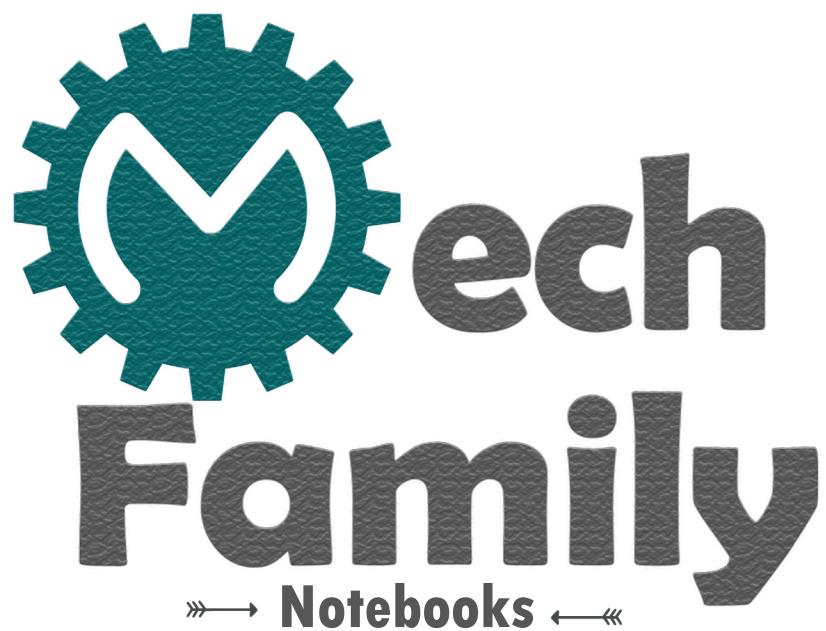


Machines

Dr. Sahban Naser

1st Semester 2017

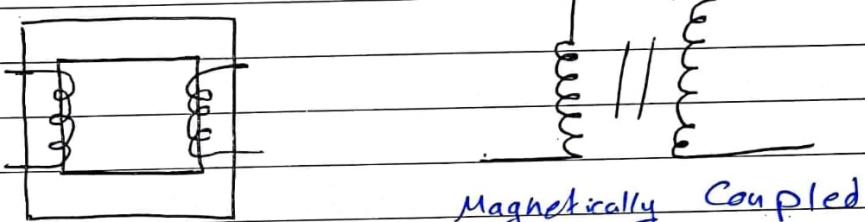


25/9/2017

Machines

→ Motor (electrical \rightarrow Mechanical) \rightarrow Magnetic field
Generator (mechanical \rightarrow electrical)
Transformer (converts AC voltage from one level to another)

Transformers



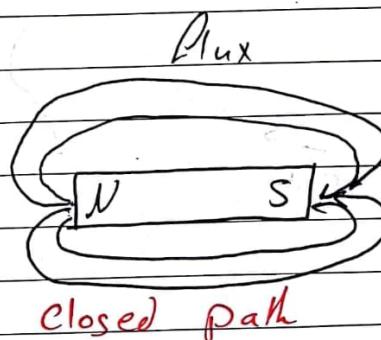
- Magnetic field

* Permanent magnet

- Flux "lines" ϕ web

- Flux density B $\frac{\text{Web}}{\text{m}^2} = \frac{\phi}{\text{A}}$

- Flux intensity (H) = $\left(\frac{\text{A}}{\text{m}}\right)$

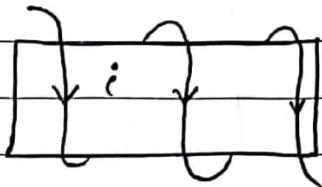


Electro magnet

$$i \rightarrow \phi$$

التيار i يولد میدفون ϕ

N Turns



* Maxwell's Cork Screw rule

* Right-handed Cork screw $\rightarrow i$

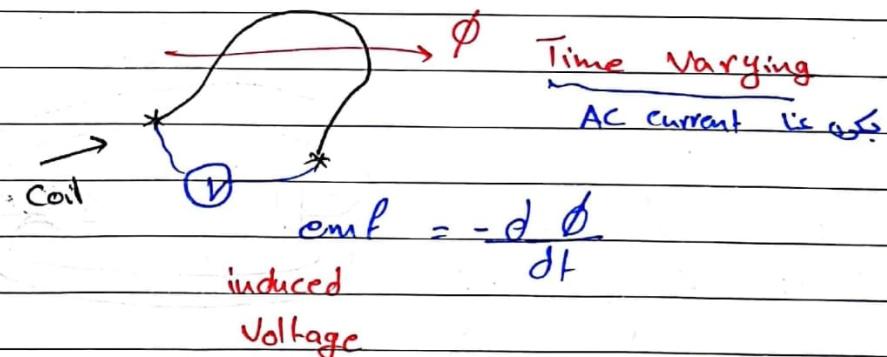
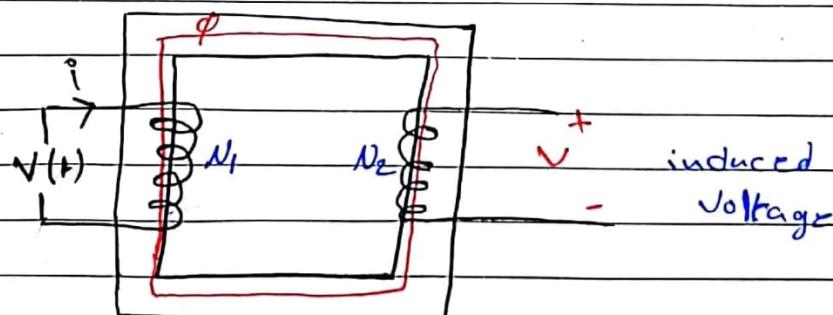
تحتوى اتجاه التيار

* Thum b $\rightarrow \phi$

-Principles of magnetic field

* A current carrying conductor produces a magnetic field

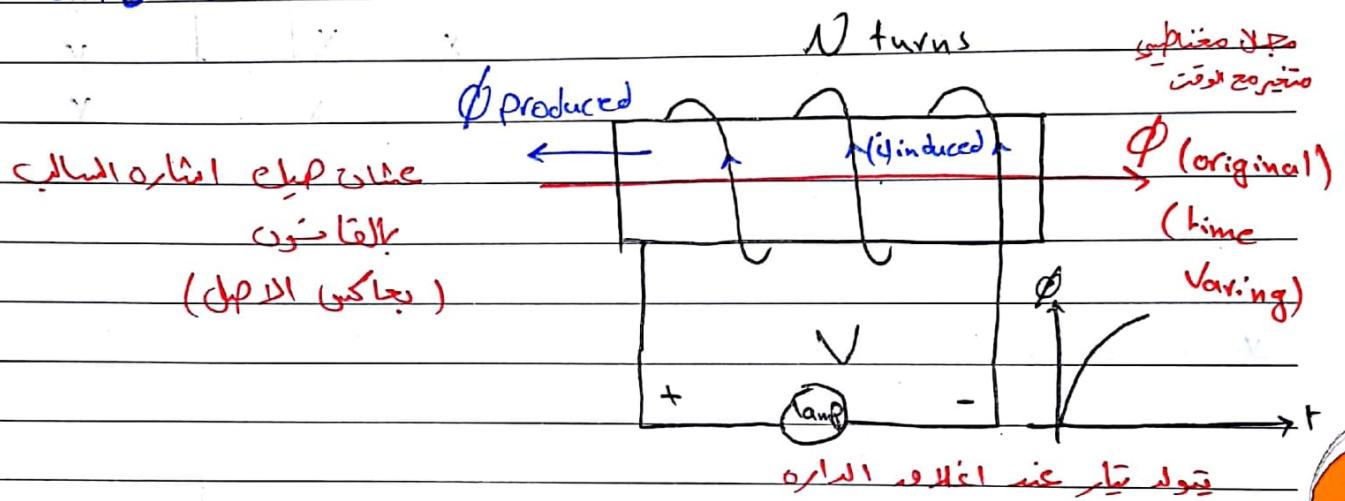
* Transformers actions Farady's law



$$\text{emf} = -\frac{d\phi}{dt} \quad \text{For 1 turn}$$

$$\text{emf} = -N \frac{d\phi}{dt} \quad \text{For } N \text{ turns}$$

- Lent's law:

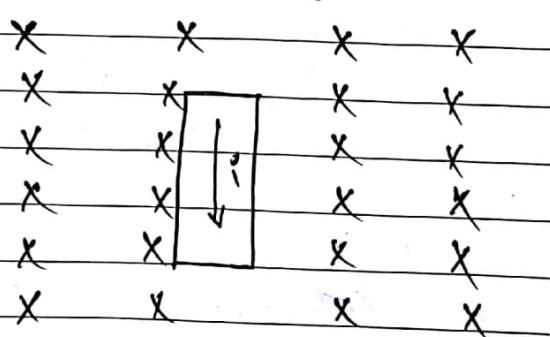


Motor Action (Force on a wire)

✓ Magnetic Field

~~X~~ → in

0 → out \uparrow Direction



$$F = I \times B$$

↑ ↑ ↑

الثمار cross product \times

اتجاه الابهام

اتجاه اول صبايج

لهم اكثرنا في حملة الارض

الآن يهتمون

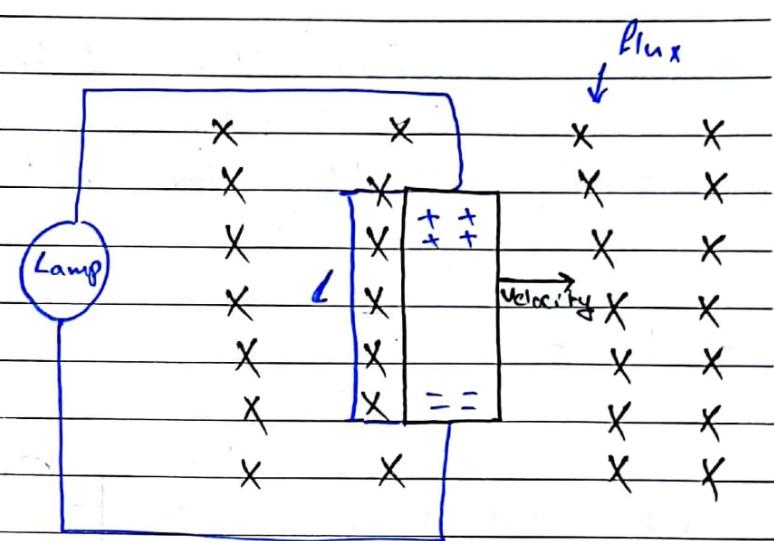
input is current \rightarrow Flux

Output Force Movement

Generator action

input: velocity, Flux

$$\text{output: } e = (\vec{V} \times \vec{B}) L$$



* Magnetic circuits

- Ampers law

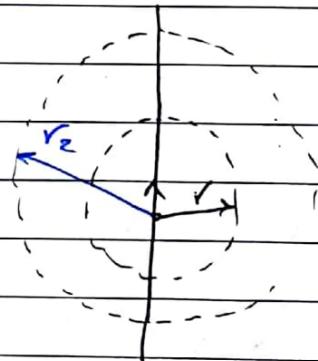
closed path $\oint H dL = I_{\text{net}}$
(Line integral)

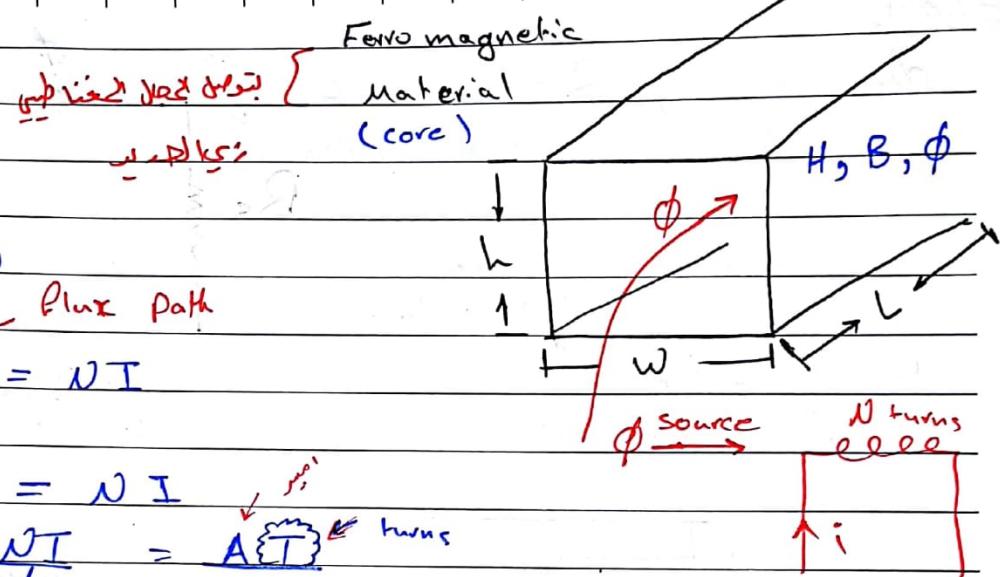
$$\Rightarrow H (2\pi r) = I_{\text{net}}$$

$$\Rightarrow H = \frac{I_{\text{net}}}{2\pi r} = \frac{A}{m}$$

فهي تتناسب مع المسافة

$$H = \frac{I}{2\pi r} = \frac{I}{2\pi r_1}$$





web/m²
Tesla

$$B = \mu H \leftarrow \frac{AT}{m}$$

Permeability $\left(\frac{H}{m} \right)$

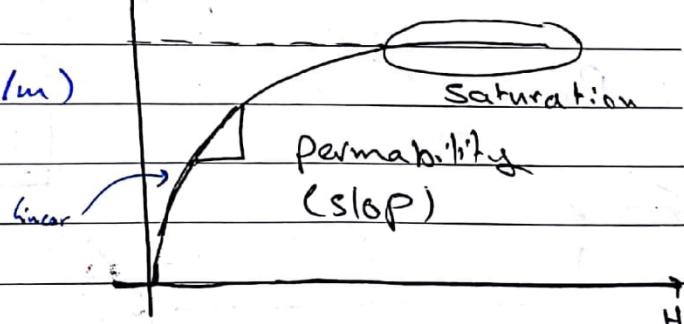
Material

$E \rightarrow \square \square$	$G \rightarrow \square \square \square \square$
$H \rightarrow \square \square \square \square$	

$$\mu = \mu_r \mu_0 \leftarrow \text{Free space} \quad (4\pi \times 10^{-7} \text{ H/m})$$

relative

B-H curve



$$\Phi = BA = H A$$

$$\Phi = \frac{NI}{L} A \quad \text{Web}$$

Magnetic motive force

$$\Phi = \frac{NI}{L} = \frac{F}{R}$$

: MA

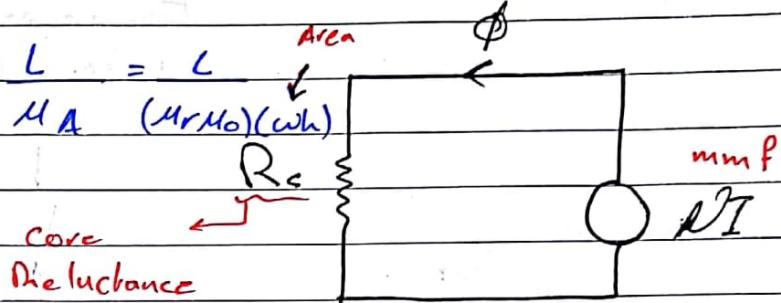
Reluctance

area

27/9/2017

← Cont.

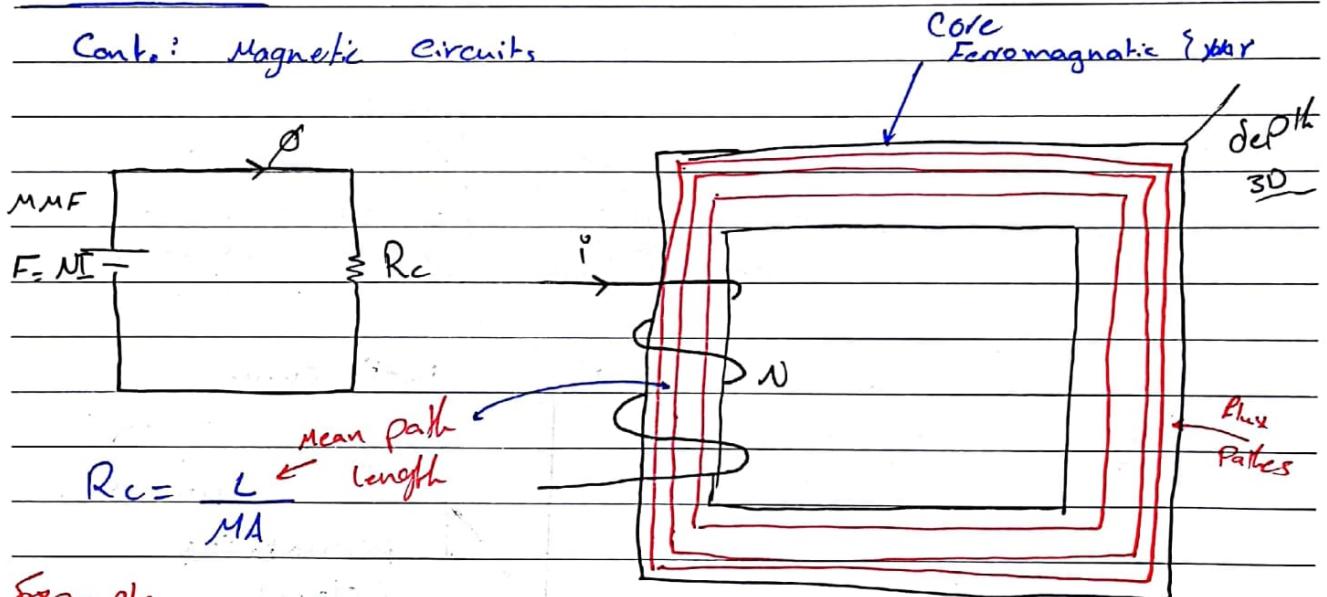
$$\phi = \frac{NI}{R} \quad , \quad R = \frac{L}{M_A} = \frac{L}{(MrMo)(wh)} \quad \text{Area}$$



$$R = \frac{NI}{\emptyset} = \frac{A \cdot I}{wb}$$

$$i = \frac{V}{R}$$

Contd.: Magnetic Circuits



Example

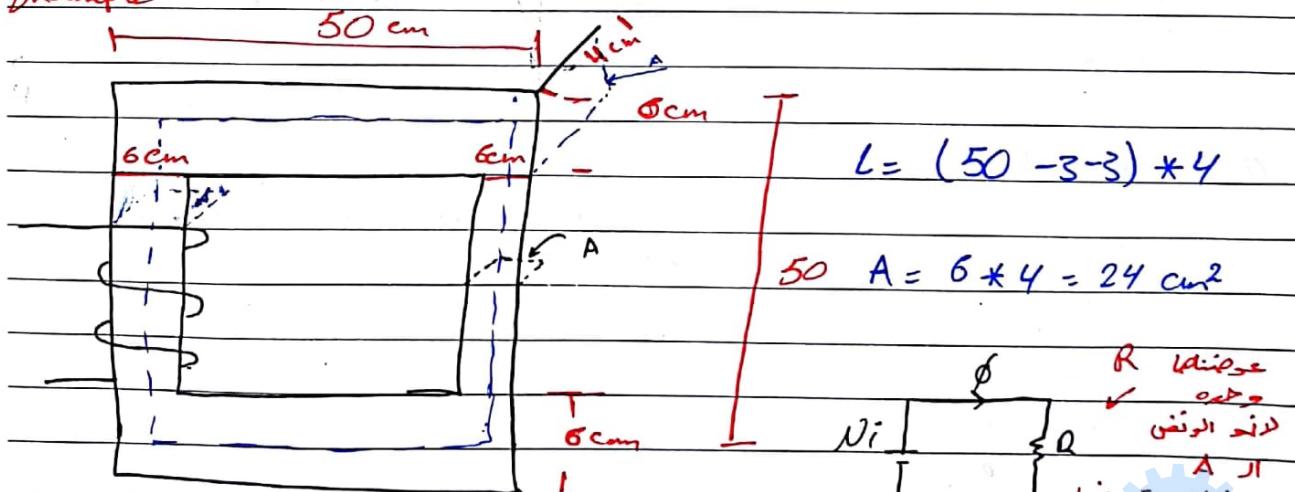
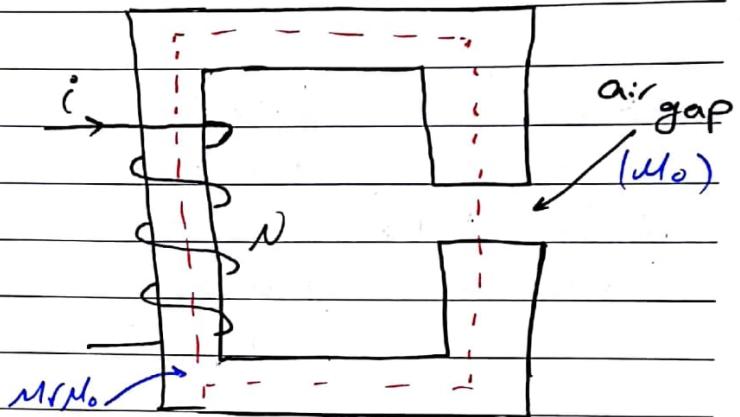


Diagram of a series circuit with a resistor R and an inductor L . The current flows through the loop in a clockwise direction. The voltage across the inductor is labeled as the voltage drop across it.

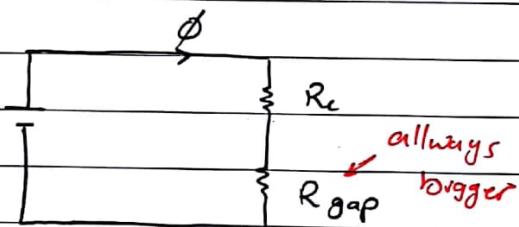
Magnetic Circuits with an air gap

Mean path l_c

Area core A_c



$$R = \frac{l}{M₀A}$$



$$\oint H \cdot dL = NI$$

$$NI = H_c^{\text{core}} l_c + H_g^{\text{gap}} l_g$$

$$NI = \frac{B_c l_c}{M_c} + \frac{B_g l_g}{M_g}$$

$$\Phi = B_c A_c \leftrightarrow B_g A_g$$

$$B = \mu A$$

$$H = \frac{B}{\mu}$$

مختلط دو دو

$$B_g = \frac{\Phi}{A_c} \Rightarrow B_g = \frac{\Phi}{A_g}$$

نیتانی A دل نیسانی Flux x

یاری Flux intensity

$$NI = \frac{\Phi l_c}{M_c A_c} + \frac{\Phi l_g}{M_g A_g}$$

$$NI = \Phi \left(\frac{l_c}{M_c A_c} + \frac{l_g}{M_g A_g} \right) \Rightarrow NI = \Phi (R_c + R_g)$$

* Approximation

- Mean path length
- Leakage flux

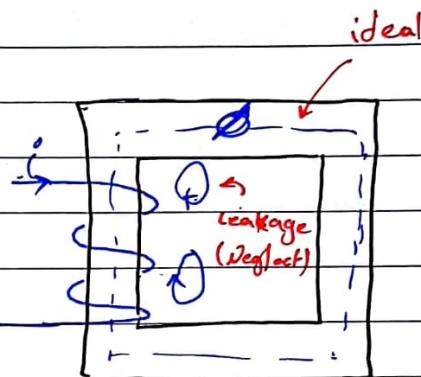
- Fringing

کم جزو کس

سینی A نمی

$$A = (a + l_g)(b + l_g)$$

Fringing نیز باید ایجاد شود -
ideal بنحو



Leakage

Fringing

l_g

Effective
Area of
Air gap

$$A = 16 \text{ cm}^2$$

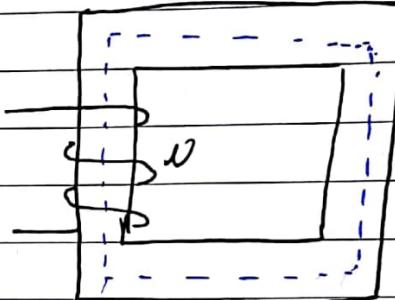
$$L_c = 40 \text{ cm} \quad \leftarrow \text{mean length}$$

$$N = 350 \text{ turns}$$

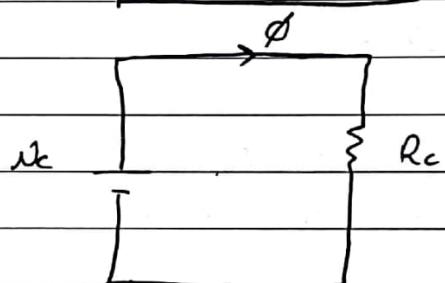
$$M_r = 50000$$

$$B = 1.5 \text{ T}$$

Find current in the coil



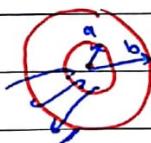
$$R_c = \frac{L}{\mu A} = \frac{40 \times 10^{-2}}{(50000 \times \mu_0)(16 \times 10^{-4})} = 4 \times 10^3 \text{ ohms}$$



$$R_c = 3979 \text{ ohms}$$

$$\phi = 1.5 \times 16 \times 10^{-4} \text{ wb}$$

$$N \phi i = \phi R \Rightarrow i = \frac{\phi R}{N} = \frac{1.5 \times 16 \times 10^{-4} \times 3979}{350} = 27.3 \text{ mA}$$



$$\text{إذا كانت دائرة متاخدة (L) بمسافة } (2\pi r)$$

5×8

$$N = 350$$

$$i = 1.2 \text{ A}$$

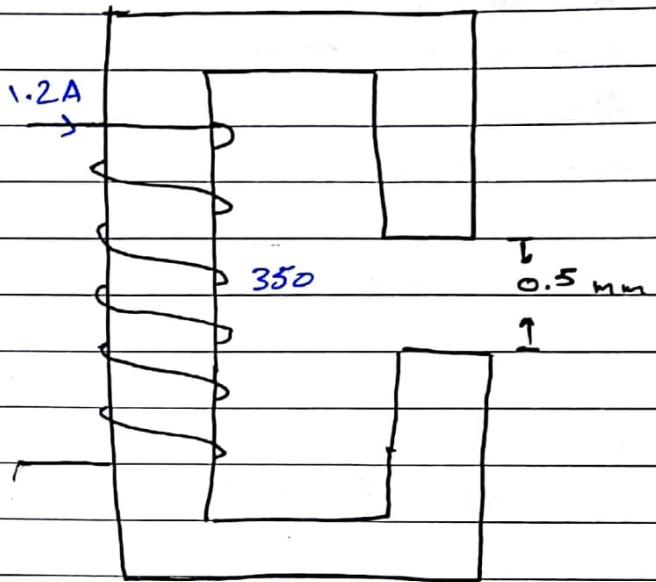
$$A_c = 16 \text{ cm}^2$$

$$L_c = 40 \text{ cm}$$

$$\mu_r = 50000$$

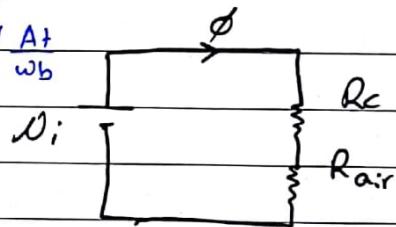
Find flux density

in the core and air gap



ما اختلف كثير عن المقابل

$$R_c = \frac{40 \times 10^{-2} - 0.5 \times 10^{-3}}{50000 \text{ M}_0 (16 \times 10^{-4})} = 3974 \text{ At}$$



$$R_g = \frac{0.5 \times 10^{-3}}{M_0 (16 \times 10^{-4})} = 248680 \frac{\text{At}}{w_b}$$

$$\phi = \frac{N_i}{R_c + R_{airgap}} = 1.66 \times 10^{-3} \text{ wb}$$

$$B = \frac{1.66 \times 10^{-3}}{16 \times 10^{-4}} = 1.04 \text{ T}$$

Ex: Find ϕ

$$M_r = 2000$$

$$N = 1000$$

$$A_{eff} i = 1A$$

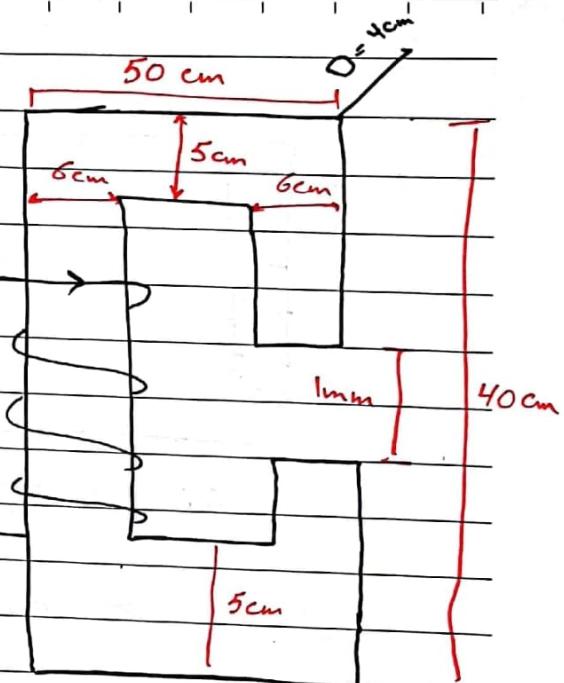
$$A \Rightarrow A_h = 5 \text{ cm} \times 4 \text{ cm} = 20 \text{ cm}^2$$

$$A_v = 6 \text{ cm} \times 4 \text{ cm} = 24 \text{ cm}^2$$

$$A_g = 6 \text{ cm} \times 4 \text{ cm} = 24 \text{ cm}^2$$

$$R = 2$$

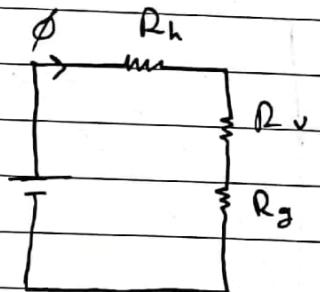
$$M(A) \leftarrow \text{add to}$$



$$L_h = 44 \times 2 = 88 \text{ cm}$$

$$L_v = 70 \text{ cm}$$

$$L_g = 1 \text{ mm}$$



$$R_h = 700 \frac{\text{m}}{\text{A}}$$

$$R_h = \frac{88 \times 10^{-2}}{2000 \mu_0 \times 10^{-4}} = 175070.4$$

$$R_v = 464000 \frac{\text{A}}{\text{m}}$$

$$R_v = \frac{70 \times 10^{-2}}{2000 \times 10^{-4} \times 24 \times 10^{-4}} = 116050.5$$

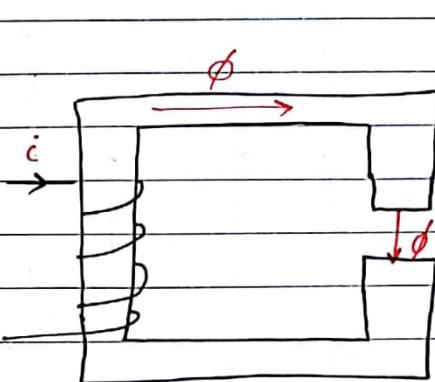
$$R_g = 331000 \frac{\text{A}}{\text{m}}$$

$$R_g = \frac{1 \times 10^{-3}}{\mu_0 \times 10^{-4}} = 331572.8$$

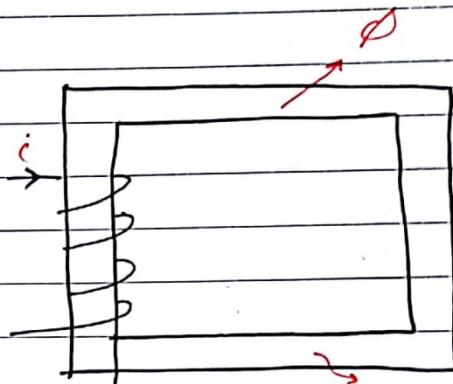
$$\phi = \frac{NI}{\Sigma R} = 7 \times 10^{-3} \text{ wb}$$

$$\phi = \frac{1000 \times 1}{R_{total}} = 1.6 \times 10^{-3} \text{ wb}$$

(21/10/2017)



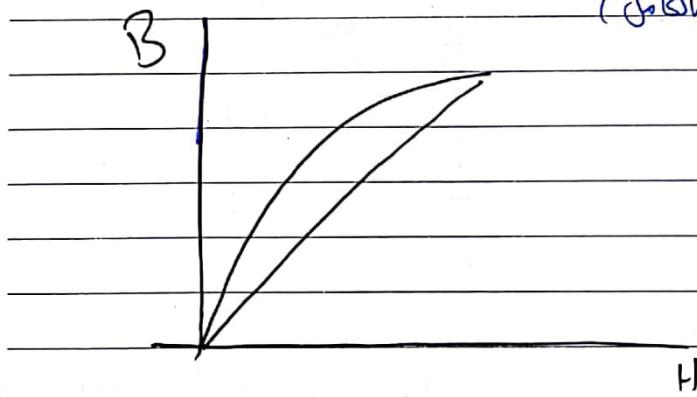
with air gap



without air gap

توضيح "Air gaps" حتى لا ي saturation (saturation) يتحقق في جميع المكونات

(عثمان ماجد عاصم الـ (Bakar) pizza core (يتاخر))



ϕR

$$BA = \frac{L}{MA} H$$

2 materials

fringing "بسبور" Argaps (ذيل) يدخلون داخلا

التيار : ϕ

$$\frac{BL}{M} = HL$$

$$\text{Ampers law} : \oint H \cdot dL = NI$$

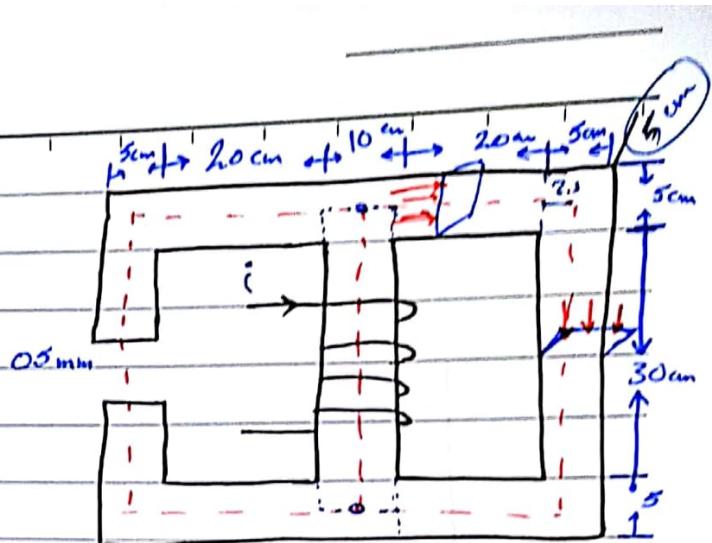
Ex)

$$\underline{M_r = 2000}$$

$$N_{\text{eff}} = 1000$$

$$\phi_g = \ln w_b$$

$$e_P = ?$$



Solutions

$$R_1 = \frac{61}{144} = \frac{30 + 2.5 + 2.5}{2000 \text{ N/m} (10 \times 5) \times 10^{-4}} \text{ cm}$$

$$R_2 = \frac{L_2}{4A} = \frac{(5+20+2.5) \times 2 + (2.5 + 30 + 25) \times 2}{2000 \text{ H}_0 (5 \times 5) \times 10^{-4}}$$

$$= 1432.4$$

$$R_3 = \frac{(5+20+25) * 2 + (25 + 30 + 25)) \text{ cm}}{2000 \text{ N} \cdot (5\text{cm} * 5\text{cm})} - 0.5 \text{ mm}$$

$$= 1431.6$$

$$F_{ab} = \phi_1 (R_B + R_g) \quad , \quad \phi_2 = F_{ab} / R_2$$

$$\phi = \phi_1 + \phi_2 = 3.1 \text{ mwb}$$

$$-N_i + \phi Q_i + F_{ab} = 0$$

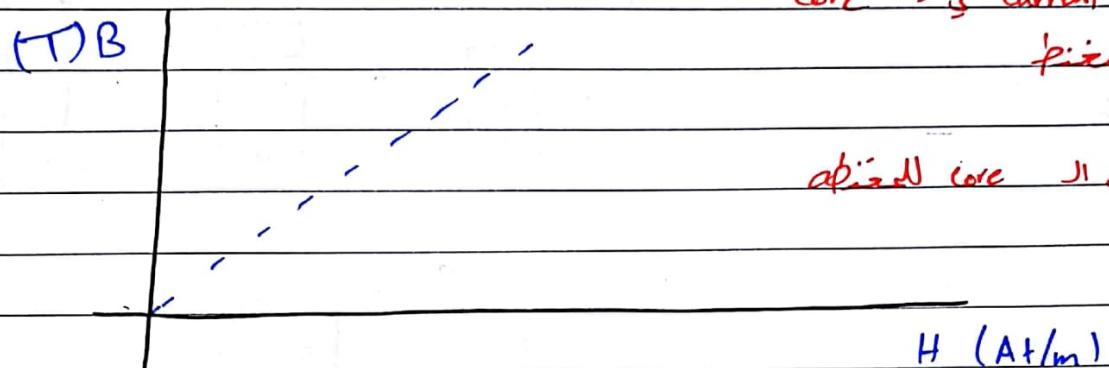
$$-N_i + \phi Q_i + F_{ab} = 6$$

$$i = 0.38 A$$

Magnetic behavior of Ferro magnetic material:

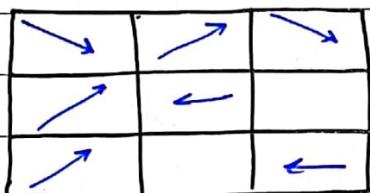
core \rightarrow current \parallel میدان مغناطیسی
پیوسته باشد

آبیزدیل کوئری \parallel میدان $\Rightarrow H$



Random

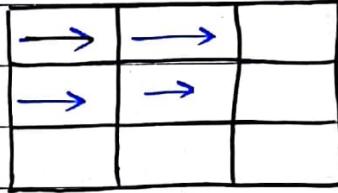
$H=0$



(a)

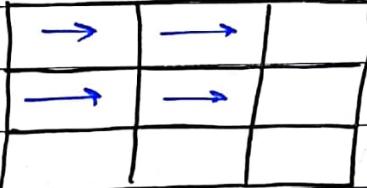
alignment

$H=H_1$



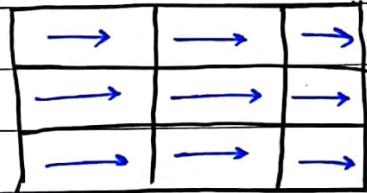
(b)

$H=H_2$



(c)

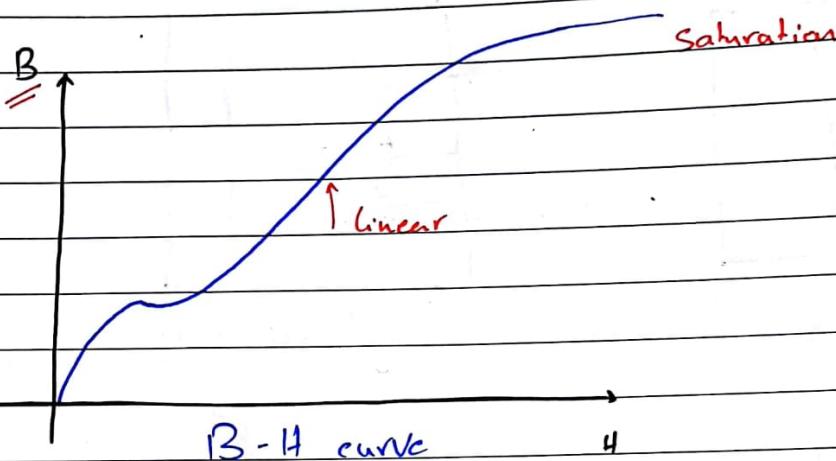
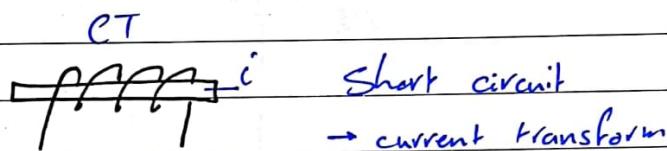
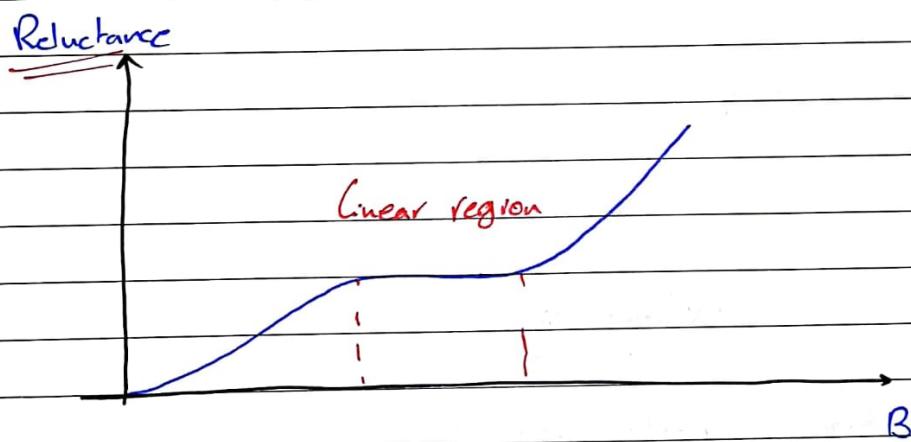
$H=H_3$



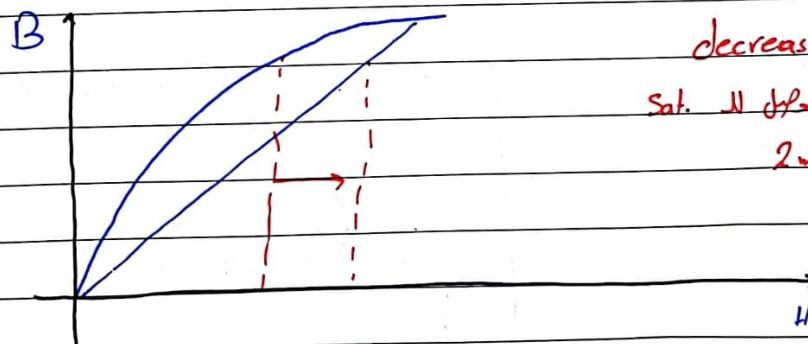
(d)

$B_2 > B_1, H_2 > H_1$

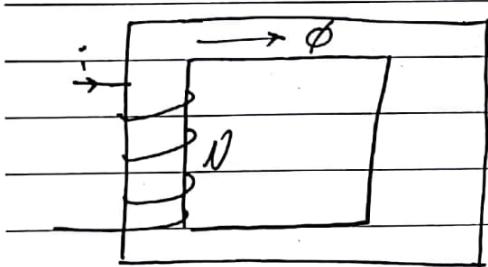
No change in B
even with increasing H



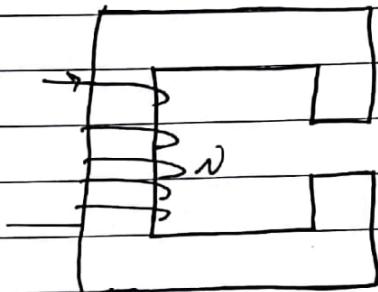
Q) How to delay saturation?



