generic problem can be 
found in reference [5].
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general types of automated production machinery in common use, intermittent motion
assembly machines and continuous motion assembly machines.

Intermittent motion assembly machines carry the manufactured goods from work-
station to workstation, stopping the workpiece or subassembly at each station while an-
other operation is performed upon it.  The throughput speed of this type of automated 
production machine is typically limited by the dynamic forces that are due to accelerations 
and decelerations of the mass of the moving parts of the machine and its workpieces.  The 
workpiece motion may be either in a straight line as on a conveyor or in a circle as on a 
rotary table as shown in Figure 8-22.

Continuous motion assembly machines never allow the workpiece to stop and 
thus are capable of higher throughput speeds.  All operations are performed on a moving 
target.  Any tools that operate on the product have to “chase” the moving assembly line 
to do their job.  Since the assembly line (often a conveyor belt or chain, or a rotary table) 
is moving at some constant velocity, there is a need for mechanisms to provide constant 
velocity motion, matched exactly to the conveyor, in order to carry the tools alongside 
for a long enough time to do their job.  These cam driven “chaser” mechanisms must 
then return the tool quickly to its start position in time to meet the next part or subas-
sembly on the conveyor (quick-return).  There is a motivation in manufacturing to convert 
from intermittent motion machines to continuous motion in order to increase production 
rates.  Thus there is some demand for this type of constant velocity mechanism.  Though 
we met some linkages in Chapter 6 that give approximate constant velocity output, the 
cam-follower system is well suited to this problem, allowing theoretically exact constant 
follower velocity, and the polynomial cam function is particularly adaptable to the task.

FIGURE 8-34
Acceptable polynomials for a three-segment asymmetrical rise-fall, single-dwell cam
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Polynomials Used for Critical Path Motion

✍EXAMPLE 8-11

Designing a Polynomial for Constant Velocity Critical Path Motion.

Problem: Consider the following statement of a critical path motion (CPM) problem:

Accelerate the follower from zero to 10 in/sec
Maintain a constant velocity of 10 in/sec for 0.5 sec
Decelerate the follower to zero velocity
Return  the follower to start position
Cycle time  exactly 1 sec

Solution:

 1 This unstructured problem statement is typical of real design problems as was discussed in 
Chapter 1.  No information is given as to the means to be used to accelerate or decelerate the 
follower or even as to the portions of the available time to be used for those tasks.  A little 
reflection will cause the engineer to recognize that the specification on total cycle time in effect 
defines the camshaft velocity to be its reciprocal or one revolution per second.  Converted to 
appropriate units, this is an angular velocity of 2� rad/sec.

 2 The constant velocity portion uses half of the total period of 1 sec in this example.  The de-
signer must next decide how much of the remaining 0.5 sec to devote to each other phase of 
the required motion.

 3 The problem statement seems to imply that four segments are needed.  Note that the designer 
has to somewhat arbitrarily select the lengths of the individual segments (except the constant 
velocity one).  Some iteration may be required to optimize the result.  Program DYNACAM
makes the iteration process quick and easy, however.

 4 Assuming four segments, the timing diagram in Figure 8-35 shows an acceleration phase, a con-
stant velocity phase, a deceleration phase, and a return phase, labeled as segments 1 through 4.

FIGURE 8-35
Constant velocity cam timing diagram

0

Constant velocity Return

5 in 10 in/sec

1 2 3 4

Motion Accelerate Decelerate

30 210 240 3600 cam angle θ  deg

1.000.08 0.58 0.670 time t  sec
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5 The segment angles (�’s) are assumed, for a first approximation, to be 30� for segment 1, 180� 
for segment 2, 30� for segment 3, and 120� for segment 4 as shown in Figure 8-36.  These 
angles may need to be adjusted in later iterations, except for segment 2 which is rigidly con-
strained in the specifications.

6 Figure 8-36 shows a tentative set of boundary conditions for the s v a j diagram.  The solid 
circles indicate a set of boundary conditions that will constrain the continuous function to these 
specifications.  These are for segment 1:

θ = ° = =

θ = ° = =

when 0 ; 0, 0,
( )

when 30 ; , 10, 0

s v none
a

none v a

 7 Note that the displacement at ��= 30� is left unspecified.  The resulting polynomial function 
will provide us with the values of displacement at that point, which can then be used as a 

FIGURE 8-36
A possible set of boundary conditions for the four-segment constant velocity solution
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cam angle (deg)
FIGURE 8-37
Segment one for the four-segment solution to the constant velocity problem (Example 8-11)
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J

0  30

0.556 in

10 in/sec

239.9 in/sec2

boundary condition for the next segment, in order to make the overall functions continuous 
as required.  The acceleration at ��= 30� must be zero in order to match that of the constant 
velocity segment 2.  The acceleration at ��= 0 is left unspecified.  The resulting value will be 
used later to match the end of the last segment’s acceleration.

 8 Putting these four BCs for segment 1 into program DYNACAM yields a cubic function whose  
s v a j plots are shown in Figure 8-37.  Its equation is:

=
θ
β

⎛
⎝⎜

⎞
⎠⎟

−
θ
β

⎛
⎝⎜

⎞
⎠⎟

0.83376 0.27792 (8.27a)
2 3

s

  The maximum displacement occurs at ��= 30�.  This will be used as one BC for segment 2.   
The entire set for segment 2 is:

θ = ° = =

θ = °

when 30 ; 0.556, 10
( )

when 210 ; ,

s v
b

none none

 9 Note that in the derivations and in the DYNACAM program each segment’s local angles run 
from zero to the � for that segment.  Thus, segment 2’s local angles are 0� to 180�, which cor-
respond to 30� to 210��globally in this example.  We have left the displacement, velocity, and 
acceleration at the end of segment 2 unspecified.  They will be determined by the computation.

 10 Since this is a constant velocity segment, its integral, the displacement function, must be a 
polynomial of degree one, i.e., a straight line.  If we specify more than two BCs we will get 
a function of higher degree than one that will pass through the specified endpoints but may 
also oscillate between them and deviate from the desired constant velocity.  Thus we can only 
provide two BCs, a slope and an intercept, as defined in equation 8.2.  But, we must provide at 
least one displacement boundary condition in order to compute the coefficient C0 from equa-
tion 8.23.  Specifying the two BCs at only one end of the interval is perfectly acceptable.  The 
equation for segment 2 is:
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=
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β
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 11 Figure 8-38 shows the displacement and velocity plots of segment 2.  The acceleration and 
jerk are both zero.  The resulting displacement at ��= 210� is 5.556.

 12 The displacement at the end of segment 2 is now known from its equation.  The four boundary 
conditions for segment 3 are then:

θ = ° = = =

θ = ° =

when 210 ; 5.556, 10, 0
( )

when 240 ; , 0,

s v a
c

none v none

 13 This generates a cubic displacement function for segment 3 as in Figure 8-39.  Its equation is:
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 14 The boundary conditions for the last segment 4 are now defined, as they must match those of 
the end of segment 3 and the beginning of segment 1.  The displacement at the end of segment 
3 is found from the computation in DYNACAM to be s = 6.112 at � = 240° and the acceleration 
at that point is –239.9.  We left the acceleration at the beginning of segment 1 unspecified.  
From the second derivative of the equation for displacement in that segment we find that the 
acceleration is 239.9 at ��= 0°.  The BCs for segment 4 are then:

θ = ° = = = −

θ = ° = = =

when 240 ; 6.112, 0, 239.9
( )

when 360 ; 0, 0, 239.9

s v a
d

s v a

 15 The equation for segment 4 is then:
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FIGURE 8-38
Segment two for the four-segment solution to the constant velocity problem (Example 8-11)
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16 Figure 8-39 shows the  s v a j plots for the complete cam.  It obeys the fundamental law of 
cam design because the piecewise functions are continuous through the acceleration.  The 
maximum value of acceleration is 257 in/sec2.  The maximum negative velocity is –29.4 in/
sec.  We now have four piecewise-continuous functions, equations 8.27, which will meet the 
performance specifications for this problem.

The reader may open the file E08-11.cam in program DYNACAM to investigate this ex-
ample in greater detail.

While this design is acceptable, it can be improved.  One useful strategy in design-
ing polynomial cams is to minimize the number of segments, provided that this does not 
result in functions of such high degree that they misbehave between boundary conditions.  
Another strategy is to always start with the segment for which you have the most informa-
tion.  In this example, the constant velocity portion is the most constrained and must be a 
separate segment, just as a dwell must be a separate segment.  The rest of the cam motion 
exists only to return the follower to the constant velocity segment for the next cycle.  If we 
start by designing the constant velocity segment, it may be possible to complete the cam 
with only one additional segment.  We will now redesign this cam, to the same specifica-
tions but with only two segments as shown in Figure 8-40.  

✍EXAMPLE 8-12

Designing an Optimum Polynomial for Constant Velocity Critical Path Motion.

Problem: Redefine the problem statement of Example 8-11 to have only two segments.

