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Chapter11
DYNAMIC FORCE ANALYSIS
Don’t force it!
Use a bigger hammer
ANONYMOUS

11.0 INTRODUCTION Watch the first lecture video for this chapter (27:28)*

When kinematic synthesis and analysis have been used to define a geometry and set of 
motions for a particular design task, it is logical and convenient to then use a kinetostatic, 
or inverse dynamics, solution to determine the forces and torques in the system.  We will 
take that approach in this chapter and concentrate on solving for the forces and torques that 
result from, and are required to drive, our kinematic system in such a way as to provide 
the designed accelerations.  Numerical examples are presented throughout this chapter.  
These examples are also downloadable as disk files for input to either program MATRIX 
or LINKAGES.  These programs are described in Appendix A.  The reader is encouraged 
to open the referenced files in these programs and investigate the examples in more detail.  
The file names are noted in the discussion of each example.

11.1 NEWTONIAN SOLUTION METHOD

Dynamic force analysis can be done by any of several methods.  The one which gives the 
most information about forces internal to the mechanism requires only the use of Newton’s 
law as defined in equations 10.1 and 10.4.  These can be written as a summation of all 
forces and torques in the system.  

  

*  http://www.designofma-
chinery.com/DOM/Dynam-
ic_Force_Analysis.mp4
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∑ ∑= = α (11.1a)m IGF a T

It is also convenient to separately sum force components in X and Y directions, with 
the coordinate system chosen for convenience.  The torques in our two-dimensional sys-
tem are all in the Z direction.  This lets us break the two vector equations into three scalar 
equations:

∑ ∑ ∑= = = α (11.1b)F ma F ma T Ix x y y G

These three equations must be written for each moving body in the system which will 
lead to a set of linear simultaneous equations for any system.  The set of simultaneous 
equations can most conveniently be solved by a matrix method as was shown in Chapter 
5.  These equations do not account for the gravitational force (weight) on a link.  If the 
kinematic accelerations are large compared to gravity, which is often the case, then the 
weight forces can be ignored in the dynamic analysis.  If the machine members are very 
massive or moving slowly with small kinematic accelerations, or both, the weight of the 
members may need to be included in the analysis.  The weight can be treated as an external 
force acting on the CG of the member at a constant angle.

11.2 SINGLE LINK IN PURE ROTATION Watch a short video (15:30)†

As a simple example of this solution procedure, consider the single link in pure rotation 
shown in Figure 11-1a.  In any of these kinetostatic dynamic force analysis problems, the 
kinematics of the problem must first be fully defined.  That is, the angular accelerations 
of all rotating members and the linear accelerations of the CGs of all moving members 
must be found for all positions of interest.  The mass of each member and the mass mo-
ment of inertia IG with respect to each member’s CG must also be known.  In addition 
there may be external forces or torques applied to any member of the system.  These are 
all shown in the figure.

While this analysis can be approached in many ways, it is useful for the sake of 
consistency to adopt a particular arrangement of coordinate systems and stick with it.  
We present such an approach here which, if carefully followed, will tend to minimize 
the chances of error.  The reader may wish to develop his or her own approach once the 
principles are understood.  The underlying mathematics is invariant, and one can choose 
coordinate systems for convenience.  The vectors which are acting on the dynamic sys-
tem in any loading situation are the same at a particular time regardless of how we may 
decide to resolve them into components for the sake of computation.  The solution result 
will be the same.

We will first set up a nonrotating, local coordinate system on each moving member, 
located at its CG.  (In this simple example we have only one moving member.)  All exter-
nally applied forces, whether due to other connected members or to other systems must 
then have their points of application located in this local coordinate system.  Figure 11-1b 
shows a free-body diagram of the moving link 2.  The pin joint at O2  on link 2 has a force 
F12 due to the mating link 1,  the x and y components of which are F12x and F12y.  These 
subscripts are read “force of link 1 on 2” in the x or y direction.  This subscript notation 
scheme will be used consistently to indicate which of the “action-reaction” pair of forces 
at each joint is being solved for. 

  

†  http://www.designofma-
chinery.com/DOM/Single_
Link_in_Rotation.mp4
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There is also an externally applied force FP shown at point P, with components FPx
and FPy.  The points of application of these forces are defined by position vectors R12 and 
RP, respectively.  These position vectors are defined with respect to the local coordinate 
system at the CG of the member.  We will need to resolve them into x and y components.  
There will have to be a source torque available on the link to drive it at the kinematically 
defined accelerations.  This is one of the unknowns to be solved for.  The source torque is 
the torque delivered from the ground to the driver link 2 and so is labeled T12.  The other 
two unknowns in this example are the force components at the pin joint F12x and F12y.

We have three unknowns and three equations, so the system can be solved.  Equations 
11.1 can now be written for the moving link 2.  Any applied forces or torques whose di-
rections are known must retain the proper signs on their components.  We will assume all 
unknown forces and torques to be positive.  Their true signs will “come out in the wash.”

∑
∑ ( ) ( )

= + =

= + × + × = α
(11.2)

12 2

12 12 12

m
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P G

P P G

F F F a

T T R F R F

The force equation can be broken into its two components.  The torque equation 
contains two cross product terms which represent  torques due to the forces applied at a 
distance from the CG.  When these cross products are expanded, the system of equations 
becomes:

( ) ( )

+ =

+ =

+ − + − = α

(11.3)
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FIGURE 11-1
Dynamic force analysis of a single link in pure rotation

(a )  Kinematic diagram (b)  Force (free-body) diagrams
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This can be put in matrix form with the coefficients of the unknown variables forming 
the A matrix, the unknown variables the B vector, and the constant terms the C vector 
and then solved for B.

−  ( )

[ ] [ ] [ ]× =
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(11.4)
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Note that the A matrix contains all the geometric information and the C matrix 
contains all the dynamic information about the system.  The B matrix contains all the 
unknown forces and torques.  We will now present a numerical example to reinforce your 
understanding of this method.

✍EXAMPLE 11-1

Dynamic Force Analysis of a Single Link in Pure Rotation.  (See Figure 11-1)

Given:  The 10-in-long link shown weighs 4 lb.  Its CG is on the line of centers at the 5-in 
point.  Its mass moment of inertia about its CG is 0.08 lb-in-sec2.  Its kinematic 
data are:

θ ω α

°

deg rad/sec rad/sec in/sec

30 20 15 2001 @ 208
2 2 2

2 2
2

aG

An external force of 40 lb at 0� is applied at point P.

Find: The force F12 at pin joint O2 and the driving torque T12 needed to maintain motion 
with the given acceleration for this instantaneous position of the link.

Solution:

 1 Convert the given weight to proper mass units, in this case blobs:

� �= 4 lb
386 in/sec

0.0104 blob ( )2mass weight
g

a

 2 Set up a local coordinate system at the CG of the link and draw all applicable vectors acting 
on the system as shown in the figure.  Draw a free-body diagram as shown.

 3 Calculate the x and y components of the position vectors R12 and RP in this coordinate system:

= ∠ ° = − = −

= ∠ ° = + = +

5 in @ 210 ; 4.33, 2.50
( )

5 in @ 30 ; 4.33, 2.50

12 12 12R R
b

R RP P P

x y

x y

R

R

 4 Calculate the x and y components of the acceleration of the CG in this coordinate system:
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= ∠ ° = − = −2001@ 208 ; 1766.78, 939.41 ( )a a cG G Gx y
a

5 Calculate the x and y components of the external force at P in this coordinate system:

= ∠ ° = =40 @ 0 ; 40, 0 ( )F F dP P Px y
F

6 Substitute these given and calculated values into the matrix equation 11.4:
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0.01 939.41 0
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7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix C 
using a pocket calculator with matrix capability; using Mathcad or Matlab; or by putting the 
values for matrices A and C into program MATRIX downloadable with this text.

  Program MATRIX gives the following solution:

= − = − =57.67 lb, 9.39 lb, 204.72 lb-in ( )12 12 12F F T f
x y

  Converting the force to polar coordinates:

= ∠ °58.43 @ 189.25 ( )12 gF

Open the disk file E11-01.mtr in program MATRIX to exercise this example.

11.3 FORCE ANALYSIS OF A THREEBAR CRANK-SLIDE LINKAGE

When there is more than one link in the assembly, the solution simply requires that the 
three equations 11.1b be written for each link and then solved simultaneously.  Figure 
11-2a shows a threebar crank-slide linkage.  This linkage has been simplified from the 
fourbar crank-slider (see Figure 11-4) by replacing the kinematically redundant slider 
block (link 4) with a half joint as shown.  This linkage transformation reduces the number 
of links to three with no change in degree of freedom (see Section 2.10).  Only links 2 
and 3 are moving.  Link 1 is ground.  Thus we should expect to have six equations in six 
unknowns (three per moving link).

Figure 11-2b shows the linkage “exploded” into its three separate links, drawn as 
free bodies.  A kinematic analysis must have been done in advance of this dynamic force 
analysis in order to determine, for each moving link, its angular acceleration and the linear 
acceleration of its CG.  For the kinematic analysis, only the link lengths from pin to pin 
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were required.  For a dynamic analysis the mass (m) of each link, the location of its CG, 
and its mass moment of inertia (IG ) about that CG are also needed.  

The CG of each link is initially defined by a position vector rooted at one pin joint 
whose angle is measured with respect to the line of centers of the link in the local, rotat-
ing coordinate system (LRCS) x’, y’.  This is the most convenient way to establish the CG 
location since the link line of centers is the kinematic definition of the link.  However, 
we will need to define the link’s dynamic parameters and force locations with respect to 
a local, nonrotating coordinate system (LNCS) x, y located at its CG and which is always 
parallel to the global coordinate system (GCS) XY.  The position vector locations of all at-
tachment points of other links and points of application of external forces must be defined 
with respect to the link’s LNCS.  Note that these kinematic and applied force data must 
be available for all positions of the linkage for which a force analysis is desired.  In the 

FIGURE 11-2
Dynamic force analysis of a crank-slide linkage

(a )  Linkage and dimensions (b )  Free-body diagrams
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following discussion and examples, only one linkage position will be addressed.  The pro-
cess is identical for each succeeding position and only the calculations must be repeated.  
Obviously, a computer will be a valuable aid in accomplishing the task.

Link 2 in Figure 11-2b shows forces acting on it at each pin joint, designated F12 and 
F32.  By convention their subscripts denote the force that the adjoining link is exerting 
on the link being analyzed; that is, F12 is the force of 1 on 2 and F32 is the force of 3 on 
2.  Obviously there is also an equal and opposite force at each of these pins which would 
be designated as F21 and F23, respectively.  The choice of which of the members of these 
pairs of forces to be solved for is arbitrary.  As long as proper bookkeeping is done, their 
identities will be maintained.

When we move to link 3, we maintain the same convention of showing forces acting 
on the link in its free-body diagram.  Thus at instant center I23 we show F23 acting on 
link 3.  However, because we showed force F32 acting at the same point on link 2, this 
introduces an additional unknown to the problem for which we need an additional equa-
tion.  The equation is available from Newton’s third law:

= − (11.5)23 32F F

Thus we are free to substitute the negative reaction force for any action force at any 
joint.  This has been done on link 3 in the figure in order to reduce the unknown forces 
at that joint to one, namely F32.  The same procedure is followed at each joint with one 
of the action-reaction forces arbitrarily chosen to be solved for and its negative reaction 
applied to the mating link.

The naming convention used for the position vectors (Rap) which locate the pin joints 
with respect to the CG  in the link’s nonrotating local coordinate system is as follows.  
The first subscript (a) denotes the adjoining link to which the position vector points.  The 
second subscript ( p) denotes the parent link to which the position vector belongs.  Thus 
in the case of link 2 in Figure 11-2b, vector R12 locates the attachment point of link 1 
to link 2, and R32 the attachment point of link 3 to link 2.  Note that in some cases these 
subscripts will match those of the pin forces shown acting at those points, but where the 
negative reaction force has been substituted as described above, the subscript order of the 
force and its position vector will not agree.  This can lead to confusion and must be care-
fully watched for typographical errors when setting up the problem.

Any external forces acting on the links are located in similar fashion with a position 
vector to a point on the line of application of the force.  This point is given the same letter 
subscript as that of the external force.  Link 3 in the figure shows such an external force 
FP acting on it at point P.  The position vector RP locates that point with respect to the 
CG.  It is important to note that the CG of each link is consistently taken as the point of 
reference for all forces acting on that link.  Left to its own devices, an unconstrained body 
in complex motion will spin about its own CG; thus we analyze its linear acceleration at 
that point and apply the angular acceleration about the CG as a center.

Equations 11.1 are now written for each moving link.  For link 2, with the cross 
products expanded:

( ) ( )

+ =

+ =

+ − + − = α

(11.6a)
12 32 2

12 32 2

12 12 12 12 12 32 32 32 32

2

2
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x x x

y y y
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For link 3, with the cross products expanded, note the substitution of the reaction 
force – F32 for F23:

( ) ( ) ( )

− + =

− + =

− − − + − = α

(11.6b)
13 32 3

13 32 3

13 13 13 13 23 32 23 32 3

3

3

3

F F F m a

F F F m a

R F R F R F R F R F R F I

P G

P G

P P P P G

x x x x

y y y y

x y y x x y y x x y y x

Note also that T12, the source torque, only appears in the equation for link 2 as that is 
the driver crank to which the motor is attached.  Link 3 has no externally applied torque 
but does have an external force FP which might be due to whatever link 3 is pushing on 
to do its external work.

There are seven unknowns present in these six equations, F12x, F12y, F32x, F32y, F13x, 
F13y, and T12.  But, F13y is due only to friction at the joint between link 3 and link 1.  We 
can write a relation for the friction force f at that interface such as f = ��N, where �� is 
a known coefficient of coulomb friction.  The friction force always opposes motion.  The 
kinematic analysis will provide the velocity of the link at the sliding joint.  The direction 
of f will always be the opposite of this velocity.  Note that � is a nonlinear function which 
has a discontinuity at zero velocity; thus at the linkage positions where velocity is zero, the 
inclusion of � in these linear equations is not valid.  (See Figure 10-7a.)  In this example, 
the normal force N is equal to F13x and the friction force f is equal to F13y.  For linkage 
positions with nonzero velocity, we can eliminate F13y by substituting into equation 11.6b,

( )= − μ (11.6c)13 31 13F SGN V F
y x

where � is negated and multiplied by the sign of the velocity at that point.  The absolute 
value on F13x is needed to prevent reversal of F13y with the sign of F13x.  Friction doesn’t 
care which side of the pin B is being forced against the slot by F13x.