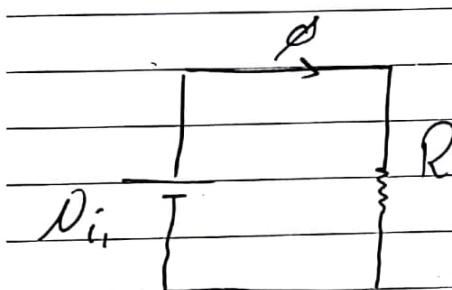
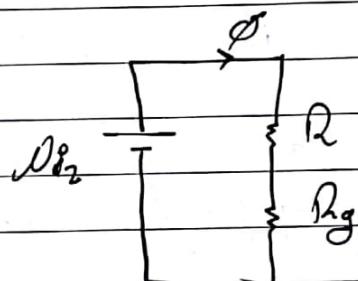
decrease $M \rightarrow$ increase R_c
 Sat. $M \downarrow \rightarrow$ refl. delay curve $M \downarrow \rightarrow$
 2mA $\downarrow \rightarrow$ 3mA $\downarrow \rightarrow$
 (Delay) airgap



without air gap



with air gap



assume at linear region

Prob: equation

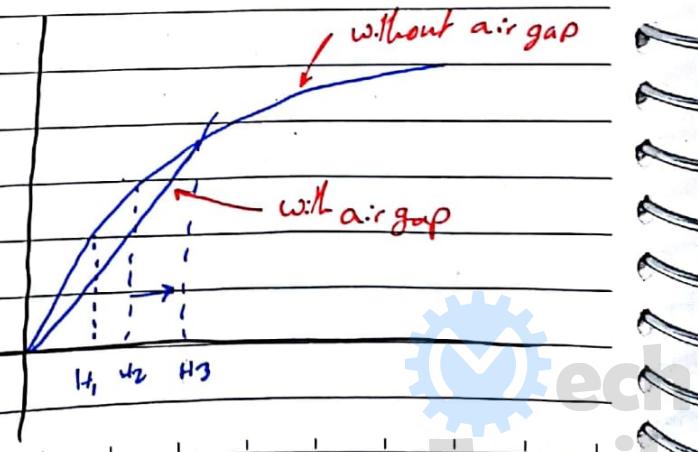
$$\Phi = (N_1) / R \quad \text{without air gap}$$

$$\Phi = (N_1) / (R + R_g) \quad \text{with air gap}$$

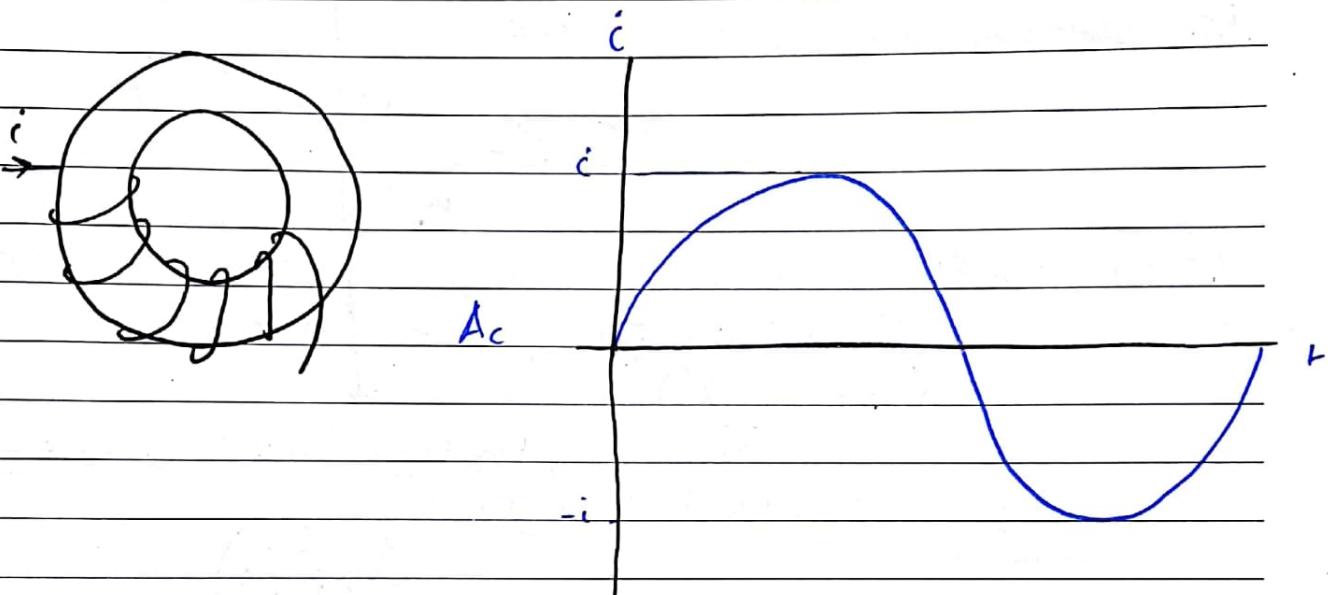
$$\frac{N_1}{R} = \frac{N_1}{R + R_g}$$

$$\frac{i_2}{i_1} = \frac{R + R_g}{R} > 1$$

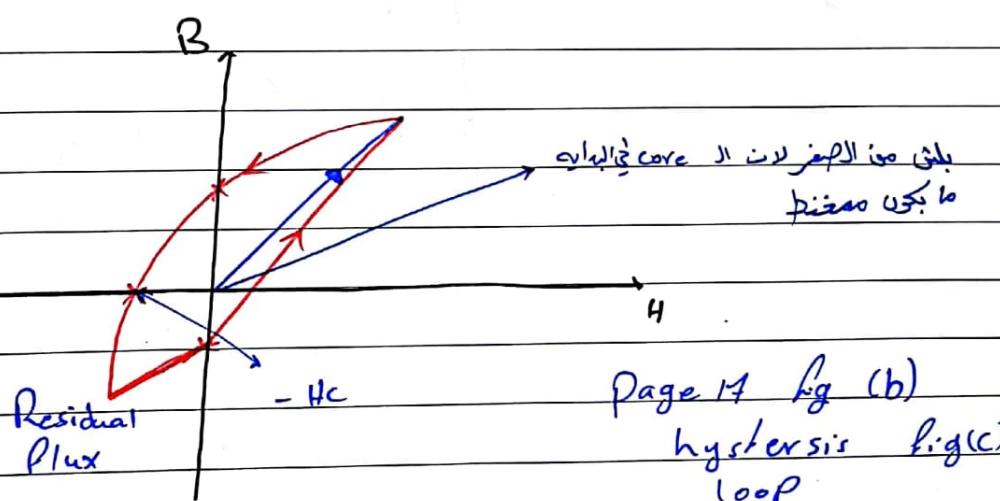
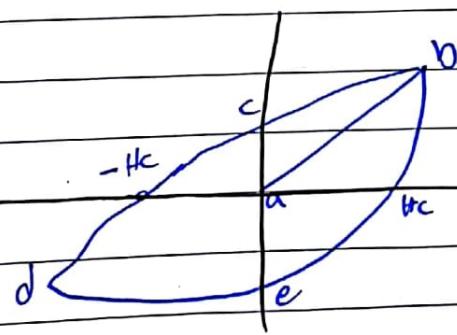
$$\frac{i_2}{i_1} = 1 + \frac{R_g}{R}$$



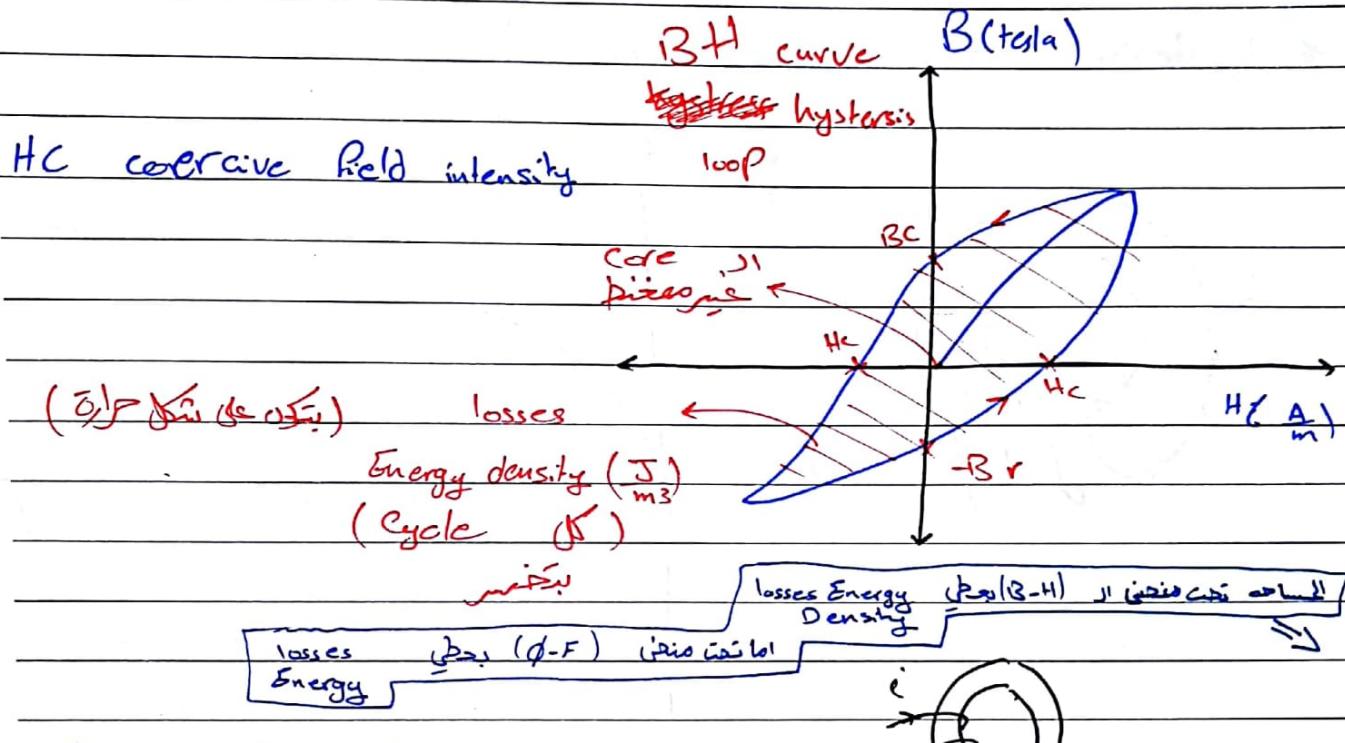
* hysteresis loss and eddy current loss



عند إزالة التيار فإن المغناطيسية تأخذ قيمتين ازالة المغناطيسية



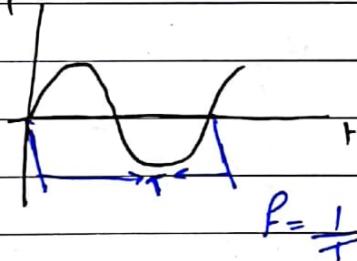
٤/١٠/٢٠١٧



$$= (\text{Area } (B-H) * V_{core} * P)$$

$\frac{1}{T}$

Volume



Rev.

$$F = cB L$$

$$\Rightarrow B = \frac{N}{A \cdot m} \Rightarrow \frac{J}{A \cdot m^2}$$

$$F \cdot \text{distance} = \omega$$

$$N \cdot m = J$$

$$N = \frac{J}{m}$$

$$H = \frac{A}{m} \Rightarrow H \cdot B \Rightarrow \frac{A}{m} \cdot \frac{J}{A \cdot m^2} = \frac{J}{m^3}$$

losses (Area under the curve)

General electric company!

GE \Rightarrow Approximation

ما انتو ايجاد المساحة تحت المنحنى

ضرر انتظاري تقدير المساحة فاحدوا على انتظاري

$$\text{Power} = \frac{KH}{T} * (B_{\max})^n * P = \frac{W}{ms}$$

density $\frac{W}{T}$ \hookrightarrow max flux density

* Area B-H
 $KH * (B_{\max})^n$

(for losses) Constant (material)

Area ϕF

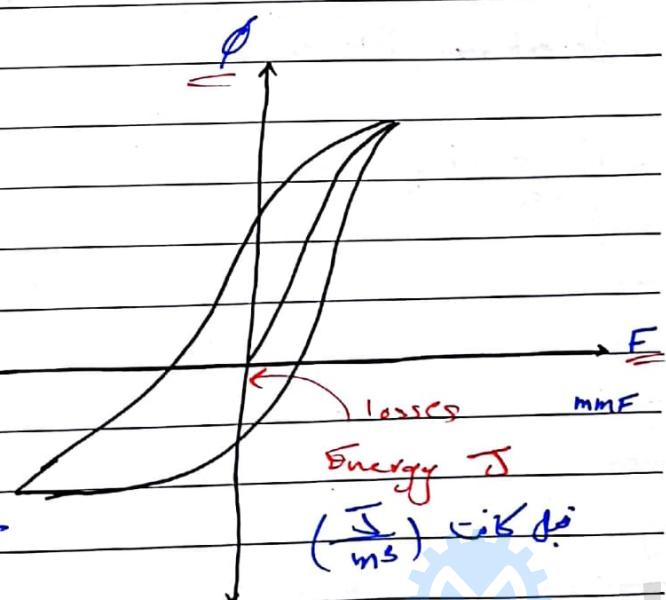
$$e = \frac{d\phi}{dt} * \omega \Rightarrow \phi = \frac{V \cdot \text{sec}}{\text{Turn}}$$

$$\hookrightarrow \text{voltage} = N \frac{\Delta \phi}{\Delta t}$$

$$F = A \cdot \text{Turn}$$

$$\Rightarrow \phi F =$$

$$A \cdot \text{Turn} \cdot \frac{V \cdot \text{sec}}{\text{Turn}} = \text{Energy } J$$



* Core losses

~~Hysteresis~~ hysteresis losses

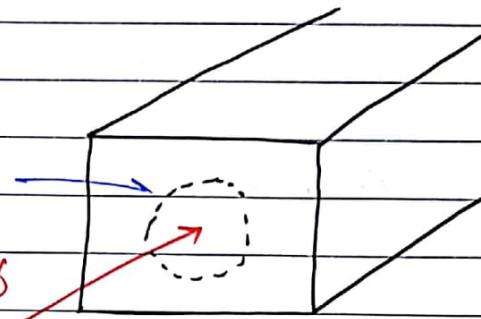
$$P_h = KH \times B_{\max}^2 \times F \quad \text{W/m}^3$$

Eddy current losses

$$P_e = K_c \cdot B_{\max}^2 \cdot F^2 \quad \text{W/m}^3$$

Materials and
Laminations

Plux ϕ will change
with time
(Varying)



$$\text{Losses} = (i_{\text{eddy}})^2 R$$

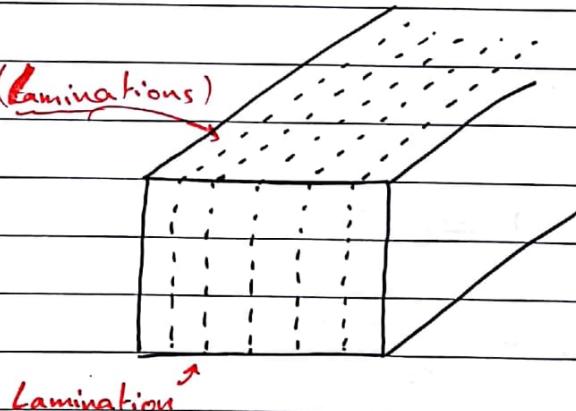
(الخالي)

(حقل التيار)

Power losses (الخالي) = (حقل التيار) \times (Laminations)

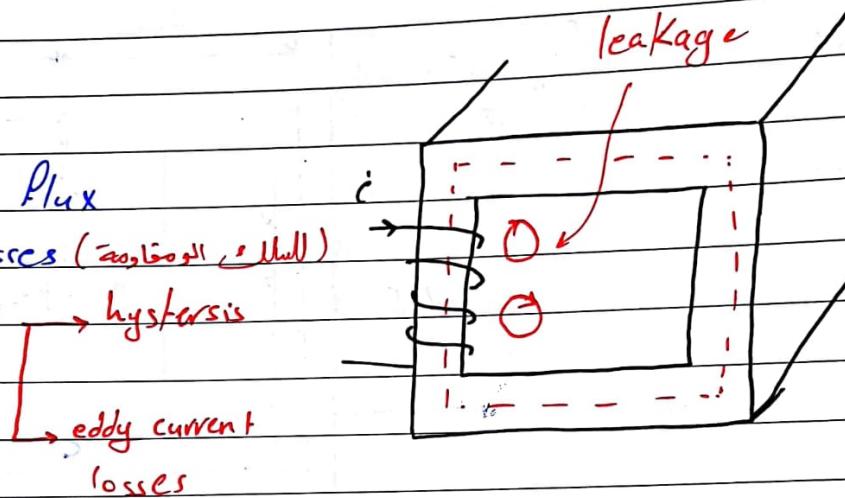
Resistive losses (اجزاء المكون)

$$P_{\text{losses}} = (i_{\text{eddy}})^2 R$$

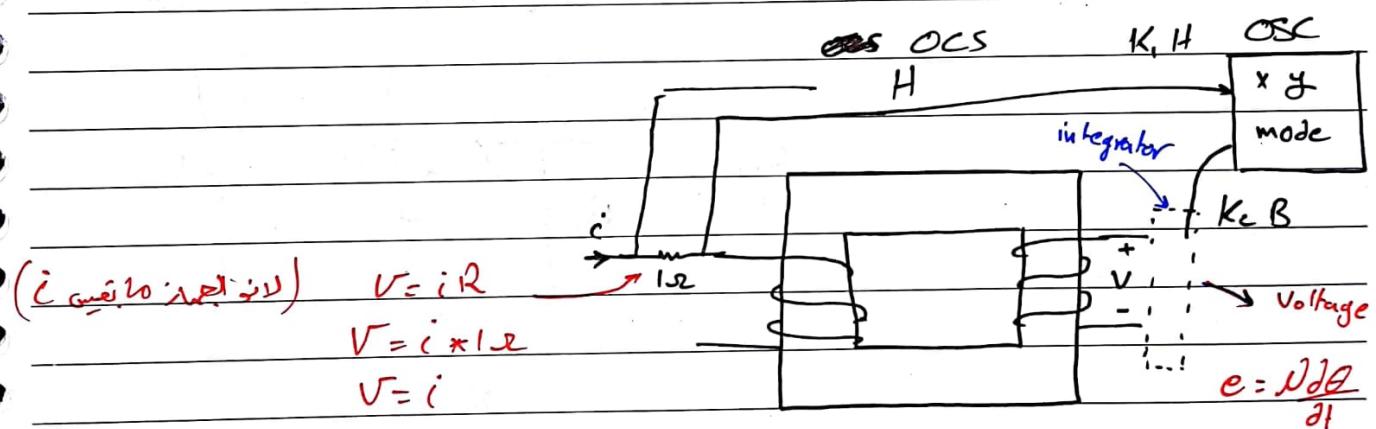


losses here

- 1) leakage Flux
- 2) copper losses (الخسارة المعدنية)
- 3) core losses \rightarrow hysteresis



measuring B-H curve of un known core ~~core~~ (بزاو ایکس (پریزیت))
~~بزاو ایکلیپس~~

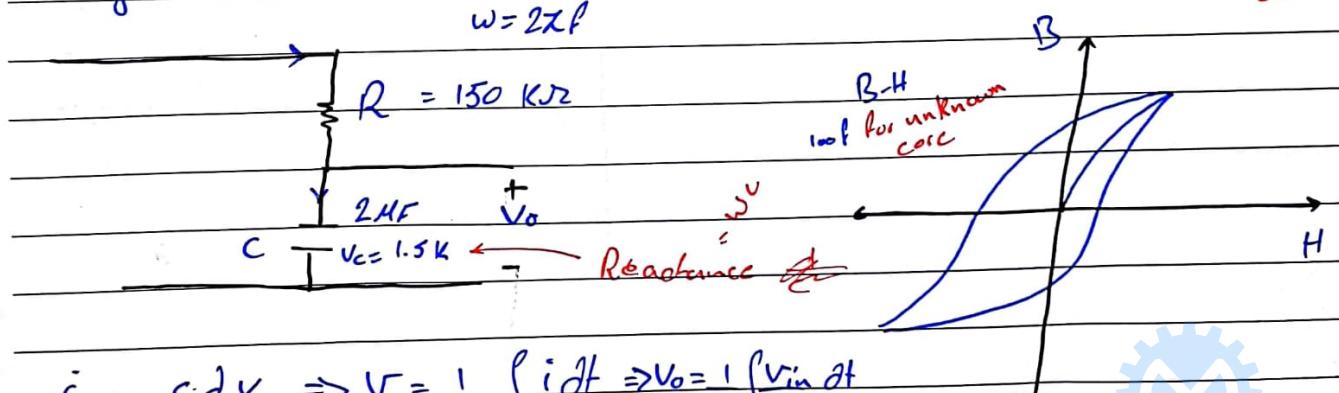


integrator

$$f = 50 \text{ Hz}$$

$$\omega = 2\pi f$$

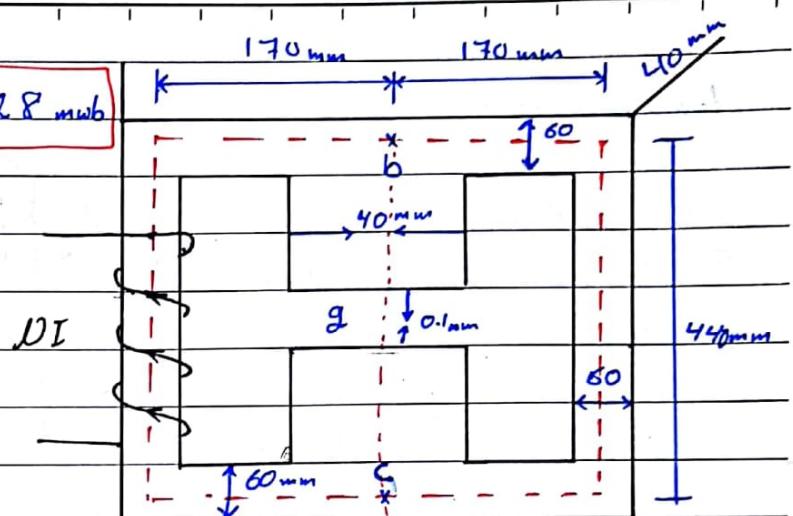
$$\Rightarrow V \propto \frac{d\theta}{dt}$$



$$i_c = \frac{C dV}{dt} \Rightarrow V = \frac{1}{C} \int i dt \Rightarrow V_o = \frac{1}{C} \int V_m dt$$

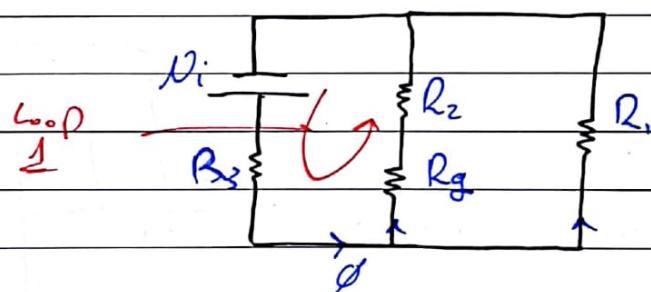
Ex: Find (I) so that $\phi_g = 1.28 \text{ mwb}$

$$U = 200 \text{ V}$$

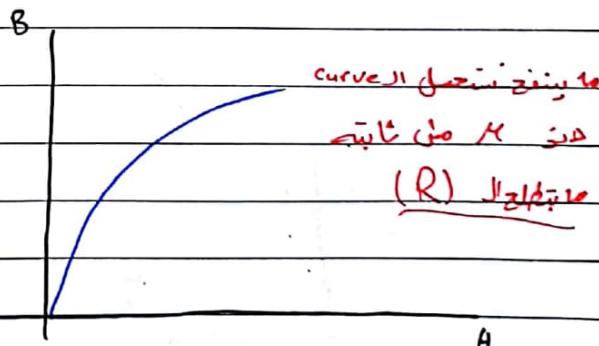


B (T)	0.39	0.8	0.925	
H (A/m)	363.7	500	562	

* No Pringing \rightarrow Hc same flux density



$$\phi R \Rightarrow H_L$$



Solution %

 ϕR_2 , Ampere's law $\oint H dL = I$

$$R_2 = L$$

 $\frac{NA}{\mu_0 A}$ given (air gap ≈ 0.1 mm)

$$\phi_g = \phi_{core} (R_2)$$

$$B_g = B_{core} \text{ (No fringing)}$$

$$\phi_g = 1.28 \text{ mwb}, B_g = \frac{\phi_g}{A_g}$$

$$B = \frac{\phi}{A}, H = \frac{B}{\mu}$$

$$\Rightarrow \frac{\phi_g}{A_g} = \frac{1.28}{40 \times 10^{-3} \times 40 \times 10^{-3}} = 0.8 T \quad \left| \begin{array}{l} \phi \rightarrow B \rightarrow H \\ \cancel{mwb} \end{array} \right.$$

$$B_{core} (R_2) = 0.8 T$$

$$H_{air \ gap} = \frac{B_g}{\mu_0} = 63.66 \times 10^4 \text{ AT/m}$$

$$H_{core} \Rightarrow \text{Table} \Rightarrow H_{core} = 500 \text{ AT/m}$$

loop 1

KVL

$$-N_i + H_3 L_2 + H_g L_g + H_2 L_2 = 0$$

Voltage drop

 $\phi R, H_L$

$$\oint H dL = NI = H_1 L_1 + H_2 L_2 + H_3 L_3 \dots$$

To find the unknown

$$\phi = \phi_1 + \phi_2$$

Total mmF For core (R_2) and Air gap

$$\begin{aligned} &= H_g L_g + H_2 L_2 \\ &= 63.66 \times 10^4 (0.1 \times 10^{-3}) + 500 (440 - 0.1) \times 10^{-3} \\ &= 283.66 \text{ AT} \end{aligned}$$

$$- 283.66 = H_1 L_1$$

$$283.66 = H_1 \times (170 + 2 + 440) \times 10^{-3}$$

$$H_1 = 363.67 \frac{\text{AT}}{\text{m}}$$

$$B_1 = 0.389 \text{ T} \quad (\text{Depth } 40)$$

$$\phi_1 = B_1 \times A = 0.39 \times 60 \times 10^{-2} \times 40 \times 10^{-3} = 0.94 \times 10^{-3} \text{ wb}$$

$$\Rightarrow \phi_1 = \phi_1 + \phi_2 \Rightarrow \phi = 2.22 \times 10^{-3} \text{ wb}$$

$$B_3 = \frac{\phi}{A} = \frac{2.22 \times 10^{-3}}{60 \times 10^{-2} \times 40 \times 10^{-3}} = 0.92 \text{ T}$$

$$H_3 = 562.5$$

From Table

$$-N_i + H_3 L_3 + H_g L_g + H_2 L_2 = 0 \Rightarrow i = 3.61 \text{ A}$$

Ex) hysteresis and eddy current losses in a certain equipment

$$P_h = 840 \text{ W}, P_e = 642, (240 \text{ V}, 25 \text{ Hz})$$

Determine hysteresis and eddy current losses if the core is connected to a 60 Hz as to core flux density 62% of rated value. ~~Assume~~ Assume $n = 1.4$

Sol:

$$P_h = K_h * f * B_m^n, P_e = K_e * f^2 * B_m^2$$

Recall $V = \frac{N d\theta}{dt} = NA \frac{dB}{dt}, B = B_m \sin \omega t$ assume

$$V(t) = NA B_m \omega \cos \omega t$$

V, B in phase shift $\frac{\pi}{2}$ rad

$$V(t) = NA B_m (2\pi f) \cos \omega t$$

$$\Rightarrow V_{rms} = \frac{V_{max}}{\sqrt{2}} = \frac{NA B_m (2\pi f)}{\sqrt{2}}$$

$$V_{rms} = 4.44 * f * N * A * B_{max}$$

$$V \propto f * B_{max}$$

$$\frac{V}{f} = K * B_{max}$$

$$V = K * f * B_{max}$$

Cont. Sol.

$$P_{h_1} = 846 \text{ W}, P_0 = 642 \text{ W}, [240 \text{ V}, 25 \text{ Hz}], B_{\max}$$

$$P_{h_2} = ??, P_{0_2} = ??, [V = ??, 60 \text{ Hz}], B_{\max} = 0.62 B_{\max_1}$$

$$V_1 = K \cdot f_1 \cdot B_{\max_1}$$

$$V_2 = K \cdot f_2 \cdot \underbrace{B_{\max_2}}_{0.62 \cdot B_{\max_1}}$$

$$\frac{V_1}{V_2} = \frac{f_1}{\frac{P_2}{P_1} \cdot 0.62} \Rightarrow \frac{240}{V_1} = \frac{25}{50 \cdot 0.62} \Rightarrow V_2 = \frac{240 \cdot 50 \cdot 0.62}{25}$$

$$\Rightarrow V_2 = 357 \text{ V}$$

$$P_{h_1} = K_h \cdot 25 \cdot B_{\max_1}^{1.4} = 846$$

$$P_{h_2} = K_h \cdot 60 \cdot (0.62 B_{\max_1})^{1.4} = P_{h_2}$$

$$\frac{P_{h_2}}{846} = \frac{60}{25} \cdot \frac{(0.62 B_{\max})^{1.4}}{(B_{\max})^{1.4}}$$

$$\Rightarrow P_{h_2} = 1039.75$$

$$642 = K_c * (25)^2 * B_m^2$$

$$P_{e2} = K_c * 60^2 * (0.62 B_m)^2$$

$$\Rightarrow B_{e2} = 1421.48$$

E(x) A core was connected to :

(No need for (n))

$$P_e + P_h \quad P_{core} = 500 \text{ W} @ 25 \text{ Hz}, 240 \text{ V} \quad \text{First time}$$

$$P_{core} = 1400 \text{ W} @ 50 \text{ Hz}, 480 \text{ V} \quad \text{Second time}$$

$$\text{Find } P_{e1}, P_{e2} \\ P_{h1}, P_{h2}$$

Sol:

$$P_e + P_h = 500 \quad \dots \textcircled{1}$$

$$P_{e2} + P_{h2} = 1400 \quad \dots \textcircled{2}$$

$$\frac{P_{h1}}{P_{h2}} = \frac{25}{50} \Rightarrow P_{h2} = 2P_{h1} \quad \dots \textcircled{3}$$

$$\frac{P_{e1}}{P_{e2}} = \left(\frac{25}{50}\right)^2 \Rightarrow P_{e2} = 4P_{e1} \quad \dots \textcircled{4}$$

$$P_e + P_h = 500 \\ 4P_{e1} + 2P_{h1} = 1400 \quad \boxed{\text{Solve}}$$

$$\Rightarrow P_{e1} = 200 \quad P_{h1} = 300 \\ P_{e2} = 800 \quad P_{h2} = 600$$

11/10/2017

Transformer 8

* Notes:

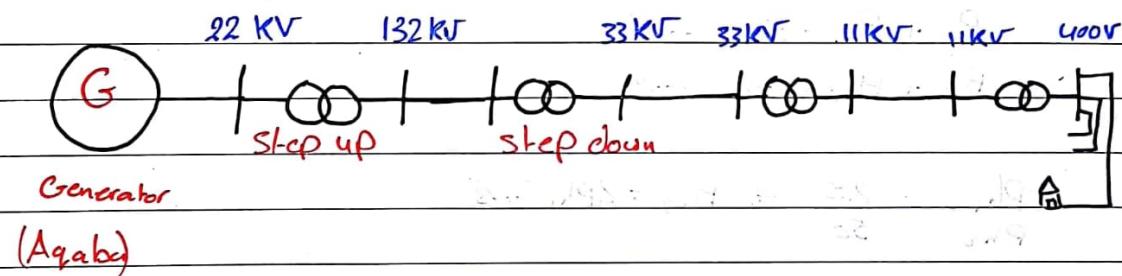
with out bring ing :

$$\phi_{core} = \phi_g \text{ and } B_{core} = B_g$$

with out bring ing %

$$B_{core} \neq B_g$$

* Used in : Power system (Peak demand in Jordan 3GW)



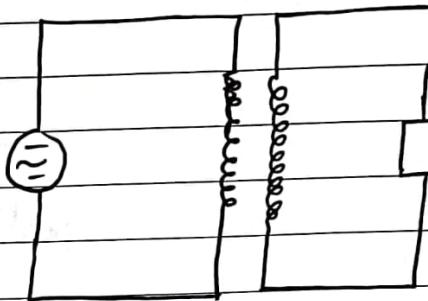
2-winding Transformer

"Primary and Secondary"

High voltage, low voltage

HV and LV side

Step up and step down



Classification

* Single Phase transformer (used in networks rarely)

* Three Phase transformer (widely used)

Name plate

- Rated primary voltage
- Rated secondary voltage
- Rated Frequency
- Rated Power

Single Phase transformers

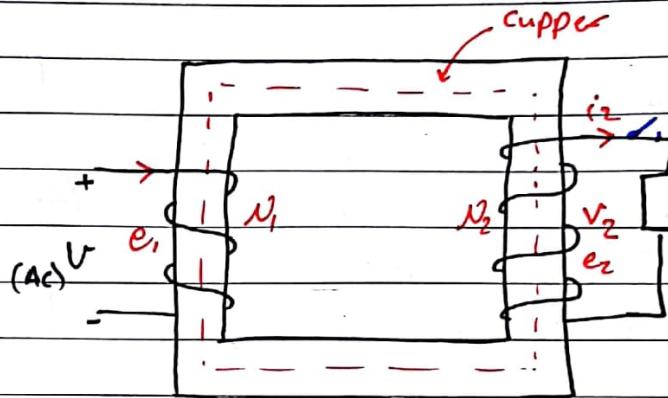
1- ideal transformers (No losses)

2- Real transformers

Ideal Transformers

Faradays law

$$V = -N \frac{d\phi}{dt}$$



$$V_1 = -N_1 \frac{d\phi}{dt}$$

$$\boxed{\phi = \frac{1}{\omega_1} \int V_1(t) dt}$$

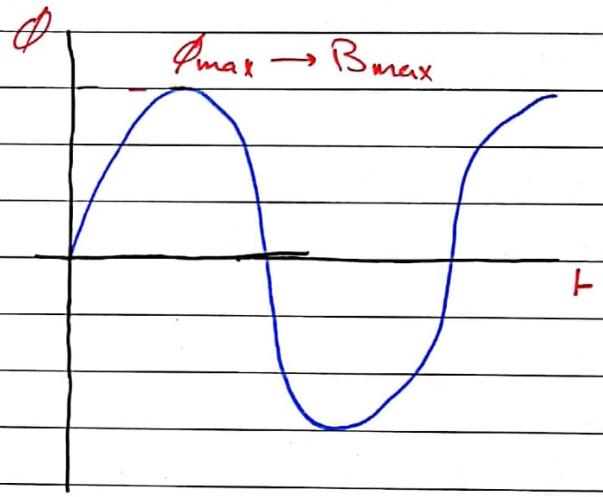
$$V_{rms} = 4.44 N A F B_{max}$$

Open circuit $L_2=0$ (case 1)

$$V_2 = N_2 \frac{d\phi}{dt} \leftarrow \text{mutual flux}$$

$$V_1 = N_1 \frac{d\phi}{dt}$$

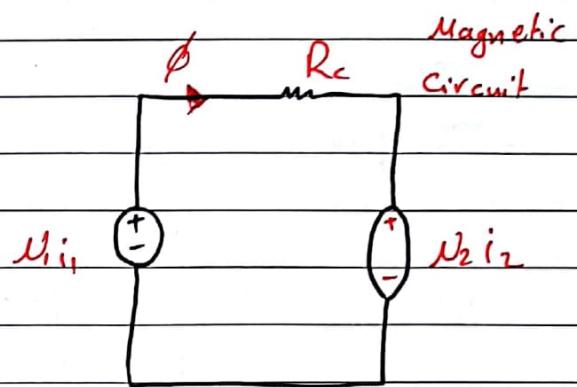
$$\frac{V_2}{V_1} = \left(\frac{N_2}{N_1} \right) \text{ turn ratio}$$



ideal $\rightarrow (\mu \rightarrow \infty, R = \frac{L}{mA} = 0)$

$i_1 = 0$ an ideal case

$$\frac{V_2}{V_1} = \frac{N_2}{N_1} \Rightarrow \frac{e_2}{e_1} = \frac{N_2}{N_1}$$

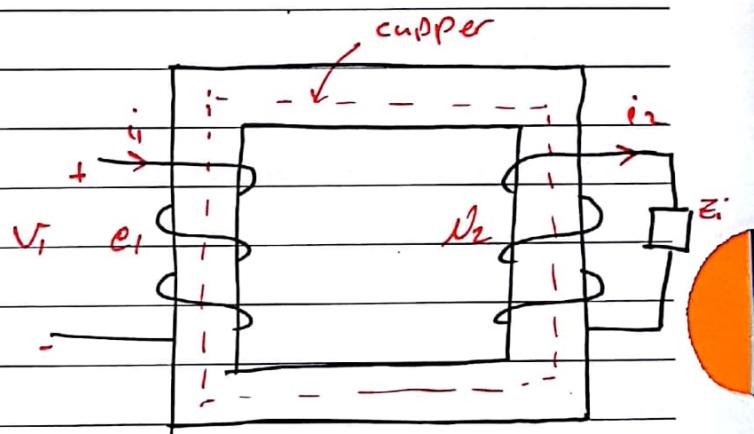


ideal transformer under load

$$R = 0, M = \infty$$

$$U_1 i_1 = U_2 i_2$$

$$\frac{N_1}{N_2} = \frac{i_2}{i_1}, \quad \frac{U_2}{U_1} = \frac{N_2}{N_1}$$



$$P_{\text{primary}} = P_{\text{secondary}}$$

Speed = Voltage

Elec. \rightarrow Mech.

