

Appendix A

COMPUTER PROGRAMS

*I really hate this damned machine;
I wish that they would sell it.
It never does quite what I want
But only what I tell it.*

FROM THE FORTUNE DATABASE, BERKELEY UNIX

A.0 INTRODUCTION

In addition to the downloadable version of the commercial simulation program Working Model, there are three computer programs, written by the author, downloadable with this text: programs LINKAGES, MATRIX, and DYNACAM. These are student editions of the professional versions of these programs for educational use only. For commercial applications, professional versions with extended capabilities are available at <http://www.designofmachinery.com>. Program LINKAGES is based on the mathematics derived in Chapters 4 to 7 and 10 to 14 and use the equations presented therein to solve for position, velocity, acceleration, forces, and torques in fourbar, fivebar, sixbar, and slider linkages and IC engines. Program DYNACAM is a cam design program based on the mathematics derived in Chapters 8 and 15. Program MATRIX is a general linear simultaneous equation solver. All have similar choices for the display of output data in the form of tables and plots. All the programs are designed to be user friendly and reasonably “crashproof.” The author encourages users to email reports of any “bugs” or problems encountered in their use to him at norton@wpi.edu.

To obtain these programs and the other videos and files provided with the book, you need to register as a **student using the book** on the website shown above. Note that I personally review all applications for access to this protected site, and if a student does not fill out the application completely and correctly according to the instructions, then they will be denied access.

Learning Tools

All the custom programs provided with this text are designed to be learning tools to aid in the understanding of the relevant subject matter and *are specifically not intended to be used for commercial purposes in the design of hardware and must not be so used*. It is

quite possible to obtain inappropriate (but mathematically correct) results to any problem solved with these programs, due to incorrect or inappropriate input of data. The user is expected to understand the kinematic and dynamic theory underlying the program's structure and to also understand the mathematics on which the program's algorithms are based. This information on the underlying theory and mathematics is derived and described in the noted chapters of this text. Most equations used in the programs are derived or presented in this textbook.

Disclaimer and Limitations on Use

Student editions of these programs are made available with this book and carry a limited-term license restricted to educational use in course work for up to 2 years. If you wish to use the program for the benefit of a company or for any commercial purpose, then you must obtain the professional edition of the same program. **The student editions may not be used commercially!** The professional editions typically offer more features and better accuracy than the student editions. Commercial software for use in design or analysis needs to have built-in safeguards against the possibility of the user providing incorrect, inappropriate, or ridiculous values for input variables, in order to guard against erroneous results due to user ignorance or inexperience. **The student editions of the custom programs provided with this text are not commercial software and deliberately do not contain such safeguards against improper input data**, on the premise that to do so would "short-circuit" the student's learning process. We learn most from our failures. These programs provide an educational environment to explore failure of your designs "on paper" and in the process to come to a more thorough and complete understanding of the subject matter. **The author and publisher are not responsible for any damages which may result from the use or misuse of these programs.**

A.1 GENERAL INFORMATION

Hardware/System Requirements

These programs will run in Windows 2000/NT/XP/Vista/Windows7/8/10, but settings changes are needed in Vista as described in the installation instructions. All programs will operate properly in both 32- and 64-bit operating systems. In Windows 10, you may have to run them as Windows 7 applications.

Installing the Software

The install.exe files contain the executable program files plus all necessary Dynamic Link Library (DLL) and other ancillary files needed to run the programs. Run the Install file for each program to install all of its files on your hard drive. The program name will appear in the list under the *Start/Program/Design of Machinery* menu after installation and can be run from there. DYNACAM and LINKAGES can be updated from that menu also. Use the Check for Updates link within the program's folder in the Start menu

User Manual

User manuals are accessible from the programs' help menus. Tutorial videos are also in some programs. Instructional videos are also accessible from the help menus within the programs when the computer is connected to the Internet.

Appendix B

MATERIAL PROPERTIES

These tables are for selected engineering materials. Many other alloys are available.

The following tables contain approximate values for strengths and other specifications of a variety of engineering materials compiled from various sources. In some cases, the data are minimum recommended values, and in other cases data are from a single test specimen. These data are suitable for use in the engineering exercises contained in this text but should not be considered as statistically valid representations of specifications for any particular alloy or material. The designer should consult the materials' manufacturers for more accurate and up-to-date strength information on materials used in engineering applications or conduct independent tests of the selected materials to determine their ultimate suitability to any application.

Table No. Description

- B-1 Physical Properties of Some Engineering Materials
- B-2 Mechanical Properties of Some Wrought-Aluminum Alloys
- B-3 Mechanical Properties of Some Carbon Steels
- B-4 Mechanical Properties of Some Cast-Iron Alloys
- B-5 Properties of Some Engineering Plastics

TABLE B-1 Physical Properties of Some Engineering Materials

Data from Various Sources.* These Properties are Essentially Similar for All Alloys of the Particular Material

Material	Modulus of Elasticity <i>E</i>		Modulus of Rigidity <i>G</i>		Poisson's Ratio <i>v</i>	Weight Density γ	Mass Density ρ	Specific Gravity
	Mpsi	GPa	Mpsi	GPa				
Aluminum alloys	10.4	71.7	3.9	26.8	0.34	0.10	2.8	2.8
Beryllium copper	18.5	127.6	7.2	49.4	0.29	0.30	8.3	8.3
Brass, bronze	16.0	110.3	6.0	41.5	0.33	0.31	8.6	8.6
Copper	17.5	120.7	6.5	44.7	0.35	0.32	8.9	8.9
Iron, cast, gray	15.0	103.4	5.9	40.4	0.28	0.26	7.2	7.2
Iron, cast, ductile	24.5	168.9	9.4	65.0	0.30	0.25	6.9	6.9
Iron, cast, malleable	25.0	172.4	9.6	66.3	0.30	0.26	7.3	7.3
Magnesium alloys	6.5	44.8	2.4	16.8	0.33	0.07	1.8	1.8
Nickel alloys	30.0	206.8	11.5	79.6	0.30	0.30	8.3	8.3
Steel, carbon	30.0	206.8	11.7	80.8	0.28	0.28	7.8	7.8
Steel, alloys	30.0	206.8	11.7	80.8	0.28	0.28	7.8	7.8
Steel, stainless	27.5	189.6	10.7	74.1	0.28	0.28	7.8	7.8
Titanium alloys	16.5	113.8	6.2	42.4	0.34	0.16	4.4	4.4
Zinc alloys	12.0	82.7	4.5	31.1	0.33	0.24	6.6	6.6

* Properties of Some Metals and Alloys, International Nickel Co., Inc., NY; Metals Handbook, American Society for Metals, Materials Park, OH.

TABLE B-2 Mechanical Properties of Some Wrought-Aluminum Alloys

Data from Various Sources.* Approximate Values. Consult Manufacturers for More Accurate Information

Wrought-Aluminum Alloy	Condition	Tensile Yield Strength (2% Offset)		Ultimate Tensile Strength		Fatigue Strength at 5E8 Cycles		Elongation over 2 in	Brinell Hardness
		kpsi	MPa	kpsi	MPa	kpsi	MPa		
1100	Sheet annealed	5	34	13	90			35	23
	Cold rolled	22	152	24	165			5	44
2024	Sheet annealed	11	76	26	179			20	—
	Heat treated	42	290	64	441	20	138	19	—
3003	Sheet annealed	6	41	16	110			30	28
	Cold rolled	27	186	29	200			4	55
5052	Sheet annealed	13	90	28	193			25	47
	Cold rolled	37	255	42	290			7	77
6061	Sheet annealed	8	55	18	124			25	30
	Heat treated	40	276	45	310	14	97	12	95
7075	Bar annealed	15	103	33	228			16	60
	Heat treated	73	503	83	572	14	97	11	150

* Properties of Some Metals and Alloys, International Nickel Co., Inc., NY; Metals Handbook, American Society for Metals, Materials Park, OH.

TABLE B-3 Mechanical Properties of Some Carbon Steels

Data from Various Sources.* Approximate Values. Consult Manufacturers for More Accurate Information

SAE / AISI Number	Condition	Tensile Yield Strength (2% Of fset)		Ultimate Tensile Strength		Elongation over 2 in	Brinell Hardness
		kpsi	MPa	kpsi	MPa		
1010	Hot rolled	26	179	47	324	28	95
	Cold rolled	44	303	53	365	20	105
1020	Hot rolled	30	207	55	379	25	111
	Cold rolled	57	393	68	469	15	131
1030	Hot rolled	38	259	68	469	20	137
	Normalized @ 1650°F	50	345	75	517	32	149
	Cold rolled	64	441	76	524	12	149
	Q&T @ 1000°F	75	517	97	669	28	255
	Q&T @ 800°F	84	579	106	731	23	302
	Q&T @ 400°F	94	648	123	848	17	495
1035	Hot rolled	40	276	72	496	18	143
	Cold rolled	67	462	80	552	12	163
1040	Hot rolled	42	290	76	524	18	149
	Normalized @ 1650°F	54	372	86	593	28	170
	Cold rolled	71	490	85	586	12	170
	Q&T @ 1200°F	63	434	92	634	29	192
	Q&T @ 800°F	80	552	110	758	21	241
	Q&T @ 400°F	86	593	113	779	19	262
1045	Hot rolled	45	310	82	565	16	163
	Cold rolled	77	531	91	627	12	179
1050	Hot rolled	50	345	90	621	15	179
	Normalized @ 1650°F	62	427	108	745	20	217
	Cold rolled	84	579	100	689	10	197
	Q&T @ 1200°F	78	538	104	717	28	235
	Q&T @ 800°F	115	793	158	1089	13	444
	Q&T @ 400°F	117	807	163	1124	9	514
1060	Hot rolled	54	372	98	676	12	200
	Normalized @ 1650°F	61	421	112	772	18	229
	Q&T @ 1200°F	76	524	116	800	23	229
	Q&T @ 1000°F	97	669	140	965	17	277
	Q&T @ 800°F	111	765	156	1076	14	311
1095	Hot rolled	66	455	120	827	10	248
	Normalized @ 1650°F	72	496	147	1014	9	13
	Q&T @ 1200°F	80	552	130	896	21	269
	Q&T @ 800°F	112	772	176	1213	12	363
	Q&T @ 600°F	118	814	183	1262	10	375

* SAE Handbook, Society of Automotive Engineers, Warrendale, PA; Metals Handbook, American Society for Metals, Materials Park, OH.

TABLE B-4 Mechanical Properties of Some Cast-Iron Alloys

Data from Various Sources.* Approximate Values. Consult Manufacturers for More Accurate Information

Cast-Iron Alloy	Condition	Tensile Yield Strength (2% Offset)		Ultimate Tensile Strength		Compressive Strength		Brinell Hardness
		kpsi	MPa	kpsi	MPa	kpsi	MPa	
Gray cast iron—Class 20	As cast	—	—	22	152	83	572	156
Gray cast iron—Class 30	As cast	—	—	32	221	109	752	210
Gray cast iron—Class 40	As cast	—	—	42	290	140	965	235
Gray cast iron—Class 50	As cast	—	—	52	359	164	1131	262
Gray cast iron—Class 60	As cast	—	—	62	427	187	1289	302
Ductile iron 60-40-18	Annealed	47	324	65	448	52	359	160
Ductile iron 65-45-12	Annealed	48	331	67	462	53	365	174
Ductile iron 80-55-06	Annealed	53	365	82	565	56	386	228
Ductile iron 120-90-02	Q & T	120	827	140	965	134	924	325

* *Properties of Some Metals and Alloys*, International Nickel Co., Inc., NY; *Metals Handbook*, American Society for Metals, Materials Park, OH.**TABLE B-5 Properties of Some Engineering Plastics**

Data from Various Sources.* Approximate Values. Consult Manufacturers for More Accurate Information

Material	Approximate Modulus of Elasticity E^{\dagger}		Ultimate Tensile Strength		Ultimate Compressive Strength		Elongation over 2 in	Max Temp	Specific Gravity
	Mpsi	GPa	kpsi	MPa	kpsi	MPa			
ABS	0.3	2.1	6.0	41.4	10.0	68.9	5–25	160–200	1.05
20–40% glass filled	0.6	4.1	10.0	68.9	12.0	82.7	3	200–230	1.30
Acetal	0.5	3.4	8.8	60.7	18.0	124.1	60	220	1.41
20–30% glass filled	1.0	6.9	10.0	68.9	18.0	124.1	7	185–220	1.56
Acrylic	0.4	2.8	10.0	68.9	15.0	103.4	5	140–190	1.18
Fluoroplastic (PTFE)	0.2	1.4	5.0	34.5	6.0	41.4	100	330–350	2.10
Nylon 6/6	0.2	1.4	10.0	68.9	10.0	68.9	60	180–300	1.14
Nylon 11	0.2	1.3	8.0	55.2	8.0	55.2	300	180–300	1.04
20–30% glass filled	0.4	2.5	12.8	88.3	12.8	88.3	4	250–340	1.26
Polycarbonate	0.4	2.4	9.0	62.1	12.0	82.7	100	250	1.20
10–40% glass filled	1.0	6.9	17.0	117.2	17.0	117.2	2	275	1.35
HMW polyethylene	0.1	0.7	2.5	17.2	—	—	525	—	0.94
Polyphenylene oxide	0.4	2.4	9.6	66.2	16.4	113.1	20	212	1.06
20–30% glass filled	1.1	7.8	15.5	106.9	17.5	120.7	5	260	1.23
Polypropylene	0.2	1.4	5.0	34.5	7.0	48.3	500	250–320	0.90
20–30% glass filled	0.7	4.8	7.5	51.7	6.2	42.7	2	300–320	1.10
Impact polystyrene	0.3	2.1	4.0	27.6	6.0	41.4	2–80	140–175	1.07
20–30% glass filled	0.1	0.7	12.0	82.7	16.0	110.3	1	180–200	1.25
Polysulfone	0.4	2.5	10.2	70.3	13.9	95.8	50	300–345	1.24

* *Modern Plastics Encyclopedia*, McGraw-Hill, New York; *Machine Design Materials Reference Issue*, Penton Publishing, Cleveland, OH.

† Most plastics do not obey Hooke's law. These apparent moduli of elasticity vary with time and temperature.

Appendix C

GEOMETRIC PROPERTIES

DIAGRAMS AND FORMULAS TO CALCULATE THE FOLLOWING PARAMETERS FOR SEVERAL COMMON GEOMETRIC SOLIDS

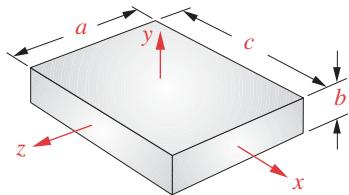
V = volume

m = mass

C_g = location of center of mass

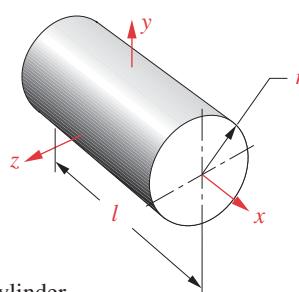
I_x = second moment of mass about x axis = $\int (y^2 + z^2) dm$

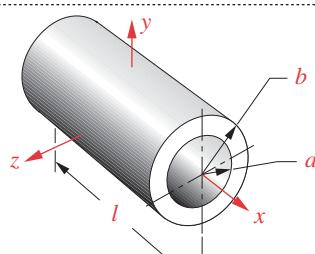
I_y = second moment of mass about y axis = $\int (x^2 + z^2) dm$


I_z = second moment of mass about z axis = $\int (x^2 + y^2) dm$

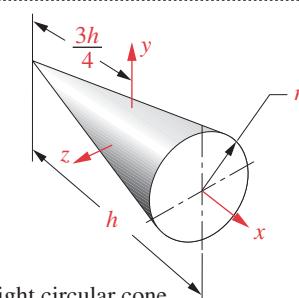
k_x = radius of gyration about x axis

k_y = radius of gyration about y axis

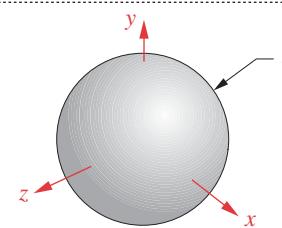

k_z = radius of gyration about z axis


(a) Rectangular prism

$$\begin{aligned}
 V &= abc & m &= V \cdot \text{mass density} \\
 x_{CG} @ \frac{c}{2} & & y_{CG} @ \frac{b}{2} & & z_{CG} @ \frac{a}{2} \\
 I_x &= \frac{m(a^2 + b^2)}{12} & I_y &= \frac{m(a^2 + c^2)}{12} & I_z &= \frac{m(b^2 + c^2)}{12} \\
 k_x &= \sqrt{\frac{I_x}{m}} & k_y &= \sqrt{\frac{I_y}{m}} & k_z &= \sqrt{\frac{I_z}{m}}
 \end{aligned}$$


(b) Cylinder

$$\begin{aligned}
 V &= \pi r^2 l & m &= V \cdot \text{mass density} \\
 x_{CG} @ \frac{l}{2} & & y_{CG} \text{ on axis} & & z_{CG} \text{ on axis} \\
 I_x &= \frac{mr^2}{2} & I_y &= I_z = \frac{m(3r^2 + l^2)}{12} \\
 k_x &= \sqrt{\frac{I_x}{m}} & k_y &= k_z = \sqrt{\frac{I_y}{m}}
 \end{aligned}$$


(c) Hollow cylinder

$$\begin{aligned}
 V &= \pi(b^2 - a^2)l & m &= V \cdot \text{mass density} \\
 x_{CG} @ \frac{l}{2} & & y_{CG} \text{ on axis} & & z_{CG} \text{ on axis} \\
 I_x &= \frac{m(a^2 + b^2)}{2} & I_y &= I_z = \frac{m(3a^2 + 3b^2 + l^2)}{12} \\
 k_x &= \sqrt{\frac{I_x}{m}} & k_y &= k_z = \sqrt{\frac{I_y}{m}}
 \end{aligned}$$

(d) Right circular cone

$$\begin{aligned}
 V &= \pi \frac{r^2 h}{3} & m &= V \cdot \text{mass density} \\
 x_{CG} @ \frac{3h}{4} & & y_{CG} \text{ on axis} & & z_{CG} \text{ on axis} \\
 I_x &= \frac{3}{10} mr^2 & I_y &= I_z = \frac{m(12r^2 + 3h^2)}{80} \\
 k_x &= \sqrt{\frac{I_x}{m}} & k_y &= k_z = \sqrt{\frac{I_y}{m}}
 \end{aligned}$$

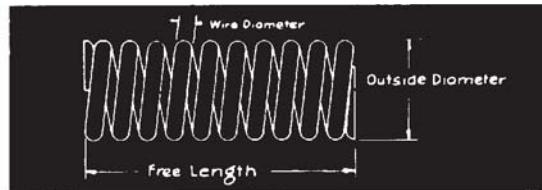
(e) Sphere

$$\begin{aligned}
 V &= \frac{4}{3} \pi r^3 & m &= V \cdot \text{mass density} \\
 x_{CG} \text{ at center} & & y_{CG} \text{ at center} & & z_{CG} \text{ at center} \\
 I_x = I_y = I_z &= \frac{2}{5} mr^2 & & & \\
 k_x = k_y = k_z &= \sqrt{\frac{I_x}{m}} & & &
 \end{aligned}$$

Appendix D

SPRING DATA

The following catalog pages of helical compression and extension spring data were provided courtesy of the *Hardware Products Co., Chelsea, Massachusetts*
<http://www.hardwareproducts.com/>


Other spring information can be found on the Web at:

<http://www.leespring.com/>
<http://www.cookspring.com/>
<http://www.allrite.com/>
<http://www.springsfast.com/>
<http://www.asbg.com/>
<http://www.centuryspring.com/>