We are then left with six unknowns in equations 11.6 and can solve them simultane-
ously.  We also rearrange equations 11.6a and 11.6b to put all known terms on the right 
side.

( )
( )

+ =

+ =

+ − + − = α

− = −

− μ − = −

−μ − − + = α − +

(11.6d)
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Putting these six equations in matrix form, we get:
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1 0 1 0 0 0
0 1 0 1 0 0
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This system can be solved by using program MATRIX or any other matrix solving calcula-
tor.  As an example of this solution consider the following linkage data.

✍EXAMPLE 11-2

Dynamic Force Analysis of a Threebar Crank-Slide Linkage with Half Joint.  (See Figure 11-2.)

Given: The 5-in long crank (link 2) shown weighs 2 lb.  Its CG is at 3 in and 30� from 
the line of centers.  Its mass moment of inertia about its CG is 0.05 lb-in-sec2.  Its 
acceleration is defined in its LNCS, x,y.  Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

60 30 –10 2700.17 @ –89.4
2 2 2

2 2
2

aG

The coupler (link 3) is 15 in long and weighs 4 lb.  Its CG is at 9 in and 45� from 
the line of centers.  Its mass moment of inertia about its CG is 0.10 lb-in-sec2.  Its 
acceleration is defined in its LNCS, x,y.  Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

99.59 –8.78 –136.16 3453.35 @ 254.4
3 3 3

2 2
3

aG

The sliding joint on link 3 has a velocity of 96.95 in/sec in the +Y direction.

There is an external force of 50 lb at – 45�, applied at point P which is located at 
2.7 in and 101� from the CG of link 3, measured in the link’s embedded, rotating 
coordinate system or LRCS x’, y’ (origin at A and x axis from A to B).  The coef-
ficient of friction � is 0.2.

Find: The forces F12, F32, F13 at the joints and the driving torque T12 needed to maintain 
motion with the given acceleration for this instantaneous position of the link.

Solution:

 1 Convert the given weights to proper mass units, in this case blobs:

� �= 2 lb
386 in/sec

0.0052 blob ( )2 2mass weight
g

alink
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� �= 4 lb
386 in/sec

0.0104 blob ( )
3 2mass weight

g
b

link

2 Set up a local, nonrotating xy coordinate system (LNCS) at the CG of each link, and draw all 
applicable position and force vectors acting within or on that system as shown in Figure 11-2.  
Draw a free-body diagram of each moving link as shown.

3 Calculate the x and y components of the position vectors R12, R32, R23, R13, and RP in the 
LNCS coordinate system:

= ∠ ° = = −

= ∠ ° = =

= ∠ ° = = −

= ∠ ° = =

= ∠ ° = − = −

3.00 @ 270.0 ; 0.000, 3.0

2.83 @ 28.0 ; 2.500, 1.333

9.00 @ 324.5 ; 7.329, 5.224 ( )

10.72 @ 63.14 ; 4.843, 9.563

2.70 @ 201.0 ; 2.521, 0.968

12 12 12

32 32 32

23 23 23

13 13 13

R R

R R

R R c

R R

R RP P P

x y

x y

x y

x y

x y

R

R

R

R

R

  These position vector angles are measured with respect to the LNCS which is always parallel 
to the global coordinate system (GCS), making the angles the same in both systems.

 4 Calculate the x and y components of the acceleration of the CGs of all moving links in the 
global coordinate system:

= ∠ − ° = = −

= ∠ ° = − = −

2700.17 @ 89.4 ; 28.28, 2700
( )

3453.35 @ 254.4 ; 930.82, 3325.54
2 2 2

3 3 3

a a
d

a a

G G G

G G G

x y

x y

a

a

 5 Calculate the x and y components of the external force at P in the global coordinate system:

= ∠ − ° = = −50@ 45 ; 35.36, 35.36 ( )F F eP P Px y
F

6 Substitute these given and calculated values into the matrix equation 11.7.
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( )( )

( )( )
( )( )

( )( ) ( )
( )( ) ( )( ) ( )( )

−
−

− −
− − −⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

−

−

− −

− − −

− − − + −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

−
−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 1 0 0 0
0 1 0 1 0 0
3 0 1.333 2.5 0 1
0 0 1 0 1 0
0 0 0 1 0.2 0
0 0 5.224 7.329 0.2 4.843 9.563 0

( )
0.005 28.28

0.005 2700

0 05 10

0.01 930.82 35.36

0.01 3325.54 35.36

0 1 –136.16 2.521 35.36 0.968 35.36

0.141
13.500

0.500
44.668

2.105
136.987

12

12

32

32

13

12

F

F

F

F

F

T
f

x

y

x

y

x
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7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix 
C using a pocket calculator with matrix capability; using Mathcad or Matlab; or by inputting 
the values for matrices A and C to program MATRIX downloadable with this text which gives 
the following solution:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

−
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

39.232
10.336
39.373

3.164
5.295

177.590

( )

12

12

32

32

13

12

F

F

F

F

F

T

g

x

y

x

y

x

  Converting the forces to polar coordinates:

= ∠ °
= ∠ − °
= ∠ °

40.57 lb @ 194.76
39.50 lb @ 4.60 ( )

5.40 lb @ 191.31

12

32

13

h
F
F
F

Open the disk file E11-02.mtr in program MATRIX to exercise this example.

11.4 FORCE ANALYSIS OF A FOURBAR LINKAGE Watch a video (12:19)†

Figure 11-3a shows a fourbar linkage.  All dimensions of link lengths, link positions, loca-
tions of the links’ CGs, linear accelerations of those CGs, and link angular accelerations 
and velocities have been previously determined from a kinematic analysis.  We now wish 
to find the forces acting at all the pin joints of the linkage for one or more positions.  The 
procedure is exactly the same as that used in the previous two examples.  This linkage 
has three moving links.  Equation 11.1 provides three equations for any link or rigid body 
in motion.  We should expect to have nine equations in nine unknowns for this problem.

Figure 11-3b shows the free-body diagrams for all links, with all forces shown.  Note 
that an external force FP is shown acting on link 3 at point P.  Also an external torque T4
is shown acting on link 4.  These external loads are due to some other mechanism (device, 
person, thing, etc.) pushing or twisting against the motion of the linkage.  Any link can 
have any number of external loads and torques acting on it.  Only one external torque 
and one external force are shown here to serve as examples of how they are handled in 
the computation.  (Note that a more complicated force system, if present, could also be 
reduced to the combination of a single force and torque on each link.)

To solve for the pin forces, it is necessary that these applied external forces and 
torques be defined for all positions of interest.  We will solve for one member of the pair 
of action-reaction forces at each joint, and also for the driving torque T12 needed to be 
supplied at link 2 in order to maintain the kinematic state as defined.  The force subscript 
convention is the same as that defined in the previous example.  For example, F12 is the 
force of 1 on 2 and F32 is the force of 3 on 2.  The equal and opposite forces at each of 

  

†  http://www.designofma-
chinery.com/DOM/Four-
bar_Force_Analysis.mp4
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FIGURE 11-3
Dynamic force analysis of a fourbar linkage.  (See also Figure P11-2)

(a )  The linkage and dimensions

(b )  Free-body diagrams
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these pins are designated F21 and F23, respectively.  All the unknown forces in the figure 
are shown at arbitrary angles and lengths as their true values are still to be determined.

The linkage kinematic parameters are defined with respect to a global XY system 
(GCS) whose origin is at the driver pivot O2 and whose X axis goes through link 4’s fixed 
pivot O4.  The mass (m) of each link, the location of its CG, and its mass moment of inertia 
(IG) about that CG are also needed.  The CG of each link is initially defined within each 
link with respect to a local moving and rotating axis system (LRCS) embedded in the 
link because the CG is an unchanging physical property of the link. The origin of this x’, 
y’ axis system is at one pin joint and the x’ axis is the line of centers of the link.  The CG 
position within the link is defined by a position vector in this LRCS.  The instantaneous 
location of the CG can easily be determined for each dynamic link position by adding the 
angle of the internal CG position vector to the current GCS angle of the link.

We need to define each link’s dynamic parameters and force locations with respect 
to a local, moving, but nonrotating axis system (LNCS) x,y located at its CG as shown on 
each free-body diagram in Figure 11-3b.  The position vector locations of all attachment 
points of other links and points of application of external forces must be defined with 
respect to this LNCS axis system.  These kinematic and applied force data differ for each 
position of the linkage.  In the following discussion and examples, only one linkage posi-
tion will be addressed.  The process is identical for each succeeding position.

Equations 11.1 are written for each moving link.  For link 2, the result is identical to 
that done for the crank-slider example in equation 11.6a.

( ) ( )

+ =

+ =

+ − + − = α

(11.8a)
12 32 2

12 32 2

12 12 12 12 12 32 32 32 32 2

2

2

2

F F m a

F F m a

T R F R F R F R F I

G

G

G

x x x

y y y

x y y x x y y x

For link 3, with substitution of the reaction force –F32 for F23, the result is similar to 
equation 11.6b with some subscript changes to reflect the presence of link 4.

( ) ( ) ( )

− + =

− + =

− − − + − = α

(11.8b)
43 32 3

43 32 3

43 43 43 43 23 32 23 32 3

3

3

3

F F F m a

F F F m a

R F R F R F R F R F R F I

P G

P G

P P P P G

x x x x

y y y y

x y y x x y y x x y y x

For link 4, substituting the reaction force –F43 for F34, a similar set of equations 11.1 
can be written:

( ) ( )

− =

− =

− − − + = α

(11.8c)
14 43 4

14 43 4

14 14 14 14 34 43 34 43 4 4

4

4

4

F F m a

F F m a

R F R F R F R F T I

G

G

G

x x x

y y y

x y y x x y y x

Note that T12, the source torque, only appears in the equation for link 2, the motor-
driven crank.  Link 3, in this example, has no externally applied torque (though it could 
have) but does have an external force FP.  Link 4, in this example, has no external force 
acting on it (though it could have) but does have an external torque T4.  (The driving link 
2 could also have an externally applied force on it though it usually does not.)  There are 
nine unknowns present in these nine equations, F12x, F12y, F32x, F32y, F43x, F43y, F14x, 
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F14y, and T12, so we can solve them simultaneously.  We rearrange terms in equations 
11.8 to put all known constant terms on the right side and then put them in matrix form.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

− −

−
−

− −

−
−

− −

× =

α

−

−

α − +

α −

(11.9)

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0

0 0 0 0 1

0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0

0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0

12 12 32 32

23 23 43 43

34 34 14 14

12

12

32

32

43

43

14

14

12

2

2

2

3

3

3

4

4

4 4

2

2

2

3

3

3

4

4

4

R R R R

R R R R

R R R R

F

F

F

F

F

F

F

F

T

m a

m a

I

m a F

m a F

I R F R F

m a

m a

I T

G

G

G

G P

G P

G P P P P

G

G

G

y x y x

y x y x

y x y x

x

y

x

y

x

y

x

y

x

y

x x

y y

x y y x

x

y

This system can be solved by using program MATRIX or any matrix solving calcula-
tor.  As an example of this solution consider the following linkage data.

✍EXAMPLE 11-3 
Dynamic Force Analysis of a Fourbar Linkage.  (See Figure 11-3)

Given:  The 5-in-long crank (link 2) shown weighs 1.5 lb.  Its CG is at 3 in @ +30� from 
the line of centers (LRCS).  Its mass moment of inertia about its CG is 0.4 lb-in-
sec2.  Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

60 25 –40 1878.84 @ 273.66
2 2 2

2 2
2

aG

The coupler (link 3) is 15 in long and weighs 7.7 lb.  Its CG is at 9 in @ 45� off the 
line of centers (LRCS).  Its mass moment of inertia about its CG is 1.5 lb-in-sec2.  
Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

20.92 –5.87 120.9 3646.1 @ 226.5
3 3 3

2 2
3

aG

The ground link is 19 in long.  The rocker (link 4) is 10 in long and weighs 5.8 lb.  
Its CG is at 5 in @ 0� on the line of centers (LRCS).  Its mass moment of inertia 
about its CG is 0.8 lb-in-sec2.  There is an external torque on link 4 of 120 lb-in 
(GCS).  An external force of 80 lb @ 330� acts on link 3 in the GCS, applied at 
point P at 3 in @ 100� from the CG of link 3 (LRCS).  The kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

104.41 7.93 276.29 1416.8 @ 207.2
4 4 4

2 2
4

aG
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Find: Forces F12, F32, F43, and F14 at the joints and the driving torque T12 needed to main-
tain motion with the given acceleration for this instantaneous position of the link.

Solution:

 1 Convert the given weight to proper mass units, in this case blobs:

� �= 1.5 lb
386 in/sec

0.004 blob ( )2 2mass weight
g

alink

� �= 7.7 lb
386 in/sec

0.020 blob ( )3 2mass weight
g

blink

� �= 5.8 lb
386 in/sec

0.015 blob ( )4 2mass weight
g

clink

 2 Set up an LNCS xy coordinate system at the CG of each link, and draw all applicable vectors 
acting on that system as shown in the figure.  Draw a free-body diagram of each moving link.

 3 Calculate the x and y components of the position vectors R12, R32, R23, R43, R34, R14, and RP 
in the link’s LNCS.  R43, R34, and R14 will have to be calculated from the given link geometry 
data using the law of cosines and law of sines.  Note that the current value of link 3’s position 
angle (�3) in the GCS must be added to the angles of all position vectors before creating their 
x,y components in the LNCS if their angles were originally measured with respect to the link’s 
embedded, local rotating coordinate system (LRCS).

