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The Heat Diffusion Equation

* A major objective in a conduction analysis 1s to determine the
temperature field in a medium resulting from conditions imposed
on its boundaries.

* That 1s, we wish to know the temperature distribution, which
represents how temperature varies with position in the medium.

* Once this distribution 1s known, the conduction heat flux at any
point in the medium or on its surface may be computed from
Fourier's law.




* Other important quantities of interest may also be determined:

* For a solid, knowledge of the temperature distribution could be
used to ascertain structural integrity through determination of
thermal stresses, expansions, and deflections.

* The temperature distribution could also be used to optimize the
thickness of an insulating material or to determine the
compatibility of special coatings or adhesives used with the
material.




* We now proceed to derive a differential equation whose solution
provides the temperature distribution in the medium.

* Consider a homogeneous medium within which there is no bulk
motion (advection) and the temperature distribution T(x, y, z) is
expressed in Cartesian coordinates.

* The medium 1s assumed to be incompressible, that 1s, i1ts density
can be treated as constant.

* Following the four-step methodology of applying conservation of
energy (Section 1.3.1),

* we first define an infinitesimally small (differential) control
volume, dx - dy - dz, as shown 1n Figure 2.11.




* Choosing to formulate the first law at an instant of time, the second step is to
consider the energy processes that are relevant to this control volume.

* In the absence of motion, there are no changes in mechanical energy and no
work being done on the system.

* Only thermal forms of energy need be considered.

» Specifically, if there are temperature gradients, conduction heat transfer will
occur across each of the control surfaces.

* The conduction heat rates perpendicular to each of the control surfaces at the x-,
y-, and z-coordinate locations are indicated by the terms gx, qy, and qz,
respectively.

* The conduction heat rates at the opposite surfaces can then be expressed as a
Taylor series expansion where, neglecting higher-order terms,




FIGURE 2.11 Differential control volume, dx dy dz, for conduction analysis in Cartesian coordinates.




* In words, the first equation in this slide

oq simply states that the x-component of the

4. as —q; T —=dx heat transfer rate at x + dx 1s equal to the
value of this component at x plus the
dq amount by which it changes with respect to
=q +—2dy X times dx.
*  Within the medium there may also be an
energy source term associated with the rate

Zdz of thermal energy generation. This term 1s
represented as

Eg = édx dy dz
* where g 1s the rate at which

energy 1s generated per unit
volume of the medium (W/m?).




* In addition, changes may occur in the amount of the internal
thermal energy stored by the material in the control volume.

 If the material 1s not experiencing a change in phase, latent energy
effects are not pertinent, and the energy storage term reduces to
the rate of change of sensible energy:

: oU
E, = ;:"S = pc, %t—rdx dy dz = pc, %dx dy dz




* Here, use has been made of the fact that cp = cv for an incompressible
substance.2
* Once again 1t 1s important to note that the terms E; and E represent

differenhet physical processes.

* T energy generation term 1s due to energy conversion process
involving some forms of energy, such as chemical, electrical, or
nuclear, on the other.

* The term is positive (a source) if thermal energy is being
generated in the material at the expense of some other energy
form; it is negative (a sink) if thermal energy is being consumed.

* In contrast, the energy storage term refers to the rate of change of
thermal energy stored by the matter.




* The last step in the methodology outlined 1n Section 1.3.1 1s to
express conservation of energy using the foregoing rate equations.
On a rate basis, the general form of the conservation of energy
requirement 1s

E;, + Eg — Eyy = Eg

* Hence, recognizing that the conduction rates constitute the
energy inflow and outflow , and substituting the previous
equations:




' _ dT
qx +qy +qz +qu dy dz _qx+dx a y +dy _qz+dz —pCpEdX dy dz

After substitution

aqx (3qy aqz ) oT
™ dx —Wdy _0—zdz +q dx dy dz = pcpgdx dy dz

The conduction heat rates in an isotropic material may be evaluated
from Fourier's law,

q. =—kdy dz%

q, = —k dx dz9T

dy

q, = —kdx dygT—Z




Substituting the equations into the last equation and dividing out the
dimensions of the control volume (dx dy dz), we obtain

99T, 4 3[4 dT) 4 49Ty L o _ . T
ax(kax)+ay(kay)+az(kaz)+q pCy

This is the general form, in Cartesian coordinates, of
the heat diffusion equation.




* This equation, often referred to as the heat equation, provides the
basic tool for heat conduction analysis.

* From its solution, we can obtain the temperature distribution
T(x, v, z) as a function of time.

* You should have a clear understanding of the physical
significance of each term appearing in the equation.




* The heat equation states that at any point in the medium the net
rate of energy transfer by conduction into a unit volume plus the
volumetric rate of thermal energy generation must equal the rate
of change of thermal energy stored within the volume.




It 1s often possible to work with simplified versions of the heat
equation. For example, 1f the thermal conductivity 1s constant, the
heat equation 1s

where o = k/pcp 1s the thermal diffusivity.

* Additional simplifications of the general form of the heat
equation are often possible.

* For example, under steady-state conditions, there can be no
change 1n the amount of energy storage; hence Equation 2.19

reduces to
(kar)+04y(kar) ’kaT)+q 0




Moreover, if the heat transfer 1s one-dimensional (e.g., in the x-
direction) and there 1s no energy generation, Equation 2.22 reduces to

dT
/ -
dx " kdx)

* The important implication of this result 1s that, under steady-state,
one-dimensional conditions with no energy generation, the heat
flux 1s a constant in the direction of transfer .

(dg, /dx = 0).