COMPRESSION SPRINGS

FREE LENGTHS	Will go in hole	In.	7/16			1/2			5/8			3/4			7/8						
			.031	.047	.062	.047	.062	.078	.094	.047	.062	.078	.094	.125	.062	.078	.094	.125			
	Wire Dia.	In.																			
	Catalog No.		.031	.047	.062	.047	.062	.078	.094	.047	.062	.078	.094	.125	.062	.078	.094	.125			
	7 Price Code		247	248	249																
16	16 lbs./in.	HB	HB	HC																	
	Max. Defl.	12	55	180																	
		.32	.23	.16																	
	Catalog No.		250	251	252	283	284	285	286												
1	1 Price Code	HB	HB	HC	HB	HB	HE	HE													
2	2 lbs./in.	10	47	150	37	110	320	840													
	Max. Defl.	.37	.27	.19	.29	.22	.15	.10													
	Catalog No.		253	254	255	287	288	289	290	331	332	333	334								
5	5 Price Code	HB	HB	HC	HB	HB	HE	HE	HB	HB	HD	HE									
8	8 lbs./in.	7.9	36	175	29	85	240	610	20	54	140	320									
	Max. Defl.	.47	.35	.25	.38	.29	.20	.14	.43	.35	.27	.20									
	Catalog No.		256	257	258	291	292	293	294	335	336	337	338	375	376	377	378				
3	3 Price Code	HB	HB	HC	HB	HB	HE	HE	HB	HB	HD	HE	HD	HD	HF	HG					
4	4 lbs./in.	6.4	29	90	23	68	185	470	16	43	105	250	32	78	170	650					
	Max. Defl.	.58	.44	.32	.48	.37	.26	.18	.53	.44	.34	.26	.59	.40	.32	.19					
	Catalog No.		259	260	261	295	296	297	298	339	340	341	342	379	380	381	382	419	420	421	
7	7 Price Code	HB	HB	HC	HB	HB	HE	HE	HB	HB	HD	HE	HD	HD	HF	HG	HF	HJ	HK		
8	8 lbs./in.	5.4	24	75	19	56	155	384	13	36	90	204	27	65	140	520	21	49	100	350	
	Max. Defl.	.68	.52	.39	.57	.44	.32	.23	.64	.53	.42	.32	.58	.48	.39	.24	.62	.53	.44	.30	
	Catalog No.		262	263	264	299	300	301	302	343	344	345	346	383	384	385	386	423	424	425	
1	1 Price Code	HB	HB	HC	HB	HB	HE	HE	HB	HB	HD	HE	HD	HD	HF	HG	HF	HJ	HK		
	1 lbs./in.	4.7	21	65	17	48	130	320	11	31	77	170	23	55	115	430	18	42	86	290	
	Max. Defl.	.79	.60	.45	.66	.51	.37	.27	.74	.62	.49	.38	.68	.57	.46	.29	.73	.63	.53	.36	
	Catalog No.		265	266	267	303	304	305	306	347	348	349	350	387	388	389	390	427	428	429	
1 1/4	1 1/4 Price Code	HB	HB	HC	HB	HB	HF	HF	HC	HC	HD	HE	HE	HE	HF	HG	HG	HJ	HK		
	1 1/4 lbs./in.	3.7	16	50	13	38	100	245	9.0	24	59	130	18	42	89	320	14	32	66	220	
	Max. Defl.	.10	.77	.58	.84	.66	.49	.35	.94	.80	.64	.49	.88	.74	.60	.39	.94	.81	.69	.47	
	Catalog No.		268	269	270	307	308	309	310	351	352	353	354	391	392	393	394	431	432	433	
1 1/2	1 1/2 Price Code	HB	HB	HC	HB	HB	HF	HF	HD	HD	HE	HE	HE	HE	HF	HG	HG	HG	HJ		
	1 1/2 lbs./in.	3.1	14	41	11	31	83	200	7.4	20	48	105	15	34	72	260	12	26	53	175	
	Max. Defl.	1.2	.94	.70	1.0	.81	.60	.43	1.1	.98	.78	.61	1.1	.91	.74	.48	1.1	1.0	.85	.59	
	Catalog No.		271	272	273	311	312	313	314	355	356	357	358	395	396	397	398	435	436	437	
1 1/4	1 1/4 Price Code	HC	HD	HE	HC	HD	HF	HF	HD	HD	HE	HE	HF	HF	HF	HG	HG	HJ	HK		
	1 1/4 lbs./in.	2.6	11	35	9.1	26	70	170	6.2	17	41	90	12.4	29	61	216	9.9	22	45	147	
	Max. Defl.	1.4	1.1	.84	1.2	.96	.71	.52	1.3	1.1	.93	.73	1.3	1.1	.89	.58	1.35	1.2	1.0	.71	
	Catalog No.		274	275	276	315	316	317	318	359	360	361	362	399	400	401	402	439	440	441	
2	2 Price Code	HD	HD	HE	HD	HD	HF	HF	HD	HD	HE	HE	HF	HF	HF	HG	HG	HG	HL		
	2 lbs./in.	2.3	10	30	7.9	23	60	145	5.4	14	35	77	11	25	52	185	8.6	19	38	125	
	Max. Defl.	1.6	1.3	.96	1.4	1.1	.82	.60	1.5	1.3	1.1	.85	1.4	1.2	1.0	.68	1.5	1.4	1.2	.83	
	Catalog No.		277	278	279	319	320	321	322	363	364	365	366	403	404	405	406	443	444	445	
3	3 Price Code	HD	HE	HE	HF	HF	HG	HG	HD	HF	HF	HG	HF	HF	HF	HG	HJ	HJ	HK		
	3 lbs./in.	1.5	6.6	20	5.2	15	39	94	3.6	9.4	23	50	7	16	34	115	5.6	12	25	80	
	Max. Defl.	2.4	1.9	1.4	2.1	1.7	1.2	.93	2.4	2.0	1.6	1.3	2.2	1.9	1.6	1.0	2.4	2.1	1.8	1.3	
	Catalog No.		280	281	282	323	324	325	326	367	368	369	370	407	408	409	410	447	448	449	
4	4 Price Code	HE	HE	HE	HE	HF	HF	HG	HE	HE	HF	HF	HF	HF	HF	HG	HL	HL	HM		
	4 lbs./in.	1.1	4.9	15	3.9	11	29	69	2.6	6.9	17	37	5.2	12	25	86	4.2	9.2	18	59	
	Max. Defl.	3.3	2.6	2.0	2.8	2.3	1.7	1.2	3.2	2.7	2.2	1.8	3.0	2.6	2.1	1.4	3.2	2.8	2.5	1.8	
	Catalog No.		327	328	329	330	371	372	373	374	411	412	413	414	451	452	453	454			
6	6 Price Code	HF	HN	HN	HK	HL															
	6 lbs./in.	2.5	7.0	17	45	1.8	4.6	11	24	3.4	7.9	16	56	2.7	6.0	12	38				
	Max. Defl.	4.4	3.5	2.5	2.	4.8	4.2	3.4	2.7	4.6	3.9	3.3	2.2	4.9	4.3	3.8	2.7				
	Catalog No.		329	330	331	371	372	373	374	411	412	413	414	451	452	453	454				
8	8 Price Code													415	416	417	418	455	456	457	458
	8 lbs./in.													HJ	HJ	HK	HO	HL	HL	HM	
	Max. Defl.													2.6	6	11	40	2.0	4.5	8.9	28
														6.1	5.2	4.5	3.0	6.5	5.8	5.1	3.7
	Maximum Load	3.7	12.7	29	11	25	45	88	8.3	19	38	66	15.8	31.2	54	125	13.4	26.3	45	105	
	Will work free over	.347	.315	.285	.375	.345	.313	.281	.505	.475	.443	.411	.585	.554	.522	.460	.700	.670	.638	.576	
	Pitch	.195	.141	.128	.173	.151	.141	.141	.259	.214	.188	.177	.284	.240	.217	.204	.371	.306	.268	.239	
	Solid Stress (000 omitted)	125	118	113	118	113	109	105	118	113	109	105	113	109	105	99	113	109	105	99	

		Will go in hole	In.	1	1 1/4	1 1/2	2	3	4	6												
Wire Dia.	In.	078	.094	125	187	094	.125	.187	.125	.187	.250	.187	.250	.375	.250	.375	.500	.375	.500	.750	.750	1.000
1	Catalog No.	459	460	461	462																	
1	Price Code	HK	HL	HL	HR																	
1	Ibs./in.	34	67	210	1500																	
1	Max. Defl.	.67	.58	.41	.19																	
1 1/4	Catalog No.	463	464	465	466	499	500	501														
1 1/4	Price Code	HL	HM	HM	HS	HN	HN	HM														
1 1/4	Ibs./in.	26	52	160	1100	35	100	600														
1 1/4	Max. Defl.	.67	.76	.58	.26	.85	.67	.37														
1 1/2	Catalog No.	467	468	469	470	502	503	504	526	527	528											
1 1/2	Price Code	HL	HM	HN	HS	HN	HO	HT	HR	HX	HAC											
1 1/2	Ibs./in.	21	42	130	870	29	82	460	60	300	1200											
1 1/2	Max. Defl.	1.0	.93	.69	.34	1.1	.84	.48	.95	.60	.35											
1 3/4	Catalog No.	471	472	473	474	505	506	507	529	530	531											
1 3/4	Price Code	HL	HM	HN	HS	HN	HO	HT	HR	HX	HAC											
1 3/4	Ibs./in.	18	35	108	712	24	68	379	50	244	960											
1 3/4	Max. Defl.	1.3	1.1	.83	.41	1.3	1.0	.59	1.1	.74	.44											
2	Catalog No.	475	476	477	478	508	509	510	532	533	534	553	554	555								
2	Price Code	HM	HN	HO	HT	HO	HP	HU	HS	HZ	HAE	HAA	HAG	HZZ								
2	Ibs./in.	16	30	93	600	21	59	320	43	200	800	115	390	3000								
2	Max. Defl.	1.4	1.3	.97	.49	1.4	1.2	.70	1.3	.87	.53	1.1	.77	.34								
3	Catalog No.	479	480	481	482	511	512	513	535	536	537	556	557	558	577	578	579					
3	Price Code	HN	HO	HP	HZ	HP	HR	HAA	HT	HAD	HAL	HAE	HAN	HZZ	HAR	HZZ	HZZ					
3	Ibs./in.	10	19	59	370	13	37	200	27	130	480	73	230	1650	105	560	2300					
3	Max. Defl.	2.2	2.0	1.5	.79	2.2	1.8	1.1	2.1	1.4	.89	1.8	1.3	.61	1.8	1.1	.64					
4	Catalog No.	483	484	485	486	514	515	516	538	539	540	559	560	561	580	581	582	598	599	610		
4	Price Code	HP	HR	HS	HAC	HS	HT	HAD	HW	HAG	HAO	HAJ	HAR	HZZ	HAT	HZZ	HZZ	HZZ	HZZ	HZZ	HZZ	
4	Ibs./in.	7.4	14	43	270	9.9	27	144	20	93	340	53	170	1150	76	390	1500	210	720	4600		
4	Max. Defl.	3.0	2.7	2.1	1.1	3.0	2.5	1.5	2.8	1.9	1.2	2.5	1.8	.88	2.5	1.6	.96	2.1	1.4	.8		
6	Catalog No.	487	488	489	490	517	518	519	541	542	543	562	563	564	583	584	585	600	601	611	616	621
6	Price Code	HT	HT	HU	HAD	HU	HW	HAE	HX	HAJ	HAT	HAM	HAW	HZZ	HAZ	HZZ	HZZ	HZZ	HZZ	HZZ	HZZ	
6	Ibs./in.	4.9	9.4	28	175	6.5	18	93	13	60	220	34	105	710	49	240	920	130	430	2840	850	3500
6	Max. Defl.	4.6	4.1	3.2	1.7	4.7	3.9	2.4	4.3	3.0	1.9	3.8	2.8	1.4	4.0	2.6	1.6	3.4	2.4	1.3	1.9	1.4
8	Catalog No.	491	492	493	494	520	521	522	544	545	546	565	566	567	586	587	588	602	603	612	617	622
8	Price Code	HS	HU	HV	HAL	HW	HX	HAM	HAA	HAP	HAW	HAR	HAZ	HZZ	HBD	HZZ	HZZ	HZZ	HZZ	HZZ	HZZ	
8	Ibs./in.	3.6	7.0	21	125	4.8	13	68	9.6	44	160	25	79	510	36	175	660	95	310	2050	630	2500
8	Max. Defl.	6.2	5.6	4.3	2.3	6.3	5.2	3.2	5.9	4.1	2.7	5.2	3.9	1.9	5.4	3.6	2.2	4.5	3.4	1.8	2.7	2.0
12	Catalog No.	495	496	497	498	523	524	525	547	548	549	568	569	570	589	590	591	604	605	613	618	623
12	Price Code	HT	HW	HZ	HAP	HX	HAA	HAR	HAC	HAU	HBA	HAZ	HBE	HZZ	HBK	HZZ	HZZ	HZZ	HZZ	HZZ	HZZ	
12	Ibs./in.	2.4	4.6	14	84	3.2	8.7	45	6.3	29	105	16	52	330	23	110	420	61	195	1325	400	1580
12	Max. Defl.	9.4	8.4	6.5	3.5	9.5	7.9	5.0	8.9	6.2	4.1	8.0	5.9	3.0	8.3	5.5	3.5	7.3	5.3	2.6	4.3	3.1
16	Catalog No.								550	551	552	571	572	573	592	593	594	606	607	614	619	624
16	Price Code								HAE	HAW	HBO	HAZ	HBG	HZZ	HBL	HZZ	HZZ	HZZ	HZZ	HZZ	HZZ	
16	Ibs./in.								4.7	21	74	12	38	240	17	83	310	45	145	975	300	1170
16	Max. Defl.								11.9	8.5	5.6	10.7	8.0	4.1	11.3	7.5	4.0	10	7.3	3.8	6.1	4.3
24	Catalog No.											574	575	576	595	596	597	608	609	615	620	625
24	Price Code											HBA	HBL	HZZ	HBP	HZZ	HZZ	HZZ	HZZ	HZZ	HZZ	
24	Ibs./in.											7.8	23.4	150	11.4	54	200	29	94	640	175	760
24	Max. Defl.											16.3	12.1	7.0	17.1	11.5	7.3	15.2	11.1	5.8	9.4	6.5
Maximum Load		23	39	90	295	30	69	224	57	180	428	131	307	1000	195	624	1470	449	1040	3700	2000	4800
Will work free over		784	.752	.690	565	1.00	.940	.815	1.19	1.06	.940	1.52	1.38	1.14	2.33	2.08	1.83	3.08	2.83	2.25	4.25	3.75
Pitch		.382	.328	.279	.268	.481	.384	.327	.516	.403	.388	.596	.518	.514	.917	.741	.736	1.08	.969	1.00	1.3	1.4
Solid Stress (000 omitted)		109	105	99	90	105	99	90	99	90	85	90	85	77	85	77	73	77	73	70	70	65

Hardware Products Company, Inc.

EXTENSION SPRINGS

ORDER BY:
SE LENGTH x O.D. x WIRE DIA.

SPECIFY HOOKS OR LOOPS

The figures given for "Maximum Extension" and "lbs. per inch" are for a spring 1" long. For other lengths multiply the "Maximum Extension" and divide the "lbs. per inch" by the length in inches. The "Maximum Load" and "Initial Tension" remain constant for any length.

Example: A spring $\frac{1}{2}$ " diam. .062" wire and 4" long will have a safe maximum extension of 3.2" and it will require 4 lbs. to deflect it 1 in. The spring will hold approximately 3.3 lbs. before it starts to extend, and will hold a maximum of 16.1 lbs. without permanent stretch. If 8.5 lbs. is hung on the spring it will deflect 1.3". 8.5 lbs. minus 3.3 lbs. divided by 4 lbs. per inch equals 1.3".

NOTE: Stock springs can be ordered in stainless steel or plated. Prices quoted upon request.

Outside dia.	Wire dia.	Catalog No.	Price code	Safe maximum load in pounds	Safe maximum extension - in.	Approx. initial tension in pounds	Pound per inch extension	Stress at max. load (000 omitted)	Weight per foot (lbs.)
1/8	012	01	EHE	.6	1.9	.07	.27	100	.012
	016	02	EHD	1.3	.9	.2	1.2	93	.015
	023	03	EHD	4.2	35	.9	9.0	90	.02
5/32	012	04	EHE	47	3.5	.01	.12	100	.015
	016	05	EHD	1.1	1.7	.15	.55	93	.019
	023	06	EHD	3.2	.7	.5	3.9	90	.027
3/16	016	07	EHD	.87	2.5	1	3	93	.024
	023	08	EHD	2.6	1.0	.4	2.2	90	.032
	031	09	EHD	6.5	45	1.5	10.7	88	.04
7/32	016	10	EHD	.75	4.0	.01	.18	93	.028
	023	11	EHD	2.3	1.6	.32	1.2	90	.039
	031	12	EHD	5.5	.7	1.0	6.5	88	.048
1/4	023	13	EHD	1.8	1.9	.26	8	90	.044
	031	14	EHD	4.7	1.0	.75	3.8	88	.055
	047	15	EHE	16.0	.3	3.5	40.0	83	.082
5/16	023	16	EHE	1.5	3.5	.16	.38	90	.058
	031	17	EHE	3.6	1.6	.55	1.9	88	.072
	047	18	EHE	12.5	.9	2.2	10.8	83	.108
3/8	031	19	EHE	2.9	2.5	.37	1.0	88	.084
	047	20	EHE	10.5	.9	1.7	9.5	83	.13
	062	21	EHF	23.0	.39	5.3	45.0	79	.16
7/16	031	22	EHF	2.5	3.5	.26	.63	88	.105
	047	23	EHF	8.5	1.2	1.4	5.7	83	.163
	062	24	EHF	20.0	.6	4.3	26.0	79	.2
1/2	047	25	EHF	7.3	1.6	1.1	3.7	83	.18
	062	26	EHF	17.0	.8	3.3	16.0	79	.23
	078	27	EHG	34.0	.45	8.0	57.0	77	.28
5/8	094	28	EHJ	57.0	.25	16.0	160.0	74	.32
	047	29	EHG	6.0	3.0	.7	1.7	83	.24
	062	30	EHG	13.3	1.4	2.1	7.6	79	.3
3/4	078	31	EHG	27.0	.9	5.2	23.0	77	.37
	094	32	EHJ	45.0	.4	11.0	73.0	74	.44
	062	33	EHG	10.5	2.2	1.5	4.1	79	.36
7/8	078	34	EHJ	22.0	1.3	3.5	14.0	77	.46
	094	35	EHJ	36.0	.7	8.0	38.0	74	.51
	125	36	EHK	85.0	.3	22.0	180.0	69	.64
1	062	37	EHK	9.2	3.3	1.1	2.4	79	.4
	078	38	EHK	18.0	1.7	2.6	8.7	77	.59
	094	39	EHL	31.0	1.0	6.0	25.0	74	.64
1 1/4	125	40	EHM	72.0	.5	17.0	107.0	69	.8
	078	41	EHL	16.0	2.5	2.0	5.5	77	.67
	094	42	EHL	26.0	1.5	4.5	13.7	74	.70
1 1/2	125	43	EHN	65.0	.75	14.0	68.0	69	.90
	187	44	EHW	200.0	.23	60.0	600.0	63	1.4
	094	45	EHM	21.0	2.6	2.8	6.8	74	.94
1 3/4	125	46	EHO	47.0	1.2	9.0	31.0	69	1.3
	187	47	EHZ	148.0	.3	40.0	290.0	63	1.8
	125	48	EHS	39.0	1.9	6.0	17.0	69	1.4
1 1/2	187	49	EHAA	122.0	.6	33.0	150.0	63	2.2
	250	50	EHAC	290.0	.27	90.0	720.0	60	2.6
2	187	51	EHAQ	90.0	1.3	20.0	54.0	63	3.1
	250	52	EHAG	210.0	.6	55.0	260.0	60	3.7

Carried in stock in 3-foot lengths - cut to length and looped to order.

