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Introduction

When a solid body deforms as a consequence of applied loads, work is done
on the body by these loads.

Since the applied loads are external to the body, this work is called external
work.

As deformation occurs in the body, internal work, commonly referred to as
strain energy, is stored within the body as potential energy.

“The work performed on an elastic body in static equilibrium by external
forces is equal to the strain energy stored in the body.”



Work and Strain Energy

Work W is defined as
the product of a force
that acts on a particle
(often, in a body) and
The distance the
particle (or body)
moves in the direction
of the force.

W, =F;s;and W, = F.,s,

(a) Inmitial
Position

o T _\__\_I!'.-l!r]

(b) Displaced
Position

Work can be either a positive or a negative quantity. Positive work occurs
when the particle moves in the same direction that the force acts.



Work and Strain Energy

The load will be applied to the bar very slowly,
Increasing from zero to its maximum value P.

Any dynamic or inertial effects due to motion
are precluded. As the load is applied, the bar
gradually elongates.

The bar attains its maximum deformation 6
when the full magnitude of P is reached.

Thereafter, both the load and the deformation remain unchanged.



Work and Strain Energy

The work done by the load is the product
of the magnitude of the force and the
Distance that the particle (or body) the
force acts on moves; however, in this
instance the force changes its magnitude
from zero to its final value P.

As a result, the work done by the load
as the bar elongates is dependent on
the manner in which the force and the
Corresponding deformation vary.
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Work and Strain Energy

The total work done by the load as it
increases in magnitude from zero to P
can be determined by summing together
all such infinitely small increments:

W= |’Pds

W =1P5

F,s]_JL_da
5
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Strain Energy

Provided that no energy is lost in the form
of heat, the strain energy U is equal in
magnitude to the external work W

U=W = jf.ﬂd.ﬁ

While external work may be either a positive or a negative quantity, strain
energy is always a positive quantity.



Strain-Energy Density for Uniaxial Normal Stress

The force acting on each x face of this element
is dFx =oxdy dz

The work done by dFx can be expressed as:

dW = 3 (0, dydz)e, dx

Furthermore, by conservation of energy, the stra
volume element must equal the external work:

dU = dW = 3(0  dydz)e, dx

dU = 30,€,.dV



Strain-Energy Density for Uniaxial Normal Stress

The strain-energy density u can be determined by
dividing the strain energy dU by the volume dV
of the element:

dU
U=—==0,F,
d .

If the material is linearly elastic, then o x = Eg,
and the strain-energy density can be Expressed
solely in terms of stress as:
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Strain-Energy Density for Uniaxial Normal Stress

The total strain energy associated with uniaxial

dV = dx dy dz
normal stress can be found by g
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Strain-Energy Density for Shear Stress

dU = L(t,, dxdz)y,, dy

1
U=F3Toyly
dy
T2 Gy? T
= —=— y—=—19 U= | 2av
2G 2 VaG

The general expression for the strain-energy density of a linearly elastic
body is
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Elastic Strain Energy for Axial Deformation

W=1iP5 U
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Elastic Strain Energy for Torsional Deformation

U=W=1T¢p
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Elastic Strain Energy for Flexural Deformation
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Examples

A simply supported beam ABC of length L and flexural Rigidity El supports
the concentrated load shown. What is the elastic strain energy due to bending
that iIs stored in this beam?
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Examples

Segmented rod ABC is made of a
brass that has a yield strengtho Y
=124 MPa

and a modulus of elasticity £ =115
GPa. The diameter of segment (1)
is 25 mm, and the diameter of
segment (2) is 15 mm. For the
loading shown, determine the
maximum strain energy that can
be absorbed by the rod if no 1,100 mm
permanent deformation is caused.
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Examples

Three identical shafts of identical
torsional rigidity JG and length L
are subjected to torques T as
shown.

What is the elastic strain energy
stored in each shaft?




Work—Energy Method for Single Loads

the conservation-of-energy principle declares that energy in a closed system
is never created or destroyed—it is only transformed from one state to

another. 7 n 2
- F-L.
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Work—Energy Method for Single Loads

W=U

wW=1Ps W=1T¢

This method described can be used only for structures subjected to a single
external load, and only the deflection in the direction of the load can be
determined.




