

# Fundamentals of Heat and Mass Transfer

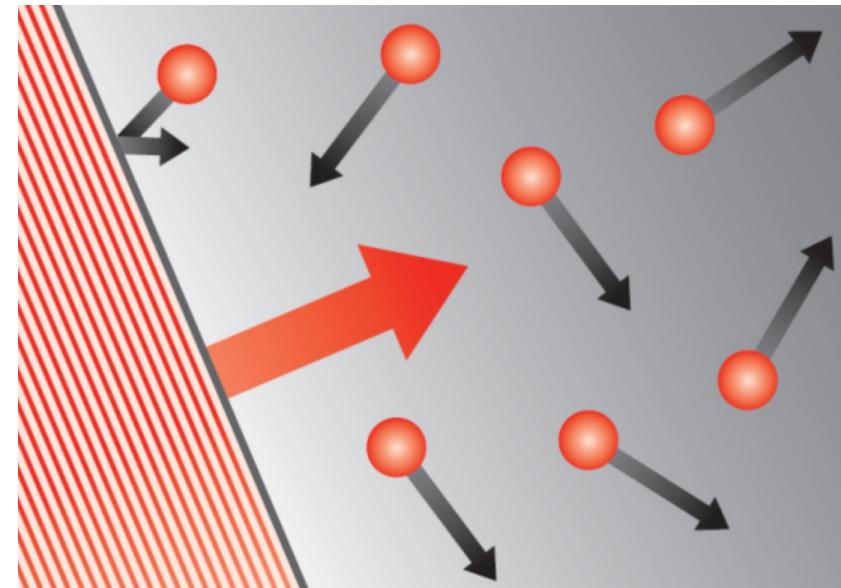
## Chapter 2

Fourier's Law and the Heat Equation

Dr. Osaid Matar

# Introduction

- **Conduction is the transport of energy in a medium due to a temperature gradient, and the physical mechanism is one of random atomic or molecular activity.**
- Conduction heat transfer is **governed by Fourier's law** and that use of the law to determine the heat flux depends on knowledge of the manner in which temperature varies within the medium (the temperature distribution).
- **We restricted our attention to simplified conditions (one-dimensional, steady-state conduction in a plane wall).**



# Introduction

Fourier's law is applicable to transient, multidimensional conduction in complex geometries.

The objectives of this chapter:

- 1- A deeper understanding of Fourier's law.
  - What is its origins?
  - What form does it take for different geometries?
  - How does its proportionality constant (the thermal conductivity) depend on the physical nature of the medium?