Hardware Products Company, Inc.

191 WILLIAMS STREET • CHELSEA, MA 02150

Appendix E

COUPLER CURVE ATLASES

E.1 HRONES AND NELSON ATLAS OF FOURBAR LINKAGES

The entire Hrones and Nelson coupler curve atlas is downloadable as PDF files. Figure 3-17 in Section 3.6 shows one page from this atlas and describes how to use it. Read the first chapter within the Hrones and Nelson atlas for more information on how it is arranged and how to use it. The downloadable video [*Coupler Curves and Linkage Atlases*](#) gives detailed instructions on its use and shows an example. Once you extract a trial linkage geometry from the atlas, use program **LINKAGES** to investigate its behavior and to vary the linkage geometry.

E.2 ZHANG, NORTON, HAMMOND ATLAS OF GEARED FIVEBAR LINKAGES

The entire Zhang atlas is downloadable as PDF files. A sample page is shown in Figure 3-23. Read the first chapter within the Zhang atlas for information on how it is arranged and how to use it. See Sections 2.4, 3.6, 4.9, 6.8, and 7.4 for more information on the geared fivebar linkages. The video [*Coupler Curves and Linkage Atlases*](#) gives a brief overview of this atlas. Once you extract a trial linkage geometry from the atlas, use program **LINKAGES** to investigate its behavior and to vary the linkage geometry.

A summary of the parameters in the Zhang atlas is:

Alpha = Coupler Link 3 / Link 2

Beta = Ground Link 1 / Link 2

Lambda = Gear Ratio = Gear 5 / Gear 2.

Phase angle is noted on each plot of a coupler curve.

The dots along curves are at every 10 degrees of Link 2's rotation.

Linkage is symmetrical: Link 2 = Link 5 and Link 3 = Link 4

Note that the *Lambda* in the atlas is the inverse of the λ that is defined in Sections 4.9, 6.8, and 7.4. See also Figures P4-4, P6-4, and P7-4. For example, a gear ratio *Lambda* of 2 in the Zhang atlas corresponds to a λ of 0.5 in the text and in program **LINKAGES**. (The difference merely corresponds to a mirroring of the linkage from left to right.)

Appendix F

ANSWERS TO SELECTED PROBLEMS

CHAPTER 2

KINEMATICS FUNDAMENTALS

2-1

a. 1	b. 1	c. 2	d. 1	e. 7	f. 1	g. 4
h. 4	i. 4	j. 2	k. 1	l. 1	m. 2	n. 2
o. 4						

2-3 a. 1 b. 3 c. 3 d. 3 e. 2

2-4 a. 6 b. 6 c. 5 d. 4, but 2 are dynamically coupled* e. 4 f. 3

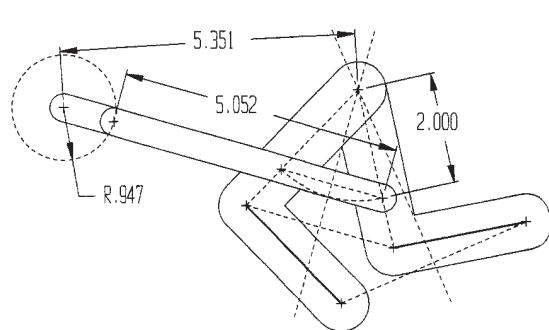
2-5 force-closed

2-6

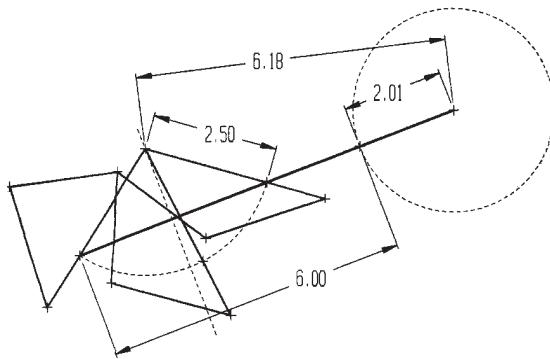
- a. pure rotation
- b. complex planar motion
- c. pure translation
- d. pure translation
- e. pure rotation
- f. complex planar motion
- g. complex planar motion

2-7 a. 0 b. 1 c. 1 d. 3

2-8


- a. structure - $DOF = 0$
- b. mechanism - $DOF = 1$
- c. mechanism - $DOF = 1$
- d. mechanism - $DOF = 3$

2-15 a. Grashof b. non-Grashof c. special-case Grashof



* Dynamically coupled means that, at speed, leaning the bike to the side results in its turning to the side to which it is leaning. So the angular freedom of this machine in the plane of the road is coupled with its ability to rotate about its long axis (lean). Except at very low speed, you steer a motorcycle by pushing down (toward the ground) on the handlebar on the inside of the turn, rather than by actually turning the handlebar in the direction of the turn. If you are moving the bike with your feet to park it, then you turn the handlebar. But at any significant speed, the gyroscopic effect takes over and leaning the bike makes it turn. This is true of a pedal bike as well if it has sufficient forward speed.

(a) One possible solution to Problem 3-3

(b) One possible solution to Problem 3-5

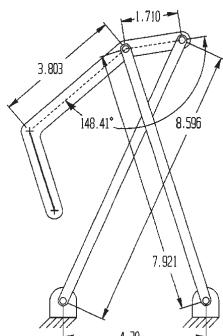
FIGURE S3-1

Solutions to Problems 3-3 and 3-5

2-21

a. $M = 1$	b. $M = 1$	c. $M = 1$
d. $M = 1$	e. $M = -1$ (a paradox)	f. $M = 1$
g. $M = 1$	h. $M = 0$ (a paradox)	

2-24 a. $M = 1$ b. $M = 1$


2-26 $M = 1$

2-27 $M = 0$

2-35 $M = 1$, fourbar slider-crank

2-61 a. $M = 3$ b. $M = 2$ c. $M = 1$

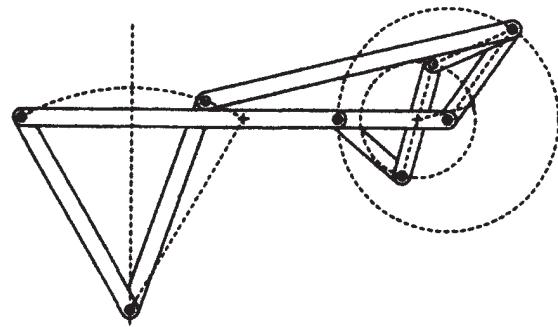
2-62 a. $M = 1$ b. $M = 2$ c. $M = 4$

CHAPTER 3**GRAPHICAL LINKAGE SYNTHESIS****3-1**

- a. path generation
- b. motion generation
- c. function generation
- d. path generation
- e. path generation

Note that synthesis problems have many valid solutions. We cannot provide a “right answer” to all of these design problems. Check your solution with a cardboard model and/or by putting it into one of the programs supplied with the text.

3-3 See Figure S3-1.

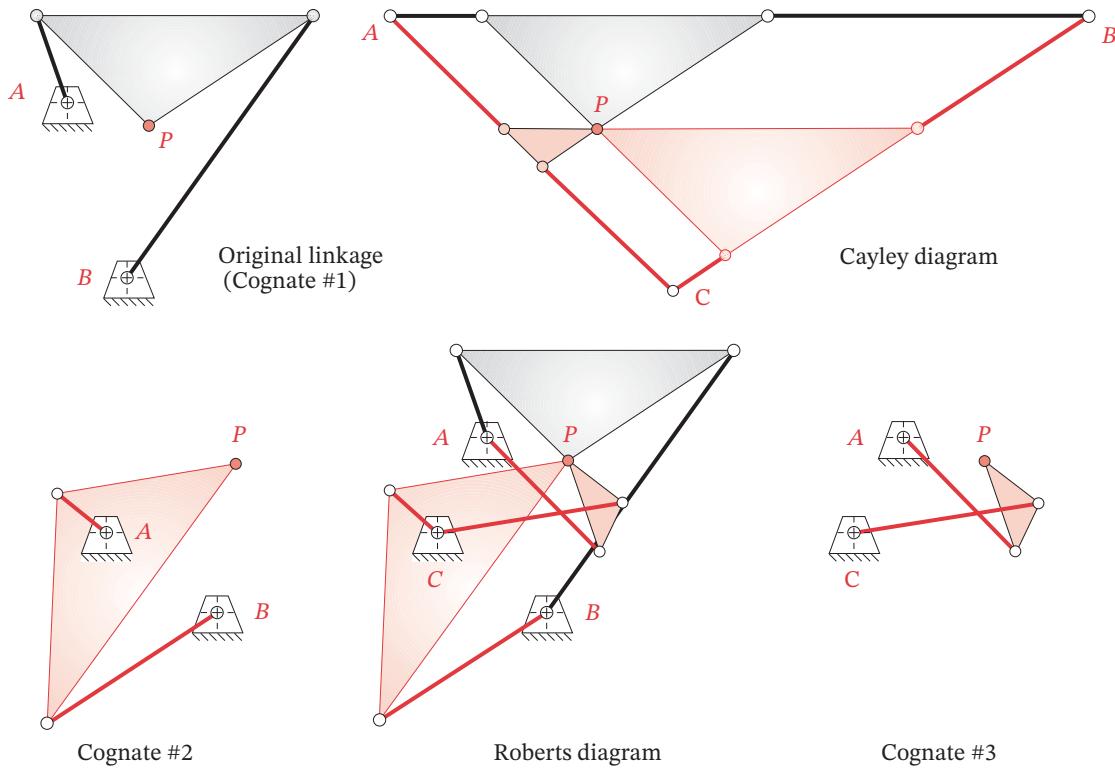

3-5 See Figure S3-1.

3-6 See Figure S3-2.

3-8 See Figure S3-3.

FIGURE S3-2

Unique solution to
Problem 3-6


FIGURE S3-3

One possible solution to Problem 3-8

3-10 The solution using Figure 3-17 is shown in Figure S3-4. (Use program LINKAGES to check your solution.)

3-22 The transmission angle ranges from 31.5° to 89.9° .

3-23 Grashof crank-rocker. Transmission angle ranges from 58.1° to 89.8° .

FIGURE S3-4

Solution to Problem 3-10. Finding the cognates of the fourbar linkage shown in Figure 3-17

3-31 $L_1 = 160.6, L_2 = 81.3, L_3 = 200.2, L_4 = 200.2$ mm.

3-36 Grashof double-rocker. Works from 56° to 158° and from 202° to 310° . Transmission angle ranges from 0° to 90° .

3-39 Non-Grashof triple-rocker. Toggles at $\pm 116^\circ$. Transmission angle ranges from 0° to 88° .

3-42 Non-Grashof triple-rocker. Toggles at $\pm 55.4^\circ$. Transmission angle ranges from 0° to 88.8° .

3-79 Link 2 = 1, link 3 = link 4 = link 1 = 1.5. Coupler point is at 1.414 @ 135° versus link 3. Put these data into program LINKAGES to see the coupler curve.

CHAPTER 4 POSITION ANALYSIS

4-6 and **4-7** See Table S4-1 and the file P07-04row.4br.

4-9 and **4-10** See Table S4-2.

4-11 and **4-12** See Table S4-3.

4-13 See Table S4-1.

4-14 Open the file P07-04row.4br[†] in program LINKAGES to see this solution.*

4-15 Open the file P07-04row.4br[†] in program LINKAGES to see this solution.*

4-16 See Table S4-4.

4-17 See Table S4-4.

4-21 Open the file P04-21.4br in program LINKAGES to see this solution.*

4-23 Open the file P04-23.4br in program LINKAGES to see this solution.*

4-25 Open the file P04-25.4br in program LINKAGES to see this solution.*

4-26 Open the file P04-26.4br in program LINKAGES to see this solution.*

4-29 Open the file P04-29.4br in program LINKAGES to see this solution.*

4-30 Open the file P04-30.4br in program LINKAGES to see this solution.*

4-31 $r_1 = -6.265, r_2 = -0.709$.

CHAPTER 5 ANALYTICAL LINKAGE SYNTHESIS

* These files can be found in the PROBLEM SOLUTIONS folder downloadable with this text.

[†] The letter *x* in the filename represents the row number from the table of problem data.

5-8 Given: $\alpha_2 = -62.5^\circ, P_{21} = 2.47, \delta_2 = 120^\circ$

For left dyad: Assume: $z = 1.075, \varphi = 204^\circ, \beta_2 = -27^\circ$

Calculate: $\mathbf{W} = 3.67 @ -113.5^\circ$

For right dyad: Assume: $s = 1.24, \psi = 74^\circ, \gamma_2 = -40^\circ$

Calculate: $\mathbf{U} = 5.46 @ -125.6^\circ$

TABLE S4-1 Solutions for Problems 4-6, 4-7, and 4-13

Row	θ_3 Open	θ_4 Open	Trans Ang	θ_3 Crossed	θ_4 Crossed	Trans Ang
a	88.8	117.3	28.4	-115.2	-143.6	28.4
c	-53.1	16.5	69.6	173.3	103.6	69.6
e	7.5	78.2	70.7	-79.0	-149.7	70.7
g	-16.3	7.2	23.5	155.7	132.2	23.5
i	-1.5	103.1	75.4	-113.5	141.8	75.4
k	-13.2	31.9	45.2	-102.1	-147.3	45.2
m	-3.5	35.9	39.4	-96.5	-135.9	39.4

TABLE S4-2 Solutions for Problems 4-9 to 4-10

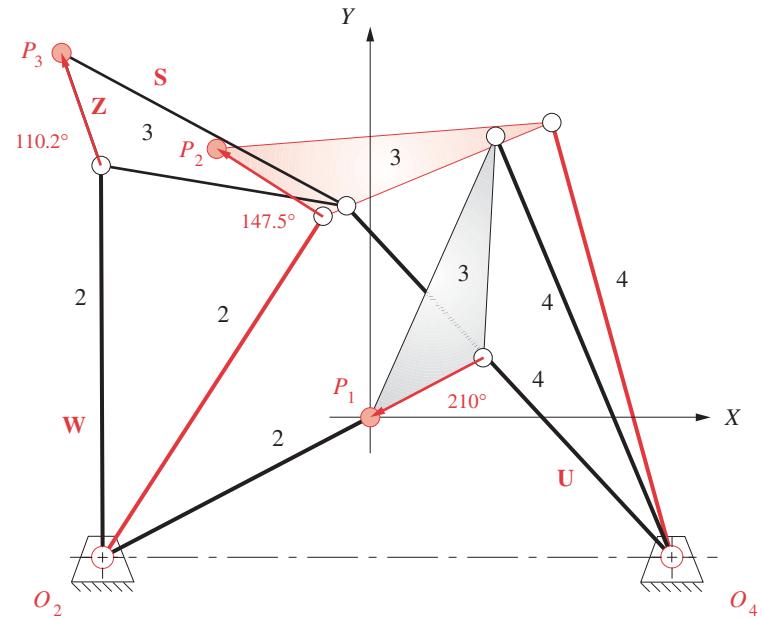
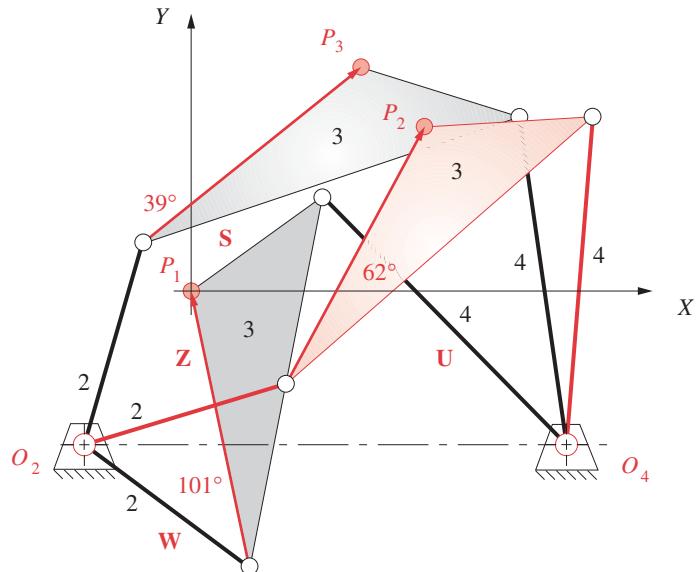

Row	θ_3 Open	Slider Open	θ_3 Crossed	Slider Crossed
a	180.1	5.0	-0.14	-3.0
c	205.9	9.8	-25.90	-4.6
e	175.0	16.4	4.20	-23.5
g	212.7	27.1	-32.70	-14.9

TABLE S4-3 Solutions for Problems 4-11 to 4-12

Row	θ_3 Open	θ_4 Open	R_B Open	θ_3 Crossed	θ_4 Crossed	R_B Crossed
a	232.7	142.7	1.79	-79.0	-169.0	1.79
c	91.4	46.4	2.72	208.7	163.7	11.20
e	158.2	128.2	6.17	-36.2	-66.2	9.63


TABLE S4-4 Solutions for Problems 4-16 to 4-17

Row	θ_3 Open	θ_4 Open	θ_3 Crossed	θ_4 Crossed
a	173.6	-177.7	-115.2	-124.0
c	17.6	64.0	-133.7	180.0
e	-164.0	-94.4	111.2	41.6
g	44.2	124.4	-69.1	-149.3
i	37.1	120.2	-67.4	-150.5

FIGURE S5-1

Solution to Problem 5-11. Open the file P05-11 in program LINKAGES for more information

FIGURE S5-2

Solution to Problem 5-15. Open the file P05-15 in program LINKAGES for more information

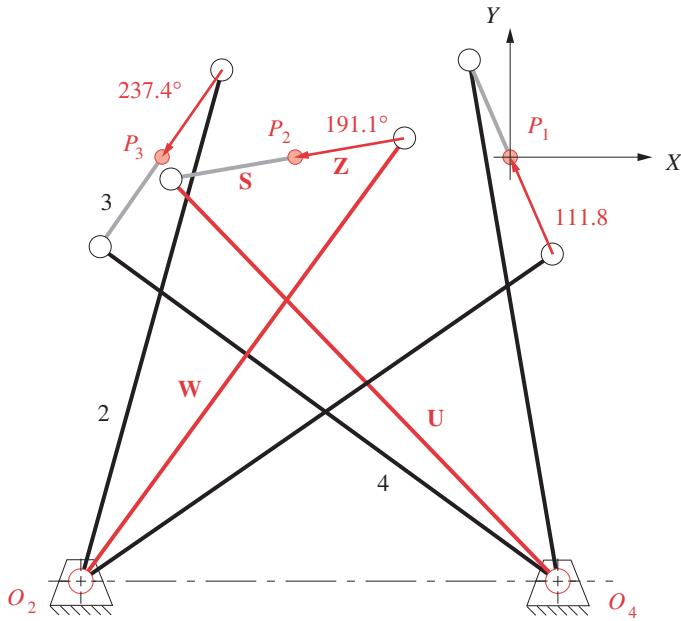


FIGURE S5-3

Solution to Problem 5-19. Open the file P05-19 in program LINKAGES for more information

5-11 See Figure S5-1 for the solution. The link lengths are:

$$\text{Link 1} = 4.35, \quad \text{Link 2} = 3.39, \quad \text{Link 3} = 1.94, \quad \text{Link 4} = 3.87$$

