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Torsional shear stresses in a rectangular bar.

In general, every 

section will warp 

or bulge (i.e., not 

remain plane) 

when twisted, 

except for 

members

with circular cross 

sections.

Introduction



Torsional shear stresses in a rectangular bar.

Shear stresses in any 
torsionally loaded 
member were 
proportional to the
distance from the 
longitudinal axis of the 
member. 

Duleau proved 
experimentally that
relationship does not 
hold for rectangular 
cross sections.



If the stresses in the rectangular bar 
were proportional to the distance 
from its axis, the maximum stress 
would occur at the corners. 

However, if there is a stress of any 
magnitude at a corner, as indicated in 
the figure, it could be resolved into the 
components indicated. 



If these components existed, the
two components shown by the blue 
arrows would also exist. 

But these last components
cannot exist, since the surfaces on 
which they are shown are free 
boundaries. 

Therefore, the shear stresses at the 
corners of the rectangular bar must be 
zero.



For the case of the rectangular bar 
shown, the distortion of the small
squares is greatest at the midpoint of a 
side of the cross section and 
disappears at the
corners. 

Since this distortion is a measure of 
shear strain, Hooke’s law requires that 
the shear stress be largest at the 
midpoint of a side of the cross section 
and zero at the corners.

Torsional deformations illustrated by 

rubber models with circular and 

square cross sections.



Equations for the maximum shear 
stress and the angle of twist for a 
rectangular section obtained from 
Saint-Venant’s theory are:

and

where a and b are the lengths of the 
short and long sides of the rectangle, 
respectively.



The numerical constants α and β can 
be obtained from:



Values for α and β are equal for b/a ≥ 5. 
For aspect ratios b/a ≥ 5, the 
coefficients α and β:

Narrow Rectangular Cross Sections



As a practical matter, an aspect ratio 
b/a ≥ 21 is sufficiently large that values 
of α = β = 0.333 can be used to 
calculate maximum shear stresses and 
deformations in narrow rectangular
bars within an accuracy of 3 percent. 

Accordingly, equations for the 
maximum shear stress and angle of 
twist in narrow rectangular bars can be 
expressed as

and 

Narrow Rectangular Cross Sections



Torsion of Thin-Walled Tubes: Shear Flow

Noncircular section with a wall of variable thickness



A useful concept associated with the 
analysis of thin-walled sections is the 
shear flow q, defined as the internal 
shearing force per unit of length of the 
thin section. 

Typical units for q are pounds per inch 
or newtons per meter. 

q = τ × t

where τ is the average shear stress 
across the thickness t.
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Noncircular section with a wall of 

variable thickness



Since the member is subjected to pure 
torsion, the shear forces V1, V2, V3, and 
V4 alone are necessary and sufficient 
for equilibrium.

V1 =V3
Or

q1 dx = q3 dx

and
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τAtA = τBtB
or

qA = qB

which demonstrates that the shear flow 
on a cross section is constant even 
though the wall thickness of the section 
varies.

Since q is constant over a cross section, 
the largest average
shear stress will occur where the wall 
thickness is the smallest.
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Consider the force dF acting through the 
center of a differential length of 
perimeter ds, as shown. 

The differential moment produced by dF
about the origin O is simply ρ × dF,
where ρ is the mean radial distance from 
the perimeter element to the origin. 

The internal torque equals the resultant 
of all of the differential moments; that is:

T = ∫(dF)ρ = ∫(q ds)ρ = q ∫ ρ ds
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The quantity ρ ds is twice the area of the 
triangle shown shaded in the figure. 
Thus:

and
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