Torque = current

$$\frac{V_2}{V_1} = \frac{N_2}{N_1}$$

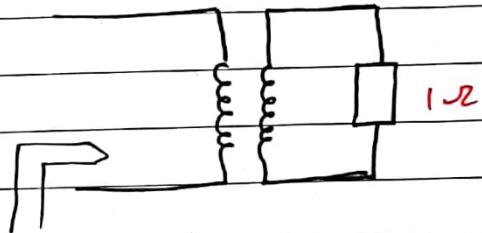
$$ZL = ZL * \left(\frac{N_1}{N_2} \right)^2$$

$$\frac{i_2}{i_1} = \frac{N_1}{N_2}$$

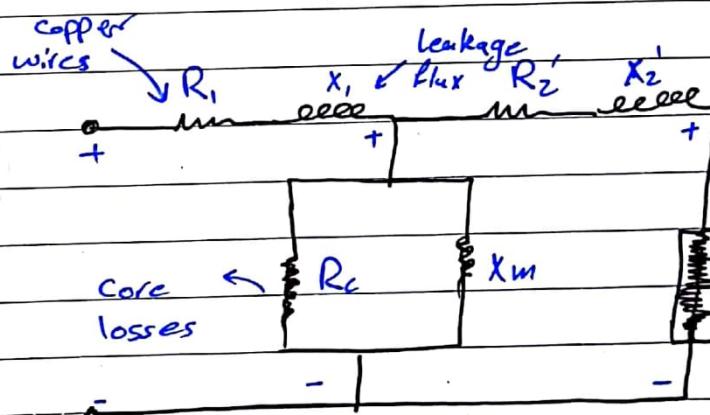
Ex:

Single-Phase transformer

1 : 4



$$ZL' = 1 * \left(\frac{1}{4} \right)^2$$



- Real transformer equivalent CKT

modeling real transformer

*) Copper losses

*)漏磁 Flux

*) Core losses

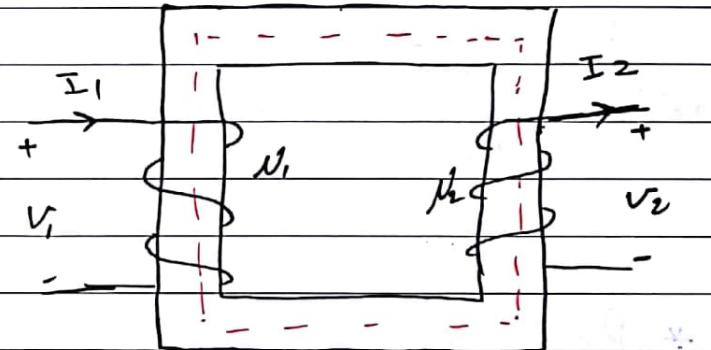
R_c

漏磁

hysteresis

eddy current

Losses

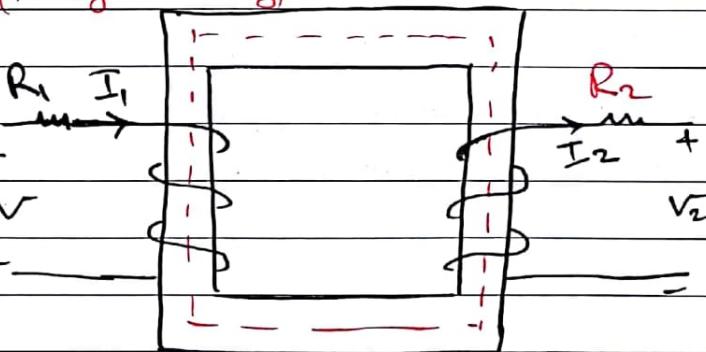


Magnetic coupling

$$L = \frac{N\Phi}{i}$$

Copper losses (R)

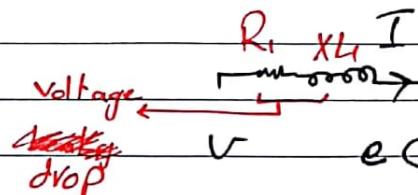
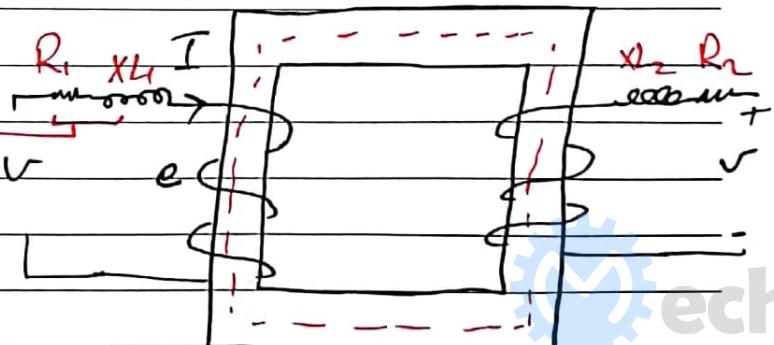
(Primary and secondary)



Leakage Flux

$$e = \frac{N\Phi}{dt}$$

$$\Phi_m = \frac{1}{m} \text{per unit}$$



Recall

$$|X_L| = \omega L = 2\pi f L \quad \text{---} \quad \text{eeee} \quad \angle \omega = 90^\circ (j)$$
$$(X_C = 1/\omega C = 1/2\pi f C) \quad \text{---} \quad \text{ffff} \quad \angle \omega = -90^\circ (-j)$$

$$Z = R + jX$$

impedance \downarrow reactance
 \downarrow Resistance

$$Y = \frac{g}{Y} + j\frac{b}{Y}$$

admittance \downarrow susceptance
 \downarrow conductance

$$Z = \frac{1}{Y}$$

* Real transformer under no-load

* $I_2 = 0 \Rightarrow I_1 \neq 0$ (Excitation current)

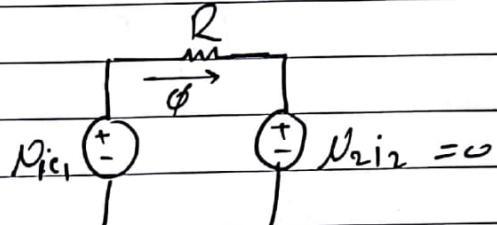
2 components

- 1) Magnetization current \rightarrow Primary \downarrow current i_{mp} (جي)
- 2) core losses \rightarrow Secondary current i_{sp} (جي)

⇒ Magnetization \uparrow current

$$N_{ii} = \emptyset R \Rightarrow i \neq 0$$

i is in phase ϕ



میدان مغناطیسی (Magnetic field)

$$e = \frac{D \partial \phi}{\partial t}$$

$$\phi = \phi_m \sin \omega t = \phi \cos(\omega t - 90^\circ)$$

$$e = m D_w \phi_m \cos \omega t$$

$\Rightarrow e$ leads ϕ

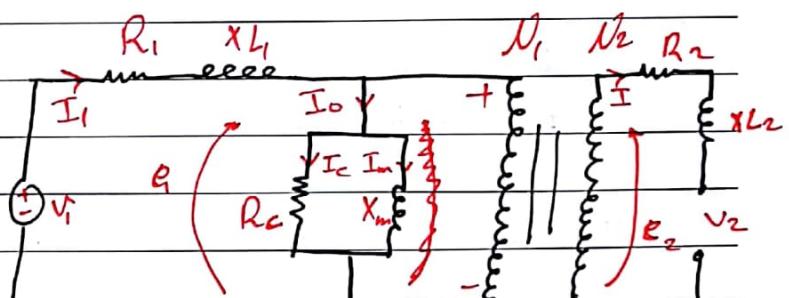
e Lead $i \Rightarrow$ inductor \Rightarrow Magnetization current

A black right-pointing arrow symbol, indicating a continuation or next step in the sequence.

Modelling real transformer

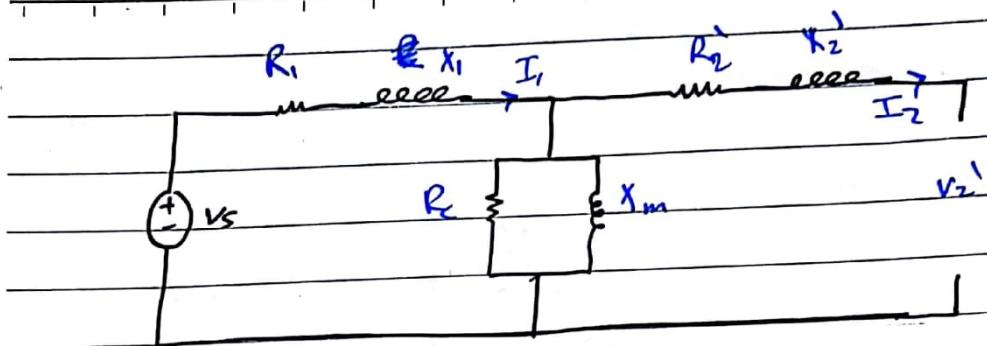
ideal transformer + external component:

- 1) copper losses (R_c)
- 2) Leackage Flux (χ_L)
- 3) core losses (R_c)
- 4) Magnetization current (χ_m)



I_0 = excitation current

I_m = Magnetization current

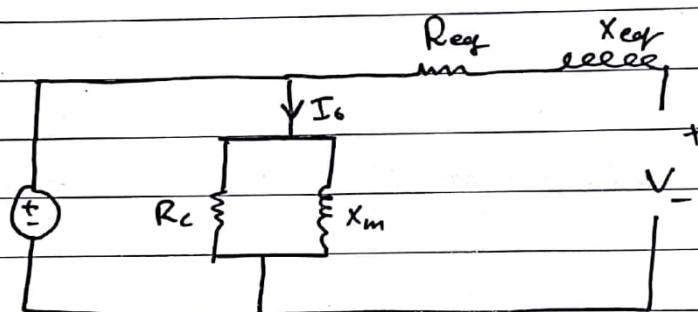


$$R_2' = R_2 \left(\frac{N_1}{N_2} \right)^2$$

نقل السيجنال الى المخرج

$$X_2' = X_2 \left(\frac{N_1}{N_2} \right)^2$$

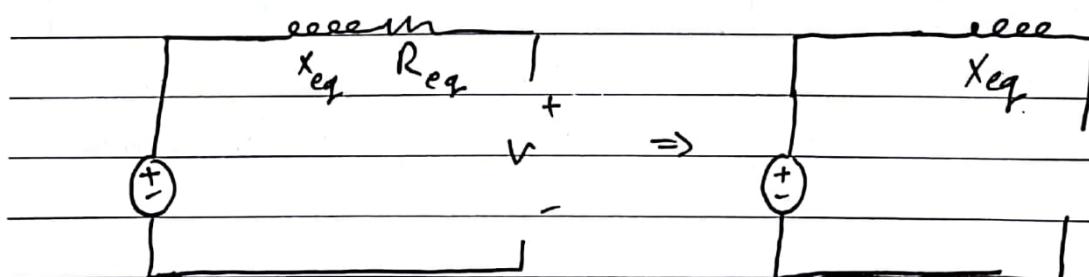
L-equivalent Approximation



$$R_{eq} = R_1 + R_2'$$

$$X_{eq} = X_1 + X_2'$$

$I_0 \approx (5-8) \cdot I$ Full load



one transformer

R_{eq} very small

Transformer Rating and Nameplate

10 KVA, 1100 / 110 V

complex power $S = P + jQ$

transformer $\Delta I = \frac{P}{R_w} \times 1000$

\Rightarrow 2 windings

HV side 1100 V Rated

LV side 110 Voltage

turns ratio $\frac{1100}{110} = 10$

Rated power @ HV side = 10 KVA

Rated power @ LV side = 10 KVA

Rated current @ HV side = $10 \text{ KVA} / 1100 = 9.09 \text{ A}$

Rated current @ LV side = $10 \text{ KVA} / 110 = 90.9 \text{ A}$

$$S = P + jQ$$

\downarrow Real power (W, KW)

Complex (apparent power)

KVA

MVA

Q : Reactive power

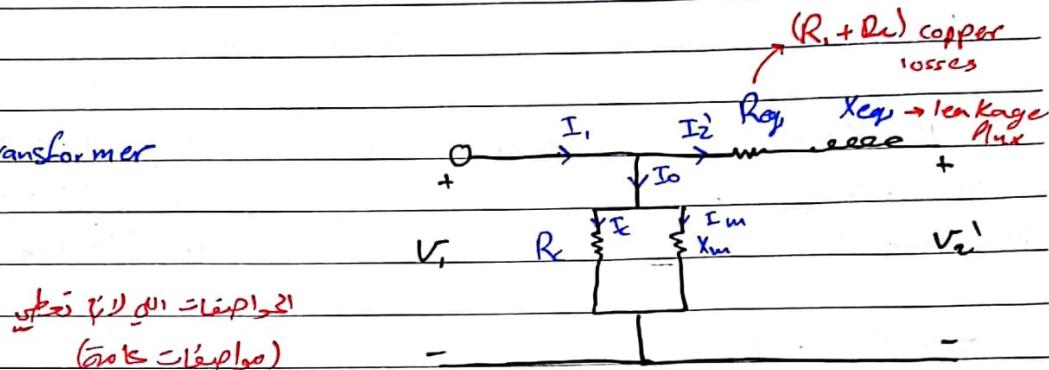
(-90° , -11°)

$$\text{P.F.} = \frac{P}{S}$$

18/Oct/2017

Recall

model transformer



Power copper losses @ rated load

Power core losses (No load losses) @ rated voltage

(load always causes core losses)

$$\text{Power copper losses} = \underline{\underline{(I_2')^2}} \text{Req}$$

Dependent on I_2' (load)

$$\text{Power core losses} = \frac{V^2}{R_c} \leftarrow \begin{array}{l} \text{high } V \text{ causes} \\ \text{high } I \text{ in } R_c \text{ series} \\ (\text{low } V \text{ causes low } I) \end{array}$$

: Tests to find core losses

transform test

→ No load test

(open circuit test)

→ No load losses

$$\begin{array}{l} \rightarrow R_c \\ \rightarrow X_m \end{array}$$

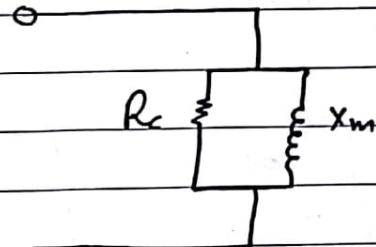
→ short circuit test

→ load losses

$$\rightarrow R_{eq}$$

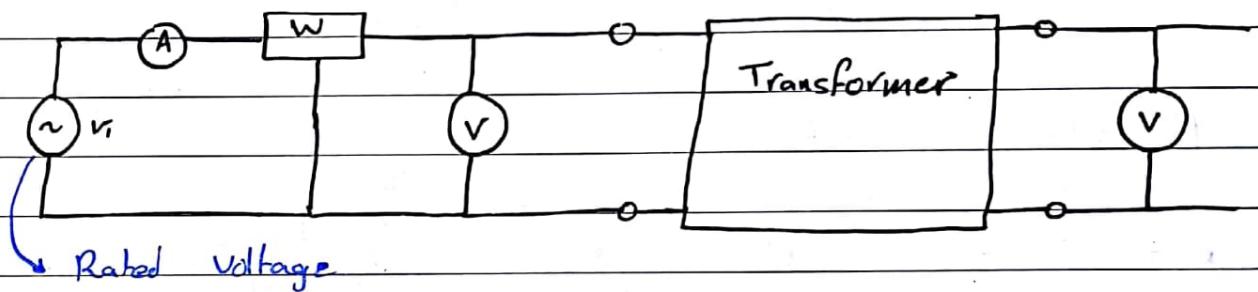
$$\rightarrow X_{eq}$$

No load test



equivalent ckt

watt meter



$$W = VI$$

$$W = VI \times \text{P.F}$$

Power Factor

Real Power \rightarrow P

Reactive Power \rightarrow Q

Wattmeter \rightarrow Complex Power \rightarrow S

$$S = VI^* \Rightarrow |S| = |V||I|$$

$$S = P + \underline{Q}$$

Complex power \rightarrow ohmic load

Auxiliary inductor \rightarrow ~~II~~

\Rightarrow No load losses, R_p , X_p ??

\rightarrow inputs : Voltmeter, Ammeter, Wattmeter

Q) where the test is done ? L.V side or H.V side ??

$$\Rightarrow 1 \text{ kVA}, 1000/100 \text{ V}$$

open circuit test

N	1000 V
I	---
P	---

(R_c, X_m) referred to HV

HV side excited

LV side open circuit

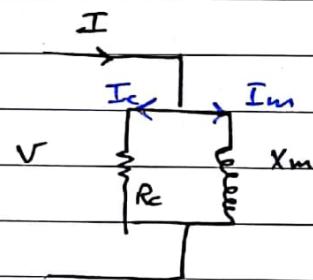
H.V Jis lii l 101000 Rated ~~V~~ V Jis lii Test Jis lii

Voltage

Back to the test!

$$P = \frac{V^2}{R_c} \Rightarrow R_c = \frac{V^2}{P} \quad \text{Power} \quad \textcircled{1}$$

$$I_c = \frac{V}{R_c} \quad \textcircled{2}$$



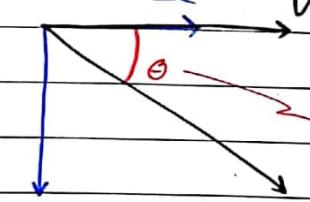
$$I_m = \sqrt{I^2 - I_c^2} \quad \text{---} \textcircled{3}$$

Voltage J is in phase with I

$$X_m = \frac{V}{I_m} \quad \text{---} \textcircled{4}$$

$$I_c$$

$$V$$



$$P.F = \frac{P}{V I_m} = \frac{P}{V^2}$$

loads are inductor J, J

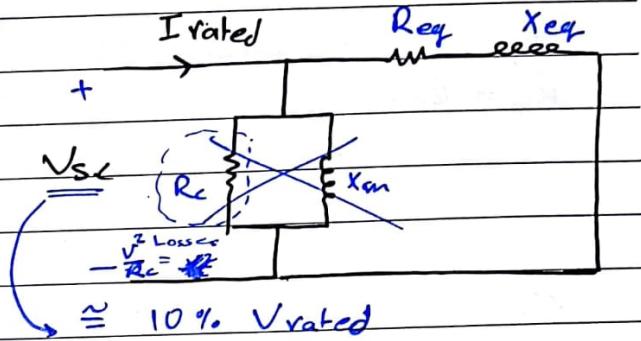
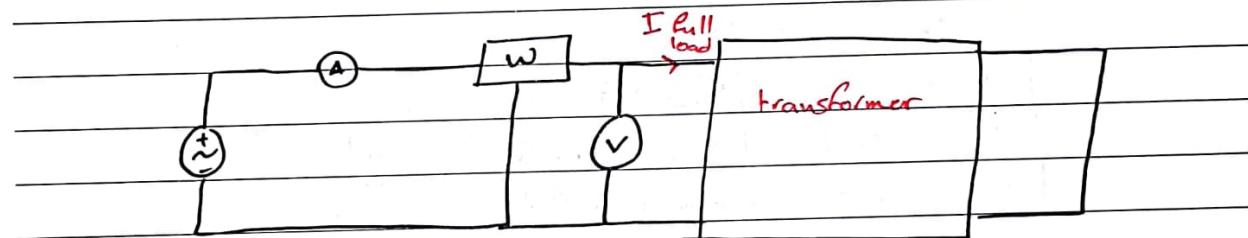
Voltage J

ج

Short circuit test

to find load losses @ Rated current

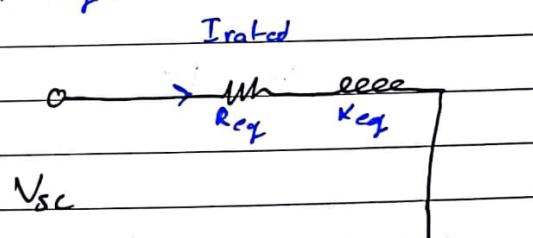
to reach the rated current
we set the short circuit
voltage at 10% of the
Rated Voltage



Wattmeter = copper losses + core losses = 0
 @ rated current @ 10% rated voltage
 Full load (V_{sc})

now we have to find $(R_{\text{eq}}, X_{\text{eq}})$
 (P, V, I) known

$$P = I^2 R_{\text{eq}} \Rightarrow R_{\text{eq}} = \frac{P}{I^2} \quad \text{--- (1)}$$



$$Z_{\text{eq}} = \frac{V}{I}$$

$$Z_{\text{eq}} = R_{\text{eq}} + jX_{\text{eq}}$$

$$X_{\text{eq}} = \sqrt{Z_{\text{eq}}^2 - R_{\text{eq}}^2}$$

$$R_{eq} = R_1 + R_2$$

$$X_{eq} = X_1 + X_2$$

جيلاس، ١٢٥٢١

$$R_1 \text{ (can be measured)}$$

$$R_2 = R_{eq} - R_1$$

$$X_1 \approx X_2$$

$$X_1 = X_{eq}/2$$

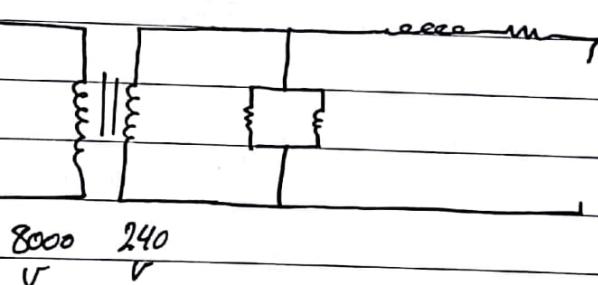
$$X_2 = X_{eq}/2$$

Ex) 20 kVA, 8000 / 240 V, 60 Hz transformer

Open ckt	Short ckt
$V = 8000 \text{ V}$	$V_{sc} = 489 \text{ V}$
$I = 0.214 \text{ A}$	$I_{sc} = 2.5 \text{ A}$
$P = 400 \text{ W}$	$P_{sc} = 240 \text{ W}$

H.V side
L.V side

Draw the equivalent ckt of transformer



Open ckt $\rightarrow R_c$ referred to
 $\rightarrow X_m$ high voltage side

$$I_{rated/HV} = \frac{20 \text{ kVA}}{240}$$

$$I_{rated/HV} = \frac{20 \text{ kVA}}{8000}$$

$$= 2.5 \text{ A}$$

short ckt $\rightarrow R_{eq}$ referred to
 $\rightarrow X_{eq}$ HV side

سولہ
No load losses \rightarrow $8100 = (V)$ \parallel R_c \parallel X_m

$$8000 \rightarrow 400$$

$$8100 \rightarrow ??$$

$$P = \frac{V^2}{R_c} \rightarrow R_c \text{ is fixed or}$$

پھر 10% of $P_{no\ load}$ کی وجہ سے $8000V$ Rated Voltage پر z_{pp}
(No load losses \rightarrow losses \parallel R_c \parallel X_m بوجوں پر تھے)

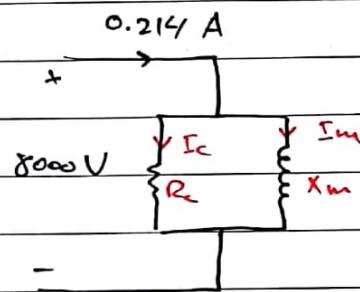
cont sol:

$$P = \frac{V^2}{R_c} \rightarrow P = \frac{(8000)^2 - 400}{R_c} \Rightarrow R_c = 159 \Omega$$

$$I_c = \frac{8000}{159} =$$

$$T_m = \sqrt{0.214^2 + (I_c)^2}$$

$$X_m = \frac{8000}{I_m} = 38.3 \text{ kN}$$



$$R_c / L_V = 159 * \left(\frac{240}{8000} \right)^2 =$$

$$X_m / L_V = 38.3 \left(\frac{240}{8000} \right)^2 =$$

$$Y_{o.c} = \frac{1}{Z} = \frac{1}{R_c} + \frac{1}{jX_m}$$

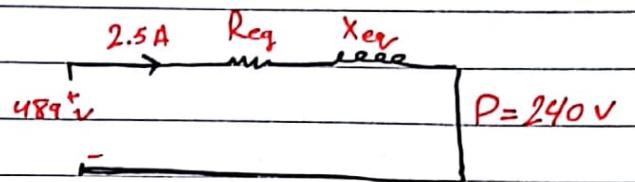
open circuit

Power losses
Active \rightarrow heat
Reactive \rightarrow Flux generation
all losses \parallel R_c \parallel X_m
Voltage \parallel R_c \parallel X_m

Short ckt. test

$$240 = (2.5) A \times R_{eq}$$

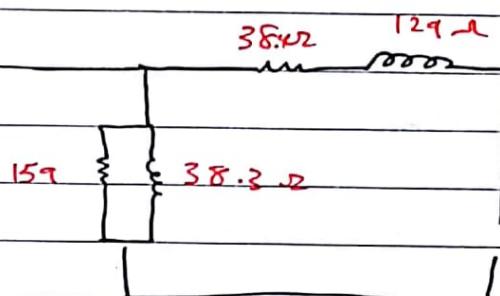
$$R_{eq} = 38.4 \Omega$$



$$Z_{eq} = \frac{489}{25}$$

$$X_{eq} = \sqrt{Z_{eq}^2 - R_{eq}^2} = 192.52$$

$$\frac{X}{R} - \frac{192}{38} \equiv 5$$



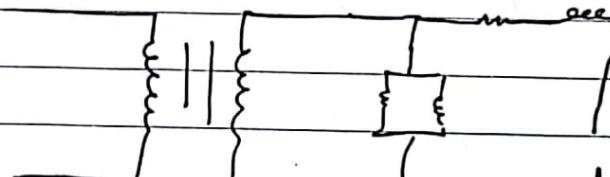
نقطي القمة على H.V.S او على L.V.S

short skt \rightarrow H.V.S.C

open skt \rightarrow L.V side $\int d\omega^i$

موده يكون طالب على الـ

L.V.S.3



نیپی، H. V. side الگویی

$$\left(\frac{990}{8000}\right)^2$$

8000 / 240v L.V side

Analysis of the transformer

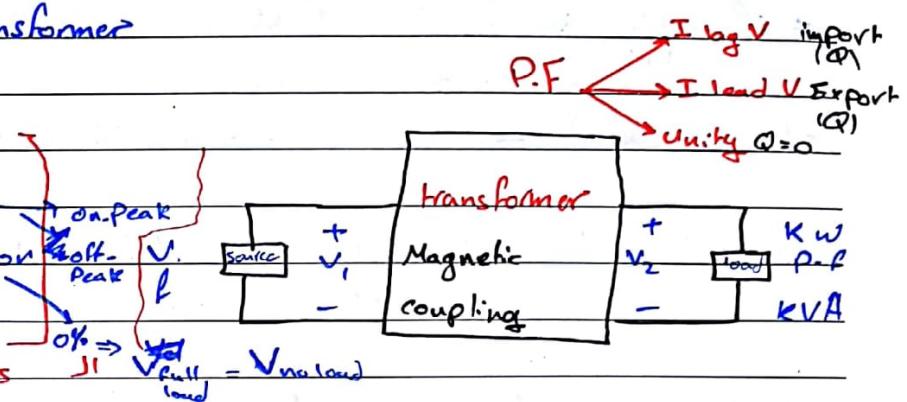
* Voltages

* Voltages drop

* Voltage Regulation

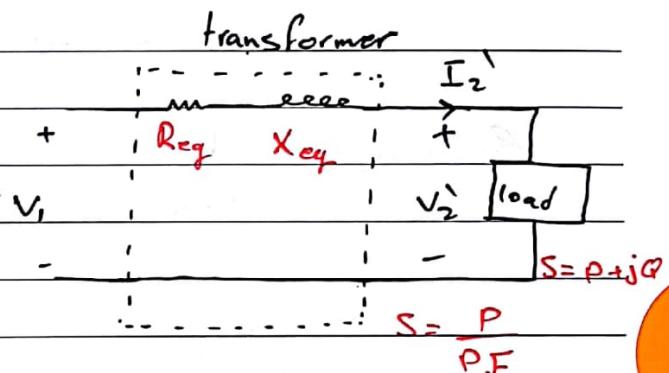
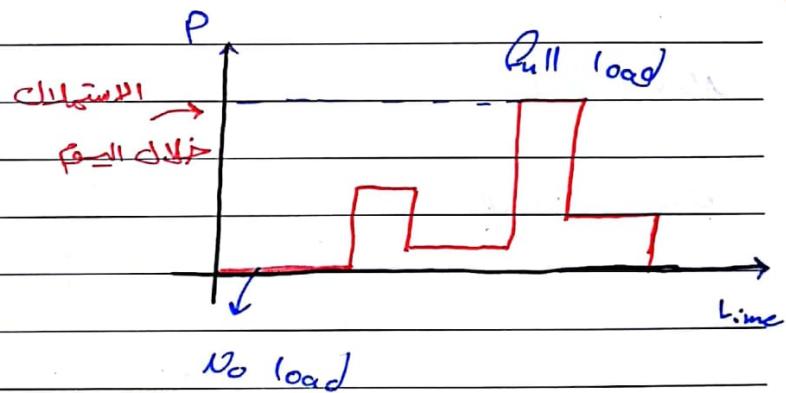
* Efficiency

Winding Analysis



- It's aimed to keep voltage at the load side during
 - No load
 - Full load

close to $|V_2'|$



V_1 Fixed, V_2' depends on the load

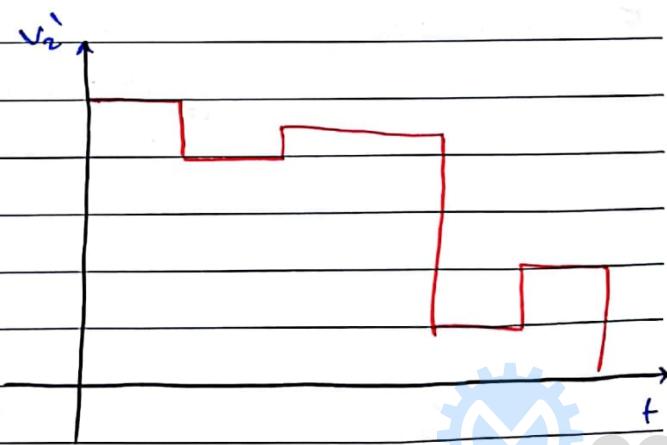
$$V_2' = V_1 - I_1' (R_{\text{req}} + X_{\text{req}})$$

$$S = V_1 I_1'$$

مقدار I_1' برابر با I_1 است

$$|I_1| = \frac{|S|}{V_1}$$

مقدار V_2' برابر با V_2 است



* if V_2' is fixed (V_1 is controlled)

$\rightarrow V_2$ limit

at no load $\Rightarrow V_1 = V_2$ limit $\Rightarrow V.D = 0$

at full load $\Rightarrow V_1 = V_2$ limit + $I (R_{eq} + jX_{eq})$

$$\Rightarrow V.D = V_1 - V_2 \text{ limit}$$

$$V.R. = \frac{|V_1|_{\text{no load}} - |V_1|_{\text{full load}}}{|V_1|_{\text{full load}}} \times 100 \%$$

$$\text{Efficiency} = \frac{P_{out}}{P_{in}} = \frac{P_{out}}{P_{out} + P_{losses}}$$

$$= \frac{P_{out}}{P_{out} + P_{core} + P_{copper}} \quad P_{core} = \frac{V^2}{R_C}$$
$$P_{core} = (I_A)^2 R_{eq}$$

Max efficiency

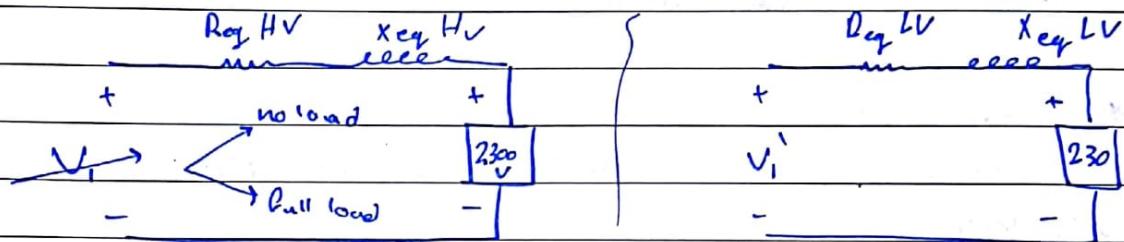
$$P_{core} = P_{copper}$$

$$\text{Energy efficiency} = \frac{\sum_{i=1}^N P_{out,i} \times \Delta t_i}{\sum_{i=1}^N P_{in,i} \times \Delta t_i}$$

25/Oct/2017

$$VR\% = \frac{|V_i \text{ no load}| - |V_i \text{ full load}|}{|V_i \text{ full load}|} \times 100\%$$

Ex) 2300 / 230 V



L.V side

$$\eta = \frac{P_o}{P_o + P_{core} + P_{cu}}$$

Ex) Unity, PF load, Kep load voltage fixed - what is the impact on core losses

- No load

- Full load

$$P_{core} = \frac{V^2}{R_c} \quad (\text{fixed voltage @ full load})$$

$\Rightarrow V_i \uparrow \rightarrow P_{core} \uparrow$

Ex) 15 KVA, 2300/230 transformer

Open ckt	Short ckt
$V_{o.c} = 2300 \text{ V}$	$V_{sc} = 47 \text{ V}$
$I_{oc} = 0.21 \text{ A}$	$I_{sc} = 6 \text{ A}$
$P_{oc} = 50 \text{ W}$	$P_{sc} = 160 \text{ W}$

* Equivalent ckt referred to the H.V side

* Equivalent ckt referred to the L.V side

$110 \text{ (15 KVA, 230 V)} \leftarrow 110 \text{ (230 V)}$

* Full load voltage ~~regulation~~ regulation

at 0.8 lagging power factor

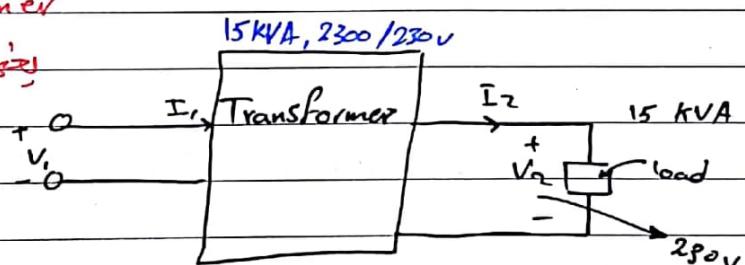
at unity P.F

at 0.8 P.F lead

* efficiency at full load with 0.8 PF lag.

(Step down transformer)

((L.V.S) II SC (S))

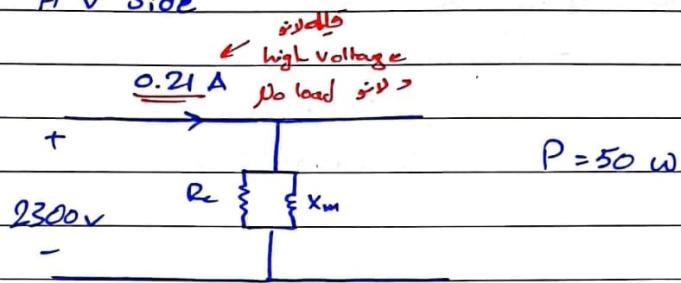


$$\text{Rated current } I_{H.V.} = \frac{15 \text{ KVA}}{2300} = 6 \text{ A}$$

H.V Side

$$\text{Rated current } I_{L.V.} = \frac{15 \text{ KVA}}{230} = -$$

* HV Side



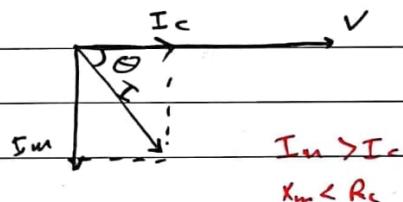
$$P = \frac{V^2}{R_L} \Rightarrow R_L = \frac{(2300)^2}{50} = 105 \text{ k}\Omega$$

$$I_C = \frac{V}{R_L}, \quad I_M = \sqrt{I^2 + -I_C^2}$$

$$\Rightarrow |X_M| = \frac{V}{I_M} = 11 \text{ k}\Omega, \quad X_M = 11 \text{ k}\Omega \angle 90^\circ$$

$$R_L \text{ HV} = 105 \text{ k}\Omega$$

$$X_M \text{ HV} = 11 \text{ k}\Omega$$



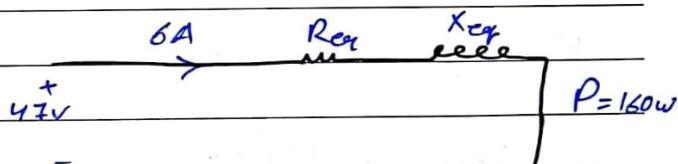
short ckt

$$P = I^2 R_{eq}$$

$$R_{eq} = \frac{160}{6^2} = 4.45 \Omega$$

$$Z_{eq} = \frac{V}{I} =$$

$$X_{eq} = \sqrt{Z_{eq}^2 - R_{eq}^2} = 6.45 \Omega$$



$$R_c \text{ HV} = 105 \text{ k}\Omega \quad R_c \text{ LV} = R_c \text{ HV} \times \frac{230}{220} \quad R_c \text{ LV} = 1050 \text{ }\Omega$$

$$X_m \text{ HV} = 11 \text{ k}\Omega \quad \Rightarrow \quad X_m \text{ LV} = 110 \text{ }\Omega$$

$$R_{eq} \text{ HV} = 4.45 \text{ }\Omega$$

$$R_{eq} \text{ LV} = 0.4445 \text{ }\Omega$$

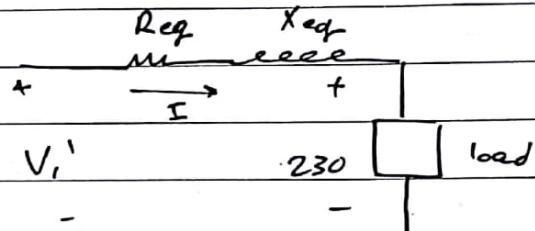
$$X_{eq} \text{ HV} = 6.45 \text{ }\Omega$$

$$X_{eq} \text{ LV} = 0.645 \text{ }\Omega$$

* VRx. (15 KVA, 230V, unity PF)
Load

1) No load $I = 0$

$$\Rightarrow V_1' = 230 \text{ V}$$



2) Full load $S = V I^*$

$$S = V I^*$$

$$I = \frac{15 \text{ kVA}}{230} = 65.2 \text{ A}$$

a) unity P.F $Q = 0$

V and I in phase

$$T = 62.2 \angle 0^\circ$$

b) lagging (0.8 P.F)

$$I = 62.2 \angle -\cos^{-1} \text{ P.F}$$

c) leading (0.8 P.F)

$$I = 62.2 \angle \cos^{-1} \text{ P.F}$$

$$V_1' = 230 \angle 0^\circ + I (R_{eq} + j X_{eq})$$

* Unity PF $\Rightarrow V_1' = 232.94 \angle 21.04^\circ$

$$V_2 = (230 \angle 20^\circ)^* \quad \begin{array}{l} \text{Real} \\ \text{Power} \end{array}$$

Reactive Power \downarrow $\text{Q} = 0$

load \parallel capacitor $\Rightarrow 15 \text{ kVA, unity P.F}$
 $\Rightarrow P = 15 \text{ kW, } Q = 0$ $\begin{array}{l} \text{مقدار} \\ \text{متحدة} \end{array}$

* lagging power factor (0.8) $\begin{array}{l} \text{مقدار} \\ \text{متحدة} \end{array}$ من Q \Rightarrow

$$I = 65.2 \angle -\cos^{-1} 0.8$$

$$V_1' = 230 \angle 0^\circ + I (R_{eq} + j X_{eq})$$

$$V_1' = 234.85 \angle 0.4^\circ \text{ V}$$

! Q ~~lagging~~ ^{leading}

* leading power factor

$$I = 65.2 \angle +\cos^{-1} 0.8$$

V_1' $\begin{array}{l} \text{مقدار} \\ \text{متحدة} \end{array}$ $\begin{array}{l} \text{مقدار} \\ \text{متحدة} \end{array}$ $\begin{array}{l} \text{مقدار} \\ \text{متحدة} \end{array}$

أقل من 180° $\begin{array}{l} \text{مقدار} \\ \text{متحدة} \end{array}$ unity \parallel load

! Voltage

$$V_1' = 234.85 \angle 1.27^\circ$$

$$0.95 = \text{PF} \quad \begin{array}{l} \text{مقدار} \\ \text{متحدة} \end{array}$$

Efficiency @ full load (15 kVA, 230 V, 0.8 pf lagging)

Energy efficiency \parallel متحدة

Point 1 \Rightarrow Efficiency \parallel متحدة

losses \parallel متحدة

$$\eta = \frac{P_o}{P_o + P_{core} + P_{cu}} * 100\%$$

$$P_o = 15 * 0.8 = 12 \text{ kW}$$

$$P_{core} = \frac{V^2}{R_c} = \frac{(234.85)^2}{1050}$$

$$P_{cu} = I^2 R_{eq} = (65.2)^2 * (0.045)$$

* Voltage Regulation :

$$V.R \% = \frac{|V_2, \text{ no load}| - |V_2, \text{ full load}|}{|V_2, \text{ full load}|} \times 100\%$$