= ∠ ° = = −

= ∠ ° = =

= ∠ ° = − = −

= ∠ − ° = = −

= ∠ ° = − =

= ∠ ° = = −

= ∠ ° = − =

3.00 @ 270.00 ; 0.000, 3

2.83 @ 28.00 ; 2.500, 1.333

9.00 @ 245.92 ; 3.672, 8.217

10.72 @ 15.46 ; 10.332, 2.858 ( )

5.00 @ 104.41 ; 1.244, 4.843

5.00 @ 284.41 ; 1.244, 4.843

3.00 @ 120.92 ; 1.542, 2.574

12 12 12

32 32 32

23 23 23

43 43 43

34 34 34

14 14 14

R R

R R

R R

R R d

R R

R R

R RP P P

x y

x y

x y

x y

x y

x y

x y

R

R

R

R

R

R

R

 4 Calculate the x and y components of the acceleration of the CGs of all moving links in the 
global coordinate system (GCS):

= ∠ ° = = −

= ∠ ° = − = −

= ∠ ° = − = −

a a

a a e

a a

G G G

G G G

G G G

x y

x y

x y

1878.84 @ 273.66 ; 119.94, 1875.01

3646.10 @ 226.51 ; 2509.35, 2645.23 ( )

1416.80 @ 207.24 ; 1259.67, 648.50

2 2 2

3 3 3

4 4 4

a

a

a

 5 Calculate the x and y components of the external force at P in the GCS:

= ∠ ° = = −80 @ 330 ; 69.28, 40.00 ( )3 3 3F F fP P Px y
F

 6 Substitute these given and calculated values into the matrix equation 11.9.
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[ ]

( )( )
( )( )

( )( )
( )( ) ( )

( )( ) ( )
( )( ) ( )( ) ( )( )

( )( )
( )( )

( )( ) ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

..

−
−

−
−

−
−

× =

−

−

− −

− − −

− − − −

−

−

−

=

−
−

−
−

−
−

( )

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
3 0 1.330 2.5 0 0 0 0 1
0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 8.217 3.673 2.861 10.339 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 4.843 1.244 4.843 1.244 0

0.004 119.94

0.004 1875.01

0 4 40

0.02 2509.35 69.28

0.02 2645.23 40

1.5 120.9 1.542 40 2.574 69.28

0.015 1259.67

0.015 648.50

0.8 276.29 120

0.480
7.500

16.000
119.465

12.908
298.003

18.896
9.727

101.031

12

12

32

32

43

43

14

14

12

g

F

F

F

F

F

F

F

F

T

x

y

x

y

x

y

x

y

7 Solve this system either by inverting matrix A and premultiplying that inverse times  matrix C 
using a pocket calculator with matrix capability, or by inputting the values for matrices A and 
C to program MATRIX downloadable with this text, which gives the following solution:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

−
−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

117.65
107.84
118.13
100.34

1.34
87.43
20.23
77.71

243.23

( )

12

12

32

32

43

43
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14

12

F

F

F

F

F

F

F

F

T

h

x

y

x

y

x

y

x

y

  Converting the forces to polar coordinates:
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= ∠ °

= ∠ °

= ∠ °

= ∠ °

159.60 lb @ 222.52

154.99 lb @ 40.35

87.44 lb @ 90.88 ( )

80.30 lb @ 104.59

12

32

43

14

i

F

F

F

F

8 The pin-force magnitudes in (i) are needed to size the pivot pins and links against failure and 
to select pivot bearings that will last for the required life of the assembly.  The driving torque 
T12 defined in (h) is needed to select a motor or other device capable of supplying the power 
to drive the system.  See Section 2.19 for a brief discussion of motor selection.  Issues of stress 
calculation and failure prevention are beyond the scope of this text, but note that those calcula-
tions cannot be done until a good estimate of the dynamic forces and torques on the system has 
been made by methods such as those shown in this example.

This solves the linkage for one position.  A new set of values can be put into the A and 
C matrices for each position of interest at which a force analysis is needed.   Open the disk 
file E11-03.mtr in program MATRIX to exercise this example.  The disk file E11-03.4br 
can also be opened in program LINKAGES and will run the linkage through a series of 
positions starting with the stated parameters as initial conditions.  The linkage will slow 
to a stop and then run in reverse due to the negative acceleration.  The matrix for equation 
(g) can be seen within LINKAGES using Dynamics/Solve/Show Matrix.

It is worth noting some general observations about this method at this point.  The so-
lution is done using cartesian coordinates of all forces and position vectors.  Before being 
placed in the matrices, these vector components must be defined in the global coordinate 
system (GCS) or in nonrotating, local coordinate systems, parallel to the global coordinate 
system, with their origins at the links’ CGs (LNCS).  Some of the linkage parameters are 
normally expressed in such coordinate systems, but others are not, and so must be trans-
formed to the proper coordinate system.  The kinematic data should all be computed in the 
global system or in parallel, nonrotating, local systems placed at the CGs of individual 
links.  Any external forces on the links must also be defined in the global system.

However, the position vectors that define intralink locations, such as the pin joints 
versus the CG, or which locate points of application of external forces versus the CG are 
defined in local, rotating coordinate systems embedded in the links (LRCS).  Thus these 
position vectors must be redefined in a nonrotating, parallel system before being used in 
the matrix.  An example of this is vector Rp, which was initially defined as 3 in at 100� in 
link 3’s embedded, rotating coordinate system.  Note in Example 11-3 that its cartesian 
coordinates for use in the equations were calculated after adding the current value of �3
to its angle.  This redefined Rp as 3 in at 120.92� in the nonrotating local system.  The 
same was done for position vectors R12, R32, R23, R43, R34, and R14.  In each case the 
intralink angle of these vectors (which is independent of linkage position) was added to 
the current link angle to obtain its position in the xy system at the link’s CG.  The proper 
definition of these position vector components is critical to the solution, and it is very easy 
to make errors in defining them.

To further confuse things, even though the position vector Rp is initially measured 
in the link’s embedded, rotating  coordinate system, the force Fp, which it locates, is not.  
The force Fp is not part of the link, as is Rp, but rather is part of the external world, so it 
is defined in the global system.



11

DESIGN OF MACHINERY 6ed      CHAPTER  11606

11.5 FORCE ANALYSIS OF A FOURBAR CRANK-SLIDER LINKAGE

The approach taken for the pin-jointed fourbar is equally valid for a fourbar crank-slider 
linkage.  The principal difference will be that the slider block will have no angular ac-
celeration.  Figure 11-4 shows a fourbar crank-slider with an external force on the slider 
block, link 4.  This is representative of the mechanism used extensively in piston pumps 
and internal combustion engines.  We wish to determine the forces at the joints and the 
driving torque needed on the crank to provide the specified accelerations.  A kinematic 
analysis must have previously been done in order to determine all position, velocity, and 
acceleration information for the positions being analyzed.  Equations 11.1 are written for 
each link.  For link 2:

( ) ( )

+ =

+ =

+ − + − = α

(11.10a)
12 32 2

12 32 2

12 12 12 12 12 32 32 32 32 2

2

2

2

F F m a

F F m a

T R F R F R F R F I

G

G

G

x x x

y y y

x y y x x y y x

This is identical to equation 11.8a for the “pure” fourbar linkage.   For link 3:

( ) ( )

− =

− =

− − − = α

(11.10b)
43 32 3

43 32 3

43 43 43 43 23 32 23 32 3

3

3

3

F F m a

F F m a

R F R F R F R F I

G

G

G

x x x

y y y

x y y x x y y x

This is similar to equation 11.8b, lacking only the terms involving Fp since there is no 
external force shown acting on link 3 of our example crank-slider.  For link 4:

( ) ( ) ( )

− + =

− + =

− − − + − = α

(11.10c)
14 43 4

14 43 4

14 14 14 14 34 43 34 43 4

4

4

4

F F F m a

F F F m a

R F R F R F R F R F R F I

P G

P G

P P P P G

x x x x

y y y y

x y y x x y y x x y y x

These contain the external force Fp shown acting on link 4.

For the inversion of the crank-slider shown, the slider block, or piston, is in pure 
translation against the stationary ground plane; thus it can have no angular acceleration or 
angular velocity.  Also, the position vectors in the torque equation (equation 11.10c) are 
all zero as the force Fp acts at the CG.  Thus the torque equation for link 4 (third expres-
sion in equation 11.10c) is zero for this inversion of the crank-slider linkage.  Its linear 
acceleration also has no y component. 

α = =0, 0 (11.10d)4 4
aG y

The only x directed force that can exist at the interface between links 4 and 1 is fric-
tion.  Assuming coulomb friction, the x component can be expressed in terms of the y 
component of force at this interface.  We can write a relation for the friction force f at 
that interface such as f = ��N, where �� is a known coefficient of friction.  The plus and 
minus signs on the coefficient of friction are to recognize the fact that the friction force 
always opposes motion.  The kinematic analysis will provide the velocity of the link at 
the sliding joint.  The sign on � will always be the opposite of the sign of this velocity.
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( )= − μ (11.10e)14 14F SGN d F
x y

�

The SGN function returns the sign of its argument.  The absolute value on F14y is needed 
to prevent reversal of F14x with the sign of F14y.  Friction doesn’t care which side of the 
piston is being forced against the cylinder by F14y.

Substituting equations 11.10d and 11.10e into the reduced equation 11.10c yields:

( )−μ − + =

− + =
(11.10f)

0
14 43 4

14 43

4
SGN d F F F m a

F F F
P G

P

y x x x

y y y

�

This last substitution has reduced the unknowns to eight, F12x, F12y, F32x, F32y,
F43x,F43y, F14y, and T12; thus we need only eight equations.  We can now use the eight 
equations in 11.10a, b, and f to assemble the matrices for solution.

F14

12F

32R

R12

23R

43R
CG3

F

= B

3Ga

43

3
1B
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X

F
2

1 O

Slider position ��d�d

2 4

P

A

y’

3
x’

32F

CG2

x

y

x’T12

2

2

2
a G

A

2O

y’

21F =

=

1 1

Y

X
4

aG

=

CG414F

4

B

F32

F43

– F12

23F

41F
34

2O
PF

d

F

�
�

FIGURE 11-4
Dynamic force analysis of the fourbar slider-crank linkage
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( )

− −

−
−

− −

− −μ

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

α

α

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

0 0 0 1

0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1 0

(11.10g)

12 12 32 32

23 23 43 43

12

12

32

32

43

43

14

12

2

2

2

3

3

3

4

2

2

2

3

3

3

4

R R R R

R R R R

SGN d

F

F

F

F

F

F

F

T

m a

m a

I

m a

m a

I

m a F

F

G

G

G

G

G

G

G P

P

y x y x

y x y x

x

y

x

y

x

y

y

x

y

x

y

x x

y

�

Solution of this matrix equation 11.10g plus equation 11.10e will yield complete dynamic 
force information for the fourbar crank-slider linkage.

11.6 FORCE ANALYSIS OF THE INVERTED CRANK-SLIDER

Another inversion of the fourbar crank-slider was also analyzed kinematically in Part I.  
It is shown in Figure 11-5.  Link 4 does have an angular acceleration in this inversion.  
In fact, it must have the same angle, angular velocity, and angular acceleration as link 
3 because they are rotationally coupled by the sliding joint.  We wish to determine the 
forces at all pin joints and at the sliding joint as well as the driving torque needed to create 
the desired accelerations.  Each link’s joints are located by position vectors referenced to 
nonrotating local xy coordinate systems at each link’s CG as before.  The sliding joint is 
located by the position vector R43 to the center of the slider, point B.  The instantaneous 
position of point B was determined from the kinematic analysis as length b referenced to 
instant center I23 (point A).  See Sections 4.8, 6.7, and 7.3 to review the position, velocity, 
and acceleration analysis of this mechanism.  Recall that this mechanism has a nonzero 
Coriolis component of acceleration.  The force between link 3 and link 4 within the slid-
ing joint is distributed along the unspecified length of the slider block.  For this analysis 
the distributed force can be modeled as a force concentrated at point B within the sliding 
joint.  We will neglect friction in this example.



DYNAMIC  FORCE  ANALYSIS 609

11

(a)  Linkage

( b)  Free-body diagrams of links
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FIGURE 11-5
Dynamic forces in the inverted slider-crank fourbar linkage
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The equations for links 2 and 3 are identical to those for the noninverted crank-slider 
(equations 11.10a and b).  The equations for link 4 are the same as equations 11.10c  
except for the absence of the terms involving Fp since no external force is shown acting 
on link 4 in this example.  The slider joint can only transmit force from link 3 to link 4 
or vice versa along a line perpendicular to the axis of slip. This line is called the axis of 
transmission.  In order to guarantee that the force F34 or F43 is always perpendicular to 
the axis of slip, we can write the following relation:

⋅ =ˆ 0 (11.11a)u F43

which expands to:
+ = 0 (11.11b)43 43u F u Fx yx y

The dot product of two vectors will be zero when the vectors are mutually perpen-
dicular.  The unit vector û is in the direction of link 3 which is defined from the kinematic 
analysis as �3.

= θ = θcos , sin (11.11c)3 3u ux y

Equation 11.11b provides a tenth equation, but we have only nine unknowns, F12x, 
F12y, F32x, F32y, F43x, F43y, F14x, F14y, and T12, so one of our equations is redundant.  
Since we must include equation 11.11, we will combine the torque equations for links 3 
and 4 rewritten here in vector form and without the external force Fp.

( ) ( )
( )( )

× − × = α = α

× − × = α
(11.12a)

43 43 23 32 3 4

14 14 34 43 4

3 3

4

I I

I

G G

G

R F R F

R F R F

Note that the angular acceleration of link 3 is the same as that of link 4 in this linkage. 
Adding these equations gives:

( )( ) ( ) ( )( )× − × + × − × = + α (11.12b)43 43 23 32 14 14 34 43 43 4
I IG GR F R F R F R F

Expanding and collecting terms:

( )( )
( )

− + − −

+ + − = + α (11.12c)

43 34 43 34 43 43 23 32

23 32 14 14 14 14 43 4

R R F R R F R F

R F R F R F I I

x y

G G

x y y x x y

y x x y y x

Equations 11.10a, 11.11b, 11.12c, and the four force equations from equations 11.10b 
and 11.10c (excluding the external force FP) give us nine equations in the nine unknowns 
which we can put in matrix form for solution.
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(11.13)
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11.7 FORCE ANALYSIS—LINKAGES WITH MORE THAN FOUR BARS

This matrix method of force analysis can easily be extended to more complex assemblages 
of links.  The equations for each link are of the same form.  We can create a more general 
notation for equations 11.1 to apply them to any assembly of n pin-connected links.  Let 
j represent any link in the assembly.  Let i = j – 1 be the previous link in the chain and 
k = j + 1 be the next link in the chain; then, using the vector form of equations 11.1:

∑
∑ ∑( )( ) ( )

+ + =

× + × + + × = α

(11.14a)

(11.14b)

m

I

ij jk ext j G

ij ij jk jk j ext ext G j

j j

j j j

F F F a

R F R F T R F

where:
= = − = + ≠ = =

= − = −and
2, 3, , ; 1; 1, ; if , 1

; (11.14c)
j n i j k j j n j n k

ji ij kj jkF F F F
�

The sum of forces vector equation 11.14a can be broken into its two x and y compo-
nent equations and then applied, along with the sum of torques equation 11.14b, to each 
of the links in the chain to create the set of simultaneous equations for solution.  Any link 
may have external forces and/or external torques applied to it.  All will have pin forces.  
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Since the nth link in a closed chain connects to the first link, the value of k for the nth link 
is set to 1.  In order to reduce the number of variables to a tractable quantity, substitute 
the negative reaction forces from equation 11.14c where necessary as was done in the 
examples in this chapter.  When sliding joints are present, it will be necessary to add 
constraints on the allowable directions of forces at those joints as was done in the inverted 
crank-slider derivation above.