Maintain  a constant velocity of 10 in/sec for 0.5 sec
Decelerate and accelerate follower to constant velocity
Cycle time exactly 1 sec

Solution: See Figures 8-40 and 8-41.

cam angle (deg)
FIGURE 8-39
Four-segment solution to the constant velocity problem of Example 8-11
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1 The BCs for the first, constant velocity, segment will be similar to our previous solution except 
for the global values of its angles and the fact that we will start at zero displacement rather than 
at 0.556 in.  They are:

θ = ° = =

θ = °

when 0 ; 0, 10
( )

when 180 ; ,

s v
a

none none

 2 The displacement and velocity plots for this segment are identical to those in Figure 8-38 
except that the displacement starts at zero.  The equation for segment 1 is:

=
θ
β

⎛
⎝⎜

⎞
⎠⎟

5 (8.28a)s

 3 The program calculates the displacement at the end of segment 1 to be 5.00 in.  This defines 
that BC for segment 2.   The set of BCs for segment 2 is then:

θ = ° = = =

θ = ° = = =

when 180 ; 5.00, 10, 0
( )

when 360 ; 0, 10, 0

s v a
b

s v a

  The equation for segment 2 is:

= −
θ
β

⎛
⎝⎜

⎞
⎠⎟

+
θ
β

⎛
⎝⎜

⎞
⎠⎟

−
θ
β

⎛
⎝⎜

⎞
⎠⎟

+
θ
β

⎛
⎝⎜

⎞
⎠⎟

+60 150 100 5 5 (8.28b)
5 4 3 1

s

FIGURE 8-40
Boundary conditions for the two-segment constant velocity solution
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4 The s v a j diagrams for this design are shown in Figure 8-41.  Note that they are much 
smoother than the four-segment design.  The maximum acceleration in this example is now 
230 in/sec2, and the maximum negative velocity is –27.5 in/sec. These are both less than in 
the previous design of Example 8-11.  

 5 The fact that our displacement in this design contains negative values as shown in the s diagram 
of Figure 8-41 is of no concern.  This is due to our starting with the beginning of the constant 
velocity portion as zero displacement.  The follower has to go to a negative position in order 
to have distance to accelerate up to speed again.  We will simply shift the displacement coordi-
nates by that negative amount to make the cam.  To do this, simply calculate the displacement 
coordinates for the cam.  Note the value of the largest negative displacement.  Add this value 
to the displacement boundary conditions for all segments and recalculate the cam functions 
with DYNACAM.  (Do not change the BCs for the higher derivatives.)  The finished cam’s 
displacement profile will be shifted up such that its minimum value will now be zero.

So, not only do we now have a smoother cam but the dynamic forces and stored 
kinetic energy are both lower.  Note that we did not have to make any assumptions about 
the portions of the available nonconstant velocity time to be devoted to speeding up or 
slowing down.  This all happened automatically from our choice of only two segments and 
the specification of the minimum set of necessary boundary conditions.  This is clearly a 
superior design to the previous attempt and is in fact an optimal polynomial solution to 
the given specifications.  The reader is encouraged to open the file E08-12.cam in program 
DYNACAM to investigate this example in more detail.

SUMMARY These sections have presented polynomial functions as the most ver-
satile approach (of those shown here) to virtually any cam design problem.  It is only 
since the development and general availability of computers that polynomial functions 
have become practical to use, as the computation to solve the simultaneous equations is 
often beyond hand calculation abilities.  With the availability of a design aid to solve the 
equations such as program DYNACAM, polynomials have become a practical and prefer-

cam angle (deg)
FIGURE 8-41
Two-segment solution to the constant velocity problem of Example 8-12

S

V

A

J

0 90 180 270 360

10 in/sec

5.484 in

230 in/sec2–27.5 in/sec

–230 in/sec2

–0.484 in



DESIGN OF MACHINERY 6ed      CHAPTER 8460

8

able way to solve many, but not all, cam design problems.  Spline functions, of which 
polynomials are a subset, offer even more flexibility in meeting boundary constraints and 
other cam performance criteria.  Space does not permit a detailed exposition of spline 
functions as applied to cam systems here.  See reference [6] for more information.

8.6 SIZING THE CAM—PRESSURE ANGLE AND RADIUS OF  
CURVATURE View the lecture video (48:55)†

Once the s v a j functions have been defined, the next step is to size the cam.  There are two 
major factors that affect cam size, the pressure angle and the radius of curvature.  Both 
of these involve either the base circle radius  on the cam (Rb) when using flat-faced fol-
lowers, or the prime circle radius  on the cam (Rp) when using roller or curved followers.

The base circle’s and prime circle’s centers are at the center of rotation of the cam.  
The base circle is defined as the smallest circle that can be drawn tangent to the physical 
cam surface as shown in Figure 8-42.  All radial cams will have a base circle, regardless 
of the follower type used.

The prime circle is only applicable to cams with roller followers or radiused (mush-
room) followers and is measured to the center of the follower.   The prime circle is de-
fined as the smallest circle that can be drawn tangent to the locus of the centerline of the 
follower as shown in Figure 8-42.  The locus of the centerline of the follower is called the 
pitch curve.  Cams with roller followers are in fact defined for manufacture with respect 
to the pitch curve rather than with respect to the cam’s physical surface.  Cams with flat-
faced followers must be defined for manufacture with respect to their physical surface, as 
there is no pitch curve.

Rb

ωcam

Prime circle

Base circle

Pitch curve
Cam surface

Rp

Roller follower

Rf

FIGURE 8-42
Base circle Rb, prime circle Rp, and pitch curve of a radial cam with roller follower

† http://www.designof-
machinery.com/DOM/
Cam_Design_III.mp4
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The process of creating the physical cam from the s diagram can be visualized con-
ceptually by imagining the s diagram to be cut out of a flexible material such as rubber.  
The x axis of the s diagram represents the circumference of a circle, which could be either 
the base circle, or the prime circle, around which we will “wrap” our “rubber” s diagram.  
We are free to choose the initial length of our s diagram’s x axis, though the height of the 
displacement curve is fixed by the cam displacement function we have chosen.  In effect 
we will choose the base or prime circle radius as a design parameter and stretch the length 
of the s diagram’s axis to fit the circumference of the chosen circle.

We will present equations for pressure angle and radius of curvature only for radial 
cams with translating followers here.  For related information on oscillating followers and 
axial (barrel) cams, see Chapter 7 of reference [5].

Pressure Angle—Translating Roller Followers
The pressure angle is defined as shown in Figure 8-43.  It is the complement of the 
transmission angle that was defined for linkages in previous chapters and has a similar 
meaning with respect to cam-follower operation.  By convention, the pressure angle is 
used for cams, rather than the transmission angle.  Force can only be transmitted from 
cam to follower or vice versa along the axis of transmission which is perpendicular to 
the axis of slip, or common tangent.

PRESSURE ANGLE The pressure angle 1 is the angle between the direction of 
motion (velocity) of the follower and the direction of the axis of transmission.*  When 
1 = 0, all the transmitted force goes into motion of the follower and none into slip veloc-
ity.  When 1 becomes 90� there will be no motion of the follower.  As a rule of thumb, we 
would like the pressure angle to be between zero and about 30� for translating followers 
to avoid excessive side load on the sliding follower.  If the follower is oscillating on a 
pivoted arm, a pressure angle up to about 35� is acceptable.  Values of 1 greater than this 
can increase the follower sliding or pivot friction to undesirable levels and may tend to 
jam a translating follower in its guides.

ECCENTRICITY Figure 8-44 shows the geometry of a cam and translating roller 
follower in an arbitrary position.  This shows the general case in that the axis of motion 
of the follower does not intersect the center of the cam.  There is an eccentricity 2 defined 
as the perpendicular distance between the follower’s axis of motion and the center of the 
cam.  Often this eccentricity 2 will be zero, making it an aligned follower, which is the 
special case.

In Figure 8-44, the axis of transmission is extended to intersect effective link 1, which 
is the ground link.  (See Section 8.0 and Figure 8-1 for a discussion of effective links in 
cam systems.)  This intersection is instant center I2,4 (labeled B) which, by definition, has 
the same velocity in link 2 (the cam) and in link 4 (the follower).  Because link 4 is in 
pure translation, all points on it have identical velocities Vfollower, which are equal to the 
velocity of I2,4 in link 2.  We can write an expression for the velocity of I2,4 in terms of 
cam angular velocity and the radius b from cam center to I2,4,

= ω = � (8.29)2,4V b SI

* Dresner and Buffington[7] 
point out that this definition 
is only valid for single-
degree-of-freedom systems.  
For multi-input systems, a 
more complicated definition 
and calculation of pressure 
angle (or transmission 
angle) are needed. 
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where s or S is the instantaneous displacement of the follower from the S diagram and �S
is its time derivative in units of length/sec.  (Note that capital V, A, J denote time-based 
variables and v, a, j are functions of cam angle—length/rad, length/rad2, length/rad3.)

�But

and

so
then (8.30)

S dS
dt

dS
dt

d
d

dS
d

d
dt

dS
d

v

b v
b v

=

θ
θ

=
θ

θ
=

θ
ω = ω

ω = ω
=

This is an interesting relationship which says that the distance b to the instant center 
I2,4 is equal to the velocity of the follower v in units of length per radian as derived in 
previous sections.  We have reduced this expression to pure geometry, independent of the 
angular velocity 
 of the cam.