V_1 fixed, V_1 rated, V_2 full load

By definition Full load $\Rightarrow V_1 = V_2$ rated

$$1) I \rho_l \Rightarrow |I| = \frac{|KVA|}{V_2 \text{ rated}} \Rightarrow I = |I_{FL}| \angle \begin{cases} +\cos^{-1} \rho_f & \rightarrow \text{PF leading} \\ -\cos \rho_f & \rightarrow \text{PF lagging} \\ 0 & \rightarrow \text{PF unity} \end{cases}$$

$$2) V_1' = V_2 + I (R_{eq} + jX_{eq})$$

$$3) V.R \% = \frac{|V_1'| - |V_2 \text{ rated}|}{|V_2 \text{ rated}|} \times 100\% \quad \begin{matrix} \text{drop voltage at full load} \\ \text{no load} \\ V_2 \text{ rated} \end{matrix}$$

$$0.8 \text{ lagging PF} \Rightarrow |V_1'| = 234 \text{ V}$$

$$\Rightarrow V.R \% = \frac{234 - 230}{230} \times 100\% = \quad \begin{cases} @ \text{no load} \\ V_2 = V_1' \end{cases}$$

$$\text{unity PF} \Rightarrow |V_1'| = 232 \text{ V}$$

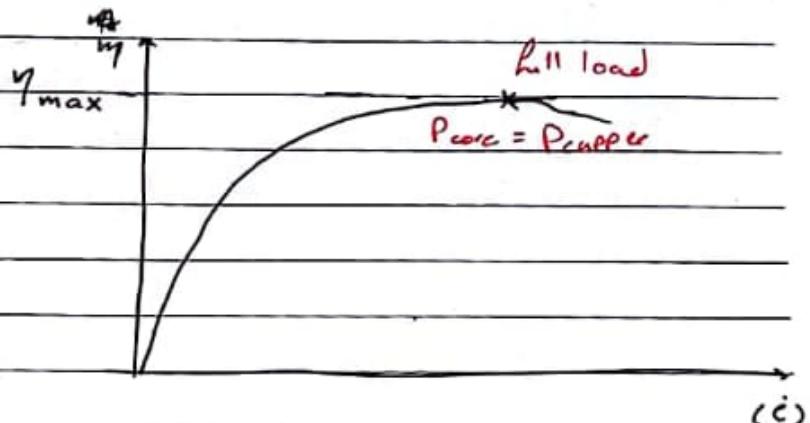
$$V.R \% = \frac{232 - 230}{230} \times 100\% =$$

$$0.8 \text{ leading PF} \Rightarrow |V_1'| = 229.85$$

$$V.R \% = \frac{229.85 - 230}{230} \times 100\%$$

$$\text{Efficiency} = \frac{\text{output}}{\text{input}} = \frac{P_o}{P_o + P_{core} + P_{copper}}$$

full load better



all day efficiency \Rightarrow Energy Perspective

$$M \text{ volt} * \text{PF} = M \text{ W}$$

$$M \text{ volt Amt} * \text{PF}$$

$$\text{E}_o = 3 * 8 + 1 * 10 + 10 * 6$$

$$\text{output} = 94 \text{ MWh}$$

energy

assume $P_{core} = 500 \text{ W}$, V is fixed all

per day

$$E_{core \text{ losses}} = 0.5 * 24 = 12 \text{ MWh}$$

$$E_{losses \text{ copper}} = (I^2 * R_{eq}) * 8 + (I_2^2 * R_{eq}) * 6 + (I_3^2 * R_{eq}) * 10$$

Ex) Three identical single-phase transformer, each rated 10 KVA, $2400/1120$ V, 60 Hz. They are connected to form a $4160/1208$ V 3ϕ transformer. The equivalent impedance of each transformer referred to (H.V) side is $(10 + 25j) \Omega$ 3ϕ load (27 KW, 208 V, 0.9 PF reading)

determining the connection

$\text{Y/Y} \rightarrow$ from the voltage
 $2160 \quad 208$

$\text{3\phi } 4160/120$
 Y/N

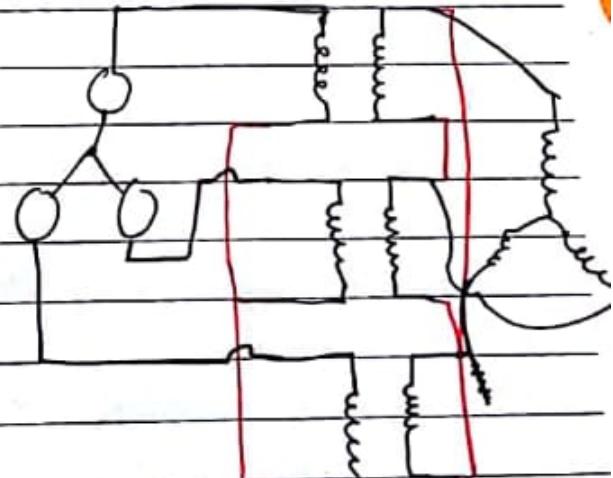
$$V_{LL} = \sqrt{3} V_{LN} \text{ Y side}$$

Balanced \Rightarrow per phase analysis

$$V_{LL} = V_{LN} \Delta \text{ side}$$

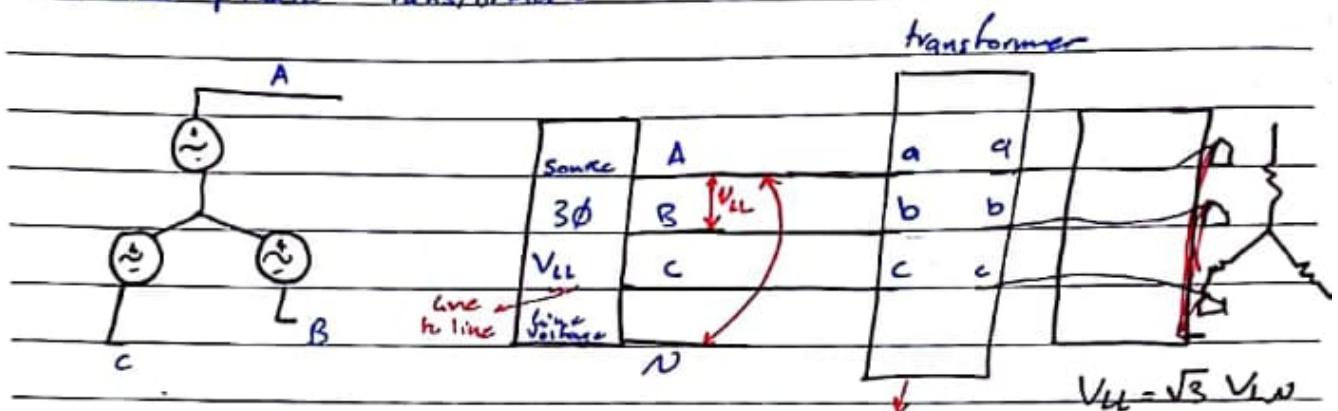
$(10 + 25)$

U_1 U_2
 9KW
 208
 V_L



(Y/Δ)

Three Phase Transformers

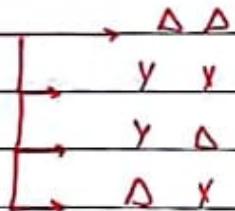


* 3 ϕ Rated KVA

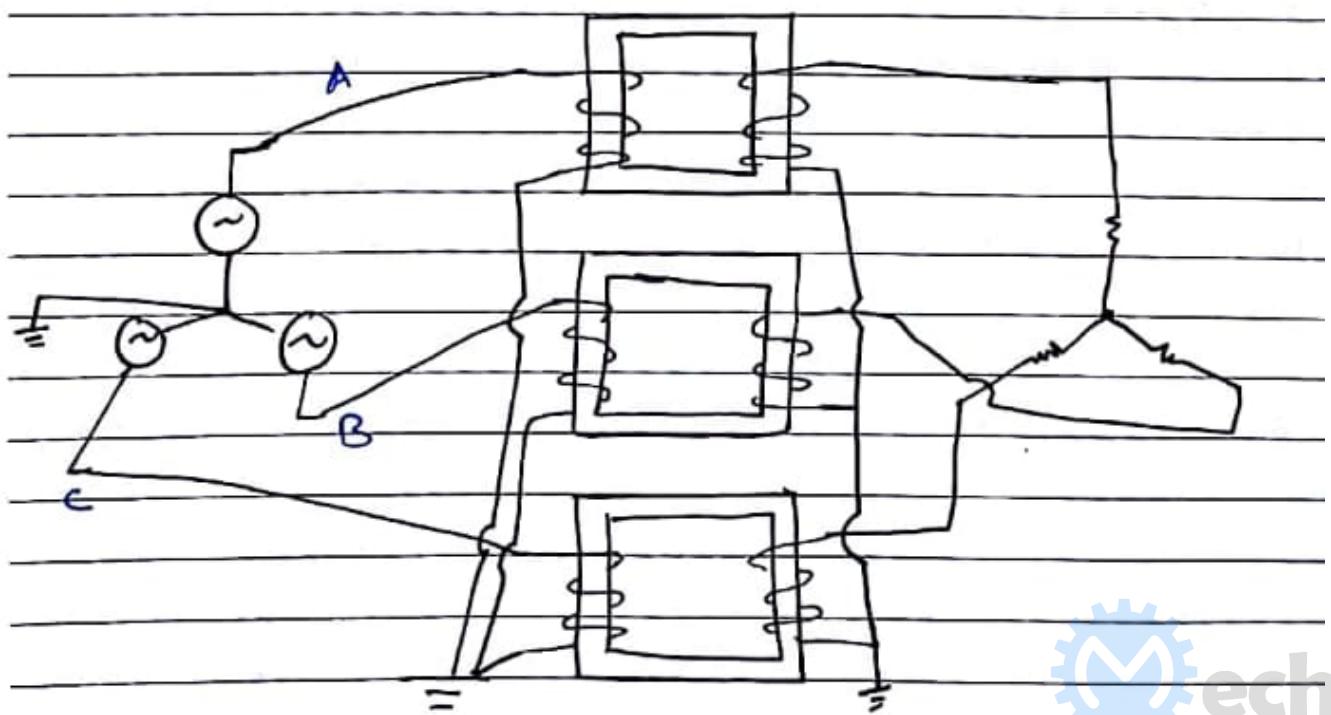
* V_{LL} (HV) rated

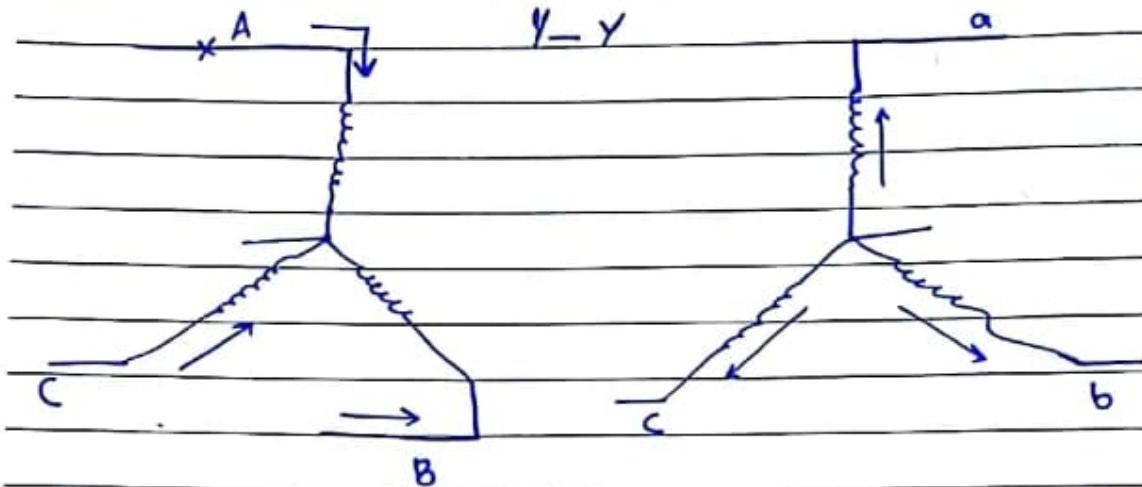
* V_{LL} (LV) Rated

* connection



3 ϕ transformer Y-Y





$$a = \text{turns Ratio} = \frac{V_p(HV)}{V_p(LV)}$$

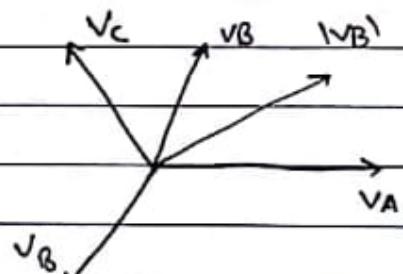
$$a_T = \text{Transformation Ratio} = \frac{V_{LL}(HV)}{V_{LL}(LV)} \quad V_{AB} = V_A - V_B$$

$$V_{LL}(HV) = \sqrt{3} |V_p(HV)|$$

$$(V_{LL} LV) = \sqrt{3} |V_p LV|$$

$$\Rightarrow a_T = \frac{\sqrt{3}}{\sqrt{3}} \frac{|V_p(HV)|}{|V_p(LV)|} = a_s = \text{turns Ratio (Y-Y)}$$

$$I_e^{HV} = I_e LV \times \frac{|V_p \text{ Rated LV}|}{|V_p \text{ rated HV}|}$$



turns Ratio \rightarrow converts from phase to phase

Transformation Ratio \rightarrow converts from line to line

\Rightarrow find I_1 on LV

$$|I_1| = T_0 * \left(\frac{0.4/\sqrt{3}}{11} \right), \text{ phase to phase (turns Rat)}$$

$$I_2 = \sqrt{3} * 6 * \frac{0.4}{\sqrt{3} * 11}$$

R_{mid} R'

$$R_{\text{HV}} = R_{\text{LV}} \left(\frac{11}{0.4} \right)^2$$

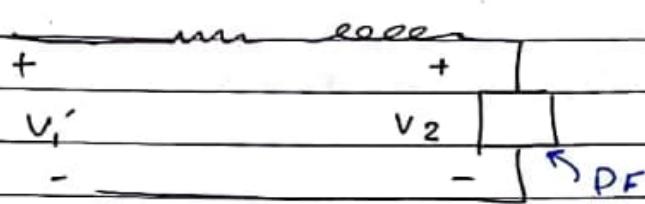
$$T_{\text{L HV}} = T_{\text{L LV}} * \left(\frac{0.4}{11} \right)$$

$$V_{\text{L HV}} = V_{\text{L LV}} * \left(\frac{11}{0.4} \right)$$

$$Y \underline{R_{\text{HV}}} = Y \underline{R_{\text{LL}}} * \left(\frac{11}{0.4} \right)^2$$

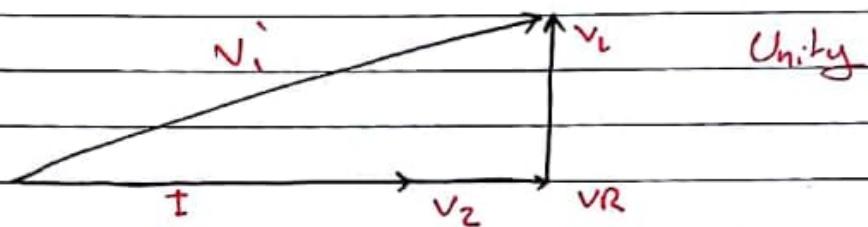
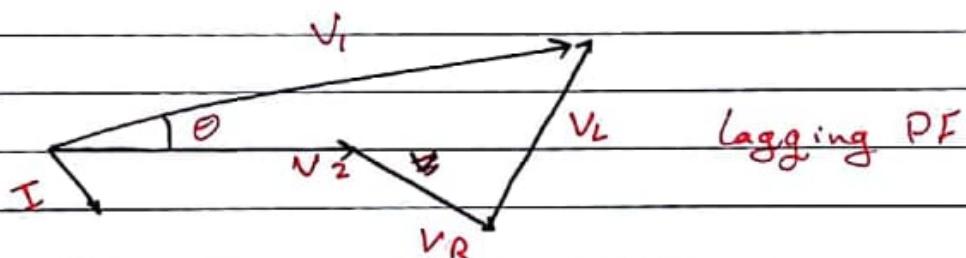
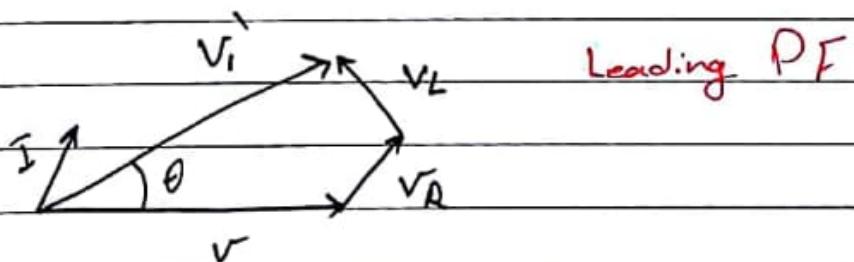
$Y_{\text{mid}} = Y_{\text{mid lin}}$

Ex) on phasor diagram :



V_R and I in phase
 V_L leads I by 90°
 V_L leads V_R by 90°

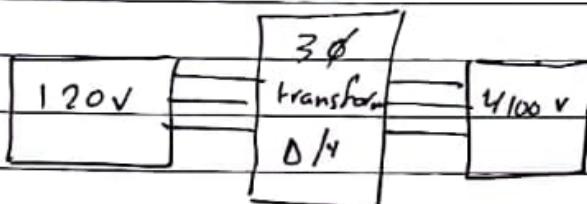
Draw phasor diagram (Leading and lagging and unity)



$$P = |V| |I| \cos \theta \quad S = P + Q; \\ Q = |V| |I| \sin \theta$$

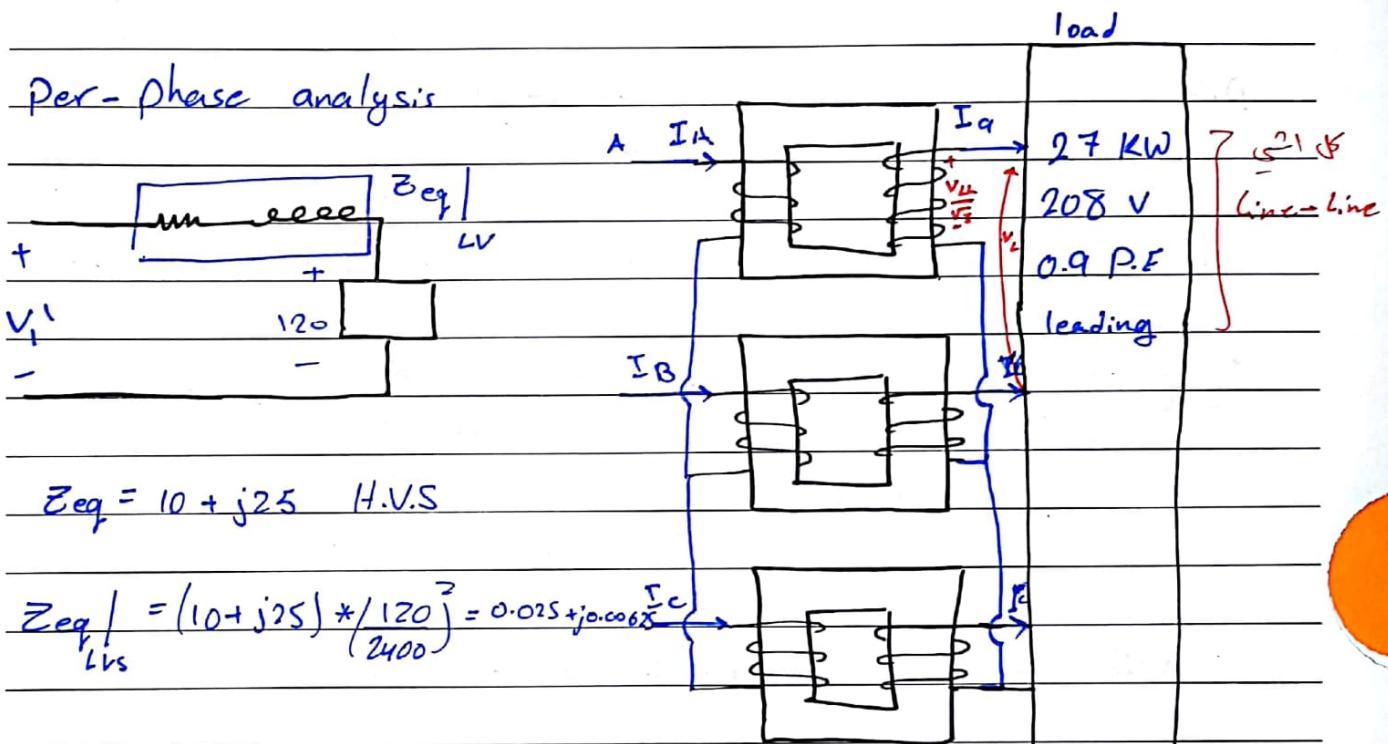
Ex) 3 Identical single phase transformer, each
10 KVA, 2400 / 120 V

① Y/Δ \rightarrow 30 KVA, $2400\sqrt{3}$ / 120 V

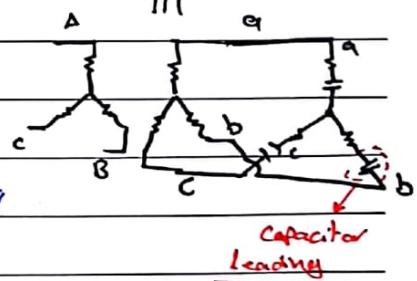


Ex) Three identical single-phase transformer, 10 KVA, 2400/120 V, 60 Hz; are connected to form 4160/208 V, the equivalent impedance at (HVS) is: $(10 + j25) \Omega$, load 27 kW, 208, 0.9 PF leading. Find VR%?

Per-phase analysis



$$I_{\text{phase}} = \frac{|S|}{|V|} = \frac{9000 * 0.9}{120} \text{ A}$$



$$\left| \frac{I_{\text{phase}}}{HVS} \right| = 83.34 \times \frac{(120)}{2400} = 4.16 \angle + \cos^7 0.9$$

To find current ?

$$S = \sqrt{3} V_L I_L$$

$$6 \frac{27}{0.9} = \sqrt{3} * 708 * T$$

$$|T| = 83.34 L + \cos^{-1} 0.9$$

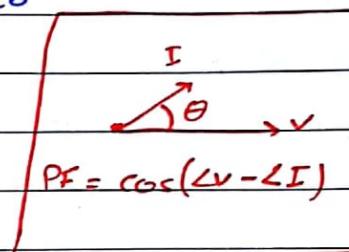
$$\left. \begin{aligned} S_{3\phi} &= 3S_1\phi \\ S_{3\phi} &= 3\sqrt{P}I_P \\ &= \frac{3}{\sqrt{3}} V_L I_L = \sqrt{3} V_L I_L \end{aligned} \right\}$$

$\theta = 2.67^\circ$

$$V_1' = 83.34 \cos^{-1} 0.9 (0.025 + 0.0625) + 120 \cos 0$$

$$V_1' =$$

$$V_1 = 2392.6 \angle 2.67^\circ \text{ V (LN)}$$



$$\text{P.F. @ source} = \cos(2.67^\circ - \cos^{-1} 0.9) \leftarrow \text{leading}$$

الزاوية الايجابية

Transformation Ratio equals the Turns ratio $Y-Y$ نسبة

$$\frac{I_{\text{HVS}}}{I_{\text{LVS}}} = \frac{I(208)}{4160}$$

Transformation Ratio

$$= \frac{83.34 \times (208)}{4160}$$

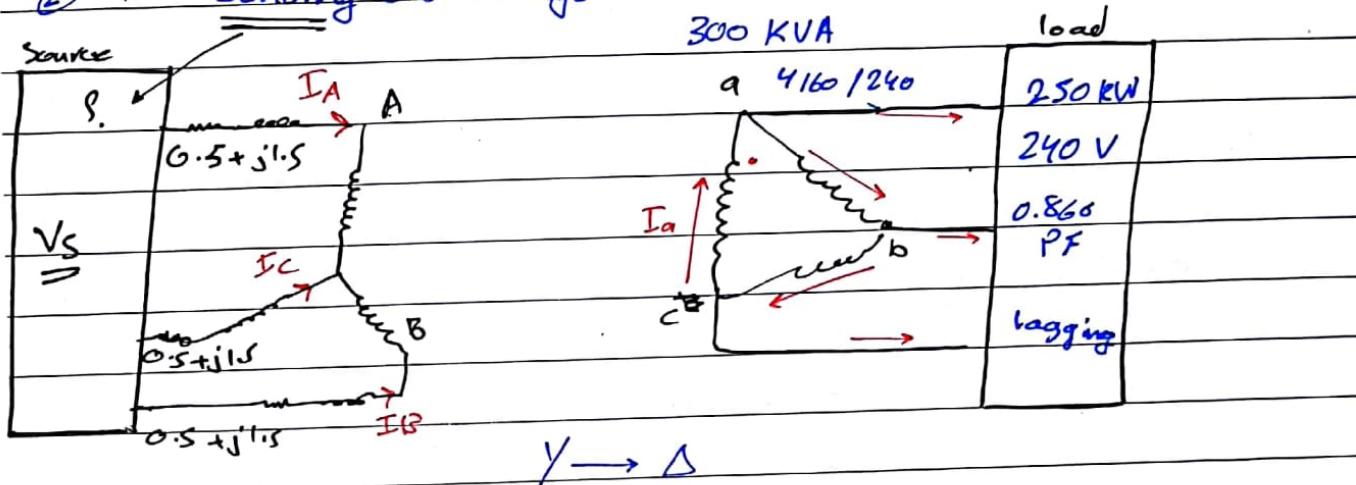
$$\text{VR \%} = \frac{|V_1'| - |V_2| \times 100\%}{V_2} = -0.31\%$$

Ems ~~not~~

Ex) Three single phase transformers 100 KVA, 2400 / 240, 60 Hz
 $Z_{phase} = 0.045 + j 0.16 \Omega$, The transformers are connected to the
 source ($0.5 + j 1.5 \Omega$ / phase) load ~~250 KW @ 240V, 0.866 lag~~
 $\frac{250}{240}$
 $[3\phi : 4160 / 240]$

① determine winding current

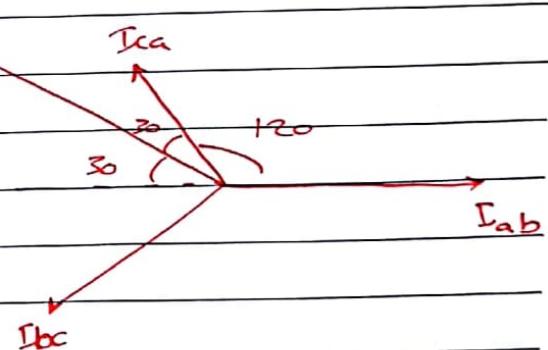
② " sending end voltage "



$$S_{3\phi} = \sqrt{3} V_L I_L = \frac{250 \times 240 \times I_L}{0.866} \Rightarrow |I_L| = 694.5 \text{ A}$$

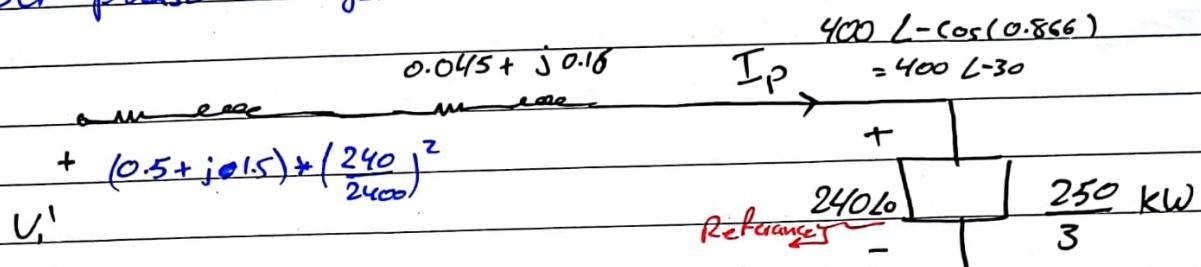
Rated current in ~~3\phi~~ 300 \leftarrow 250 \downarrow ~~line~~ \leftarrow ~~line~~

$$|I_p| = \frac{I_L}{\sqrt{3}} = \frac{694.5}{\sqrt{3}} \text{ A}$$



110 No second Ys

Per-Phase analysis



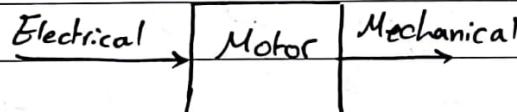
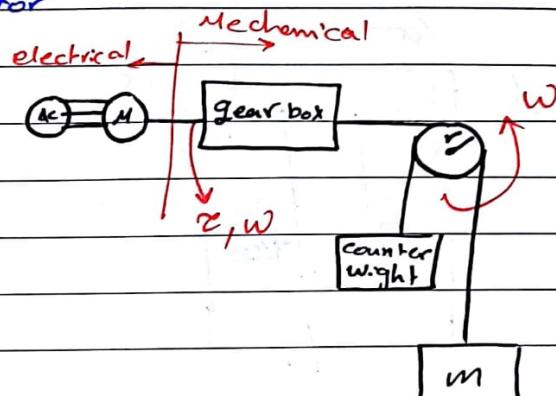
$$V_1' = (E K V L)$$

$$V_1 = V_1' * \left(\frac{240}{240}\right)$$

$$V_{1LL} = \sqrt{3} V_1 = 5138.5$$

8th Nov/2017

* Dc Machines $\xrightarrow{\text{Motor}}$ $\xrightarrow{\text{Generator}}$



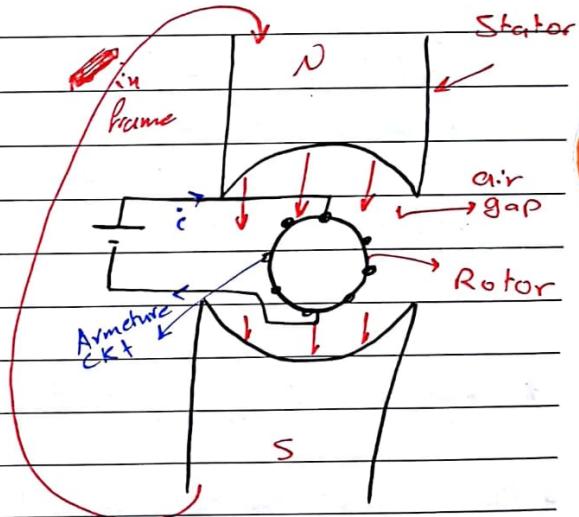
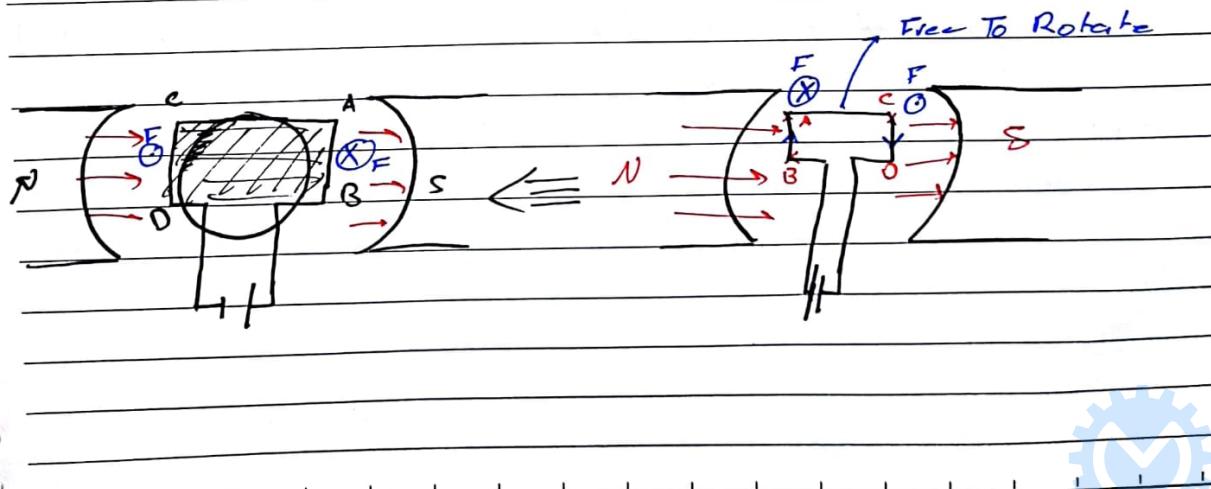
$$P = T \omega$$

$$w \downarrow \Rightarrow P \downarrow \Rightarrow B, I \downarrow$$

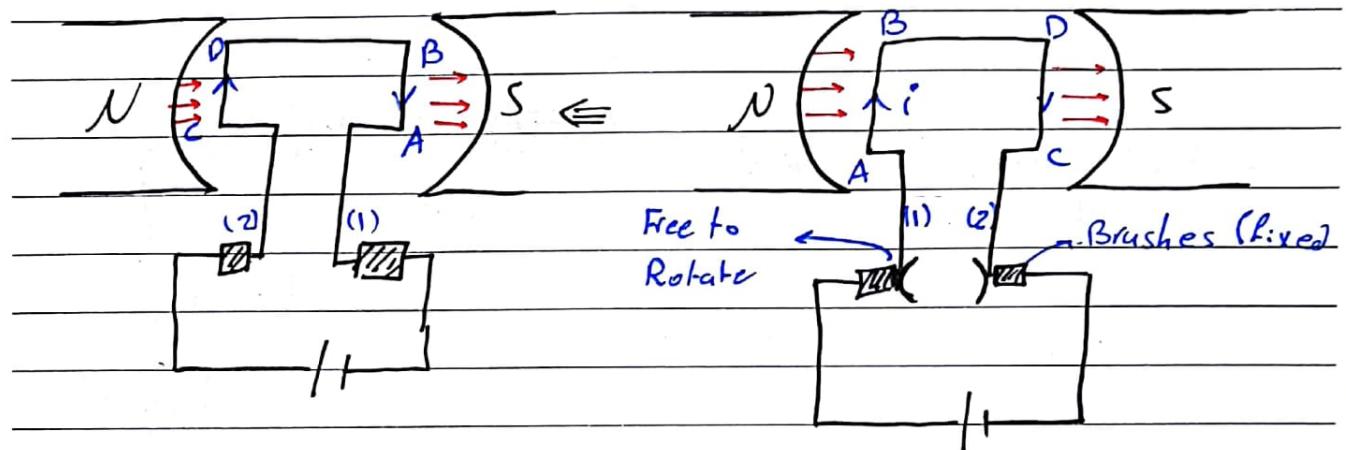
$$F = mg, T = mgr$$

④ $F = i \times B L$?

Force Current Flux



* Commutator



* Stator , Rotor

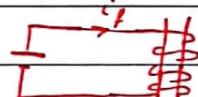
field ckt $\rightarrow \phi$

Armature ckt $\rightarrow \underline{i_f}$

برفقه اللد !

$$\Rightarrow F = i_f \times \phi$$

$\phi \rightarrow$ Permanent magnet
 $\underline{i_f} \rightarrow$ Electromagnet

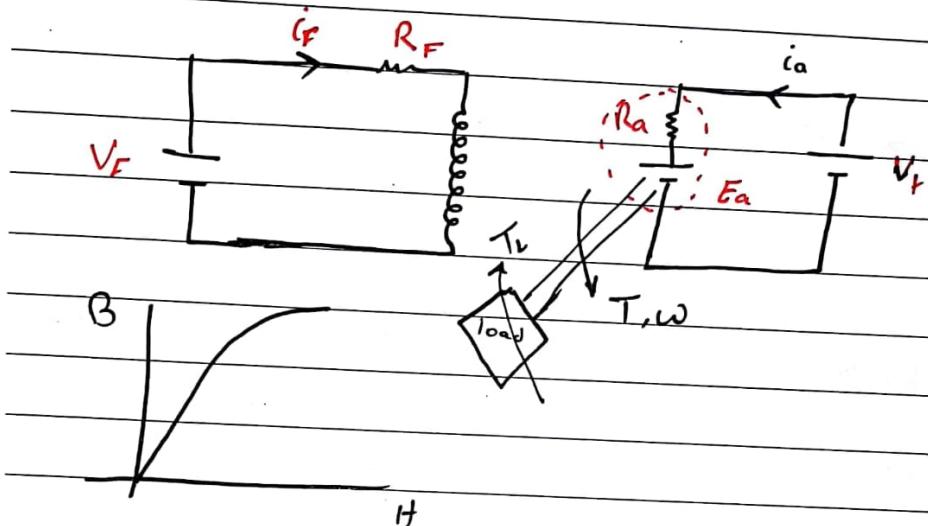


$$* \text{ emf} = N \frac{d\phi}{dt}, \text{ emf} = \underline{\phi} \times B L \quad (\text{back emf})$$

* DC Motor classification (for electro magnetic Flux)

- Separately excited DC Motor (source Wb, & armature 1, field 2)
- Shunt DC Motor
- Series DC Motor
- Compound DC Motor

* Separately-exited DC Motor



$$F = B \ell i$$

$$\text{Torque} = K_1 \phi i_a$$

$$K_1 = K_2 \ell$$

$$\text{emf} = B \ell v$$

$$E_a = K_2 \phi \omega$$

* if ϕ is constant

$$E_a = K_2 \phi \omega$$

$$E_a = K_V \omega$$

$$\left. \begin{aligned} T &= K_V i_a \\ K_V &\Rightarrow \frac{\omega_m}{A} \Rightarrow K_V = K \ell \end{aligned} \right\}$$

$$\text{Unit. } \left. \begin{aligned} K_V &= V/\text{rad/s} \\ &= V \cdot \text{s} \end{aligned} \right\}$$

$$\text{N.m ?? (VA.s)?}$$

$$J = J \text{ vs}$$

$$\frac{\text{power motor}}{\text{airgap}} = E_a i_a$$

MP class

$$\text{mechanical power} = T_w$$

$$E_a i_a = T_w$$

$$k_2 \phi_w i_a = k_1 \phi_i a_w$$

$$k_1 = k_2 \quad \#$$

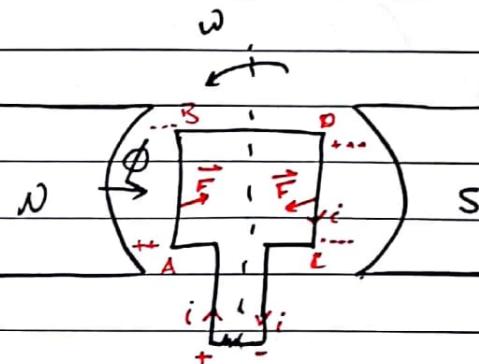
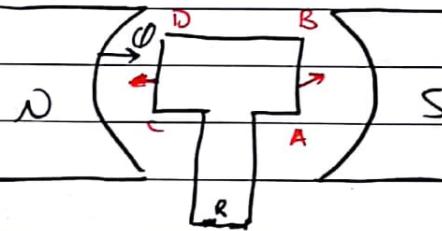
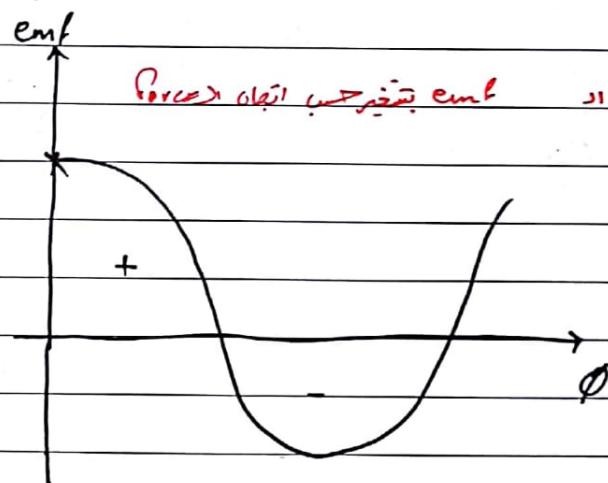
13/Nov/2017

DC Generator

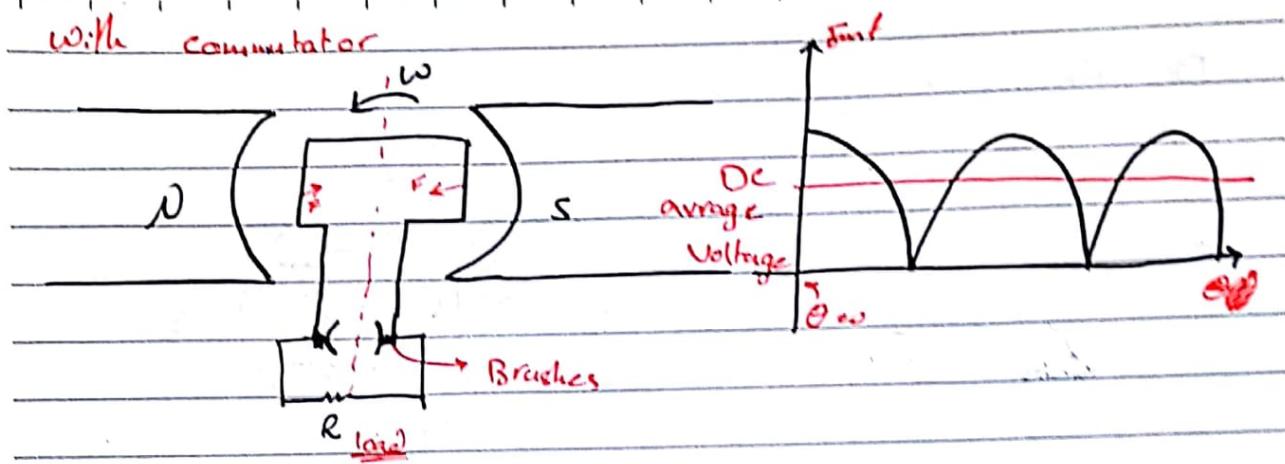
$$\text{emf} = v L \times B$$

$$= \cancel{v} L B \sin \theta$$

velocity \cancel{v} and B

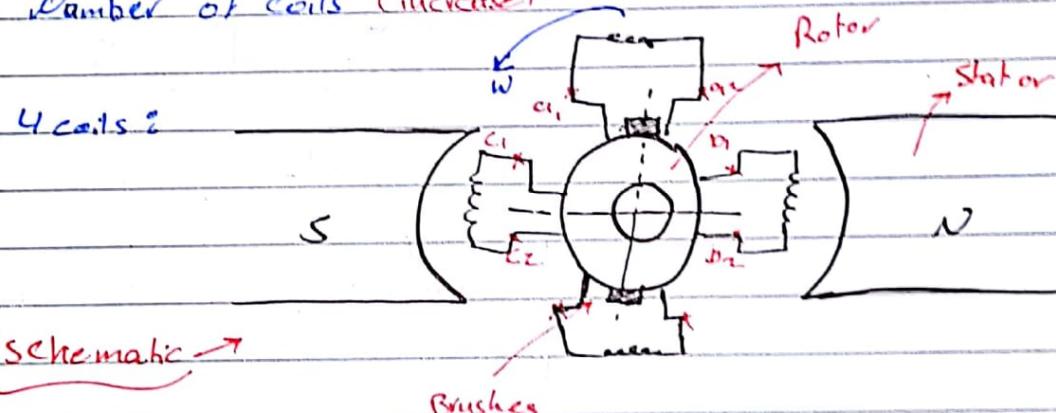


with commutator



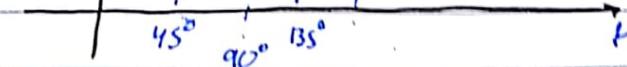
- How to improve wave form

* Number of coils (increased)