11.8 SHAKING FORCE AND SHAKING MOMENT

It is usually of interest to know the net effect of the dynamic forces as felt on the ground 
plane as this can set up vibrations in the structure that supports the machine.  For our 
simple examples of three- and fourbar linkages, there are only two points at which the dy-
namic forces can be delivered to link 1, the ground plane.  More complicated mechanisms 
will have more joints with the ground plane.  The forces delivered by the moving links 
to the ground at the fixed pivots O2 and O4 are designated F21 and F41 by our subscript 
convention as defined in Section 11.1.  Since we chose to solve for F12 and F14 in our 
solutions, we simply negate those forces to obtain their equal and opposite counterparts 
(see also equation 11.5).

= − = − (11.15a)21 12 41 14F F F F

The sum of all the forces acting on the ground plane is called the shaking force (Fs) 
as shown in Figure 11-6.*  In these simple examples it is equal to:

= + (11.15b)21 41sF F F

The reaction moment felt by the ground plane is called the shaking moment (Ms) 
as shown in Figure 11-7.*  This is the negative of the source torque (T21 = –T12) plus the 
cross products of the ground-pin forces and their distances from the reference point.  The 
shaking moment about the crank pivot O2 is:

* The LINKAGES files 
(F11-06.4br & F11-07.4br) 
that generated the plots in 
Figures 11-6 and 11-7 may 
be downloaded and opened 
in that program to see more 
details on the linkage’s 
dynamics.
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FIGURE 11-6
Linkage data and polar plot of shaking force for an unbalanced crank-rocker fourbar linkage from program LINKAGES
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( )= + × (11.15c)21 1 41sM T R F

The shaking force will tend to move the ground plane back and forth, and the shaking 
moment will tend to rock the ground plane about the driveline axis.  Both will cause vibra-
tions.  We are usually looking to minimize the effects of the shaking force and shaking 
moment on the frame.  This can sometimes be done by balancing, sometimes by the ad-
dition of a flywheel to the system, and sometimes by shock mounting the frame to isolate 
the vibrations from the rest of the assembly.  Most often we will use a combination of all 
three approaches.  We will investigate some of these techniques in Chapter 12.

11.9 PROGRAM LINKAGES Second lecture video for this chapter (34:51)*

The matrix methods introduced in the preceding sections all provide force and torque infor-
mation for one position of the linkage assembly as defined by its kinematic and geometric 
parameters.  To do a complete force analysis for multiple positions of a machine requires 
that these computations be repeated with new input data for each position.  A computer 
program is the obvious way to accomplish this.  The program LINKAGES computes the ki-
nematic parameters for those linkages over changes in time or driver (crank) angle plus the 
forces and torques concomitant with the linkage kinematics and link geometry.  Examples 
of its output are shown in Figures 11-6 and 11-7.  Please refer to Appendix A for more 
information about this and other programs.  

11.10 TORQUE ANALYSIS BY AN ENERGY METHOD Watch a video (10:53)†

In Section 10.15 the method of virtual work was presented.  We will now use that ap-
proach to solve the linkage from Example 11-3 as a check on its solution by the newtonian 
method used in that example.  The kinematic data given in Example 11-3 did not include 
information on the angular velocities of all the links, the linear velocities of the centers of 

Linkage data and shaking moment curve for an unbalanced crank-rocker fourbar linkage from program LINKAGES 
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FIGURE 11-7

  

*  http://www.designofma-
chinery.com/DOM/Virtual_
Work_and_Flywheels.mp4

  

†  http://www.designofma-
chinery.com/DOM/Vir-
tual_Work.mp4
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gravities of the links, and the linear velocity of the point P of application of the external 
force on link 3.  Velocity data were not needed for the newtonian solution but are needed 
for the virtual work approach and are detailed below.  Equation 10.28a is repeated here 
and renumbered.

∑ ∑ ∑ ∑⋅ + ⋅ω = ⋅ + α ⋅ ω
= = = =

(11.16a)
2 2 2 2

m Ik
k

n

k k
k

n

k k k
k

n

k k
k

n

k kF v T a v

Expanding the summations, still in vector form:

( )
( )

( )

( )⋅ + ⋅ + ⋅ ω + ⋅ ω + ⋅ ω

= ⋅ + ⋅ + ⋅

+ α ⋅ ω + α ⋅ ω + α ⋅ ω

(11.16b)

12 2 3 3 4 4

2 3 4

2 2 3 3 4 4

3 3 4 4

2 2 3 3 4 4

2 3 4

m m m

I I I

P P P P

G G G G G G

G G G

F v F v T T T

a v a v a v

Expanding the dot products to create a scalar equation:

( )

( )+⎛
⎝

⎞
⎠ + +⎛

⎝
⎞
⎠ + ω + ω + ω

= +⎛
⎝

⎞
⎠ + +⎛

⎝
⎞
⎠

+ +⎛
⎝

⎞
⎠ + α ω + α ω + α ω

(11.16c)

12 2 3 3 4 4

2 3

4 2 2 3 3 4 4

3 3 3 3 4 4 4 4

2 2 2 2 3 3 3 3

4 4 4 4 2 3 4

F V F V F V F V T T T

m a V a V m a V a V

m a V a V I I I

P P P P P P P P

G G G G G G G G

G G G G G G G

x x y y x x y y

x x y y x x y y

x x y y

✍EXAMPLE 11-4 
Analysis of a Fourbar Linkage by the Method of Virtual Work.  (See Figure 11-3.)

Given:   The 5-in-long crank (link 2) shown weighs 1.5 lb.  Its CG is at 3 in at +30� from 
the line of centers.  Its mass moment of inertia about its CG is 0.4 lb-in-sec2.  Its 
kinematic data are:

ω αθ

°

deg rad/sec rad/sec in/sec

60 25 –40 75 @ 180
2 2 2

2
2

VG

 The coupler (link 3) is 15 in long and weighs 7.7 lb.  Its CG is at 9 in at 45� off 
the line of centers.  Its mass moment of inertia about its CG is 1.5 lb-in-sec2.  Its 
kinematic data are:

ω αθ

°

deg rad/sec rad/sec in/sec

20.92 –5.87 120.9 72.66 @ 145.7
3 3 3

2
3

VG

 There is an external force on link 3 of 80 lb at 330�, applied at point P which is 
located 3 in @ 100� from the CG of link 3.  The linear velocity of that point is 67.2 
in/sec at 131.94�.

 The rocker (link 4) is 10-in long and weighs 5.8 lb.  Its CG is at 5 in at 0� off the line 
of centers.  Its mass moment of inertia about its CG is 0.8 lb-in-sec2.   Its data are: 

ω αθ

°

deg rad/sec rad/sec in/sec

104.41 7.93 276.29 39.66 @ 194.41
4 4 4

2
4

VG
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There is an external torque on link 4 of 120 lb-in.  The ground link is 19-in long.

Find: The driving torque T12 needed to maintain motion with the given acceleration for 
this instantaneous position of the link.

Solution:

1 The torque, angular velocity, and angular acceleration vectors in this two-dimensional problem 
are all directed along the Z axis, so their dot products each have only one term.  Note that in 
this particular example there is no force FP4 and no torque T3. 

 2 The cartesian coordinates of the acceleration data were calculated in Example 11-3.  

= ∠ ° = = −

= ∠ ° = − = −

= ∠ ° = − = −

1878.84 @ 273.66 ; 119.94, 1875.01

3646.10 @ 226.51 ; 2509.35, 2645.23 ( )

1416.80 @ 207.24 ; 1259.67, 648.50

2 2 2

3 3 3

4 4 4

a a

a a a

a a

G G G

G G G

G G G

x y

x y

x y

a

a

a

 3 The x and y components of the external force at P in the global coordinate system were also 
calculated in Example 11-3:

= ∠ ° = = −80 @ 330 ; 69.28, 40.00 ( )
3 3 3

F F bP P Px y
F

4 Converting the velocity data for this example to cartesian coordinates:

= ∠ ° = − =

= ∠ ° = − =

= ∠ ° = − = −

= ∠ ° = − =

75.00 @ 180.00 ; 75.00, 0

72.66 @ 145.70 ; 60.02, 40.95

39.66 @ 194.41 ; 38.41, 9.87 ( )

67.20 @ 131.94 ; 44.91, 49.99

2 2 2

3 3 3

4 4 4

3 3 3

V V

V V

V V c

V V

G G G

G G G

G G G

P P P

x y

x y

x y

x y

V

V

V

V

 5 Substituting the example data into equation 11.16c:

[ ]( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( )( ) ( )( )( ) ( )( )( )

− + −⎡⎣ ⎤⎦ + + + +⎡⎣ ⎤⎦

= − + −⎡⎣ ⎤⎦

+ − − + −⎡⎣ ⎤⎦

+ − − + − −⎡⎣ ⎤⎦

+ − + − +⎡⎣ ⎤⎦

69.28 44.91 40 49.99 0 25 0 120 7.93

1.5
386

119.94 75 1875.01 0

7.7
386

2509.35 60.02 2645.23 40.95 ( )

5.8
386

1259.67 38.41 648.50 9.87

0.4 40 25 1.5 120.9 5.87 0.8 276.29 7.93

12T

d

 6 The only unknown in this equation is the input torque T12 which calculates to:

� 243.2 ˆ ( )12 eT k

  which is the same as the answer obtained in Example 11-3.
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This method of virtual work is useful if a quick answer is needed for the input torque, but 
it does not give any information about the joint forces.

11.11 CONTROLLING INPUT TORQUE—FLYWHEELS Watch a video (24:07)†

The typically large variation in accelerations within a mechanism can cause significant 
oscillations in the torque required to drive it at a constant or near constant speed. The 
peak torques needed may be so high as to require an overly large motor to deliver them.  
However, the average torque over the cycle, due mainly to losses and external work done, 
may often be much smaller than the peak torque.  We would like to provide some means 
to smooth out these oscillations in torque during the cycle.  This will allow us to size the 
motor to deliver the average torque rather than the peak torque.  One convenient and rela-
tively inexpensive means to this end is the addition of a flywheel to the system.

TORQUE VARIATION Figure 11-8 shows the variation in the input torque for a 
crank-rocker fourbar linkage over one full revolution of the drive crank.  It is running 
at a constant angular velocity of 50 rad/sec.  The torque varies a great deal within one 
cycle of the mechanism, going from a positive peak of 341.7 lb-in to a negative peak of  
–166.4 lb-in.  The average value of this torque over the cycle is only 70.2 lb-in,  being 
due to the external work done plus losses.  This linkage has only a 12-lb external force 
applied to link 3 at the CG and a 25 lb-in external torque applied to link 4.  These small 
external loads cannot account for the large variation in input torque required to maintain 
constant crank speed.  What then is the explanation?  The large variations in torque are 
evidence of the kinetic energy that is stored in the links as they move.  We can think of the 
positive pulses of torque as representing energy delivered by the driver (motor) and stored 
temporarily in the moving links, and the negative pulses of torque as energy attempting 
to return from the links to the driver.  Unfortunately most motors are designed to deliver 
energy but not to take it back.  Thus the “returned energy” has no place to go.

Average value

FIGURE 11-8
Input torque curve for an unbalanced crank-rocker fourbar linkage

0

Unbalanced  Input Torque      lb-in
342

  – 342
0 90 180 270 360

70

†  http://www.designofma-
chinery.com/DOM/Fly-
wheels.mp4
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Figure 11-9 shows the speed-torque characteristic of a permanent magnet (PM) DC 
electric motor.  Other types of motors will have differently shaped functions that relate 
motor speed to torque as shown in Figures 2-41 and 2-42, but all drivers (sources) will 
have some such characteristic curve.  As the torque demands on the motor change, the 
motor’s speed must also change according to its inherent characteristic.  This means that 
the torque curve being demanded in Figure 11-8 will be very difficult for a standard motor 
to deliver without drastic changes in its speed.

The computation of the torque curve in Figure 11-8 was made on the assumption 
that the crank (thus the motor) speed was a constant value.  All the kinematic data used in 
the force and torque calculation were generated on that basis.  With the torque variation 
shown we would have to use a large-horsepower motor to provide the power required to 
reach that peak torque at the design speed:

= ×

= × = =341.7 lb-in 50 rad
sec

17 085 in-lb
sec

2.59 hp

Power torque angular velocity

Peak power

The power needed to supply the average torque is much smaller.

= × = =70.2 lb-in 50 rad
sec

3510 in-lb
sec

0.53 hpAverage power

It would be extremely inefficient to specify a motor based on the peak demand of the 
system, as most of the time it will be underutilized.  We need something in the system 
which is capable of storing kinetic energy.  One such kinetic energy storage device is 
called a flywheel.

FLYWHEEL ENERGY Figure 11-10 shows a flywheel, designed as a flat circular 
disk, attached to a motor shaft which might also be the driveshaft for the crank of our link-
age.  The motor supplies a torque magnitude TM which we would like to be as constant as 
possible, i.e., to be equal to the average torque Tavg.  The load (our linkage), on the other 
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FIGURE 11-9
DC permanent magnet (PM) electric motor's typical speed-torque characteristic
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side of the flywheel, demands a torque TL which is time varying as shown in Figure 11-8.  
The kinetic energy in a rotating system is:

= ω
1
2

(11.17)2E I

where I is the moment of inertia of all rotating mass on the shaft.  This includes the I of 
the motor rotor and of the linkage crank plus that of the flywheel.  We want to determine 
how much I we need to add in the form of a flywheel to reduce the speed variation of the 
shaft to an acceptable level.  We begin by writing Newton’s law for the free-body diagram 
in Figure 11-10.

