Chapter 1 1

DYNAMIC FORCE ANALYSIS

Don’t force it!
Use a bigger hammer
ANONYMOUS

1.0 INTRODUCTION Watch the first lecture video for this chapter (27:28)*

When kinematic synthesis and analysis have been used to define a geometry and set of
motions for a particular design task, it is logical and convenient to then use a kinetostatic,
or inverse dynamics, solution to determine the forces and torques in the system. We will
take that approach in this chapter and concentrate on solving for the forces and torques that
result from, and are required to drive, our kinematic system in such a way as to provide
the designed accelerations. Numerical examples are presented throughout this chapter.
These examples are also downloadable as disk files for input to either program MATRIX
or LINKAGES. These programs are described in Appendix A. The reader is encouraged
to open the referenced files in these programs and investigate the examples in more detail.
The file names are noted in the discussion of each example.

11 NEWTONIAN SOLUTION METHOD

Dynamic force analysis can be done by any of several methods. The one which gives the
most information about forces internal to the mechanism requires only the use of Newton’s
law as defined in equations 10.1 and 10.4. These can be written as a summation of all
forces and torques in the system.

* http://www.designofma-
chinery.com/DOM/Dynam-
ic_Force_Analysis.mp4
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ZF=ma ZTzIG(x (11.1a)

It is also convenient to separately sum force components in X and Y directions, with
the coordinate system chosen for convenience. The torques in our two-dimensional sys-
tem are all in the Z direction. This lets us break the two vector equations into three scalar
equations:

ZFx =ma, ZFy =ma,, 2T=IG0( (11.1b)

These three equations must be written for each moving body in the system which will
lead to a set of linear simultaneous equations for any system. The set of simultaneous
equations can most conveniently be solved by a matrix method as was shown in Chapter
5. These equations do not account for the gravitational force (weight) on a link. If the
kinematic accelerations are large compared to gravity, which is often the case, then the
weight forces can be ignored in the dynamic analysis. If the machine members are very
massive or moving slowly with small kinematic accelerations, or both, the weight of the
members may need to be included in the analysis. The weight can be treated as an external
force acting on the CG of the member at a constant angle.

1.2  SINGLE LINK IN PURE ROTATION Watch a short video (15:30)

As a simple example of this solution procedure, consider the single link in pure rotation
shown in Figure 11-1a. In any of these kinetostatic dynamic force analysis problems, the
kinematics of the problem must first be fully defined. That is, the angular accelerations
of all rotating members and the linear accelerations of the CGs of all moving members
must be found for all positions of interest. The mass of each member and the mass mo-
ment of inertia /5 with respect to each member’s CG must also be known. In addition
there may be external forces or torques applied to any member of the system. These are
all shown in the figure.

While this analysis can be approached in many ways, it is useful for the sake of
consistency to adopt a particular arrangement of coordinate systems and stick with it.
We present such an approach here which, if carefully followed, will tend to minimize
the chances of error. The reader may wish to develop his or her own approach once the
principles are understood. The underlying mathematics is invariant, and one can choose
coordinate systems for convenience. The vectors which are acting on the dynamic sys-
tem in any loading situation are the same at a particular time regardless of how we may
decide to resolve them into components for the sake of computation. The solution result
will be the same.

We will first set up a nonrotating, local coordinate system on each moving member,
located at its CG. (In this simple example we have only one moving member.) All exter-
nally applied forces, whether due to other connected members or to other systems must
then have their points of application located in this local coordinate system. Figure 11-1b
shows a free-body diagram of the moving link 2. The pin joint at O, on link 2 has a force
Fy; due to the mating link 1, the x and y components of which are Fi, and F3,. These
subscripts are read “force of link 1 on 2” in the x or y direction. This subscript notation
scheme will be used consistently to indicate which of the “action-reaction” pair of forces
at each joint is being solved for.
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Note: x, yis a local, nonrotating coordinate system (LNCS), attached to the link

Note: X,Y is the fixed, global coordinate system (GCS)

(a) Kinematic diagram

FIGURE 11-1
Dynamic force analysis of a single link in pure rotation

There is also an externally applied force Fp shown at point P, with components Fp,
and Fp, The points of application of these forces are defined by position vectors Ry, and
Rp, respectively. These position vectors are defined with respect to the local coordinate
system at the CG of the member. We will need to resolve them into x and y components.
There will have to be a source torque available on the link to drive it at the kinematically
defined accelerations. This is one of the unknowns to be solved for. The source torque is
the torque delivered from the ground to the driver link 2 and so is labeled T,. The other
two unknowns in this example are the force components at the pin joint /1, and Fyy,.

We have three unknowns and three equations, so the system can be solved. Equations
11.1 can now be written for the moving link 2. Any applied forces or torques whose di-
rections are known must retain the proper signs on their components. We will assume all
unknown forces and torques to be positive. Their true signs will “come out in the wash.”

ZF:FP +F12 =myag

(11.2)
D T=T, +(Ry, xFy, )+(Rp xFp) = Iga

The force equation can be broken into its two components. The torque equation
contains two cross product terms which represent torques due to the forces applied at a
distance from the CG. When these cross products are expanded, the system of equations
becomes:

Fp +Fy =mag,

FPy + Fizy = mzaGy (113)

T, + Rlszuy ‘RlzyFux )+(RPxFPy _RPyFPx )=IGOC

(b) Force (free-body) diagrams
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This can be put in matrix form with the coefficients of the unknown variables forming
the A matrix, the unknown variables the B vector, and the constant terms the C vector
and then solved for B.

(A] x [B] = [c]
1 0 o0 | [f2,| |"MY, ~Fp
0 10 x|Fy |=|mag - F (114)
Rz, Ry, 1 T,

Igo. —(RPX Fp, ~Rp Fp, )

Note that the A matrix contains all the geometric information and the C matrix
contains all the dynamic information about the system. The B matrix contains all the
unknown forces and torques. We will now present a numerical example to reinforce your
understanding of this method.

A DEXAMPLE 111

Dynamic Force Analysis of a Single Link in Pure Rotation. (See Figure 11-1)

Given: The 10-in-long link shown weighs 4 1b. Its CG is on the line of centers at the 5-in
point. Its mass moment of inertia about its CG is 0.08 Ib-in-sec?. Its kinematic
data are:

6, deg , rad/sec o, rad/sec’ ag, in/sec?

30 20 15 2001 @ 208°
An external force of 40 Ib at 0° is applied at point P.

Find: The force Fy; at pin joint O, and the driving torque T, needed to maintain motion
with the given acceleration for this instantaneous position of the link.

Solution:
1 Convert the given weight to proper mass units, in this case blobs:

_ weight 41b
g 386 in/sec

=0.0104 blob (@)

mass
2 Set up a local coordinate system at the CG of the link and draw all applicable vectors acting
on the system as shown in the figure. Draw a free-body diagram as shown.
3 Calculate the x and y components of the position vectors R, and Rp in this coordinate system:
R, =5in @ £210°% Ry =-433, R12y =-2.50

b
Rp=5in@ £30°% Rp_ =+4.33, Rp =+2.50 ®)

4 Calculate the x and y components of the acceleration of the CG in this coordinate system:



DYNAMIC FORCE ANALYSIS

ag =2001@£208%  ag, =-176678,  ag =-939.41 ()

5 Calculate the x and y components of the external force at P in this coordinate system:

6 Substitute these given and calculated values into the matrix equation 11.4:

1 0 o Ry, (0.01)(-1766.78) — 40
0 10 |x|Fy |= (0.01)(-939.41)-0
250 433 1
T, (0.08)(15)-{(4.33)(0) - (2.5)(40)}
(e)

1 0 o | |he -57.67

0 10 |x|Fy |=| -9.39

250 —-433 1 T 101.2

12

7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix C
using a pocket calculator with matrix capability; using Mathcad or Matlab; or by putting the
values for matrices A and C into program MATRIX downloadable with this text.

Program MATRIX gives the following solution:

By, =-57.671b, F, =-9391b, Ty, =204.72 Ib-in 2

Converting the force to polar coordinates:

Fj, =5843@ £189.25° €]

Open the disk file E11-01.mtr in program MATRIX to exercise this example.

11.3 FORCE ANALYSIS OF A THREEBAR CRANK-SLIDE LINKAGE

When there is more than one link in the assembly, the solution simply requires that the
three equations 11.1b be written for each link and then solved simultaneously. Figure
11-2a shows a threebar crank-slide linkage. This linkage has been simplified from the
fourbar crank-slider (see Figure 11-4) by replacing the kinematically redundant slider
block (link 4) with a half joint as shown. This linkage transformation reduces the number
of links to three with no change in degree of freedom (see Section 2.10). Only links 2
and 3 are moving. Link 1 is ground. Thus we should expect to have six equations in six
unknowns (three per moving link).

Figure 11-2b shows the linkage “exploded” into its three separate links, drawn as
free bodies. A kinematic analysis must have been done in advance of this dynamic force
analysis in order to determine, for each moving link, its angular acceleration and the linear
acceleration of its CG. For the kinematic analysis, only the link lengths from pin to pin
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—

(a) Linkage and dimensions (b) Free-body diagrams
11

FIGURE 11-2

Dynamic force analysis of a crank-slide linkage

were required. For a dynamic analysis the mass () of each link, the location of its CG,
and its mass moment of inertia (/; ) about that CG are also needed.

The CG of each link is initially defined by a position vector rooted at one pin joint
whose angle is measured with respect to the line of centers of the link in the local, rotat-
ing coordinate system (LRCS) x’, y’. This is the most convenient way to establish the CG
location since the link line of centers is the kinematic definition of the link. However,
we will need to define the link’s dynamic parameters and force locations with respect to
a local, nonrotating coordinate system (LNCS) x, y located at its CG and which is always
parallel to the global coordinate system (GCS) XY. The position vector locations of all at-
tachment points of other links and points of application of external forces must be defined
with respect to the link’s LNCS. Note that these kinematic and applied force data must
be available for all positions of the linkage for which a force analysis is desired. In the
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following discussion and examples, only one linkage position will be addressed. The pro-
cess is identical for each succeeding position and only the calculations must be repeated.
Obviously, a computer will be a valuable aid in accomplishing the task.

Link 2 in Figure 11-2b shows forces acting on it at each pin joint, designated F, and
F3,. By convention their subscripts denote the force that the adjoining link is exerting
on the link being analyzed; that is, Fy, is the force of 1 on 2 and Fj; is the force of 3 on
2. Obviously there is also an equal and opposite force at each of these pins which would
be designated as F»; and F,3, respectively. The choice of which of the members of these
pairs of forces to be solved for is arbitrary. As long as proper bookkeeping is done, their
identities will be maintained.

When we move to link 3, we maintain the same convention of showing forces acting
on the link in its free-body diagram. Thus at instant center /,3 we show F»3 acting on
link 3. However, because we showed force F3; acting at the same point on link 2, this
introduces an additional unknown to the problem for which we need an additional equa-
tion. The equation is available from Newton’s third law:

Thus we are free to substitute the negative reaction force for any action force at any
joint. This has been done on link 3 in the figure in order to reduce the unknown forces
at that joint to one, namely F3,. The same procedure is followed at each joint with one
of the action-reaction forces arbitrarily chosen to be solved for and its negative reaction
applied to the mating link.

The naming convention used for the position vectors (R,;,) which locate the pin joints
with respect to the CG in the link’s nonrotating local coordinate system is as follows.
The first subscript (a) denotes the adjoining link to which the position vector points. The
second subscript ( p) denotes the parent link to which the position vector belongs. Thus
in the case of link 2 in Figure 11-2b, vector R, locates the attachment point of link 1
to link 2, and R3 the attachment point of link 3 to link 2. Note that in some cases these
subscripts will match those of the pin forces shown acting at those points, but where the
negative reaction force has been substituted as described above, the subscript order of the
force and its position vector will not agree. This can lead to confusion and must be care-
fully watched for typographical errors when setting up the problem.

Any external forces acting on the links are located in similar fashion with a position
vector to a point on the line of application of the force. This point is given the same letter
subscript as that of the external force. Link 3 in the figure shows such an external force
Fp acting on it at point P. The position vector Rp locates that point with respect to the
CG. It is important to note that the CG of each link is consistently taken as the point of
reference for all forces acting on that link. Left to its own devices, an unconstrained body
in complex motion will spin about its own CG; thus we analyze its linear acceleration at
that point and apply the angular acceleration about the CG as a center.

Equations 11.1 are now written for each moving link. For link 2, with the cross
products expanded:
by +Fp =mag,

R, +Fyp =mag, (11.6a)

T +|Rip, Frz, —Rip F1p, )+(R32xF32y —Ryp Py |=1g,0
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For link 3, with the cross products expanded, note the substitution of the reaction
force — F3, for Fos:
R —F, +Fp =msag,

FiSy — F32y + FPy = m3aG3y (11.6b)
Riz B3, — Ry Fi3, )—(R23x P, —Ry3 Iy, )""(RPXFPY —Rp Fp |=1g,03

Note also that T,, the source torque, only appears in the equation for link 2 as that is
the driver crank to which the motor is attached. Link 3 has no externally applied torque
but does have an external force Fp which might be due to whatever link 3 is pushing on
to do its external work.

