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B-52's skin buckling clearly visible in this photo. The skin panels between the 

forward and center fuselage buckle because mechanical forces and flexing of 

the structure. This is normal and particularly evident on some types of aircraft 

(including the B757). 



• In their simplest form, columns are long, straight, 

prismatic bars subjected to compressive, axial loads.

• if a column begins to deform laterally, the deflection 

may become large and lead to catastrophic failure. 

• This situation, called buckling, can be defined as the 

sudden large deformation of a structure due to a 

slight increase of an existing load under which the 

structure had exhibited little, if any, deformation 

before the load was increased.

Introduction



Buckling of Beams

The lateral deflection of long slender members
caused by axial compressive forces

Buckling 

of 

Diagonals

Buckling of Columns

Introduction



Introduction

• Once buckling occurs, a relatively small increase in 

compressive force will produce a relatively large 

lateral deflection, creating additional bending in the 

column. 

• If the compressive force is removed, the column 

returns to its original straight shape.

• The fact that the column becomes straight again after 

the compressive force is removed demonstrates that 

the material remains elastic; that is, the stresses in the 

column have not exceeded the proportional limit of the 

material. 

• The buckling failure is a stability failure: The column 

has transitioned from a stable equilibrium to an 

unstable one.
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Column Buckling Theory uses ASSUMPTIONS OF BEAM 
BENDING THEORY

• Column Length is Much Larger Than Column 
Width or Depth. 

so most of the deflection is caused by bending,  

very little deflection is caused by shear

• Column Deflections are small.

• Column has a Plane of Symmetry. 

• Resultant of All Loads acts 

in the Plane of Symmetry. 

• Column has a Linear 

Stress-Strain Relationship. 

• Ecompression = Etension and σyield compression = σyield tension

• σBuckle < (σyield ≈ σProportional Limit ).



• An IDEAL Column will NOT buckle.

• IDEAL Column will fail by:
– Punch thru

– Denting            σ > σyield compressive .

– Fracture

• In order for an IDEAL Column to buckle

a TRANSVERSE Load, F,

must be applied

in addition to the 

Concentric Uniaxial Compressive Load.

• The TRANSVERSE Load, F, applied to IDEAL Column

Represents Imperfections in REAL Column

Pcr = Critical Load

Pcr = smallest load at which

column may buckle

F

P=Pcr

P=Pcr

P=Pcr

P=Pcr

Column Buckling Theory



• Buckling is a mode of failure

caused by Structural Instability

due to a Compressive Load

- at no cross section of the member

is it necessary for 

σ > σyield .

• Three states of Equilibrium are possible for 
an Ideal Column
– Stable Equilibrium

– Neutral equilibrium

– Unstable Equilibrium
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P=Pcr

P=Pcr

Column Buckling Theory



• The notions of stability and instability can be defined concisely in 

the following manner:

Column Buckling Theory



• Before a compressive load on a column is gradually increased 

from zero, the column is in a state of stable equilibrium. 

• During this state, if the column is perturbed by small lateral 

deflections, it will return to its initial straight configuration when 

the load is removed.

• As the load is increased further, a critical value is reached at 

which the column is about to undergo large lateral deflections; 

that is, the column is at the transition between stable and unstable 

equilibrium. 

Column Buckling Theory



• The maximum compressive load for which the column is in stable 

equilibrium is called the critical buckling load. 

• The compressive load cannot be increased beyond this critical 

value unless the column is laterally restrained. 

• For long, slender columns, the critical buckling load occurs at 

stress levels that are much lower than the proportional limit for 

the material, indicating that this type of buckling is an elastic 

phenomenon.

Column Buckling Theory



Buckling of Pin-Ended Columns

• The stability of real columns will be investigated 

by analyzing a long, slender column with pinned 

ends.

• The column is loaded by a compressive load P that 

passes through the centroid of the cross section at 

the ends. 

• The pins at each end are frictionless, and the load 

is applied to the column by the pins. 

• The column itself is perfectly straight and made of 

a linearly elastic material that is governed by 

Hooke’s law. 



Buckling of Pin-Ended Columns

• Since the column is assumed to have no 

imperfections, it is termed an ideal column. 

• The ideal column is assumed to be symmetric about 

the x–y plane, and any deflections occur in that 

plane.



Buckling of Pin-Ended Columns

Buckled Configuration

If the compressive load P is less than the critical load 

Pcr, then the column will remain straight and will 

shorten in response to a uniform compressive axial 

stress σ = P/A. 

As long as P < Pcr, the column is in stable 

equilibrium. 