5-15 See Figure S5-2 for the solution. The link lengths are:

$$\text{Link 1} = 3.95, \quad \text{Link 2} = 1.68, \quad \text{Link 3} = 3.05, \quad \text{Link 4} = 0.89$$

5-19 See Figure S5-3 for the solution. The link lengths are:

$$\text{Link 1} = 2, \quad \text{Link 2} = 2.5, \quad \text{Link 3} = 1, \quad \text{Link 4} = 2.5$$

$$\begin{array}{llll} \text{5-26} & \text{Given:} & \alpha_2 = -45^\circ, & P_{21} = 184.78 \text{ mm}, \quad \delta_2 = -5.28^\circ \\ & & \alpha_3 = -90^\circ, & P_{31} = 277.35 \text{ mm}, \quad \delta_3 = -40.47^\circ \\ & & O_{2x} = 86 \text{ mm} & O_{2y} = -132 \text{ mm} \\ & & O_{4x} = 104 \text{ mm} & O_{4y} = -155 \text{ mm} \end{array}$$

$$\text{For left dyad:} \quad \text{Calculate: } \beta_2 = -85.24^\circ \quad \beta_3 = -164.47^\circ$$

$$\text{Calculate: } W = 110.88 \text{ mm} \quad \theta = 124.24^\circ$$

$$\text{Calculate: } Z = 46.74 \text{ mm} \quad \varphi = 120.34^\circ$$

$$\text{For right dyad:} \quad \text{Calculate: } \gamma_2 = -75.25^\circ \quad \gamma_3 = -159.53^\circ$$

$$\text{Calculate: } U = 120.70 \text{ mm} \quad \sigma = 104.35^\circ$$

$$\text{Calculate: } S = 83.29 \text{ mm} \quad \psi = 152.80^\circ$$

5-33 Given:	$\alpha_2 = -25^\circ$	$P_{21} = 133.20 \text{ mm}$	$\delta_2 = -12.58^\circ$
	$\alpha_3 = -101^\circ$	$P_{31} = 238.48 \text{ mm}$	$\delta_3 = -51.64^\circ$
	$O_{2x} = -6.2 \text{ mm}$	$O_{2y} = -164.0 \text{ mm}$	
	$O_{4x} = 28.0 \text{ mm}$	$O_{4y} = -121.0 \text{ mm}$	
For left dyad:	Calculate: $\beta_2 = -53.07^\circ$	$\beta_3 = -94.11^\circ$	
	Calculate: $W = 128.34 \text{ mm}$	$\theta = 118.85^\circ$	
	Calculate: $Z = 85.45 \text{ mm}$	$\varphi = 37.14^\circ$	
For right dyad:	Calculate: $\gamma_2 = -77.26^\circ$	$\gamma_3 = -145.66^\circ$	
	Calculate: $U = 92.80 \text{ mm}$	$\sigma = 119.98^\circ$	
	Calculate: $S = 83.29 \text{ mm}$	$\psi = 65.66^\circ$	
5-35 Given:	$\alpha_2 = -29.4^\circ$	$P_{21} = 99.85 \text{ mm}$	$\delta_2 = 7.48^\circ$
	$\alpha_3 = -2.3^\circ$	$P_{31} = 188.23 \text{ mm}$	$\delta_3 = -53.75^\circ$
	$O_{2x} = -111.5 \text{ mm}$	$O_{2y} = 183.2 \text{ mm}$	
	$O_{4x} = -111.5 \text{ mm}$	$O_{4y} = -38.8 \text{ mm}$	
For left dyad:	Calculate: $\beta_2 = 69.98^\circ$	$\beta_3 = 139.91^\circ$	
	Calculate: $W = 100.06 \text{ mm}$	$\theta = 150.03^\circ$	
	Calculate: $Z = 306.82 \text{ mm}$	$\varphi = -49.64^\circ$	
For right dyad:	Calculate: $\gamma_2 = -4.95^\circ$	$\gamma_3 = -48.81^\circ$	
	Calculate: $U = 232.66 \text{ mm}$	$\sigma = 62.27^\circ$	
	Calculate: $S = 167.17 \text{ mm}$	$\psi = -88.89^\circ$	

CHAPTER 6 VELOCITY ANALYSIS

6-4 and **6-5** See Table S6-1 and the file P07-04row.4br.

6-6 and **6-7** See Table S6-2.

6-8 and **6-9** See Table S6-3.

6-10 and **6-11** See Table S6-4.

6-16 $V_A = 12 \text{ in/sec} @ 124.3^\circ$, $V_B = 11.5 \text{ in/sec} @ 180^\circ$, $V_C = 5.65 \text{ in/sec} @ 153.3^\circ$, $\omega_3 = -5.69 \text{ rad/sec}$.

6-47 Open the file P06-47.4br in program LINKAGES to see this solution.*

6-48 Open the file P06-48.4br in program LINKAGES to see this solution.*

6-49 Open the file P06-49.4br in program LINKAGES to see this solution.*

6-51 Open the file P06-51.4br in program LINKAGES to see this solution.*

6-62 Open the file P06-62.4br in program LINKAGES to see this solution.*

6-65 $V_A = 94.5 \text{ in/sec}$, $V_B = 115.2 \text{ in/sec}$, $V_{slip} = 162.8 \text{ in/sec}$, $\omega = 65.9 \text{ rad/sec}$.

* These files can be found in the PROBLEM SOLUTIONS folder downloadable with this text.

TABLE S6-1 Solutions for Problems 6-4 to 6-5

Row	ω_3 Open	ω_4 Open	V_P Mag	V_P Ang	ω_3 Crossed	ω_4 Crossed	V_P Mag	V_P Ang
<i>a</i>	-6.0	-4.0	40.8	58.2	-0.66	-2.66	22.0	129.4
<i>c</i>	-12.7	-19.8	273.8	-53.3	-22.70	-15.70	119.1	199.9
<i>e</i>	1.85	-40.8	260.5	-12.1	-23.30	19.30	139.9	42.0
<i>g</i>	76.4	146.8	798.4	92.9	239.00	168.60	1435.3	153.9
<i>i</i>	-25.3	25.6	103.1	-13.4	56.90	6.00	476.5	70.4
<i>k</i>	-56.2	-94.8	436.0	-77.4	-55.60	-16.90	362.7	79.3
<i>m</i>	18.3	83.0	680.8	149.2	7.73	-57.00	571.3	133.5

TABLE S6-2 Solutions for Problems 6-6 to 6-7

Row	V_A Mag	V_A Ang	ω_3 Open	V_B Mag Open	ω_3 Crossed	V_B Mag Crossed
<i>a</i>	14	135	-2.47	-9.9	2.47	-9.92
<i>c</i>	45	-120	5.42	-41.5	-5.42	-3.54
<i>e</i>	250	135	-8.86	-189.7	8.86	-163.80
<i>g</i>	700	60	-28.80	738.9	28.80	-38.90

TABLE S6-3 Solutions for Problems 6-8 to 6-9

Row	V_A Mag	V_A Ang	ω_3 Open	V_{slip} Open	V_B mag Open	ω_3 Crossed	V_{slip} Crossed	V_B Mag Crossed
<i>a</i>	20.0	120.0	-10.3	33.5	41.2	-3.6	-4.25	14.6
<i>c</i>	240.0	135.0	23.7	73.0	142.5	-14.9	130.50	89.4
<i>e</i>	180.0	-15.0	-2.7	-176.0	5.4	5.7	162.00	11.5

TABLE S6-4 Solutions for Problems 6-10 to 6-11

Row	ω_3 Open	ω_4 Open	ω_3 Crossed	ω_4 Crossed
<i>a</i>	32.6	16.9	-75.2	-59.6
<i>c</i>	10.7	-2.6	-8.2	5.1
<i>e</i>	-158.3	-81.3	-116.8	-193.9
<i>g</i>	-8.9	-40.9	-48.5	-16.5
<i>i</i>	-40.1	47.9	59.6	-28.4

TABLE S7-1 Solutions for Problems 7-3 to 7-4

Row	α_3 Open	α_4 Open	A_P Mag	A_P Ang	α_3 Crossed	α_4 Crossed	A_P Mag	A_P Ang
<i>a</i>	26.1	53.3	419	240.4	77.9	50.7	298	-11.3
<i>c</i>	-154.4	-71.6	4400	238.9	-65.2	-148.0	3554	100.6
<i>e</i>	331.9	275.6	10 260	264.8	1287.7	1344.1	19 340	-65.5
<i>g</i>	-23 510.0	-19 783.0	172 688	191.0	-43 709.0	-47 436.0	273 634	-63.0
<i>i</i>	-344.6	505.3	9492	-81.1	121.9	-728.0	27 871	150.0
<i>k</i>	-2693.0	-4054.0	56 271	220.2	311.0	1672.1	27 759	-39.1
<i>m</i>	680.8	149.2	35 149	261.5	9266.1	10 303.0	63 831	103.9

TABLE S7-2 Solutions for Problems 7-5 to 7-6

Row	A_A Mag	A_A Ang	α_3 Open	A_B Mag Open	A_B Ang Open	α_3 Crossed	A_B Mag Crossed	A_B Ang Crossed
<i>a</i>	140	-135	25	124	180	-25	74	180
<i>c</i>	676	153	-29	709	180	29	490	180
<i>e</i>	12 500	45	-447	6653	0	447	11 095	0
<i>g</i>	70 000	150	-1136	62 688	180	1136	58 429	180

TABLE S7-3 Solutions for Problems 7-7 to 7-8

Row	α_3 Open	α_4 Open	A_{slip} Open	α_3 Crossed	α_4 Crossed	A_{slip} Crossed
<i>a</i>	130.5	130.5	-128.5	-9.9	-9.9	19.0
<i>c</i>	-212.9	-212.9	1078.8	-217.8	-217.8	-728.2
<i>e</i>	896.3	896.3	-1818.6	595.6	595.6	1822.6

TABLE S7-4 Solutions for Problem 7-9

Row	α_3 Open	α_4 Open	α_3 Crossed	α_4 Crossed
<i>a</i>	3191	2492	-6648	-5949
<i>c</i>	314	228	87	147
<i>e</i>	2171	-6524	7 781	5414
<i>g</i>	-22 064	-23 717	-5529	-29 133
<i>i</i>	-5697	-3380	-2593	-7184

CHAPTER 7 ACCELERATION ANALYSIS

7-3 and **7-4** See Table S7-1 and the file P07-04row.4br.

7-5 and **7-6** See Table S7-2.

7-7 and **7-8** See Table S7-3.

7-9 See Table S7-4.

7-12 176.9 in/sec².

7-21 $A_A = 26.26 \text{ m/sec}^2$ @ 211.1° , $A_B = 8.328 \text{ m/sec}^2$ @ -13.9° .

7-24 $A_A = 16 \text{ m/sec}^2$ @ 237.6° , $A_B = 12.01 \text{ m/sec}^2$ @ 207.4° , $\alpha_4 = 92 \text{ rad/sec}^2$.

7-28 $A_A = 39.38 \text{ m/sec}^2$ @ -129° , $A_B = 39.7 \text{ m/sec}^2$ @ -90° .

7-39 Open the file P07-39.4br in program LINKAGES to see this solution.*

7-40 Open the file P07-40.4br in program LINKAGES to see this solution.*

7-41 Open the file P07-41.4br in program LINKAGES to see this solution.*

7-42 Open the file P07-42.4br in program LINKAGES to see this solution.*

7-44 Open the file P07-44.4br in program LINKAGES to see this solution.*

7-56 Tipover at 19.0 to 20.3 mph; load slides at 16.2 to 19.5 mph.

7-76 $A_D = 7554.1 \text{ in/sec}^2$ @ 150.8° , $\alpha_6 = 692.98 \text{ rad/sec}^2$.

7-78 $A_A = 677.1 \text{ in/sec}^2$ @ -119.7° , $A_B = 1337.5 \text{ in/sec}^2$ @ -26.09° , $A_P = 730.37 \text{ in/sec}^2$ @ -53.65° , $\alpha_4 = 431.175 \text{ rad/sec}^2$

7-87 $A_C = 37.5 \text{ in/sec}^2$ @ 90°

CHAPTER 8 CAM DESIGN

Most of the problems in this cam chapter are design problems with more than one correct solution. Use program DYNACAM to check your solution obtained with *Mathcad*, *Matlab*, *Excel*, or *TKSolver* and also to explore various solutions and compare them to find the best one for the constraints given in each problem.

8-1 See Figure S8-1a.

8-2 See Figure S8-1b.

8-4 $\varphi = 4.9^\circ$.

8-6 $\varphi = 13.8^\circ$.

CHAPTER 9 GEAR TRAINS

9-1 Pitch diameter = 4.8, circular pitch = 0.628, addendum = 0.20, dedendum = 0.25, tooth thickness = 0.314, and clearance = 0.050.

9-5 a. $p_d = 10$, b. $p_d = 6$

9-6 Assume a minimum no. of teeth = 16, then: pinion = 16t and 1.600-in pitch dia. Gear = 112t and 11.240-in pitch dia. Contact ratio = 1.68.

* These files can be found in the PROBLEM SOLUTIONS folder downloadable with this text.

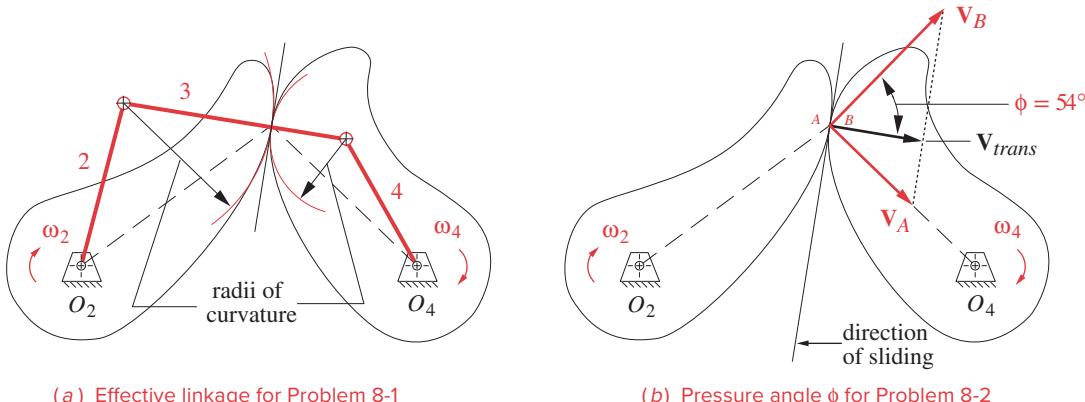


FIGURE S8-1

Solutions to Problems 8-1 and 8-2

9-7 Assume a minimum no. of teeth = 16, then: pinion = 16t and 3.20-in pitch dia. Gear = 96t and 19.20-in pitch dia. An idler gear of any dia. is needed to get the positive ratio. Contact ratio = 1.67.

9-10 Three stages of 4:1, 4:1, and 5:1 give -80:1. Stage 1 = 20t ($d = 1.67$ in) to 80t ($d = 6.67$ in). Stage 2 = 20t ($d = 1.67$ in) to 80t ($d = 6.67$ in). Stage 3 = 18t ($d = 1.5$ in) to 90t ($d = 7.5$ in).

9-12 The square root of 120 is > 10 so will need three stages. $5 \times 4 \times 6 = 150$. Using a minimum no. of teeth = 18 gives 18:90, 18:72, and 18:108 teeth. Pitch diams. are 3.6, 18 and 21.6 in. An idler (18t) is needed to make the overall ratio positive.

9-14 The factors $4 \times 7 = 28$. The ratios 24:96 and 15:105 revert to same center distance of 7.5 in. Pitch diams. are 1.875, 3, 12, and 13.125 in.

9-16 The factors $6.5 \times 10 = 65$. The ratios 22:143 and 15:150 revert to same center distance of 10.3125 in. Pitch diams. are 2.75, 17.875, 1.875, and 18.75.

9-19 The factors $2 \times 1.5 = 3$. The ratios 15:30 and 18:27 revert to the same center distance of 3.75. Pitch diams. are 2.5, 5, 3, and 4.5. The reverse train uses the same 1:2 first stage as the forward train, so it needs a second stage of 1:2.25 which is obtained with a 12:27 gearset. The center distance of the 12:27 reverse stage is 3.25 which is less than that of the forward stage. This allows the reverse gears to engage through an idler of any suitable diameter to reverse output direction.

9-21 For the low speed of 6:1, the factors $2.333 \times 2.571 = 6$. The ratios 15:35 and 14:36 revert to the same center distance of 3.125. Pitch diams. are 1.875, 4.375, 1.75, and 4.5. The second speed train uses the same 1:2.333 first stage as the low-speed train, so it needs a second stage of 1:1.5 which is obtained with a 20:30 gearset which reverts to the same center distance of 3.125. The additional pitch diams. are 2.5 and 3.75. The reverse train also uses the same 1:2.333 first stage as both forward trains, so it needs a second stage of 1:1.714 which is obtained with a 14:24 gearset. The center distance of the 14:24 reverse stage is 2.375 which is less than that of the forward stages. This allows the reverse gears to engage through an idler of any suitable diameter to reverse output direction.

TABLE S9-1 Solution to Problem 9-29

Possible Ratios for Two-Stage Compound Gear Train to Give the Ratio 2.718 28

Pinion 1	Gear 1	Ratio 1	Pinion 2	Gear 2	Ratio 2	Train Ratio	Abs Error
25	67	2.68	70	71	1.014	2.718 285 71	5.71E-06
29	57	1.966	47	65	1.383	2.718 268 53	1.15E-05
30	32	1.067	31	79	2.548	2.718 279 57	4.30E-07
30	64	2.133	62	79	1.274	2.718 279 57	4.30E-07
31	48	1.548	45	79	1.756	2.718 279 57	4.30E-07
31	64	2.065	60	79	1.317	2.718 279 57	4.30E-07
31	79	2.548	75	80	1.067	2.718 279 57	4.30E-07
35	67	1.914	50	71	1.420	2.718 285 71	5.71E-06

9-25 a. $\omega_2 = 790$, c. $\omega_{arm} = -4.544$, e. $\omega_6 = -61.98$ **9-26** a. $\omega_2 = -59$, c. $\omega_{arm} = 61.54$, e. $\omega_6 = -63.33$ **9-27** a. 577.7 rpm and 4.33 to 1, b. $x = 577.7 \times 2 - 800 = 355.4$ rpm**9-29** See Table S9-1 for solution. The third row has the smallest error and smallest gears.**9-35** $\eta = 0.963$.**9-37** $\eta = 0.996$.**9-39** $\omega_1 = 979.6$ rpm, $\omega_2 = 2742.9$ rpm.**9-41** $\omega_1 = -293.9$ rpm, $\omega_3 = -587.8$ rpm.**9-43** $\omega_G = -18.6$ rpm, $\omega_F = -187.7$ rpm.**9-67** $\varphi = 26.23^\circ$.**9-69** Gear ratio = 2.4 and contact ratio = 1.698. Circular pitch = 0.785, base pitch = 0.738, pitch dia. = 6.25 and 15, outside dia. = 6.75 and 15.5, center dist. = 10.625, addendum = 0.250, dedendum = 0.313, whole depth = 0.5625, clearance = 0.063 (all in inches).**9-71** Four stages with factors $6 \times 5 \times 5 \times 5 \times 5 = 750$: Stage 1 = 14t to 84t. Stages 2, 3, 4 = 14t to 70t. Output in same direction as input due to even number of stages.