# Introduction

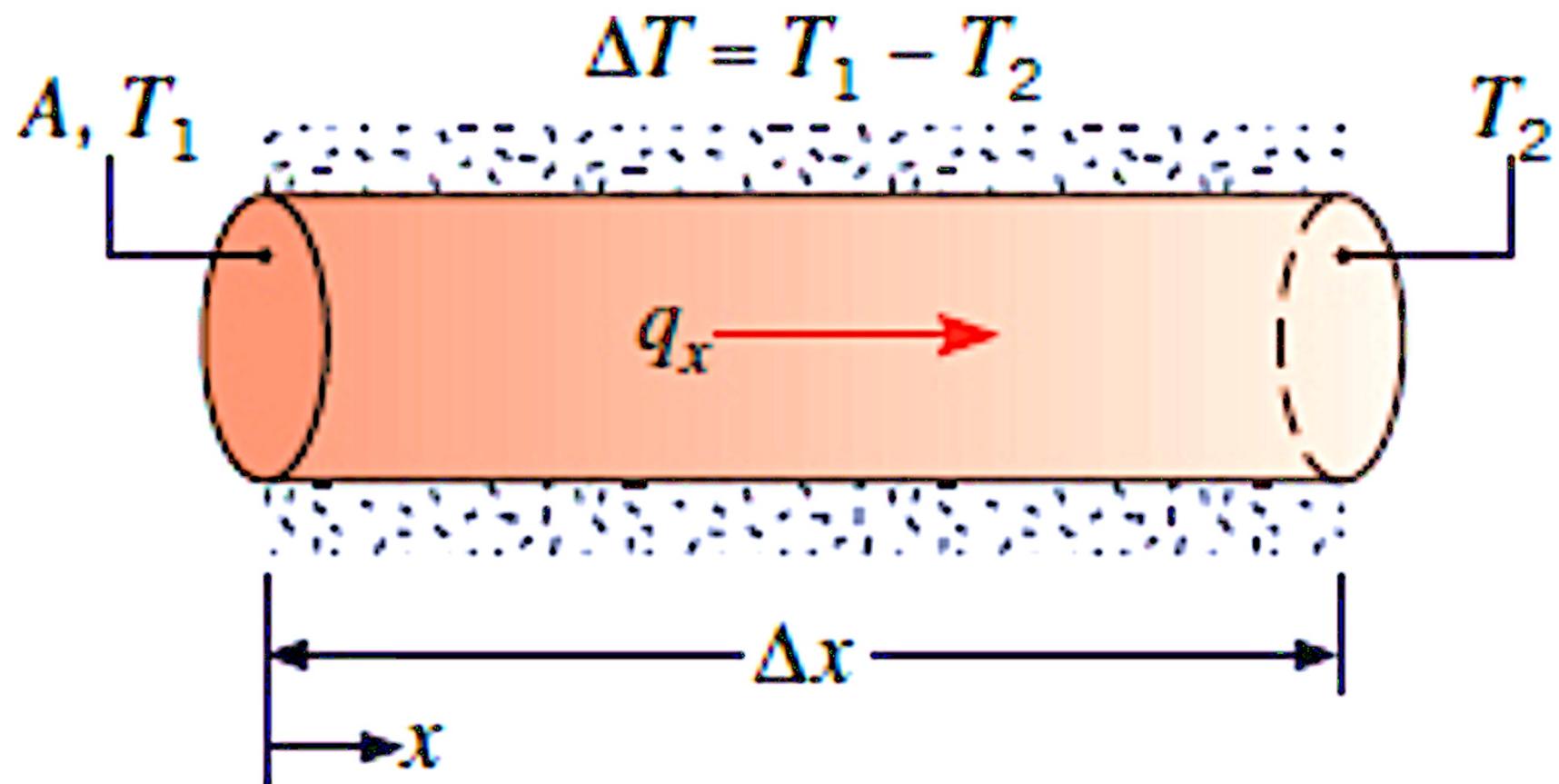
2- To develop, **the general equation**, termed the heat equation, which governs the temperature distribution in a medium in which conduction is the only mode of heat transfer.

- The solution to this equation provides knowledge of the temperature distribution, which may then be used with Fourier's law to determine the heat flux.

# Fourier's Law

- Fourier's law is developed from observed phenomena rather than being derived from first principles.
- Hence, we view the rate equation as a generalization based on much experimental evidence.
- For example, consider the steady-state conduction experiment of the figure in the next slide.

# Fourier's Law



# Fourier's Law

- A cylindrical rod of known material is insulated on its lateral surface, while its end faces are maintained at different temperatures, with  $T_1 > T_2$ .
- The temperature difference causes conduction heat transfer in the positive x-direction.
- We are able to measure the heat transfer rate  $q_x$ , and we seek to determine how  $q_x$  depends on the following variables:  $\Delta T$ , the temperature difference;  $\Delta x$ , the rod length; and  $A$ , the cross-sectional area.

# Fourier's Law

- We might imagine first holding  $\Delta T$  and  $\Delta x$  constant and varying  $A$ .
- If we do so, we find that  $q_x$  is directly proportional to  $A$ .
- Similarly, holding  $\Delta T$  and  $A$  constant, we observe that  $q_x$  varies inversely with  $\Delta x$ .
- Finally, holding  $A$  and  $\Delta x$  constant, we find that  $q_x$  is directly proportional to  $\Delta T$ . The collective effect is then:

$$q_x \propto A \frac{\Delta T}{\Delta x}$$

# Fourier's Law

- In changing the material (e.g., from a metal to a plastic), we would find that this proportionality remains valid.
- However, we would also find that, for equal values of  $A$ ,  $\Delta x$ , and  $\Delta T$ , the value of  $q_x$  would be smaller for the plastic than for the metal.
- This suggests that the proportionality may be converted to an equality by introducing a coefficient that is a measure of the material behavior. Hence, we write