When the compressive load P is increased to the critical 

load Pcr, the column is at the transition point between 

stable and unstable equilibrium—a situation called 

neutral equilibrium. 



Buckling of Pin-Ended Columns

• At P = Pcr, the deflected shape shown

in also satisfies equilibrium. 

• The value of the critical load Pcr and the shape 

of the buckled column will be determined by an 

analysis of this deflected shape.



Buckling of Pin-Ended Columns

Equilibrium of the Buckled Column

• Summing forces in the vertical direction gives 

Ax = P, summing moments about A gives By = 

0, and summing forces in the horizontal 

direction gives Ay = 0.



Buckling of Pin-Ended Columns

• Consider a free-body diagram cut through the 

column at a distance x from the origin.

• Since Ay = 0, any shear force V acting in the 

horizontal direction on the exposed surface of 

the column in this free-body diagram must also 

equal zero in order to satisfy equilibrium.

•

• Consequently, both the horizontal reaction Ay 

and a shear force V can be omitted from the 

free-body diagram in.

• At P = Pcr, the deflected shape also satisfies 

equilibrium. 



Buckling of Pin-Ended Columns

• The value of the critical load Pcr and the shape of the buckled 

column will be determined by an analysis of this deflected shape.

The differential equation gives the deflected 

shape of an ideal column. This equation is a 

homogeneous second-order ordinary differential equation with 

constant coefficients that has boundary conditions v(0) = 0 and v(L) 

= 0.



Buckling of Pin-Ended Columns

Solution of the Differential Equation

The general solution of this homogeneous equation is:

where C1 and C2 are constants that must be evaluated with the 

use of the boundary conditions.



Buckling of Pin-Ended Columns

Solution of the Differential Equation

From the boundary conditions v(0) = 0, v(L) = 0,we obtain

,              and                   So



Euler Buckling Load and Buckling Modes

• The critical load for an ideal column is known as the Euler 

buckling load, after the Swiss mathematician Leonhard Euler 

(1707–1783), who published the first solution of the equation for 

the buckling of long, slender columns in 1757. 

• Equation (16.5)                 is also known as Euler’s formula.

• Deflections have been assumed to be small. The deflected shape 

is called the mode shape, and the buckled shape corresponding to 

n = 1 in is called the first buckling mode. 

• By considering higher values of n, it is theoretically possible to 

obtain an infinite number of critical loads and corresponding 

mode shapes.



Euler Buckling Load and Buckling Modes

Second buckling mode 
(n = 2)

First buckling mode 

(n = 1)



Euler Buckling Load and Buckling Modes

• The critical load for the second mode is four times greater than 

that of the first mode. 

• Buckled shapes for the higher modes are of no practical interest, 

since the column buckles upon reaching its lowest critical load 

value. 

• Higher mode shapes can be attained only by providing lateral 

restraint to the column at intermediate

• Locations to prevent the column from buckling in the first mode.



Euler Buckling Stress

• The normal stress in the column at the critical load is

• The radius of gyration r is a section property defined as:

• If the moment of inertia I is replaced by Ar2:



Euler Buckling Stress

• The quantity L/r is termed the slenderness ratio and is determined 

for the axis about which bending tends to occur. 

• For an ideal column with no intermediate bracing to restrain 

lateral deflection, buckling occurs about the axis of minimum 

moment of inertia (which corresponds to the minimum radius of 

gyration).

• Euler buckling is an elastic phenomenon. If the axial compressive 

load is removed from an ideal column, it will return to its initial 

straight configuration. 

• In Euler buckling, the critical stress σcr remains below the 

proportional limit for the material.



Euler Buckling Stress

Valid only when the critical stress is less than the proportional limit 

for the material, because the derivation of that equation is based on 

Hooke’s law



Implications of Euler Buckling – Design Issues

• Euler buckling load is inversely related to the square of the 

column length. Therefore, the load that causes buckling decreases 

rapidly as the column length increases.

• The only material property that appears in the equations is the 

elastic modulus E, which represents the stiffness of the material. 

• One means of increasing the load-carrying capacity of a given 

column is to use a material with a higher value of E.

• Buckling occurs about the cross-sectional axis that corresponds to 

the minimum moment of inertia (which in turn corresponds to the 

minimum radius of gyration). 



Implications of Euler Buckling – Design Issues

• It is generally inefficient to select a member that has great 

disparity between the maximum and minimum moments of inertia 

for use as a column. 

• This inefficiency can be mitigated if additional lateral bracing is 

provided to restrain lateral deflection about the weaker axis.