FIGURE 8-43
Cam pressure angle

Vfollower

Transmission
    angle 3

Pressure
  angle

Roller follower

Cam

Common tangent
    (axis of slip)

   Common normal
(axis of transmission)

1
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Note that we can express the distance b in terms of the prime circle radius Rp and the 
eccentricity 2, by the construction shown in Figure 8-44.  Swing the arc of radius Rp until 
it intersects the axis of motion of the follower at point D.  This defines the length of line 
d from effective link 1 to this intersection.  This is constant for any chosen prime circle 
radius Rp.  Points A, C, and I2,4 form a right triangle whose upper angle is the pressure 
angle 1 and whose vertical leg is (s + d), where s is the instantaneous displacement of the 
follower.  From this triangle:

( )

( )

= − ε = + φ

= + φ + ε
and

tan
(8.31a)

tan

c b s d

b s d

Then from equation 8.30,

( )= + φ + εtan (8.31b)v s d

to I1,4 @ 4

I2,4

Pressure  angle

Common tangent
    (axis of slip)

   Common normal
(axis of transmission)

Follower

Vfollower = VI

Effective
  link 4

Effective
  link 1

Follower axis
   of motion

1

to I1,4 @ 4

Rp
Prime circle
    radius


cam C

2

s
1

d

b

D

B

c

VI

2O

A

FIGURE 8-44
Geometry for the derivation of the equation for pressure angle
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and from triangle CDO2,

= − ε (8.31c)2 2d RP

Substituting equation 8.31c into equation 8.31b and solving for 1 give an expression 
for pressure angle in terms of displacement s, velocity v, eccentricity 2,  and the prime 
circle radius Rp.

φ =
− ε

+ − ε
arctan (8.31d)

2 2
v

s RP

The velocity v in this expression is in units of length/rad, and all other quantities are 
in compatible length units.  We have typically defined s and v by this stage of the cam 
design process and wish to manipulate Rp and 2 to get an acceptable maximum pressure 
angle 1.  As Rp is increased, 1 will be reduced.  The only constraints against large values 
of Rp are the practical ones of package size and cost.  Often there will be some upper limit 
on the size of the cam-follower package dictated by its surroundings.  There will always 
be a cost constraint and bigger = heavier = more expensive.

Choosing a Prime Circle Radius
Both Rp and 2 are within a transcendental expression in equation 8.31d, so they cannot 
be conveniently solved for directly.  The simplest approach is to assume a trial value for 
Rp and an initial eccentricity of zero, and use program DYNACAM, your own program, or 
an equation solver such as Matlab, TKSolver or Mathcad to quickly calculate the values 
of 1 for the entire cam, and then adjust Rp and repeat the calculation until an acceptable 
arrangement is found.  Figure 8-45 shows the calculated pressure angles for a four-dwell 
cam.  Note the similarity in shape to the velocity functions for the same cam in Figure 
8-6, as that term is dominant in equation 8.31d.

cam angle (deg)
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)

FIGURE 8-45
Pressure angle functions are similar in shape to velocity functions.
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USING ECCENTRICITY If a suitably small cam cannot be obtained with acceptable 
pressure angle, then eccentricity can be introduced to change the pressure angle.  Using 
eccentricity to control the pressure angle has its limitations.  For a positive 
, a positive 
value of eccentricity will decrease the pressure angle on the rise but will increase it on 
the fall.  Negative eccentricity does the reverse.  

This is of little value with a form-closed (groove or track) cam, as it is driving the 
follower in both directions.  For a force-closed cam with spring return, you can sometimes 
afford to have a larger pressure angle on the fall than on the rise because the stored energy 
in the spring is attempting to speed up the camshaft on the fall, whereas the cam is stor-
ing that energy in the spring on the rise.  The limit of this technique can be the degree 
of overspeed attained with a larger pressure angle on the fall.  The resulting variations in 
cam angular velocity may be unacceptable.  

The most value gained from adding eccentricity to a follower comes in situations 
where the cam program is asymmetrical and significant differences exist (with no eccen-
tricity) between maximum pressure angles on rise and fall.  Introducing eccentricity can 
balance the pressure angles in this situation and create a smoother running cam.

If adjustments to Rp or 2 do not yield acceptable pressure angles, the only recourse 
is to return to an earlier stage in the design process and redefine the problem.  Less lift 
or more time to rise or fall will reduce the causes of the large pressure angle.  Design is, 
after all, an iterative process.

Overturning Moment—Translating Flat-Faced Follower
Figure 8-46 shows a translating, flat-faced follower running against a radial cam.  The 
pressure angle can be seen to be zero for all positions of cam and follower.  This seems 
to be giving us something for nothing, which can’t be true.  As the contact point moves 
left and right, the point of application of the force between cam and follower moves with 
it.  There is an overturning moment on the follower associated with this off-center force 
which tends to jam the follower in its guides, just as did too large a pressure angle in the 
roller follower case.  In this case, we would like to keep the cam as small as possible in 
order to minimize the moment arm of the force.  Eccentricity will affect the average value 
of the moment, but the peak-to-peak variation of the moment about that average is unaf-
fected by eccentricity.  Considerations of too-large pressure angle do not limit the size of 
this cam, but other factors do.  The minimum radius of curvature (see below) of the cam 
surface must be kept large enough to avoid undercutting.  This is true regardless of the 
type of follower used.

Radius of Curvature—Translating Roller Follower
The radius of curvature is a mathematical property of a function.  Its value and use is 
not limited to cams but has great significance in their design.  The concept is simple.  No 
matter how complicated a curve’s shape may be, nor how high the degree of the describ-
ing function, it will have an instantaneous radius of curvature at every point on the curve.  
These radii of curvature will have instantaneous centers (which may be at infinity), and 
the radius of curvature of any function is itself a function that can be computed and plot-
ted.  For example, the radius of curvature of a straight line is infinity everywhere; that of 
a circle is a constant value.  A parabola has a constantly changing radius of curvature that 
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approaches infinity.  A cubic curve will have radii of curvature that are sometimes posi-
tive (convex) and sometimes negative (concave).  The higher the degree of a function, in 
general, the more potential variety in its radius of curvature.

Cam contours are usually functions of high degree.  When they are wrapped around 
their base or prime circles, they may have portions that are concave, convex, or flat.  
Infinitesimally short flats of infinite radius will occur at all inflection points on the cam 
surface where it changes from concave to convex or vice versa.

The radius of curvature of the finished cam is of concern regardless of the follower 
type, but the concerns are different for different followers.  Figure 8-47 shows an obvious 
(and exaggerated) problem with a roller follower whose own (constant) radius of curvature 
Rf is too large to follow the locally smaller concave (negative) radius –5 on the cam.  (Note 
that, normally, one would not use that large a roller compared to the cam.)

A more subtle problem occurs when the roller follower radius Rf is larger than the 
smallest positive (convex) local radius +5 on the cam.  This problem is called undercut-
ting and is depicted in Figure 8-48.  Recall that for a roller follower cam, the cam contour 
is actually defined as the locus of the center of the roller follower, or the pitch curve.  The 

Common
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6 M = 0

Fspring

Fb
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Common tangent


cam

Eccentricity or offset
FIGURE 8-46
Overturning moment on a flat-faced follower
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machinist is given these x,y coordinate data (on computer tape or disk) and also told the 
radius of the follower Rf.  The machinist will then cut the cam with a cutter of the same 
effective radius as the follower, following the pitch curve coordinates with the center of 
the cutter.

Figure 8-48a shows the situation in which the follower (cutter) radius Rf is at one 
point exactly equal to the minimum convex radius of curvature of the cam (+5min).  The 
cutter creates a perfect sharp point, or cusp, on the cam surface.  This cam will not run 
very well at speed!  Figure 8-48b shows the situation in which the follower (cutter) radius 
is greater than the minimum convex radius of curvature of the cam.  The cutter now un-
dercuts or removes material needed for cam contours in different locations and also creates 
a sharp point or cusp on the cam surface.  This cam no longer has the same displacement 
function you so carefully designed.

The rule of thumb is to keep the absolute value of the minimum radius of curvature 
5min of the cam pitch curve preferably at least 2 to 3 times as large as the radius of the 
roller follower Rf .

ρ >> (8.32)min Rf

A derivation for radius of curvature can be found in any calculus text.  For our case of 
a roller follower, we can write the equation for the radius of curvature of the pitch curve 
of the cam as:

( )
( ) ( )

ρ =
+ +⎡

⎣⎢
⎤
⎦⎥

+ + − +2
(8.33)

2 2
3 2

2 2

R s v

R s v a R s
pitch

P

P P

In this expression, s, v, and a are the displacement, velocity, and acceleration of the 
cam program as defined in a previous section.  Their units are length, length/rad, and 
length/rad2, respectively.  Rp is the prime circle radius.  Do not confuse this prime circle 
radius Rp with the radius of curvature, 5pitch.  Rp is a constant value which you choose 
as a design parameter and 5pitch is the constantly changing radius of curvature that results 
from your design choices.

FIGURE 8-47
The result of using a roller follower larger than the one for which the cam was designed
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Vfollower
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Cam
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Also do not confuse Rp, the prime circle radius, with Rf, the radius of the roller fol-
lower.  See Figure 8-43 for definitions.  You can choose the value of Rf to suit the prob-
lem, so you might think that it is simple to satisfy equation 8.32 by just selecting a roller 
follower with a small value of Rf.  Unfortunately it is more complicated than that, as a 
small roller follower may not be strong enough to withstand the dynamic forces from the 
cam.  The radius of the pin on which the roller follower pivots is substantially smaller than 
Rf because of the space needed for roller or ball bearings within the follower.  Dynamic 
forces will be addressed in later chapters where we will revisit this problem.

We can solve equation 8.33 for 5pitch since we know s, v, and a for all values of � 
and can choose a trial Rp.  If the pressure angle has already been calculated, the Rp found 
for its acceptable values should be used to calculate 5pitch as well.  If a suitable follower 
radius cannot be found which satisfies equation 8.32 for the minimum values of 5pitch
calculated from equation 8.33, then further iteration will be needed, possibly including a 
redefinition of the cam specifications.