There are seven unknowns present in these six equations, Fy, F12y, F325 F32y, F135
Fy3y, and T5. But, Fy3y is due only to friction at the joint between link 3 and link 1. We
can write a relation for the friction force f at that interface such as f = HuN, where HL is
a known coefficient of coulomb friction. The friction force always opposes motion. The
kinematic analysis will provide the velocity of the link at the sliding joint. The direction
of fwill always be the opposite of this velocity. Note that L is a nonlinear function which
has a discontinuity at zero velocity; thus at the linkage positions where velocity is zero, the
inclusion of [ in these linear equations is not valid. (See Figure 10-7a.) In this example,
the normal force N is equal to Fy3, and the friction force f'is equal to F3y. For linkage
positions with nonzero velocity, we can eliminate F'13, by substituting into equation 11.6b,

Fs, = _“SGN(VH)‘FISX‘ (11.6¢)

where L is negated and multiplied by the sign of the velocity at that point. The absolute
value on F3, is needed to prevent reversal of Fy3, with the sign of F3,. Friction doesn’t
care which side of the pin B is being forced against the slot by F3,.

We are then left with six unknowns in equations 11.6 and can solve them simultane-
ously. We also rearrange equations 11.6a and 11.6b to put all known terms on the right
side.

By +Fyp =mag,,
Ry, + 15, =mag,,
To+Ryp Fip, —Rip Fip + Ry Ty —Ryy Iy =150
(11.6d)
B3, —Fyp =mag, —Fp

X

~WSGN (V3 )‘FBX ‘ — Py, =myag, —Fp

“HR;3 —Ry3 )Fl3x —Ry3 Fyp + Ry Iy =1Ig,03—Rp Fp +Rp Fp

Putting these six equations in matrix form, we get:
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1 0 0 i By, m,ag,
o 1 0 By, mag,,
—-R R
32, 32, 0 Fyy Ig,0,
5 o L (11.7)
B, Mg, ~ Fp,
0 -1 —uSGN(V3) y -
R R ( R R ) 0 fis, e T
23, TR, \MRa TR | T, Ig, 05~ Ry, pr +pr Fp.

This system can be solved by using program MATRIX or any other matrix solving calcula-
tor. As an example of this solution consider the following linkage data.

A DEXAMPLE 112

Dynamic Force Analysis of a Threebar Crank-Slide Linkage with Half Joint. (See Figure 11-2.)

Given:

Find:

Solution:

The 5-in long crank (link 2) shown weighs 2 Ib. Its CG is at 3 in and 30° from
the line of centers. Its mass moment of inertia about its CG is 0.05 Ib-in-sec?. Its
acceleration is defined in its LNCS, x,y. Its kinematic data are:

o, rad/sec?
60 30 -10

6, deg , rad/sec ag, in/sec?

2700.17 @ -89.4°
The coupler (link 3) is 15 in long and weighs 4 1b. Its CG is at 9 in and 45° from

the line of centers. Its mass moment of inertia about its CG is 0.10 Ib-in-sec2. Its
acceleration is defined in its LNCS, x,y. Its kinematic data are:

oL, rad/sec?
99.59 -8.78 -136.16

05 deg 5 rad/sec ag, in/sec?

3453.35 @ 254.4°
The sliding joint on link 3 has a velocity of 96.95 in/sec in the +Y direction.

There is an external force of 50 Ib at — 45°, applied at point P which is located at
2.7 in and 101° from the CG of link 3, measured in the link’s embedded, rotating
coordinate system or LRCS x’, y’ (origin at A and x axis from A to B). The coef-
ficient of friction W is 0.2.

The forces F1,, F3,, Fy3 at the joints and the driving torque T, needed to maintain
motion with the given acceleration for this instantaneous position of the link.

1 Convert the given weights to proper mass units, in this case blobs:

weight 21b
g 386 in/sec’

MasSjp = =0.0052 blob (a)
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_ weight _ 41b
link3 g 386 in/sec?

mass =0.0104 blob (b)

2 Set up a local, nonrotating xy coordinate system (LNCS) at the CG of each link, and draw all
applicable position and force vectors acting within or on that system as shown in Figure 11-2.
Draw a free-body diagram of each moving link as shown.

3 Calculate the x and y components of the position vectors Ryo, R3s, Ry3, Ry3, and Rp in the
LNCS coordinate system:

R, = 300 @ £ 270.0% Ry = 0000, R, = -30

Ry, = 28 @ £ 280°% Ry = 2500, Ry = 1333

Ry;= 900 @ £ 324.5% Ry = 7329, Ry = -5224 (©)
R;3=1072 @ £ 63.14% R = 4843, Ri3. = 9.563

Rp= 270 @ £ 201.0%

=
)
Il

—2.521, va = —-0.968

These position vector angles are measured with respect to the LNCS which is always parallel
to the global coordinate system (GCS), making the angles the same in both systems.

4 Calculate the x and y components of the acceleration of the CGs of all moving links in the
global coordinate system:

—2700

ag, = 270017 @ Z -89.4° ag, = 2828, ag,,

d
—3325.54 @

ag, = 345335 @ £ 2544% ag, =-930.82, ag,

5 Calculate the x and y components of the external force at P in the global coordinate system:

Fp = 50@ £ — 45°% Fp_ =35.36, Fp, =-35.36 (e)

6 Substitute these given and calculated values into the matrix equation 11.7.

- 1 R,
10 1 0 0 0
01 0 1 0 0 B,
3.0 -1.333 25 0 1 Fy,
x _
00 -1 0 1 0| =
125
00 0 -1 -0.2 0 Y
0 0 -5224 -7.329 [(0.2)4.843-(9.563)] © B3
- © | ha
- B} o))
(0.005)(28.28) _ ,
0.141
.005)(-2
(0.005)(-2700) 13,500
(0.05)(-10) _| o500
(0.01)(—930.82)—35.36 —44.668
2.105
0.01)(—3325.54)—(-35.36
(00) )= ) ~136.987
(0.1)(-136.16) — (—2.521)(—35.36) +(—0.968)(35.36) - -
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7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix
C using a pocket calculator with matrix capability; using Mathcad or Matlab; or by inputting
the values for matrices A and C to program MATRIX downloadable with this text which gives
the following solution:

Hy, _ }
F, ~39.232
y ~10.336
Fo, | | 39373 (@
By, | | 3164 g
v ~5.295
13x 177.590
Tz i )

Converting the forces to polar coordinates:

e
)
|

40.571b @ £ 194.76°
39.501b @ £ —4.60° (h)
F,= 540lb @ £ 191.31°

&
|

Open the disk file E11-02.mtr in program MATRIX to exercise this example.

1.4 FORCE ANALYSIS OF A FOURBAR LINKAGE Watch a video (12:19)"

Figure 11-3a shows a fourbar linkage. All dimensions of link lengths, link positions, loca-
tions of the links’ CGs, linear accelerations of those CGs, and link angular accelerations
and velocities have been previously determined from a kinematic analysis. We now wish
to find the forces acting at all the pin joints of the linkage for one or more positions. The
procedure is exactly the same as that used in the previous two examples. This linkage
has three moving links. Equation 11.1 provides three equations for any link or rigid body
in motion. We should expect to have nine equations in nine unknowns for this problem.

Figure 11-3b shows the free-body diagrams for all links, with all forces shown. Note
that an external force Fp is shown acting on link 3 at point P. Also an external torque T,
is shown acting on link 4. These external loads are due to some other mechanism (device,
person, thing, etc.) pushing or twisting against the motion of the linkage. Any link can
have any number of external loads and torques acting on it. Only one external torque
and one external force are shown here to serve as examples of how they are handled in
the computation. (Note that a more complicated force system, if present, could also be
reduced to the combination of a single force and torque on each link.)

To solve for the pin forces, it is necessary that these applied external forces and
torques be defined for all positions of interest. We will solve for one member of the pair
of action-reaction forces at each joint, and also for the driving torque T, needed to be
supplied at link 2 in order to maintain the kinematic state as defined. The force subscript
convention is the same as that defined in the previous example. For example, F; is the
force of 1 on 2 and F3, is the force of 3 on 2. The equal and opposite forces at each of
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(a) The linkage and dimensions

(b) Free-body diagrams

FIGURE 11-3

Dynamic force analysis of a fourbar linkage. (See also Figure P11-2)
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these pins are designated F and Fy3, respectively. All the unknown forces in the figure
are shown at arbitrary angles and lengths as their true values are still to be determined.

The linkage kinematic parameters are defined with respect to a global XY system
(GCS) whose origin is at the driver pivot O, and whose X axis goes through link 4’s fixed
pivot O4. The mass (m) of each link, the location of its CG, and its mass moment of inertia
(I) about that CG are also needed. The CG of each link is initially defined within each
link with respect to a local moving and rotating axis system (LRCS) embedded in the
link because the CG is an unchanging physical property of the link. The origin of this x’,
¥’ axis system is at one pin joint and the x” axis is the line of centers of the link. The CG
position within the link is defined by a position vector in this LRCS. The instantaneous
location of the CG can easily be determined for each dynamic link position by adding the
angle of the internal CG position vector to the current GCS angle of the link.

We need to define each link’s dynamic parameters and force locations with respect
to a local, moving, but nonrotating axis system (LNCS) x,y located at its CG as shown on
each free-body diagram in Figure 11-3b. The position vector locations of all attachment
points of other links and points of application of external forces must be defined with
respect to this LNCS axis system. These kinematic and applied force data differ for each
position of the linkage. In the following discussion and examples, only one linkage posi-
tion will be addressed. The process is identical for each succeeding position.

Equations 11.1 are written for each moving link. For link 2, the result is identical to
that done for the crank-slider example in equation 11.6a.
Ry +Fp =mag,

F12y + F32y =myag,, (11.8a)
To +|Rip, iz, —Rip F1p )+ (R32x P, — Ry Fy, ) =1Ig,0,

For link 3, with substitution of the reaction force —F3, for F;3, the result is similar to
equation 11.6b with some subscript changes to reflect the presence of link 4.
Fp3 =Py +Fp =maag,

F43y - F32y + FPy = m3aG3y (11.8b)
(R43X Fy3, —Ruz Fuz, )— (stx Py, —Rys, Fap, )+ (RPX Fp, —Rp Fp, ) =1Ig, 05

For link 4, substituting the reaction force —F43 for F34, a similar set of equations 11.1
can be written:
By, —Fy, =myag,,
Fl4y - F43y =mydg, (11.8¢)

Riy Fra, —Rug Frg )— (R34x Fiz, ~Ray Fuz |+ T4 =15, 04

Note that T, the source torque, only appears in the equation for link 2, the motor-
driven crank. Link 3, in this example, has no externally applied torque (though it could
have) but does have an external force Fp. Link 4, in this example, has no external force
acting on it (though it could have) but does have an external torque T,4. (The driving link
2 could also have an externally applied force on it though it usually does not.) There are
nine unknowns present in these nine equations, Foy, F12y F32y F32y Fa3p Fazy Flax
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F14y, and T3, so we can solve them simultaneously. We rearrange terms in equations
11.8 to put all known constant terms on the right side and then put them in matrix form.

- By, myag,
0 0 )
L m,Ag,
0 0 ) y
0 0 0 B, Ig, 0,
F _
0 0 0 o 2, M3ag,, — Fp,
1 0 0 0 | x| Fy |= myag, —Fp (11.9)
R 0 )
43, F43y Ig 03 = Rp pr +R P, Fp,
0 1 ) P ma
14
1 0 1 x 47O
F,
—Ryy Ry ) Ry 14 M4, ,
) L T ] I G, %4 — T,

This system can be solved by using program MATRIX or any matrix solving calcula-
tor. As an example of this solution consider the following linkage data.

A DEXAMPLE 11-3

Dynamic Force Analysis of a Fourbar Linkage. (See Figure 11-3)

Given:

The 5-in-long crank (link 2) shown weighs 1.5 Ib. Its CG is at 3 in @ +30° from
the line of centers (LRCS). Its mass moment of inertia about its CG is 0.4 1b-in-
secZ. Its kinematic data are:

o, rad/sec?

-40

6, deg
60 25

, rad/sec ag, in/ sec’

1878.84 @ 273.66°
The coupler (link 3) is 15 in long and weighs 7.7 Ib. Its CG is at 9 in @ 45° off the

line of centers (LRCS). Its mass moment of inertia about its CG is 1.5 Ib-in-sec?.
Its kinematic data are:

013 rad/sec?

120.9

05 deg
20.92

w3 rad/sec

-5.87

ag, in/sec?

3646.1 @ 226.5°
The ground link is 19 in long. The rocker (link 4) is 10 in long and weighs 5.8 1b.
Its CG is at 5 in @ (° on the line of centers (LRCS). Its mass moment of inertia
about its CG is 0.8 lb-in-sec2. There is an external torque on link 4 of 120 Ib-in
(GCS). An external force of 80 Ib @ 330° acts on link 3 in the GCS, applied at
point P at 3 in @ 100° from the CG of link 3 (LRCS). The kinematic data are:
o, rad/sec’

276.29

0, deg
104.41

, rad/sec

7.93

ag, in/sec?
1416.8 @ 207.2°
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Find: Forces F 5, F37, F43, and F 4 at the joints and the driving torque T, needed to main-
tain motion with the given acceleration for this instantaneous position of the link.

Solution:

1 Convert the given weight to proper mass units, in this case blobs:

weight  1.51b

Massjjp, = - =0.004 blob
" 8 386 in/sec’

] 71
masslmkg,zwelgm = 7_7 b 5 =0.020 blob
g 386 in/sec

i 81
MasSipia= weight __ 581b __ 0.015 blob

g 386 in/sec?

(@)

(b)

(©)

2 Set up an LNCS xy coordinate system at the CG of each link, and draw all applicable vectors
acting on that system as shown in the figure. Draw a free-body diagram of each moving link.

3 Calculate the x and y components of the position vectors Rj7, R3, Ro3, Ry3, R34, Ry, and Rp
in the link’s LNCS. Ry3, R34, and R4 will have to be calculated from the given link geometry
data using the law of cosines and law of sines. Note that the current value of link 3’s position
angle (03) in the GCS must be added to the angles of all position vectors before creating their
x,y components in the LNCS if their angles were originally measured with respect to the link’s

embedded, local rotating coordinate system (LRCS).