CHAPTER 10 DYNAMICS FUNDAMENTALS

10-1 CG @ 8.77 in from handle end, $I_{zz} = 0.394$ in-lb-sec 2 , $k = 9.35$ in.**10-2** CG @ 8.08 in from handle end, $I_{zz} = 0.221$ in-lb-sec 2 , $k = 8.95$ in.**10-4**a. $x = 3.547$, $y = 4.8835$, $z = 1.4308$, $w = -1.3341$ b. $x = -62.029$, $y = 0.2353$, $z = 17.897$, $w = 24.397$

10-6

- a. In series: $k_{eff} = 3.09$, Softer spring dominates
- b. In parallel: $k_{eff} = 37.4$, Stiffer spring dominates

10-9

- a. In series: $c_{eff} = 1.09$, Softer damper dominates
- b. In parallel: $c_{eff} = 13.7$, Stiffer damper dominates

10-12 $k_{eff} = 12 \text{ N/mm}$, $m_{eff} = 0.688 \text{ kg}$ **10-14** $k_{eff} = 225 \text{ N/mm}$, $m_{eff} = 58.5 \text{ kg}$ **10-20** Effective mass in 1st gear = 0.054 bl, 2nd gear = 0.096 bl, 3rd gear = 0.216 bl, 4th gear = 0.863 bl.**10-21** Effective spring constant at follower = 308.35 lb/in.**10-25** Effective spring constant = 111.1 N/mm, effective mass = 27 kg.**10-26** $x = 5.775 \text{ in.}$ **10-34** I_{crank} about pivot = 1 652 kg-mm², I_{rocker} about pivot = 18 420 kg-mm², $I_{coupler}$ about CG = 2106 kg-mm² (both couplers are the same).**10-35** $x = 774 \text{ mm}$ to strike point of ball.**CHAPTER 11 DYNAMIC FORCE ANALYSIS****11-3** Open file P11-03row.sld in program LINKAGES to check your solution.***11-4** Open file P11-03row.sld in program LINKAGES to check your solution.***11-5** Open file P11-05row.4br in program LINKAGES to check your solution.***11-6** Open file P11-05row.4br in program LINKAGES to check your solution.***11-7** Open file P11-07row.4br in program LINKAGES to check your solution.***11-12** $F_{12x} = -1851 \text{ N}$, $F_{12y} = 1315 \text{ N}$; $F_{14x} = 1047 \text{ N}$, $F_{14y} = -3156 \text{ N}$;
 $F_{32x} = 479 \text{ N}$, $F_{32y} = -275 \text{ N}$; $F_{43x} = 53.7 \text{ N}$, $F_{43y} = -1087 \text{ N}$; $T_{12} = -45.3 \text{ N-m}$ **11-13** Open file P11-13.4br in program LINKAGES to check your solution.***11-14** $F_{12} = 1308 \text{ lb}$, $F_{32} = 1290 \text{ lb}$, $F_{43} = 1290 \text{ lb}$, $F_{14} = 710 \text{ lb}$,
 $F_{hand} = 63.2 \text{ lb}$, $JFI = 0.645$.**11-25** $T_{12} = 463 \text{ lb-in}$ **11-40** Mass moment of inertia needed in flywheel = 11.8 bl-in². Many flywheel geometries are possible. Assuming a steel cylinder with a radius of 9.0 in, thickness = 1.474 in.**CHAPTER 12 BALANCING****12-1**

- a. $m_b r_b = 0.934$, $\theta_b = -75.5^\circ$
- c. $m_b r_b = 5.932$, $\theta_b = 152.3^\circ$
- e. $m_b r_b = 7.448$, $\theta_b = -80.76^\circ$

* These files can be found in the PROBLEM SOLUTIONS folder downloadable with this text.

12-5

a. $m_a r_a = 0.814$, $\theta_a = -175.2^\circ$, $m_b r_b = 5.50$, $\theta_b = 152.1^\circ$
 c. $m_a r_a = 7.482$, $\theta_a = -154.4^\circ$, $m_b r_b = 7.993$, $\theta_b = 176.3^\circ$
 e. $m_a r_a = 6.254$, $\theta_a = -84.5^\circ$, $m_b r_b = 3.671$, $\theta_b = -73.9^\circ$

12-6 $W_a = 3.56$ lb, $\theta_a = 44.44^\circ$, $W_b = 2.13$ lb, $\theta_b = -129.4^\circ$ **12-7** $W_a = 4.2$ lb, $\theta_a = -61.8^\circ$, $W_b = 3.11$ lb, $\theta_b = 135^\circ$

12-8 These are the same linkages as in Problem 11-5. Open the file P11-05row.4br in program LINKAGES to check your solution.* Then use the program to calculate the flywheel data.

12-9 Open the file P12-09.4br in program LINKAGES to check your solution.*

12-14 $R_3 = 5.85$ in, $\theta_3 = -142.11^\circ$, $R_4 = 1.13$ in, $\theta_4 = 120^\circ$

12-16 $W_4 = 14.48$ lb, $\theta_4 = 89.15^\circ$, $W_5 = 5.04$ lb, $\theta_5 = 83.90^\circ$

12-18 $d_3 = 18.95$ mm, $\theta_3 = -147.46^\circ$, $d_4 = 20.8$ mm, $\theta_4 = 28.94^\circ$

12-38 Plane 2: $e = 0.113$, $\theta = -152.15^\circ$. Plane 3: $e = 0.184$, $\theta = 19.36^\circ$.

CHAPTER 13**ENGINE DYNAMICS**

13-1 Exact solution = $-42\ 679.272$ in/sec @ 299.156° and 200 rad/sec

Fourier series approximation = $-42\ 703.631$ in/sec @ 299.156° and 200 rad/sec

Error = -0.0571% ($-0.000\ 571$)

13-3 Gas torque = 2040 (approx.), Gas force = 3142

13-5 Gas torque = 2039.53 (approx.), Gas torque = 2039.91 (exact)

Error = 0.0186% ($0.000\ 186$)

13-7

a. $m_b = 0.007\ 48$ at $l_b = 7.2$, $m_p = 0.012\ 51$ at $l_p = 4.31$
 b. $m_b = 0.008\ 00$ at $l_b = 7.2$, $m_a = 0.012\ 00$ at $l_a = 4.80$
 c. $I_{model} = 0.691\ 2$, Error = 11.48% ($0.114\ 8$)

13-9 $m_{2a} = 0.018$ at $r_a = 3.5$, $I_{model} = 0.220\ 5$, Error = -26.5% (-0.265)

13-11 Open the file P13-11.eng in program ENGINE to check your solution.*

13-14 Open the file P13-14.eng in program ENGINE to check your solution.*

13-19 Open the file P13-19.eng in program ENGINE to check your solution.*

* These files can be found in the PROBLEM SOLUTIONS folder downloadable with this text.

TABLE S15-1
Solutions to Problem
15-6

	ω_n	ω_d	c_c
<i>a</i>	3.42	3.38	8.2
<i>b</i>	4.68	4.65	19.7
<i>c</i>	0.26	0.26	15.5
<i>d</i>	2.36	2.33	21.2
<i>e</i>	5.18	5.02	29.0
<i>f</i>	2.04	1.96	49.0

CHAPTER 14 MULTICYLINDER ENGINES

Note: Use program ENGINE to check your solutions.

14-23 *mr* product on the balance shafts = 5.017E-3 bl-in or 1.937 lb-in.

CHAPTER 15 CAM DYNAMICS

15-1 to **15-5** Use program DYNACAM to solve these problems. There is not any *one right answer* to these design problems.

15-6 See Table S15-1.

15-7 to **15-19** Use program DYNACAM to solve these problems. There is not any *one right answer* to these design problems.

Appendix G

EQUATIONS FOR UNDER- OR OVERBALANCED MULTICYLINDER ENGINES

G.1 INTRODUCTION

Chapter 14 developed the equations for shaking forces, moments, and torques in multi-cylinder engines of inline and vee configurations. In Chapter 14, it is assumed that the crank throws are all exactly balanced, an assumption that greatly simplifies the equations. However, some multicylinder engines overbalance the crank throws to reduce main bearing forces. This also can have an effect on shaking forces and moments.

This appendix provides replacement equations for the simplified versions in Chapter 14, and these equations do not assume exactly balanced crank throws.* The equation numbers used here correspond to those in Chapter 14 and can be substituted for the simplified ones if desired. In the equations that follow, m_A is the effective crank pin mass and m_B the effective wrist pin mass as defined in Chapter 13. The parameters m_c and r_c represent, respectively, the counterweight mass of any one crank throw and the radius to the counterweight's *CG*. All other parameters are the same as defined in Chapters 13 and 14.

* These complete equations are used in program LINKAGES.

For an inline engine (Section 14.3) the shaking forces for an engine with an under- or overbalanced crankshaft are:

$$\begin{aligned}
 F_{s_x} \doteq & (m_A + m_B)r\omega^2 \left[\cos\omega t \sum_{i=1}^n \cos\phi_i + \sin\omega t \sum_{i=1}^n \sin\phi_i \right] \\
 & + m_c r_c \omega^2 \left[\cos(\omega t + \pi) \sum_{i=1}^n \cos\phi_i + \sin(\omega t + \pi) \sum_{i=1}^n \sin\phi_i \right] \\
 & + \frac{m_B r^2 \omega^2}{l} \left[\cos 2\omega t \sum_{i=1}^n \cos 2\phi_i + \sin 2\omega t \sum_{i=1}^n \sin 2\phi_i \right] \hat{\mathbf{i}}
 \end{aligned} \tag{14.2d}$$

$$\begin{aligned}
 F_{s_y} \doteq & m_A r \omega^2 \left[\sin\omega t \sum_{i=1}^n \cos\phi_i - \cos\omega t \sum_{i=1}^n \sin\phi_i \right] \\
 & + m_c r_c \omega^2 \left[\sin(\omega t + \pi) \sum_{i=1}^n \cos\phi_i - \cos(\omega t + \pi) \sum_{i=1}^n \sin\phi_i \right] \hat{\mathbf{j}}
 \end{aligned}$$

For an inline engine (Section 14.3) the shaking moments for an engine with an under- or overbalanced crankshaft are:

$$\begin{aligned}
 M_{s_x} \doteq & (m_A + m_B)r\omega^2 \left[\cos\omega t \sum_{i=1}^n z_i \cos\phi_i + \sin\omega t \sum_{i=1}^n z_i \sin\phi_i \right] \\
 & + m_c r_c \omega^2 \left[\cos(\omega t + \pi) \sum_{i=1}^n z_i \cos\phi_i + \sin(\omega t + \pi) \sum_{i=1}^n z_i \sin\phi_i \right] \\
 & + \frac{m_B r^2 \omega^2}{l} \left[\cos 2\omega t \sum_{i=1}^n z_i \cos 2\phi_i + \sin 2\omega t \sum_{i=1}^n z_i \sin 2\phi_i \right] \hat{\mathbf{i}}
 \end{aligned} \tag{14.6b}$$

$$\begin{aligned}
 M_{s_y} \doteq & m_A r \omega^2 \left[\sin\omega t \sum_{i=1}^n z_i \cos\phi_i - \cos\omega t \sum_{i=1}^n z_i \sin\phi_i \right] \\
 & + m_c r_c \omega^2 \left[\sin(\omega t + \pi) \sum_{i=1}^n z_i \cos\phi_i - \cos(\omega t + \pi) \sum_{i=1}^n z_i \sin\phi_i \right] \hat{\mathbf{j}}
 \end{aligned}$$

For a vee or opposed engine (Sections 14.7 and 14.8) the shaking forces for an engine with an under- or overbalanced crankshaft are:

$$F_{s_x} \doteq (F_{s_L} + F_{s_R}) \cos \gamma + m_A r \omega^2 \left[\cos \omega t \sum_{i=1}^n \cos \phi_i + \sin \omega t \sum_{i=1}^n \sin \phi_i \right] \\ + m_c r_c \omega^2 \left[\cos(\omega t + \pi) \sum_{i=1}^n \cos \phi_i + \sin(\omega t + \pi) \sum_{i=1}^n \sin \phi_i \right] \hat{\mathbf{i}} \quad (14.10j)$$

$$F_{s_y} \doteq (F_{s_L} - F_{s_R}) \sin \gamma + m_A r \omega^2 \left[\sin \omega t \sum_{i=1}^n \cos \phi_i - \cos \omega t \sum_{i=1}^n \sin \phi_i \right] \\ + m_c r_c \omega^2 \left[\sin(\omega t + \pi) \sum_{i=1}^n \cos \phi_i - \cos(\omega t + \pi) \sum_{i=1}^n \sin \phi_i \right] \hat{\mathbf{j}}$$

$$\mathbf{F}_s = F_{s_x} \hat{\mathbf{i}} + F_{s_y} \hat{\mathbf{j}}$$

For a vee or opposed engine (Sections 14.7 and 14.8) the shaking moments for an engine with an under- or overbalanced crankshaft are:

$$M_{s_x} \doteq (M_{s_L} + M_{s_R}) \cos \gamma + m_A r \omega^2 \left[\cos \omega t \sum_{i=1}^n z_i \cos \phi_i + \sin \omega t \sum_{i=1}^n z_i \sin \phi_i \right] \\ + m_c r_c \omega^2 \left[\cos(\omega t + \pi) \sum_{i=1}^n z_i \cos \phi_i + \sin(\omega t + \pi) \sum_{i=1}^n z_i \sin \phi_i \right] \hat{\mathbf{i}} \quad (14.11c)$$

$$M_{s_y} \doteq (M_{s_L} - M_{s_R}) \sin \gamma + m_A r \omega^2 \left[\sin \omega t \sum_{i=1}^n z_i \cos \phi_i - \cos \omega t \sum_{i=1}^n z_i \sin \phi_i \right] \\ + m_c r_c \omega^2 \left[\sin(\omega t + \pi) \sum_{i=1}^n z_i \cos \phi_i - \cos(\omega t + \pi) \sum_{i=1}^n z_i \sin \phi_i \right] \hat{\mathbf{j}}$$

$$\mathbf{M}_s = M_{s_x} \hat{\mathbf{i}} + M_{s_y} \hat{\mathbf{j}}$$

Note that inertia torque is unaffected by crankshaft balance condition because, at constant angular velocity, the acceleration vector of the crank pin mass is centripetal and has no moment arm. The moment of inertia added to the crankshaft by any overbalance mass will increase the flywheel effect of the crankshaft and thus reduce its willingness to change rotational speed in transient angular acceleration. But, the size of the engine's physical flywheel can be reduced to compensate for the more massive crankshaft.

INDEX

A

acceleration **3, 178, 357**
absolute 359, 364
analysis
 analytical 365
 graphical 360, 361
angular 590, 599, 608
 as free vector 365
 definition 357
 inverted slider-crank 376, 378
cam-follower 416
 comparison of shapes 434
 peak factor 432
centripetal 358, 364, 579
coriolis 373.
See Also coriolis acceleration
difference
 analytical solution 364, 366
 definition 360
 equation 359
 graphical solution 364
 in slider-crank 370
discontinuities in 422
human tolerance of 382
linear 590, 599
modified sine 427, 434
modified trapezoidal 427
normal 364
of any point on link 380
of a valve train 785
of geared fivebar 379
of piston 384
of slip 378

relative 359, 364
sinusoidal 425
tangential 358, 364
tolerance 383
accelerometer **382**
across variable **568**
actuator **38, 582**
addendum **493, 497**
 circle 497
 modification coefficients 502
AGMA **497, 502**
air
 cylinder 38, 100
 motor 79
all wheel drive **537**
all-wheel-drive **537**
Ampere, Andre Marie **5**
amplitude ratio **772**
analogies **11, 763**
analog **569**
analysis **11, 12, 24, 98, 99, 589**
 definition 8
 of mechanisms 3, 30
analytical linkage synthesis **100, 102, 233, 236, 245.**
See Also linkage: synthesis
 compare to graphical 243
angle
 of approach 494
 of a vector
 definition 189
 of recess 494
angular velocity ratio **309, 310, 311, 492**
 definition 307
antiparallelogram **57**
 linkage 315
apparent position **183**
applications
 assembly machines 452
 automobile engine 409
 automobile suspension 128, 311
 automobile transmission 493
 engine valves 443
 indexing table drive 435
 movie camera 126
 of air motors 79
 of fluid power cylinders 79
 of hydraulic motors 79
 of kinematics 6
 of solenoids 80
 optical adjusting mechanism 312
 steam locomotives 57
 toggle linkages 103
approximate
 circle arc 149, 151
 dwell 152
 straight line 125, 141, 144, 151
arc of action **494**
arctangent
 two-argument code for 180
arm (epicyclic) **521.**
See Also gear: train: epicyclic
Artobolevsky **6**

linkage catalog 153
reference 158

asperities 33

atlas of coupler curves
fourbar 126
geared fivebar 131

automobile
clutch 622
suspension 128, 141, 311
wheel balancer 661

axis
of rotation 558
of slip
cam-follower 304, 461
inverted slider-crank 330, 374, 610
slider block 318, 319

of transmission 495
cam-follower 461, 462
gear teeth 494
inverted slider-crank 330, 610
slider block 318, 319

axle 311

B

babbitt 711

backdrive 102, 506

background research 9, 16, 22, 639

backhoe 7

backlash 497, 498.
See Also gear: antibacklash
definition 497

balance
complete 642
dynamic 642, 646
tires 662, 663

mass 643

shafts 736, 752, 755

single-plane 643

static 642, 643, 755
tires 661

balancer
Lanchester 756
Nakamura 756

balancing 578
dynamic 649, 755
secondary force 756

engines
multi-cylinder 751
single-cylinder 705

linkages 651
effect on input torque 656, 657
effect on pin forces 655
optimum counterweights 657
shaking force 651
shaking moment 657
static 645

ball
and socket 33
joint 33. *See Also* joint

bank
angle 742. *See Also* vee: angle
engine 721. *See Also* engines: vee
of cylinders 674

Barker 60

base circle
cam 460, 473
gear 497, 500, 507
involute 493
radius 460

base units 17

BDC. *See* bottom dead center (BDC)

beam
cantilever 574
double cantilever 574
indeterminate 42
simply supported 42

bearing 69
ball 69
bushing 72
effective diameter 72
effective length 72
flange-mount 69
journal 69
linear ball 70
pillow block 69
ratio 72, 73
definition 72
poor, example of 73
roller 69
rolling-element 69
sleeve 69
spherical rod end 69

belt 6, 32, 490
flat 509
synchronous 509
timing 509
vee 491, 509
vibration in 511

benchmarking 9

Berkof-Lowen method 651

BFI. *See* Brute Force and Ignorance

big end (conrod) 689

binary 42
link 32

binomial
expansion 683
theorem 682, 687

bisector 151

blank paper syndrome 8, 624

blobs 18

bore/stroke ratio 709

Boston rocker 316

bottom dead center (BDC) 675

boundary conditions 409, 416, 439, 445

brainstorming 11

brake 521

branch
defect 212
definition 212

building blocks 36

bump steer 311

Burmester curves 266

bushing 72
ball 145

C

CAD. *See* Computer Aided: Drafting

CAE. *See* Computer Aided: Engineering

cam 6, 32, 100, 148, 385, 409, 763
and follower 100, 148, 304
automotive valve 574, 776
axial 414, 476
barrel 414, 435
conjugate 476
contour 473
cylindrical 414
definition 409
design
fundamental law of 420
desmodromic 780
disk 565, 764, 775
double-dwell 417
face 414
force-closed 780, 783
form-closed 781, 783
ground 477
mechanisms 568

milled 477
 motion program types 415
 plate 414, 783
 radial 414, 476
 single-dwell 443
 asymmetrical rise-fall 448
 symmetrical rise-fall 443
 stationary 470
 track 780