∑ = α

− = α
=

− = α

T I

T T I
T T

T T I

L M

M avg

L avg

but we want:

so: (11.18a)

( )

α =
ω

=
ω θ

θ
⎛
⎝⎜

⎞
⎠⎟

= ω
ω
θ

− = ω
ω
θ

− θ = ω ω

d
dt

d
dt

d
d

d
d

T T I d
d

T T d I d

L avg

L avg

substituting:

gives:

(11.18b)

and integrating:

FIGURE 11-10
Flywheel on a driveshaft

TL

TM

Motor

Shaft

Flywheel
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∫ ∫

∫ ( )

( )

( )

− θ = ω ω

− θ = ω − ω

ω

ω

θ ω

θ ω

θ ω

θ ω

(11.18c)
1
2

@

@

@

@ 2 2

max
T T d I d

T T d I

L avg

L avg max min

min

max

min

min

max

The left side of this expression represents the change in energy E between the maxi-
mum and minimum shaft �’s and is equal to the area under the torque-time diagram*

(Figures 11-8, and 11-11) between those extreme values of �.  The right side of equation 
11.18c is the change in energy stored in the flywheel.  The only way we can extract energy 
from the flywheel is to slow it down as shown in equation 11.17.  Adding energy will speed 
it up.  Thus it is impossible to obtain exactly constant shaft velocity in the face of chang-
ing energy demands by the load.  The best we can do is to minimize the speed variation 
(�max – �min) by providing a flywheel with sufficiently large I.

✍EXAMPLE 11-5

Determining the Energy Variation in a Torque-Time Function.

Given: An input torque-time function which varies over its cycle.  Figure 11-11 shows the 
input torque curve from Figure 11-8.  The torque is varying during the 360� cycle 
about its average value.  

Find: The total energy variation over one cycle.

Solution:

*  There is often confu-
sion between torque and 
energy because they appear 
to have the same units of 
lb-in (in-lb) or N-m  (m-N).  
This leads some students 
to think that they are the 
same quantity, but they are 
not.  Torque " energy.  The 
integral of torque with 
respect to angle, measured 
in radians, is equal to 
energy.  This integral has 
the units of in-lb-rad.  The 
radian term is usually omit-
ted since it is in fact unity.   
Power in a rotating system 
is equal to torque x angular 
velocity (measured in rad/
sec), and the power units 
are then (in-lb-rad)/sec.  
When power is integrated 
versus time to get energy, 
the resulting units are in-lb-
rad, the same as the integral 
of torque versus angle.  The 
radians are again usually 
dropped, contributing to the 
confusion.

FIGURE 11-11
Integrating the pulses above and below the average value in the input torque function

341.7

–341.7

0

70.2

�

Torque

0 360

B
C D AA

+ 200.73
Area

+ 153.88
Area

– 261.05
Area

– 92.02
Area

� min � max

RMS

Avg.

Crank Angle

Areas of torque pulses
in order over one cycle

Energy units are lb–in–rad

Order            Neg Area          Pos Area

– 261.05
– 92.02

200.73
153.88

1
2



11

DESIGN OF MACHINERY 6ed      CHAPTER  11620

TABLE  11-1 Integrating the Torque Function 

1 Calculate the average value of the torque-time function over one cycle, which in this case is 
70.2 lb-in.  (Note that in some cases the average value may be zero.)

2  Note that the integration on the left side of equation 11.18c is done with respect to the average 
line of the torque function, not with respect to the � axis.  (From the definition of the average, 
the sum of positive area above an average line is equal to the sum of negative area below that 
line.)  The integration limits in equation 11.18 are from the shaft angle � at which the shaft � 
is a minimum to the shaft angle � at which � is a maximum.  

3 The minimum � will occur after the maximum positive energy has been delivered from the 
motor to the load, i.e., at a point (�) where the summation of positive energy (area) in the torque 
pulses is at its largest positive value.  

4 The maximum � will occur after the maximum negative energy has been returned to the load, 
i.e., at a point (�) where the summation of energy (area) in the torque pulses is at its largest 
negative value.  

5 To find these locations in � corresponding to the maximum and minimum �’s and thus find the 
amount of energy needed to be stored in the flywheel, we need to numerically integrate each 
pulse of this function from crossover to crossover with the average line.  The crossover points 
in Figure 11-11 have been labeled A, B, C, and D.  (Program LINKAGES does this integration 
for you numerically, using a trapezoidal rule.)

6 The LINKAGES program prints the table of areas shown in Figure 11-11.  The positive and 
negative pulses are separately integrated as described above.  Reference to the plot of the 
torque function will indicate whether a positive or negative pulse is the first encountered in a 
particular case.  The first pulse in this example is a positive one.

 7 The remaining task is to accumulate these pulse areas beginning at an arbitrary crossover 
(in this case point A) and proceeding pulse by pulse across the cycle.  Table 11-1 shows this 
process and the result.

 8 Note in Table 11-1 that the minimum shaft speed occurs after the largest accumulated positive 
energy pulse (+200.73 in-lb) has been delivered from the driveshaft to the system.  Delivery 
of energy slows the motor down.  Maximum shaft speed occurs after the largest accumulated 
negative energy pulse (–60.32 in-lb) has been returned from the system by the driveshaft.  This 
return of stored energy will speed up the motor.  The total energy variation is the algebraic 
difference between these two extreme values, which in this example is –261.05 in-lb.  This 

( ) ( )

+
−
+

−

+
−
+

+

ω
ω

ω − ω

= − − + = −

to
to
to
to

200.73
261.05
153.88

92.02

200.73
60.32
93.56

1.54

@
@

Total Energy = @ @
60.32 200.73 261.05 in-lb

= E E

A B
B C
C D
D A

B
C

E E

min

max

max min

From Area Accum.Sum=
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negative energy coming out of the system needs to be absorbed by the flywheel and then re-
turned to the system during each cycle to smooth the variations in shaft speed.

SIZING THE FLYWHEEL We now must determine how large a flywheel is needed to 
absorb this energy with an acceptable change in speed.  The change in shaft speed during 
a cycle is called its fluctuation (Fl) and is equal to:

= ω − ω (11.19a)Fl max min

We can normalize this to a dimensionless ratio by dividing it by the average shaft 
speed.  This ratio is called the coefficient of fluctuation (k).

=
ω − ω

ω
(11.19b)max mink

avg

This coefficient of fluctuation is a design parameter to be chosen by the designer.  It 
typically is set to a value between 0.01 and 0.05, which corresponds to a 1 to 5% fluctua-
tion in shaft speed.  The smaller this chosen value, the larger the flywheel will have to be.  
This presents a design trade-off.  A larger flywheel will add more cost and weight to the 
system, which factors have to be weighed against the smoothness of operation desired. 

We found the required change in energy E by integrating the torque curve 

∫ ( )− θ =
θ ω

θ ω
(11.20a)

@

@
T T d EL avg

min

max

and can now set it equal to the right side of equation 11.18c:

( )= ω − ω
1
2

(11.20b)2 2E I max min

Factoring this expression:

( )( )= ω + ω ω − ω
1
2

(11.20c)E I max min max min

If the torque-time function were a pure harmonic, then its average value could be 
expressed exactly as:

ω =
ω + ω

2
(11.21)avg

max min

Our torque functions will seldom be pure harmonics, but the error introduced by us-
ing this expression as an approximation of the average is acceptably small.  We can now 
substitute equations 11.19b and 11.21 into equation 11.20c to get an expression for the 
mass moment of inertia Is of the system flywheel needed.

2( )( )= ω ω

=
ω

1
2

(11.22)2

E I k

I E
k

s avg avg

s
avg
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Equation 11.22 can be used to design the physical flywheel by choosing a desired 
coefficient of fluctuation k, and using the value of E from the numerical integration of the 
torque curve (see Table 11-1) and the average shaft � to compute the needed system Is.  
The physical flywheel’s mass moment of inertia If is then set equal to the required system 
Is.  But if the moments of inertia of the other rotating elements on the same driveshaft 
(such as the motor) are known, the physical flywheel’s required If can be reduced by those 
amounts.

The most efficient flywheel design in terms of maximizing If for minimum material 
used is one in which the mass is concentrated in its rim and its hub is supported on spokes, 
like a carriage wheel.  This puts the majority of the mass at the largest radius possible and 
minimizes the weight for a given If.  Even if a flat, solid circular disk flywheel design is 
chosen, either for simplicity of manufacture or to obtain a flat surface for other functions 
(such as an automobile clutch), the design should be done with an eye to reducing weight 
and thus cost.  Since in general I = mr2, a thin disk of large diameter will need fewer 
pounds of material to obtain a given I than will a thicker disk of smaller diameter.  Dense 
materials such as cast iron and steel are the obvious choices for a flywheel.  Aluminum 
is seldom used. Though many metals (lead, gold, silver, platinum) are more dense than 
iron and steel, one can seldom get the accounting department’s approval to use them in 
a flywheel.

Figure 11-12 shows the change in the input torque T12 for the linkage in Figure 11-8 
after the addition of a flywheel sized to provide a coefficient of fluctuation of 0.05.  The 
oscillation in torque about the unchanged average value is now 5%, much less than what 
it was without the flywheel.  A much smaller-horsepower motor can now be used because 
the flywheel is available to absorb the energy returned from the linkage during its cycle.  

11.12 A LINKAGE FORCE TRANSMISSION INDEX

The transmission angle was introduced in Chapter 2 and used in subsequent chapters as 
an index of merit to predict the kinematic behavior of a linkage.  A too-small transmission 
angle predicts problems with motion and force transmission in a fourbar linkage.  Unfortu-
nately, the transmission angle has limited application.  It is only useful for fourbar linkages 

Average value
is unchanged

FIGURE 11-12
Input torque curve for the linkage in Figure 11-8 after smoothing with a flywheel

0

Flywheel-Smoothed Input Torque    lb-in

87.3
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 k  =  0.05
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and then only when the input and output torques are applied to links that are pivoted to 
ground (i.e., the crank and rocker).  When external forces are applied to the coupler link, 
the transmission angle tells nothing about the linkage’s behavior.

Holte and Chase[1] define a joint-force index (JFI) which is useful as an indicator of 
any linkage’s ability to smoothly transmit energy regardless of where the loads are applied 
on the linkage.  It is applicable to higher-order linkages as well as to the fourbar linkage.  
The JFI at any instantaneous position is defined as the ratio of the maximum static force 
in any joint of the mechanism to the applied external load.  If the external load is a force, 
then it is:

�JFI for all pairs , (11.23a)MAX
F
F

i jij

ext

If the external load is a torque, then it is:

�JFI for all pairs , (11.23b)MAX
F
T

i jij

ext

where, in both cases, Fij is the force in the linkage joint connecting links i and j.  

The Fij are calculated from a static force analysis of the linkage.  Dynamic forces 
can be much greater than static forces if speeds are high.  However, if this static force 
transmission index indicates a problem in the absence of any dynamic forces, then the 
situation will obviously be worse at speed.  The largest joint force at each position is used 
rather than a composite or average value on the assumption that high friction in any one 
joint is sufficient to hamper linkage performance regardless of the forces at other joints.

Equation 11.23a is dimensionless and so can be used to compare linkages of different 
design and geometry.  Equation 11.23b has dimensions of reciprocal length, so caution 
must be exercised when comparing designs when the external load is a torque.  Then the 
units used in any comparison must be the same, and the compared linkages should be 
similar in size.

Equations 11.23 apply to any one instantaneous position of the linkage.  As with the 
transmission angle, this index must be evaluated for all positions of the linkage over its 
expected range of motion and the largest value of that set found.  The peak force may move 
from pin to pin as the linkage rotates.  If the external loads vary with linkage position, 
they can be accounted for in the calculation.  

Holte and Chase suggest that the JFI be kept below a value of about 2 for linkages 
whose output is a force.  Larger values may be tolerable especially if the joints are de-
signed with good bearings that are able to handle the higher loads.  

There are some linkage positions in which the JFI can become infinite or indetermi-
nate as when the linkage reaches an immovable position, defined as the input link or input 
joint being inactive.  This is equivalent to a stationary configuration as described in earlier 
chapters provided that the input joint is inactive in the particular stationary configura-
tion.  These positions need to be identified and avoided in any event, independent of the 
determination of any index of merit.  In some cases the mechanism may be immovable 
but still capable of supporting a load.  See reference [1] for more detailed information on 
these special cases.
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11.13 PRACTICAL CONSIDERATIONS

This chapter has presented some approaches to the computation of dynamic forces in 
moving machinery.  The newtonian approach gives the most information and is neces-
sary in order to obtain the forces at all pin joints so that stress analyses of the members 
can be done.  Its application is really quite straightforward, requiring only the creation of 
correct free-body diagrams for each member and the application of the two simple vector 
equations which express Newton’s second law to each free body.  Once these equations 
are expanded for each member in the system and placed in standard matrix form, their 
solution (with a computer) is a trivial task.

The real work in designing these mechanisms comes in the determination of the 
shapes and sizes of the members.  In addition to the kinematic data, the force computation 
requires only the masses, CG locations, and mass moments of inertia versus those CGs for 
its completion.  These three geometric parameters completely characterize the member for 
dynamic modeling purposes.  Even if the link shapes and materials are completely defined 
at the outset of the force analysis process (as with the redesign of an existing system), it 
is a tedious exercise to calculate the dynamic properties of complicated shapes.  Current 
solids modeling CAD systems make this step easy by computing these parameters auto-
matically for any part designed within them.

If, however, you are starting from scratch with your design, the blank-paper syndrome
will inevitably rear its ugly head.  A first approximation of link shapes and selection of 
materials must be made in order to create the dynamic parameters needed for a “first pass” 
force analysis.  A stress analysis of those parts, based on the calculated dynamic forces, 
will invariably find problems that require changes to the part shapes, thus requiring recal-
culation of the dynamic properties and recomputation of the dynamic forces and stresses.  
This process will have to be repeated in circular fashion (iteration—see Chapter 1) until 
an acceptable design is reached.  The advantage of using a computer to do these repetitive 
calculations is obvious and cannot be overstressed.  An equation solver program such as 
Mathcad, Matlab, or TKSolver will be a useful aid in this process by reducing the amount 
of computer programming necessary.