R, = 300 @ £ 270.00% Ry, = 0000, Ry,
Ry, = 28 @ £ 2800% Ry = 2500, Ry
Ry = 900 @ £ 245925 Ry = -3672, Ry
R;3=1072 @ £ -1546% Ry, = 10332, Ry,
Ry = 500 @ £ 104.41°% Ry = -124, Ry,
Ry, = 500 @ £ 28441°% Ry = 1244, Ry,
Rp= 300 @ £ 120.92% Rp = -1542, Rp

-3
1.333

-8.217

-2.858 (d)
4.843

—4.843
2.574

4 Calculate the x and y components of the acceleration of the CGs of all moving links in the

global coordinate system (GCS):

ag, = 1878.84 @ £273.66% ag, = 119.94, ag,, = —-1875.01
ag, = 3646.10 @ £226.51° ag,, = —2509.35, ag,, = —2645.23 (e)
ag, = 1416.80 @ £207.24%; ag, = —1259.67, ag,, = —648.50
5 Calculate the x and y components of the external force at P in the GCS:
FP3 =80 @ Z 3300; FP3X = 6928, FP3y =-40.00 (f)

6 Substitute these given and calculated values into the matrix equation 11.9.
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(0.8)(276.29) - (120)
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By,
1 0 1 0 0 0 0 o o] B,
01 o0 1 0 0 0 0 o0 E
32,
3 0 -1330 25 0 0 0 0 1
00 -1 0 1 0 0 0 0 F32y
00 0 -1 0 1 0 0 0 x| Fy |=
0 0 -8217 3673 2861 10339 0 0 0 F
00 0 0 -1 0 1 0 0 By
00 o0 0 0 4 0 1 0 By,
00 0 0 4843 1244 4843 1244 0 F,
L 1"12 _
i (€9)
(0.004)(119.94) )
(0.004)(-1875.01) 0.480
~7.500
0.4)(-40
(04)(~40) -16.000
(0.02)(-2509.35) - (69.28) 119465
(0.02)(-2645.23) — (-40) =| -12.908
(1.5)(120.9) - [(~1.542)(—40) - (2.574)(69.28)] 298.003
~18.896
(0.015)(-1259.67) 9727
(0.015)(~648.50) 101.031

7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix C
using a pocket calculator with matrix capability, or by inputting the values for matrices A and

C to program MATRIX downloadable with this text, which gives the following solution:

—-117.65
-107.84

118.13

100.34
= -1.34
87.43
7 -20.23
x 77.71
243.23

Converting the forces to polar coordinates:

(h)
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F,= 15960lb @ £ 222.52°
F,= 15491 @ £ 4035°
F,= 8744b @ £ 90.88° 0
F,= 8030lb @ £ 10459

8 The pin-force magnitudes in (i) are needed to size the pivot pins and links against failure and
to select pivot bearings that will last for the required life of the assembly. The driving torque
T, defined in (h) is needed to select a motor or other device capable of supplying the power
to drive the system. See Section 2.19 for a brief discussion of motor selection. Issues of stress
calculation and failure prevention are beyond the scope of this text, but note that those calcula-
tions cannot be done until a good estimate of the dynamic forces and torques on the system has
been made by methods such as those shown in this example.

This solves the linkage for one position. A new set of values can be put into the A and
C matrices for each position of interest at which a force analysis is needed. Open the disk
file E11-03.mtr in program MATRIX to exercise this example. The disk file E11-03.4br
can also be opened in program LINKAGES and will run the linkage through a series of
positions starting with the stated parameters as initial conditions. The linkage will slow
to a stop and then run in reverse due to the negative acceleration. The matrix for equation
(g) can be seen within LINKAGES using Dynamics/Solve/Show Matrix.

It is worth noting some general observations about this method at this point. The so-
lution is done using cartesian coordinates of all forces and position vectors. Before being
placed in the matrices, these vector components must be defined in the global coordinate
system (GCS) or in nonrotating, local coordinate systems, parallel to the global coordinate
system, with their origins at the links’ CGs (LNCS). Some of the linkage parameters are
normally expressed in such coordinate systems, but others are not, and so must be trans-
formed to the proper coordinate system. The kinematic data should all be computed in the
global system or in parallel, nonrotating, local systems placed at the CGs of individual
links. Any external forces on the links must also be defined in the global system.

However, the position vectors that define intralink locations, such as the pin joints
versus the CG, or which locate points of application of external forces versus the CG are
defined in local, rotating coordinate systems embedded in the links (LRCS). Thus these
position vectors must be redefined in a nonrotating, parallel system before being used in
the matrix. An example of this is vector Rp, which was initially defined as 3 in at 100° in
link 3’s embedded, rotating coordinate system. Note in Example 11-3 that its cartesian
coordinates for use in the equations were calculated after adding the current value of 03
to its angle. This redefined R, as 3 in at 120.92° in the nonrotating local system. The
same was done for position vectors Rys, R3y, Ry3, Ry3, R34, and Ry4. In each case the
intralink angle of these vectors (which is independent of linkage position) was added to
the current link angle to obtain its position in the xy system at the link’s CG. The proper
definition of these position vector components is critical to the solution, and it is very easy
to make errors in defining them.

To further confuse things, even though the position vector R, is initially measured
in the link’s embedded, rotating coordinate system, the force Fp, which it locates, is not.
The force Fp is not part of the link, as is Rp, but rather is part of the external world, so it
is defined in the global system.
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11.5 FORCE ANALYSIS OF A FOURBAR CRANK-SLIDER LINKAGE

The approach taken for the pin-jointed fourbar is equally valid for a fourbar crank-slider
linkage. The principal difference will be that the slider block will have no angular ac-
celeration. Figure 11-4 shows a fourbar crank-slider with an external force on the slider
block, link 4. This is representative of the mechanism used extensively in piston pumps
and internal combustion engines. We wish to determine the forces at the joints and the
driving torque needed on the crank to provide the specified accelerations. A kinematic
analysis must have previously been done in order to determine all position, velocity, and
acceleration information for the positions being analyzed. Equations 11.1 are written for
each link. For link 2:

b +Fp =mag,

Ry, +Fyp =mag, (11.10a)
T + (Rlz,c R, —Rip Fa, ) + (Rszx o, =Ry Py |=16,0

This is identical to equation 11.8a for the “pure” fourbar linkage. For link 3:

Fy3 —Fyp =mag,
Fy, = Py, =myag, (11.10b)

(R43X Fy3, = Ry3 Fus, ) - (stx Py, —Ry3 Iy |= 15,003

This is similar to equation 11.8b, lacking only the terms involving F), since there is no
external force shown acting on link 3 of our example crank-slider. For link 4:

By, — b3, +Fp =muag,

F14y - F43y + pr =mydg, (11.10c)
Rig Fa, —Rig Fg, )— (R34x Fyz, —Ray Fus, )+ (RPx Fp, —Rp Fp |=1g,04

These contain the external force F;, shown acting on link 4.

For the inversion of the crank-slider shown, the slider block, or piston, is in pure
translation against the stationary ground plane; thus it can have no angular acceleration or
angular velocity. Also, the position vectors in the torque equation (equation 11.10c) are
all zero as the force F), acts at the CG. Thus the torque equation for link 4 (third expres-
sion in equation 11.10c) is zero for this inversion of the crank-slider linkage. Its linear
acceleration also has no y component.

oy =0, ag,, =0 (11.10d)

The only x directed force that can exist at the interface between links 4 and 1 is fric-
tion. Assuming coulomb friction, the x component can be expressed in terms of the y
component of force at this interface. We can write a relation for the friction force f at
that interface such as f'= +luN, where *|1 is a known coefficient of friction. The plus and
minus signs on the coefficient of friction are to recognize the fact that the friction force
always opposes motion. The kinematic analysis will provide the velocity of the link at
the sliding joint. The sign on | will always be the opposite of the sign of this velocity.
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(a) Linkage

| 0, 4 X
[

r— Slider position d dd —

(b) Free-body diagrams

FIGURE 11-4
Dynamic force analysis of the fourbar slider-crank linkage

Ry, =- uSGN(d)‘FMy‘ (11.10e)

The SGN function returns the sign of its argument. The absolute value on F'4,, is needed

to prevent reversal of F'i4, with the sign of F4,. Friction doesn’t care which side of the
piston is being forced against the cylinder by F'4y.

Substituting equations 11.10d and 11.10e into the reduced equation 11.10c yields:

—HSGN(d)‘Fi4y‘ - F43X + FPx = m4aG4x

o E e E -0 (11.10f)
14, ~Fa3, tLp =
This last substitution has reduced the unknowns to eight, Fip, Fiay, F3ox F32y,

F43y, F43y, F14y, and Typ; thus we need only eight equations. We can now use the eight
equations in 11.10a, b, and f to assemble the matrices for solution.
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r 7 B,
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 by,
Rz, R, Ry, Ry 0 0 0 1 Fy
0 0o -1 0 1 0 0 0 Py
0 0 0 -1 0 1 0 0 | X
Fy3,
0 0 Ry, —Ryz. —Ry3, Ry, 0 0
. Fys
0 0 0 0 -1 0 -uSGN(d) o
Ha,
0 0 0 0 0 -1 1 0
- S| he |
mZaGZX
mag,,
16,0,
nsag
= 3 (11.10g)
m3ag,,
IG3oc3
myag, —Fp
L _FPy -

Solution of this matrix equation 11.10g plus equation 11.10e will yield complete dynamic
force information for the fourbar crank-slider linkage.

11.6 FORCE ANALYSIS OF THE INVERTED CRANK-SLIDER

Another inversion of the fourbar crank-slider was also analyzed kinematically in Part I.
It is shown in Figure 11-5. Link 4 does have an angular acceleration in this inversion.
In fact, it must have the same angle, angular velocity, and angular acceleration as link
3 because they are rotationally coupled by the sliding joint. We wish to determine the
forces at all pin joints and at the sliding joint as well as the driving torque needed to create
the desired accelerations. Each link’s joints are located by position vectors referenced to
nonrotating local xy coordinate systems at each link’s CG as before. The sliding joint is
located by the position vector Ry3 to the center of the slider, point B. The instantaneous
position of point B was determined from the kinematic analysis as length b referenced to
instant center />3 (point A). See Sections 4.8, 6.7, and 7.3 to review the position, velocity,
and acceleration analysis of this mechanism. Recall that this mechanism has a nonzero
Coriolis component of acceleration. The force between link 3 and link 4 within the slid-
ing joint is distributed along the unspecified length of the slider block. For this analysis
the distributed force can be modeled as a force concentrated at point B within the sliding
joint. We will neglect friction in this example.
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(a) Linkage
O
ag F43 \ 1/;
3 /

V .

\ Axis

f sli
\ . of slip

\\ Axis of
e transmission
b
link 2 Fyy = -Fn
Y
A
F,, =-Fu
41
Fy =-Fn \w
D - X
o, 0,
link 1
(b) Free-body diagrams of links
FIGURE 11-5

Dynamic forces in the inverted slider-crank fourbar linkage
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The equations for links 2 and 3 are identical to those for the noninverted crank-slider
(equations 11.10a and b). The equations for link 4 are the same as equations 11.10c
except for the absence of the terms involving F), since no external force is shown acting
on link 4 in this example. The slider joint can only transmit force from link 3 to link 4
or vice versa along a line perpendicular to the axis of slip. This line is called the axis of
transmission. In order to guarantee that the force Fs4 or Fy3 is always perpendicular to
the axis of slip, we can write the following relation:

u-Fi3=0 (11.11a)

which expands to:
uxF43x + uyF43y =0 (ll.llb)

The dot product of two vectors will be zero when the vectors are mutually perpen-
dicular. The unit vector w is in the direction of link 3 which is defined from the kinematic
analysis as 03.

u, =cosbs, u, =sin0; (11.11c)

y

Equation 11.11b provides a tenth equation, but we have only nine unknowns, F»,,
F12y, F30x F32y, Fa3y Fa3y, Fray F1ay, and Ty, so one of our equations is redundant.
Since we must include equation 11.11, we will combine the torque equations for links 3
and 4 rewritten here in vector form and without the external force F),.

