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The Theorem of Least Work

The theorem of least work derives from what is known as Castigliano’s second
theorem (named after Carlo Alberto Castigliano (1847-1884) who was an

Italian railroad engineer).
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In 1879, Castigliano published two theorems:

Castigliano’s first theorem

The first partial derivative of the total internal energy
(strain energy) in a structure with respect to any particular
deflection component at a point is equal to the force
applied at that point and in the direction corresponding

to that deflection component.




The Theorem of Least Work

Castigliano’s second theorem
The first partial derivative of the total internal energy in a structure with

respect to the force applied at any point is equal to the deflection at the point
of application of that force in the direction of its line of action.

The second theorem of Castigliano is applicable to linearly elastic structures
with constant temperature and unyielding supports.



The Theorem of Least Work

If the beam shown is slowly and
simultaneously loaded by two forces
P, and P,, with resulting deflections
A ; and A ,, the strain energy U of the

beam is equal to the work done by the forces.

Therefore, f /\/7/

U=%PA +%P,A, : S
27y,

Recall that the factor )2 in each term is required because the loads build up
from zero to their final magnitude.




The Theorem of Least Work

Let the force P, be increased by a small
amount dP, while force P, remains
Constant.

The changes in deflection due to this (/
Incremental load will be denoted (|
dA , and dA ,. ’

The strain energy in the beam increases by the amount : P, dA , as the
incremental force dP, deflects through the distance dA ;.




The Theorem of Least Work

However, forces P, and P,, which remain
present on the beam, also perform work as

the beam deflects.

Altogether, the increase in the strain energy
due to the application of dP, is
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The Theorem of Least Work

dP,
Therefore, the total strain energy in the beam is 'P .
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The Theorem of Least Work

dP,
The beam is linearly elastic, the loads P, and P, H
. PI P’
cause the same deflections A ; and A , regardless v v
of whether or not any other load is acting on the = 7.7 pn——
beam. Fm——F
dA, dA,

Because dP, remains constant at its point of application during the additional
deflection A ,, the term dP,A ; does not contain the factor %.

U+ dU = %P,&, + %Pgag + %dﬁm,

Remember that elastic deformation is reversible and energy losses are

neglected, the resulting strain energy must be independent of the order of
loading.




The Theorem of Least Work

The beam is linearly elastic, the loads P, and P,

U+dU =Zi/F1/.ﬁl +§}:/ﬁg+ﬂd&1+Pzdﬁz+%%éﬁl

FYNIEYTR
FPAA + BdA
\1 | 2 2/

/
| | |
U -+ dU — =3 1/31 + — 1&2 + d‘Pl‘&l + — ldﬁl




The Theorem of Least Work

dﬂ‘&l — ’Pld‘&l + Pzd.ﬂz

Combine: -<

1
dU £ Py + PydAy ¥ = dRdA,




The Theorem of Least Work

dU = dP A, %cfP] _ second order term than can be neglected

—"

Strain energy U is a function of both P, and P,; therefore, the change in strain
energy, dU, due to the incremental load dP, is expressed by the partial
derivative of U with respect to P, as:




The Theorem of Least Work

dU = dPA, gdﬂff@/ second order term than can be neglected

aﬂd}f{ dfED A




The Theorem of Least Work

In general:

oU
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If the strain energy of a linearly elastic structure 1s expressed in terms of the system of
external loads, then the partial derivative of the strain energy with respect to a concentrated
external load 1s the deflection of the structure at the point of application and in the direc-

tion of that load.

Castigliano’s second theorem applies to any elastic system at constant
temperature and on unyielding supports and that obeys the law of

superposition.



The Theorem of Least Work

Castigliano’s theorem can also be shown to be valid for applied moments
and the resulting rotations (or changes in slope) of the structure.




Application to Beams

Recall:

Castigliano’s second theorem states:
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Application to Beams

YAl )
A= J‘ (8M\M 9 — jL(f}M -Edr
o\or JEI© 0\oM’ )EI
A = displacement of a point on the beam
P = external force applied to the beam in the direction of D and expressed as
a variable
M = internal bending moment in the beam, expressed as a function of x and
caused by both the force P and the loads on the beam
| = moment of inertia of the beam cross section about the neutral axis
E = elastic modulus of the beam
= length of the beam
© = rotation angle (or slope) of the beam at a point
M’ = a concentrated moment applied to the beam in the direction of O at
the point of interest and expressed as a variable.




Procedure for Analysis

Please refer to the handout entitled “Castigliano’s second theorem” for the
full procedure.

Example
Compute the deflection at point 180 kN
C for the simply supported beam 45 kN/m

shown. lll lllll
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Assume that El = 3.4 x 10° kN-m?2. 4 E‘- D
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Procedure for Analysis

Please refer to the handout entitled “Castigliano’s second theorem” for the
full procedure.
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Deflection of Curved Members

Machine frames, springs, clips, fasteners, and the like frequently occur as
curved shapes.

Consider, for
example, the curved
frame. We are
interested in finding
the deflection of the
frame due to F and in (@)
the direction of F.

(a) Curved bar loaded by force F. R = radius to centroidal axis of section;
h = section thickness. (b) Diagram showing forces acting on section taken at
angle . F, = V = shear component of F; Fy is component of F normal to

section; M is moment caused by force F.



Deflection of Curved Members

The total strain energy consists of four terms:

Bending moment.
Normal force F,

The force F, also produces a moment

Transverse shear energy due to F,

g




Deflection of Curved Members

M? do
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Deflection of Curved Members

Combining the four terms gives the total strain energy

U_/MMQ | fFHERdH fMFE,dHJr/CFERdQ
] 24eE 2AE AE

2AG
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Deflection of Curved Members

The deflection produced by the force F can now be found.
olU M (oM FoR (0F,
S — — — — | de de
dF /AEE(HF) +fAE(aF)
| 9(MFEy) CF.R [0F,
— do — | df
f AE OF +/ AG ( oF )
This equation is general and may be
applied to any section of a thick-walled

circular curved beam with application of
appropriate limits of integration.




Deflection of Curved Members

For this specific curved beam, the integrals are evaluated from O to .

IM
M = FRsin6 ‘,} — Rsin6
C
72
Fy = Fsin ﬂ}—ﬂ=sin9
C
ME, = FPPRsinto S0 o ppnte
— SIN Y Sin P
)F,
F, = F cost : — cos b
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Deflection of Curved Members

Substituting yields:

F R?

2FR ,
) — — sin® 0 do + —f sin® @ df — —— sin” 6 do
A{?E 0 E 0
+ CER [ cos? 0 a6
G J, CcOS~ 6 ¢

7 FR? 7FR #mFR #7CFR 7FR*> nxFR =CFR

2AeE T DAE  AE T 2AG 2AeE 2AE " 2AG

Because the first term contains the square of the radius, the second two terms
will be small if the frame has a large radius.



Deflection of Curved Members

For curved sections in which the radius is significantly larger than the
thickness, say R/h > 10, the effect of the eccentricity is negligible, so that the
strain energies can be approximated directly with a substitution of RdO for

ax.




Deflection of Curved Members

Further, as R increases, the contributions to deflection from the normal force
and tangential force becomes negligibly small compared to the bending

component.

Therefore, an approximate result can be obtained for a thin circular curved
member as

M2
lha/——ﬂdé R/h > 10
2E 1

U . 1 M
5:——5/—-M—-Rw R/h > 10
OF EI\" 3F
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