Program DYNACAM calculates 5pitch for all values of � for a user supplied prime 
circle radius Rp.  Figure 8-49 shows 5pitch for the four-dwell cam of Figure 8-6.  Note that 
this cam has both positive and negative radii of curvature.  The large values of radius of 
curvature are truncated at arbitrary levels on the plot as they are heading to infinity at the 
inflection points between convex and concave portions.  Note that the radii of curvature 

( a )  Radius of curvature of pitch curve
        equals the radius of the roller follower

FIGURE 8-48
Small positive radius of curvature can cause undercutting.

(b )  Radius of curvature of pitch curve is
       less than the radius of the roller follower

Follower
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undercutting
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go out to positive infinity and return from negative infinity or vice versa at these inflection 
points (perhaps after a round trip through the universe?).

Once an acceptable prime circle radius and roller follower radius are determined 
based on pressure angle and radius of curvature considerations, the cam can be drawn 
in finished form and subsequently manufactured.  Figure 8-50 shows the profile of the 
four-dwell cam from Figure 8-6.  The cam surface contour is swept out by the envelope 
of follower positions just as the cutter will create the cam in metal.  The sidebar shows the 
parameters for the design, which is an acceptable one.  The 5min is 1.7 times Rf and the 
pressure angles are less than 30�.  The contours on the cam surface appear smooth, with 
no sharp corners.  Figure 8-51 shows the same cam with only one change.  The radius 
of follower Rf has been made the same as the minimum radius of curvature, 5min.  The 
sharp corners or cusps in several places indicate that undercutting has occurred.  This has 
now become an unacceptable cam, simply because of a roller follower that is too large.

The coordinates for the cam contour, measured to the locus of the center of the roller 
follower, or the pitch curve as shown in Figure 8-50, are defined by the following expres-
sions, referenced to the center of rotation of the cam.  See Figure 8-44 for nomenclature.  
The subtraction of the cam input angle � from 2� is necessary because the relative motion 
of the follower versus the cam is opposite to that of the cam versus the follower.  In other 
words, to define the contour of the centerline of the follower’s path around a stationary 
cam, we must move the follower (and also the cutter to make the cam) in the opposite 
direction of cam rotation.

( )

( )

( )

= λ + + ε

= λ + + ε

λ = π − θ −
ε
+

⎛
⎝⎜

⎞
⎠⎟

where:

cos

sin (8.34)

2 arctan
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FIGURE 8-49
Radius of curvature of a four-dwell cam
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Radius of Curvature—Translating Flat-Faced Follower
The situation with a flat-faced follower is different from that of a roller follower.  A nega-
tive radius of curvature on the cam cannot be accommodated with a flat-faced follower. 
The flat follower obviously cannot follow a concave cam.  Undercutting will occur when 
the radius of curvature becomes negative if a cam with that condition is made.  

Figure 8-52 shows a cam and translating flat-faced follower in an arbitrary position.  
The origin of the global XY coordinate system is placed at the cam’s center of rotation, 
and the X axis is defined parallel to the common tangent, which is the surface of the flat 

FIGURE 8-50
Radial plate cam profile is generated by the locus of the roller follower (or cutter)
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RA

Rb

FIGURE 8-52
Geometry for derivation of radius of curvature and cam contour with flat-faced follower
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follower.  The vector r is attached to the cam, rotates with it, and serves as the reference 
line to which the cam angle � is measured from the X axis.  The point of contact A is 
defined by the position vector RA.  The instantaneous center of curvature is at C and the 
radius of curvature is 5.  Rb is the radius of the base circle and s is the displacement of the 
follower for angle �.  The eccentricity is 2.

We can define the location of contact point A from two vector loops (in complex 
notation).

( )

( )

= + +

= + ρ

+ ρ = + +

( )

( )

θ+α

θ+α

and

so:
(8.35a)

x j R s

ce j

ce j x j R s

A b

A
j

j
b

R

R

Substitute the Euler equivalent (equation 4.4a) in equation 8.35a and separate the real 
and imaginary parts.

real:
( )θ + α =cos (8.35b)c x
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imaginary:
( )θ + α + ρ = +sin (8.35c)c R sb

The center of curvature C is stationary on the cam, meaning that the magnitudes of 
c and 5, and angle 9 do not change for small changes in cam angle �.  (These values are 
not constant but are at stationary values.  Their first derivatives with respect to � are zero, 
but their higher derivatives are not zero.)

Differentiating equation 8.35a with respect to ���then gives:

=
θ

+
θ

( )θ+α (8.36)jce dx
d

j ds
d

j

Substitute the Euler equivalent (equation 4.4a) in equation 8.36 and separate the real 
and imaginary parts.

real:

( )− θ + α =
θ

sin (8.37)c dx
d

imaginary:

( )θ + α =
θ

=cos (8.38)c ds
d

v

Inspection of equations 8.35b and 8.36 shows that:


 (8.39)x v

This is an interesting relationship that says the x position of the contact point between 
cam and follower is equal to the velocity of the follower in length/rad.  This means that the 
v diagram gives a direct measure of the necessary minimum face width of the flat follower.

> − (8.40)max minfacewidth v v

If the velocity function is asymmetric, then a minimum-width follower will have to 
be asymmetric also, in order not to fall off the cam.

Differentiating equation 8.39 with respect to � gives:

θ
=

θ
= (8.41)dx

d
dv
d

a

Equations 8.35c and 8.37 can be solved simultaneously and equation 8.41 substituted 
in the result to yield:

ρ = + + (8.42a)R s ab

and the minimum value of radius of curvature is

( )ρ = + + (8.42b)min minR s ab



CAM DESIGN 473

8

BASE CIRCLE  Note that equations 8.42 define the radius of curvature in terms of 
the base circle radius and the displacement and acceleration functions from the s v a j 
diagrams only.  Because 5 cannot be allowed to become negative with a flat-faced fol-
lower, we can formulate a relationship from equation 8.42b that will predict the minimum 
base circle radius Rb needed to avoid undercutting.  The only factor on the right side of 
equations 8.42 that can be negative is the acceleration, a.  We have defined s to be always 
positive, as is Rb.  Therefore, the worst case for undercutting will occur when a is near its 
largest negative value, amin, whose value we know from the a diagram.  The minimum 
base circle radius can then be defined as:

( )> ρ − + (8.43)min minminR s ab

Because the value of amin is negative and it is also negated in equation 8.43, it domi-
nates the expression.  To use this relationship, we must choose some minimum radius 
of curvature 5min for the cam surface as a design parameter.  Since the hertzian contact 
stresses at the contact point are a function of local radius of curvature, that criterion can 
be used to select 5min.  That topic is beyond the scope of this text and will not be further 
explored here.  See reference [1] for further information on contact stresses. 

CAM CONTOUR For a flat-faced follower cam, the coordinates of the physical cam sur-
face must be provided to the machinist as there is no pitch curve to work to.  Figure 8-52 
shows two orthogonal vectors, r and q, which define the cartesian coordinates of contact 
point A between cam and follower with respect to a rotating axis coordinate system em-
bedded in the cam.  Vector r is the rotating “x” axis of this embedded coordinate system.  
Angle : defines the position of vector RA in this system.  Two vector loop equations can 
be written and equated to define the coordinates of all points on the cam surface as a 
function of cam angle �.

( )

( )

= + +

= +

+ = + +

θ
θ+ π⎛

⎝⎜
⎞
⎠⎟

θ
θ+ π⎛

⎝⎜
⎞
⎠⎟

and

so:

(8.44)

2

2

x j R s

re qe

re qe x j R s

A b

A
j j

j j
b

R

R

Divide both sides by ej�:

( )+ = + +− θ − θ (8.45)r jq xe j R s ej
b

j

Separate into real and imaginary components and substitute v for x from equation 8.39:

real (x component):

( )= + θ + θsin cos (8.46a)r R s vb

imaginary (y component):

( )= + θ − θcos sin (8.46b)q R s vb
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Equations 8.46 can be used to machine the cam for a flat-faced follower.  These x, y com-
ponents are in the rotating coordinate system that is embedded in the cam.

Note that none of the equations developed above for this case involve the eccentric-
ity, 2.  It is only a factor in cam size when a roller follower is used.  It does not affect the 
geometry of a flat follower cam.

Figure 8-53 shows the result of trying to use a flat-faced follower on a cam whose 
theoretical path of follower point P has negative radius of curvature due to a base circle 
radius that is too small.  If the follower tracked the path of P as is required to create the 
motion function defined in the s diagram, the cam surface would actually be as developed 
by the envelope of straight lines shown.  But, these loci of the follower face are cutting 
into cam contours that are needed for other cam angles.  The line running through the 
forest of follower loci is the path of point P needed for this design.  The undercutting can 
be clearly seen as the crescent-shaped missing pieces at four places between the path of P 
and the follower face loci.  Note that if the follower were zero width (at point P), it would 
work kinematically, but the stress at the knife edge would be infinite.

SUMMARY  The task of sizing a cam is an excellent example of the need for and value 
of iteration in design.  Rapid recalculation of the relevant equations with a tool such as 
program DYNACAM makes it possible to quickly and painlessly arrive at an acceptable 
solution while balancing the often conflicting requirements of pressure angle and radius 
of curvature constraints.  In any cam, either the pressure angle or radius of curvature 
considerations will dictate the minimum size of the cam.  Both factors must be checked.  
The choice of follower type, either roller or flat-faced, makes a big difference in the cam 
geometry.  Cam programs that generate negative radii of curvature are unsuited to the 
flat-faced type of follower unless very large base circles are used to force 5 to be positive 
everywhere.