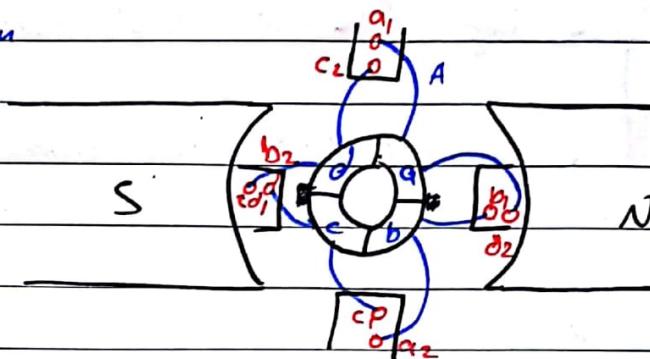
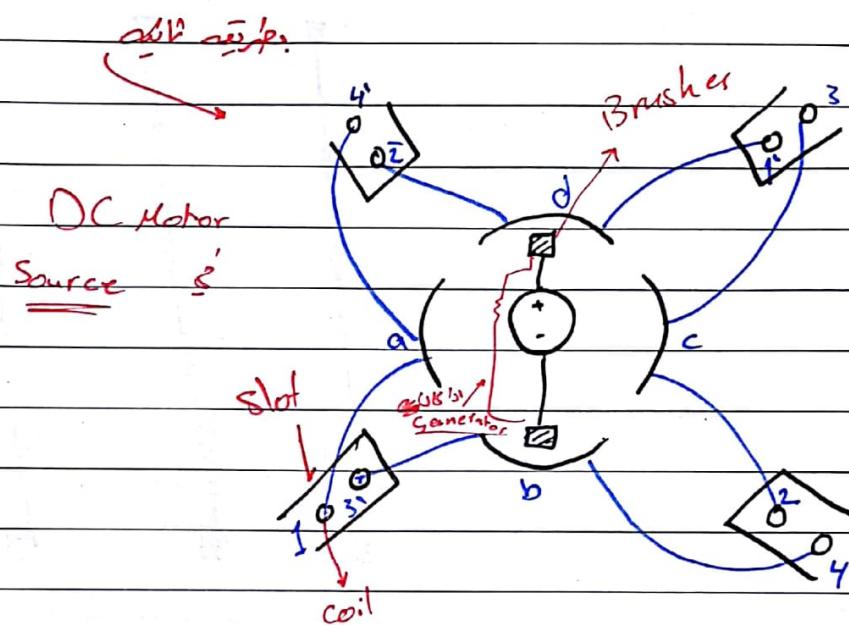
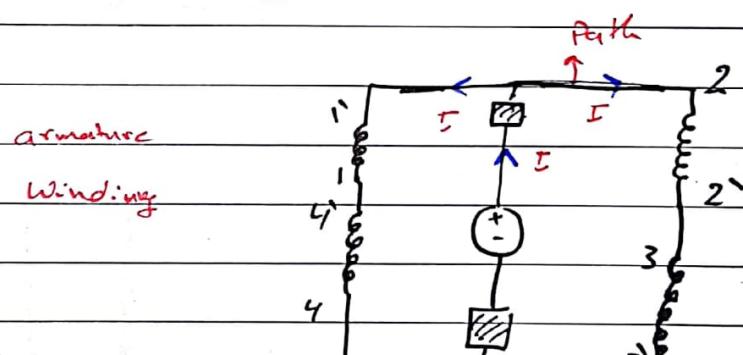
emf

45° 90° 135°



Actual construction

2 coils / slot



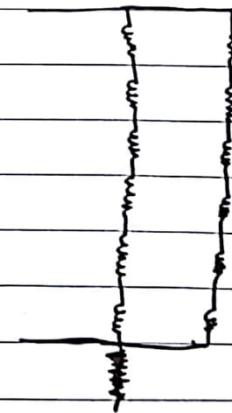
eq. BKT

wiring \rightarrow lap (\rightarrow LV, high current)

\rightarrow wave (HV, low current)

lap winding

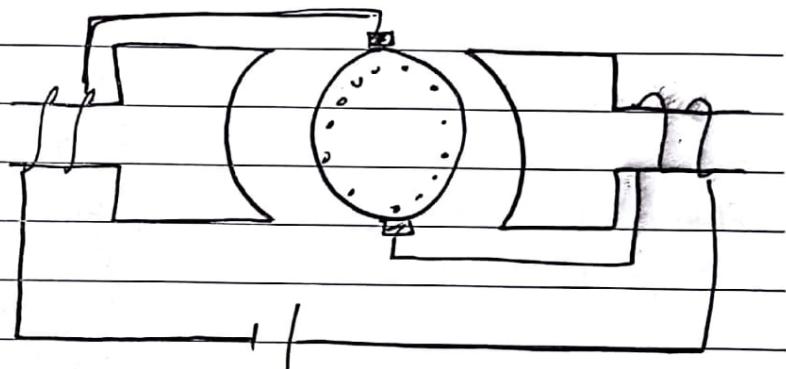
wave winding



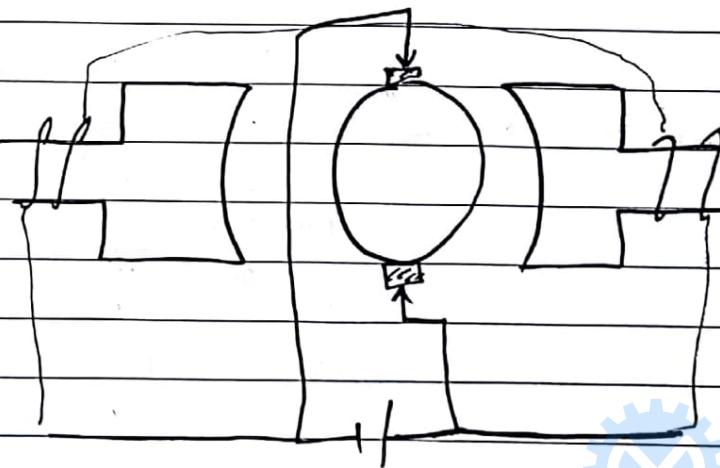
Separately excited DC motor



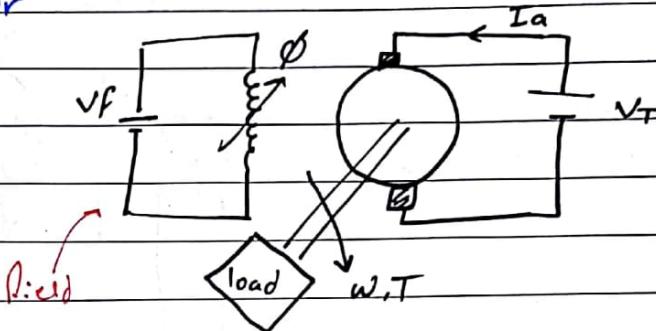
Series dc Motor



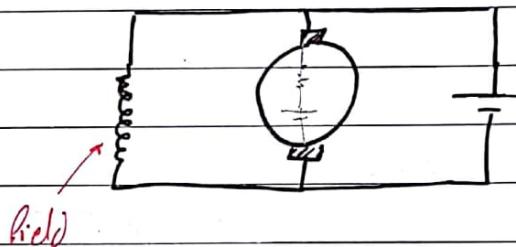
Shunt



Separately excited Dc Motor

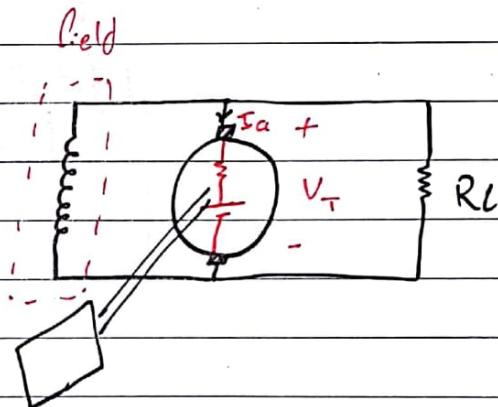


Shunt Dc motor

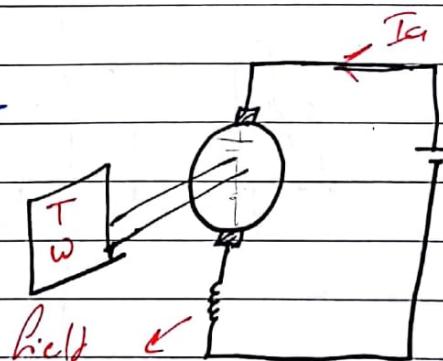


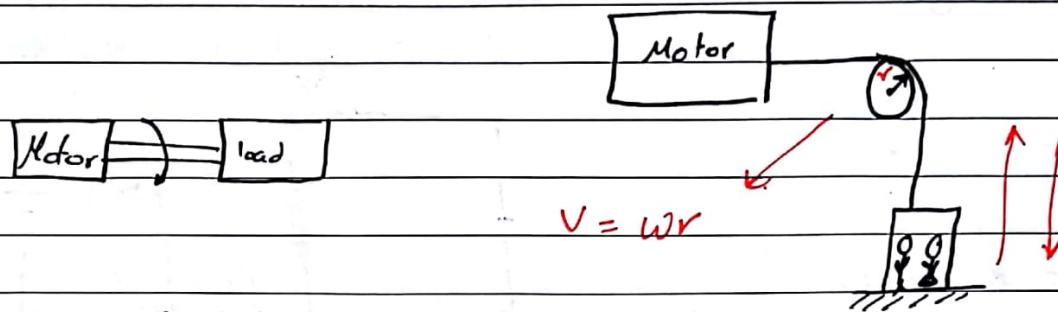
Shunt Dc Generator

(self-excited generator)



Pole Series Dc motor





$$T_L = \sum_m x_m^q x_r N_m$$

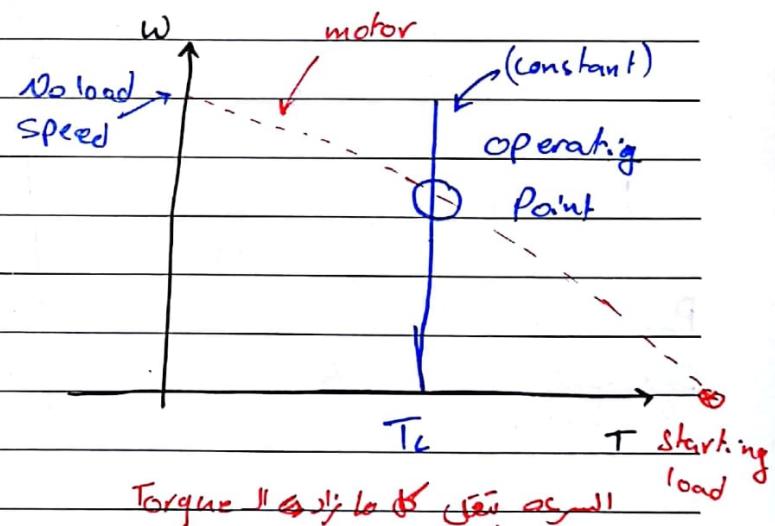
$$\frac{J_{dwg}}{d} = T_m - T_L$$

$$@ \text{Steady state} \Rightarrow T_m = T_c$$

acceleration = 0

\Rightarrow Need very high torque

عندما ينبع خارج دلزم يكتنفه
أقل من 1000 board
Motor II



$$T_m = T_L + \int \frac{d\omega}{\delta t}$$

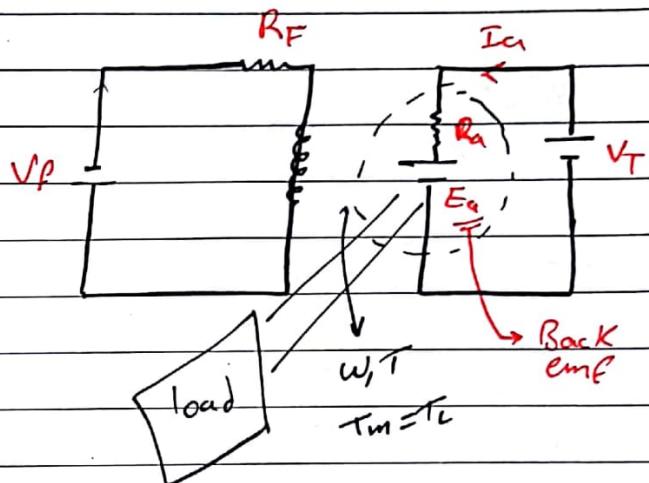
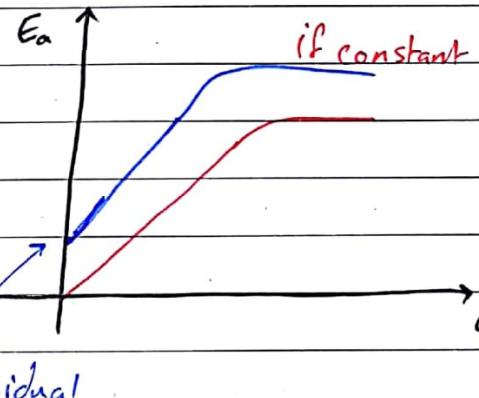
Separately excited Dc Motor

$$E_a \text{ emf} = K_1 \phi w$$

$$= K' I_a w$$

at starting $\Rightarrow (w=0)$

$$E_a = \text{zero}$$



$$T = K_2 \phi i_a$$

$$K = 0.3 \text{ V/rpm}$$

$$E_a = K \frac{w}{60} \rightarrow \text{Rotational speed}$$

$$w = \frac{2\pi n}{60}$$

$$P_{\text{mechanical}} = T w$$

$$\text{Developed power} = E_a T_a$$

by the motor

$$T_w = E_a I_a$$

$$T_w = K_1 \phi w \frac{T}{K_2 \phi}$$

$$T_w = \frac{K_1}{K_2} w T \Rightarrow K_1 = K_2$$

@ Rest (starting, stand)

$$\omega = 0$$

$$E_a = \text{zero}$$

$$I_a = \frac{V_t}{R_a} \uparrow$$

$$T_m = K \phi I_a \uparrow$$

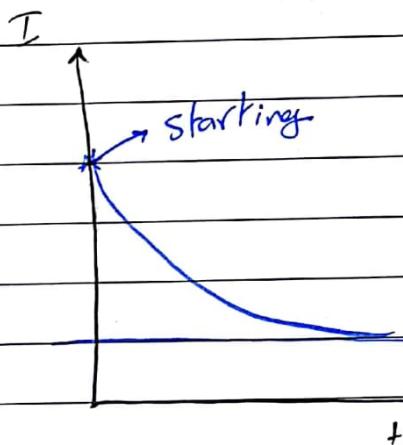
$$J \frac{d\omega}{dt} = T_m - T_L$$

acceleration

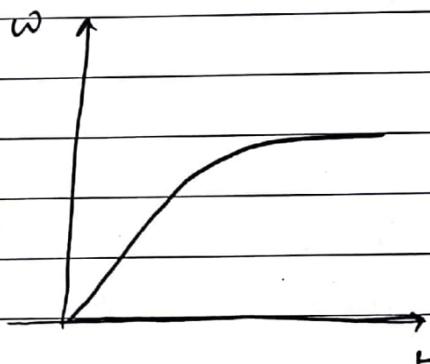
$$E_a \uparrow, I_a \downarrow, T_m \downarrow$$

$$T_m = T_L$$

$$K \phi I_a = T_L$$



$$T_{\text{starting}} = K \phi I_{a_{\text{starting}}}$$



20/12/2017

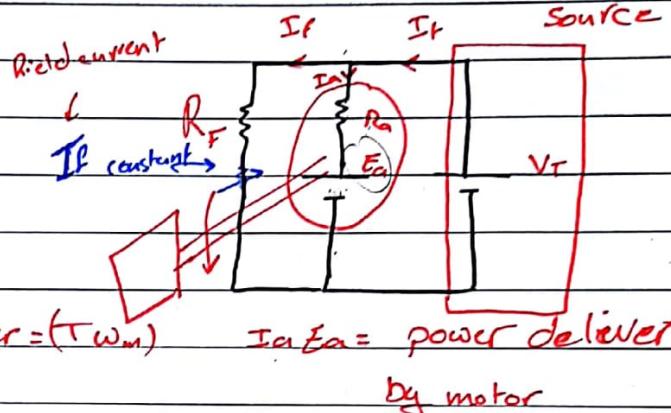
② Shunt DC motor

Shunt DC motor:

$$E_a = k\phi w_m$$

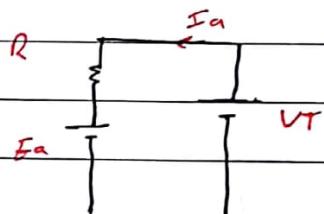
$$V_t - I_a R_a = k\phi w_m$$

$$w_m = \frac{V_t - R_a I_a}{k\phi}$$



$$\text{Power} = (T w_m)$$

$I_a E_a = \text{power delivered}$
by motor



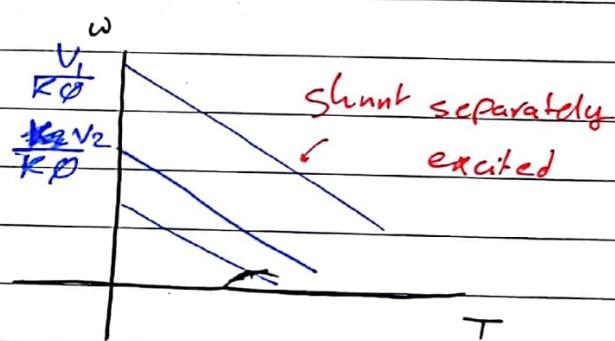
$$E_a = k\phi w_m$$

$$V_t - I_a R_a = k\phi w_m$$

$$w_m = \frac{V_t}{k\phi} - \frac{R_a}{k\phi} w_m$$

shunt \Rightarrow ip curve \propto $\frac{V_t}{R_f}$ \propto $\frac{V_t}{R_f}$

not \propto separately



IP constant

* Series DC Motor

$$I_R = I_a$$

$$I_a$$

$$E_a = K\phi w_m$$

$$E_a = V_T - I_a (R_a + R_f)$$

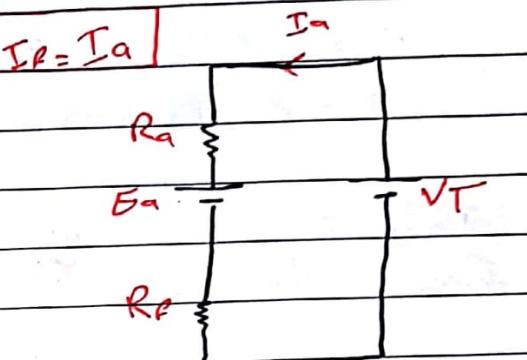
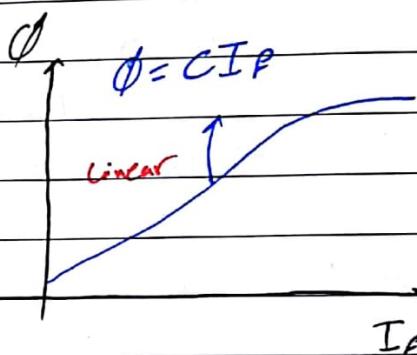
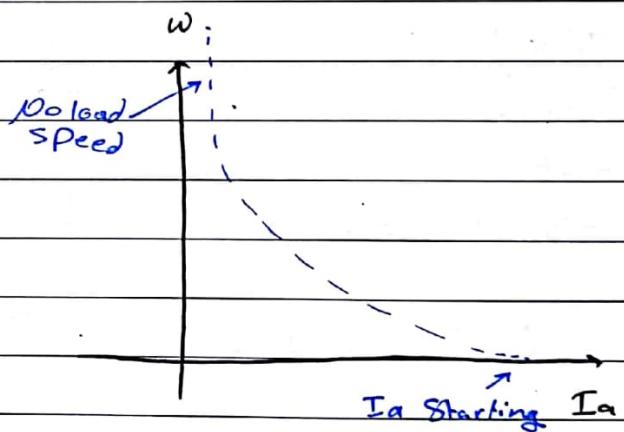
$$V_T - I_a (R_a + R_f) = K\phi m$$

$$w_m = \frac{V_T}{K\phi} - I_a \frac{(R_a + R_f)}{K\phi}$$

$$\phi = C I_a$$

$$w_m = \frac{V_T}{K C I_a} - I_a \frac{(R_a + R_f)}{K C I_a}$$

$$w_m = \frac{V_T}{K C I_a} - \frac{R_a + R_f}{K C}$$



$$T = K \phi I_a = K C I_a I_a \quad T = K \phi I_a = K C I_a I_e$$

$$T = K C I_a^2$$

$$I_{a,sh} = \frac{V_T}{R_a + R_F} \quad w=0 \quad I_a=0$$

at starting

$$I_{a,sh} = \frac{V_T}{R_a}, \quad I_F = \frac{V_T}{R_F}$$

$$T_{sh} = K C \frac{V_T}{R_F} \frac{V_T}{R_a}$$

$$T_{st} = \frac{K C (V_T)^2}{(R_a + R_F)^2}$$

$$T_{st} = \frac{K C (V_T)^2}{R_a R_F}$$

R_p series $\ll R_F$ shunt

$\Rightarrow T_{st, \text{series}} \gg T_{st, \text{shunt}}$

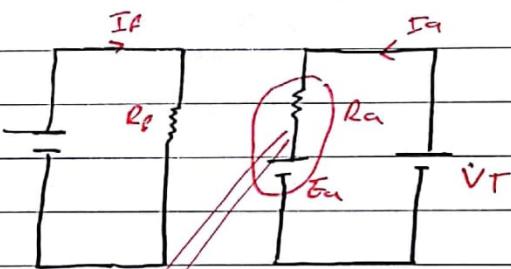
Speed control - separately excited

* Voltage, I_F constant

$$T_L = K \phi I_a$$

constant, constant, constant

$$\Rightarrow I_a = \text{constant}$$



$\Rightarrow V_T \uparrow, I_a \text{ constant}, E_a ??$

$$E_a = V_T - \frac{I_a R_s}{I_p} \Rightarrow E_a \uparrow$$

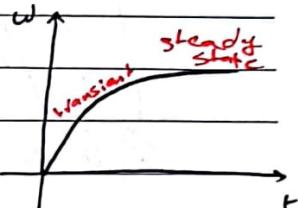
$$E_a = K \phi \omega \Rightarrow \omega \uparrow$$

④ Starting

$$\omega = 0 \Rightarrow E_a = 0$$

$$I_a \uparrow \Rightarrow T_m \uparrow \Rightarrow \frac{d\omega}{dt} = T_m - T_L \Rightarrow E_a \uparrow \Rightarrow I_a \uparrow$$

$$\Rightarrow \text{steady state } T_a \Rightarrow T_L = K\phi I_a$$



* Field - weakening ($|I_a|$), V_T fixed, speed \uparrow

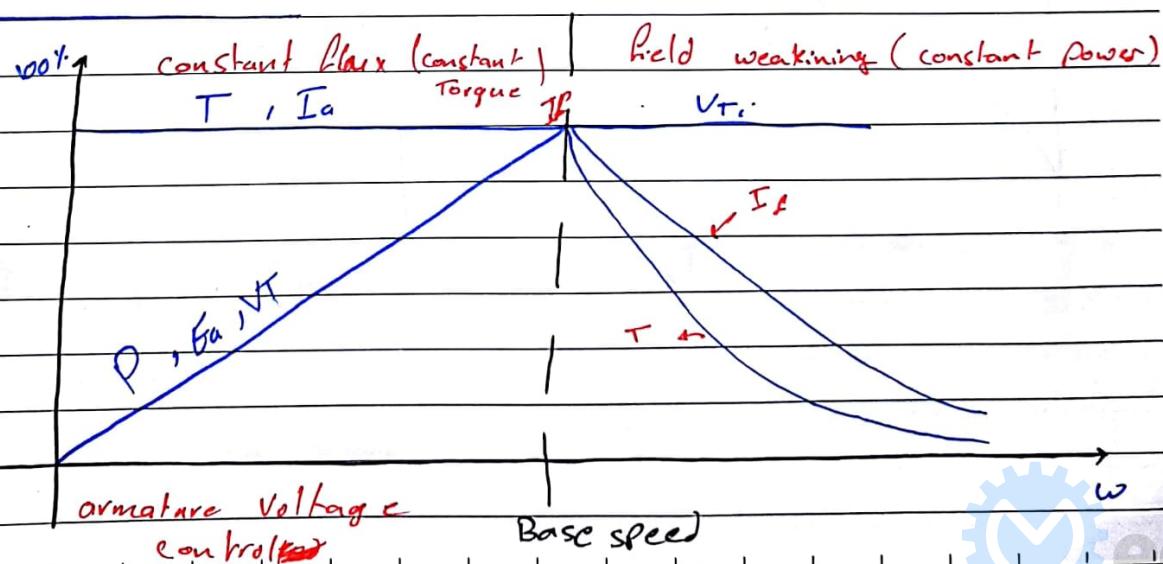
$$\omega = \frac{V_T}{K\phi} - \frac{R_a}{K\phi} I_a$$

$$\text{constant } T = K\phi T_a, \phi \downarrow \Rightarrow I_a \uparrow$$

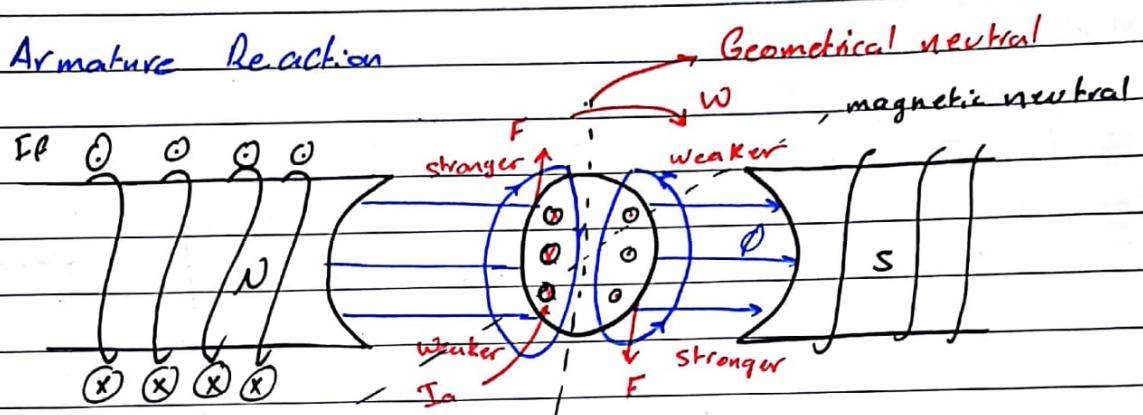
To torque

$$E_a = V_T - I_a R_a \quad (\text{almost fixed})$$

$$\frac{E_a}{\text{constant}} = K\phi \omega_n \Rightarrow \omega_n \uparrow$$

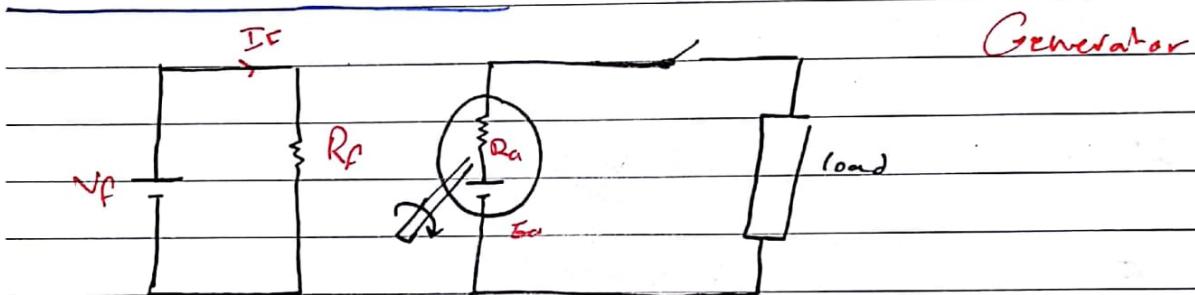


Armature Reaction

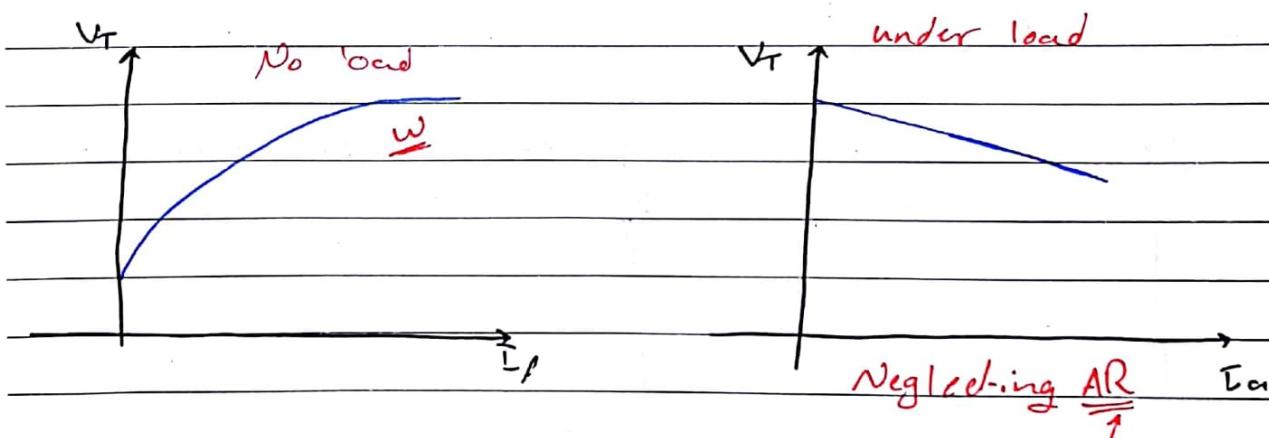
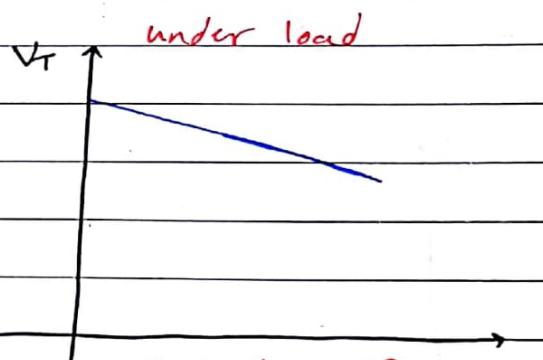


Generator

$\Rightarrow \phi \downarrow$ \leftarrow field flux



(Switch open) No load $\Rightarrow V_T = E_a$; $I_a = 0$



Neglecting AR
 \uparrow

Armature
Reaction

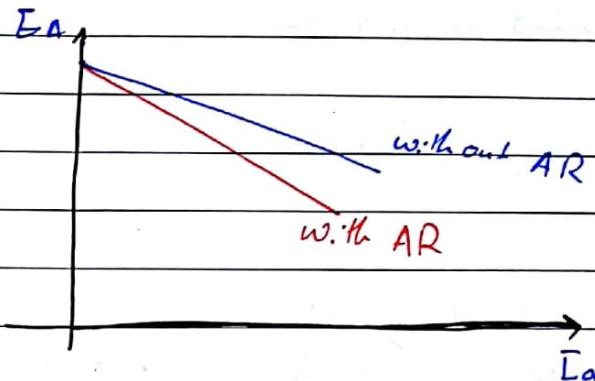
under load

$$V_T = E_a - I_a R_a$$

with Armature Reaction (AR)

AR \Rightarrow field weakening

$E_a \downarrow$



Ex^o 220 V, dc shunt motor

AR \leftarrow WCP to

$R_a = 0.2 \Omega$, $R_f = 110 \Omega$

Neglect J_m

at No load \Rightarrow ^{No load speed} 1000 rpm, total line current 7 A

at Full load \Rightarrow input Power 11 kW

* air gap flux fixed at its value at no load

V speed, speed regulation, developed Torque at Full load

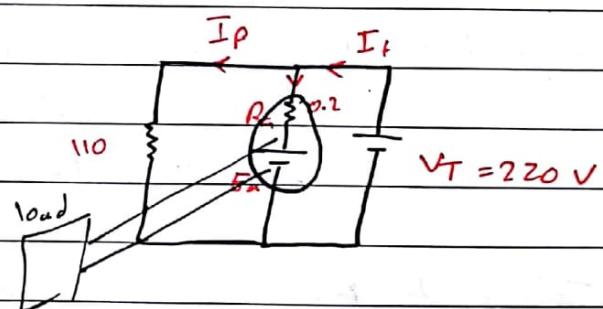
at no load

$\frac{V_T}{I_P} = 7-2$

$$I_P = \frac{220}{110} = 2 A \Rightarrow I_a = 5 A$$

Fixed

at Full load (Power = 11 kW)



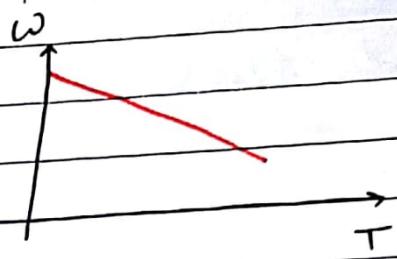
$$P_{terminal} = V_T I_T$$

$$11kW = 220 \times I_T \Rightarrow I_T = 50 A$$

$$|I_A|_{\text{Full load}} = 48$$

\uparrow
50 - 2

at no load ; speed = 1000 rpm



1) speed at full load

$$\omega = \frac{V_T}{K\phi} - \frac{R_a}{K\phi} I_a$$

at no load ^{rad/s}

$$\frac{1000 \times 2\pi}{60} = \frac{220}{K\phi} - \frac{0.2 \times 5}{K\phi} \Rightarrow K\phi = 11$$

$$\frac{\omega_{full}}{full \text{ load}} = \frac{220}{K\phi} - \frac{0.2 \times 48}{K\phi} = 960 \text{ rpm}$$

another way to solve:

$$\frac{\omega_{full}}{\omega_{no}} = \frac{220 - 0.2 \times 48}{220 - 0.2 \times 5} \Rightarrow \frac{\omega_{full}}{full} = \frac{2104}{219} \times \frac{1000 \times 2\pi}{60} = 960 \text{ rpm}$$

* speed regulation = $\frac{|\omega_{no}| - |\omega_{full}|}{|\omega_{full}|} \times 100\%$

$$= \frac{1000 - 960}{960} = 4.09\%$$

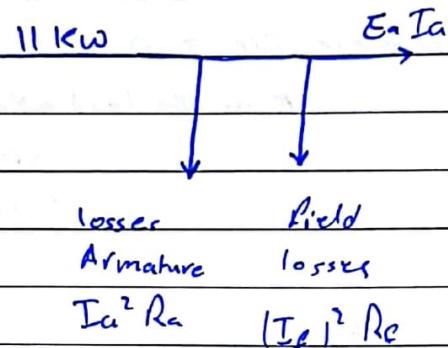
* Torque developed by the motor at full load

$$T_d = \underline{K\phi} I_a \underline{\text{full}} = 100 \times 3.8 \text{ N.m}$$

another way

Power developed by the motor P_{full}
= $I_a V_a$

$$* E_a = 220 - (48 \times 0.2) = 20.4 \text{ V}$$
$$\Rightarrow$$



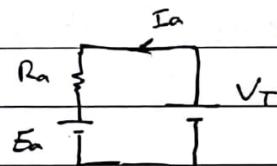
$$\text{Power} = T \omega = E_a I_a \Rightarrow T = \frac{E_a I_a}{\omega} = \frac{210.4 \times 48}{960 \times 2 \pi / 60} = 100.38 \text{ N.m}$$

$\downarrow = 10.1 \text{ kW}$

* ID separately excited and P_0 was delivered

$$(V_T I_a - I_a^2 R_a = P_0) \leftarrow \stackrel{\text{loop}}{=} \quad \text{نقطة المخرج}$$

$$220 I_a - 0.2 I_a^2 = 10.1$$



* Starting Torque if I_a is limited to 150% of full load

$$T_{st} = K \phi T_a$$

$$I_a = 1.5 \times 48 = 72 \text{ A}$$

$$T_{st} = K \phi T_a = 150.57 \text{ N.m}$$

another way

$$T_{st} = K \phi I_a / \text{start}$$

$$T_{st} = K \phi I_a / I_{full}$$

$$\Rightarrow \frac{T_{st}}{T_{st}} = 1.5$$

$$\Rightarrow T_{st} = 1.5 \times 100.38 = 150.57 \text{ N.m}$$

with out limitation

$$I_a / = 220 / 0.2 = 1100 \text{ A}$$

starting

$$W = 0 \Rightarrow E_a = 0$$

$\Rightarrow 23$ times I_{full} load

in large sizes it is often 1.5 to 2.0

coil may be directly connected

* Consider Armature Reaction, it reduces air gap Flux by 50%
 calculate Speed at full load * at No load \rightarrow the same speed

$$w = \frac{V_T - R_a I_a}{K\phi}$$

(Ans)

$$w_{old} = \frac{220 - 0.2 \times 48}{K\phi} \text{ without AR}$$

$$w_{new} = \frac{220 - 0.2 \times \frac{48}{2}}{0.5 K\phi} \text{ with AR} \rightarrow \text{Torque Reduced by half}$$

$w \rightarrow$ increased

$$\frac{w_{new}}{w_{old}} = 2$$

* $\eta = \frac{\text{Power output}}{\text{Power input}} \times 100\% \text{, all day } \eta = ??$
 $= \eta + \text{time}$

1 Rotational losses = 500 W
 No load \rightarrow

$$\Rightarrow \eta = \frac{10.1 \times 10^3 - 500}{11 \times 10^3} \times 100\%$$

* Speed can be reduced by adding Resistance

$$w = \frac{V_T}{K\phi} = \frac{R_a I}{(K\phi)^2}$$

27/Nov/2017

3)
4)
5)

4) 440 V DC shunt machine $R_F = 110 \Omega$, $R_a = 0.15 \Omega$

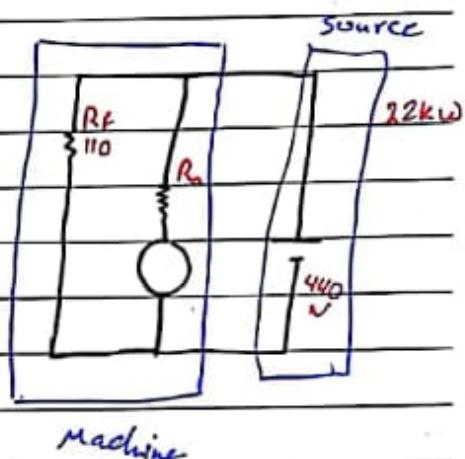
5) ① Power delivered by the machine if it absorbs 22 kW
~~Rated 110V 440V~~ motor

6) ② Power delivered by the machine if it supplies 22 kW @ 440V

$$I_F = \frac{22 \text{ kW}}{440} = 50 \text{ A}$$

$$I_F = \frac{440}{110} = 4 \text{ A}$$

$$I_a = 50 - 4 = 46 \text{ A}$$



1) Power delivered = $E_a I_a$

$$E_a = 440 - 46 \times 0.15 = 433.1 \text{ V}$$

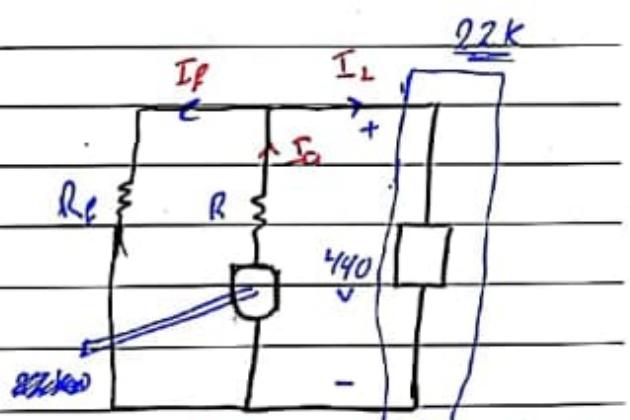
$$\text{Power delivered} = 433.1 \times 46 = 19.9 \text{ kW}$$

$$\eta = \frac{19.9}{22} =$$

2) $I_L = \frac{22 \text{ kW}}{440} \rightarrow I_L = 50 \text{ A}$

$$I_F = \frac{440}{110} = 4 \text{ A}$$

$$I_a = 50 + 4 = 54 \text{ A}$$



$$E_a = 54(0.15) + 440 = 448 - 440 + 8 = 8 \leftarrow \text{Voltage drop +}$$

$$P = 448 \times 54 = 24.9 \text{ kW}$$

$$\eta = \frac{22 \text{ kW}}{24.9} \times 100\% =$$

$$\text{W uj } E_a \text{ J uj } 0.15 \text{ +}$$

$$\text{Flux } (\phi) \text{ J uj } 0.15 \text{ +}$$

Ex) 230 V, DC motor (series) : $R_a = 0.2 \Omega$

$$R_d = 0.05 \Omega$$

$$\text{Series} \rightarrow T_a = T_p$$

$$\leftarrow T_A = 20 \text{ A}, 1500 \text{ rpm}$$

Proportional losses = 400 W

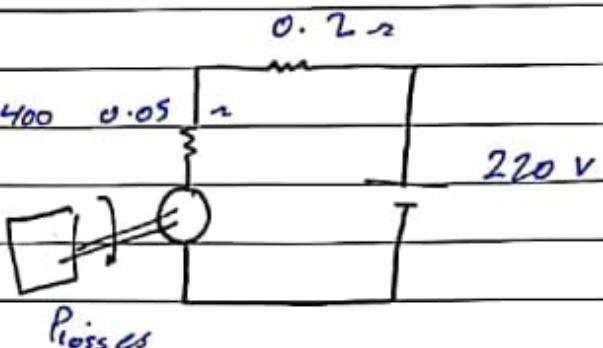
$$\eta = ??$$

$$P_{in} = 230 \times (20) = 4.6 \text{ kW}$$

$$P_o = P_{in} - P_{\text{losses}} - \text{Proportional}$$

$$\Rightarrow 4600 - (20^2 \times 0.2 + 20^2 \times 0.05) - 400 = 4.6 \text{ kW}$$

$$\eta = \frac{P_o}{P_{in}} \times 100\% = 89.1\%$$



Ex) 230 V, DC shunt, $R_a = 0.05 \Omega$, $R_f = 75 \Omega$

I_f A * @ 1120 rpm \rightarrow motor draws 7 A

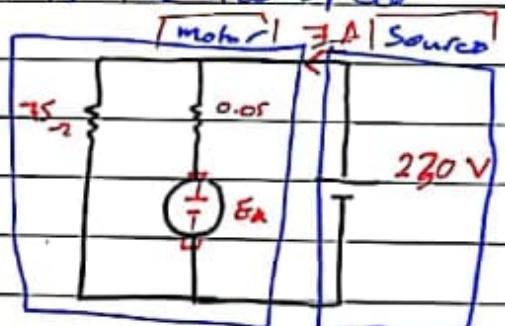
I_f A * @ certain constant operating \rightarrow line current 4.6 A

3) \rightarrow η is \rightarrow motor speed ??