CAM. *See Computer Aided: Manufacturing*

cam-follower 52, 53, 55, 73
 camshaft 780
 capacitor 569, 571
 carburetor 677
 carry through 57
 cartesian
 coordinates 188
 form 180
 Cayley diagram 134, 137.
 See Also cognate
 degenerate 137
 center
 of curvature 472
 of gravity 556, 599, 687
 global 557
 of percussion 563, 659, 689
 of rotation 563, 564, 659, 689
 point 263
 circle 263
 centrifugal force 578, 752
 centrodes 313. *See Also* polodes
 fixed, moving 315
 noncircular gears 508
 centros 298.
 See Also instant centers
 CEP cams. *See* Critical Extreme Position (CEP)
 chain 32
 drive 490, 510
 vibration in 511
 silent 510
 change points 57
 characteristic equation 768, 769
 Chasles
 reference 218
 theorem 185, 297
 Chebyshev 134, 140, 144, 263.
 See Also Roberts: -Chebyshev theorem
 chordal action 510

circle
 arc 144
 with remote center 125
 point 263
 circle 263

circuit
 defect 212
 definition 212
 of a linkage 193
 distinguishing 215
 number of 213

circular
 gears 316
 pitch 498

civil engineering 5

clearance 497

Clerk 677
 cycle 675
 engine 677

clockworks 5

closed
 curve 125
 kinematic chains 38
 mechanism 38

closed loop 78

clutch
 automobile 622, 699
 synchromesh 532, 533

CNC. *See* Continuous Numerical Control (CNC)

coefficient
 of damping 568, 573. *See*
 Also resonance
 of fluctuation 621, 622, 697. *See*
 Also flywheel

cognate 134, 137.
 See Also Cayley diagram;
 See Also Roberts: -Chebyshev theorem;
 See Also Roberts: diagram
 character of 134
 fourbar linkage 134
 geared fivebar 140

colinearity 102, 119

combined functions
 for cams 425

common
 normal 304, 494, 495
 tangent 304, 493

communication 17, 24

complex
 motion 31
 conrod 688
 coupler 36, 124
 definition 32, 184
 number 188
 notation 188, 189
 plane 189

compliance
 definition 65

compliant mechanisms 65

component
 orthogonal 196

compound
 epicyclic train 525
 gear train 512. *See Also* gear: train

compression
 ignition 679
 stroke 676

Computer Aided
 Drafting 99, 624
 Engineering 99, 100, 126

computer graphics 119

computer programs. *See* programs

concave 466

conjugate
 action 506
 cams 413, 780

conjugates 413, 493

connecting rod 36, 674

conrod 679, 688, 691
 two per crank throw 746

conrod/crank ratio 709, 710

conservation of energy 580

conservative model 764

constant
 acceleration 426
 of integration 766
 velocity 452

constrained 38

construction angle 120

contact ratio 502
 minimum 502

continuation methods 272

continuous 53
 motion 452, 453

convex 466

coordinate system 32, 180, 590
 absolute 17, 180
 global 180, 237, 605
 local 180

nonrotating 180, 590, 605
rotating 180, 605
coriolis acceleration 373, 375
correction planes 647, 755
cost 100
coulomb friction 566, 606.
See Also friction: non-linear
counter
 balance 65
 couple 647
 rotating eccentrics 752
 shaft 532
 weight 644, 656, 708, 755
crankshaft 706
optimum balance 657
coupler 22, 124, 126, 207
 as a physical pendulum 658
 attachment points
alternate 114
 curve equation 273
 curves 125, 126, 128, 131, 134, 151
atlas of 126
degenerate 124
degree of 124
design charts 131
symmetrical 129
 definition 36
 output 105, 107, 111, 112
 point 126, 151
coupler curve
 equation
complexity 273
 synthesis 274
CPM cams.
See Critical Path Motion
crank 126, 674, 688
 definition 36
 eccentric 71
 phase diagram 723, 738
 short 71
 throw 719
crank-conrod ratio 682
crankpin 691
 splayed 755
crank-rocker 57, 126
crankshaft 677, 719
 balance weights 705
 mirror symmetric 738, 747
 phase diagram 722
crank-shaper 55

crank-slider.
See Also slider-crank
 constant velocity slider 153
 quick-return 122
threebar 593
creative process 11, 21
 definition 21
creativity 7, 10, 11, 21, 28
Critical Extreme Position (CEP) 410, 414, 417
critically damped.
See damping: critical
Critical Path Motion (CPM) 410, 414, 452, 453, 458
crossed
 helical gears 505
 mechanism 193, 256
crossover shock 476, 497, 782
crowned pulley 509
crunode 125, 126, 131
cubic function
 finding roots of 214
current 568
curvilinear translation 137, 140
cusp
 on cam 467
 on coupler curve 128, 131
 on moving centrole 316
cycloid
 curve 125
 gear tooth 493
cycloidal
 coupler curve 316
 displacement 422, 425, 443
compared 434
dynamic torque 784
single-dwell 442
cylinder
 air and hydraulic 79.
See Also air: cylinder;
See Also hydraulic: cylinder

D

d'Alembert 5, 578, 579, 581, 64, 3, 691
dampers 574, 772
 combining 569
 in parallel 570
 in series 569

damping 566, 568, 574, 763, 767, 775
 coefficient 568
 critical 768, 769
 effective 570, 573
 internal 576
 nonlinear 566
 pseudo-viscous 568
 quadratic 566
 ratio 768, 772, 774, 775
 viscous 566
DC component 683
decision matrix 13
dedendum 497, 500
 circle 498
deferred judgment 11
deflection 555, 566
 bending 574
 torsional 576
degree 124, 131, 439
degree of freedom 30, 35, 40
 definition 37
 distribution of 48
 spatial mechanisms 40
 visualizing 35
DeJonge 6
Delone 156
delta
 phase angle 722
optimum 722
 power stroke angle 732
 triplet 46, 48, 52
deltoid 59
Denavit, J. 6, 134
density
 mass 555
 weight 555
derived unit 17
descriptive geometry 5, 24
design 7, 21, 100
 axiomatic 15
 by successive analysis 99, 100
 case study 21
 computer-aided 13
 definition 7
 detailed 13, 15, 26
 process 3, 7, 8, 14, 28, 99, 555
 qualitative 99
 ratios 709
 simplicity in 56
 specifications 10
 trade-off 73, 621, 709

desmodromic 413, 476, 780.
See Also cam: form-closed

determinant 259

diagrams

- kinematic
- drawing* 36

diametral pitch 498

Diesel cycle 679

differential 521.
See Also gear: train: epicyclic

- automotive 537
- center* 537
- rear* 537
- center 537
- definition 536
- limited slip 538
- Torsen 538

dimensional synthesis 100, 102, 104, 158. *See Also* analytical: linkage synthesis

- of a fourbar linkage 104

Dirac delta functions 420

discontinuities 420

discriminant 769

displacement

- cam 416, 438
- definition 181
- total 185

dissipative element 772

Dixon, A. 15

DOF. *See* degree of freedom

dot product 580

double

- crank 57.
- dwell 153, 417
 - cam 417
 - linkage 151, 416
- enveloping wormset 506
- harmonic 444, 784
- parallelogram linkage 59
- rocker 57, 103, 109, 141.

See Also crank-rocker

dragged crank 121

drag link 57, 121

driver 74

- crank 601
- stage 109

driving torque 606, 686.
See Also torque: driving

duplicate planar linkages 101

dwell 53, 73, 148, 151, 415, 477

cam

- double-* 417
- single* 443
- single-* 443

definition 148

linkages 148

mechanism 53, 148, 152

motion 125

dyad 105, 238, 240, 243, 251, 263

- definition 38
- driver 109, 111, 114
 - analytical synthesis* 234
- output 121, 122, 148

Dynacam program

- example
- constant velocity* 454
- force* 776, 777, 780
- polynomial* 442
- radius of curvature* 469
- single-dwell* 442
- torque* 783, 785
- general information 817, 818

dynamic

- analysis 26
- balance. *See* balance: dynamic
- balancing. *See* balancing: dynamic
- devices requiring* 647
- machine* 662
- equilibrium 578
- equivalence 659
 - requirements for* 688
- force 3, 4, 18, 178, 382, 384, 555
 - analysis* 553, 589
 - measurement* 785
- friction 566
- models 554
- system 4, 578, 590

E

eccentric

- crank 71
- masses 752, 753

eccentricity

- cam-follower
- definition* 461
- effect on pressure angle* 464
- flat-faced* 465, 474
- roller* 461

effective

- damping 573
- linkage 409, 491
- links 52, 307

mass 571

spring 573

efficiency 505, 580

- definition 529
- of a conventional gear train 529
- of an epicyclic train 529

elastomers 509

electrical circuit 569

electric motors 74, 617.
See Also motor

electromechanical devices 101

encoder 795

endpoint specification 414

energy

- kinetic 291
- in cam-followers* 426, 435, 459
- in flywheels* 618, 697
- in lever ratios* 571
- in resonance* 772
- in rotating systems* 558
- in virtual work* 580, 581
- peak* 434

law of conservation 580

method 580

potential 580, 772

storage elements 773

engineering 14

- approach 14
- design 4, 7, 98, 148
 - cost in* 100
 - definition* 7
- human factors 16
- report 17

Engine program 672, 683, 693, 717

- flywheel calculations 697

engines 74, 674

- inline 719
 - four-cylinder* 756
 - six-cylinder* 752
- multicylinder 719
 - balancing* 751
- opposed 721
 - twin* 751
- radial 721
- rotary 721
- vee 674, 721, 739
 - eight* 674, 739, 746, 747, 754
 - six* 739, 755
 - twelve* 752
 - twin* 754

epicyclic gear train.
See gear: train: epicyclic
 efficiency of 530

equation solver 217, 577, 624

equilibrium 566, 578

E-quintet 46

equivalent
 mass 571
 spring 571
 system 568, 573, 763

Erdman, Arthur G. 6, 119, 233, 266

ergonomics 16. *See Also* human factors engineering

euclidean geometry 105

Euler 5
 equivalents 191
 identity 189
 theorem 185

Eureka! 11, 23

Evans, Oliver 5
 straight-line linkages 144

even firing. *See* firing: even

evolute 493

exact straight line. *See* straight-line: mechanisms: exact

Example 16-1 800

Example 16-2 803

Example 16-3 807

exhaust stroke 677

external
 gearset 499
 load 599
 torque 599

F

face width (gears) 498

Ferguson's paradox 525, 528

film advance mechanism 126

finite
 difference method 16
 element method 16

firing
 even 730
importance of 733
inline four 736, 739
vee eight 750
vee engines 750
 order 736, 748

pattern 730
 uneven 733

first moment of mass.
See mass: moment

fivebar linkage
 geared 63

fixed
 centrode 313, 316.
See Also centrodes
 pivots 112, 114, 126, 134
specified 115.
See Also specified fixed pivots

flat belts. *See* belt: flat

flat-four engine.
See engines: opposed

flexure hinge 22

fluctuation 621. *See Also* coefficient: of fluctuation

flywheel 77, 559, 613
 calculation
in program Dynacam 783
in program Fourbar 617

designing
for fourbar linkage 616
for IC engine 697

effect 656

engine 697, 699
 in IC engines 752

materials 622

moment of inertia of 697

physical 622

sizing 621

follower 763
 cam 101, 409
aligned 461
force-closed 764, 775
form-closed 780
system 409, 763
underdamped 774

flat-faced 413, 470, 476

float 476

force- or form-closed? 476

jump 476, 774, 776, 778

mushroom 413

roller 780

rotating 410

slip 780

translating 410
flat-faced 574
precession 475
roller 783

translating or rotating? 475

foot-pound-second (fps) system 17

force
 analysis
kinetostatic 775, 776, 780, 781, 800, 803
 applied 591, 594
 centrifugal 579, 691
 closed 35
 closure 35, 412, 780
 crankpin 701, 703, 705
 dynamic 672
cam-follower 776, 777, 778, 781, 783, 785
compared to gravitational 581
minimizing 425
 external 581, 643
 externally applied 591
 gas. *See* gas: force
 gravitational 580, 590
 impact 776
 inertia 571, 581, 625, 643, 685, 691, 703
 link 129
 mainpin 703
effect of balancing on 709
 piston sidewall 701
 primary 739
 reaction 601
 secondary 739
 shaking 612, 642, 672
canceling 752, 753
fourbar linkage 656
in inline engines 723, 739
in one-cylinder engines 685, 691
in vee engines 744
primary 736
secondary 736
 spring 565, 764, 775
 transducer 662, 785
 transmission 104
 wristpin 701, 705

forcing frequency.
See frequency: forcing

form-closure 35, 412, 780

Formula 1
 engine redline 684

forward dynamic analysis.
See force: analysis: dynamic

fourbar linkage 55, 134, 599, 642
 acceleration 365
 anti-parallelogram 57
 change points 57
 classification of 60
 cognates 137
character of 137

coupler curves 125
 crank-rocker 50, 102
 double-rocker 102, 103, 105
 Grashof condition 55
 linkless 313
 mechanism 22
 optimum straight-line 144
 quick-return 119, 120
 subchain 105
 symmetrical 130
 triple-rocker 57, 103
Fourbar program
 example
three-position synthesis 256
two-position synthesis 245
Fourier 5, 683
 descriptors 276
 series 683, 726
equation 683
four-position synthesis.
See synthesis: four-position
four-stroke cycle 675, 733
free body 579, 593
 diagram 590, 599,
 691, 700, 764, 767
free choices 106
 for function synthesis 268
 in three-position synthesis 250, 252
 in two-position synthesis 239,
 240, 242
free vector 298, 363, 365
frequency
 forcing 772, 774
 fundamental 766, 774, 779
 natural 763
and resonance 774
cam-follower 775, 777, 780, 789
circular 766, 771
undamped 766, 767
 overtones 766
 ratio 772
 response 785
Freudenstein, F. 6, 192
friction 35, 491, 691
 belts 491
 Coulomb 566
 force 596
 in linkages 104
 nonlinear 566
 work 318
frisbee 298
frustration 10, 11, 23

full joint 33, 39.
See Also joint
function
 forcing 771, 789
 generation 100, 414.
See Also motion: generation;
See Also path: generation
analytical synthesis 267
definition 101, 233
table of free choices 268
two-position 105
 generator 100, 267, 409, 796
functional visualization 10
fundamental frequency 683.
fundamental law
 of cam design 422, 774
 of gearing 492, 494, 496
definition 494
 of servomechanism design 797
fuzzy logic 271, 274

G
Galloway mechanism 59
gas
 force 679, 685, 693, 703, 730
curve 679, 685
 pressure 685
curve 677, 679, 685
 torque 685, 687, 730. *See*
Also torque
gate 128
Gauss-Jordan elimination 246
gear
 antibacklash 497.
See Also backlash
 base pitch 502
 bevel 507, 508
spiral 507
straight 507
 blank 507
 helical 505
 herringbone 505
 hypoid 508
 idler 512
 rack 507
 ratio 131, 204, 571
 set 141, 315
 shaper 500
 spur 505
 teeth 493
full-depth 500
HPSTC 503
unequal-addendum 500, 502
tooth action 490
train 490, 511
compound 512
design algorithm 517
earliest known reference 490
epicyclic 521, 523, 533
error in center distance 496
irrational ratio 518
reverted 515, 532
simple 511
worm 506
wormset 506
gearbox 490, 513
geared fivebar
 coupler curves 131
 mechanism 62, 204
analysis 204, 379
cognate of fourbar 140
coupler curves 124
inversions of 63
gearing
 fundamental law of 492
definition 494
gears 32, 492
 non-circular 315, 508
 profile-shifted 502
 worm. *See* worm
gearset 492, 506
 angle of approach 494
 angle of recess 494
 arc of action 494
 changing center distance 495
 contact ratio 502, 504
 external 493
 highest point of single-tooth contact 502
 internal 493, 499
 length of action 494, 502
 pressure angle 495
genetic algorithms 271
Geneva
 mechanism 53
 wheel 53
global mass center 651.
See Also center: of gravity
goal statement 10, 639
graphical
 dimensional synthesis 100
compare to analytical 243
tools needed for 105, 111
 position analysis 179
Grashof 56, 178

condition 56, 59, 111
geared fivebar 63
 crank-rocker 143
 double-rocker 210
 fivebar 141
 linkage 74
 special-case 57
gravitational
 constant 17, 18
 system 17
gravity 383
ground
 definition 36
 pivots 115
 plane 134
Gruebler 38
 criterion 46
 equation 39, 42, 43

H

Hachette 5
Hain, Kurt 6
 linkages 153
 reference 157
half
 joint 35, 43
Hall, Allen S. 6, 119, 120, 140
Hammond, T. 131
harmonic 444
 number 751
harmonics 683, 726
Hartenberg, Richard 6, 134
Hart inversor 144
helical motion 33
helix angle 33, 505, 506
higher pair 6, 33, 35. *See Also* joint
Hitchcock chair 316
hob (gear) 500
hodograph. See polar: plot
Hoeken
 linkage 143, 144, 145
 reference 157
homogeneous 766
 ODE 766
 solution 767
homotopy methods 272
hood hinge 101
hood hinge mechanism 65

Hrones
 reference 157
Hrones and Nelson atlas 126
human factors engineering 16, 29
Humvee 538
hunting 497
hydraulic
 cylinder 100. *See Also* cylinder: air and hydraulic
 motor 74, 79. *See Also* motors: air and hydraulic
hyperboloids 508
hypoid gears 508

I
idea generation 11
ideation 10, 11, 15, 23
 and invention 10
identification of need 8
identity matrix 246
idler gear. See gear: idler
imaginary axis 189
imbalance 661
inch-pound-second (ips) 18
inclined plane 5
incubation 12, 23
indeterminate beam.
See beam: indeterminate
indexers 435
indexing 148
 table 435
indices of merit 311
induction system 676
inductor 569, 570
inertia
 balance 736
vee engine 739, 750
 force 578, 643, 693, 721, 730.
See Also force: inertia
 mass moment of 558
 torque 578, 581, 694, 727.
See Also torque: inertia

inertial reference frame 180
infinity of solutions 242, 263
inflection points 446, 469
initial conditions 766
inner ear 382

input torque 616, 656.
See Also torque: input
instant centers 298, 299
 cam-follower 304, 463
 fourbar linkage 22, 299, 313
 generate centrodies 315
 permanent 299, 301
 slider-crank 301
 using in linkage design 311
intake stroke 676
interference 500
intermittent motion 53, 452
internal combustion engine 606, 672, 717.
See Also engines
internal gearset.
See gearset: internal
invention 7, 10
inverse dynamics 554, 589, 775.
See Also force: analysis: kinetostatic
inversion
 definition 53
 for three-position synthesis 114, 115, 119
 in ideation 11
 of slider-crank 122
force analysis 608
position solution 202
inversions
 distinct 55
 of fourbar linkage 57
 of sixbar linkages 55
inverted slider crank.
See slider-crank: inverted
involute 493, 496, 500, 507
 definition 493
 teeth 495
isomer 47
 invalid 48
 number of valid isomers 48
iteration 8, 12, 13, 99, 104, 106, 453, 555, 624

J

Jacobian 216, 217
jerk 385, 442
 angular 385, 386
 cam 416
 difference 387

in belts and chains 511
linear 386

jitter 151

joint 6, 33. *See Also* pairs

cam-follower 70
cantilevered 71
force-closed 35
force index 208, 623
form-closed 35
multiple 40, 43
one-freedom 33
order 35
slider 33
sliding 301
straddle mounted 71
two-freedom 33

joystick 33

K

Kant 5

Kaufman, R. 119, 233

Kempe 124

reference 157

Kennedy, Alexander 6

Kennedy's rule 299, 301

kinematic

applications 6

chain 35

class of 56, 63, 64

definition 35

inversion of 57

pair 6, 33. *See Also* pairs

structure 40, 42

synthesis 589. *See Also* synthesis

kinematics 3, 4, 5, 553, 763,

776, 785

definition 3

diagrams

drawing 36

history of 5, 27

kinetic energy. *See* energy: kinetic

kinetics 3, 5, 553

kinetostatics 554, 589, 775, 783.