XFEg3 ) =Rz XF3p )= 16,03 = Ig,
(Ry3 xFy3)—(Ryz xFyy )= I 03 = I 0y
(11.12a)
(Ruy xFiy)—(Ray xFyz) = I, 04

Note that the angular acceleration of link 3 is the same as that of link 4 in this linkage.
Adding these equations gives:

(Rys X Fy3)—(Rys X P )+ (Ryy X iy ) = (Ray xFyg )= (I, + 1, Joig (11.12b)
Expanding and collecting terms:
(R43x —Ryy )F43y + (R34y Ry, )F43x ~ Ry P,
+ R23y F32x + R14x Fl4y - R14y F‘l4x = (1G3 + IG4 )(X4 (11.120)

Equations 11.10a, 11.11b, 11.12c, and the four force equations from equations 11.10b
and 11.10c (excluding the external force Fp) give us nine equations in the nine unknowns
which we can put in matrix form for solution.
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1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
Ry, R, ~Ry, Ry, 0 0 o 0 1
0 0 -1 0 1 0 0 0 0
0 0 0 -1 0 1 0 0 0
0 0 Ry, Ry, (R34x —R43y) (R43y —R34x) R, Ry, 0
0 0 0 0 -1 0 1 0 0
0 0 0 0 0 -1 0 1 0
0 0 0 0 Uy Uy 0 0 0
By, myag,
B, myag, ,
By 16,0,
Iy, msag,
x| Fs, |= msag,, (11.13)
Py, (IG3 +1g, )(14
R, myag,
Ba, myag,
| T2 | 0

1.7 FORCE ANALYSIS—LINKAGES WITH MORE THAN FOUR BARS

This matrix method of force analysis can easily be extended to more complex assemblages
of links. The equations for each link are of the same form. We can create a more general
notation for equations 11.1 to apply them to any assembly of n pin-connected links. Let
Jj represent any link in the assembly. Let i = j — 1 be the previous link in the chain and
k =j + 1 be the next link in the chain; then, using the vector form of equations 11.1:

F; +F;, +2F€xtj =m;ag, (11.14a)
(Ry xFy )+ (R je xFy )+ DT +(Rw}, X D Fox, ): Ig, 0 (11.14b)
where:
Jj=2,3,...,n; i=j-1 k=j+1, j#n; if j=n, k=1

The sum of forces vector equation 11.14a can be broken into its two x and y compo-
nent equations and then applied, along with the sum of torques equation 11.14b, to each
of the links in the chain to create the set of simultaneous equations for solution. Any link
may have external forces and/or external torques applied to it. All will have pin forces.
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* The LINKAGES files
(F11-06.4br & F11-07.4br)
that generated the plots in
Figures 11-6 and 11-7 may
be downloaded and opened
in that program to see more
details on the linkage’s
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Since the nth link in a closed chain connects to the first link, the value of k for the nth link
is set to 1. In order to reduce the number of variables to a tractable quantity, substitute
the negative reaction forces from equation 11.14c where necessary as was done in the
examples in this chapter. When sliding joints are present, it will be necessary to add
constraints on the allowable directions of forces at those joints as was done in the inverted
crank-slider derivation above.

11.8 SHAKING FORCE AND SHAKING MOMENT

It is usually of interest to know the net effect of the dynamic forces as felt on the ground
plane as this can set up vibrations in the structure that supports the machine. For our
simple examples of three- and fourbar linkages, there are only two points at which the dy-
namic forces can be delivered to link 1, the ground plane. More complicated mechanisms
will have more joints with the ground plane. The forces delivered by the moving links
to the ground at the fixed pivots O, and O, are designated F»; and F4; by our subscript
convention as defined in Section 11.1. Since we chose to solve for F; and F4 in our
solutions, we simply negate those forces to obtain their equal and opposite counterparts
(see also equation 11.5).

B =-F, Fy =-Fy (11.15a)

The sum of all the forces acting on the ground plane is called the shaking force (F)
as shown in Figure 11-6." In these simple examples it is equal to:

F,=Fy +F, (11.15b)

The reaction moment felt by the ground plane is called the shaking moment (M)
as shown in Figure 11-7." This is the negative of the source torque (T5; = —T5) plus the
cross products of the ground-pin forces and their distances from the reference point. The

dynamics. shaking moment about the crank pivot O; is:
) Link Length Mass Inertia CG at Ext. Force at
Shaking Force - vy 440 Ib No. in  Units Units Posit Deg Ib Deg
1 55
G 2 20 0002 0004 10 0
3 60 0030 0060 25 30 12 270
4 30 0010 002 15 0 60 -45

Coupler pt.=3in @ 45°

Open/Crossed = open

Ext. Force 3acts at 5in@ 30° vs. CG of Link 3
Ext. Force 4 acts at 5in@ 90° vs. CG of Link 4
Ext. Torque 3=~ 20 Ib-in

Ext. Torque 4 = 25 Ib-in

Start Alpha2 = 0 rad/sec?

Start Omega2 = 50 rad/sec

Start Theta2 = 0°

Final Theta2 = 360°

FIGURE 11-6

Delta Theta2 =10°

Linkage data and polar plot of shaking force for an unbalanced crank-rocker fourbar linkage from program LINKAGES
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Link Length Mass Inertia CG

613

at Ext. Force at

Unbalanced Shaking Moment Ib-n No. in Units Units Post Deg b Deg
800 | 1 tg
I 2 20 0.002 0.004 10 0
‘ 3 6.0 0.030 0.060 25 30 12 270
4 3.0 0.010 0.020 1.5 0 60 -45

Coupler pt.=3in @ 45°
Open/Crossed = open

o
[ [T T TTTT

Ext. Torque 3 =-20 Ib-in
Ext. Torque 4 = 25 Ib-in
Start Alpha2 =0 rad/sec?
Start Omega2 = 50 rad/sec
Start Theta2 = 0°

Final Theta2 = 360°

Delta Theta2 = 2°

-800

CTTTTTTT T
®
o
N
~
o
w
D
o

FIGURE 11-7

|

|

|

|

|

|

| Ext. Force 3acts at 5in@ 30° vs. CG of Link 3
| Ext. Force 4 acts at 5in @ 90° vs. CG of Link 4
|

|

|

|

|

|

|

Linkage data and shaking moment curve for an unbalanced crank-rocker fourbar linkage from program LINKAGES

M, =T, +(R; xFy) (11.15¢)

The shaking force will tend to move the ground plane back and forth, and the shaking
moment will tend to rock the ground plane about the driveline axis. Both will cause vibra-
tions. We are usually looking to minimize the effects of the shaking force and shaking
moment on the frame. This can sometimes be done by balancing, sometimes by the ad-
dition of a flywheel to the system, and sometimes by shock mounting the frame to isolate
the vibrations from the rest of the assembly. Most often we will use a combination of all
three approaches. We will investigate some of these techniques in Chapter 12.

11.9 PROGRAM LINKAGES Second lecture video for this chapter (34:51)*

The matrix methods introduced in the preceding sections all provide force and torque infor-
mation for one position of the linkage assembly as defined by its kinematic and geometric
parameters. To do a complete force analysis for multiple positions of a machine requires
that these computations be repeated with new input data for each position. A computer
program is the obvious way to accomplish this. The program LINKAGES computes the ki-
nematic parameters for those linkages over changes in time or driver (crank) angle plus the
forces and torques concomitant with the linkage kinematics and link geometry. Examples
of its output are shown in Figures 11-6 and 11-7. Please refer to Appendix A for more
information about this and other programs.

1110 TORQUE ANALYSIS BY AN ENERGY METHOD Watch a video (10:53)f

In Section 10.15 the method of virtual work was presented. We will now use that ap-
proach to solve the linkage from Example 11-3 as a check on its solution by the newtonian
method used in that example. The kinematic data given in Example 11-3 did not include
information on the angular velocities of all the links, the linear velocities of the centers of

* http://www.designofma-
chinery.com/DOM/Virtual _
Work_and_Flywheels.mp4

 http://www.designofma-
chinery.com/DOM/Vir-
tual_Work.mp4
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gravities of the links, and the linear velocity of the point P of application of the external
force on link 3. Velocity data were not needed for the newtonian solution but are needed
for the virtual work approach and are detailed below. Equation 10.28a is repeated here
and renumbered.

n n n n
EF]{ Vi +2Tk Wy = zmkak Vi +21k(xk Q)% (11163)
k=2 k=2 k=2 k=2

Expanding the summations, still in vector form:
(FP3 "Ip3 +FP4 .VP4 )+(T12 N0 +T3 OZ +T4 ‘(04)
:(mzan 'VG2 +m3aG3 'VG3 +m4aG4 ’VG4 ) (1116b)

+(IG20c2 "0y + 15,05 @3+, 0 -(o4)

Expanding the dot products to create a scalar equation:

(FP3X Vp, +Fp Vi, )+ (Fp4x Ve, +Fp, Ve, )+ (T,0, + Ty03 + Tyoy)
= mz (CIGZX VGZX + aGZy VGZy j‘f’ m3 (aG3x VG3X + aGSy VGSy ) (11.160)

+m4(aG4 VG4 +aG4 VG4 )+(IG20‘20)2 +IG3(X3(D3 +IG4Q4U)4)
X X y y

ZDEXAMPLE 11-4

Analysis of a Fourbar Linkage by the Method of Virtual Work. (See Figure 11-3.)

Given: The 5-in-long crank (link 2) shown weighs 1.5 Ib. Its CG is at 3 in at +30° from
the line of centers. Its mass moment of inertia about its CG is 0.4 Ib-in-sec2. Its
kinematic data are:

0, deg @, rad/sec o, rad/sec? Vg, in/sec

60 25 -40 75 @ 180°

The coupler (link 3) is 15 in long and weighs 7.7 Ib. Its CG is at 9 in at 45° off
the line of centers. Its mass moment of inertia about its CG is 1.5 lb-in-sec?. Its
kinematic data are:

65 deg w3 rad/sec o5 rad/sec? Vg, in/sec

20.92 -5.87 120.9 72.66 @ 145.7°

There is an external force on link 3 of 80 Ib at 330°, applied at point P which is
located 3 in @ 100° from the CG of link 3. The linear velocity of that point is 67.2
in/sec at 131.94°.

The rocker (link 4) is 10-in long and weighs 5.8 1b. Its CG is at 5 in at 0° off the line
of centers. Its mass moment of inertia about its CG is 0.8 Ib-in-sec?. Its data are:

6, deg , rad/sec a, rad/sec’ Vg, in/sec

104.41 7.93 276.29 39.66 @ 194.41°
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There is an external torque on link 4 of 120 Ib-in. The ground link is 19-in long.

Find: The driving torque T, needed to maintain motion with the given acceleration for
this instantaneous position of the link.

Solution:
1 The torque, angular velocity, and angular acceleration vectors in this two-dimensional problem
are all directed along the Z axis, so their dot products each have only one term. Note that in

this particular example there is no force Fp, and no torque T3.

2 The cartesian coordinates of the acceleration data were calculated in Example 11-3.

ag, = 187884 @ £ 27366%  ag, = 11994, ag, =-187501
ag, = 364610 @ £ 22651° Gy, ==2509.35,  ag, =-264523 (@)
ag, = 141680 @ £ 20724%  ag, =-125967, g, =-648.50

3 The x and y components of the external force at P in the global coordinate system were also
calculated in Example 11-3:

Fp =80 @ £330% Fp,_ =69.28, Fp, | =~40.00 (b)

4 Converting the velocity data for this example to cartesian coordinates:

Vg, = 7500 @£ 180.00% Vg, =-75.00, Ve, = 0
Vg, = 7266 @£ 14570% Vg, =-60.02, Vo, = 40.95
Vg, = 3966 @Z 19441% Vg, =-3841 Vo, = —987 ()
Vp, = 6720 @£ 131.94° Vp, =—44.91, Vp, = 49.99

5 Substituting the example data into equation 11.16c:

[(69.28)(—44.91)+(~40)(49.99) |+[0]+[ 25T, +(0) +(120)(7.93) |
= %[(119.94)(—75) +(-1875.01)(0) ]
+ %[(—2509.35)(—60.02) +(-2645.23)(40.95) | )]
+ %[(—1259.67)(—38.41) +(-648.50)(-9.87) |
+[(0.4)(~40)(25)+(1.5)(120.9)(~5.87) +(0.8)(276.29)(7.93) |
6 The only unknown in this equation is the input torque T, which calculates to:
Ty, =2432k O]

which is the same as the answer obtained in Example 11-3.
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FIGURE 11-8

Input torque curve for an unbalanced crank-rocker fourbar linkage

This method of virtual work is useful if a quick answer is needed for the input torque, but
it does not give any information about the joint forces.

1111 CONTROLLING INPUT TORQUE—FLYWHEELS Watch a video (24:07)

The typically large variation in accelerations within a mechanism can cause significant
oscillations in the torque required to drive it at a constant or near constant speed. The
peak torques needed may be so high as to require an overly large motor to deliver them.
However, the average torque over the cycle, due mainly to losses and external work done,
may often be much smaller than the peak torque. We would like to provide some means
to smooth out these oscillations in torque during the cycle. This will allow us to size the
motor to deliver the average torque rather than the peak torque. One convenient and rela-
tively inexpensive means to this end is the addition of a flywheel to the system.

TORQUE VARIATION Figure 11-8 shows the variation in the input torque for a
crank-rocker fourbar linkage over one full revolution of the drive crank. It is running
at a constant angular velocity of 50 rad/sec. The torque varies a great deal within one
cycle of the mechanism, going from a positive peak of 341.7 Ib-in to a negative peak of
—166.4 1b-in. The average value of this torque over the cycle is only 70.2 Ib-in, being
due to the external work done plus losses. This linkage has only a 12-1b external force
applied to link 3 at the CG and a 25 lb-in external torque applied to link 4. These small
external loads cannot account for the large variation in input torque required to maintain
constant crank speed. What then is the explanation? The large variations in torque are
evidence of the kinetic energy that is stored in the links as they move. We can think of the
positive pulses of torque as representing energy delivered by the driver (motor) and stored
temporarily in the moving links, and the negative pulses of torque as energy attempting
to return from the links to the driver. Unfortunately most motors are designed to deliver
energy but not to take it back. Thus the “returned energy” has no place to go.
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Speed Speed Operating points
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% of Rated Torque % of Rated Torque
(a) Speed—-torque characteristic of a PM electric motor (b) Load lines superposed on speed—-torque curve
FIGURE 11-9

DC permanent magnet (PM) electric motor's typical speed-torque characteristic

Figure 11-9 shows the speed-torque characteristic of a permanent magnet (PM) DC
electric motor. Other types of motors will have differently shaped functions that relate
motor speed to torque as shown in Figures 2-41 and 2-42, but all drivers (sources) will
have some such characteristic curve. As the torque demands on the motor change, the
motor’s speed must also change according to its inherent characteristic. This means that
the torque curve being demanded in Figure 11-8 will be very difficult for a standard motor
to deliver without drastic changes in its speed.