2) R_a is increased to 100Ω , what is the new speed

$$I_f = 230 \text{ V} = 3.07 \text{ A}$$

$$75 \Omega$$



$$E_a = 230 - (3.07 \times 0.05)$$

mechanical speed rpm

$$E_a = K \Phi \omega \Rightarrow E_a = K' I_f N$$

$$K' = \frac{E_a}{I_f N} \Rightarrow K' = 0.0668$$

B

$$E_a = K' T_p N_m$$

$$I_a = 46 - 307 = 42.93 A$$

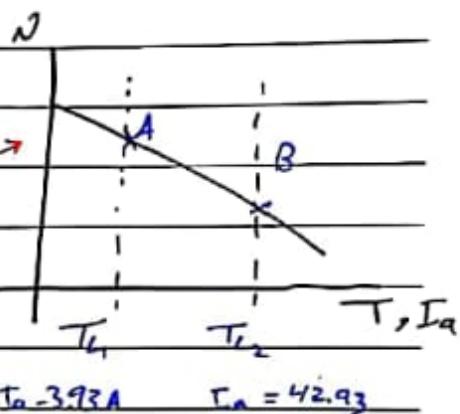
$$E_a = 220 - (42.93 \times 0.05) \Rightarrow N_m = \frac{1111}{1473} \text{ rpm}$$

(1120 rpm) A وأعلى عزم دوران

$$\omega = \frac{V_T}{K\phi} - \frac{R_a}{K\phi} T_a$$

$$\omega = \frac{V_T}{K\phi} - \left(\frac{R_a}{(K\phi)} \right) T$$

slope

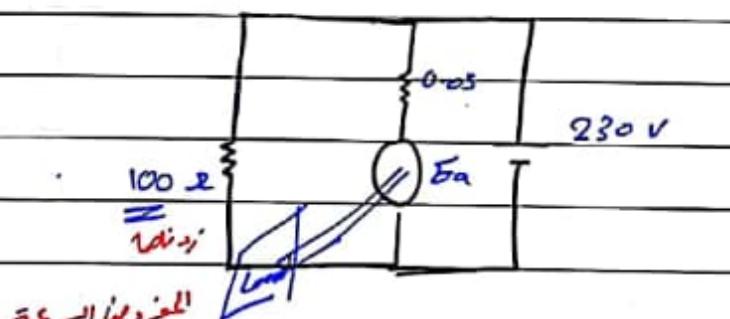


$$T_a = 3.93 A \quad T_m = 42.93$$

$$R_p \uparrow \Rightarrow I_p \downarrow \Rightarrow \omega \uparrow$$

$$I_p = \frac{230}{100} = 2.3$$

$$I_a = 46 - 2.3 = 43.7$$



$$E_a = 230 - (43.7)(0.05)$$

between the V and ground Field winding

Power at no load

زد current or load resistance

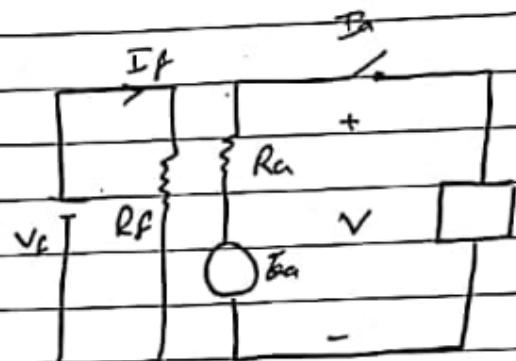
$$P = E_a I_a$$

(losses and load current) Rate of losses and load current $P = T \omega$

Separately excited DC

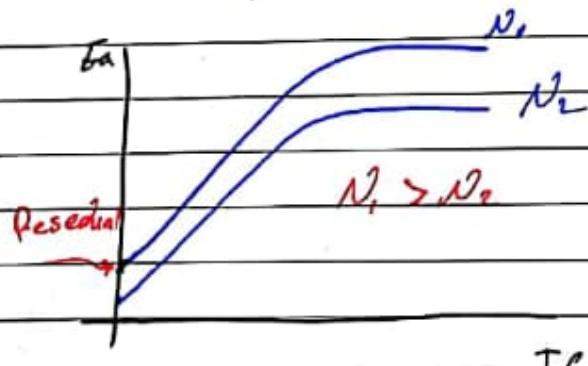
open circuit C/s

load C/s



$$If \rightarrow \phi$$

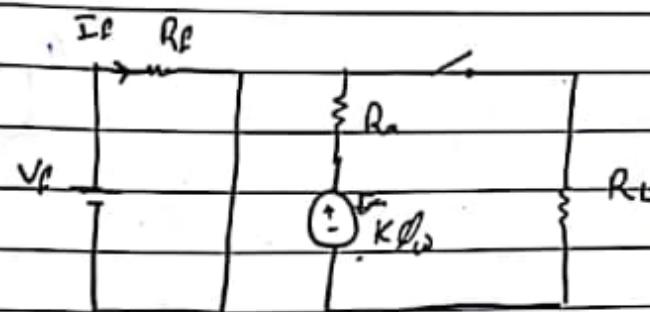
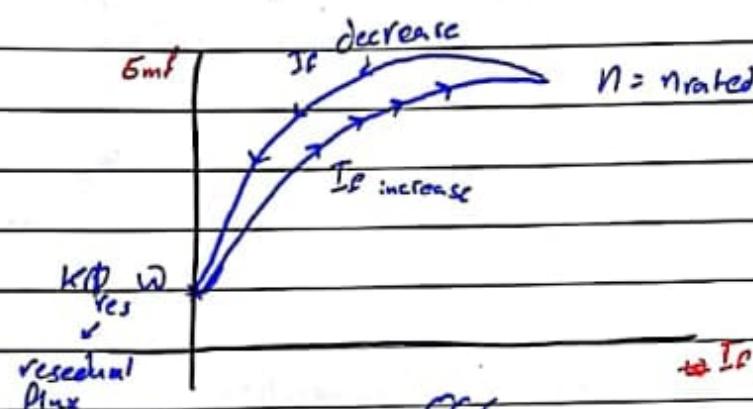
$$E_a = \phi \text{ and } \omega$$



$$E_a = K \phi \omega$$

$$E_a = K C I_f \omega$$

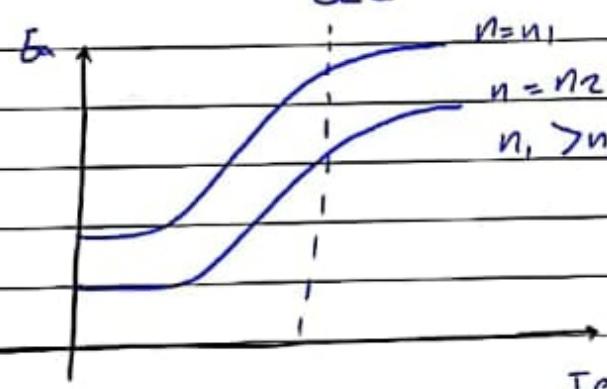
Open circuit C/s



$$\mathcal{E}_a = K\Phi_w$$

Same I_F

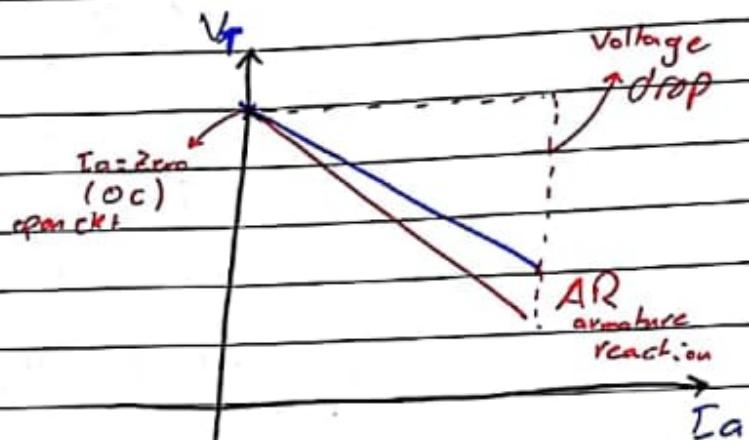
$$\frac{\mathcal{E}_{a2}}{\mathcal{E}_{a1}} = \frac{\omega_2}{\omega_1} - \frac{2V_n}{n_1}$$



load c/s

$$\frac{V_R}{N_L} = \frac{V_R}{F_L} - \frac{V_R}{F_L}$$

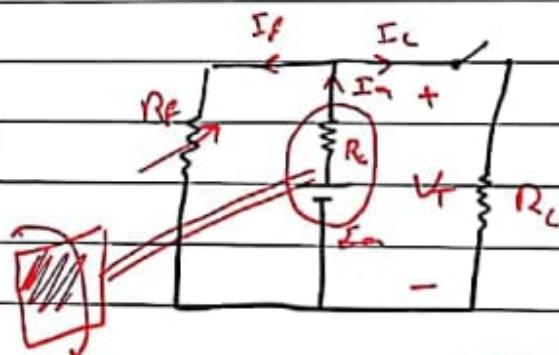
V_R at no load
 F_L at full load
Voltage Reversing



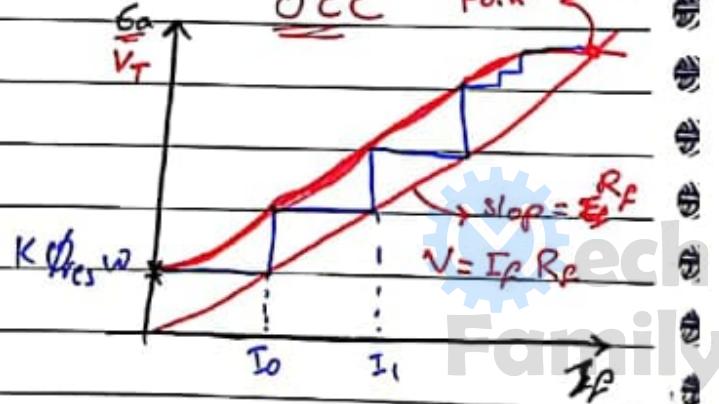
* armature reaction increases voltage drop

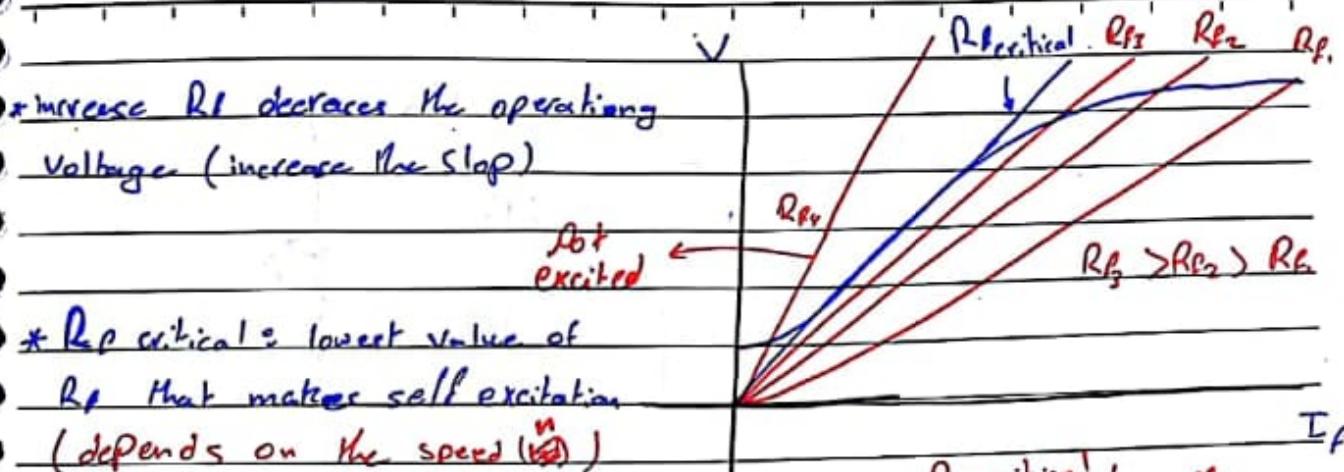
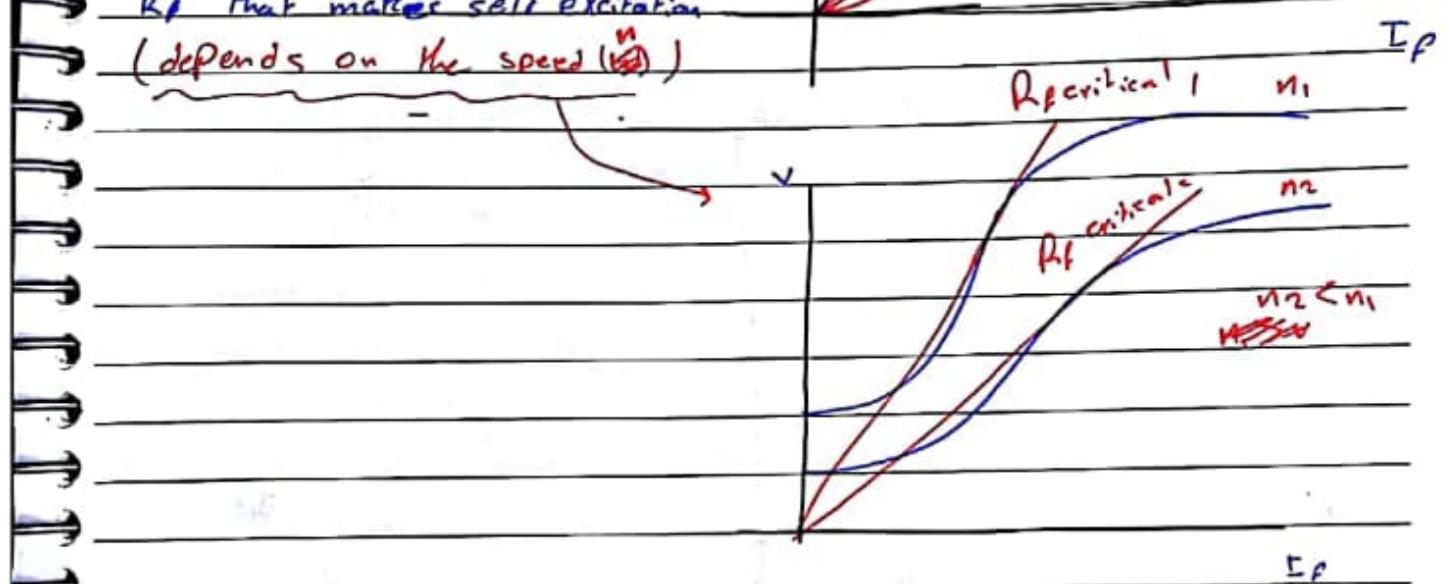
Self-excited DC generator

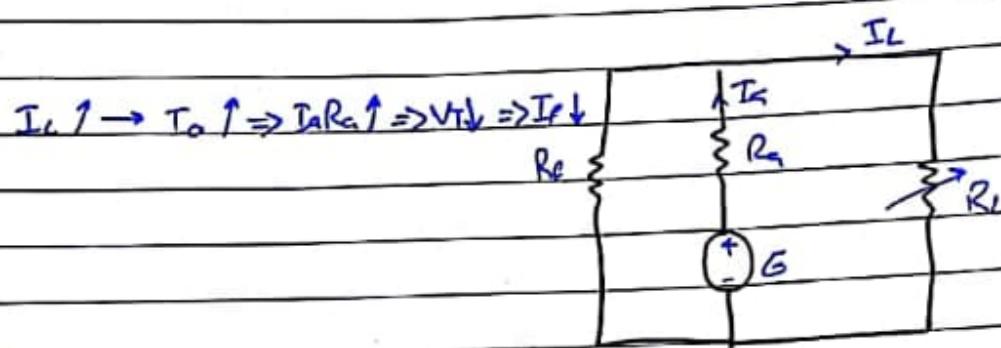
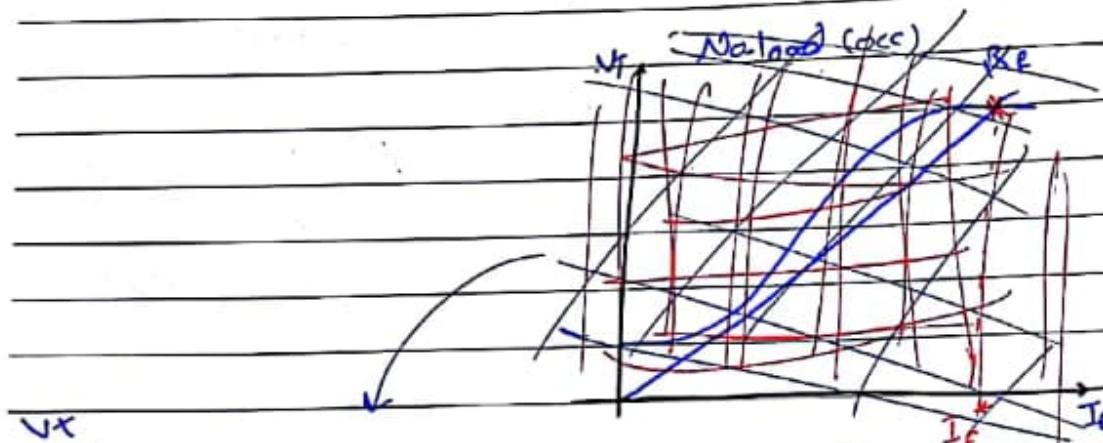
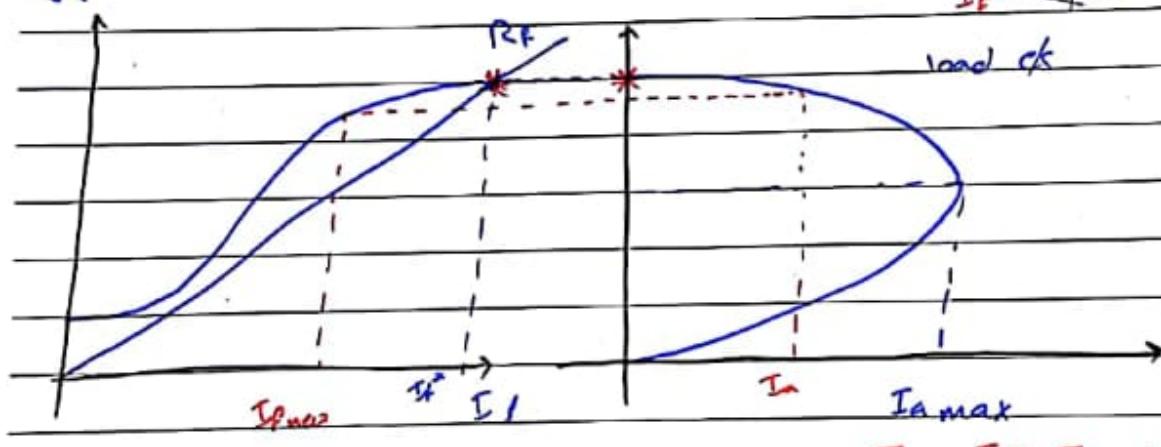
No need for independent source for the excitation (I_e) excitation current



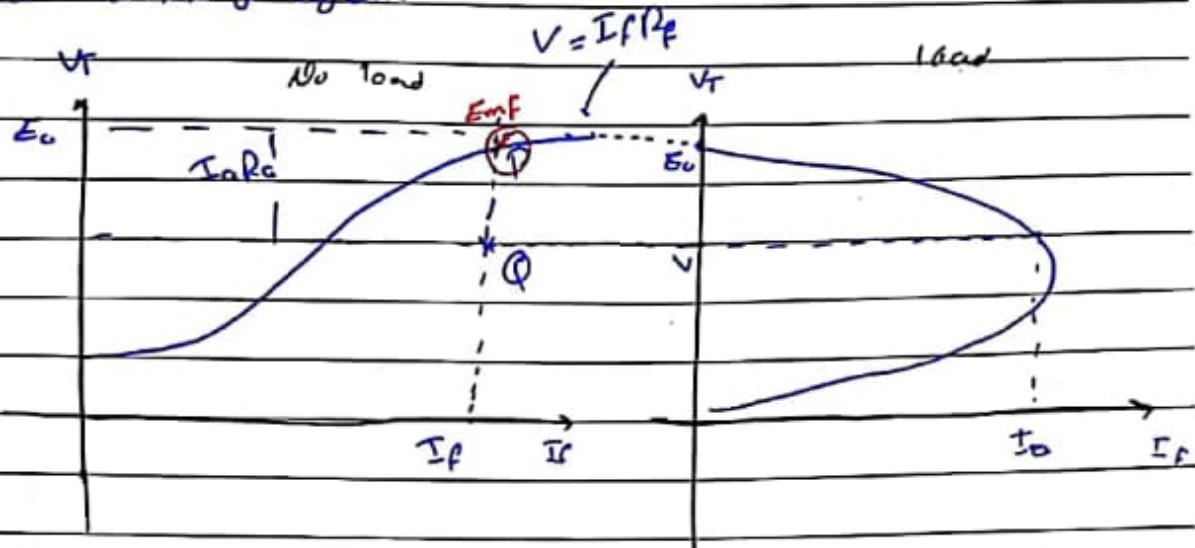
operating point controlled by R_f







The same Mag again



- 1)* Assume V and find I_a
- 2)* Draw horizontal line and find I_f // point Q //
- 3)* $Emf \{ P \}$
- 4)* $P - Q \Rightarrow I_a R_a$
- 5)* R_a Known $\Rightarrow I_a$ will be Known

Ex) OCC of a DC shunt generator 300 rpm

I_F (A)	0	2	3	4	5	6	7
armature voltage	75	92	132	162	183	190	212

① Plot OCC at 375 rpm

② Determine the voltage to which the machine will excite if field circuit resistance is 40 Ω

③ What additional R in the field ckt to reduce voltage to 200V at 375 rpm

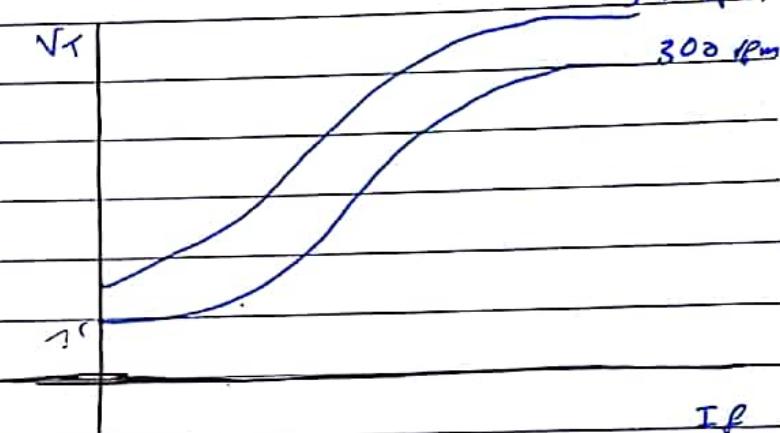
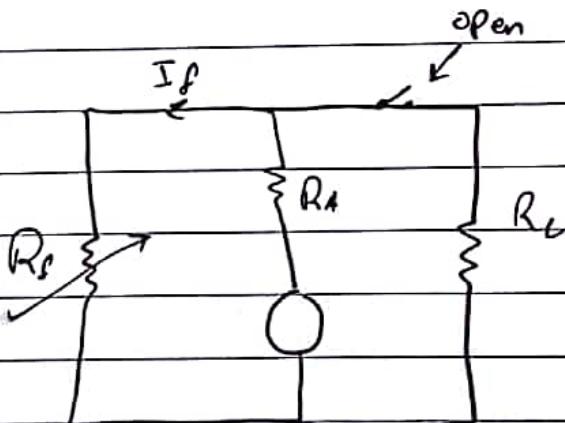
$$\mathcal{E}_a = K\phi w_m = K' I_F w_m$$

$$\frac{V_T, \text{new}}{V_T, \text{old}} = \frac{I_F, \text{new} w_m, \text{new}}{I_F, \text{old} w_m, \text{old}}$$

$$\Rightarrow I_F = 3A \Rightarrow 300 \text{ rpm} \rightarrow V_T = 132V$$

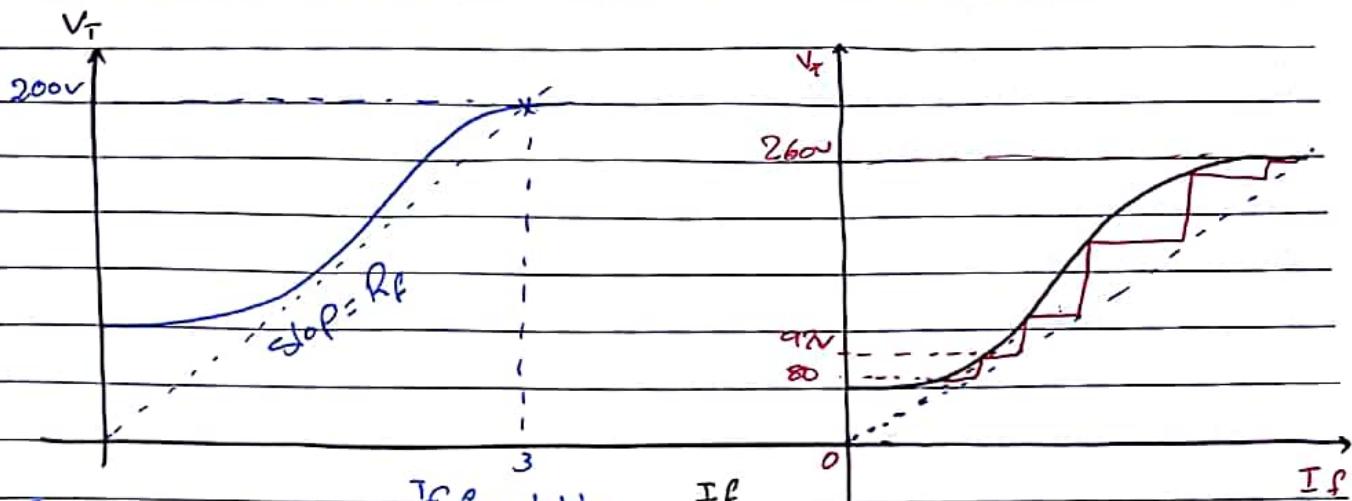
$$375 \text{ rpm} \rightarrow V_T = ?$$

$$\rightarrow V_T, \text{new} = 132 + \left(-\frac{375}{300} \right)$$



at 375

I_f (A)	0	2	3	4	5	6	7
V_T (V)	9.4	115	202.5	228.8	248.3	265	



$$R_f = 52.6 \Omega$$

$$52.6 - 40 = 12.6 \Omega$$

additional (R)

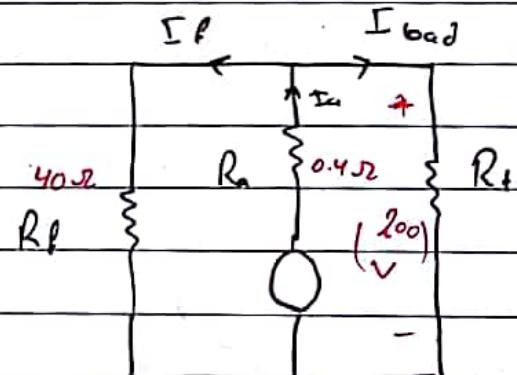
with out additional Resistance, Determine load current supplied by the generator with its terminal voltage 200 v? assume $R_a = 0.4$

$$375 \text{ rpm} \quad \text{field current} = \frac{200}{40} = 50 \text{ A}$$

$$\mathcal{E}_{mf} = 228.8 \text{ V}$$

$$I_a = \frac{228.8 - 200}{0.4} = 72 \text{ A}$$

$$I_{load} = 72 - 5 = 67 \text{ A}$$



I_f	0	2	3	4	5	6	7
V	9.4	115	150	202.5	228.8	248.8	265

Ex) dc shunt generator (table @ 600 rpm)

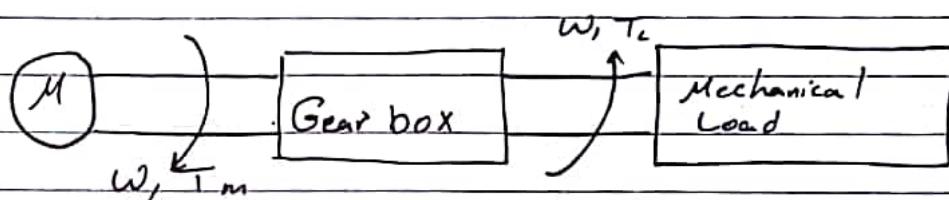
I_F	1	2	3	4	5	6	7	8
V	23	45	67	85	100	117	121	126

$R_f = 15 \Omega$, $V_f = 120 V$, load current ??

$$R_a = 0.02 \Omega$$

$$I_L = 292 A$$

What is the gear box?

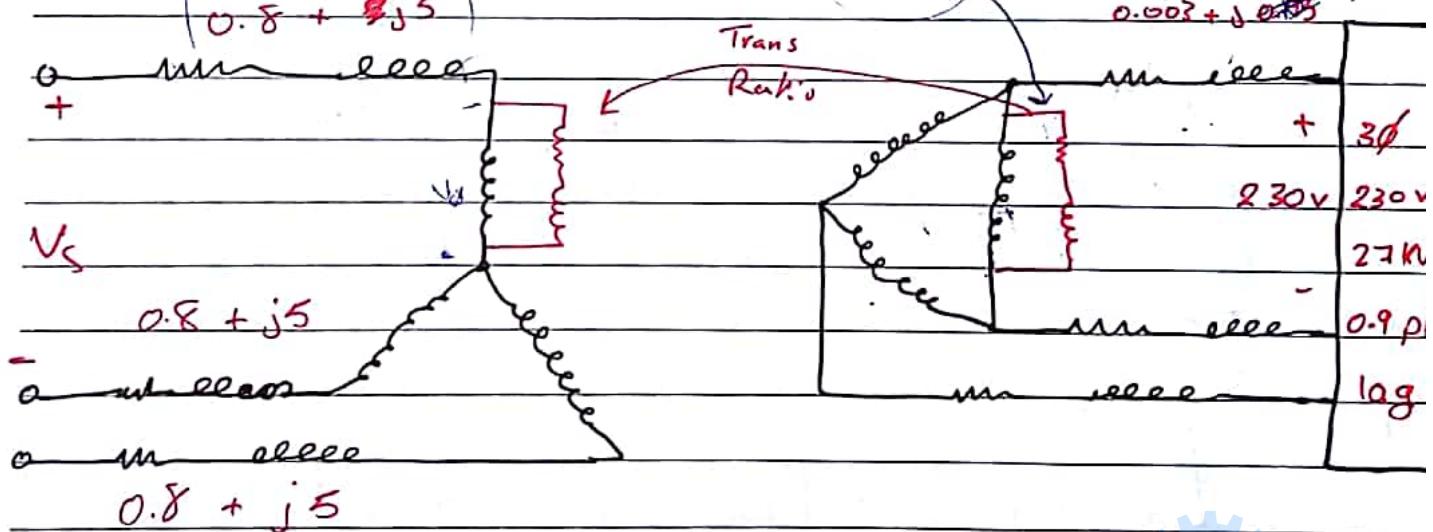


✳ Transformer

Ex) Three phase, 1φ (1330, 230 V), $\frac{Z_1}{1\phi \text{ LV}} = 0.12 + 0.25 j \Omega$

$$| 0.8 + j5 |$$

$$| 0.003 + j 0.005 |$$



$$V_{LL} = \sqrt{3} V_p, \quad V_{LL} = V_p$$

$$Z \text{ seen from source} = (0.003 + 0.015j) * \frac{(1330 + \sqrt{3})^2}{230} +$$

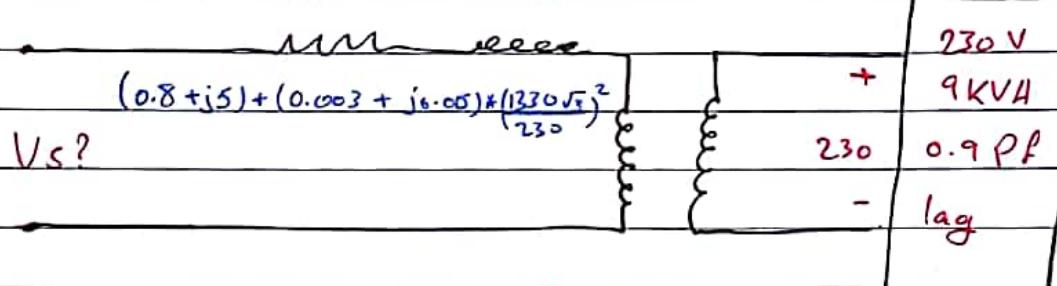
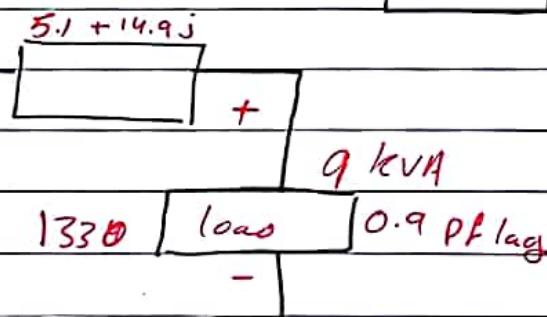
$$(0.12 + 0.25j) * \frac{(1330)^2}{230} + (0.8 + j5) = 51 + 14.9j \Omega$$

$$(3, 10) (1330 / 230) Y - \Delta$$

$$1330 * \sqrt{3} / 230 \text{ V}$$

Single phase

$$5.1 + 14.9j$$



$$I = 6.8 \angle -25.8^\circ$$

$$|V_s| = 1407 \text{ V}$$

Phase

$$|V_s| = 2434 \text{ V}$$

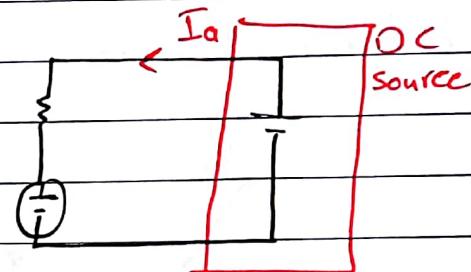
11/Dec/2017

Monday

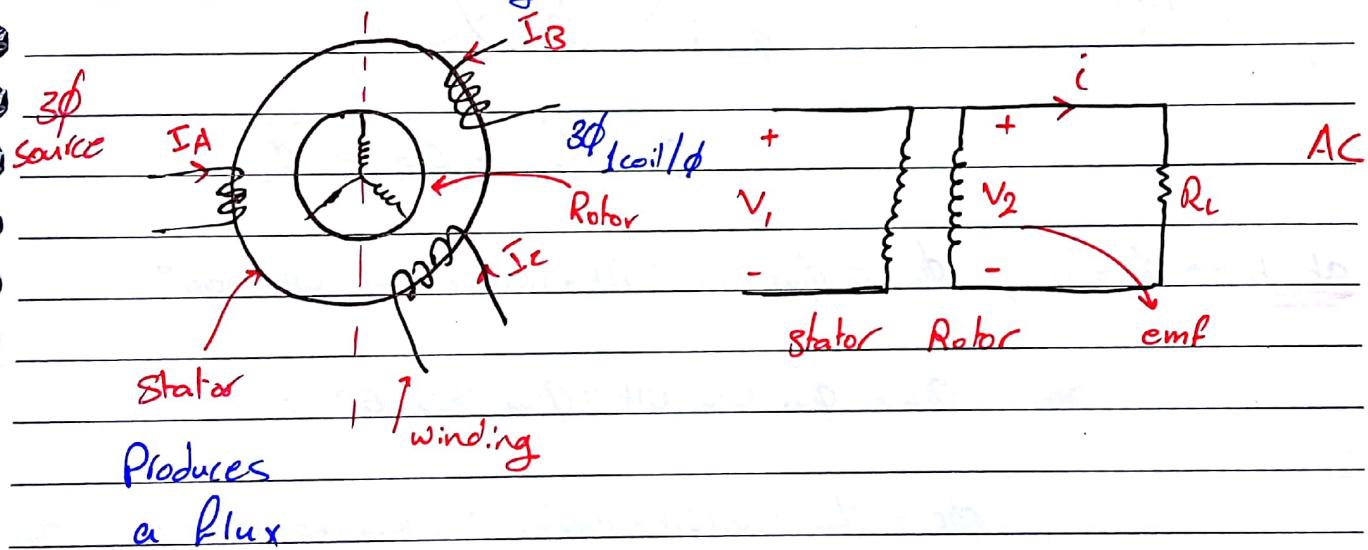
Induction motor (3Ø)

AC \rightarrow inexpensive / easy to maintain / reliable

DC motor \rightarrow power is conducted directly to the armature
easy controlled

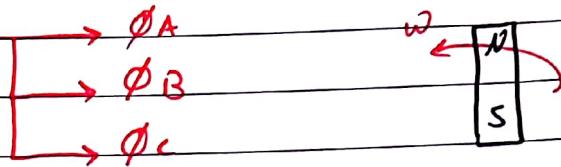


* Induction \rightarrow Rotating transformer



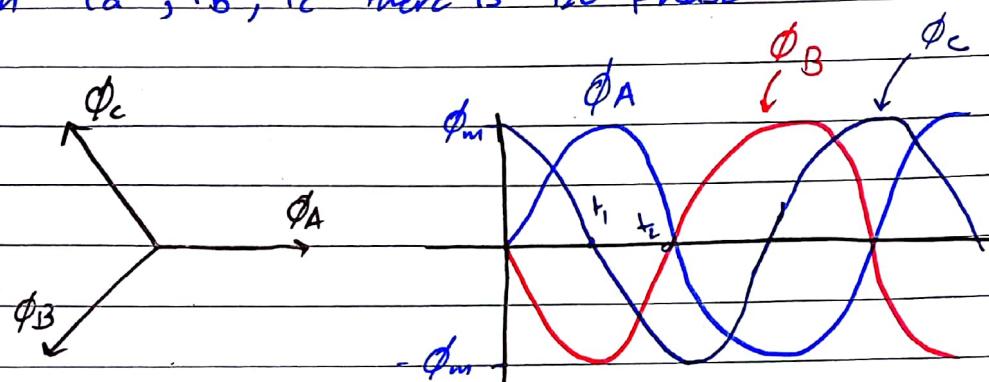
* Rotating Field

$$i \rightarrow \phi \Rightarrow \phi_{\text{resultant}}$$



* Stator has 3 winding (120° between each one)