See Also force: analysis;

kinetostatic;

See Also inverse dynamics

Kinsyn 119

KISS 15

Koster 568, 775, 789

Kota, S. 131

Kutzbach 40

L

Lagrange 5

Lanchester

engine 758
Frederick 535, 758
harmonic balancer 756, 759

L'Ecole Polytechnic 5

length of action 494, 502

Levai

12 basic epicyclic trains 521

lever 5

ratio 571, 575

limit stops 128

Lincages 119, 266

line

contact 33
of action 495
of centers 126

linear

acceleration 357, 383
actuator 79
ball bearings 70
Geneva mechanism 53
graph 299
jerk 385
motion 79
velocity 291

link 6, 31, 32, 47

output 178

ratio 126, 131

shrinkage

complete 50, 52

partial 50, 52

linkage 100

advantages 73
antiparallelogram 57
assemblability 64
basic building blocks 32, 63
cam-driven 798
circle-tracing 156
compliant 313
crank-rocker
180 deg output 154
360 deg output 154
deltoid 59
design 32
disadvantages 73
double-parallelogram 59

fourbar

independent parameters of 270

fourbar drag-link 153

Galloway 59

Grashof

inversions 57

Grashof condition 63

isocoles 59

kite 59

large angular excursion 154

linkless 316

non-quick-return 119

parallelogram 57

rotatability 56

self-locking 103, 114. *See*

Also toggle

servo-driven 806

sixbar 207

Stephenson's 207

Watt's 207

special-case Grashof 57

substituted for gears 156

synthesis 100, 102, 134

torque 104, 111

transformation 43, 48, 409

linkages 6, 32

cascaded 153

connected in parallel 63

connected in series 63, 153, 154

versus cams 73

Linkages program

fivebar

coupler curves 131

exact straight line 144

fourbar

cognates 137

coupler curve 126

fivebar equivalent 141

quick-return 119

straight-line linkages 144

symmetrical linkage 131

three-position synthesis 111, 114

toggle 211

toggle positions 103

two-position synthesis 109

general information 817

linkage

force analysis 589

sixbar

double-dwell 153, 416

linkages 63

quick-return 122

single-dwell 151

linkless fourbar linkage 316

living hinge 66
load
 lines 75
 torque 75
load sharing 502
locomotive 57
Loerch 233, 257
log roller 5
Lord Kelvin
 comment on Peaucellier linkage 144
losses 580, 772
lower pair 6, 33. *See Also* joint
lubricant 33
lubrication 69, 73, 478, 677
 hydrodynamic 69
 problems 70
 seals for 69
lumped
 mass 648
model 690, 691
 model 571, 691, 763
 parameter 571, 575

M

machine 4, 5, 35, 178
 definition 4, 35
 design 3, 5, 73, 98, 385
machinery
 rotating 559
Maglev 797
mandrel 662
mass 4, 18, 554, 565, 687, 764, 774, 775
 balance 644
 density 555
 effective 573, 574, 775, 785
 equivalent 687
 lumped 574, 689
 moment 556, 652
 moment of inertia 558, 590, 618, 656, 687
 point 554, 562, 643
masses
 combining 571
massless rod 562, 643
mass-radius product 645, 649, 663, 708
mass-spring model 764

materials 710
Mathcad 217, 464
Matlab 464
matrix
 augmented 247, 251, 259
 coefficient 251
 inverse 246
 solution 245, 577
 solver 245, 577
Matrix program
 example
force analysis 597, 599, 602
linkage synthesis 255
 force analysis 577
 how to use.
See programs: general information;
See Also programs: how to run them
 solution method 247
May, Rollo 21
mechanical
 advantage 310, 493
 analog computer 100
 circuit 568
 efficiency 309
 engineering 5
 function generator 100
 system 569
mechanism 4, 5, 35, 40, 178
 cam- vs. servo-driven 812
 compliant 65, 66
advantages 66
bistable 67
 crank-shaper 124
 definition 4, 35
 double-dwell 151
 forces in 553
 large angular excursion 154
 non-quick-return 119
 optical adjusting 312
 pick-and-place 154
 planar 101
 quick-return 119
 remote center 155
 washing machine 154
 Whitworth 124
MEMS 67
microchips 67
microcomputer 14, 101
Micro Electro-Mechanical Systems 67
microgears 67

micromotor 67
microsensors 68
Milton, J. 490
mirror symmetric 738, 752
mks system 18
mobility 37
model 14, 252, 557, 568
 cardboard 14, 103, 107
 dynamic 562
 dynamically equivalent 688.
See Also dynamic equivalence:
 requirements for
 finite-element 674
 lumped mass 691
 lumped parameter 764
 of rotating links 562
 simplified 554
 single DOF 576
 statically equivalent 690
modeling
 rotating links 562
modified
 sine 435
 trapezoid 427, 434
module 499
modulus
 of elasticity 574
 of rupture 574
moment
 first of mass. *See* mass: moment
 first, of mass 556
 mass 556
 of inertia.
See mass: moment of inertia
definition 558
experimental method 560
transferring 559
 primary 736
 secondary 736, 739
 second of mass.
See mass: moment of inertia
 second, of mass 558
 shaking 642, 672, 753
canceling 752
in inline engines 728, 730
in vee engines 744
momentum 554, 677
Monge, Gaspard 5
motion
 complex
definition 184
 generation 111, 234.

See Also function: generation;
See Also path: generation
analytical synthesis 235, 237, 247
definition 101
three-position 111, 112
two-position 107
 intermittent 78
 parallel 137
 simple harmonic 421
 straight-line 99
motor 38, 74, 582
 AC 74
 closed loop 78
 compound-wound 74, 76
 DC 74
permanent magnet (PM) 74
speed-controlled 77
 gearmotor 74, 78
 micro 67
 open loop 78
 permanent magnet 74
 series-wound 76
 servo 74
 shunt-wound 76
 speed torque characteristic 617
 stepper 74, 78, 101
 synchronous 77
 universal 74
movie camera 126
moving
 centrode 313, 316.
See Also centrodes
 pivots 112, 115, 151
multiple solutions 16

N

Nakamura 756
 balancer 756
Nascar
 engine redline 684
natural frequency 756, 766, 789
 circular 766
 damped 766, 768
 undamped 766, 768
Nelson, G. L. 126
neural network 276
Newton-Raphson method 207, 214, 387
 chaotic behavior of 215
 in equation solvers 218

Newton's
 equation 18, 764
 laws 382, 553, 589, 643
 method 214, 589
 second law 3
 third law 595
node 32, 38, 47
noise, vibration, and harshness (NVH) 756
no-load speeds 77
non-Grashof 56
 triple-rocker 210
number synthesis 42
nut 33

O

objective function 270
octoid 508
offset 196
 in slider-crank
definition 196
oil bath 478
open
 kinematic chain 38
 mechanism 193, 256. *See Also* crossed: mechanism
operator 189
order
 of joints 35
 of links 42
 of polynomial 439
orthogonal 196
oscillation - cam-follower 773
Otto cycle 675
overbalanced crank 708
overdamped. *See damping*
overdamped system 769
overlays 99
overshoot of response 769
oversquare engine 710
overtones 766, 772
overturning moment 465

P

pairs 33. *See Also* joint
 higher 33
 lower 33
pantograph 156

parabolic displacement 797
paradoxes
 Ferguson's 526
 Gruebler's 46
parallel
 axis theorem 559, 624
 connections
dampers 569
springs 569
 linkage planes 101
 motion 138
parallel motion 141
parallelogram linkage 57, 59
See Also antiparallelogram
particular solution 766, 771.
See Also homogeneous: solution
patent
 crankshaft 141
 websites 9
path 101
 generation 101.
See Also function: generation;
See Also motion: generation
definition 101
precision points 236
with coupler
curve 125, 126, 128, 134
with prescribed timing 101, 266
pawl
 driving 53
 locking 53
Peaucellier 144
percussion. *See center: of percussion*
performance specifications 10, 15, 22, 639
phase angle
 crankshaft 719
 geared fivebar 131, 204
 optimum 719
 sign convention 722
physical pendulum 658
piecewise continuous function 422
piezoelectric
 accelerometer 785
 force transducer 662

pin

double shear 71
 forces 684, 699
crankpin 700
mainpin 703
wristpin 700
 joint 33, 69

single shear 71
pinion 492, 507
piston 384, 606, 674, 688, 691
 acceleration 680, 683, 693
 engine 55
 position 680
 pump 55, 606, 675, 717
 velocity 680
pitch
 circle 493, 495, 497
 curve 460, 467, 469
 diameters 493, 495
 diametral 498
 point 493, 494
pivots
 fixed-specified. *See* specified fixed pivots
 moving. *See* moving: pivots
planetary gear train.
See gear: train: epicyclic
planet gear 521. *See Also* sun gear
platform rocker 316
point masses. *See* mass: point
polar
 coordinates 188
 form 180
 plot 739. *See Also* hodograph
poles 298
polodes 313. *See Also* centrododes
polynomial 784
 345 439, 441, 442
 4567 442
 asymmetrical risefall 448
 3-segment 450
 function 420, 439
 design rule 446
POSE 183
position 178, 180, 291
 absolute 185
 analysis 185, 187
 difference 183
 equation 182, 293
 of any point on a link 207
 relative 183
 vector 180, 188
potential energy.
See energy: potential
pounds force (lbf) 18
pounds mass (lbm) 18
power 74, 309, 568, 580, 581,

731, 783
 equation 582
 stroke 677, 736, 738
 angles 731, 733
 to weight ratio 675
practical considerations 624, 789, 812
precision
 points 236, 243
 position 236, 248
preload
 cam-follower spring 775.
See Also spring: preload
preloaded structure 40
pressure angle
 cam-follower 460
flat-faced 465
force analysis 785
roller 461
 of gearsets 495
primary component.
See Also Fourier: series
 of shaking force 683
 of shaking moment 730
prime
 circle 460, 785
radius 460, 468
principal axes 31
principle
 of d'Alembert 578
 of transmissibility 307
problem
 definition 22
 unstructured 8
production 14
programs 817
 disclaimer on liability 818
 Dynacam 817, 818.
See Also Dynacam program
 Engine. *See* Engine program
 Linkages 817, 818
 Matrix 817.
See Also Matrix program
Projects
 Chapter 3 173
 Chapter 8 485
 Chapter 11 639
 Chapter 13 716
 Chapter 14 761
prototypes 13, 575
prototyping 13
 and testing 13

publications, technical
 websites for 9
pulleys 509
pulse. *See* jerk
pure
 harmonic 621, 730, 767
 rolling 35, 125
joint 35
 rotation 32, 107, 291, 688, 691
 slide 35
 translation 32, 370, 563, 688, 691
pushrod 574

Q

qualitative
 synthesis. *See* synthesis: qualitative
quasi-static 578
quaternary link 32, 42
quick
 forward 120
 return 119, 122, 126
mechanism 55
sixbar 121

R

rack 507
 and pinion 507
steering 507
radius
 of curvature 460
flat follower 470
roller follower 466, 467
 of gyration 561, 565
 prime circle 777

ratchet 6
 and pawl 53
 wheel 53

ratio
 gear 571
 lever 571

reference frame 36.
See Also coordinate system

relative position
See position: relative
report, technical 17
resistor 569. *See Also* damper
resonance 772, 796
 cam-follower

force-closed 774
form-closed 780

resonate 772

response
 complete 772
 damped 767
 forced 772
 steady state 772
 transient 766, 769, 772
 undamped 764

Reuleaux, Franz 6, 33, 38
 classification of mechanisms 35

reverted
 compound train 514.
See Also gear: train
 gear train design 515

revolvability 64
 definition 64

right angle drives 507.
See Also gear: bevel

rigid body 31, 32
 acceleration 364
 motion 183

ring gear 521.
See Also gear: train: epicyclic

rise-dwell-fall-dwell. *See* cam

rise-dwell-fall-dwell cam 410, 415

rise-fall cam 410, 415

rise-fall-dwell cam 410, 415, 443

Roberts
 -Chebyschev theorem 134.
See Also Chebyschev
 diagram 134.
See Also Cayley diagram;
See Also cognate
 straight-line linkage 141

Roberts, Richard 141

Roberts, Samuel 134, 141

robot 38, 100

rocker
 arm 574
 definition 36
 infinitely long 52
 output 105

rocking
 chair 316. *See Also* centrododes
 couple 646

roller 413.
 chain 510
 follower 413, 468, 476, 565, 764, 775

chrome plated 477
crowned 477
in valve trains 477
materials 477
slip 476

rolling
 centrododes 508
 cones 507
 contact 6
 cylinders 491, 493

roll-slide joint 33, 35

root finding 387

rotatability 56, 63, 64
 definition 63
 of geared fivebar linkage 63
 of N-bar linkages 64

rotation 31
 definition 184
 pure 32
balance in 642

rotational
 DOF 33
 freedom 35
 kinetic energy 675

rotopole 107

roughness. *See* surface contact

S

Sanders 387

Sandor, G. N. 6, 119, 233

scalar magnitude 306

scaling 13

SCCA
 family of curves 429, 433

Scotch yoke 52, 53

screw 6
 joint 33

s-curve 797

second
 harmonic 683
 moment
of area 574
of mass 558

secondary component.
See Also Fourier: series
 of shaking force 683
 of shaking moment 730

selection 13

self-locking linkage.
See linkage: self-locking

series connections
 dampers 569
 springs 570

servo
 mechanism 497, 795
 motor 78, 101, 795, 796
linear 796
 valve 79

shaft
 encoder 662
 hollow 521

shaking
 force. *See* force: shaking
 moment. *See* moment: shaking
 torque. *See* torque: shaking

sheave 509. *See Also* pulleys

shock 385. *See Also* jerk

silent chain. *See* chain

simple
 gear train. *See* gear: train: simple

simply supported.
See beam: simply supported

simultaneous equation solution 245.
See Also Matrix

dynamic forces 577, 590

single
 cylinder engine 674
 dwell 153, 443
cam 443
mechanism 148, 149, 416
 enveloping wormset 506
 gearset 511

single-plane balance.
See balance: single-plane

SI system 17

sixbar
 drag-link quick-return 121, 194, 197, 200, 323, 368
 linkage 134
 mechanism 148
 Watts linkage 109

Sixbar program
 example
three-position synthesis 257

skew axis 31

slide
 ball-bearing 73
linear 73

slider block 50, 606

slider-crank 50, 55, 74, 122, 301, 606, 608

analysis
acceleration 369
Fourier 683
instant centers 301
position solution 196
vector loop 196
inverted 201, 376, 608
acceleration 376
Whitworth crank-shaper 55

linkage
dynamic model 691
in IC engines 672
multicylinder 717
offset 201
one-cylinder 674
nonoffset 679
offset
definition 196

sliding
contact 6
joints 43. *See Also* joint

slip 125
component 319, 320, 374
velocity 373

slop 497

slugs 17, 18

solenoid 38, 79, 100

solids modelling 624

solution methods 577

Soni, A. 138

source torque. *See* torque: source

space probe lost 18

space width (gears) 497, 498

spatial
linkage 128
mechanisms 101

specified fixed pivots 114, 117, 257.
See Also pivots: fixed: specified;
See Also synthesis: of linkages

speed controlled DC motor.
See motor: DC

speed-torque characteristic.
See motor

spline functions 460

spreadsheet 577

spring
compression 574
constant 65, 565, 574, 764, 775, 780
definition 566
effective 570, 573, 775
free length 775

helical coil 776
physical 775, 780
preload 777

springs 129, 570
as links 65
combining 570
in parallel 571
in series 570

sprocket 510

standard form equation 266, 268.
See Also analytical linkage synthesis

static
balancing. *See* balancing: static
equivalence 690
friction 566

steady state 766

Stephenson's
sixbar 207

stiction 566

stiffness 555, 774

stops 53, 435. *See Also* dwell

straight-line
linkage 5, 99
Chebyschev 141
Evans 144
exact 144
Hart 144
Hoeken 143
optimum 144
Peaucellier 144
Roberts' 141
Watt' 141
mechanisms 141
approximate 144
exact 144

strain gages 785

strength 555

stresses 4, 178, 384, 555

structural
building block 46
subchain 48

structure 40, 42
preloaded 42

Suh, N. P. 15

sun gear 521.
See Also gear: train: epicyclic

superposition 577, 578, 685, 699

surface contact 33

suspension system 311

s v a j diagrams 416
polynomials 439

sweet spot 563.
See Also center: of percussion

synchromesh 506, 532
clutch 532
transmission 532

synchronous belt.
See belt: synchronous

synonyms 11

synthesis 98, 99, 102, 106
algorithm 100
analytical 100, 104
compare to graphical 243
elastic energy method 275
equation 270
equation methods 273
optimization methods 273
optimized 270
precision 270
precision point methods 272
selective precision synthesis 274
using genetic algorithms 275

definition 8

four-position
analytical 266
graphical 119

graphical
tools needed for 105

of mechanisms 3, 25, 30

qualitative 98, 99, 100, 106

quantitative 100, 119

three position
analytical 247, 251, 253
graphical 111
motion 248
specified fixed pivots 257, 260

two position 105
analytical 243
graphical 111

type 100

T

tabular method 523

tackle 6

tappet 574

TDC. *See* top dead center (TDC)

ternary link 32, 42, 44.
See Also link

testing 13, 14

thermodynamics 672, 679

threebar crank-slider 593.
See Also slider-crank

three-freedom joint 33.
See Also joint
three-position synthesis.
See synthesis: three position: motion
through variable 568
time ratio 119, 121, 122
timing
 belt. *See* belt: timing
 diagram 417
Ting, K. L. 63
TKSolver 217, 387, 464, 624
toggle 102, 103, 314
 angle 212
 linkage 103
 position 102, 114, 134, 236, 243
calculating location 210
in rock crusher 311
tolerance
 (human) of acceleration 383
toothed belts 509. *See Also* belt
tooth thickness 497, 498
top dead center (TDC) 675
torque 656
 applied 591
 camshaft 783
 converter 533
lock-up clutch 534
stator blades 534
 driving 581
 dynamic 783, 785
 external 581
 flywheel-smoothed 697
 gas 686
flywheel-smoothed 697
in four-cylinder inline engine 733, 739
in one-cylinder engine 685
in vee engines 746
 inertia 685
flywheel-smoothed 697
in four-cylinder inline engine 736, 739
in inline engines 727
in one-cylinder engine 695
in vee engines 745
in virtual work 581
input 657, 783
 oscillations in 783
 ratio 310, 493
 shaking 612, 685
in fourbar linkage 657
in multicylinder engines 730

in one-cylinder engines 694
 source 591, 596, 601
 total 739, 750
engine 697
 variation 616
torque-speed relation 74. *See Also* speed-torque characteristic
torque-time
 diagram 619
 function 697
Towfigh, K. 21, 22, 312
trade-offs 100, 148, 442, 780
train ratio 512. *See Also* gear: ratio
transducer 795
transfer
 port 677
 theorem 559
transient 766
translating
 follower 410
 slider 121
translation 31, 32
 curvilinear 137, 183
 definition 183
 rectilinear 183, 411
translational DOF 33
transmission 493, 506, 675
 automatic 526
 automotive 532
 component 319, 320, 374
 compound epicyclic manual 535
 continuously variable 535
 Ford model T 535
 synchromesh 532
transmission angle 307, 309, 310, 568, 622
 definition 103, 208
 differences in cognates 137
 extreme values 209
 limited application 208
 minimum 104
 optimal 122
 poor 243
 quick-return linkage 121
trapezoidal
 acceleration 426
 rule 620
tricircular sextic 124, 273
triple-rocker 57, 210
truss 48

two-bar chain 105, 121
two-dimensional space 31
two-freedom joint 33
two-plane balance 646
two position synthesis.
See synthesis: two position

two-stroke
 cycle 675, 677, 731
 engine 732
type synthesis 99, 158.
See Also synthesis: type

U

undercutting 467, 470, 500
underdamped 770, 771.
See Also damping

undersquare engine 710

units 17
 space probe lost due to 18
units systems 17
unit vectors 188
Unobtainium 688, 774
unstructured problem 8

V

valve 574
 cam 476, 492
 float 776
 spring 574
valves 409
vector
 angle of
definition 189.
See Also free vector
 loop 238
vee
 angle 721, 739, 742, 750. *See Also* bank: angle;
See Also engines: vee
desirable 750
 belt 509.
See Also belt: vee
 engines.
See engines: vee
velocity 178, 291
 absolute 292, 297, 298
 analysis
algebraic 321
geared fivebar 330

graphical 294, 296
inverted slider-crank 319
sliding joint 318
using instant centers 305
 angular 291, 319, 330, 375
 cam 416
 cam-follower
 peak factor 432
 constant 143
 in slider-crank 153
 definition 291
 difference 293, 297, 298, 321, 359
 equation 293
 of point on link 331
 of slip 317, 330, 375
 of transmission 330
 ratio 493, 499, 508
 of involute gears 497
 relative 293, 297, 317, 321, 566
vibration
 in cam-followers 568, 771, 780
 in engines 730
 in linkages 612
videos 26
virtual laboratory 26, 408, 485, 638, 671
virtual work 582, 613
 equation 582
ViseGrip 311
visualization 24
voltage 568

W

Wampler, C. 203, 272

Watt, James 5, 141
 proudest accomplishment 141

Watt's
 epicyclic crank 141
 linkage
 guide steam engine 141
 sixbar 105, 207
 straight-line fourbar 141

wear 33

weather systems 375

wedge 5

weight 18

weighting factor 13

well pump 55

wheel 6

and axle 5

Whitworth quick-return 55, 124
Willis, Robert 5
windshield wiper linkage 59
Wood, George A. Jr. 21
work 36, 580
Working Model 99, 103, 817
worldwide web 9
 keywords for searching 29
 useful sites 29
worm 506
 lead angle 538
 set 506
 wheel 506
wrapping connectors 6
wrist pin 689, 691
writing engineering reports 29

Y

Young's modulus 574

Z

zero velocity 126
Zhang, C. 131

DOWNLOADS INDEX

ANIMATIONS Folder

AVI, Working Model, and Matlab files by Sid Wang

These files are self-cataloging. Run the master catalog file *Animation.html* to access and run these animations. Most have AVI movie files in addition to their native file formats. The native Working Model files also can be accessed directly from the Working Model Files folder listed below.