FIGURE 8-53
Undercutting due to negative radius of curvature used with flat-faced follower

Path of point P Base circle
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Lift         =   1
Rprime  =   4
Eccen    =   0
PaMin    =   0
PaMax   =   0
RcMin+  =    0.03
RcMin–  = –0.16
Rfollwr   =   Infinite
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8.7 PRACTICAL DESIGN CONSIDERATIONS

The cam designer is often faced with many confusing decisions, especially at an early 
stage of the design process.  Many early decisions, often made somewhat arbitrarily and 
without much thought, can have significant and costly consequences later in the design.  
The following is a discussion of some of the trade-offs involved with such decisions in the 
hope that it will provide the cam designer with some guidance in making these decisions.

Translating or Oscillating Follower?
There are many cases, especially early in a design, when either translating or rotating 
motion could be accommodated as output from the cam, though in other situations, the 
follower motion and geometry is dictated to the designer. If some design freedom is al-
lowed, and straight-line motion is specified, the designer should consider the possibility 
of using an approximate straight-line motion, which is often adequate and can be obtained 
from a large-radius rocker follower.  The rocker or oscillating follower has advantages 
over the translating follower when a roller is used.  A round-cross-section translating fol-
lower slide is free to rotate about its axis of translation and needs to have some antirota-
tion guiding provided (such as a keyway or second slide) to prevent z axis misalignment 
of the roller follower with the cam.  Many commercial, nonrotating slide assemblies are 
now available, often fitted with ball bearings, and these provide a good way to deal with 
this issue.  However, an oscillating follower arm will keep the roller follower aligned in 
the same plane as the cam with no guiding other than its own pivot.  

Also, the pivot friction in an oscillating follower typically has a small moment arm 
compared to the moment of the force from the cam on the follower arm.  But, the friction 
force on a translating follower has a one-to-one geometric relationship with the cam force. 
This can have a larger parasitic effect on the system.

Translating flat-faced followers are often deliberately arranged with their axis slightly 
out of the plane of the cam in order to create a rotation about their own axis due to the 
frictional moment resulting from the offset.  The flat follower will then precess around 
its own axis and distribute the wear over its entire face surface.  This is common practice 
with automotive valve cams that use flat-faced followers or “tappets.”

Force- or Form-Closed?
A form-closed (track or groove) cam or conjugate cams are more expensive to make than 
a force-closed (open) cam simply because there are two surfaces to machine and grind.  
Also, heat treating will often distort the track of a form-closed cam, narrowing or widen-
ing it such that the roller follower will not fit properly.   This virtually requires post heat-
treat grinding for track cams in order to resize the slot.  An open (force-closed) cam will 
also distort on heat-treating, but can still be usable without grinding.

FOLLOWER JUMP The principal advantage of a form-closed (track) or conjugate-
pair cam is that it does not need a return spring, and thus can be run at higher speeds than 
a force-closed cam whose spring and follower mass will go into resonance at some speed, 
causing potentially destructive follower jump.  This phenomenon will be investigated in 
Chapter 15 on cam dynamics.  High-speed automobile and motorcycle racing engines of-
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ten use form-closed (desmodromic)* valve cam trains to allow higher engine rpm without 
incurring valve “float,” or follower jump.

CROSSOVER SHOCK Though the lack of a return spring can be an advantage, it 
comes, as usual, with a trade-off.  In a form-closed (track) cam there will be crossover 
shock each time the acceleration changes sign.  Crossover shock describes the impact 
force that occurs when the follower suddenly jumps from one side of the track to the 
other as the dynamic force (ma) reverses sign.  There is no flexible spring in this system 
to absorb the force reversal as in the force-closed case.  The high impact forces at cross-
over cause noise, high stresses, and local wear.  Also, the roller follower has to reverse 
direction at each crossover, which causes sliding and accelerates follower wear.  Studies 
have shown that roller followers running against a well-lubricated open radial cam have 
slip rates of less than 1%.[9]

Radial or Axial Cam?
This choice is largely dictated by the overall geometry of the machine for which the cam is 
being designed.  If the follower must move parallel to the camshaft axis, then an axial cam 
is dictated.  If there is no such constraint, a radial cam is probably a better choice simply 
because it is a less complicated, thus less expensive, cam to manufacture.

Roller or Flat-Faced Follower?
The roller follower is a better choice from a cam design standpoint simply because it 
accepts negative radius of curvature on the cam.  This allows more variety in the cam 
program.  Also, for any production quantity, the roller follower has the advantage of be-
ing available from several manufacturers in any quantity from one to a million.  For low 
quantities it is not usually economical to design and build your own custom follower.  In 
addition, replacement roller followers can be obtained from suppliers on short notice when 
repairs are needed.  Also, they are not particularly expensive even in small quantities.

Perhaps the largest users of flat-faced followers are automobile engine makers.  Their 
quantities are high enough to allow any custom design they desire.  It can be made or 
purchased economically in large quantity and can be less expensive than a roller follower 
in that case.  Also with engine valve cams, a flat follower can save space over a roller.  
Nevertheless, many manufacturers have switched to roller followers in automobile engine 
valve trains to reduce friction and improve fuel economy.  Most new automotive internal 
combustion engines designed in the United States in recent years have used roller follow-
ers for those reasons.  Diesel engines have long used roller followers (tappets) as have 
racers who “hop-up” engines for high performance.

Cams used in automated production line machinery use stock roller followers almost 
exclusively.  The ability to quickly change a worn follower for a new one taken from the 
stockroom without losing much production time on the “line” is a strong argument in 
this environment.  Roller followers come in several varieties (see Figure 8-5a).  They are 
based on roller or ball bearings.  Plain bearing versions are also available for low-noise 
requirements.  The outer surface, which rolls against the cam, can be either cylindrical or 
spherical in shape.  The “crown” on the spherical follower is slight, but it guarantees that 

* More information on 
desmodromic cam-follower 
mechanisms can be found 
at http://members.chello.
nl/~wgj.jansen/ where a 
number of models of their 
commercial implementa-
tions can be viewed in 
operation as movies.
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the follower will ride near the center of a flat cam even with some inaccuracy of alignment 
of the axes of rotation of cam and follower.  If a cylindrical follower is chosen and care 
is not taken to align the axes of cam and roller follower, or if it deflects under load, the 
follower will ride on one edge and wear rapidly.

Commercial roller followers are typically made of high carbon alloy steel such as 
AISI 52100 and hardened to Rockwell HRC 60–62.  The 52100 alloy is well suited to 
thin sections that must be heat-treated to a uniform hardness.  Because the roller makes 
many revolutions for each cam rotation, its wear rate will typically be higher than that of 
the cam.  Chrome plating the follower can markedly improve its life.  Chrome is harder 
than steel at about HRC 70.  Steel cams are typically hardened to a range of HRC 50–55.

To Dwell or Not to Dwell?
The need for a dwell is usually clear from the problem specifications.  If the follower must 
be held stationary for any time, then a dwell is required.  Some cam designers tend to 
insert dwells in situations where they are not specifically needed for follower stasis, in a 
mistaken belief that this is preferable to providing a rise-return motion when that is what 
is really needed.  If the designer is attempting to use a double-dwell program in what really 
needs only to be a single-dwell case, with the motivation to “let the vibrations settle out” 
by providing a “short dwell” at the end of the motion, he or she is misguided.  Instead, 
the designer probably should be using a different cam program, perhaps a polynomial or 
a B-spline tailored to the specifications.  Taking the follower acceleration to zero, whether 
for an instant or for a “short dwell,” is generally undesirable unless absolutely required for 
machine function.  (See Examples 8-6 , 8-7, and 8-8.)  A dwell should be used only when 
the follower is required to be stationary for some measurable time.  Moreover, if you do 
not need any dwell at all, consider using a linkage instead.  They are a lot easier and less 
expensive to manufacture.

To Grind or Not to Grind?
Some production machinery cams are used as-milled, and not ground.  Automotive valve 
cams are ground.  The reasons are largely due to cost and quantity considerations as well 
as the high speeds of automotive cams.  There is no question that a ground cam is superior 
to a milled cam, but a hard-machined* cam can perform nearly as well as a well-ground 
cam. The question in each case is whether the grinding advantage gained is worth the 
cost.  In small quantities, as are typical of production machinery, grinding about doubles 
the cost of a cam.  The advantages in terms of smoothness and quietness of operation, 
and of wear, are not in the same ratio as the cost difference.[9, 10]  Automotive cams are 
made in large quantity, run at very high speed, and are expected to last for a very long time 
with minimal maintenance.  This is a very challenging specification.  It is a great credit 
to the engineering of these cams that they very seldom fail in 150 000 miles or more of 
operation.  These cams are made on specialized equipment which keeps the cost of their 
grinding to a minimum.

Industrial production machine cams also see very long lives, often 10 to 20 years, 
running into billions of cycles at typical machine speeds.  Unlike the typical automotive 
application, industrial cams often run around the clock, 7 days a week, 50+ weeks a year.