The computation of the torque curve in Figure 11-8 was made on the assumption
that the crank (thus the motor) speed was a constant value. All the kinematic data used in
the force and torque calculation were generated on that basis. With the torque variation
shown we would have to use a large-horsepower motor to provide the power required to
reach that peak torque at the design speed:

Power = torque x angular velocity

rad in-lb

Peak power = 341.7 Ib-in x 50 — =17 085 =2.59 hp
sec

sec

The power needed to supply the average torque is much smaller.

d in-1b
Average power = 70.2 Ib-in x 50 18 351022 - 053 hp
sec sec

It would be extremely inefficient to specify a motor based on the peak demand of the
system, as most of the time it will be underutilized. We need something in the system
which is capable of storing kinetic energy. One such kinetic energy storage device is
called a flywheel.

FLYWHEEL ENERGY Figure 11-10 shows a flywheel, designed as a flat circular
disk, attached to a motor shaft which might also be the driveshaft for the crank of our link-
age. The motor supplies a torque magnitude 7, which we would like to be as constant as
possible, i.e., to be equal to the average torque T;,,. The load (our linkage), on the other
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FIGURE 11-10

Flywheel on a driveshaft

T,

/ / Motor

Ty

\

Flywheel

side of the flywheel, demands a torque 77 which is time varying as shown in Figure 11-8.
The kinetic energy in a rotating system is:

1
E=-I0"
2

(11.17)

where [ is the moment of inertia of all rotating mass on the shaft. This includes the I of
the motor rotor and of the linkage crank plus that of the flywheel. We want to determine
how much 7 we need to add in the form of a flywheel to reduce the speed variation of the
shaft to an acceptable level. We begin by writing Newton’s law for the free-body diagram

in Figure 11-10.

but we want:

SO:

substituting:

gives:

and integrating:

TL _Ta

do do( do do
o=——=— =—
dt dt do

do

do
w = 19%

(71 — T )dO=Tw do>

(11.18a)

(11.18b)
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f@w [
_[ " (1, - Tavg)dez_[ " I o do
0@ pin Opmin
(11.18¢c)
0@ mqx 1 2 2
'[e@mmin (TL — Tavg )de = EI (wmax - (’)min)

The left side of this expression represents the change in energy E between the maxi-
mum and minimum shaft @’s and is equal to the area under the torque-time diagram™
(Figures 11-8, and 11-11) between those extreme values of ®. The right side of equation
11.18c is the change in energy stored in the flywheel. The only way we can extract energy
from the flywheel is to slow it down as shown in equation 11.17. Adding energy will speed
it up. Thus it is impossible to obtain exactly constant shaft velocity in the face of chang-
ing energy demands by the load. The best we can do is to minimize the speed variation
(000 — Opin) by providing a flywheel with sufficiently large 1.

ZDEXAMPLE 115

Determining the Energy Variation in a Torque-Time Function.

619

* There is often confu-

sion between torque and
energy because they appear
to have the same units of
Ib-in (in-lb) or N-m (m-N).
This leads some students
to think that they are the
same quantity, but they are
not. Torque # energy. The
integral of torque with
respect to angle, measured
in radians, is equal to
energy. This integral has
the units of in-lb-rad. The
radian term is usually omit-
ted since it is in fact unity.
Power in a rotating system
is equal to torque x angular
velocity (measured in rad/
sec), and the power units
are then (in-lb-rad)/sec.
When power is integrated

Given: An input torque-time function which varies over its cycle. Figure 11-11 shows the  versus time to get energy,
input torque curve from Figure 11-8. The torque is varying during the 360° cycle  the resulting units are in-Ib-
about its average value. rad, the same as the integral

of torque versus angle. The

Find: The total energy variation over one cycle. radians are again usually

dropped, contributing to the

Solution: confusion.

Torque Area Area
+200.73 + 153.88
341.7 +
A B A
/ RMS Areas of torque pulses
QA - LS in order over one cycle
Avg.
70.2 - /4\ - - K \ - & Order Neg Area Pos Area
0 > 1 -261.05 200.73
Crank Angle © 2 -92.02 153.88
) (0]
i max Energy units are Ib—in-rad
Area Area
-261.05 -92.02
-341.7 +
0 360

FIGURE 11-11
Integrating the pulses above and below the average value in the input torque function
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TABLE 11-1 Integrating the Torque Function

From Area= E Accum.Sum=F
AtoB 4200.73 +200.73 0, @B
BtoC —261.05 —-60.32 0 @C
CtoD +153.88 4+93.56
DtoA —92.02 +1.54

Total Energy =E @ Opq —E @ O
=(-60.32)—(+200.73) = —261.05 in-1b

Calculate the average value of the torque-time function over one cycle, which in this case is
70.2 Ib-in. (Note that in some cases the average value may be zero.)

Note that the integration on the left side of equation 11.18c is done with respect to the average
line of the torque function, not with respect to the 0 axis. (From the definition of the average,
the sum of positive area above an average line is equal to the sum of negative area below that
line.) The integration limits in equation 11.18 are from the shaft angle 0 at which the shaft ®
is a minimum to the shaft angle 0 at which ® is a maximum.

The minimum o will occur after the maximum positive energy has been delivered from the
motor to the load, i.e., at a point () where the summation of positive energy (area) in the torque
pulses is at its largest positive value.

The maximum ® will occur after the maximum negative energy has been returned to the load,
i.e., at a point () where the summation of energy (area) in the torque pulses is at its largest
negative value.

To find these locations in 6 corresponding to the maximum and minimum ®’s and thus find the
amount of energy needed to be stored in the flywheel, we need to numerically integrate each
pulse of this function from crossover to crossover with the average line. The crossover points
in Figure 11-11 have been labeled A, B, C, and D. (Program LINKAGES does this integration
for you numerically, using a trapezoidal rule.)

The LINKAGES program prints the table of areas shown in Figure 11-11. The positive and
negative pulses are separately integrated as described above. Reference to the plot of the
torque function will indicate whether a positive or negative pulse is the first encountered in a
particular case. The first pulse in this example is a positive one.

The remaining task is to accumulate these pulse areas beginning at an arbitrary crossover
(in this case point A) and proceeding pulse by pulse across the cycle. Table 11-1 shows this
process and the result.

Note in Table 11-1 that the minimum shaft speed occurs after the largest accumulated positive
energy pulse (+200.73 in-1b) has been delivered from the driveshaft to the system. Delivery
of energy slows the motor down. Maximum shaft speed occurs after the largest accumulated
negative energy pulse (—60.32 in-1b) has been returned from the system by the driveshaft. This
return of stored energy will speed up the motor. The total energy variation is the algebraic
difference between these two extreme values, which in this example is —261.05 in-lb. This
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negative energy coming out of the system needs to be absorbed by the flywheel and then re-
turned to the system during each cycle to smooth the variations in shaft speed.

SIZING THE FLYWHEEL ~ We now must determine how large a flywheel is needed to
absorb this energy with an acceptable change in speed. The change in shaft speed during
a cycle is called its fluctuation (FI) and is equal to:

Fl =000 — Opin (11.19a)

We can normalize this to a dimensionless ratio by dividing it by the average shaft
speed. This ratio is called the coefficient of fluctuation (k).

Mmax — O
f=—max __mn (11.19b)
(Davg

This coefficient of fluctuation is a design parameter to be chosen by the designer. It
typically is set to a value between 0.01 and 0.05, which corresponds to a 1 to 5% fluctua-
tion in shaft speed. The smaller this chosen value, the larger the flywheel will have to be.
This presents a design trade-off. A larger flywheel will add more cost and weight to the
system, which factors have to be weighed against the smoothness of operation desired.

We found the required change in energy E by integrating the torque curve

J‘e@wmax

T — Ty |JAO=E 11.20a
0@ pmin ( g an) ( )

and can now set it equal to the right side of equation 11.18c:
E= %1 (@hax ~ OPin) (11.20b)
Factoring this expression:
E= %I (@ max * Ormin ) Ormar — Opuin) (11.20¢)

If the torque-time function were a pure harmonic, then its average value could be
expressed exactly as:

(O + M,
WOqug = M (11.21)

Our torque functions will seldom be pure harmonics, but the error introduced by us-
ing this expression as an approximation of the average is acceptably small. We can now
substitute equations 11.19b and 11.21 into equation 11.20c to get an expression for the
mass moment of inertia /; of the system flywheel needed.

E= %Is (Zcoavg)(kcoavg)

I, = E (11.22)

2
kw avg
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FIGURE 11-12
Input torque curve for the linkage in Figure 11-8 after smoothing with a flywheel

Equation 11.22 can be used to design the physical flywheel by choosing a desired
coefficient of fluctuation &, and using the value of £ from the numerical integration of the
torque curve (see Table 11-1) and the average shaft m to compute the needed system /.
The physical flywheel’s mass moment of inertia I is then set equal to the required system
I;. But if the moments of inertia of the other rotating elements on the same driveshaft
(such as the motor) are known, the physical flywheel’s required /ycan be reduced by those
amounts.

The most efficient flywheel design in terms of maximizing / for minimum material
used is one in which the mass is concentrated in its rim and its hub is supported on spokes,
like a carriage wheel. This puts the majority of the mass at the largest radius possible and
minimizes the weight for a given /. Even if a flat, solid circular disk flywheel design is
chosen, either for simplicity of manufacture or to obtain a flat surface for other functions
(such as an automobile clutch), the design should be done with an eye to reducing weight
and thus cost. Since in general / = mr2, a thin disk of large diameter will need fewer
pounds of material to obtain a given I than will a thicker disk of smaller diameter. Dense
materials such as cast iron and steel are the obvious choices for a flywheel. Aluminum
is seldom used. Though many metals (lead, gold, silver, platinum) are more dense than
iron and steel, one can seldom get the accounting department’s approval to use them in
a flywheel.

Figure 11-12 shows the change in the input torque T, for the linkage in Figure 11-8
after the addition of a flywheel sized to provide a coefficient of fluctuation of 0.05. The
oscillation in torque about the unchanged average value is now 5%, much less than what
it was without the flywheel. A much smaller-horsepower motor can now be used because
the flywheel is available to absorb the energy returned from the linkage during its cycle.

1112 A LINKAGE FORCE TRANSMISSION INDEX

The transmission angle was introduced in Chapter 2 and used in subsequent chapters as
an index of merit to predict the kinematic behavior of a linkage. A too-small transmission
angle predicts problems with motion and force transmission in a fourbar linkage. Unfortu-
nately, the transmission angle has limited application. It is only useful for fourbar linkages
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and then only when the input and output torques are applied to links that are pivoted to
ground (i.e., the crank and rocker). When external forces are applied to the coupler link,
the transmission angle tells nothing about the linkage’s behavior.

Holte and Chasel!l define a joint-force index (JFI) which is useful as an indicator of
any linkage’s ability to smoothly transmit energy regardless of where the loads are applied
on the linkage. It is applicable to higher-order linkages as well as to the fourbar linkage.
The JFI at any instantaneous position is defined as the ratio of the maximum static force
in any joint of the mechanism to the applied external load. If the external load is a force,
then it is:

F.
JFI = MAX|—~ for all pairs i, j (11.23a)
ext
If the external load is a torque, then it is:
Fy .
JFI = MAX|—— for all pairs i, j (11.23b)
ext

where, in both cases, Fj; is the force in the linkage joint connecting links i and ;.

The Fj; are calculated from a static force analysis of the linkage. Dynamic forces
can be much greater than static forces if speeds are high. However, if this static force
transmission index indicates a problem in the absence of any dynamic forces, then the
situation will obviously be worse at speed. The largest joint force at each position is used
rather than a composite or average value on the assumption that high friction in any one
joint is sufficient to hamper linkage performance regardless of the forces at other joints.

Equation 11.23a is dimensionless and so can be used to compare linkages of different
design and geometry. Equation 11.23b has dimensions of reciprocal length, so caution
must be exercised when comparing designs when the external load is a torque. Then the
units used in any comparison must be the same, and the compared linkages should be
similar in size.

Equations 11.23 apply to any one instantaneous position of the linkage. As with the
transmission angle, this index must be evaluated for all positions of the linkage over its
expected range of motion and the largest value of that set found. The peak force may move
from pin to pin as the linkage rotates. If the external loads vary with linkage position,
they can be accounted for in the calculation.

Holte and Chase suggest that the JFI be kept below a value of about 2 for linkages
whose output is a force. Larger values may be tolerable especially if the joints are de-
signed with good bearings that are able to handle the higher loads.

There are some linkage positions in which the JFI can become infinite or indetermi-
nate as when the linkage reaches an immovable position, defined as the input link or input
joint being inactive. This is equivalent to a stationary configuration as described in earlier
chapters provided that the input joint is inactive in the particular stationary configura-
tion. These positions need to be identified and avoided in any event, independent of the
determination of any index of merit. In some cases the mechanism may be immovable
but still capable of supporting a load. See reference [1] for more detailed information on
these special cases.
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TABLE P11-0
Topic/Problem Matrix

11.4 Force Analysis of a
Fourbar
Instantaneous
11-8, 11-9, 11-10,
11-11, 11-12, 11-20
Continuous

11-13, 11-15, 11-21,
11-26, 11-29, 11-32,

11-35, 11-38

11.5 Force Analysis of a
Crank-Slider or Slid-
er-Crank

11-16, 11-17, 11-18,

11-45

11.7 Linkages with More
Than Four Bars
11-1, 11-2

11.8 Shaking Forces and
Torques
11-3, 11-5, 11-47 to
11-51

1110 Torque Analysis by
Energy Methods
11-4, 11-6, 11-22,

11-23, 11-24, 11-25,
11-27, 11-28, 11-30,
11-31, 11-33, 11-34,
11-36, 11-37, 11-39,

11-46

1111 Flywheels 11-7,
11-19, 11-40 to
11-44

1112 Linkage Force Trans-

mission Index
11-14, 11-52
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1113 PRACTICAL CONSIDERATIONS

This chapter has presented some approaches to the computation of dynamic forces in
moving machinery. The newtonian approach gives the most information and is neces-
sary in order to obtain the forces at all pin joints so that stress analyses of the members
can be done. Its application is really quite straightforward, requiring only the creation of
correct free-body diagrams for each member and the application of the two simple vector
equations which express Newton’s second law to each free body. Once these equations
are expanded for each member in the system and placed in standard matrix form, their
solution (with a computer) is a trivial task.