CUSTOM PROGRAMS

Programs by R. L. Norton

PROGRAM DYNACAM

PROGRAM LINKAGES

PROGRAM MATRIX

These are available from the author's website at www.designofmachinery.com. Print-book users can register on my website as a student or professor, and I will send a password to access a protected site where they can download the latest versions of these programs. Student or professor registration will also allow print-book users to download all the files listed in this index. Digital book users will have access to the downloadable files in the Video Contents and in this Index, and the computer programs through the publisher's website.

Note that I personally review each of these requests for access to my protected site and will approve only those that are filled out completely and correctly according to the provided instructions. I require complete information and accept ONLY university email addresses for both you and your instructor. (No Gmail, Yahoo, Naver, etc.) So be sure to follow the instructions exactly, or your request will be denied.

Run the *Install.exe* file to install the program.

EXAMPLES AND FIGURES Folder

Data files for Norton's custom programs that match some examples and figures in text.

Chapter 2 Subfolder

F02-19b.5br

Chapter 3 Subfolder

Cognate1.4br
Cognate2.4br
Cognate3.4br
F03-01a.4br
F03-01b.4br
F03-04.4br
F03-06.4br
F03-07b.6br
F03-07c.6br
F03-08.4br
F03-09c.6br
F03-12.4br
F03-13a.6br
F03-17b.4br
F03-18.4br
F03-24.4br
F03-28a.4br
F03-28b.5br
F03-29a.4br
F03-29c.4br
F03-29d.4br
F03-29e.4br
F03-29f.4br
F03-31c.6br
F03-34.6br
F03-35.6br
FP03-07.4br
Straight.5br

Chapter 4 Subfolder

F04-11.5br
F04-15.4br

Chapter 5 Subfolder

E05-01.4br
E05-02a.mtr
E05-02b.mtr
E05-02.4br
E05-03.4br

Chapter 6 Subfolder

F06-14.4br
F06-15a.4br

KEY TO FILENAME SUFFIXES

DYNACAM	.CAM
ENGINE*	.ENG
FIVEBAR*	.5BR
FOURBAR*	.4BR
LINKAGES	.BAR
MATLAB	.M
MATRIX	.MTX
SIXBAR*	.6BR
SLIDER*	.SLD
TKSOLVER	.TKW
WORKING MODEL	.WM2D, WM3

* Program LINKAGES will open these files.

F06-15b.4br

F06-17b.4br

Chapter 8 Subfolder

E08-03.cam
E08-04.cam
E08-05.cam
E08-06.cam
E08-07.cam
E08-08.cam
E08-09a.cam
E08-09b.cam
E08-10a.cam
E08-10b.cam
E08-10c.cam
E08-11.cam
E08-12.cam

Chapter 11 Subfolder

E11-01.mtr
E11-02.mtr
E11-03.mtr
E11-03.4br
F11-06.4br

Chapter 12 Subfolder

F12-05.4br

Chapter 14 Subfolder

BMWV12.eng
F14-12.eng
F14-14.eng
F14-18.eng
F14-24.eng

Chapter 15 Subfolder

E15-01.cam
E15-02.cam

Appendix A Subfolder

F_A-05.4br
F_A-11.5br

LINKAGE ATLASES Folder

Contains PDF file of atlases of coupler curves for fourbar and geared fivebar linkages.

Hrones and Nelson Fourbar Atlas**Zhang et al. Geared Fivebar Atlas****PDF PROBLEM WORKBOOK Folder**

Contains PDF files of all the figures needed to solve the text's end-of-chapter problems. Each PDF file contains one problem figure and all of the problem statements associated with it. They are grouped in subfolders by chapter and their filenames are the same as the figure number or problem number involved. These files provide the student with a printable workbook of illustrated problems in which graphical problem solutions can be directly worked out or analytical solution results recorded.

PROBLEM SOLUTIONS Folder**Data files that solve selected problems in the text.****Chapter 3 Subfolder**

P03-14.4br
P03-22.4br
P03-23.4br
P03-36.4br
P03-42.4br

Chapter 4 Subfolder

P04-21.4br
P04-23.4br
P04-25.4br
P04-26.4br
P04-29.4br
P04-30.4br

Chapter 5 Subfolder

P05-08.4br
P05-11.4br
P05-15.4br
P05-19.4br
P05-26.4br

Chapter 6 Subfolder

P06-47.4br
P06-48.4br
P06-49.4br
P06-51.4br
P06-62.4br

Chapter 7 Subfolder

P07-04a.4br
P07-04c.4br
P07-04e.4br

P07-04g.4br
P07-04i.4br
P07-04k.4br
P07-04m.4br
P07-39.4br
P07-40.4br
P07-41.4br
P07-42.4br
P07-44.4br

Chapter 10 Subfolder

P10-04a.mtr
P10-04b.mtr

Chapter 11 Subfolder

P11-03a.sld
P11-03c.sld
P11-03e.sld
P11-03g.sld
P11-04a.tkw
P11-05a.tkw
P11-05a.4br
P11-05c.4br
P11-05e.4br
P11-05g.4br
P11-06a.tkw
P11-06c.tkw
P11-06e.tkw
P11-06g.tkw
P11-07a.4br
P11-07c.4br
P11-07e.4br
P11-12.4br
P11-13.4br

Chapter 12 Subfolder

P12-09.4br

Chapter 13 Subfolder

P13-11.eng
P13-14.eng
P13-19a.eng
P13-19b.eng

PROGRAM MANUAL Folder

Contains a PDF file of the user manual for programs LINKAGES, DYNACAM, and MATRIX.

TKSOLVER FILES Folder**TKSolver model files.**

The TKSolver program is needed to run these files and is not included with this text. See www.uts.com.

Gears.tk Subfolder

Compound.tkw
Revert.tkw
Triple.tkw

Linkages.tk Subfolder

3 position FixPivots.tkw

3 position.tkw
Cognate.tkw
Coupler.tkw
DragSlider.tkw
Eq04-02.tkw
Ex11-04.tkw
Figure P05-05.tkw
Fivebar.tkw
Fourbar.tkw
Inverted slider-crank.tkw
SCCA.tkw
Slider_Cmpr.tkw
Slider.tkw
Soni Cognate.tkw
Symmetric.tkw
Transport.tkw
Virtual Work.tkw

Misc.tk Subfolder

CamCalc.tkw
Constrnt.tkw
Cubic.tkw
Cycloid.tkw
F04-18.tkw
Pressang.tkw
SCCA.tkw
Student.tkw

VIDEOS

See the Video Contents.

VIRTUAL LABS

See the Video Contents.

WORKING MODEL FILES Folder**Chapter 2 Subfolder**

Working Model 2D Files
02-10b.wm2d - Scotch Yoke
02.12a.wm2d - Geneva
02-12b.wm2d - Ratchet and Pawl
02-12c.wm2d - Linear Geneva
02-13.wm2d - Slider-Crank
02-14abc.wm2d - Stephenson Inversion
02-14de.wm2d - Watt Inversions
02-15.wm2d - Grashof Inversions
02-16.wm2d - Non-Grashof Inversions
02-19b.wm2d - Geared Fivebar
02-20.wm2d - Desk Lamp
P2-01f.wm2d - Overhead Valve
P2-03.wm2d - Front End Loader
P2-04c.wm2d - Radial Engine
P2-04d.wm2d - Walking Beam
P2-04e.wm2d - Drafting Arm
P2-04g.wm2d - Drum Brake
P2-04h.wm2d - Compression Chamber
P2-05a.wm2d - Chebyschev Mechanism
P2-05b.wm2d - Kempe SL Mechanism
P2-07.wm2d - Throttle Mechanism

P2-08.wm2d - Scissors Jack
 P2-10.wm2d - Watt's Engine
 P2-13.wm2d - Crimping Tool
 P2-14.wm2d - Pick and Place
 P2-15.wm2d - Power Hacksaw
 P2-16.wm2d - Powder Press
 P2-18.wm2d - Oil Field Pump

Working Model 3D Files

P2-01h.wm3 - Cylindrical Cam

Chapter 3 Subfolder

Working Model 2D Files

03-04.wm2d - Example 3-1
 03-05.wm2d - Example 3-2
 03-07b.wm2d - Example 3-4
 03-09c.wm2d - Example 3-6
 03-11.wm2d - 3-Position Synthesis
 03-12b.wm2d - 4br Quick Return
 03-13a.wm2d - 6br Quick Return
 03-14.wm2d - Quick-Return Shaper
 03-14.*.wm2d - Quick-Return Shaper
 03-15.wm2d - Coupler Curves
 03-17.wm2d - Coupler Curve Atlas
 03-17a.wm2d - Coupler Curve Atlas
 03-18.wm2d - Camera Film Advance
 03-18.*.wm2d - Camera Film Advance
 03-19a.wm2d - Auto Suspensions
 03-19a.*.wm2d - Auto Suspensions
 03-24a.wm2d - Roberts Diagram
 03-25a.wm2d - Roberts Diagram
 03-25b.wm2d - Roberts Diagram
 03-26.wm2d - Chebyshev Cognates
 03-26a.wm2d - Roberts Diagram
 03-26b.wm2d - Chebyshev Cognates
 03-26b.*.wm2d - Chebyshev Cognates
 03-27c.wm2d - Curvilinear Trans.
 03-27d.wm2d - Curvilinear Trans.
 03-28.wm2d - GFBM 4br Cognate
 03-28.*.wm2d - GFBM Cognates (alt.)
 03-29.wm2d - Straight-Line Linkages
 03-29a.wm2d - Watt Straight-Line
 03-29b.wm2d - Watt's Engine
 03-29c.wm2d - Roberts Straight-Line
 03-29d.wm2d - Chebyshev SL
 03-29e.wm2d - Hocken Straight-Line
 03-29f.wm2d - Evans Straight-Line
 03-29g.wm2d - Peaucellier Strt-Line
 03-31c.wm2d - Single-Dwell—Rocker
 03-31d.wm2d - Single-Dwell—Slider
 03-32.wm2d - Double-Dwell Linkage
 03-34.wm2d - 180° Rocker Output
 03-35.wm2d - Washing Machine
 03-36.wm2d - 360° Rocker Output
 P3-03.wm2d - Treadle Wheel
 P3-07.wm2d - Walking Beam
 P3-08.wm2d - Loom Laybar Drive

Chapter 4 Subfolder

Working Model 2D Files

04-16.wm2d - Double Rocker Toggle
 P4-01.wm2d - Fourbar Analysis
 P4-02.wm2d - Slider-Crank Analysis
 P4-03.wm2d - Inverted Slider-Crank
 P4-05c.wm2d - Radial Engine
 P4-05d.wm2d - Walking Beam
 P4-05e.wm2d - Drafting Machine
 P4-05g.wm2d - Drum Brake
 P4-05h.wm2d - Compression Chamber
 P4-06.wm2d - Pick and Place
 P4-07.wm2d - Power Hacksaw
 P4-09.wm2d - Walking Beam Conveyor
 P4-11.wm2d - Loom Laybar Drive
 P4-14.wm2d - Treadle Wheel
 P4-18.wm2d - Elliptical Trammel

Chapter 6 Subfolder

Working Model 2D Files

06-05c.wm2d - Instant Centers
 06-10b.wm2d - Instant Centers
 06-11.wm2d - Rock Crusher
 06-12.wm2d - Suspension
 06-14a.wm2d - Centrodes 1
 06-14b.wm2d - Centrodes 2
 06-14c.wm2d - Centrodes 3
 06-14d.wm2d - Centrodes 4
 06-15a.wm2d - Centrodes 5
 06-15b.wm2d - Centrodes 6
 06-17a.wm2d - Cycloidal Motion
 P6-01.wm2d - Fourbar Analysis
 P6-02.wm2d - Slider-Crank Analysis
 P6-03.wm2d - Inverted Slider-Crank
 P6-08c.wm2d - Radial Engine
 P6-08d.wm2d - Walking Beam
 P6-08e.wm2d - Drafting Machine
 P6-08g.wm2d - Drum Brake
 P6-08h.wm2d - Compression Chamber
 P6-15.wm2d - Power Hacksaw
 P6-16.wm2d - Pick and Place
 P6-18.wm2d - Powder Press
 P6-19.wm2d - Walking Beam Conveyor
 P6-21.wm2d - Toggle Pliers
 P6-23.wm2d - Surface Grinder
 P6-29.wm2d - Drum Pedal
 P6-30.wm2d - Oil Field Pump
 P6-32.wm2d - Elliptical Trammel

Working Model 3D Files

06-12.wm3 - Bump Steering

Chapter 7 Subfolder

Working Model 2D Files

P7-01.wm2d - Fourbar Analysis
 P7-02.wm2d - Slider-Crank Analysis
 P7-03.wm2d - Inverted Slider-Crank
 P7-08c.wm2d - Radial Engine

P7-08d.wm2d - Walking Beam
 P7-08e.wm2d - Drafting Machine
 P7-08g.wm2d - Drum Brake
 P7-08h.wm2d - Compress Chamber
 P7-15.wm2d - Power Hacksaw
 P7-16.wm2d - Pick and Place
 P7-19.wm2d - Walking Beam
 P7-20.wm2d - Surface Grinder
 P7-24.wm2d - Drum Pedal

Chapter 8 Subfolder

Working Model 2D Files

08-02a.wm2d - Translating Follower
 08-02b.wm2d - Oscillating Follower
 08-03a.wm2d - Roller Follower
 08-03c.wm2d - Flat-Faced Follower
 08-39.wm2d - Cam and Follower
 08-48.wm2d - Radii of Curvature
 E8-02.wm2d - Example 8-2
 E8-03.wm2d - Example 8-3
 E8-04.wm2d - Example 8-4
 E8-07.wm2d - Example 8-7

Working Model 3D Files

08-03a.wm3 - Roller Follower
 08-04.wm3 - Cylindrical Cam

Chapter 9 Subfolder

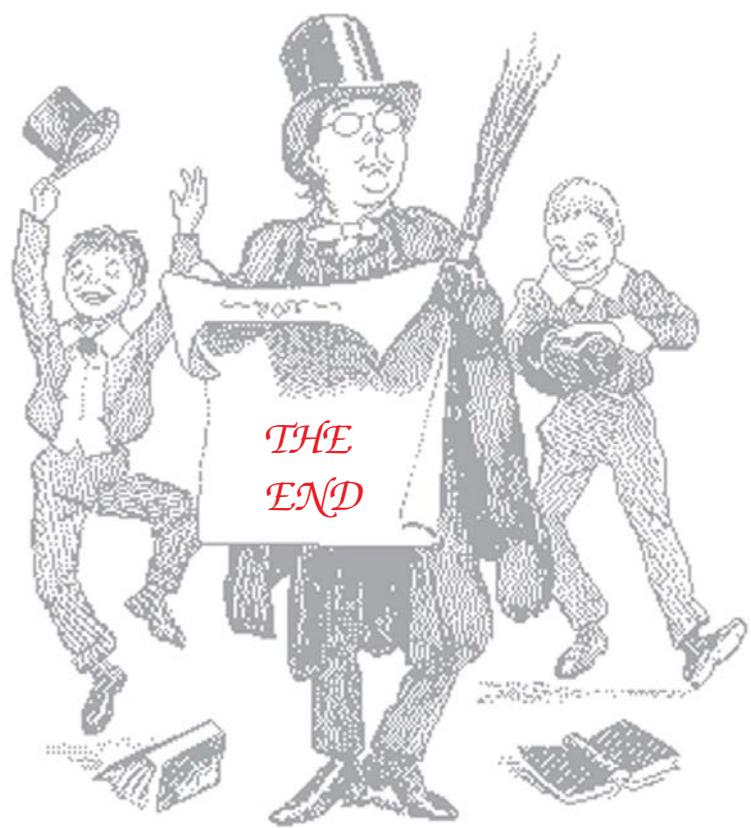
Working Model 2D Files

09-01b.wm2d - Internal Gearset
 09-04.wm2d - External Gearset
 09-05.wm2d - Involute Curves
 09-06.wm2d - Tooth Engagement
 09-19.wm2d - Rack and Pinion
 09-28.wm2d - Compound Gear Train
 09-33.wm2d - Planetary Gearset

Working Model 3D Files

09-16.wm3 - Helical-Parallel Gears
 09-17.wm3 - Helical-Crossed Gears
 09-18.wm3 - Worm and Worm Gear
 09-21.wm3 - Bevel Gears
 09-30.wm3 - Gear Trains
 09-34.wm3 - Planetary Gearset
 09-44a.wm3 - Transmission - High
 09-44b.wm3 - Transmission - Low
 09-44c.wm3 - Transmission - Reverse
 09-51.wm3 - Drive Train
 P9-02.wm3 - Compound Epicyclic
 P9-03_open.wm3 - Differential
 P9-03_locked.wm3 - Differential

Chapter 10 Subfolder


Working Model 2D Files

10-11a.wm2d - Valve Train

Chapter 13 Subfolder

Working Model 2D Files

13-01.wm2d - Vee-Eight Engine

*THE
END*