$$q_x = kA \frac{\Delta T}{\Delta x}$$

# Fourier's Law

- where  $k$ , the thermal conductivity ( $\text{W}/(\text{m} \cdot \text{K})$ ), is an important property of the material.
- Evaluating this expression in the limit as  $\Delta x \rightarrow 0$ , we obtain for the heat rate

$$q_x = -kA \frac{dT}{dx}$$

For the heat flux

$$q_x'' = \frac{qx}{A} = -k \frac{dT}{dx}$$

- The minus sign is necessary because heat is always transferred in the direction of decreasing temperature.

# Fourier's Law

- Fourier's law implies that the heat flux is a directional quantity.
- In particular, the direction of  $q''_x$  is normal to the cross-sectional area  $A$ .
- Or, more generally, the direction of heat flow  $q''_x$  will always be normal to a surface of constant temperature, called an isothermal surface.
- Figure 2.2 illustrates the direction of heat flow in a plane wall for which the temperature gradient  $dT/dx$  is negative.
- From Equation 2.2, it follows that is positive. Note that the isothermal surfaces are planes normal to the  $x$ -direction.

# Fourier's Law

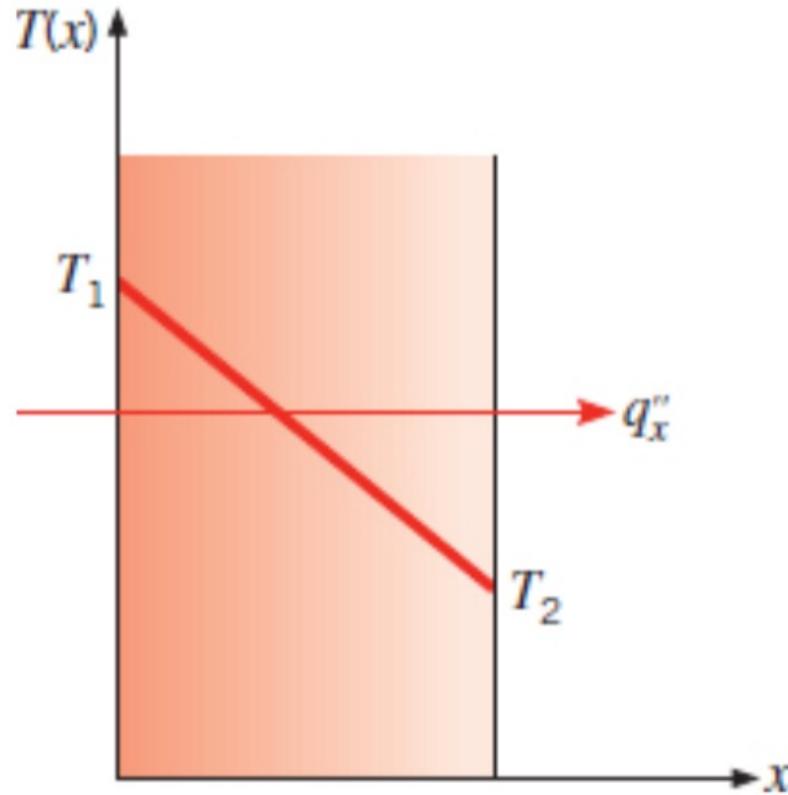


FIGURE 2.2 The relationship between coordinate system, heat flow direction, and temperature gradient in one dimension.

# Fourier's Law

- Recognizing that the heat flux is a vector quantity, we can write a more general statement of the conduction rate equation (Fourier's law) as follows:

$$\mathbf{q}'' = -k \nabla T = -k \left( \mathbf{i} \frac{\partial T}{\partial x} + \mathbf{j} \frac{\partial T}{\partial y} + \mathbf{k} \frac{\partial T}{\partial z} \right)$$

- where  $\nabla$  is the three-dimensional del operator,  $\mathbf{i}$ ,  $\mathbf{j}$ , and  $\mathbf{k}$  are the unit vectors in the  $x$ ,  $y$ , and  $z$  directions, and  $T(x, y, z)$  is the scalar temperature field.