The real work in designing these mechanisms comes in the determination of the
shapes and sizes of the members. In addition to the kinematic data, the force computation
requires only the masses, CG locations, and mass moments of inertia versus those CGs for
its completion. These three geometric parameters completely characterize the member for
dynamic modeling purposes. Even if the link shapes and materials are completely defined
at the outset of the force analysis process (as with the redesign of an existing system), it
is a tedious exercise to calculate the dynamic properties of complicated shapes. Current
solids modeling CAD systems make this step easy by computing these parameters auto-
matically for any part designed within them.

If, however, you are starting from scratch with your design, the blank-paper syndrome
will inevitably rear its ugly head. A first approximation of link shapes and selection of
materials must be made in order to create the dynamic parameters needed for a “first pass”
force analysis. A stress analysis of those parts, based on the calculated dynamic forces,
will invariably find problems that require changes to the part shapes, thus requiring recal-
culation of the dynamic properties and recomputation of the dynamic forces and stresses.
This process will have to be repeated in circular fashion (iteration—see Chapter 1) until
an acceptable design is reached. The advantage of using a computer to do these repetitive
calculations is obvious and cannot be overstressed. An equation solver program such as
Mathcad, Matlab, or TKSolver will be a useful aid in this process by reducing the amount
of computer programming necessary.

Students with no design experience are often not sure how to approach this process
of designing parts for dynamic applications. The following suggestions are offered to get
you started. As you gain experience, you will develop your own approach.

It is often useful to create complex shapes from a combination of simple shapes, at
least for first approximation dynamic models. For example, a link could be considered to
be made up of a hollow cylinder at each pivot end, connected by a rectangular prism along
the line of centers. It is easy to calculate the dynamic parameters for each of these simple
shapes and then combine them. The steps would be as follows (repeated for each link):

1 Calculate the volume, mass, CG location, and mass moments of inertia with respect
to the local CG of each separate part of your built-up link. In our example link these
parts would be the two hollow cylinders and the rectangular prism.

2 Find the location of the composite CG of the assembly of the parts into the link by
the method shown in Section 10.4 and equations 10.3. See also Figure 10-2.

3 Use the parallel axis theorem (equation 10.8) to transfer the mass moments of inertia
of each part to the common, composite CG for the link. Then add the individual,
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transferred I’s of the parts to get the total / of the link about its composite CG. See
Section 10.6.

Steps 1 to 3 will create the link geometry data for each link needed for the dynamic
force analysis as derived in this chapter.

4 Do the dynamic force analysis.
5 Do a dynamic stress and deflection analysis of all parts.
6 Redesign the parts and repeat steps 1 to 5 until a satisfactory result is achieved.

Remember that lighter (lower-mass) links will have smaller inertial forces on them
and thus could have lower stresses despite their smaller cross sections. Also, smaller mass
moments of inertia of the links can reduce the driving torque requirements, especially at
higher speeds. But be cautious about the dynamic deflections of thin, light links becom-
ing too large. We are assuming rigid bodies in these analyses. That assumption will not
be valid if the links are too flexible. Always check the deflections as well as the stresses
in your designs.

1114 REFERENCE

1 Holte, J. E., and T. R. Chase. (1994). “A Force Transmission Index for Planar Link-
age Mechanisms.” Proc. of 23rd Biennial Mechanisms Conference, Minneapolis, MN,
p.377.

1115 PROBLEMSS

11-1 Draw free-body diagrams of the links in the geared fivebar linkage shown in Figure
4-11 and write the dynamic equations to solve for all forces plus the driving torque.
Assemble the symbolic equations in matrix form for solution.

11-2  Draw free-body diagrams of the links in the sixbar linkage shown in Figure 4-12 and
write the dynamic equations to solve for all forces plus the driving torque. Assemble
the symbolic equations in matrix form for solution.

“t£11-3  Table P11-1 shows kinematic and geometric data for several crank-slider linkages of
the type and orientation shown in Figure P11-1. The point locations are defined as
described in the text. For the row(s) in the table assigned, use the matrix method of
Section 11.5 and program MATRIX, Mathcad, Matlab, TKSolver, or a matrix solving
calculator to solve for forces and torques at the position shown. Also compute the
shaking force and shaking torque. Consider the coefficient of friction 1 between slider
and ground to be zero. You may check your solution by opening the solution files (lo-
cated in the downloadable Solutions folder) named P11-03x (where x is the row letter)
in program LINKAGES.

“f11-4 Repeat Problem 11-3 using the method of virtual work to solve for the input torque on
link 2. Additional data for corresponding rows are given in Table P11-2.

“f11-5 Table P11-3 shows kinematic and geometric data for several pin-jointed fourbar link-
ages of the type and orientation shown in Figure P11-2. All have 6; = 0. The point
locations are defined as described in the text. For the row(s) in the table assigned, use
the matrix method of Section 11.4 and program MATRIX or a matrix solving calculator
to solve for forces and torques at the position shown. You may check your solution by
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§ Al problem figures

are downloadable as PDF
files, and some are also
downloadable as animated
Working Model files. PDF
filenames are the same as

the figure number. Run the
file Animations.html to ac-

- 11
cess and run the animations.

* Answers in Appendix F.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

¥ These problems are suited
to solution using program
LINKAGES.
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TABLE P11-1 Data for Problem 11-3 (See Figure P11-1 for Nomenclature)

Part 1

Lengths in inches, angles in degrees, mass in blobs, angular velocity in rad/sec

Row link 2 link 3 offset 0, O, O, m; mg my
a 12 0 45 10 20 0.002 0.020 0.060
b 3 10 1 30 15 5 0.050 0.100 0.200
c 5 15 -1 260 20 15 0.010 0.020 0.030
d 6 20 1 -75 -10 -10 0.006 0.150 0.050
e 2 8 0 135 25 25 0.001 0.004 0.014
f 10 35 2 120 5 -20 0.150 0.300 0.050
g 7 25 -2 - 45 30 -15 0.080 0.200 0.100
Part 2 Angular acceleration in rad/secz, moments of Inertia in blob—inz, torque in Ib-in
Row I, Is 92 % Rey 35 P, 8Fp, Rep; ORp .
mag ang mag ang mag ang mag ang
a 0.10 0.2 2 0 5 0 0 (] 0 0 20
b 020 04 1 20 4 -30 10 45 4 30 -35
c 0.05 041 3 -40 9 50 32 270 0 0 - 65
d 0.12 0.3 3 120 12 60 15 180 2 60 -12
e 030 0.8 0.5 30 3 75 6 - 60 2 75 40
f 024 06 6 45 15 135 25 270 0 0 -75
g 045 09 4 - 45 10 225 9 120 5 45 -90
Part 3 Forces in Ib, linear accelerations in in/sec?
Row 05 oy ag, ag, ag, ag, ag, ag,
mag ang mag ang mag ang
a 166.40 - 240 203.96 213.69 371.08 200.84 357.17 180
b 17713 3433 225.06 231.27 589.43 200.05 711.97 180
c 195.17 —134.76 1200.84 37.85 2088.04 43.43 929.12 0
d 199.86 —29.74 301.50 230.71 511.74 74.52 23.97 180
e 169.82 13.12 312.75 -17.29 976.79 -58.13 849.76 0
f 169.03 3.29 192.09 23.66 302.50 -29.93 301.92 0
g 186.78 -172.20 3600.50 90.95 8052.35 134.66  4909.27 180
TABLE P11-2 Data for Problem 11-4
See also Table P11-1. Unit system is the same as in that table.

Row ®w; W ,mag Vg ,an9 Vg smag Vg 39 Vg 2mag Vg 429 Vpsmag Vp3an9
a —-243 20.0 135 35.24 152.09 35.14 180 35.24 152.09
b -3.90 15.0 140 40.35 140.14 24.45 180 26.69 153.35
c 1.20 60.0 310 89.61 -8.23 93.77 0 89.61 -8.23
d 0.83 30.0 315 69.10 19115 63.57 180 70.63 191.01
e 4.49 125 255 56.02 21.93 29.01 180 61.36  204.87
f 0.73 30.0 255 60.89 210.72 38.46 180 60.89 210.72
g -5.98 120.0 0 211.46 61.31 166.14 0 208.60 53.19
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8r,; Y\ LNCS parallel to XY

~ .
e e
1
2 offset ¢

X —ccs ¢

Generic linkage and free-body diagrams

F3y = - Fy3

(a)

2 4

(9)

Sketches of the linkages in Table P11-1
FIGURE P11-1

Linkage geometry, notation, and free-body diagrams for problems 11-3 to 11-4
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8F,; P LRCS

LRCS parallel
to O4B

Sketches of the linkages in Table P11-3

FIGURE P11-2
Linkage geometry, notation, and free-body diagrams for Problems 11-5 to 11-7
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TABLE P11-3 Data for Problems 11-5 and 11-7 (See Figure P11-2 for Nomenclature)
Part 1 Lengths in inches, angles in degrees, angular acceleration in rad/sec?
Row link2 link3  link4  link1 0, 0, A o, oy o,
a 12 8 15 45 24.97 99.30 20 75.29 244.43
b 3 10 12 30 90.15 106.60 5 140.96 161.75
c 5 15 14 2 260 128.70 151.03 15 78.78 53.37
d 6 19 16 10 -75 91.82 124.44 -10 —214.84 — 25182
€ 2 8 7 135 34.02 122.71 25 71.54 —14.19
f 17 35 23 4 120 348.08 19.01 -20 -101.63 —-150.86
g 7 25 10 19 100 4.42 61.90 -15 -17.38 -168.99
Part 2 Angular velocity in rad/sec, mass in blobs, moment of Inertia in blob-in?, torque in Ib-in
Row w, (03 (,04 m, m, m, 12 I3 I4 T3 T4
a 20 -562 3.56 0.002 0.02 0.10 0.10 0.20 0.50 -15 25
b 10 -10.31 - 7.66 0.050 0.10 0.20 0.20 0.40 0.40 12 0
c 20 16.60 14.13 0.010 0.02 0.05 0.05 0.10 0.13 -10 20
d 20 3.90 -3.17 0.006 0.15 0.07 0.12 0.30 0.15 0 30
e 20 1.06 5.61 0.001 0.04 0.09 0.30 0.80 0.30 25 40
f 20 18.55 21.40 0.150 0.30 0.25 0.24 0.60 0.92 -25
g 20 410 16.53 0.080 0.20 0.12 0.45 0.90 0.54 0 0
Part 3 Lengths in inches, angles in degrees, linear accelerations in in/sec?
Row Rg, Rg, Rgs Rgs Rgs Ry, 49, 49, 9g3 8g3
mag ang mag ang mag ang mag ang mag ang
a 2 0 5 0 4 30 801.00 22214 1691.49 208.24
b 1 20 4 -30 6 40 100.12 232.86 985.27 194.75
c 3 -40 9 50 7 0 1200.84 37.85 3120.71 22.45
d 3 120 12 60 6 -30 1200.87 226.43 4543.06 81.15
e 0.5 30 3 75 2 - 40 200.39 34142 749.97 295.98
f 6 45 15 135 10 25 2403.00 347.86 12 064.20 310.22
g 4 - 45 10 225 4 45 1601.12 237.15 2562.10 -77.22
Part 4 Linear accelerations in in/sec?, forces in Ib, lengths in inches, angles in degrees
Row 89, 994 Fos 8FP3 Ros, é3"\’:::3 Fo, 8Fp4 Ro, BRP,;
mag ang mag ang mag ang mag ang mag ang
a 979.02 222.27 0 0 0 0 40 -30 8 0
b 1032.32 256.52 4 30 10 45 15 -55 12 0
c 1446.58 316.06 0 0 0 0 75 45 14 0
d 1510.34 215 2 45 15 180 20 270 16 0
e 69.07 286.97 9 0 6 - 60 16 60 7 0
f 4820.72 242.25 0 0 0 0 23 0 23 0
g 1284.55 —41.35 12 - 60 9 120 32 20 10 0

11



630

DESIGN OF MACHINERY 6ed CHAPTER 11

TABLE P11-4 Data for Problem 11-6

Row v92mag v92ang Vg, mag v93ang v94mag Vg, ang V%mag V% ang Velmag VB, ang
a 40.00 135.00 54.44 145.19 14.23 219.30 54.44 145.19 41.39  -160.80
b 10.00 140.00 21.46 14.74 4594 56.60 122.10 40.04 130.51 29.68
c 60.00 -50.00 191.94 299.70 98.91 241.03 191.94 -60.30 296.73 -118.97
d 60.00 135.00 94.36 353.80 19.03 4.44 152.51 -3.13 67.86 26.38
e 10.00 255.00 42.89 22313 1.22 172.71 37.01 -140.37 48.41 -155.86
f 120.00 255.00 618.05 211.39 213.98 134.01 618.03 —148.61 692.08 116.52
g 80.00 145.00 118.29 205.52 66.10 196.90 154.85 -152.36 21715 164.33

* Answers in Appendix F.

 These problems are
suited to solution using
Mathcad, Matlab, or

TKSolver equation solver

programs.