* “Hard machining” is a 
relatively recent addition 
to the machinist’s toolbox.  
Modern boron-nitride 
cutting tools are able to 
machine pre-hardened steel 
at up to about HRC 50 hard-
ness.  This allows the cam 
blank to be pre-hardened 
and then machined (rather 
than ground) to final con-
tour in a CNC machining 
center.  This technique has 
allowed cam manufactur-
ers to reduce the cost of 
finished cams significantly.  
Instead of machining the 
cam blank from soft steel, 
then hardening it, followed 
by a grinding operation to 
generate the final contour 
and remove the distor-
tion from hardening, they 
can now directly machine 
the hardened blank and 
get finishes close to those 
from grinding.  This has 
greatly reduced the cost 
and tunaround time for cam 
manufacturing.  Cams that 
formerly took multiple days 
to manufacture are now 
made in hours from a stock 
of pre-hardened cam blanks.
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To Lubricate or Not to Lubricate?
Cams like lots of lubrication.  Automotive cams are literally drowned in a flow of filtered 
and sometimes cooled engine oil.  Many production machine cams run immersed in an oil 
bath.  These are reasonably happy cams.  Others are not so fortunate.  Cams that operate 
in close proximity to the product on an assembly machine in which oil would cause con-
tamination of the product (food products, personal products) often are run dry.  Camera 
mechanisms, which are full of linkages and cams, are often run dry.  Lubricant would 
eventually find its way to the film or sensors.

Unless there is some good reason to eschew lubrication, a cam and follower should 
be provided with a generous supply of clean lubricant, preferably a hypoid-type oil con-
taining additives for boundary lubrication conditions.  The geometry of a cam-follower 
joint (half-joint) is among the worst possible from a lubrication standpoint.  Unlike a 
journal bearing, which tends to trap a film of lubricant within the annulus of the joint, 
the half-joint is continually trying to squeeze the lubricant out of itself.  This can result 
in a boundary, or mixed boundary / elasto-hydrodynamic lubrication state in which some 
metal-to-metal contact will occur.  Lubricant must be continually resupplied to the joint.   
Another purpose of the liquid lubricant is to remove the heat of friction from the joint.  If 
run dry, significantly higher material temperatures will result, with accelerated wear and 
possible early failure.
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8.9 PROBLEMS‡

Programs DYNACAM and MATRIX may be used to solve these problems or to check your 
solution where appropriate.

*8-1 Figure P8-1 shows the cam and follower from Problem 6-65.  Using graphical methods, 
find and sketch the equivalent fourbar linkage for this position of the cam and follower.

*8-2 Figure P8-1 shows the cam and follower from Problem 6-65.  Using graphical methods, 
find the pressure angle at the position shown.

8-3 Figure P8-2 shows a cam and follower.  Using graphical methods, find and sketch the 
equivalent fourbar linkage for this position of the cam and follower.

*8-4 Figure P8-2 shows a cam and follower.  Using graphical methods, find the pressure 
angle at the position shown.

8-5 Figure P8-3 shows a cam and follower.  Using graphical methods, find and sketch the 
equivalent fourbar linkage for this position of the cam and follower.

*8-6 Figure P8-3 shows a cam and follower.  Using graphical methods, find the pressure 
angle at the position shown.

‡8-7 Design a double-dwell cam to move a follower from 0 to 2.5” in 60�, dwell for 120�, 
fall 2.5" in 30�, and dwell for the remainder.  The total cycle must take 4 sec.  Choose 
suitable functions for rise and fall to minimize accelerations.  Plot the s v a j diagrams.  

 ‡8-8 Design a double-dwell cam to move a follower from 0 to 1.5” in 45�, dwell for 150�, 
fall 1.5” in 90�, and dwell for the remainder.  The total cycle must take 6 sec.  Choose 
suitable functions for rise and fall to minimize velocities.  Plot the s v a j diagrams.  

 ‡8-9 Design a single-dwell cam to move a follower from 0 to 2” in 60�, fall 2” in 90�, and 
dwell for the remainder.  The total cycle must take 2 sec.  Choose suitable functions for 
rise and fall to minimize accelerations.  Plot the s v a j diagrams.

‡8-10 Design a three-dwell cam to move a follower from 0 to 2.5” in 40�, dwell for 100�, fall 
1.5” in 90�, dwell for 20�, fall 1” in 30�, and dwell for the remainder.  The total cycle 
must take 10 sec.  Choose suitable functions for rise and fall to minimize velocities.  
Plot the s v a j diagrams.  

‡ Problem figures are pro-
vided as downloadable PDF 
files with same names as the FIGURE P8-1

Problems 8-1 to 8-2  
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* Answers in Appendix F.
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‡8-11 Design a four-dwell cam to move a follower from 0 to 2.5” in 40�, dwell for 100�, fall 
1.5” in 90�, dwell for 20�, fall 0.5” in 30�, dwell for 40�, fall 0.5” in 30�, and dwell for 
the remainder.  The total cycle must take 15 sec.  Choose suitable functions for rise and 
fall to minimize accelerations.  Plot the s v a j diagrams. 

 ‡8-12 Size the cam from Problem 8-7 for a 1” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

‡8-13 Size the cam from Problem 8-8 for a 1.5” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

‡8-14 Size the cam from Problem 8-9 for a 0.5” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

‡8-15 Size the cam from Problem 8-10 for a 2” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

‡8-16 Size the cam from Problem 8-11 for a 0.5” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

‡8-17 A high friction, high inertia load is to be driven.  We wish to keep peak velocity low.  
Combine segments of polynomial displacements with a constant velocity segment on 
both rise and fall to reduce the maximum velocity below that obtainable with a full 
period modified sine acceleration alone (i.e., one with no constant velocity portion).  
Rise 1” in 90�, dwell for 60�, fall in 50�, dwell for remainder.  Compare the two designs 
and comment.  Use an 
 of one for comparison.

 ‡8-18 A constant velocity of 0.4 in/sec is to be matched for 1.5 sec.  The follower must return 
to your choice of start point and dwell for 2 sec.  Total cycle is 6 sec.  Design a cam for 
a follower radius of 0.75” and a maximum pressure angle of 30� absolute value.

‡8-19 A constant velocity of 0.25 in/sec must be matched for 3 sec.  Then the follower must 
return to your choice of start point and dwell for 3 sec.  The total cycle time is 12 sec.  
Design a cam for a follower radius of 1.25” and a maximum pressure angle of 35� abso-
lute value.

‡8-20 A constant velocity of 2 in/sec must be matched for 1 sec.  Then the follower must 
return to your choice of start point.  The total cycle time is 2.75 sec.  Design a cam for 
a follower radius of 0.5” and a maximum pressure angle of 25� absolute value.

†8-21 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a modified trapezoidal acceleration cam function for any specified values 
of lift and duration.  Test it using a lift of 20 mm over 60� at 1 rad/sec.

†8-22 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a modified sine acceleration cam function for any specified values of lift 

‡ These problems are suited 
to solution using program 
DYNACAM.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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†8-23 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a cycloidal displacement cam function for any specified values of lift and 
duration.  Test it using a lift of 20 mm over 60� at 1 rad/sec.

†8-24 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a 3-4-5 polynomial displacement cam function for any specified values of 
lift and duration.  Test it using a lift of 20 mm over 60� at 1 rad/sec.

†8-25 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a 4-5-6-7 polynomial displacement cam function for any specified values 
of lift and duration.  Test it using a lift of 20 mm over 60� at 1 rad/sec.

†8-26 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a simple harmonic displacement cam function for any specified values of 
lift and duration.  Test it using a lift of 20 mm over 60� at 1 rad/sec.

†8-27 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a modified trapezoidal acceleration cam function for 
any specified values of lift, duration, eccentricity, and prime circle radius.  Test it using 
a lift of 20 mm over 60� at 1 rad/sec, and determine the prime circle radius needed to 
obtain a maximum pressure angle of 20�.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

†8-28 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a modified sine acceleration cam function for any 
specified values of lift, duration, eccentricity, and prime circle radius.  Test it using a 
lift of 20 mm over 60� at 1 rad/sec, and determine the prime circle radius needed to 
obtain a maximum pressure angle of 20�.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

†8-29 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a cycloidal displacement cam function for any speci-
fied values of lift, duration, eccentricity, and prime circle radius.  Test it using a lift of 
20 mm over 60� at 1 rad/sec, and determine the prime circle radius needed to obtain 
a maximum pressure angle of 20�.  What is the minimum diameter of roller follower 
needed to avoid undercutting with these data?

†8-30 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a 3-4-5 polynomial displacement cam function for 
any specified values of lift, duration, eccentricity, and prime circle radius.  Test it using 
a lift of 20 mm over 60� at 1 rad/sec, and determine the prime circle radius needed to 
obtain a maximum pressure angle of 20�.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

†8-31 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a 4-5-6-7 polynomial displacement cam function for 
any specified values of lift, duration, eccentricity, and prime circle radius.  Test it using 
a lift of 20 mm over 60� at 1 rad/sec, and determine the prime circle radius needed to 
obtain a maximum pressure angle of 20�.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

†8-32 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a simple harmonic displacement cam function for any 
specified values of lift, duration, eccentricity, and prime circle radius.  Test it using a 
lift of 20 mm over 60� at 1 rad/sec, and determine the prime circle radius needed to 

 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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‡ These problems are suited 
to solution using program 
DYNACAM.

obtain a maximum pressure angle of 20�.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

8-33 Derive equation 8.25 for the 4-5-6-7 polynomial function.

8-34 Derive an expression for the pressure angle of a barrel cam with zero eccentricity.
‡8-35 Design a radial plate cam to move a translating roller follower through 30 mm in 30�, 

dwell for 100�, fall 10 mm in 10�, dwell for 20�, fall 20 mm in 20�, and dwell for the 
remainder.  Camshaft 
 = 200 rpm.  Minimize the follower’s peak velocity and deter-
mine the minimum prime circle radius that will give a maximum 25� pressure angle.  
Determine the minimum radii of curvature on the pitch curve.