Method of Virtual Work
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W = le Pdo W =1Ro

Work done by a single load on an axial rod



Method of Virtual Work
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Work done by two loads on an axial rod




Method of Virtual Work

The expressions for the work of concentrated moments are similar in form

to those of concentrated forces. A concentrated moment does work when it
rotates through an angle.

The work dW that a concentrated moment M performs as it rotates through
an incremental angle d@ is given by

AW =Mdo  and W= | Md6

If the material behaves linearly elastically, the work of a concentrated

moment as it gradually increases in magnitude from 0 to its maximum value
M can be expressed as |
W = 7M9



Method of Virtual Work

and if M remains constant during a rotation 0, the work is given by

W =M0



Principle of Virtual Work for Deformable Solids

If a detormab!
equilibrium w

e body 1s in equilibrium under a virtual-force system and remains 1in
hile it 1s subjected to a set of small, compatible deformations, then the

external virtual work done by the virtual external forces acting through the real external

displacements
internal forces

(or rotations) 1s equal to the virtual internal work done by the virtual
acting through the real internal displacements (or rotations).



Principle of Virtual Work for Deformable Solids

There are three important provisions in the statement of this principle.
First, the force system is in equilibrium, both externally and internally.

Second, the set of deformations is small, implying that the deformations do
not alter the geometry of the body significantly.

Finally, the deformations of the structure are compatible, meaning that the
elements of the structure must deform so that they do not break apart or
become displaced away from the points of support.

The parts of the body must stay connected after deformation and continue
to satisfy the restraint conditions at the supports. These three conditions
must always be satisfied in any application of the principle.



Principle of Virtual Work for Deformable Solids

The assembly is in equilibrium for an external virtual load P’ that is applied
at B.

Overall configuration Free-body diagram of joint B



Principle of Virtual Work for Deformable Solids

Since joint B is in equilibrium, the virtual external force P’ and the virtual
internal forces f, and f, acting in members (1) and (2), respectively, must
satisfy the following two equilibrium equations:

XF. =P - ficosf, — f,cos6, =0
ZF"‘" — ﬁ Siﬂ@l — f2 Siﬁ@z — O




Principle of Virtual Work for Deformable Solids

Assume that pin B is given a small real (as opposed to virtual) displacement
A in the horizontal direction.

The deformation of the
two-bar assembly is
Compatib|6, meaning that Equilibrium geometry
bars (1) and (2) remain

connected together at

joint B and attached
to their respective M[
supports at A and C.




Principle of Virtual Work for Deformable Solids

The total virtual work for the two-bar assembly is thus equal to the
algebraic sum of the separate bits of work performed by all the forces acting
at joint B.

W =-f (A cos 0,)
—_ P

W =-f,(A cos 6,)

.




Principle of Virtual Work for Deformable Solids

W =-f,(A cos 6,)
—_ P

W =-f,(A cos 0,)

\’ /2 A

W, = P’A— f,(Acos6,) — f,(Acos6,)




Principle of Virtual Work for Deformable Solids

W =-f,(A cos 91)

W =-f,(A cos 0,)

\’fé

W, = (P - ficosb, — f,cos6,)A




Principle of Virtual Work for Deformable Solids

Recall:

HEP - foont - feost, =0) P

EF‘; — fl Siﬂ@l — f2 Siﬂ@z — U

P.I"

= - =
Thus: u/v :@]ﬁ 00891 — f2 C-O@

P’A = fi(Acos,) + f,(AcosH,)




Principle of Virtual Work for Deformable Solids

P’A = fi(AcosO,) + f,(AcosH,)

The term on the left-hand side of the equation represents the virtual

external work W, done by the virtual external load P’ acting through the
real external displacement A

the right-hand side represents the virtual internal work W, of the virtual
Internal forces acting through the real internal displacements. Or:

Wﬁe — in




Principle of Virtual Work for Deformable Solids

The general approach used to implement the principle of virtual work to

determine deflections or deformations in a solid body can be described as

follows:

 Begin with the solid body to be analyzed. The solid body can be an axial
member, a torsion member, a beam, a truss, a frame, or some other
type of deformable solid. Initially, consider the solid body without
external loads.