 These problems are
suited to solution using

program LINKAGES.

Dimensions in inches

FIGURE P11-3

Problem 11-8

*11-6

117

11-8

11-9

opening the solution files named P11-05x (where x is the row letter) in program LINK-
AGES.

Repeat Problem 11-5 using the method of virtual work to solve for the input torque on
link 2. Additional data for corresponding rows are given in Table P11-4.

For the row(s) assigned in Table P11-3 (a-f), input the associated disk file to program
LINKAGES, calculate the linkage parameters for crank angles from zero to 360° by 5°
increments with o = 0, and design a steel disk flywheel to smooth the input torque
using a coefficient of fluctuation of 0.05. Minimize the flywheel weight.

Figure P11-3 shows a fourbar linkage and its dimensions. The steel crank and rocker
have uniform cross sections 1 in wide by 0.5 in thick. The aluminum coupler is 0.75 in
thick. In the instantaneous position shown, the crank O»A has ® = 40 rad/sec and o0 =
—20 rad/sec?. There is a horizontal force at P of F = 50 Ib. Find all pin forces and the
torque needed to drive the crank at this instant.

Figure P11-4a shows a fourbar linkage and its dimensions in meters. The steel crank
and rocker have uniform cross sections of 50 mm wide by 25 mm thick. The aluminum
coupler is 25 mm thick. In the instantaneous position shown, the crank O,A has ® =
10 rad/sec and o, = 5 rad/sec?. There is a vertical force at P of F = 100 N. Find all pin
forces and the torque needed to drive the crank at this instant.

FIGURE P11-4
Problems 11-9 to 11-10
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FIGURE P11-5
Problems 11-11 to 11-12

11-10

1-11

H11-12

11-13

f11-14

f11-15

f11-16

Figure P11-4b shows a fourbar linkage and its dimensions in meters. The steel crank
and rocker have uniform cross sections of 50 mm wide by 25 mm thick. The aluminum
coupler is 25 mm thick. In the instantaneous position shown, the crank O»A has

® = 15 rad/sec and o = —10 rad/sec?. The horizontal force applied at point P is F = 500
N. Find all pin forces and the torque needed to drive the crank at this instant.

Figure P11-5a shows a fourbar linkage and its dimensions in meters. The steel crank,
coupler, and rocker have uniform cross sections of 50 mm wide by 25 mm thick. In the
instantaneous position shown, the crank O»A has @ = 15 rad/sec and o = —10 rad/sec?.
There is a vertical force at P of F =500 N. Find all pin forces and the torque needed to
drive the crank at this instant.

Figure P11-5b shows a fourbar linkage and its dimensions in meters. The steel crank,
coupler, and rocker have uniform cross sections of 60-mm diameter. In the instanta-
neous position shown, the crank O»A has ® = —10 rad/sec and o = 10 rad/sec?. There
is a horizontal force at P of F =500 N. Find all pin forces and the torque needed to
drive the crank at this instant.

Figure P11-6 shows a water-jet loom laybar drive mechanism driven by a pair of
Grashof crank-rocker fourbar linkages. The crank rotates at 500 rpm. The laybar is
carried between the coupler-rocker joints of the two linkages at their respective instant
centers I3 4. The combined weight of the reed and laybar is 29 Ib. A 540-Ib beat-up
force from the cloth is applied to the reed as shown. The steel links have a 2 x 1-in
uniform cross section. Find the forces on the pins for one revolution of the crank. Find
the torque-time function required to drive the system.

Figure P11-7 shows a crimping tool. Find the force F,,; needed to generate a 2000-1b
Ferimp- Find the pin forces. What is this linkage’s joint force transmission index (JFI)
in this position?

Figure P11-8 shows a walking-beam conveyor mechanism that operates at slow speed
(25 rpm). The boxes being pushed each weigh 50 1b. Determine the pin forces in the
linkage and the torque required to drive the mechanism through one revolution. Ne-
glect the masses of the links.

Figure P11-9 shows a surface grinder table crank-slider drive that operates at 120 rpm.
The crank radius is 22 mm, the coupler is 157 mm, and its offset is 40 mm. The mass
of table and workpiece combined is 50 kg. Find the pin forces, slider side loads, and
driving torque over one revolution. Neglect the mass of the crank and connecting rod.

631

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

 These problems are suited
to solution using program
LINKAGES.
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. . beat-up
View as a vzhdeo I coupler reed force
http://www.designof- n 8.375
machinery.com/DOM/ laybar =37
. . crank r=>.
loom_laybar_drive.avi o)
inertia TP * inertia
. force force
water-jet orifice AN A7 | (T
incoming Q "s?ot" thr)ead d\ .
threads § weave ground N\ rocker
(warp) 9.625 N 7.187
@ -43° .
N

(A

(b) Linkage, laybar, reed, and dimensions

Oin rocker - reed beat-up force
. 540 Ib
4-bar linkage o
laybar
(a) Warp, weave, laybar, reed, and AN 3 3
laybar drive for a water-jet loom ‘»:\accelerations !
N\ |
7834 AN 4169
in/sec ‘\ in/sec?
AN
)
(c) Acceleration on laybar and force on reed
FIGURE P11-6 Copyright © 2018 Robert L. Norton: All Rights Reserved
Problem 11-13 - Fourbar linkage for laybar drive, showing forces and accelerations

Frana l

Frana

AB =0.80,BC=1.23,CD=1.55AD =24

FIGURE P11-7
Problem 11-14
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View as a video
FIGURE P11-8 http://www.designofmachinery.com/DOM/walking_beam_eight-bar.avi

Problem 11-15

f11-17  Figure P11-10 shows a crank-slider power hacksaw that operates at 50 rpm. The bal-
anced crank is 75 mm; the uniform cross section coupler is 170 mm long, weighs 2 kg,
and its offset is 45 mm. Link 4 weighs 15 kg. Find the pin forces, slider side loads,
and driving torque over one revolution for a cutting force of 250 N in the forward direc-
tion and 50 N during the return stroke.

f11-18  Figure P11-11 shows a crank-slider paper roll off-loading station. The paper rolls have
a0.9-m OD and 0.22-m ID, are 3.23 m long, and have a density of 984 kg/m3. The
forks that support the roll are 1.2 m long. The motion is slow so inertial loading can be
neglected. Find the force required of the air cylinder to rotate the roll through 90°.

f11-19  Derive an expression for the relationship between flywheel mass and the dimensionless
parameter radius/thickness (#/f) for a solid disk flywheel of moment of inertia /. Plot
this function for an arbitrary value of / and determine the optimum #/¢ ratio to minimize
flywheel weight for that /.

View as a video
http://www.designofmachinery.com/
DOM/surface_grinder.avi O

grinding wheel \_5 = (’)5&

‘ workpié;:ier - ‘

— e 4 e

FIGURE P11-9
Problem 11-16

633

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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/ — Ly, =75 mm
o e L3=170 mm 2kg
...... C
15 kg B A
SN =, Ll
cut stroke Vbiade 4 45 mm 2|
-t -
| 1 O | JR I | -
T U ’’’’’’ Reoa -
| | | o

FIGURE P11-10
Problem 11-17 Power hacksaw

11-20

rocker arm (4) —

workpiece

View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi

Figure P11-12 shows an oil field pump mechanism. The head of the rocker arm is
shaped such that the lower end of a flexible cable attached to it will always be directly
over the well head regardless of the position of the rocker arm 4. The pump rod, which
connects to the pump in the well casing, is connected to the lower end of the cable.
The force in the pump rod on the up stroke is 2970 1b and the force on the down stroke
is 2300 Ib. Link 2 weighs 598.3 1b and has a mass moment of inertia of 11.8 Ib-in-sec?
(blob-in?); both include the counterweight. Its CG is on the link centerline, 13.2 in
from O,. Link 3 weighs 108 1b and its CG is on the link centerline, 40 in from A. It
has a mass moment of inertia of 150 Ib-in-sec? (blob-in2). Link 4 weighs 2706 Ib and
has a mass moment of inertia of 10 700 Ib-in-sec? (blob-in2); both include the coun-
terweight. Its CG is on the link centerline where shown. The crank turns at a constant

. I 'm . .. V-links (4)

paper i ":
rolling
machine

——

rod (3) off-loading station air cylinder (2)

FIGURE P11-11
Problem 11-18
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B-CG4 = 32.00
P-CG4 = 124.44
04-CG, = 79.22

View as a video
http://www.designot-
machinery.com/DOM/
oil_pump.avi

80

76 cable

pump rod

| |wellhead |

FIGURE P11-12 ’

Problems 11-20 to 11-23 An oil field pump - dimensions in inches

speed of 4 rpm CCW. At the instant shown in the figure the crank angle is at 45° with
respect to the global coordinate system. Find all pin forces and the torque needed to
drive the crank for the position shown. Include gravity forces because the links are
heavy and the speed is low.

f11-21  Use the information in Problem 11-20 to find and plot all pin forces and the torque
needed to drive the crank for one revolution of the crank.

f11-22  Use the information in Problem 11-20 to find the torque needed to drive the crank for
the position shown using the method of virtual work.

f11-23  Use the information in Problem 11-20 to find and plot the torque needed to drive the
crank for one revolution of the crank using the method of virtual work.

f11-24  In Figure P11-13, links 2 and 4 each weigh 2 Ib and there are 2 of each (another set
behind). Their CGs are at their midpoints. Link 3 weighs 10 Ib. The mass moments of
inertia of links 2, 3, and 4 are 0.071, 0.430, and 0.077 Ib-in-sec? (blob-in2), respectively.
Find the torque needed to begin a slow CCW rotation of link 2 from the position shown
using the method of virtual work. Include gravity forces because the links are heavy
and the speed is low.

11-25 The linkage in Figure P11-14 has L; = 9.5, L, = 5.0, L3 = 7.4, L, = 8.0, and AP = 8.9
in. The steel crank and rocker have uniform cross sections 1 in wide by 0.5 in thick.
The aluminum coupler is 0.75 in thick. In the instantaneous position shown, the crank
0,A has ® = 40 rad/sec and o = —20 rad/sec2. There is a horizontal force at P of
F =501b. Find the torque needed to drive the crank at the position shown using the
method of virtual work.

* Answers in Appendix F.

 These problems are suited
11-26  For the linkage defined in Problem 11-25 use program LINKAGES to find and plot all to solution using Mathcad,

pin forces and the torque needed to drive the crank at a constant speed of 40 rad/sec for  Matlab, or TKSolver equa-
one revolution of the crank. tion solver programs.
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6.948 9.573

9.174

FIGURE P11-14
Problems 11-25 to 11-27 S

1297 —*
FIGURE P11-13

Problem 11-24 An aircraft overhead bin mechanism - dimensions in inches

11-27  For the linkage defined in Problem 11-25 find and plot the torque needed to drive the
crank at a constant speed of 40 rad/sec for one revolution of the crank using the method
of virtual work.

711-28 The linkage in Figure P11-15 has L =2.22, L, = 1.0, L3 = 2.06, L4 = 2.33, and

AP = 3.06 m. The steel crank and rocker have uniform cross sections of 50 mm wide
FIGURE P11-15 by 25 mm thick. The aluminum coupler is 25 mm thick. In the instantaneous position
Problems 11-28 to 11-30 shown, the crank 0,A has @ = 10 rad/sec and o = 5 rad/sec2. There is a vertical force
at P of F =100 N. Find the torque needed to drive the crank at the position shown us-
ing the method of virtual work.

11-29  For the linkage defined in Problem 11-28 use program LINKAGES to find and plot all
pin forces and the torque needed to drive the crank at a constant speed of 10 rad/sec for
one revolution of the crank.

11-30  For the linkage defined in Problem 11-28 find and plot the torque needed to drive the
crank at a constant speed of 10 rad/sec for one revolution of the crank using the method
of virtual work.

f11-31  The linkage in Figure P11-16 has L; = 1.82, L, = 0.72, L3 = 1.43, L, = 1.60, and
AP = 0.97 m. The steel crank and rocker have uniform cross sections 50 mm wide by
25 mm thick. The aluminum coupler is 25 mm thick. In the instantaneous position
FIGURE P11-16 shown, the crank O»A has o = 15 rad/sec and o = —10 rad/sec?. There is a horizon-
Problems 1-31 to 11-33 tal force a%t P of F =200 N. Find the torque needed to drive the crank at the position
shown using the method of virtual work.

11-32  For the linkage defined in Problem 11-31 use program LINKAGES to find and plot all

T These problems are suited pin forces and the torque needed to drive the crank at a constant speed of 15 rad/sec for
to solution using Marhcad, one revolution of the crank using the method of virtual work.

Matlab, or TKSolver equa-

tion solver programs.
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11-33  For the linkage defined in Problem 11-31 find and plot the torque needed to drive the
crank at a constant speed of 15 rad/sec for one revolution of the crank using the method
of virtual work.

f11-34  The linkage in Figure P11-17 has L; = 1.0, L, = 0.356, L3 = 0.785, L4 = 0.95, and
AP = 1.09 m. The steel crank, coupler, and rocker have uniform cross sections of 50
mm wide by 25 mm thick. In the instantaneous position shown, the crank O»A has
o = 15 rad/sec and o = —10 rad/sec2. The vertical force at P is F = 500 N.
Find the torque needed to drive the crank at the position shown using the method of
virtual work.

11-35 For the linkage defined in Problem 11-34 use program LINKAGES to find and plot all
pin forces and the torque needed to drive the crank at a constant speed of 15 rad/sec for
one revolution of the crank using the method of virtual work.

11-36  For the linkage defined in Problem 11-34 find and plot the torque needed to drive the
crank at a constant speed of 15 rad/sec for one revolution of the crank using the method 0, 0,
of virtual work.