 ‡8-36 Repeat Problem 8-35, but minimize the follower’s peak acceleration instead.
‡8-37 Repeat Problem 8-35, but minimize the follower’s peak jerk instead.
‡8-38 Design a radial plate cam to lift a translating roller follower through 10 mm in 65�, 

return to 0 in 65� and dwell for the remainder.  Camshaft 
 = 3500 rpm.  Minimize 
the cam size while not exceeding a 25� pressure angle.  What size roller follower is 
needed?

 ‡8-39 Design a cam-driven quick-return mechanism for a 3:1 time ratio.  The translating 
roller follower should move forward and back 50 mm and dwell in the back position for 
80�.  It should take one-third the time to return as to move forward.  Camshaft �

 = 100 rpm.  Minimize the package size while maintaining a 25� maximum pressure 
angle.  Draw a sketch of your design and provide s v a j, 1, and 5 diagrams.

‡8-40 Design a cam-follower system to drive a linear translating piston at constant veloc-
ity for 200� through a stroke of 100 mm at 60 rpm.  Minimize the package size while 
maintaining a 25� maximum pressure angle.  Draw a sketch of your design and provide 
s v a j, 1, and 5 diagrams.

‡8-41 Design a cam-follower system to rise 20 mm in 80�, fall 10 mm in 100�, dwell at 10 
mm for 100�, fall 10 mm in 50�	 and dwell at 0 for 30�.  Total cycle time is 4 sec.  
Avoid unnecessary returns to zero acceleration.  Minimize the package size and maxi-
mize the roller follower diameter while maintaining a 25� maximum pressure angle.  
Draw a sketch of your design and provide s v a j, 1, and 5 diagrams.

 ‡8-42 Design a single-dwell cam to move a follower from 0 to 35 mm in 75�, fall 35 mm in 
120�, and dwell for the remainder.  The total cycle time is 3 sec.  Choose suitable func-
tions to minimize acceleration and plot the s v a j diagrams for the rise/fall.

‡8-43 Design a cam to move a follower at a constant velocity of 100 mm/sec for 2 sec then 
return to its starting position with a total cycle time of 3 sec.

‡8-44 Design a double-dwell cam to move a follower from 0 to 50 mm in 75�, dwell for 75�, 
fall 50 mm in 75�, and dwell for the remainder.  The total cycle must take 5 sec.  Use a 
modified trapezoidal function for rise and fall and plot the s v a j diagrams.

 ‡8-45 Design a double-dwell cam to move a follower from 0 to 50 mm in 75�, dwell for 75�, 
fall 50 mm in 75�, and dwell for the remainder.  The total cycle must take 5 sec.  Use a 
modified sinusoidal function for rise and fall and plot the s v a j diagrams.

 ‡8-46 Design a double-dwell cam to move a follower from 0 to 50 mm in 75�, dwell for 75�, 
fall 50 mm in 75�, and dwell for the remainder.  The total cycle must take 5 sec.  Use a 
4-5-6-7 polynomial function for rise and fall and plot the s v a j diagrams.
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‡ These problems are suited 
to solution using program 
DYNACAM.

 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

‡8-47 Design a single-dwell cam to move a follower from 0 to 65 mm in 90�, fall 65 mm in 
180�, and dwell for the remainder.  The total cycle time is 2 sec.  Choose suitable func-
tions to minimize acceleration and plot the s v a j diagrams for the rise/fall.

‡8-48 Design a cam to move a follower at a constant velocity of 200 mm/sec for 3 sec then 
return to its starting position with a total cycle time of 6 sec.

‡8-49 Size the cam from Problem 8-42 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

‡8-50 Size the cam from Problem 8-44 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

‡8-51 Size the cam from Problem 8-45 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

‡8-52 Size the cam from Problem 8-46 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

‡8-53 Design a single-dwell cam to move a follower from 0 to 50 mm in 100�, fall 50 mm in 
120�, and dwell for the remainder.  The total cycle time is 1 sec.  Choose suitable func-
tions to minimize acceleration and plot the s v a j diagrams for the rise/fall.

‡8-54 Design a cam to move a follower at a constant velocity of 300 mm/sec for 2 sec then 
return to its starting position with a total cycle time of 4 sec.

†8-55 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for the family of SCCA cam functions for any specified values of lift and 
duration.  It should allow changing values of the parameters b, c, d, and Ca to plot any 
member of the family.  Test all functions with 100 mm rise in 100�, dwell 80�, fall in 
120�, dwell for remainder. Shaft turns at 1 rad/sec.

 †8-56 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the cam of Problem 8-42 for any given prime 
circle radius and follower eccentricity.  Test it using Rp = 45 mm and e = 10 mm.

†8-57 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the cam of Problem 8-43 for any given prime 
circle radius and follower eccentricity.  Test it using Rp = 100 mm and e = –15 mm.

†8-58 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the rise segment of the cam of Problem 8-46 
for any given prime circle radius and follower eccentricity.  Test it using Rp = 75 mm 
and e = 20 mm.

 ‡ 8-59 Design a cam to move a follower from 20.5 to 15 mm in 60°, fall an additional 15 mm 
in 90°, rise 20.5 mm in 110°, and dwell for the remainder.  Use polynomial functions 
for the rise and falls.  Some of the boundary conditions are given in Table P8-1; howev-
er, in order to make the polynomials piecewise continuous, other boundary conditions 
will have to be determined.   The shaft speed is 250 rpm.   Plot the s v a j diagrams.

‡ 8-60 Design a cam to move a follower from 32 to 12 mm in 60°, fall an additional 12 mm in 
50°, dwell 35°, rise 12 mm in 45°, rise an additional 20 mm in 65°, and dwell for the 
remainder.  Use polynomial functions for the rises and falls.  Velocity and acceleration 
are zero at the beginning and end of each event and jerk is zero at � = 0°, 110°, 145°, 
and 255°.  The shaft speed is 37.5 rpm.   Plot the s v a j diagrams.
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

‡ These problems are suited 
to solution using program 
DYNACAM.

‡ 8-61 Design a single-dwell cam to move a follower from 0 to 0.6” in 0.8 sec, fall 0.6” in 1.2 
sec and dwell for the remainder of the cycle.  The total cycle must take 4 sec.  Choose 
suitable programs for rise and fall to minimize velocities.  Plot the s v a j diagrams.

‡ 8-62 Size the cam from Problem 8-61 for a flat-faced follower considering follower face 
width and radius of curvature.  Plot the radius of curvature and draw the cam profile.

‡ 8-63 Design a cam to move a follower at a constant velocity of 4 in/sec for 2 sec then return 
to its starting position with a total cycle time of 4 sec.

‡ 8-64 Design a double-dwell cam to move a follower from 0 to 2” in 4/3 sec, dwell for 1 sec, 
fall 2” in 4/3 sec and dwell for the remainder of the cycle.  The total cycle must take 6 
sec.  Use a modified trapezoidal function for rise and fall and plot the s v a j diagrams.

‡ 8-65 Size the cam from Problem 8-64 for a flat-faced follower considering follower face 
width and radius of curvature.  Plot the radius of curvature and draw the cam profile.

‡ 8-66 Design a double-dwell cam to move a follower from 0 to 2” in 4/3 sec, dwell for 1 sec, 
fall 2” in 4/3 sec and dwell for the remainder of the cycle.  The total cycle must take 6 
sec.  Use a modified sinusoidal function for rise and fall and plot the s v a j diagrams.

‡ 8-67 Size the cam from Problem 8-66 for a flat-faced follower considering follower face 
width and radius of curvature.  Plot the radius of curvature and draw the cam profile.

‡ 8-68 Design a double-dwell cam to move a follower from 0 to 2” in 4/3 sec, dwell for 1 sec, 
fall 2” in 4/3 sec and dwell for the remainder of the cycle.  The total cycle must take 6 
sec.  Use a 4-5-6-7 polynomial function for rise and fall and plot the s v a j diagrams.

‡ 8-69 Size the cam from Problem 8-68 for a flat-faced follower considering follower face 
width and radius of curvature.  Plot the radius of curvature and draw the cam profile.

‡ 8-70 Design a double-dwell cam to move a follower from 0 to 1.5” in 1 sec, dwell for 2 
sec, fall 1.5” in 1 sec and dwell for the remainder of the cycle.  The total cycle must 
take 8 sec.  Use a cycloidal displacement function for rise and fall and plot the s v a j 
diagrams.

†8-71 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the cam of Problem 8-61 for any given prime 
circle radius and follower eccentricity.  Test it using Rp = 1.500 in and 2�= 0.250 in.

Event

First fall (60�)
Beginning
Ending

Second fall (90�)
Beginning
Ending

Rise (110�)
Beginning
Ending

S

20.5
15.0

15.0
0.0

0.0
20.5

V

0
0

0
0

0
0

A

0
0

0
A1

0

match A1

J

0

0

0
0

TABLE  P8-1 Data for Problem 8-59



CAM DESIGN 485

8

†8-72 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the cam of Problem 8-63 for any given prime 
circle radius and follower eccentricity.  Test it using Rp = 5.000 in and 2�= –1.250 in.

†8-73 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the rise segment of the cam of Problem 8-68 
for any given prime circle radius and follower eccentricity.  Test it using Rp = 3 in and 
ε = 0.750 in.

 †8-74 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
draw the cam profile for the cam of Problem 8-61 with a translating flat-faced follower 
for any given base circle radius.  Test it using Rb = 1.500 in.

 †8-75 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
draw the cam profile for the cam of Problem 8-63 with a translating flat-faced follower 
for any given base circle radius.  Test it using Rb = 2.000 in.