Students with no design experience are often not sure how to approach this process 
of designing parts for dynamic applications.  The following suggestions are offered to get 
you started.  As you gain experience, you will develop your own approach.

It is often useful to create complex shapes from a combination of simple shapes, at 
least for first approximation dynamic models.  For example, a link could be considered to 
be made up of a hollow cylinder at each pivot end, connected by a rectangular prism along 
the line of centers.  It is easy to calculate the dynamic parameters for each of these simple 
shapes  and then combine them.  The steps would be as follows (repeated for each link):

1 Calculate the volume, mass, CG location, and mass moments of inertia with respect 
to the local CG of each separate part of your built-up link.  In our example link these 
parts would be the two hollow cylinders and the rectangular prism.

2 Find the location of the composite CG of the assembly of the parts into the link by 
the method shown in Section 10.4 and equations 10.3.  See also Figure 10-2.

3 Use the parallel axis theorem (equation 10.8) to transfer the mass moments of inertia 
of each part to the common, composite CG for the link.  Then add the individual, 

Topic/Problem Matrix

11.4 Force Analysis of a 
Fourbar
Instantaneous
11-8, 11-9, 11-10,  
11-11, 11-12, 11-20
Continuous
11-13, 11-15, 11-21, 
11-26, 11-29, 11-32, 
11-35, 11-38

11.5 Force Analysis of a 
Crank-Slider or Slid-
er-Crank
11-16, 11-17, 11-18, 
11-45

11.7 Linkages with More 
Than Four Bars
11-1, 11-2

11.8 Shaking Forces and 
Torques
11-3, 11-5, 11-47 to 
11-51

11.10 Torque Analysis by 
Energy Methods
11-4, 11-6, 11-22,  
11-23, 11-24, 11-25, 
11-27, 11-28, 11-30, 
11-31, 11-33, 11-34,  
11-36, 11-37, 11-39, 
11-46

11.11 Flywheels    11-7,  
11-19, 11-40 to 
11-44

11.12 Linkage Force Trans-
mission Index
11-14, 11-52

TABLE  P11-0
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* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

‡ These problems are suited 
to solution using program 
LINKAGES.

§ All problem figures 
are downloadable as PDF 
files, and some are also 
downloadable as animated 
Working Model files.  PDF 
filenames are the same as 
the figure number.  Run the 
file Animations.html to ac-
cess and run the animations.

transferred I’s of the parts to get the total I of the link about its composite CG.  See 
Section 10.6.

Steps 1 to 3 will create the link geometry data for each link needed for the dynamic 
force analysis as derived in this chapter.

4 Do the dynamic force analysis.

5 Do a dynamic stress and deflection analysis of all parts.

6 Redesign the parts and repeat steps 1 to 5 until a satisfactory result is achieved.

Remember that lighter (lower-mass) links will have smaller inertial forces on them 
and thus could have lower stresses despite their smaller cross sections.  Also, smaller mass 
moments of inertia of the links can reduce the driving torque requirements, especially at 
higher speeds.  But be cautious about the dynamic deflections of thin, light links becom-
ing too large.  We are assuming rigid bodies in these analyses.  That assumption will not 
be valid if the links are too flexible.  Always check the deflections as well as the stresses 
in your designs.

11.14 REFERENCE
1 Holte, J. E., and T. R. Chase. (1994). “A Force Transmission Index for Planar Link-

age Mechanisms.” Proc. of 23rd Biennial Mechanisms Conference, Minneapolis, MN, 
p. 377.

11.15 PROBLEMS§

11-1 Draw free-body diagrams of the links in the geared fivebar linkage shown in Figure 
4-11 and write the dynamic equations to solve for all forces plus the driving torque.  
Assemble the symbolic equations in matrix form for solution.

11-2 Draw free-body diagrams of the links in the sixbar linkage shown in Figure 4-12 and 
write the dynamic equations to solve for all forces plus the driving torque.  Assemble 
the symbolic equations in matrix form for solution.

*†‡11-3 Table P11-1 shows kinematic and geometric data for several crank-slider linkages of 
the type and orientation shown in Figure P11-1.   The point locations are defined as 
described in the text.  For the row(s) in the table assigned, use the matrix method of 
Section 11.5 and program MATRIX, Mathcad, Matlab, TKSolver, or a matrix solving 
calculator to solve for forces and torques at the position shown.  Also compute the 
shaking force and shaking torque.  Consider the coefficient of friction � between slider 
and ground to be zero.  You may check your solution by opening the solution files (lo-
cated in the downloadable Solutions folder) named P11-03x (where x is the row letter) 
in program LINKAGES. 

 *†11-4   Repeat Problem 11-3 using the method of virtual work to solve for the input torque on 
link 2.  Additional data for corresponding rows are given in Table P11-2.

*†11-5 Table P11-3 shows kinematic and geometric data for several pin-jointed fourbar link-
ages of the type and orientation shown in Figure P11-2.  All have �1 = 0. The point 
locations are defined as described in the text.  For the row(s) in the table assigned, use 
the matrix method of Section 11.4 and program MATRIX or a matrix solving calculator 
to solve for forces and torques at the position shown.  You may check your solution by 
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offset

0
1

–1
1

0
2

–2

link 2

4
3
5
6
2

10
7

link 3

12
10
15

20
8

35
25

Row

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Row

Row

a
b
c
d
e
f
g

166.40
177.13
195.17
199.86
169.82
169.03
186.78

�3

– 2.40
34.33

–134.76
– 29.74

113.12
3.29

– 172.20

� 3

203.96
225.06

1200.84
301.50
312.75
192.09

3600.50

mag

a g 2

213.69
231.27
37.85

230.71
–17.29
23.66
90.95

ang

a g 2

371.08
589.43

2088.04
511.74

976.79
302.50

8052.35

mag

a g3

200.84
200.05

43.43
74.52

–58.13
–29.93
134.66

ang

a g3

357.17
711.97

929.12
23.97

849.76
301.92

4909.27

mag

a g4

180
180

0
180

0
0

180

ang

a g4

0.10
0.20
0.05
0.12
0.30
0.24
0.45

I 2

0.2
0.4
0.1
0.3
0.8
0.6
0.9

I 3

2
1
3
3
0.5
6
4

mag
Rg 2

0
20

– 40
120
30
45

– 45

ang
# 2

5
4
9

12
3

15
10

mag
Rg 3

0
– 30

50
60
75

135
225

# 3
ang

0
10
32
15
6

25
9

mag
FP3

0
45

270
180

– 60
270
120

# FP3
ang

0
4
0
2
2
0
5

mag
RP3

0
30

0
60
75
0

45

# RP
ang

20
– 35
– 65
– 12

40
– 75
– 90

T3

45
30

260
– 75
135
120

– 45

� 2 � 2

10
15

20
–10
25

5
30

20
– 5
15

– 10
25

– 20
– 15

� 2

0.002
0.050
0.010
0.006
0.001
0.150
0.080

m 2

0.020
0.100
0.020
0.150
0.004
0.300
0.200

m 3

0.060
0.200
0.030
0.050
0.014
0.050
0.100

m 4

TABLE  P11-1 Data for Problem 11-3  (See Figure P11-1 for Nomenclature)
Lengths in inches, angles in degrees, mass in blobs, angular velocity in rad/sec

Forces in lb, linear accelerations in in/sec 2

Angular acceleration in rad/sec2, moments of Inertia in blob-in2, torque in lb-in

Part 1

Part 2

Part 3

Row

a
b
c
d
e
f
g

152.09
153.35
– 8.23
191.01

204.87
210.72

53.19

VP3
  ang

60.89

35.24
26.69
89.61
70.63
61.36

208.60

VP3
  mag

180
180

0
180
180
180

0

Vg4
  ang

35.14
24.45
93.77
63.57
29.01
38.46
166.14

Vg4
  mag

152.09
140.14
–8.23
191.15
211.93
210.72

61.31

Vg3
  ang

35.24
40.35
89.61
69.10
56.02
60.89
211.46

Vg3
  mag

135
140
310
315

255
255

0

Vg2
 ang

20.0
15.0

60.0
30.0
12.5

30.0
120.0

Vg2
 mag

– 2.43
– 3.90

1.20
0.83
4.49
0.73

–5.98

� 3

TABLE  P11-2 Data for Problem 11-4
See also Table P11-1.  Unit system is the same as in that table.
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1

F34 = – F43

4

F14 = – F34

P3F

CG3

=23F – F32

x

y

R43

F4323R gR
3

= –

3
P3R

LNCS parallel to XY

3GA

12F

32F

32R

CG2

= –R 12 gR
2

y

x

LNCS parallel to XY

2

T12 2
AG

1

21F – F12=

2O

y

x

��
��

� �$%$&

#Fp3

# � � �

� �

# �

#Rp3

B

X

CG3

P3F

CG2
A

2

x

y
3

1
2O

Y

P

gR
2

4

1

GCS

LRCS parallel to AB

offset  c

LRCS parallel to AB

gR
3

P3R

x

x

Generic linkage and free-body diagrams

Sketches of the linkages in Table P11-1
FIGURE P11-1
Linkage geometry, notation, and free-body diagrams for problems 11-3 to 11-4

(a )

2
3

4

( b )

2

3
4

( c )
2

3 4

( d )2

3

4

3

4

( g )

2

( f )
2

3

4

2
( e )

3

4
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Generic linkage and free-body diagrams

Sketches of the linkages in Table P11-3

1

21F – F12=

1

41F – F14=x

y

2

32R

R12

12F

32F

2aG

CG2

T12

LNCS

x

y

4

T4

14F

34F – F43=

4aG

R14

R34

CG4

P4F

P4R

LNCS

y

3
x

P3F

23R

43R

43F

23F – F32=

P3
R

3Ga

CG3
P

T3LNCS

#

�

�

#Fp3

#Rp3

#Fp4

#Rp4

#

#
�4

�2

�2

2O O4

P3F
x

P

x’

LRCS
parallel
to AB

LRCS
parallel
to O4B

LNCS
parallel
to XY

2

Y

CG2
2

A

2 4

P4F

P4R

X

x

1

Rg 4

O4

T4
3 CG4

4

x

GCS

LNCS parallel to XY

Rg 2

12O

y
P3

R
CG3

T3

3
B

Rg 3 3 x’

GCS

FIGURE P11-2
Linkage geometry, notation, and free-body diagrams for Problems 11-5 to 11-7
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4
( b )
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4

( f )
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4

( g )

2
3

4 ( e )2
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a
b
c
d
e
f
g

Row

a
b
c
d
e
f
g

Row
Rg 4
ang

Rg 4
mag

Rg 3
ang

Rg 3
mag

Rg 2
ang

Rg 2
mag

2
1
3
3
0.5
6
4

m 2

0.002
0.050
0.010
0.006
0.001
0.150
0.080

m 3

0.02
0.10
0.02
0.15
0.04
0.30
0.20

m 4

0.10
0.20
0.05
0.07
0.09
0.25
0.12

I 2

0.10
0.20
0.05
0.12
0.30
0.24
0.45

I 3

0.20
0.40
0.10
0.30
0.80
0.60
0.90

I4

0.50
0.40
0.13
0.15
0.30
0.92
0.54

T3

– 15
12

– 10
0

25
0
0

T4

25
0

20
30
40

– 25
0

3.56
– 7.66

14.13
– 3.17

5.61
21.40
16.53

� 4

– 5.62
– 10.31

16.60
3.90
1.06

18.55
4.10

� 3� 2

20
10
20
20
20
20
20

801.00
100.12

1200.84
1200.87
200.39

2403.00
1601.12

ag 2
mag

ag 2
ang

ag 3
mag

�2

45
30

260
– 75
135
120
100

�3

24.97
90.15

128.70
91.82
34.02

348.08
4.42

�4

99.30
106.60
151.03
124.44
122.71
19.01
61.90

�3

75.29
140.96
78.78

– 214.84
71.54

– 101.63
– 17.38

�4

244.43
161.75
53.37

– 251.82
– 14.19

– 150.86
–168.99

a
b
c
d
e
f
g

Row

TABLE  P11-3 Data for Problems 11-5 and 11-7  (See Figure P11-2 for Nomenclature)
Lengths in inches, angles in degrees, angular acceleration in rad/sec 2

Angular velocity in rad/sec, mass in blobs, moment of Inertia in blob-in2, torque in lb-in

Lengths in inches, angles in degrees,  linear accelerations in in/sec 2

Part 4

Row

a
b
c
d
e
f
g

link 2

4
3
5
6
2

17
7

link 3

12
10
15
19
8

35
25

link 4

8
12
14
16
7

23
10

link 1

15
6
2

10
9
4

19

�2

20
– 5
15

– 10
25

– 20
– 15

30
40

0
– 30
– 40

25
45

4
6
7
6
2

10
4

0
– 30

50
60
75

135
225

5
4
9

12
3

15
10

0
20

– 40
120
30
45

– 45

222.14
232.86

37.85
226.43
341.42
347.86
237.15

Part 1

Part 2

Part 3

1691.49
985.27
3120.71

4543.06
749.97

12 064.20
2562.10

Linear accelerations in in/sec 2, forces in lb, lengths in inches, angles in degrees

ag 3
ang

208.24
194.75
22.45
81.15

295.98
310.22
–77.22

# FP3
# RP3

# FP4
# RP4

0
0
0
0
0
0
0

Rp 4
mag

– 30
– 55

45
270
60

0
20

ang

40
15
75
20
16
23
32

Fp 4
magang

Fp 3
mag angang

Rp 3
mag

ag 4
mag

ag 4
ang

222.27
256.52
316.06

2.15
286.97
242.25
–41.35

8
12
14
16
7

23
10

0
45

0
180

– 60
0

120

0
10
0

15
6
0
9

0
30

0
45

0
0

– 60

0
4
0
2
9
0

12

979.02
1032.32
1446.58
1510.34

69.07
4820.72
1284.55
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opening the solution files named P11-05x (where x is the row letter) in program LINK-
AGES.  

 *†11-6  Repeat Problem 11-5 using the method of virtual work to solve for the input torque on 
link 2.  Additional data for corresponding rows are given in Table P11-4.