11-37 The linkage in Figure P11-18 has L, = 2.22, L, = 0.86, L3 = 1.85, L, = 1.86, and FIGURE P11-17
AP = 1.33 m. The steel crank, coupler, and rocker have uniform cross sections of 50- Problems 11-34 to 11-36
mm diameter. In the instantaneous position shown, the crank O,A has ® = —10 rad/
sec and o, = 10 rad/sec2. There is a horizontal force at P of F'=300 N. Find the torque
needed to drive the crank at the position shown using the method of virtual work.

11-38  For the linkage defined in Problem 11-37 use program LINKAGES to find and plot all
pin forces and the torque needed to drive the crank at a constant speed of 10 rad/sec for
one revolution of the crank.

11-39  For the linkage defined in Problem 11-37 find and plot the torque needed to drive the
crank at a constant speed of 10 rad/sec for one revolution of the crank using the method

of virtual work. FIGURE P11-18

11-40 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-26  Problems 11-37 to 11-39
using a coefficient of fluctuation of 0.05 while minimizing flywheel weight.

f11-41  Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-29 11
using a coefficient of fluctuation of 0.05 while minimizing flywheel weight.

f11-42  Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-32
using a coefficient of fluctuation of 0.07 while minimizing flywheel weight.

f11-43  Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-35
using a coefficient of fluctuation of 0.05 while minimizing flywheel weight.

f11-44  Design a steel disk flywheel to smooth the input torque for the crank of Problem 11-38
using a coefficient of fluctuation of 0.06 while minimizing flywheel weight.

11-45 Table P11-5 gives kinematic and geometric data for a crank-slider linkage of the type
and orientation shown in Figure 11-4. For the row(s) in the table assigned, solve for
the three pin forces and the torque available at the crank for the position shown.

* Answers in Appendix F.
11-46 Table P11-5 gives kinematic and geometric data for a crank-slider linkage of the type

and orientation shown in Figure 11-4. For the row(s) assigned in the table, solve for T These problems are suited
the torque available at the crank using the method of virtual work for the position to solution using Mathcad,
shown, assuming no friction losses. Matlab, or, TKSolver equa-

tion solver programs.
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TABLE P11-5 Data for Problems 11-45 to 11-46 (See Figure 11-4 for Nomenclature)

Part 1 Lengths (inches), velocity (in/sec), acceleration (in/sec?)
Row link 2 link 3 d d d Ry Rys i
a 4 12 14 400 —-22760 13 3.0 0.15
b 3 10 8 375 67 350 1.0 2.5 0.00
c 5 15 12 390 36 400 17 3.8 0.10
d 6 20 18 700 45 430 2.0 5.0 0.18
e 2 8 8 225 3010 0.7 2.0 0.08
f 10 35 35 -900 69 750 33 8.8 0.12
g 7 25 25 -935 209 900 2.3 6.2 0.14
Part 2 force (Ibf, deg), mass (blobs), moments of Inertia (blob—inz)
Fp Fp
Row mag ang my ms3 mg IGZ IG_3
a 60 180 0.002 0.020 0.060 0.10 0.2
b 45 180 0.050 0.100 0.200 0.20 0.4
c 75 180 0.010 0.020 0.030 0.05 0.1
d 90 180 0.006 0.150 0.050 0.12 0.3
e 30 180 0.001 0.004 0.014 0.30 0.8
f 150 180 0.150 0.300 0.050 0.24 0.6
g 10 180 0.080 0.200 0.100 0.45 0.9

11-47  For the linkage in Problem 11-25 find and plot the shaking force and torque for one
revolution of the crank when it is driven at a constant speed of 40 rad/sec.

11-48  For the linkage in Problem 11-28 find and plot the shaking force and torque for one

revolution of the crank when it is driven at a constant speed of 10 rad/sec.
11-49  For the linkage in Problem 11-31 find and plot the shaking force and torque for one

revolution of the crank when it is driven at a constant speed of 15 rad/sec.

11-50 For the linkage in Problem 11-34 find and plot the shaking force and torque for one
revolution of the crank when it is driven at a constant speed of 15 rad/sec.

11-51 For the linkage in Problem 11-37 find and plot the shaking force and torque for one
revolution of the crank when it is driven at a constant speed of —10 rad/sec.

11-52  Determine the joint-force index (JFI) for the linkage in Problem 11-9.

" hitp://www.designofma- 4446  VIRTUAL LABORATORY View the video (35:38)"  View the lab $
chinery.com/DOM/Four-

bar_Machine_Virtual_labo- L11-1

View the downloadable video Fourbar Linkage Virtual Laboratory. Open the file
ratory.mp4

Virtual Fourbar Linkage Lab 11-1.doc and follow the instructions as directed by your
professor. For this lab it is suggested that you analyze only the data for the unbalanced
conditions of the linkage.

§ http://www.designofma-
chinery.com/DOM/Four-
bar_Virtual_Lab.zip
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1117 PROJECTS

The following problem statement applies to all the projects listed.

These larger-scale project statements deliberately lack detail and structure and are loosely defined.
Thus, they are similar to the kind of “identification of need” or problem statement commonly
encountered in engineering practice. It is left to the student to structure the problem through
background research and to create a clear goal statement and set of performance specifications
before attempting to design a solution. This design process is spelled out in Chapter 1 and should
be followed in all of these examples. All results should be documented in a professional engineering
report. See the Bibliography in Chapter 1 for references on report writing.

Some of these project problems are based on the kinematic design projects in Chapter 3. Those
kinematic devices can now be designed more realistically with consideration of the dynamic forces
that they generate. The strategy in most of the following project problems is to keep the dynamic
pin forces and thus the shaking forces to a minimum and also keep the input torque-time curve as
smooth as possible to minimize power requirements. All these problems can be solved with a pin-
jointed fourbar linkage. This fact will allow you to use program LINKAGES fo do the kinematic and
dynamic computations on a large number and variety of designs in a short time. There are infinities
of viable solutions to these problems. Iterate to find the best one! All links must be designed in
detail as to their geometry (mass, moment of inertia, etc.). An equation solver such as Mathcad,
Matlab, or TKSolver will be useful here. Determine all pin forces, shaking force, shaking torque,
and input horsepower required for your designs.

P11-1 The tennis coach needs a better tennis ball server for practice. This device must fire
a sequence of standard tennis balls from one side of a standard tennis court over the
net such that they land and bounce within each of the three court areas defined by the
court’s white lines. The order and frequency of a ball’s landing in any one of the three
court areas must be random. The device should operate automatically and unattended
except for the refill of balls. It should be capable of firing 50 balls between reloads.
The timing of ball releases should vary. For simplicity, a motor-driven pin-jointed link-
age design is preferred. This project asks you to design such a device to be mounted
upon a tripod stand of 5-foot height. Design it, and the stand, for stability against tip-
over due to the shaking forces and shaking torques which should also be minimized in
the design of your linkage. Minimize the input torque.

P11-2 The “Save the Skeet” foundation has requested a more humane skeet launcher be de-
signed. While they have not yet succeeded in passing legislation to prevent the whole-
sale slaughter of these little devils, they are concerned about the inhumane aspects
of the large accelerations imparted to the skeet as it is launched into the sky for the
sportsperson to shoot down. The need is for a skeet launcher that will smoothly accel-
erate the clay pigeon onto its desired trajectory. Design a skeet launcher to be mounted
upon a child’s “little red wagon.” Control your design parameters so as to minimize the
shaking forces and torques so that the wagon will remain as nearly stationary as pos-
sible during the launch of the clay pigeon.

P11-3 The coin-operated “kid bouncer” machines found outside supermarkets typically
provide a very unimaginative rocking motion to the occupant. There is a need for a
superior “bouncer” which will give more interesting motions while remaining safe for
small children. Design it for mounting in the bed of a pickup truck. Keep the shaking
forces to a minimum and the input torque-time curve as smooth as possible.

P11-4 NASA wants a zero-g machine for astronaut training to carry one person and provide a
negative 1-g acceleration for as long as possible. Design this device and mount it to the
ground plane so as to minimize dynamic forces and driving torque.

639
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P11-5

P11-6

P11-7

P11-8

P11-9

P11-10

P11-11

P11-12

The Amusement Machine Co. Inc. wants a portable “WHIP” ride which will give two or
four passengers a thrilling but safe ride and which can be trailed behind a pickup truck
from one location to another. Design this device and its mounting hardware to the
truck bed minimizing the dynamic forces and driving torque.

The Air Force has requested a pilot training simulator that will give potential pilots
exposure to g forces similar to those they will experience in dogfight maneuvers. De-
sign this device and mount it to the ground plane so as to minimize dynamic forces and
driving torque.

Cheers needs a better “mechanical bull” simulator for their “yuppie” bar in Boston. It
must give a thrilling “bucking bronco” ride but be safe. Design this device and mount
it to the ground plane so as to minimize dynamic forces and driving torque.

Gargantuan Motors Inc. is designing a new light military transport vehicle. Their cur-
rent windshield wiper linkage mechanism develops such high shaking forces when run
at its highest speed that the engines are falling out! Design a superior windshield wiper
mechanism to sweep the 20-1b armored wiper blade through a 90° arc while minimiz-
ing both input torque and shaking forces. The wind load on the blade, perpendicular to
the windshield, is 50 1b. The coefficient of friction of the wiper blade on glass is 0.9.

The Army’s latest helicopter gunship is to be fitted with the Gatling gun, which fires
50-mm-diameter, 2-cm-long spent uranium slugs at a rate of 10 rounds per second.
The reaction (recoil) force may upset the helicopter’s stability. A mechanism is needed
that can be mounted to the frame of the helicopter and which will provide a synchro-
nous shaking force, 180° out of phase with the recoil force pulses, to counteract the
recoil of the gun. Design such a linkage and minimize its torque and power drawn
from the aircraft’s engine. Total weight of your device should also be minimized.

Steel pilings are universally used as foundations for large buildings. These are often
driven into the ground by hammer blows from a “pile driver.” In certain soils (sandy,
muddy) the piles can be “shaken” into the ground by attaching a “vibratory driver” that
imparts a vertical, dynamic shaking force at or near the natural frequency of the pile-
earth system. The pile can literally be made to “fall into the ground” under optimal
conditions. Design a fourbar linkage-based pile shaker mechanism which, when its
ground link is firmly attached to the top of a piling (supported from a crane hook), will
impart a dynamic shaking force that is predominantly directed along the piling’s long,
vertical axis. Operating speed should be in the vicinity of the natural frequency of the
pile-earth system.

Paint can shaker mechanisms are common in paint stores. While they do a good job
of mixing the paint, they are also noisy and transmit their vibrations to the shelves and
counters. A better design of the paint can shaker is possible using a balanced fourbar
linkage. Design such a portable device to sit on the floor (not bolted down) and mini-
mize the shaking forces and vibrations while still effectively mixing the paint.

Convertible automobiles are once again popular. While offering the pleasure of
open-air motoring, they offer little protection to the occupants in a rollover accident.
Permanent roll bars are ugly and detract from the open feeling of a true convertible.
An automatically deployable roll bar mechanism is needed that will be out of sight
until needed. In the event that sensors in the vehicle detect an imminent rollover, the
mechanism should deploy within 250 ms. Design a collapsible/deployable roll bar
mechanism to retrofit to the convertible of your choice.
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Design a superior hand-held sanding/polishing machine. Many such devices exist on
the market. Some have a simple pure-rotation motion which creates an undesireable
pattern of rotary scratches on the affected surface. Others have an ineffective random
vibration motion of very small amplitude. Still others have more complicated mo-
tions. What is desired in this product is a more sophisticated motion pattern which will
provide a superior finish. It is also desireable that this new machine provide smoother
and quieter operation than any non-rotary devices now on the market. Most current
non-rotary polishing machines deliver significant vibratory forces to the user’s hands.
The new design should minimize the effects of vibratory forces as felt by the user. In
addition, it should require the smallest possible input torque (and thus power) from its
electric motor.

NASA has requested the design of a Spacecraft Compatible Ambulatory Machine, or
SCAM. Proposed interplanetary travel in this century will require that the astronaut
crews spend years in micro-gravity. Research on extended micro-gravity exposure has
shown that the lack of gravity-bound exercise results in significant bone-density loss

in astronauts who spend long periods in space. It is believed that the key to preventing
this debilitating condition is to provide the astronauts with an artificial-gravity exercise
environment. NASA desires the design and analysis of a machine that can be installed
on an interplanetary spacecraft that will, when activated, provide realistic earth-bound
levels of walking and/or jogging forces to the feet and legs of the astronaut. They envi-
sion a compact machine into which the astronaut can be placed and secured, and which,
when run, will cause realistic (physiologic) forces and motions to be imparted to the
feet and legs of the victim astronaut that simulate walking and/or running on Earth in a
1-g environment.

The Autoroll Co. makes bottle-printing machines. These use a silk-screen process to
apply label information to oval bottles in an automatic assembly machine. A Video

is downloadable for viewing that shows one of their machines in operation. A new
machine is being designed. A mechanism is needed that will move the squeegee (also
called a knife) in an approximate straight line across the top of the silk screen while

the oval bottle is rolled against the underside of the screen. It is also preferred that the
velocity of the knife be as uniform as possible during the print stroke. The useable
print stroke is a maximum of 6 inches long. The knife is 5 inches wide, 1 inch high and
can flex up to 0.1 inches in the vertical direction. Its spring constant is 20 Ib/in. It only
needs to wipe in one direction. There is an effective coefficient of friction between
knife and screen of about 1.5. The desired production rate is 80 bottles per minute.
The bottle-motion mechanism is not a part of this project..
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