* Apply an imaginary or hypothetical virtual external load to the solid
body at the location where deflections or deformations are to be
determined. Depending on the situation, this imaginary load may be a
force, a torque, or a concentrated moment. For convenience, the
imaginary load is assigned a “unit” magnitude, such as P’ = 1.



Principle of Virtual Work for Deformable Solids

* The virtual load should be applied in the same direction as the desired
deflection or deformation. For example, if the vertical deflection of a
specific truss joint is desired, the virtual load should be applied in a
vertical direction at that truss joint.

 The virtual external load causes virtual internal forces throughout the
body. These internal forces can be computed by the customary statics-
or mechanics-of-materials techniques for any statically determinate
system.



Principle of Virtual Work for Deformable Solids

With the virtual load remaining on the body, apply the actual loads
(i.e., the real loads) or introduce any specified deformations, such as
those due to a change in temperature. These real external loads (or
deformations) create real internal deformations, which can also be
calculated by the customary mechanics-of-materials techniques for any
statically determinate system.

As the solid body deflects or deforms in response to the real loads, the
virtual external load and the virtual internal forces are displaced by
some real amount. Consequently, the virtual external load and the
virtual internal forces perform work. However, the virtual external load
was present on the body, and the virtual internal forces were present
in the body, before the real loads were applied. Accordingly, the work
performed by them does not include the factor %.



Principle of Virtual Work for Deformable Solids

 Conservation of energy requires that the virtual external work equal
the virtual internal work. From this relationship, the desired real
external deflection or deformation can be determined.

Recalling that work is defined as the product of a force and a displacement:

virtual real ( virtual real |
external X external = 2 internal X internal
load displacement \ forces displacements )




Principle of Virtual Work for Deformable Solids

the method of virtual work employs two independent systems:

(a) a virtual-force system and

(b) the real system of loads (or other effects) that create the deformations
to be determined.

To compute the deflection (or slope) at any location in a solid body or
structure, a virtual-force system is chosen so that the desired deflection (or
rotation) will be the only unknown

virtual real ( virtual real \
external X  external = 2 internal X internal
load displacement \ forces displacements )




Deflections of Beams by the Virtual-Work Method

Assume that the vertical deflection of the beam at point B is desired. To

determine this deflection, a virtual external unit load will first be applied to
the beam at B in the direction of the desired deflection, as shown.
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Deflection due to
real external loads

Prismatic beam subjected to
an arbitrary real loading
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Virtual external load required
in order to determine A at B




Deflections of Beams by the Virtual-Work Method

If the beam is then subjected

to the deformations created 111 | \,\lﬁé N — |

by the real external loads, the + “‘\jt__ A A A \ D
. X dx eflection due to X dx

virtual external work . real externalloads . ‘

p erforme d by the Virtual Prismatic beam subjected to Virtual external load required

an arbitrary real loading in order to determine A at B

external load as the beam
moves downward through the

real deflection A will be
To obtain the virtual internal work, the

internal work of a beam is related to the
W,e =1-A moment and the rotation angle 0 of the
beam.




Deflections of Beams by the Virtual-Work Method
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Virtual external load required
in order to determine A at B

Consider a differential beam element dx located at a distance x from the left
support. When the real external loads are applied to the beam, bending
moments M rotate the plane sections of the beam segment dx through an

angle:

do = ﬂdx
EI




Deflections of Beams by the Virtual-Work Method

When the beam with the virtual unit load is subjected to the real rotations
caused by the external loading, the virtual internal bending moment m acting
on the element dx performs virtual work as the element undergoes the real

rotation d©.