* Between i_a, i_b, i_c there is 120° phase

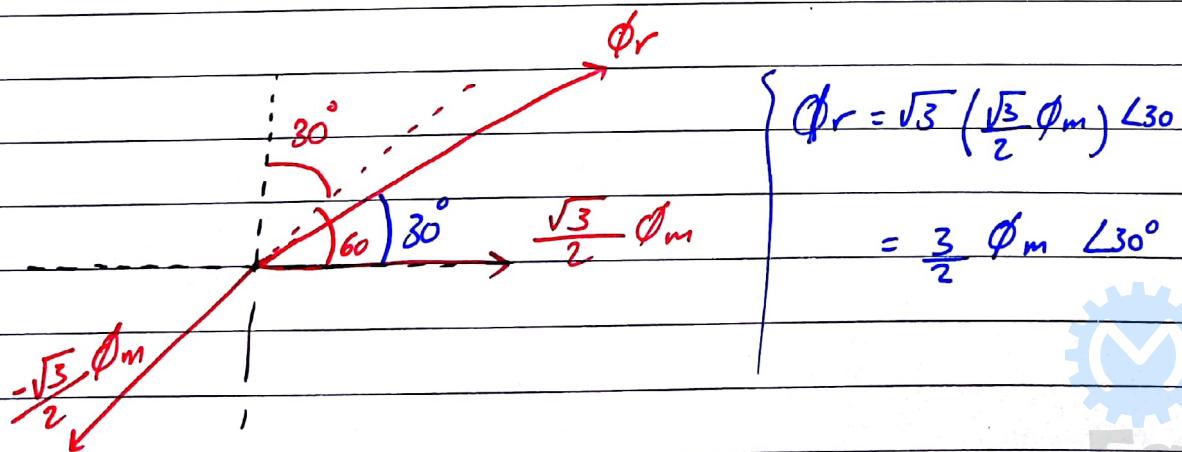


$$\phi_r = \vec{\phi}_a + \vec{\phi}_b + \vec{\phi}_c$$

at t_1 $\rightarrow \phi_c = 0, \phi_c = \phi_m \sin(\omega t + 120) = 0 \Rightarrow \omega t = 60^\circ$

$$\phi_a = \phi_m \sin \omega t = \phi_m \sin 60 = \frac{\sqrt{3}}{2} \phi_m$$

$$\phi_b = \phi_m \sin(\omega t - 120) = \phi_m \sin(60 - 120) = -\frac{\sqrt{3}}{2} \phi_m$$

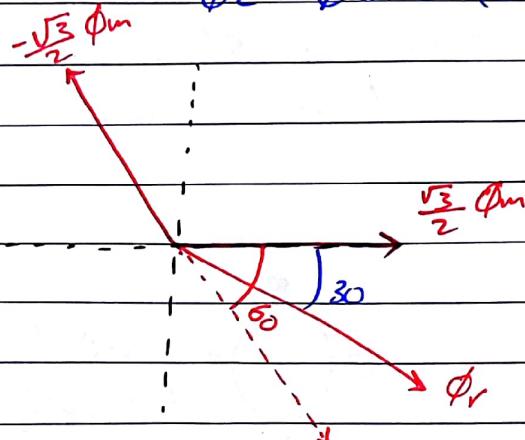


$$\left. \begin{aligned} \phi_r &= \sqrt{3} \left(\frac{\sqrt{3}}{2} \phi_m \right) \angle 30 \\ &= \frac{3}{2} \phi_m \angle 30^\circ \end{aligned} \right\}$$

$$\text{at } t_2 : \quad \phi_B = 0 \rightarrow \phi_B = \phi_m \sin(\omega t - 120^\circ) = 0 \Rightarrow \omega t = 120^\circ$$

$$\phi_A = \phi_m \sin \omega t = \phi_m \sin 120^\circ = \frac{\sqrt{3}}{2} \phi_m$$

$$\phi_C = \phi_m \sin(\omega t + 120^\circ) = \phi_m \sin(240^\circ) = -\frac{\sqrt{3}}{2} \phi_m$$

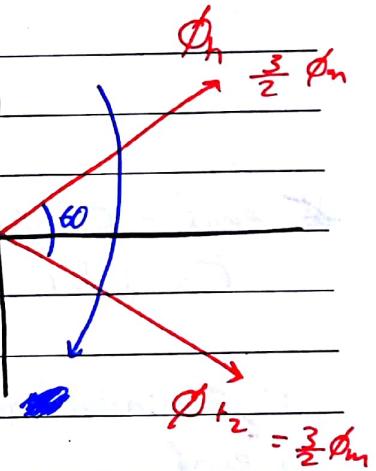


$$\phi_r = \phi_A + \phi_B + \phi_C$$

$$= \sqrt{3} \left(\frac{\sqrt{3}}{2} \phi_m \right) \angle -30^\circ$$

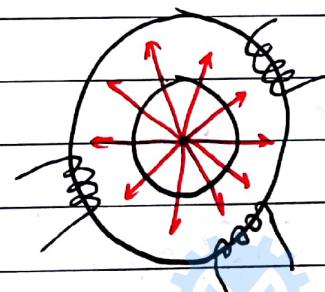
$$= \frac{3}{2} \phi_m \angle -30^\circ$$

* Rotating Field
(advantage of 3ϕ)

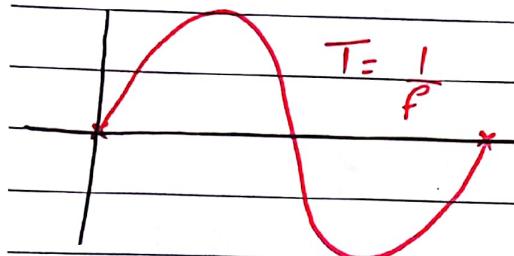


* Air gap Plus

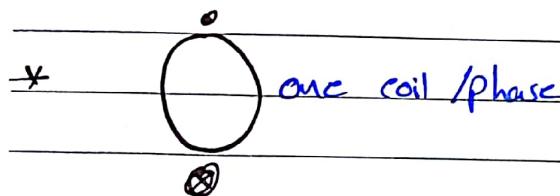
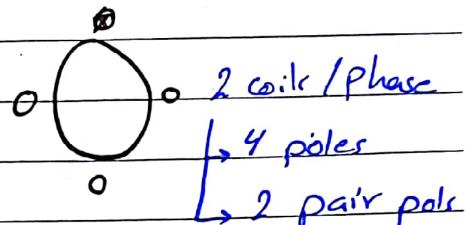
- constant Magnitude ($\frac{3}{2} \phi_m$)
- Angle is changing
- C.W



→ Speed of air gap Flux = 1 mechanical revolution (1/f sec)
 (Synchronous speed)
 $= P_{rev} / \text{sec}$
 $= 60 f \text{ rev/min}$



For 2 poles or 1 pair pole
 (North and south)



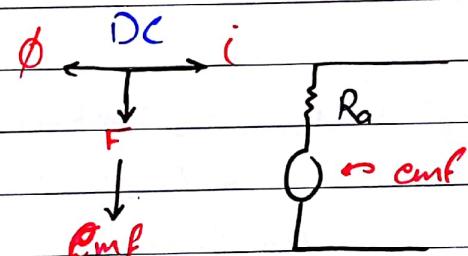
synchronous speed (Ns)

$$= \frac{60 f}{P_p} = \frac{120 f}{P_p}$$

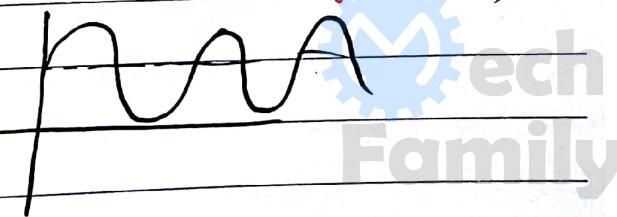
Number of Poles
 $= 2P_p$

~~emf = BLV~~ $\rightarrow \text{emf} = f(\phi, \Delta n)$
 $F = BLi$

- 1) ϕ (induction Rotating Flux)
- 2) emf
- 3) i
- 4) F, T



- 1) ϕ
- 2) $\text{Emf} = \Delta n$
- 3) $i = \frac{\text{emf}}{\sqrt{R_a^2 + (X_a)^2}}$
- 4) T average : $\tau \frac{d\omega_m}{dt} = T_m - T_L$



* Running operation

TL ^{Causes} → Speed Drop

Prove: Current will change to meet the torque

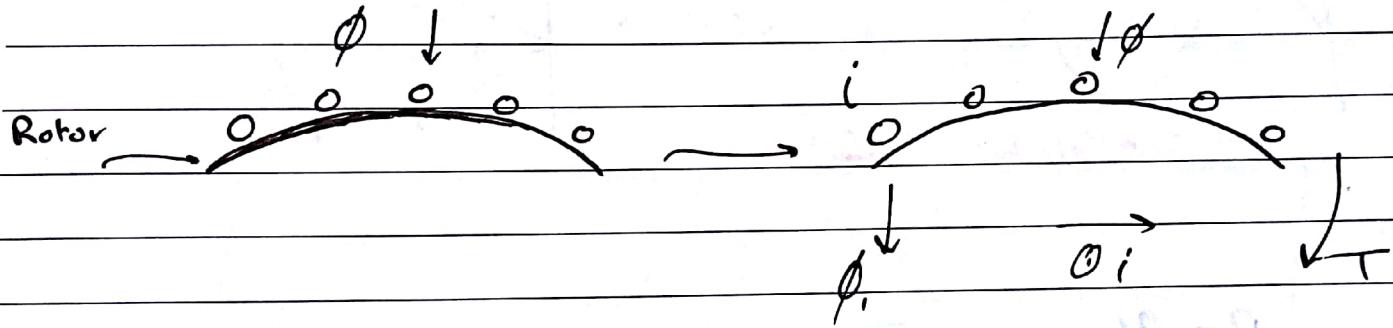
- emf ↑

- emf $\propto \Delta n \rightarrow \Delta n \uparrow$

- $\Delta n = N_s - N_m \rightarrow N_m \downarrow$

can't be zero

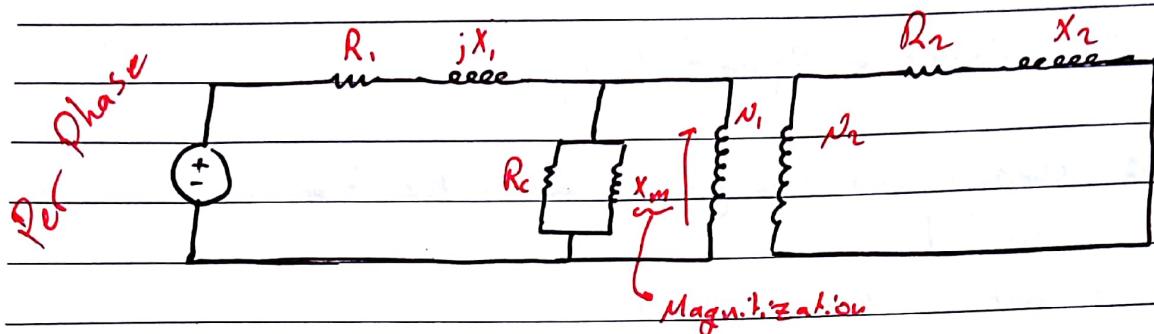
$$* \text{Slip (s)} = \frac{\Delta n}{N_s} = \frac{(N_s - N_m)}{N_m} \leftarrow \begin{array}{l} \text{Rotor speed} \\ \text{Rotating field speed} \end{array}$$



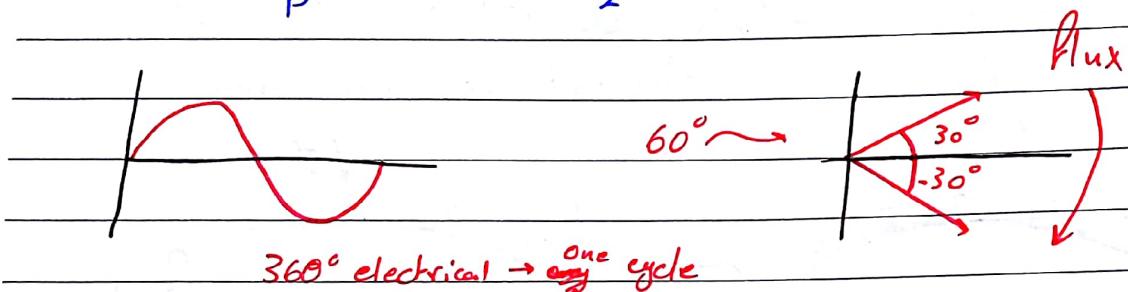
13/12/2017

Wednesday

Equivalent circuit



$$N_s = 120 P, \theta_e = \frac{P}{2} \theta_m, P=2$$



$$P = 2f \rightarrow 720 \text{ electrical one cycle}$$

\Rightarrow Number of poles increase; it will have slower speed

$I_m \sim$ stationary, stand still

$$\frac{E_2}{E_1} = \frac{N_2}{N_1}$$

* ϕ_2

* $E_2 = \text{emf} / \text{at stand still}$

$$\text{emf} = BLV$$

Rotor

i_i
 T

* Running ϕ $E_2 \propto N_s$

$$E_r \propto N_s - N_m$$

$$\frac{E_r}{E_2} = \frac{N_s - N_m}{N_s} = \frac{s}{s - \text{slip}}$$

$$\Rightarrow E_r = s E_2$$

* Stand still ($s=1$) $\Rightarrow E_r = E_2$

f_r = Frequency of rotor current

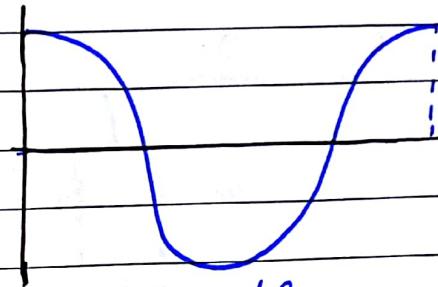
* when we move with the Rotor, we will see the difference in speed

Relative speed

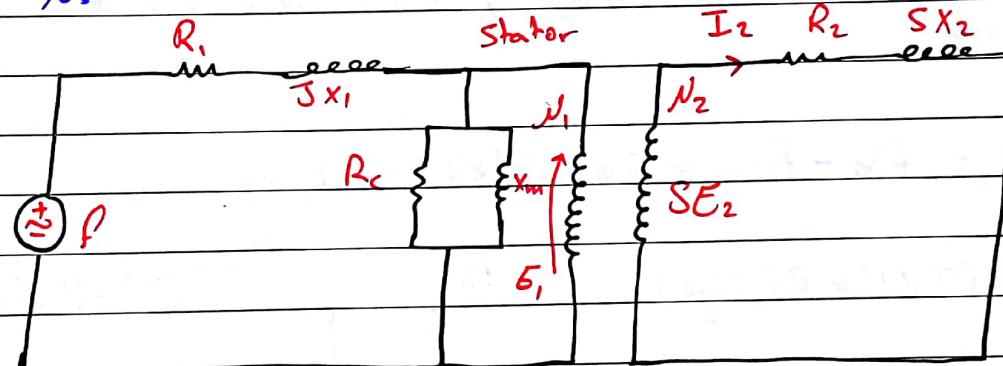
$$f_r = ?? \rightarrow \frac{120}{P} f_r = N_s - N_m$$

↑
synchronous speed
↓
Mechanical speed

Relative speed



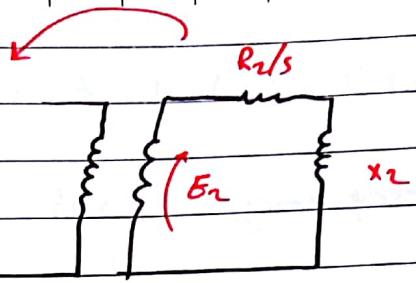
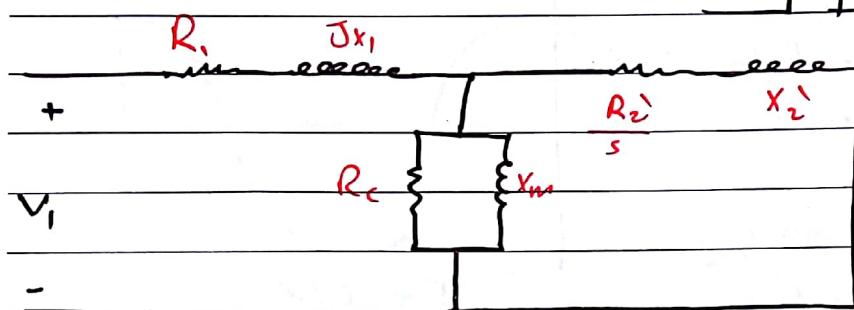
$$s = \frac{N_s - N_m}{N_s} \Rightarrow 120 f_r = s N_s \rightarrow \frac{120}{P} f_r = s \Rightarrow f_r = s f$$



after adjusting

$$X = \omega r L = 2\pi f_r L = 2\pi s f L = (2\pi f L) s \Rightarrow f_r = s f$$

$$I_2 = \frac{SE_2}{R_2 + j s X_2} = \frac{E_2}{R_2 + j X_2}$$

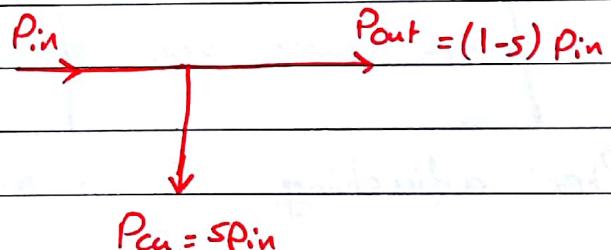


$$\frac{R_2'}{s} = \frac{R_2}{s} \times \left(\frac{N_1}{N_2}\right)^2, \quad x_2' = x_2 \times \left(\frac{N_1}{N_2}\right)^2$$

$$P_{in} \text{ Rotor} = 3 \times (I_2')^2 \times \frac{R_2'}{s}, \quad P_{cu} = 3 \times (I_2')^2 R_2'$$

$$P_{output} = P_{in} - P_{cu} = 3 \times (I_2')^2 \times \left(\frac{R_2'}{s}\right) \left(\frac{1-s}{s}\right)$$

$$* P_0 = 3 \times (I_2')^2 \times R_2' \left(\frac{1-s}{s}\right)$$



$$* \eta = \frac{P_0}{P_{in}} - \frac{(1-s)}{s} P_{in} = (1-s) = \eta$$

*	1410 rpm	1490 rpm	Mechanical speed
S	s_1	s_2	$\frac{N_r}{P} = \frac{120 R}{P} = 120 (50)$

P	2	4
N_r	300	1500

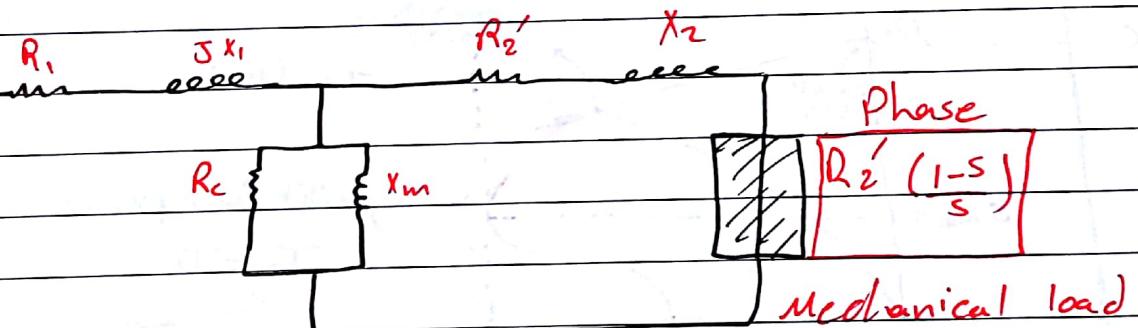
we assume $N_s = 1500$

Since 1490 rpm is closer ~~than~~ to 1500 rpm

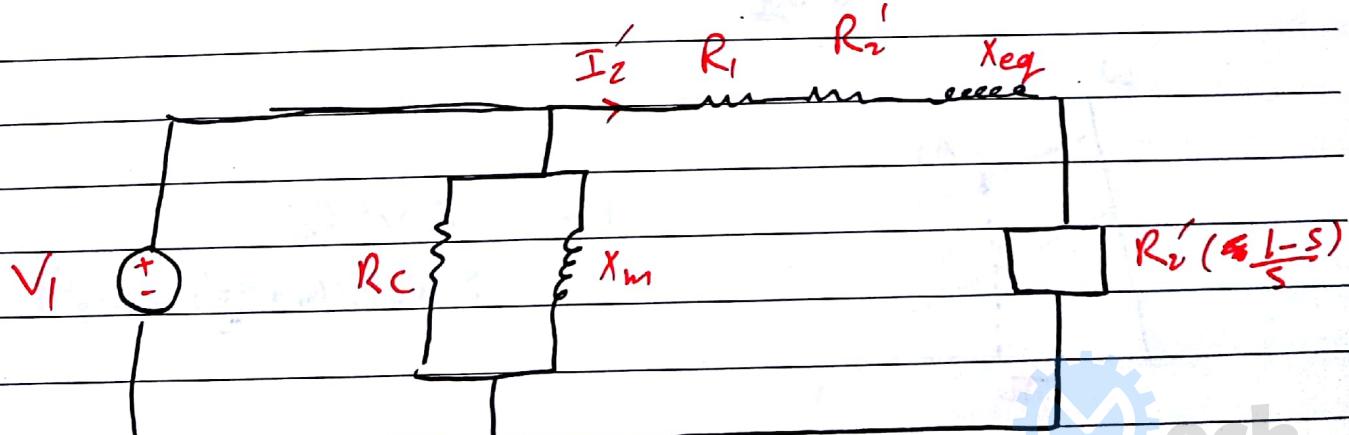
$$\Rightarrow \boxed{s_1 > s_2}$$

$$\boxed{m_1 < m_2}$$

$$* \frac{R_2'}{s} = R_2' + R_2' \left(\frac{1-s}{s} \right)$$



Multiply by 3 because 3Ø



Torque - Speed C/s Im:

$$\text{Torque} : P = TW$$

$$T = \frac{P}{\omega} = 3 \frac{(I_i)^2 (L_i) \left(\frac{1-s}{s}\right)}{\omega}$$

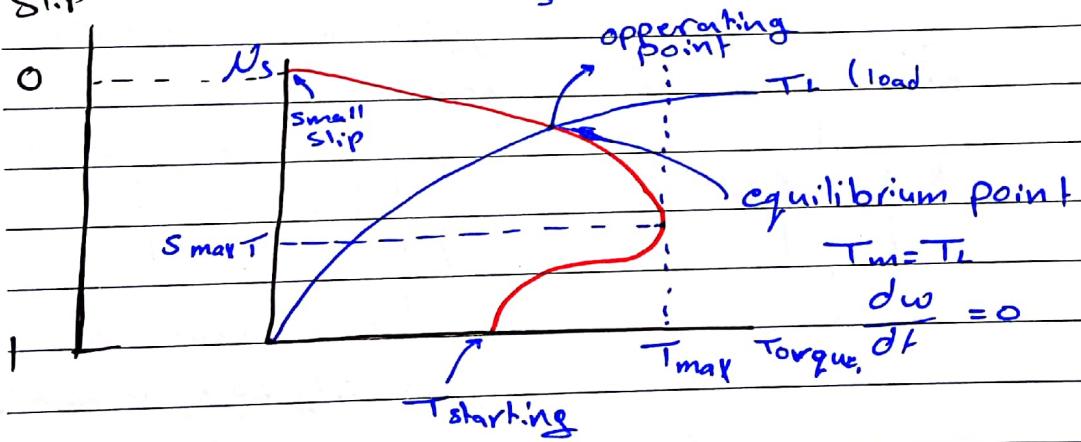
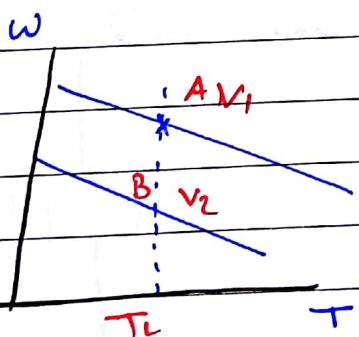
$$w = ws(1-s)$$

$$\Rightarrow I_2' = \frac{V}{\sqrt{\left(\frac{R_1 + \frac{R_2}{s}}{s}\right)^2 + (x_{eq})^2}}$$

$$-V_1 + I_2' R_1 + I_2' x_{eq} s + I_2' R_2' + I_2' (R_2' \frac{1-s}{s})$$

$$\Rightarrow T = \underline{3 V^2 R_2'}$$

$$SWS \left((R_i + \frac{R_2'}{S})^2 + x_{eq}^2 \right)^{\frac{1}{2}}$$



$$T = \frac{3V^2 R_2'}{5ws \left[\frac{(R_1 + R_2')^2}{2} + x_{eq}^2 \right]}$$

* 3 Regions

- at large slip : $x_{eq} \gg \frac{R'_i}{s} + R_i$

$$T = \frac{3 \nu^2 R'_i}{s w_s x_{eq}^2}, \quad T_{St.} = \frac{3 \nu^2 R'_i}{w_s x_{eq}^2} \quad \text{at } s=1$$

- at small slip : $\frac{R'_i}{s} \gg R_i, \quad \frac{R'_i}{s} \gg x_{eq}$

* Stability (Need to be avoided)

$$\tau \frac{dw_m}{dt} = T_m - T_L$$

$$w \uparrow \Rightarrow T_m \downarrow \Rightarrow \frac{dw_m}{dt} \text{ (-ve) de-acceleration}$$

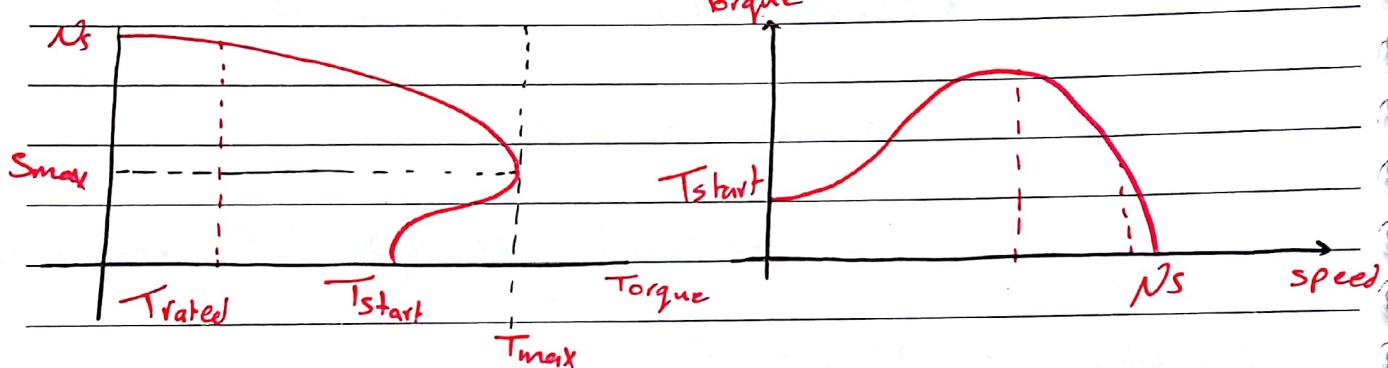
per phase : $T = \frac{3 \nu^2 s}{w_s R'_i}$

Thursday
14/Dec/2017

$$* S_{max} = \frac{R_2'}{\sqrt{R_1^2 + X_{eq}^2}}$$

$$T_{max} = \frac{3V^2}{2w_c [R_1 + \sqrt{R_1^2 + X_{eq}^2}]}$$

$$T_d = \frac{3V^2 R_2'}{speed \cdot 2w_c [(R_1 + \frac{R_2'}{s})^2 + X_{eq}^2]}$$



If we used load with Torque higher than T_{st}
it won't work

3 cases

* large slip

$$(R_1 + \frac{R_2'}{s})^2 \ll x_{eq}^2$$

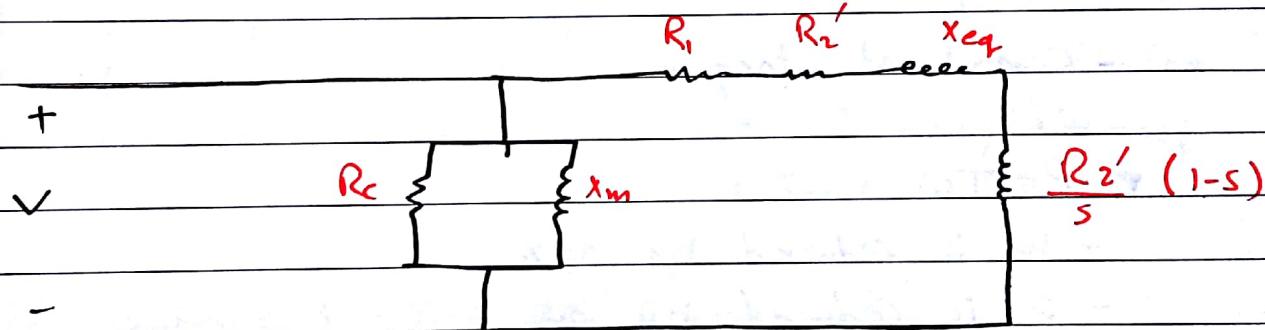
$$T_d = \frac{3v^2 R_2'}{s w_r x_{eq}^2}$$

$$s=1 \Rightarrow T_d = \frac{3v^2 R_2'}{w_s x_{eq}^2}$$

* small slip

$$R_1 \ll \frac{R_2'}{s} \gg x_{eq}$$

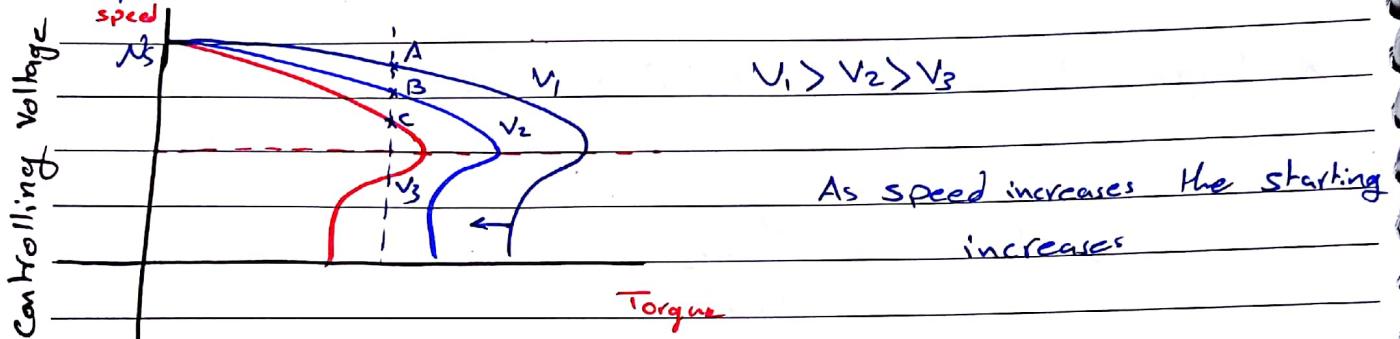
$$T_d = \frac{3v^2 s}{w_s R_2'}$$



at maximum torque $T_{max} = \frac{3v^2}{2w_s [R_1 + \sqrt{R_1^2 + x_{eq}^2}]}$

$$s_{max} = \frac{R_2'}{\sqrt{R_1^2 + x_{eq}^2}}$$

Speed control IM (Induction Motor)



$$\text{Power} = TW$$

Fan \rightarrow variable Torque $\propto \omega^n$

- ω is reduced by 50%
- T is reduced by 0.25
- P is reduced by $\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$

- constant torque

$\omega \downarrow$

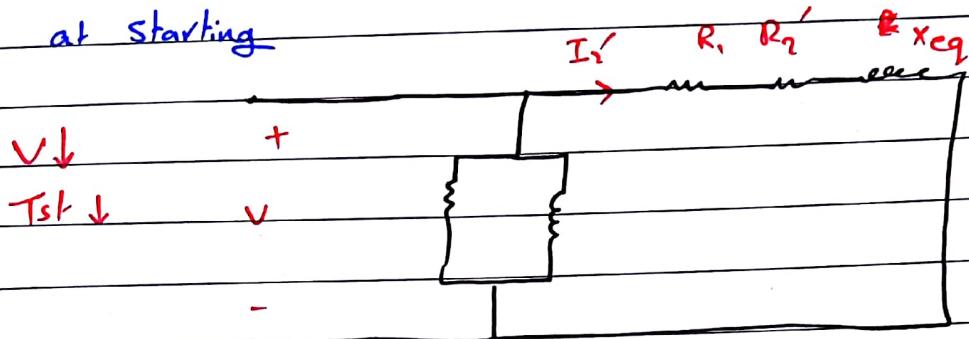
$$\nabla P = TW$$

- ω is reduced by 50%
- P is reduced by 0.5

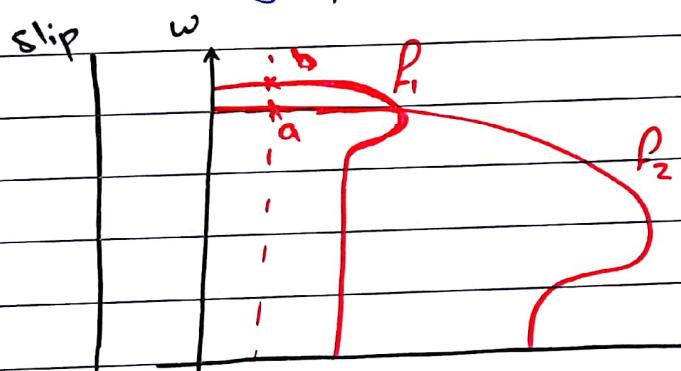
* controlling speed by adjusting starting voltage

10% reduction in voltage \rightarrow 19% reduction in torque

at Starting



* controlling speed by adjusting Frequency



$$P_1 > P_2, \quad s_{max} = \frac{R_2'}{\sqrt{R_2'^2 + X_{eq}^2}}$$

$$N_s = \frac{120F}{P}$$

$$T_{St} = \frac{3V^2 R_2}{s}$$

$$W_s X_{eq}$$

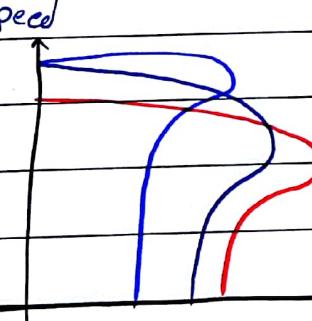
* $P \uparrow \rightarrow X_{eq} \uparrow \rightarrow s_{max} \downarrow$

$\propto T_{St} \downarrow, T_{max} \downarrow$

* V/f control: $V = 4.44 NAP B_{max} f \propto P$

$\frac{V}{f}$ constant \rightarrow constant flux \rightarrow constant torque

$$T_{max} = \frac{3V^2}{2W_s [R_2 + \sqrt{R_2^2 + X_{eq}^2}]} \quad X_{eq} \gg R_2$$



$$T_{max} = \frac{3V^2}{2W_s X_{eq}} \quad T_{max} \propto \left(\frac{V}{f}\right)^2$$

$$\left| \begin{array}{l} V \uparrow \rightarrow I_{St} \uparrow \\ f \uparrow \rightarrow T_{St} \downarrow = \frac{V}{f} \\ X \uparrow \end{array} \right.$$

18/Dec/2017

Monday

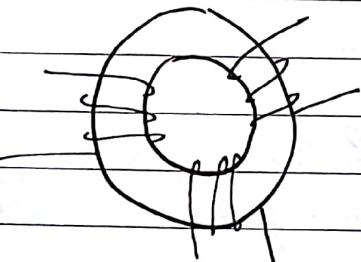
* Synchronous machines

→ Asynchronous machines "induction"

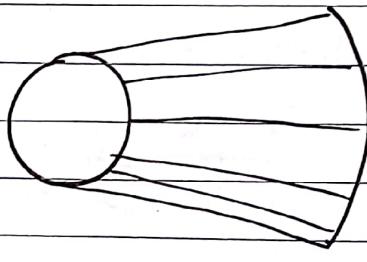
$\omega_s > \omega_m \rightarrow \text{Slip}$

→ Synchronous machines

$$\omega_s = \omega_m$$



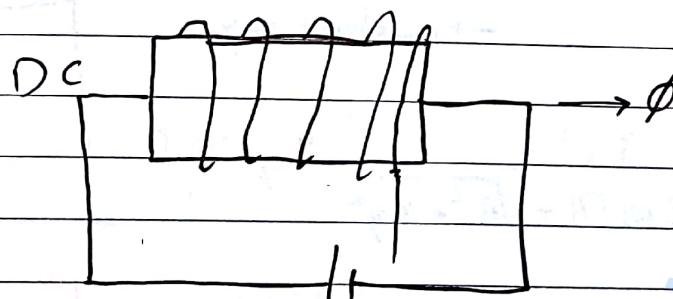
Stator



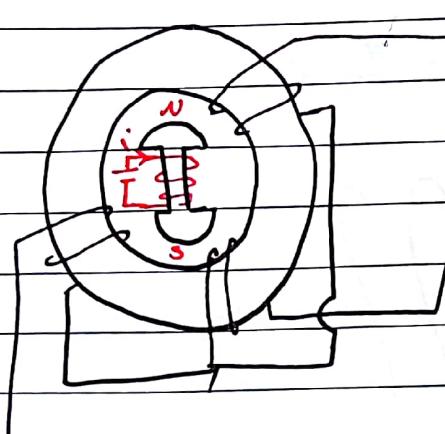
Rotor (Squirrel Cage)

* Same stator 3Ø AC "motor"

Rotor → Permanent magnet
→ Electro magnet



Synchronous Generator



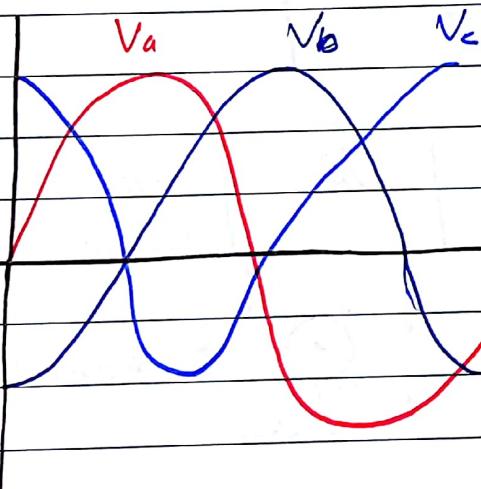
Gr.ij

Motion of

Rotor

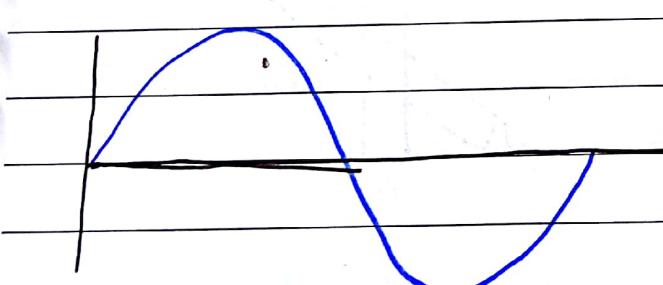
by gas turbine

Moving Rotor $\rightarrow \frac{d\theta}{dt}$ [stator] $V = \frac{N \phi \theta}{dt}$