*‡11-7 For the row(s) assigned in Table P11-3 (a-f), input the associated disk file to program 
LINKAGES, calculate the linkage parameters for crank angles from zero to 360� by 5� 
increments with �2 = 0, and design a steel disk flywheel to smooth the input torque 
using a coefficient of fluctuation of 0.05.  Minimize the flywheel weight.

 ‡11-8 Figure P11-3 shows a fourbar linkage and its dimensions.  The steel crank and rocker 
have uniform cross sections 1 in wide by 0.5 in thick.  The aluminum coupler is 0.75 in 
thick.  In the instantaneous position shown, the crank O2A has � = 40 rad/sec and � = 
–20 rad/sec2.  There is a horizontal force at P of F = 50 lb.  Find all pin forces and the 
torque needed to drive the crank at this instant.

 ‡11-9 Figure P11-4a shows a fourbar linkage and its dimensions in meters.  The steel crank 
and rocker have uniform cross sections of 50 mm wide by 25 mm thick.  The aluminum 
coupler is 25 mm thick.  In the instantaneous position shown, the crank O2A has � = 
10 rad/sec and � = 5 rad/sec2.  There is a vertical force at P of F = 100 N.  Find all pin 
forces and the torque needed to drive the crank at this instant.

Problem 11-8
FIGURE P11-3

F

Dimensions in inches

56�
5

8.9

4.4 5

9.5

P

A B

50�

O2 O4

x

y
B

AP = 0.97

L2 = 0.72

P

L3 = 0.68
L4 = 0.85

L1 = 1.82
O2 O4

AAP = 3.06 L4 = 2.33

L3 = 2.06

L2 = 1.0

L1 = 2.22

FIGURE P11-4
Problems 11-9 to 11-10

O2 O4

–31�
A

B

P

( a )

F

60�

54�

( b )

F

30�

Vg4 ang

219.30
56.60

241.03
4.44

172.71
134.01

196.90

Vg4  mag

14.23
45.94
98.91
19.03
11.22

213.98
66.10

Vg3 ang

145.19
14.74

299.70
353.80
223.13
211.39

205.52

Vg3  mag

54.44
21.46

191.94
94.36
42.89

618.05
118.29

Vg2  ang

135.00
140.00

–50.00
135.00

255.00
255.00
145.00

Vg2 mag

40.00
10.00
60.00
60.00
10.00

120.00
80.00

Row

a
b
c
d
e
f
g

–160.80
29.68

–118.97
26.38

–155.86
116.52
164.33

VP4 ang

41.39
130.51

296.73
67.86
48.41

692.08
217.15

VP4mag

145.19
40.04

–60.30
–3.13

–140.37
–148.61
–152.36

VP3 ang

54.44
122.10
191.94
152.51
37.01

618.03
154.85

VP3mag

TABLE  P11-4 Data for Problem 11-6

 
* Answers in Appendix F.
 
† These problems are 
suited to solution using 
Mathcad, Matlab, or 
TKSolver equation solver 
programs.
 
‡ These problems are 
suited to solution using 
program LINKAGES.
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* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

‡ These problems are suited 
to solution using program 
LINKAGES.

‡11-10 Figure P11-4b shows a fourbar linkage and its dimensions in meters.  The steel crank 
and rocker have uniform cross sections of 50 mm wide by 25 mm thick.  The aluminum 
coupler is 25 mm thick.  In the instantaneous position shown, the crank O2A has  
� = 15 rad/sec and � = –10 rad/sec2.  The horizontal force applied at point P is F = 500 
N.  Find all pin forces and the torque needed to drive the crank at this instant.

 ‡11-11 Figure P11-5a shows a fourbar linkage and its dimensions in meters.  The steel crank, 
coupler, and rocker have uniform cross sections of 50 mm wide by 25 mm thick.  In the 
instantaneous position shown, the crank O2A has � = 15 rad/sec and � = –10 rad/sec2.  
There is a vertical force at P of F = 500 N.  Find all pin forces and the torque needed to 
drive the crank at this instant.

 *†‡11-12 Figure P11-5b shows a fourbar linkage and its dimensions in meters.  The steel crank, 
coupler, and rocker have uniform cross sections of 60-mm diameter.  In the instanta-
neous position shown, the crank O2A has � = –10 rad/sec and � = 10 rad/sec2.  There 
is a horizontal force at P of F = 500 N.  Find all pin forces and the torque needed to 
drive the crank at this instant.

 *†‡11-13 Figure P11-6 shows a water-jet loom laybar drive mechanism driven by a pair of 
Grashof crank-rocker fourbar linkages.  The crank rotates at 500 rpm.  The laybar is 
carried between the coupler-rocker joints of the two linkages at their respective instant 
centers I3,4.  The combined weight of the reed and laybar is 29 lb.  A 540-lb beat-up 
force from the cloth is applied to the reed as shown.  The steel links have a 2 x 1-in 
uniform cross section.  Find the forces on the pins for one revolution of the crank.  Find 
the torque-time function required to drive the system.

 *†11-14 Figure P11-7 shows a crimping tool.  Find the force Fhand needed to generate a 2000-lb 
Fcrimp.  Find the pin forces.  What is this linkage’s joint force transmission index (JFI) 
in this position?

 †11-15 Figure P11-8 shows a walking-beam conveyor mechanism that operates at slow speed 
(25 rpm).  The boxes being pushed each weigh 50 lb.  Determine the pin forces in the 
linkage and the torque required to drive the mechanism through one revolution.  Ne-
glect the masses of the links.

†11-16 Figure P11-9 shows a surface grinder table crank-slider drive that operates at 120 rpm.  
The crank radius is 22 mm, the coupler is 157 mm, and its offset is 40 mm.  The mass 
of table and workpiece combined is 50 kg.  Find the pin forces, slider side loads, and 
driving torque over one revolution. Neglect the mass of the crank and connecting rod.

B

AP = 1.09

L2 = 0.785

P
L3 = 0.356

L4 = 0.950

A

L1 = 0.544 O2 O4

96�

B

AP = 1.33

L2 = 0.86

P

L3 = 1.85

L4 = 0.86

A

L1 = 2.22
O2 O4

FIGURE P11-5
Problems 11-11 to 11-12

(a ) ( b )

F F

–36�
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FIGURE P11-6
Problem 11-13 - Fourbar linkage for laybar drive, showing forces and accelerations

incoming
threads
(warp)

�in
laybar

reed

clothcrank

coupler

rocker

4-bar linkage

( a )  Warp, weave, laybar, reed, and
        laybar drive for a water-jet loom

water-jet orifice
"shot" thread
   (weave)

540 lb

500 rpm
beat-up force

4169
in/sec2

7834
in/sec2

accelerations

laybar

reed

laybar

rocker
7.187

coupler
 8.375

crank
   2

�in

inertia
force

beat-up
forcereed

r = 3.75

inertia
force

@ –4��

ground
 9.625

( c )  Acceleration on laybar and force on reed

(b )  Linkage, laybar, reed, and dimensions

Copyright © 2018 Robert L. Norton:  All Rights Reserved

View as a video
http://www.designof-

machinery.com/DOM/
loom_laybar_drive.avi

FIGURE P11-7
Problem 11-14  

Fhand

Fhand 4.26

AB = 0.80, BC = 1.23, CD = 1.55, AD = 2.4
D

Fcrim
49°

32

1 A B
C

4
p

1.0
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FIGURE P11-8
Problem 11-15

26°

B

AP = 3.06

31°

L4 = 2.33

P

L3 = 2.06

L2 = 1.0
A

L1 = 2.22

P'
O2

O4 O6

6

5

7

8

1

ω2 B'

A'

O2'

FIGURE P11-9
Problem 11-16

O2

2
3

4

offset
A

B

5

workpiece

grinding wheel

table

ω2

ω5

 †11-17 Figure P11-10 shows a crank-slider power hacksaw that operates at 50 rpm.  The bal-
anced crank is 75 mm; the uniform cross section coupler is 170 mm long, weighs 2 kg, 
and its offset is 45 mm.  Link 4 weighs 15 kg.  Find the pin forces, slider side loads, 
and driving torque over one revolution for a cutting force of 250 N in the forward direc-
tion and 50 N during the return stroke.

 †11-18 Figure P11-11 shows a crank-slider paper roll off-loading station.  The paper rolls have 
a 0.9-m OD and 0.22-m ID, are 3.23 m long, and have a density of 984 kg/m3.  The 
forks that support the roll are 1.2 m long.  The motion is slow so inertial loading can be 
neglected.  Find the force required of the air cylinder to rotate the roll through 90�.

 †11-19 Derive an expression for the relationship between flywheel mass and the dimensionless 
parameter radius/thickness (r/t) for a solid disk flywheel of moment of inertia I.  Plot 
this function for an arbitrary value of I and determine the optimum r/t ratio to minimize 
flywheel weight for that I.

 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

http://www.designofmachinery.com/DOM/walking_beam_eight-bar.avi
View as a video

View as a video
http://www.designofmachinery.com/

DOM/surface_grinder.avi
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11-20 Figure P11-12 shows an oil field pump mechanism.  The head of the rocker arm is 
shaped such that the lower end of a flexible cable attached to it will always be directly 
over the well head regardless of the position of the rocker arm 4.  The pump rod, which 
connects to the pump in the well casing, is connected to the lower end of the cable.  
The force in the pump rod on the up stroke is 2970 lb and the force on the down stroke 
is 2300 lb.  Link 2 weighs 598.3 lb and has a mass moment of inertia of 11.8 lb-in-sec2 
(blob-in2); both include the counterweight.  Its CG is on the link centerline, 13.2 in 
from O2.  Link 3 weighs 108 lb and its CG is on the link centerline, 40 in from A.  It 
has a mass moment of inertia of 150 lb-in-sec2 (blob-in2).  Link 4 weighs 2706 lb and 
has a mass moment of inertia of 10 700 lb-in-sec2 (blob-in2); both include the coun-
terweight.  Its CG is on the link centerline where shown.  The crank turns at a constant 

1 m

FIGURE P11-11
Problem 11-18

V-links (4)

air cylinder (2)

rocker arm (4)

rod (3)

paper
rolling
machine

off-loading station

AB

O2 O5

� �

Vblade 2

3

4
5 23 5

4

workpiece

1 1

� '

cut stroke 45 mm

L3 =170 mm
L2 =75 mm

FIGURE P11-10
Problem 11-17 Power hacksaw  

15 kg

2 kg

View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi
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speed of 4 rpm CCW.  At the instant shown in the figure the crank angle is at 45� with 
respect to the global coordinate system.  Find all pin forces and the torque needed to 
drive the crank for the position shown.  Include gravity forces because the links are 
heavy and the speed is low.

 †11-21 Use the information in Problem 11-20 to find and plot all pin forces and the torque 
needed to drive the crank for one revolution of the crank.

 †11-22 Use the information in Problem 11-20 to find the torque needed to drive the crank for 
the position shown using the method of virtual work.

 †11-23 Use the information in Problem 11-20 to find and plot the torque needed to drive the 
crank for one revolution of the crank using the method of virtual work.

 †11-24 In Figure P11-13, links 2 and 4 each weigh 2 lb and there are 2 of each (another set 
behind).  Their CGs are at their midpoints.  Link 3 weighs 10 lb.  The mass moments of 
inertia of links 2, 3, and 4 are 0.071, 0.430, and 0.077 lb-in-sec2 (blob-in2), respectively.  
Find the torque needed to begin a slow CCW rotation of link 2 from the position shown 
using the method of virtual work.  Include gravity forces because the links are heavy 
and the speed is low.

 †*11-25 The linkage in Figure P11-14 has L1 = 9.5, L2 = 5.0, L3 = 7.4, L4 = 8.0, and AP = 8.9 
in.  The steel crank and rocker have uniform cross sections 1 in wide by 0.5 in thick.  
The aluminum coupler is 0.75 in thick.  In the instantaneous position shown, the crank 
O2A has � = 40 rad/sec and � = –20 rad/sec2.  There is a horizontal force at P of  
F = 50 lb.  Find the torque needed to drive the crank at the position shown using the 
method of virtual work.

 11-26 For the linkage defined in Problem 11-25 use program LINKAGES to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 40 rad/sec for 
one revolution of the crank. 

 
* Answers in Appendix F.
 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P11-12
Problems 11-20 to 11-23   An oil field pump - dimensions in inches
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

†11-27 For the linkage defined in Problem 11-25 find and plot the torque needed to drive the 
crank at a constant speed of 40 rad/sec for one revolution of the crank using the method 
of virtual work. 

†11-28 The linkage in Figure P11-15 has L1 = 2.22, L2 = 1.0, L3 = 2.06, L4 = 2.33, and  
AP = 3.06 m. The steel crank and rocker have uniform cross sections of 50 mm wide 
by 25 mm thick.  The aluminum coupler is 25 mm thick.  In the instantaneous position 
shown, the crank O2A has � = 10 rad/sec and � = 5 rad/sec2.  There is a vertical force 
at P of F = 100 N.  Find the torque needed to drive the crank at the position shown us-
ing the method of virtual work.

 11-29 For the linkage defined in Problem 11-28 use program LINKAGES to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 10 rad/sec for 
one revolution of the crank.

 †11-30 For the linkage defined in Problem 11-28 find and plot the torque needed to drive the 
crank at a constant speed of 10 rad/sec for one revolution of the crank using the method 
of virtual work.

†11-31 The linkage in Figure P11-16 has L1 = 1.82, L2 = 0.72, L3 = 1.43, L4 = 1.60, and  
AP = 0.97 m. The steel crank and rocker have uniform cross sections 50 mm wide by 
25 mm thick.  The aluminum coupler is 25 mm thick.  In the instantaneous position 
shown, the crank O2A has � = 15 rad/sec and � = –10 rad/sec2.  There is a horizon-
tal force at P of F = 200 N.  Find the torque needed to drive the crank at the position 
shown using the method of virtual work.

 11-32 For the linkage defined in Problem 11-31 use program LINKAGES to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 15 rad/sec for 
one revolution of the crank using the method of virtual work.  
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FIGURE P11-13
Problem 11-24   An aircraft overhead bin mechanism - dimensions in inches
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† These problems are suited 
to solution using Mathcad, 
Matlab, or, TKSolver equa-
tion solver programs.

* Answers in Appendix F.