For beam element dx, the virtual internal
work dW,; performed by the virtual
internal moment m as the element
rotates through the real internal rotation

angle dO is

dW,. = mdo

dﬂ/vi = m(—

M
El

b

I
[ 11 dl = ﬂdx

. El
I\

m N m

— ax —

Internal work of virtual
moment m



Deflections of Beams by the Virtual-Work Method

The total virtual internal work done on the beam is then:

M
W, = JLm — |dx
0\ EI

Which is the amount of virtual strain energy that is stored in the beam.

The virtual external work can be equated to the virtual internal work, giving
the virtual-work equation for beam deflections:

We =1.A |8 |1-A= JOLm{%]dx




Deflections of Beams by the Virtual-Work Method

The slope of a beam can be expressed in terms of its angular rotation 0
(measured in radians) as
v

— =tanf =0
dx

Assume that the angular
rotation © of the beam at

i i i o Coe X
oint C is desired. g I
P A : =D

To determine 6, a virtual X dx

) . > [e—
external unit moment will I
first be applied to the beam I<

at Cin the direction of the anticipated slope.




Deflections of Beams by the Virtual-Work Method

If this beam is then subjected to the

w

deformations created by the real external

Alfm\hi\

loads, the virtual external work W,

performed by the virtual external moment 4

as the beam rotates counterclockwise

through the real

oeam angular rotation O is

W. =16

L M
l-Q:JOmE dx

= - =5
1 [~
X g | Deflection due to
' I real external loads
1{!
|
Ioj I Coe ' X
A )
X dx
L




Deflections of Beams by the Virtual-Work Method

Important NOTE

The internal work performed by virtual shear forces acting through real shear
deformations has been neglected. Consequently, the virtual-work expressions
do not account for shear deformations in beams.

However, shear deformations are very small for most common beams (with
the exception of very deep beams), and they can be neglected in ordinary
analyses.




Deflections of Beams by the Virtual-Work Method

L

Question:
What to do when a single integration over the entire length of the beam may
not be possible?




Procedure for Analysis

1. Real System: Draw a beam diagram showing all real loads.

2. Virtual System: Draw a diagram of the beam with all real loads removed. If
a beam deflection is to be determined, apply a unit load at the location
desired for the deflection. If a beam slope is to be determined, apply a unit
moment at the desired location.

3. Subdivide the Beam: Examine both the real and virtual load systems. Also,
consider any variations of the flexural rigidity El that may exist in the beam.
Divide the beam into segments so that the equations for the real and virtual
loadings, as well as the flexural rigidity El, are continuous in each segment.




Procedure for Analysis

4. Derive Moment Equations: For each segment of the beam, formulate an
equation for the bending moment m produced by the virtual external load.
Formulate a second equation expressing the variation in the bending moment
M produced in the beam by the real external loads. Note that the same x
coordinate must be used in both equations. The origin for the x coordinate
may be located anywhere on the beam and should be chosen so that the
number of terms in the equation is minimized. Use the standard Convention
for bending-moment signs for both the virtual and real internal-moment
equations.




Procedure for Analysis

5. Virtual-Work Equation: Determine the desired beam deflection by
applying Equation or compute the desired beam slope. If the beam has been
divided into segments, then you can evaluate the integral on by algebraically
adding the integrals for all segments of the beam. It is, of course, important
to retain the algebraic sign of each integral calculated within a segment.

If the algebraic sum of all of the integrals for the beam is positive, then A or 6
is in the same direction as the virtual unit load or virtual unit moment.

If a negative value is obtained, then the deflection or slope acts opposite to
the direction of the virtual unit load or virtual unit moment.



Examples

Calculate (a) the tion and (b) the slope at end A of the cantllever beam
shown. Assume that El is constant.
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Calculate the deflection at end C of the cantilever beam shown. Assume that
E = 70 GPa for the entire beam. ol6s o.—w-s Lt g

6,‘):0 ‘ ( XY
_ L M ARGy = s mne ]
)W\‘ Nk 0\0( + [T,

0

[L400 N

I = 160,000 mm*

[65 mm

300 mm

L
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Examples

Compute the deflection at point C for the simply supported beam shown.
Assume that El = 3.4 x 10> kN-m?.
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