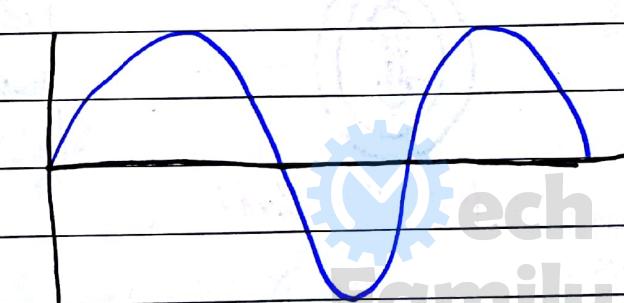
$$* f_s = \frac{120f}{P}$$

$$\theta_e = \frac{P}{2} \theta_m$$



one cycle Mechanical

$$P=2$$



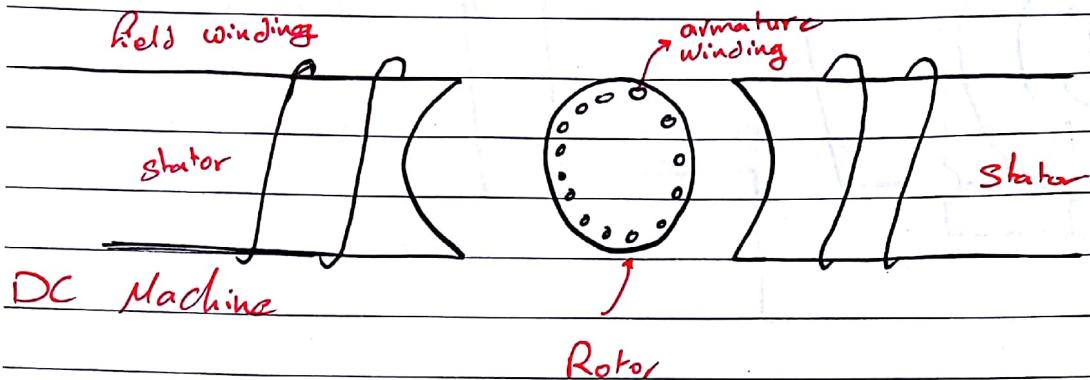
one cycle Mechanical

$$\theta_e = 2 \theta_m$$

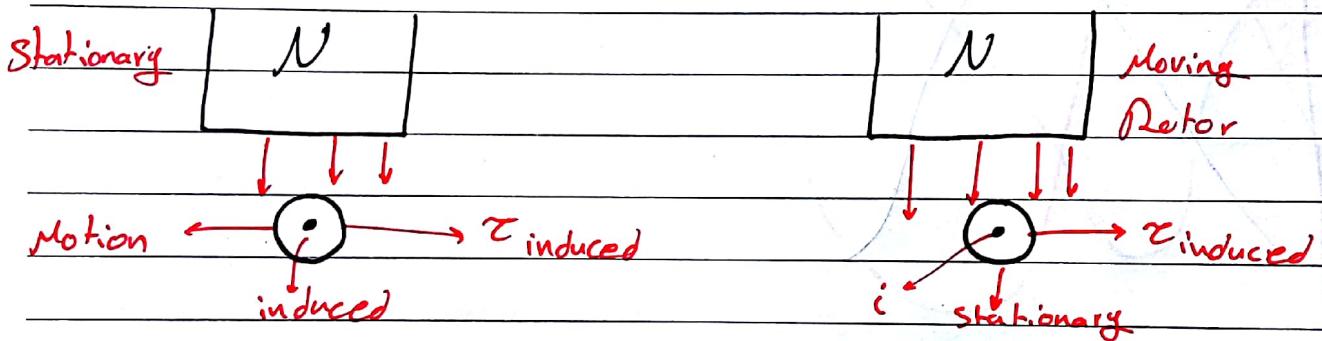
$$P=4$$

$$* f = 50 \text{ Hz}, P = 2 \rightarrow N_s = 3000 \text{ rpm}$$

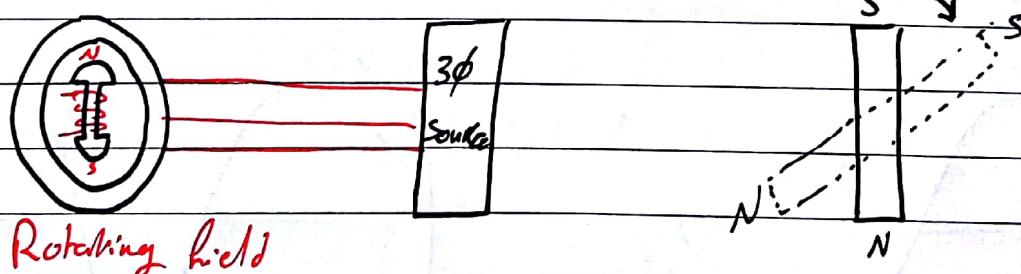
* we use slip rings to connect power to the rotor



	DC Machine	Synchronous Machine
Stator	Field winding	Armature winding
Rotor	Armature winding	Field winding



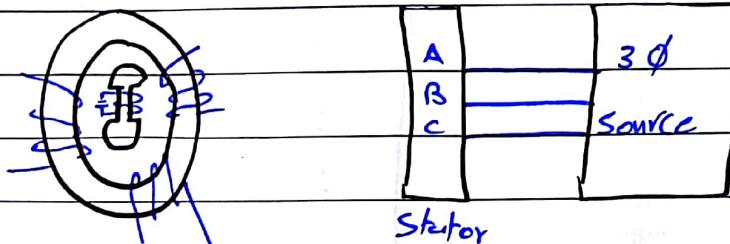
* Difference Between Synchronous and Induction speed



* As Flux rotating Rotor will start following Flux at the same speed

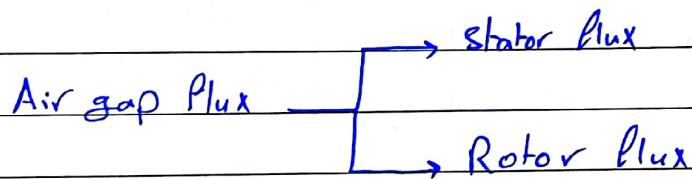
Wednesday
20/Dec/2017

Synchronous Motor

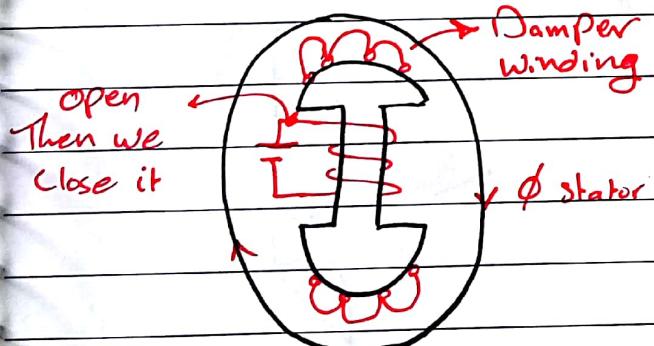


Rotating field \rightarrow Speed = $N_s = \frac{120F}{P}$ $N_m = N_s$

④ Starting (There is a problem in starting)



in starting we should increase the rotor speed (by adding a prime mover or by using induction motor)



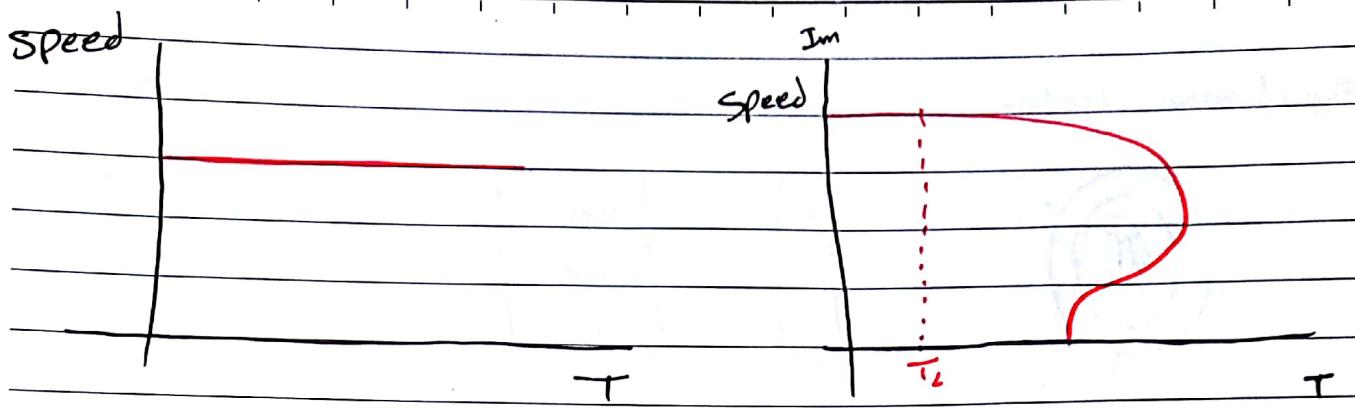
① Rotating field ϕ stator

② damper winding
 $i \rightarrow T \rightarrow$ rotor speed \uparrow

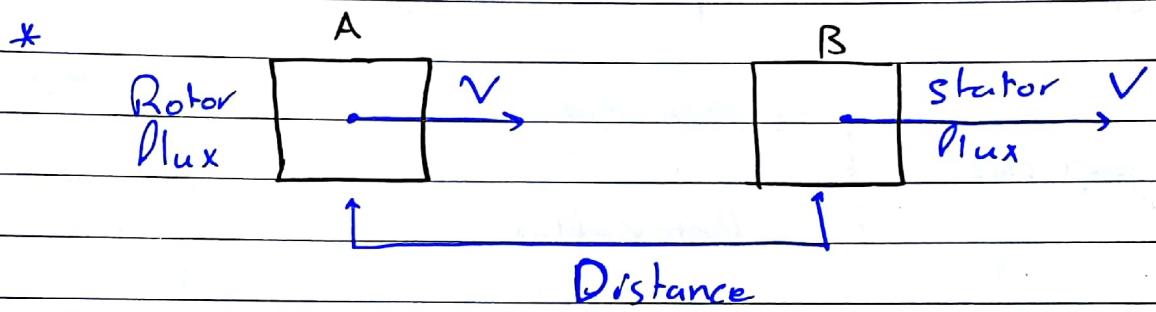
at starting $N_s = 3000$ rpm, $N_m = 0$

$$P = 2, N_s = \frac{120F}{P}$$

* low frequency $\rightarrow f = 0.1$ Hz $\Rightarrow N_s = 6$ rpm
 increase P gradually



Synchronous Motor



There is a phase shift between them, as the distance increase the phase increases (angle phase δ)

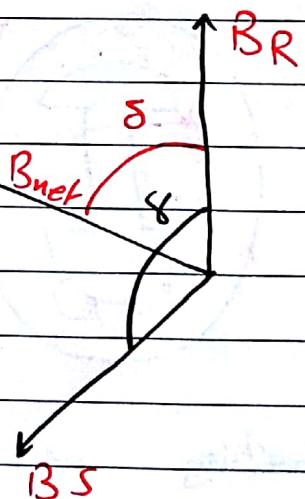
$$* T = K |B_R| |B_s| \sin \delta$$

$$= K |B_R| \times |B_s|$$

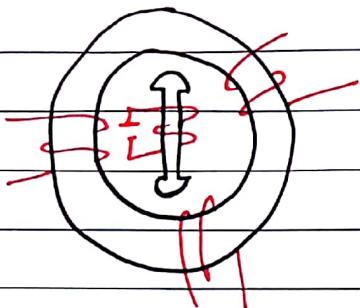
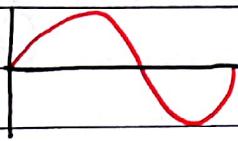
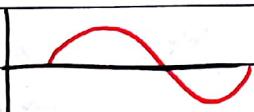
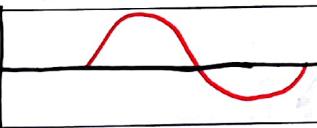
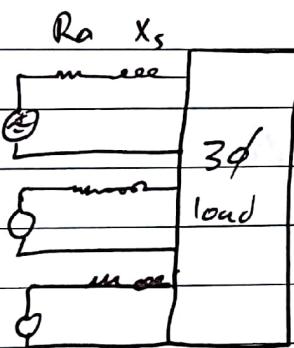
$$T = \vec{B_R} \times (\vec{B_{net}} - \vec{B_R})$$

$$T = \vec{B_R} \times \vec{B_{net}}$$

$$T = B_R B_{net} \sin \delta$$

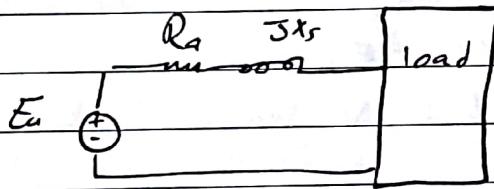


* Equivalent Circuit of Synchronous Generator



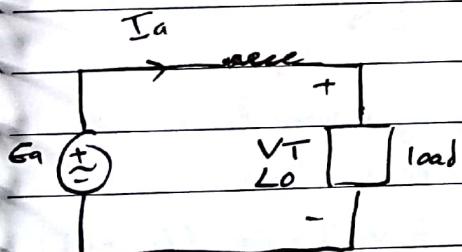
R_a = Armature Resistance

X_s = Synchronous Resistance



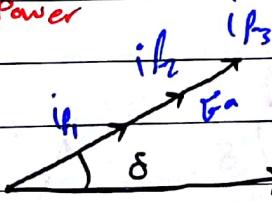
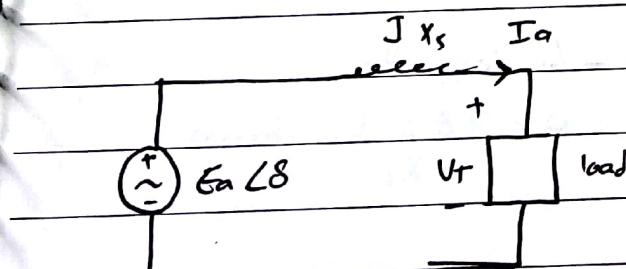
$$E_a = K \phi \omega$$

$$E_a - I_a (R_a + jX_s) = V_T$$



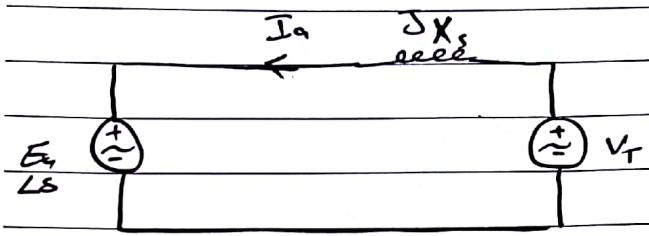
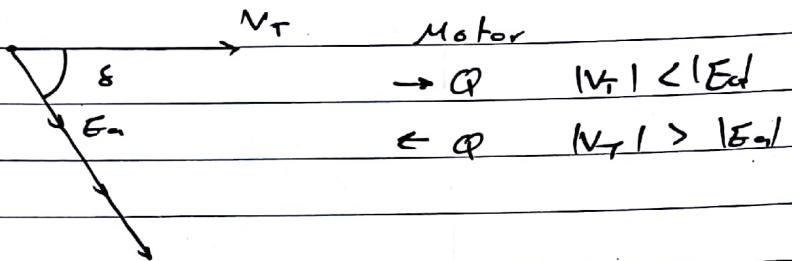
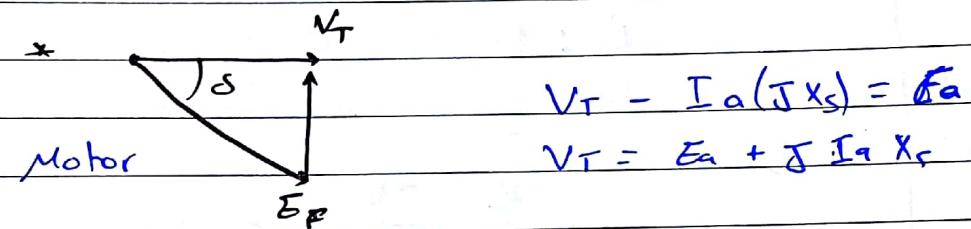
$$S = P + jQ$$

Real Power Reactive Power

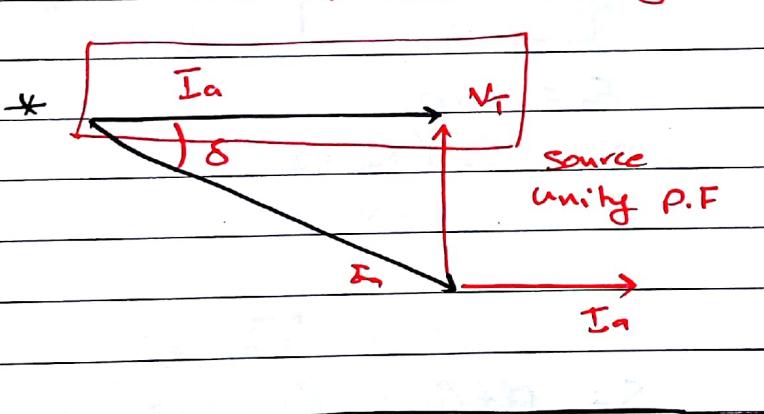
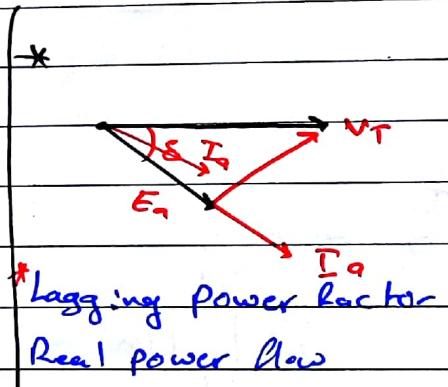


$|E_a| > |V_T| \rightarrow$ Generator Export Q

$|E_a| < |V_T| \rightarrow$ Generator Import Q

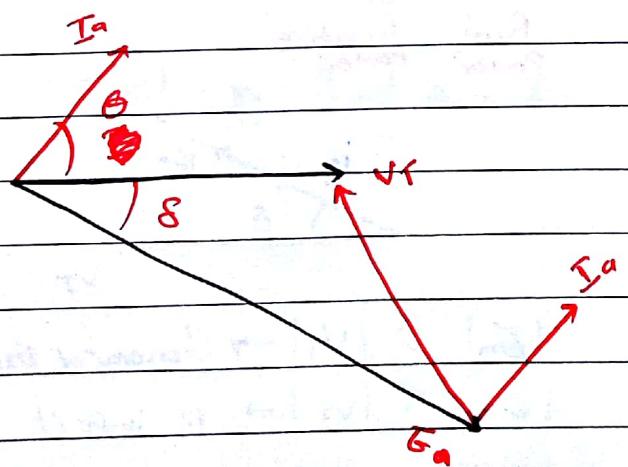


L: V leads I by 90°



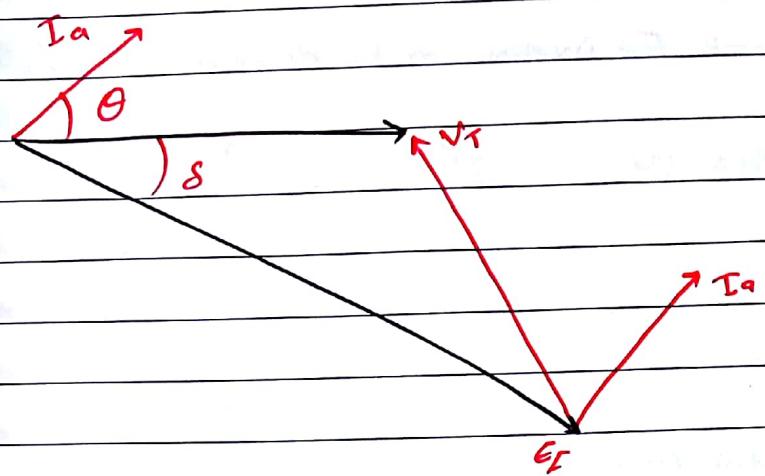
$$P = 3 V_T I_a \cos (L V - 2 \delta)$$

$$P = 3 V_T I_a \cos \theta$$



- Leading PF

$$P = 3 E_a V_T \sin \delta$$



Phasor diagram

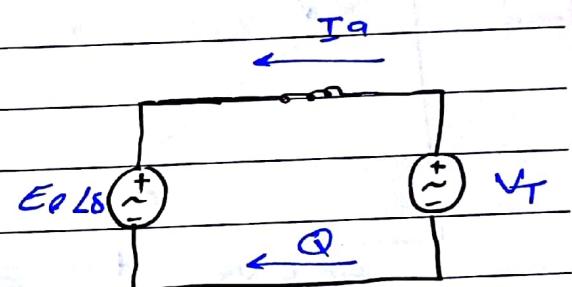
I_a leads V_T

injects reactive power

$$Q = 3 V_T I_a \sin \theta$$

$$E_F \cos \delta - V_T = I_a X_s \sin \theta$$

$$E_F \cos \delta - V_T = \frac{Q}{3 V_T} X_s$$

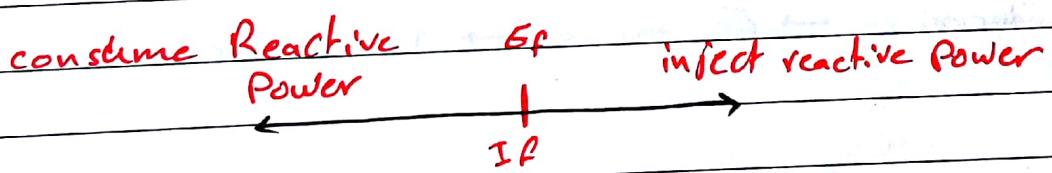


$$\Rightarrow Q = \frac{3 V_T}{X_s} (E_F \cos \delta - V_T)$$

No load ($\delta = 0$) $\Rightarrow E_F > V_T \rightarrow Q (+ve)$ inject Q

$E_F = V_T \rightarrow$ unity PF $Q = 0$

$E_F < V_T \rightarrow$ consume Q

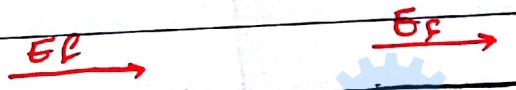


I_a No load

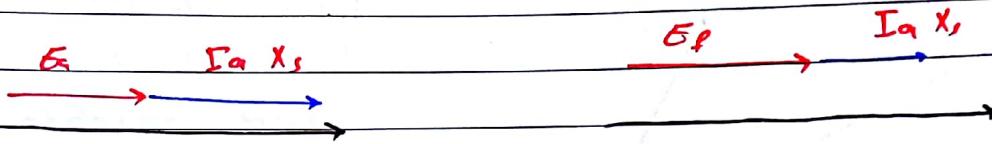
a) $Q = 0$ unity P.F

$I_a = 0$

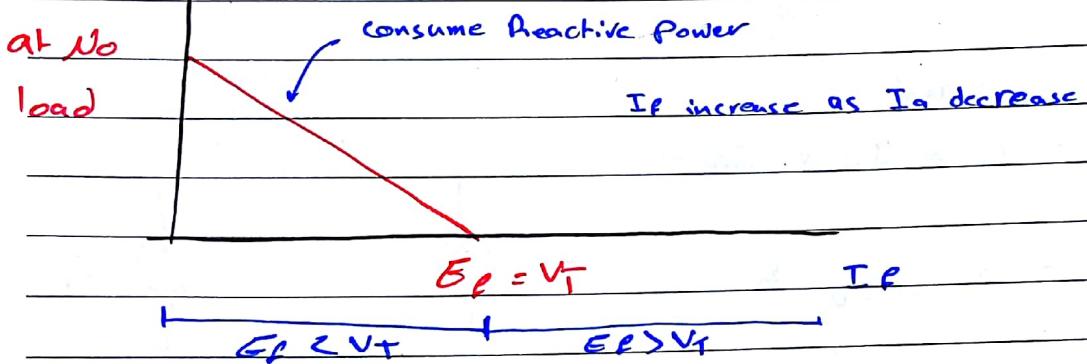
b) Motor consume Reactive Power



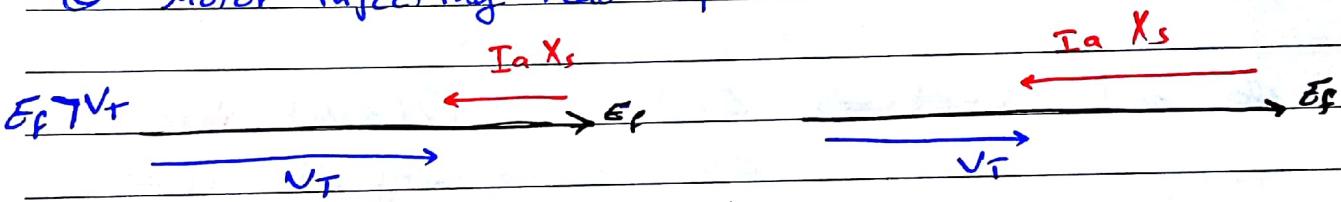
as I_F increases $\rightarrow E_F$ increase $\rightarrow I_a$ decrease ($T_a X_s \downarrow$)



I_a



② Motor injecting reactive power



as I_F increase $\rightarrow E_F$ increase $\rightarrow I_a$ increase

at No load

injecting Reactive power

$$E_F < V_T \quad | \quad E_F > V_T$$

$$E_F = V_T$$

I_a

* load $\Rightarrow \delta$

$$Q=0 \rightarrow E_F \cos \delta - V_T = 0 \Rightarrow \frac{V_T}{\cos \delta} = E_F$$

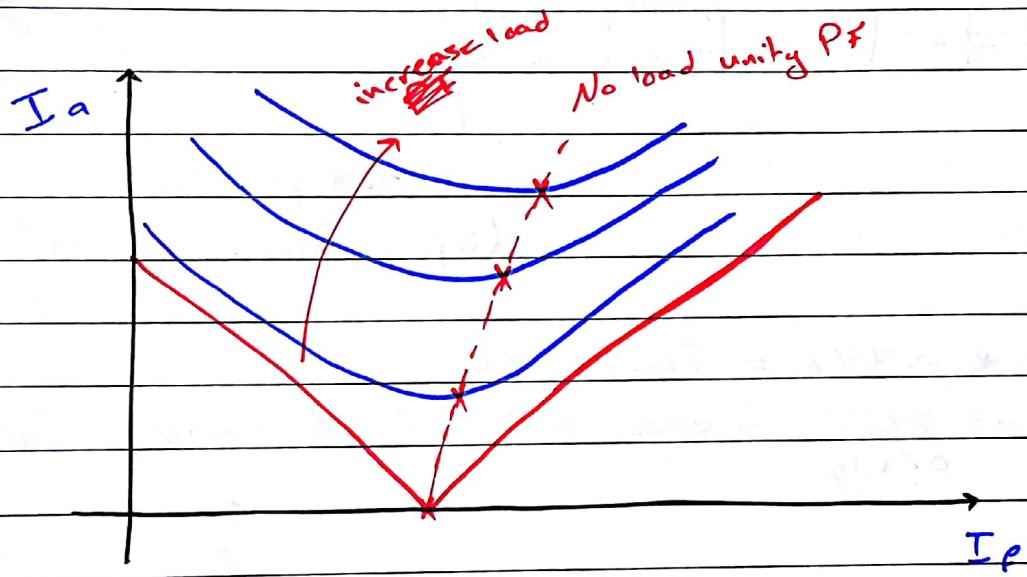
* No load

- unity P.F
- zero reactive
- $E_{F1} = V_T$
- $I_{F1} = 0$

* load

- unity P.F
- $E_F \cos \delta = V_T$
- $E_{F2} = V_T / \cos \delta$

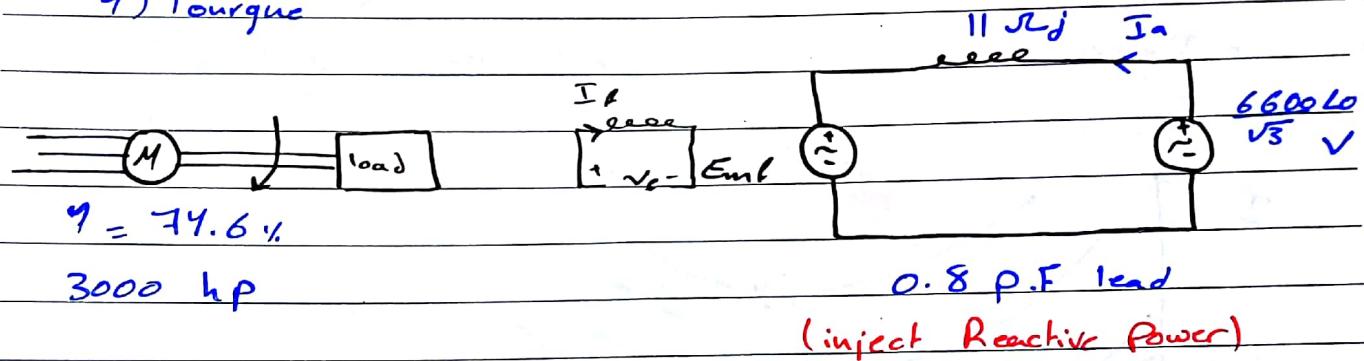
$$E_{F2} > E_F, I_{F2} > I_{F1}$$



Ex) 3000 hp, 6600 V, 3φ, Y connected synchronous motor operates at full load at a leading P.F of 0.8 and efficiency $\eta = 74.6\%$.

$$X_s = 11 \Omega$$

- 1) apparent power per phase
- 2) line current
- 3) Emf
- 4) Torque



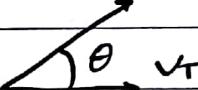
$$-P_o = 3000 * 0.746 = 22.38 \text{ KW}$$

$$-P_i = \frac{P_o}{\eta} = \frac{2238}{0.746} = 3000 \text{ KW} \quad (3\phi \text{ power})$$

$$P_{in} = \sqrt{3} V_L I_L \cos \phi$$

$$3000 = \sqrt{3} * 6600 * I_L \cos(0.8) \Rightarrow I_L = 328 / \cos^{-1} 0.8 = 328 / 36.9 \text{ A}$$

I_a



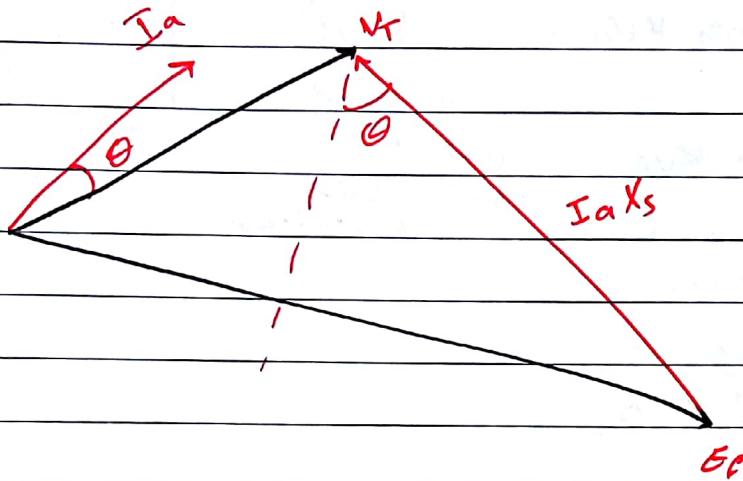
$$Emf = V_T - I_a (11j)$$

$$= \frac{6600 L0}{\sqrt{3}} - (328 L 36.9)(11j) = 1 \quad 1 \quad L$$

$$\Rightarrow Emf = 6636.8 L - 26.8$$

Real power

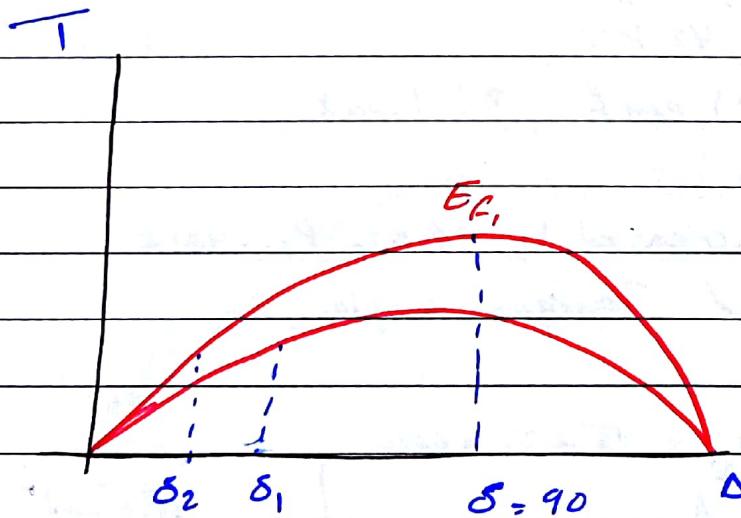
$$P = 3 V_T I_a \cos \theta$$



$$I_a \sin \theta = I_a X_s \cos \theta$$

$$I_a \cos \theta = E_F \sin \theta$$

$$P = \frac{3 V_T E_F \sin \theta}{X_s}, \quad P = \frac{3 V_T E_F \sin \theta}{X_s}$$



$$T = \frac{P}{\omega_s}$$

$$T = \frac{3 V_T E_F \sin \theta}{X_s \omega_s}$$

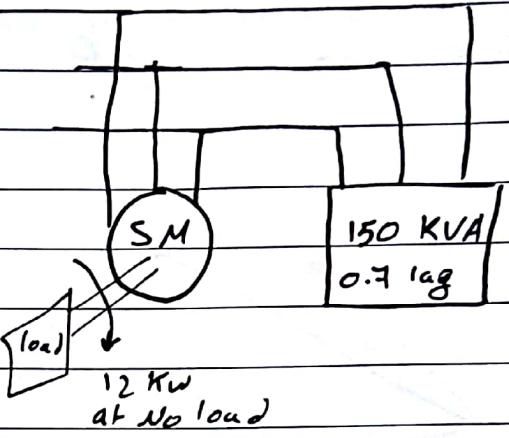
Ex) Calculate the (SM) rating to bring the overall P. F to unity

$$P = 150 * 0.7 = 105 \text{ kW}$$

$$Q = \sqrt{(150)^2 - (105)^2} = 107 \text{ kVA}$$

$$SM | = 12 \text{ kV} - j107 \text{ kVA}$$

Output injecting Reactive Power



at unity $P.F \rightarrow Q = 0$

$$\Rightarrow Q_{sm} - Q_{load} = 0$$

$$|S_M|_{\text{rating}} = \sqrt{(12)^2 + (10\sqrt{2})^2} = 107.67 \text{ kVA}$$

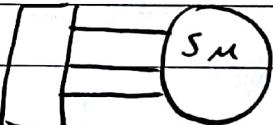
→ the SM works 0.5 capacitor "condenser"

Ex) $X_s = 252$ /phase

6600 V, 50 Hz, 6 poles

0.8 P.F lag, 400 KW

Find: 1) I_L , 2) emf , 3) T_{max}

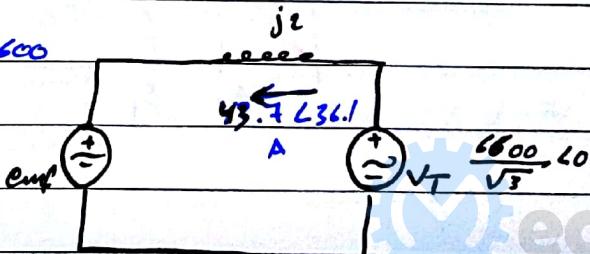


4) E.M.F is increased by 25%, $P_m = 400 \text{ kW}$

Find Torque angle

$$1) S = \sqrt{3} V_L I_L \Rightarrow \frac{400}{0.8} = \sqrt{3} * I_L * 6600$$

$$\Rightarrow I_L = 43.7 L-36.1 A$$



$$\mathcal{E} \text{ Emf} = V_T - I_a (j_2) = 3758.6 \text{ } \underline{\text{A}}$$

V_T leads

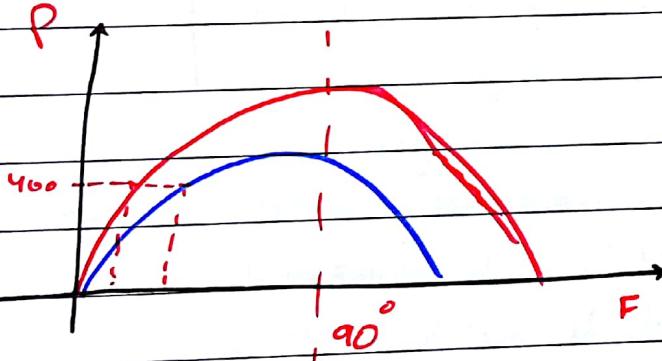
$$\frac{\text{emf}}{L_L} = 65$$

$$3) T_{120f} = \frac{3 V_T \text{ emf}}{w_s x_s} \sin \delta$$

$$T_{\max f} = 3 \left(\frac{6600}{\sqrt{3}} \right) * 3758 \sin 90^\circ = 205.15 \text{ kN.m}$$

$$\Rightarrow w_s = \frac{120f}{P} + \frac{z}{60} = \text{---}$$

$$4) P_f = \frac{3 V_T \text{ Emf}}{w_s x_s} \sin \delta$$



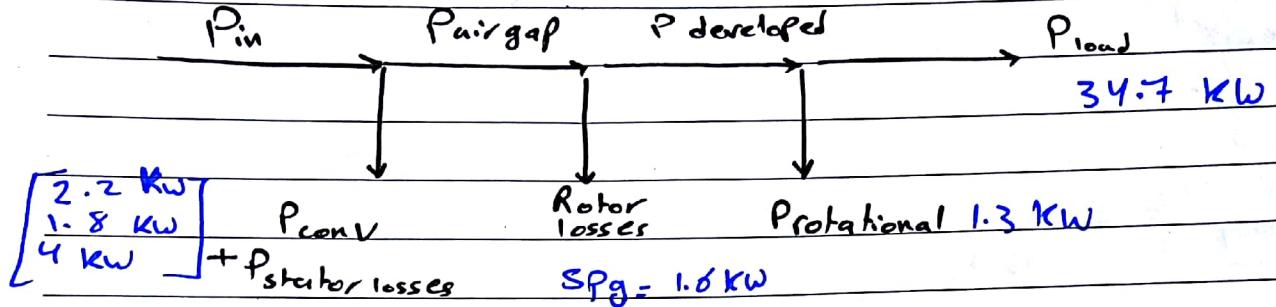
$$P_1 = P_2 = \frac{3 V_T \text{ Emf} \sin \delta_1}{w_s x_s} = \frac{3 V_T \text{ emf}_2 \sin \delta_2}{w_s x_s}$$

$$\text{Emf}_1 \sin \delta_1 = \text{Emf}_2 \sin \delta_2$$

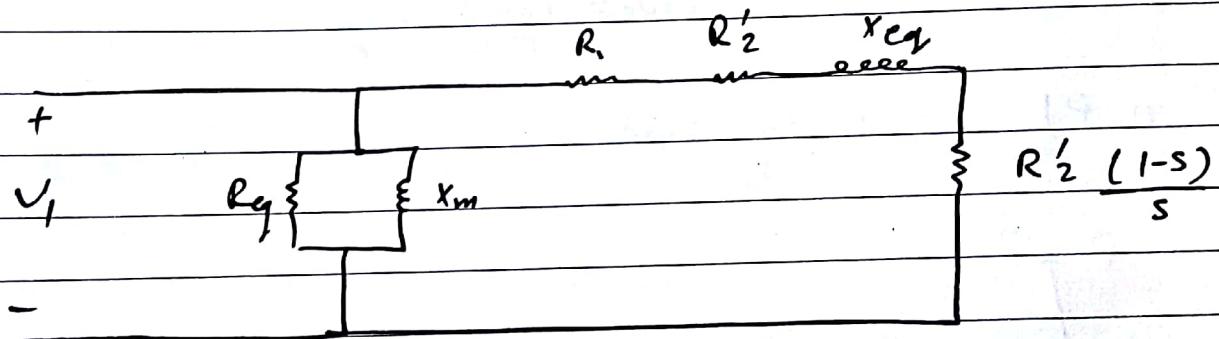
$$\sin(\text{---}) = 1.25$$

$$\delta_2 = -0.8^\circ$$

* Im



$$P_g = \frac{36}{1-5} = \underline{36} = 37.6 \text{ kW}$$



Ex) 440 V, 50 Hz, 6 poles, 3Ø, Im

Full load \rightarrow Slip = 4.3%
 Stator P.F = 0.87 lagging
 Developed Power 36 kW
 Stator copper losses
 $P_{core} = 2.2 \text{ kW}$
 Shaft friction = 1.3 kW

Find : 1) N_s (Synchronous speed) $\Rightarrow N_s = \frac{120f}{P} = \frac{120 \times 50}{6} = 1000 \text{ rpm}$

2) Full load motor speed

$$\Rightarrow N_m = N_s(1-s) = 1000 \times (1-0.043) \\ = 957 \text{ rpm}$$

Ex) 3Ø, 480 V, 12 pole, Y connection, $R_1 = 1 \Omega$

$$R_2' = 0.5 \Omega, X_{eq} = 10 \Omega, X_m = 100 \Omega$$

Find 8) Starting Torque

2) Torque at full load at 100% slip

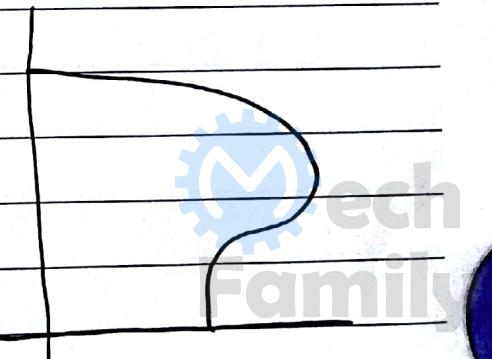
3) Motor speed at full load

4) slip / max torque

5) T_{max}

$$T = \frac{3 V_1^2}{5 w_s} \frac{R_2'}{\left[\left(R_1 + \frac{R_2'}{3} \right)^2 + X_{eq}^2 \right]}$$

$$V_1 = 480 \sqrt{3}, w_s = \frac{120f}{P} \times \frac{2\pi}{60}$$



* Starting $S=1 \Rightarrow T_{ST} = 179 \text{ N.m}$

* Full load $S=0.01 \Rightarrow T_{FL} = 67.9 \text{ N.m}$

* Motor speed at full load $= N_s (1 - S_{FL})$

$$\text{Slip} / \text{max torque} = \frac{R_2'}{\sqrt{R_1^2 + X_{eq}^2}}$$