 †11-33 For the linkage defined in Problem 11-31 find and plot the torque needed to drive the 
crank at a constant speed of 15 rad/sec for one revolution of the crank using the method 
of virtual work.  

 †11-34 The linkage in Figure P11-17 has L1 = 1.0, L2 = 0.356, L3 = 0.785, L4 = 0.95, and 
 AP = 1.09 m. The steel crank, coupler, and rocker have uniform cross sections of 50 
mm wide by 25 mm thick.  In the instantaneous position shown, the crank O2A has $
� = 15 rad/sec and � = –10 rad/sec2.  The vertical force at P is F = 500 N.   
Find the torque needed to drive the crank at the position shown using the method of 
virtual work.

 11-35 For the linkage defined in Problem 11-34 use program LINKAGES to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 15 rad/sec for 
one revolution of the crank using the method of virtual work.  

 †11-36 For the linkage defined in Problem 11-34 find and plot the torque needed to drive the 
crank at a constant speed of 15 rad/sec for one revolution of the crank using the method 
of virtual work.  

 †11-37 The linkage in Figure P11-18 has L1 = 2.22, L2 = 0.86, L3 = 1.85, L4 = 1.86, and  
AP = 1.33 m. The steel crank, coupler, and rocker have uniform cross sections of 50-
mm diameter.  In the instantaneous position shown, the crank O2A has � = –10 rad/
sec and � = 10 rad/sec2.  There is a horizontal force at P of F = 300 N.  Find the torque 
needed to drive the crank at the position shown using the method of virtual work.

 11-38 For the linkage defined in Problem 11-37 use program LINKAGES to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 10 rad/sec for 
one revolution of the crank. 

 †11-39 For the linkage defined in Problem 11-37 find and plot the torque needed to drive the 
crank at a constant speed of 10 rad/sec for one revolution of the crank using the method 
of virtual work. 

 †*11-40 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-26 
using a coefficient of fluctuation of 0.05 while minimizing flywheel weight.

 †11-41 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-29 
using a coefficient of fluctuation of 0.05 while minimizing flywheel weight.

 †11-42 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-32 
using a coefficient of fluctuation of 0.07 while minimizing flywheel weight.

 †11-43 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-35 
using a coefficient of fluctuation of 0.05 while minimizing flywheel weight.

 †11-44 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-38 
using a coefficient of fluctuation of 0.06 while minimizing flywheel weight.

 11-45 Table P11-5 gives kinematic and geometric data for a crank-slider linkage of the type 
and orientation shown in Figure 11-4.   For the row(s) in the table assigned, solve for 
the three pin forces and the torque available at the crank for the position shown.

 11-46 Table P11-5 gives kinematic and geometric data for a crank-slider linkage of the type 
and orientation shown in Figure 11-4.  For the row(s) assigned in the table, solve for 
the torque available at the crank using the method of virtual work for the position 
shown, assuming no friction losses.
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11-47 For the linkage in Problem 11-25 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of 40 rad/sec.

11-48 For the linkage in Problem 11-28 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of 10 rad/sec.

11-49 For the linkage in Problem 11-31 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of 15 rad/sec.

11-50 For the linkage in Problem 11-34 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of 15 rad/sec.

11-51 For the linkage in Problem 11-37 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of −10 rad/sec.

11-52 Determine the joint-force index (JFI) for the linkage in Problem 11-9.

11.16 VIRTUAL LABORATORY View the video (35:38)†      View the lab §

L11-1  View the downloadable video Fourbar Linkage Virtual Laboratory.  Open the file 
Virtual Fourbar Linkage Lab 11-1.doc and follow the instructions as directed by your 
professor.  For this lab it is suggested that you analyze only the data for the unbalanced 
conditions of the linkage.

link 2

4
3
5
6
2

10
7

link 3

12
10
15

20
8

35
25

Row

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Row

0.10
0.20
0.05
0.12
0.30
0.24
0.45

IG2

0.2
0.4
0.1
0.3
0.8
0.6
0.9

IG3

1.3
1.0
1.7
2.0
0.7
3.3
2.3

R12

0.002
0.050
0.010
0.006
0.001
0.150
0.080

m2

0.020
0.100
0.020
0.150
0.004
0.300
0.200

m3

0.060
0.200
0.030
0.050
0.014
0.050
0.100

m4

14
8

12
18
8

35
25

d

400
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225
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–935

d
.

–22 760
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36 400
45 430

3 010
69 750

209 900

d
..

R23

3.0
2.5
3.8
5.0
2.0
8.8
6.2

�

0.15
0.00
0.10
0.18
0.08
0.12
0.14

60
45
75
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30
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110

FP
mag

FP
ang

180
180
180
180
180
180
180

force (lbf, deg), mass (blobs), moments of Inertia (blob-in2)

TABLE  P11-5 Data for Problems 11-45 to 11-46  (See Figure 11-4 for Nomenclature)
Lengths (inches), velocity (in/sec), acceleration (in/sec2)Part 1

Part 2

§ http://www.designofma-
chinery.com/DOM/Four-
bar_Virtual_Lab.zip

† http://www.designofma-
chinery.com/DOM/Four-
bar_Machine_Virtual_labo-
ratory.mp4
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11.17 PROJECTS

The following problem statement applies to all the projects listed.
These larger-scale project statements deliberately lack detail and structure and are loosely defined.  
Thus, they are similar to the kind of “identification of need” or problem statement commonly 
encountered in engineering practice.  It is left to the student to structure the problem through 
background research and to create a clear goal statement and set of performance specifications 
before attempting to design a solution.  This design process is spelled out in Chapter 1 and should 
be followed in all of these examples.  All results should be documented in a professional engineering 
report.  See the Bibliography in Chapter 1 for references on report writing.

 Some of these project problems are based on the kinematic design projects in Chapter 3.  Those 
kinematic devices can now be designed more realistically with consideration of the dynamic forces 
that they generate.  The strategy in most of the following project problems is to keep the dynamic 
pin forces and thus the shaking forces to a minimum and also keep the input torque-time curve as 
smooth as possible to minimize power requirements.  All these problems can be solved with a pin-
jointed fourbar linkage.  This fact will allow you to use program LINKAGES to do the kinematic and 
dynamic computations on a large number and variety of designs in a short time. There are infinities 
of viable solutions to these problems. Iterate to find the best one!  All links must be designed in 
detail as to their geometry (mass, moment of inertia, etc.).  An equation solver such as Mathcad, 
Matlab, or TKSolver will be useful here.  Determine all pin forces, shaking force, shaking torque, 
and input horsepower required for your designs.

 P11-1 The tennis coach needs a better tennis ball server for practice.  This device must fire 
a sequence of standard tennis balls from one side of a standard tennis court over the 
net such that they land and bounce within each of the three court areas defined by the 
court’s  white lines.  The order and frequency of a ball’s landing in any one of the three 
court areas must be random.  The device should operate automatically  and unattended 
except for the refill of balls.  It should be capable of firing 50 balls between reloads.   
The timing of ball releases should vary.  For simplicity, a motor-driven pin-jointed link-
age design is preferred.  This project asks you to design such a device to be mounted 
upon a tripod stand of 5-foot height.  Design it, and the stand, for stability against tip-
over due to the shaking forces and shaking torques which should also be minimized in 
the design of your linkage.  Minimize the input torque.

 P11-2 The “Save the Skeet” foundation has requested a more humane skeet launcher be de-
signed.  While they have not yet succeeded in passing legislation to prevent the whole-
sale slaughter of these little devils, they are concerned about the inhumane aspects 
of the large accelerations imparted to the skeet as it is launched into the sky for the 
sportsperson to shoot down.   The need is for a skeet launcher that will smoothly accel-
erate the clay pigeon onto its desired trajectory.  Design a skeet launcher to be mounted 
upon a child’s “little red wagon.”  Control your design parameters so as to minimize the 
shaking forces and torques so that the wagon will remain as nearly stationary as pos-
sible during the launch of the clay pigeon.  

 P11-3 The coin-operated “kid bouncer” machines found outside supermarkets  typically 
provide a very unimaginative rocking motion to the occupant.  There is a need for a 
superior “bouncer” which will give more interesting motions while remaining safe for 
small children.  Design it for mounting in the bed of a pickup truck.  Keep the shaking 
forces to a minimum and the input torque-time curve as smooth as possible.  

 P11-4 NASA wants a zero-g machine for astronaut training to carry one person and provide a 
negative 1-g acceleration for as long as possible.  Design this device and mount it to the 
ground plane so as to minimize dynamic forces and driving torque.
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P11-5 The Amusement Machine Co. Inc. wants a portable “WHIP” ride which will give two or 
four passengers a thrilling but safe ride and which can be trailed behind a pickup truck 
from one location to another.  Design this device and its mounting hardware to the 
truck bed minimizing the dynamic forces and driving torque.

 P11-6 The Air Force has requested a pilot training simulator that will give potential pilots 
exposure to g forces similar to those they will experience in dogfight maneuvers.  De-
sign this device and mount it to the ground plane so as to minimize dynamic forces and 
driving torque.

 P11-7 Cheers needs a better “mechanical bull” simulator for their “yuppie” bar in Boston.  It 
must give a thrilling “bucking bronco” ride but be safe.  Design this device and mount 
it to the ground plane so as to minimize dynamic forces and driving torque.

 P11-8 Gargantuan Motors Inc. is designing a new light military transport vehicle.  Their cur-
rent windshield wiper linkage mechanism develops such high shaking forces when run 
at its highest speed that the engines are falling out!  Design a superior windshield wiper 
mechanism to sweep the 20-lb armored wiper blade through a 90� arc while minimiz-
ing both input torque and shaking forces.  The wind load on the blade, perpendicular to 
the windshield, is 50 lb.  The coefficient of friction of the wiper blade on glass is 0.9.

 P11-9 The Army’s latest helicopter gunship is to be fitted with the Gatling gun, which fires 
50-mm-diameter, 2-cm-long spent uranium slugs at a rate of 10 rounds per second.  
The reaction (recoil) force may upset the helicopter’s stability.  A mechanism is needed 
that can be mounted to the frame of the helicopter and which will provide a synchro-
nous shaking force, 180° out of phase with the recoil force pulses, to counteract the 
recoil of the gun.  Design such a linkage and minimize its torque and power drawn 
from the aircraft’s engine.  Total weight of your device should also be minimized.

 P11-10 Steel pilings are universally used as foundations for large buildings.  These are often 
driven into the ground by hammer blows from a “pile driver.”  In certain soils (sandy, 
muddy) the piles can be “shaken” into the ground by attaching a “vibratory driver” that 
imparts a vertical, dynamic shaking force at or near the natural frequency of the pile-
earth system.  The pile can literally be made to “fall into the ground” under optimal 
conditions.  Design a fourbar linkage-based pile shaker mechanism which, when its 
ground link is firmly attached to the top of a piling (supported from a crane hook), will 
impart a dynamic shaking force that is predominantly directed along the piling’s long, 
vertical axis.  Operating speed should be in the vicinity of the natural frequency of the 
pile-earth system.

 P11-11 Paint can shaker mechanisms are common in paint stores.  While they do a good job 
of mixing the paint, they are also noisy and transmit their vibrations to the shelves and 
counters.  A better design of the paint can shaker is possible using a balanced fourbar 
linkage.  Design such a portable device to sit on the floor (not bolted down) and mini-
mize the shaking forces and vibrations while still effectively mixing the paint.

 P11-12 Convertible automobiles are once again popular.  While offering the pleasure of 
open-air motoring, they offer little protection to the occupants in a rollover accident.  
Permanent roll bars are ugly and detract from the open feeling of a true convertible.  
An automatically deployable roll bar mechanism is needed that will be out of sight 
until needed.  In the event that sensors in the vehicle detect an imminent rollover, the 
mechanism should deploy within 250 ms.  Design a collapsible/deployable roll bar 
mechanism to retrofit to the convertible of your choice.
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P11-13 Design a superior hand-held sanding/polishing machine.  Many such devices exist on 
the market.  Some have a simple pure-rotation motion which creates an undesireable 
pattern of rotary scratches on the affected surface.  Others have an ineffective random 
vibration motion of very small amplitude.  Still others have more complicated mo-
tions.  What is desired in this product is a more sophisticated motion pattern which will 
provide a superior finish.  It is also desireable that this new machine provide smoother 
and quieter operation than any non-rotary devices now on the market.  Most current 
non-rotary polishing machines deliver significant vibratory forces to the user’s hands.  
The new design should minimize the effects of vibratory forces as felt by the user.  In 
addition, it should require the smallest possible input torque (and thus power) from its 
electric motor.

P11-14 NASA has requested the design of a Spacecraft Compatible Ambulatory Machine, or 
SCAM.  Proposed interplanetary travel in this century will require that the astronaut 
crews spend years in micro-gravity.  Research on extended micro-gravity exposure has 
shown that the lack of gravity-bound exercise results in significant bone-density loss 
in astronauts who spend long periods in space.  It is believed that the key to preventing 
this debilitating condition is to provide the astronauts with an artificial-gravity exercise 
environment.  NASA desires the design and analysis of a machine that can be installed 
on an interplanetary spacecraft that will, when activated, provide realistic earth-bound 
levels of walking and/or jogging forces to the feet and legs of the astronaut.  They envi-
sion a compact machine into which the astronaut can be placed and secured, and which, 
when run, will cause realistic (physiologic) forces and motions to be imparted to the 
feet and legs of the victim astronaut that simulate walking and/or running on Earth in a 
1-g environment.

P11-15 The Autoroll Co. makes bottle-printing machines.  These use a silk-screen process to 
apply label information to oval bottles in an automatic assembly machine.  A Video 
is downloadable for viewing that shows one of their machines in operation.  A new 
machine is being designed.  A mechanism is needed that will move the squeegee (also 
called a knife) in an approximate straight line across the top of the silk screen while 
the oval bottle is rolled against the underside of the screen.  It is also preferred that the 
velocity of the knife be as uniform as possible during the print stroke.  The useable 
print stroke is a maximum of 6 inches long.  The knife is 5 inches wide, 1 inch high and 
can flex up to 0.1 inches in the vertical direction.  Its spring constant is 20 lb/in.  It only 
needs to wipe in one direction.  There is an effective coefficient of friction between 
knife and screen of about 1.5.  The desired production rate is 80 bottles per minute.  
The bottle-motion mechanism is not a part of this project..   