• Since the Euler buckling load is directly related to the moment of 

inertia I of the cross section, a column’s load-carrying capacity 

can often be improved, without increasing its cross-sectional area, 

by employing thin-walled tubular shapes. 



Implications of Euler Buckling – Design Issues

• Circular pipes and square hollow structural sections are 

particularly efficient in this regard. 

• The radius of gyration r provides a good measure of the 

relationship between moment of inertia and cross-sectional area. 

• In choosing between two shapes of equal area for use as a 

column, it is helpful to keep in mind that the shape with the larger 

radius of gyration will be able to withstand more load before 

buckling.



Implications of Euler Buckling – Design Issues

• The Euler buckling load equation and the Euler buckling stress 

equation depend only on the column length L, the stiffness of the 

material (E), and the cross-sectional properties (I). 

• The critical buckling load is independent of the strength of the 

material. Consequently, there is no advantage in using the higher 

strength steel (which, presumably, is more expensive) instead of 

the lower strength steel in this instance.

• The Euler buckling load as given agrees well with experiment, 

but only for “long” columns for which the slenderness ratio L/r is 

large, typically in excess of 140 for steel columns. 



Implications of Euler Buckling – Design Issues

• A “short” compression member can be treated as a simply 

compression member.

• Most practical columns are “intermediate” in length, and 

consequently, neither solution is applicable. 

• These intermediate-length columns are analyzed by empirical 

formulas. 

• The slenderness ratio is the key parameter used to classify 

columns as long, intermediate, or short.



Examples

A 15 mm by 25 mm 

rectangular aluminum bar is 

used as a 650 mm long 

compression member. The 

ends of the compression 

member are pinned. 

Determine the slenderness 

ratio and the Euler buckling 

load for the compression 

member. 

Assume that E = 70 GPa.



Examples

A 40 ft long column is 

fabricated by connecting two 

standard steel C10 × 15.3 

channels with lacing bars as 

shown. 

The ends of the column are 

pinned. 

Determine the Euler buckling 

load for the column. Assume 

that

E = 29,000 ksi for the steel.



The Effect of End Conditions on Column Buckling

• The Euler buckling formula was derived for an ideal column with 

pinned ends (i.e., ends with zero moment that are free to rotate, 

but are restrained against translation). 

• Columns are commonly supported in other ways, as well and 

these different conditions at the ends of a column have a 

significant effect on the load at which buckling occurs.

Effective-length Concept



The Effect of End Conditions on Column Buckling



Practical Considerations - Design Issues

• It is important to keep in mind that the column end conditions 

shown are idealizations. 

• A pin-ended column is usually loaded through a pin that, because 

of friction, is not completely free to rotate. 

• Consequently, there will always be an indeterminate (though 

usually small) moment at the ends of a pin-ended column, and 

this moment will reduce the distance between the inflection points 

to a value less than L. 

• Fixed-end connections theoretically provide perfect restraint 

against rotation. However, columns are typically connected to 

other structural members that have some measure of flexibility in 

themselves, so it is quite difficult to construct a real connection 

that prevents all rotation.



Practical Considerations - Design Issues

• Thus, a fixed–fixed column will have an effective length 

somewhat greater than L/2. 

• Because of these practical considerations, the theoretical K 

factors are typically modified to account for the difference 

between the idealized and the realistic behavior of connections. 

• Design codes that utilize effective length factors therefore usually 

specify a recommended practical value for K factors in preference 

to the theoretical values.



Practical Considerations - Design Issues



Examples

A long, slender W8 × 24 

structural steel shape is used as 

a 35 ft long column. The column 

is supported in the vertical 

direction at base A and pinned at 

ends A and C against translation 

in the y and z directions. 

Lateral support is provided to 

the column so that deflection in 

the x–z plane is restrained at 

mid-height B; however, the 

column is free to deflect in the 

x–y plane at B. 



Examples

Determine the maximum 

compressive load P that the 

column can support if a 

factor of safety of 2.5 is 

required. 

In your analysis, consider 

the possibility that buckling 

could occur about either the 

strong axis or the weak axis 

of the column. 

Assume that E = 29,000 ksi

and σY = 36 ksi.



Examples

A W310 × 60 structural steel shape is 

used as a column with an actual 

length L = 9 m. The column is fixed 

at base A. 

Lateral support is provided to the 

column, so deflection in the x–z 

plane is restrained at the upper end; 

however, the column is free to deflect 

in the x–y plane at B.

Determine the critical buckling load 

of the column. Assume that E = 200 

GPa and σY = 250 MPa.
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