8.10 VIRTUAL LABORATORY View the video (21:28)†  View the lab handout§

L8-1 View the video Cam Machine Virtual Laboratory that is downloadable.  Open the file 
Virtual Cam Machine Lab.doc and follow the instructions as directed by your professor.

8.11 PROJECTS

These larger-scale project statements deliberately lack detail and structure and are loose-
ly defined.  Thus, they are similar to the kind of “identification of need” or problem state-
ment commonly encountered in engineering practice.  It is left to the student to structure 
the problem through background research and to create a clear goal statement and set of 
task specifications before attempting to design a solution.  This design process is spelled 
out in Chapter 1 and should be followed in all of these examples.  Document all results 
in a professional engineering report.  (See Section 1.9 and the Chap. 1 bibliography for 
information on report writing.)

‡P8-1 A timing diagram for a halogen headlight filament insertion device is shown in Figure 
P8-4.  Four points are specified.  Point A is the start of rise.  At B the grippers close 
to grab the filament from its holder.  The filament enters its socket at C and is fully 
inserted at D.  The high dwell from D to E holds the filament stationary while it is 
soldered in place.   The follower returns to its start position from E to F.  From F to A 
the follower is stationary while the next bulb is indexed into position.  It is desirable 
to have low to zero velocity at point B where the grippers close on the fragile filament.  
The velocity at C should not be so high as to “bend the filament in the breeze.”  Design 
and size a complete cam-follower system to do this job.

‡P8-2 A cam-driven pump to simulate human aortic pressure is needed to serve as a consis-
tent, repeatable pseudo-human input to a hospital’s operating room computer monitor-
ing equipment, in order to test it daily.  Figure P8-5 shows a typical aortic pressure 
curve and a pump pressure-volume characteristic.  Design a cam to drive the piston and 
give as close an approximation to the aortic pressure curve shown as can be obtained 
without violating the fundamental law of cam design.  Simulate the dicrotic notch as 
best you can.

 
‡ These problems are suited 
to solution using program 
DYNACAM.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

† http://www.designofma-
chinery.com/DOM/Cam_
machine_virtual_laboratory.
mp4

§ http://www.designof-
machinery.com/DOM/
Cam_Virtual_Lab.zip
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 ‡P8-3 A fluorescent light bulb production machine moves 5500 lamps per hour through a 
550�C oven on a chain conveyor which is in constant motion.  The lamps are on 2-in 
centerlines.  The bulbs must be sprayed internally with a tin oxide coating as they leave 
the oven, still hot.  This requires a cam-driven device to track the bulbs at constant 
velocity for the 0.5 sec required to spray them.  The spray guns will fit on a 6 x 10 in 
table.  The spray creates hydrochloric acid, so all exposed parts must be resistant to that 
environment.  The spray head transport device will be driven from the conveyor chain 
by a shaft having a 28-tooth sprocket in mesh with the chain.  Design a complete spray 
gun transport assembly to these specifications.

 ‡P8-4 A 30-ft-tall drop tower is being used to study the shape of water droplets as they fall 
through air.  A camera is to be carried by a cam-operated linkage which will track 
the droplet’s motion from the 8-ft to the 10-ft point in its fall (measured from release 

‡ These problems are suited 
to solution using program 
DYNACAM.

FIGURE P8-4
Data for cam design Project P8-1

A
B
C
D
E
F

0
2
3
3.5
3.5
0

120
140
150
180
300
360

Cam angle, � Point s

Displacement Table 

A
B

C
D E

FF

0 120 360180

s

Timing Diagram

�

FIGURE P8-5
Data for cam design Project P8-2

(a ) (b )

( c )

0

40

80

120

0 T = 0.83 sec
Time

Human Aortic Pressure 

Blood
pressure
mmHg

0

40

80

120

0

Pump
pressure
mmHg 40 mmHg/in3

Dicrotic notch

Stroke volume  in3

System Pressure–Volume Function

Pressure outlet

Saline

Accumulator

Cam

Follower
Spring

Pump body

Piston
air
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‡ These problems are suited 
to solution using program 
DYNACAM.

point at the top of the tower).  The drops are released every 1/2 sec.  Every drop is to 
be filmed.  Design a cam and linkage which will track these droplets, matching their 
velocities and accelerations in the 1-ft filming window.

 ‡P8-5 A device is needed to accelerate a 3000-lb vehicle into a barrier with constant velocity, 
to test its 5 mph bumpers.  The vehicle will start at rest, move forward, and have con-
stant velocity for the last part of its motion before striking the barrier with the specified 
velocity.  Design a cam-follower system to do this.  The vehicle will leave contact with 
your follower just prior to the crash.

 ‡P8-6 Figure P8-6 shows a timing diagram for a machine cam to drive a translating roller 
follower.  Design suitable functions for all motions and size the cam for acceptable 
pressure angles and roller follower diameter.  Note points of required zero velocity at 
particular displacements.  Cam speed is 30 rpm.  Hint: Segment 8 should be solved 
with polynomial functions, the fewer the better.

 ‡P8-7 An athletic footwear manufacturer wants a device to test rubber heels for their ability 
to withstand millions of cycles of force similar to that which a walking human’s foot 
applies to the ground.  Figure P8-7 shows a typical walker’s force-time function and 
a pressure-volume curve for a piston-accumulator.  Design a cam-follower system to 
drive the piston in a way that will create a force-time function on the heel similar to the 
one shown.  Choose suitable piston diameters at each end.

 ‡P8-8 Design an engine exhaust-valve cam with 10-mm lift over 132 camshaft deg.  The rest 
of the cycle is a dwell.  The valve-open duration is measured between cam-follower 
displacements of 0.5 mm above the dwell position, where valve clearance is taken up 
and the valve begins to move as shown in Figure P8-8.  Engine crankshaft speed ranges 
from 1000 to 10 000 rpm. The cam should take up the clearance with minimal impact, 
then continue to lift to 10-mm at 66� as rapidly as possible, close to the 0.5 mm point 
by 132� and then return it to zero at a controlled velocity.  See Figure 8-3a.  Select a 
spring from the Appendix to prevent valve float (follower jump) assuming an effective 
follower train mass of 200 grams.  The camshaft turns at half the crank speed.

 ‡P8-9 Design a cam-driven peanut-butter (PB) pump for a 600/min cookie assembly line.  
The cookies are spaced at 40-mm centers on a constant-velocity conveyor.  A square, 
1-mm thick patch containing 0.4 cc of peanut butter is applied to the cookie as it 
passes by a nozzle.  Entrained air in the PB makes it compressible.  Figure P8-5 shows 
a similar setup with a cam driving a follower attached to a piston pump.  The peanut 

V = 0

V = 0
V = 0

0 30 50 60 11

12
5

13
0

16
1

16
6 17

8.
5

19
1

22
0

32
7

33
7

36
0

1 2 4 5 7 8 9
10

1
63

FIGURE P8-6
Timing diagram for Project P8-6.  Displacements in mm  (not to scale)

12.1
14.7

7.9
4.0
1.1
0.5
0.0
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butter flows from the “pressure outlet.”  The accumulator represents entrained air in 
the PB.   If pumped at constant rate with a piston pump, there is a lag at the start as 
the entrained air is compressed.  Once compressed, it flows uniformly when the piston 
moves at constant velocity.  At the end of the stroke, the stored energy in the entrained 
air causes “peanut-butter drool,” making a messy cookie.  To get a sharp-edged start to 
the “patch” of peanut butter, we need an extra “kick” at the beginning of the pump-
ing cycle to wind up the “air spring,” followed by a period of constant velocity motion 
to lay down a uniform thickness of PB.  At the end of the patch, we need a “sniff” to 
rapidly retract the piston slightly and prevent drool.  The piston then returns to the start 
point  at constant velocity to refill the pump and repeat the cycle. The velocity of the 
“kick” should be about 3 times the steady-state velocity and of as short a duration as 
practical.  The velocity of the “sniff” is optimal at about –4 times the steady-state veloc-

0 ? 360??

0.5

10

fall

dwell

 Valve
Motion
 (mm)

Camshaft Angle (deg)

rise

66 66

FIGURE P8-8
Timing diagram for Project P8-8—exhaust-valve cam.  Determine suitable values for ? from problem statement.

FIGURE P8-7
Data for cam design Project P8-7
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‡ These problems are suited 
to solution using program 
DYNACAM.

ity with as short a duration as practical.  Figure P8-9 shows the displacement timing 
diagram.  Size the piston and design the piston-driver cam for good dynamic operation 
with reasonable accelerations and size it in a reasonable package.  Select a return spring 
for a moving follower mass of 0.5 kg.

‡P8-10 Figure P8-10 shows timing diagrams for 3 cams used in a production machine.  Design 
suitable SVAJ functions to run at 250 rpm with 10-kg effective mass on each fol-
lower.  Size the cams for suitable pressure angles and radii of curvature using a 20-mm 
diameter roller follower.  Select a suitable spring for each follower from the Appendix, 
specify its preload and sketch the assembly, showing all three cams on a common cam-
shaft driving the three follower trains along the X axis.

0 90

Motion
 (mm)

Camshaft Angle (deg)

55°

20°

180 270 360

140° 283°

10° 160° 355°

160° 210° 320°
0

0

0

10

40

20

Cam 1

Cam 2

Cam 3

FIGURE P8-10
Timing diagram for Project P8-10

0 e 360fd
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c
b

pumping fillingsn
iffki
ck

Piston
Motion

Camshaft Angle

FIGURE P8-9
Timing diagram for Project P8-9—peanut butter pump.  Determine suitable values for a–f from problem statement 