The heat equation may also be expressed in cylindrical
and spherical coordinates. The differential control
volumes for these two coordinate systems are shown in
Figures 2.12 and 2.13.
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FIGURE 2.12 Differential control volume, dr - r d¢ - dz, for conduction analysis in cylindrical
coordinates (r, o, z).




FIGURE 2.13 Differential control volume, dr - r sinB d¢ - r dB, for conduction analysis in
spherical coordinates (r, ¢, 0).




Cylindrical Coordinates

When the del operator V 1s expressed 1n cylindrical coordinates, with

1, ], and k representing the unit vectors in the r, g, and z directions,
the general form of the heat flux vector and hence of Fourier's law 1s

q =—-kVT= —k(z‘%+j1‘)T + kaT)

Top 0z

9T v _ _kol v _ ;0T
9, = kar 9y rog Iz kaz

are heat flux components 1n the radial, circumferential, and axial
directions, respectively.




Applying an energy balance to the differential control volume of Figure
2.12, the following general form of the heat equation 1s obtained:

Ein + Eg - Eout = Est

10,,,.0T 1a(kar) kar Q




Spherical Coordinates:

In spherical coordinates, with 1, j, and k representing the unit
vectors 1n the r, 0, and @ directions, the general form of the heat flux

vector and Fourier's law 1s
" J | .10T

L e o0 AST 1 oT
q =—kvT k('ar +""09+krsin06¢)

o _ 0T o _ _kdT - _ __ k4T
4=k % ="rg % = rsndas

are heat flux components 1n the radial, polar, and azimuthal directions,
respectively. Applying an energy balance to the differential control
volume of Figure 2.13, the following general form of the heat
equation 1s obtained:




1 a{ oT
(kr —) - )
or r2 sin 00¢\ 09

1 0 dT oT
+ (k sin 9—) + q 1 —
* sin 069\ P ot

* You should attempt to do the derivation to gain experience in

applying conservation principles to differential control volumes
(see Problems 2.27 and 2.28).

* Note that the temperature gradient in Fourier's law must have units
of K/m. Hence, when evaluating the gradient for an angular
coordinate, it must be expressed 1n terms of the differential change
in arc length.




For example, the heat flux component in the circumferential direction
of a cylindrical coordinate system 1s

q; = —(k/r)(dT/0¢), not q;, = —k(dT/0¢).




0 0T 0,07 dadly o = gl
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—(kr + k )
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EXAMPLE 2.3

The temperature distribution across a wall 1 m thick at a certain instant
of time 1s given as T(x) = a + bx + cxz

where T 1s in degrees Celsius and x 1s 1n meters, while a = 900°C, b =
—300°C/m, and ¢ = —50°C/m?. A uniform heat generation, ¢ = 1000 W /m?>

the wall of area 10 m? having the properties p = 1600 kg/m?, k = 40
W/m - K, and cp =4 kl/kg - K.

1. Determine the rate of heat transfer entering the wall (x = 0) and
leaving the wall (x =1 m).

2. Determine the rate of change of energy storage in the wall.

3. Determine the time rate of temperature change at x =0, 0.25, and 0.5
m.




SOLUTION

Known: Temperature distribution T(X) at an instant of time t in a one-
dimensional wall with uniform heat generation.

Find:

1. Heat rates entering, qin (x = 0), and leaving, qout (x = 1 m), the wall.
2. Rate of change of energy storage in the wall, .

3. Time rate of temperature change at x =0, 0.25, and 0.5 m




Schematic:
A=10m? g = 1000 W/m?>
| I ‘ i k = 40 W/m-K
l I  p=1600 kgm®
: ! ¢, =4 kikgK
| I
Tx) = ! !
a + bx + cx? : . :
I ! i
I i
I g i
I . I
| E, I
I i
I i
4in > : : » Jout
I I
| I
I i
I 1
e——— L =1 m——|

'




Assumptions:

1. One-dimensional conduction 1n the x-direction.

2. Incompressible, 1sotropic medium with constant properties.

3. Uniform internal heat generation, .

Analysis:

1. Recall that once the temperature distribution 1s known for a
medium, it 1s a simple matter to determine the conduction heat
transfer rate at any point in the medium or at its surfaces by using
Fourier's law. Hence the desired heat rates may be determined by
using the prescribed temperature distribution with Equation 2.1.
Accordingly,




¢ = g (0)= —kA%sz = —kA(b+2¢x)__,
g = —bkA=300°C/m x40 W/m-K x10m” =120 kW
= ¢ (L)=-kA%Y| = —kA®+2cx)
qout qx 0X - x=1L
g = —(b+2cL)kA =—[-300°C/m

out

+2(=50°C/m?)x 1 m] x40 W/m - K x 10 m? = 160 kW

2. The rate of change of energy storage in the wall may be determined
by applying an overall energy balance to the wall. Using Equation
1.12c for a control volume about the wall,




E;, + Eg —Ey = Eg

where E, = gAL, it follows that

Ey = Ej +Eg — Eoy ' +qAL —q

out

E, = 120kW + 1000 W/m? x 10m? x 1 m — 160 kW
E, = —30kW

3. The time rate of change of the temperature at any point in the
medium may be determined from the heat equation, Equation 2.21,
rewritten as

of _ k #T, 4
ot PCpoy?  PS




From the prescribed temperature distribution, it follows that

o0x

o°'T _ 0T
2 0X "0X

%(b +2¢x) = 2¢ = 2(=50°C/m?) = —100°C /m?

Note that this derivative is independent of position in the medium. Hence the time rate
of temperature change is also independent of position and is given by

ﬂ — 40 W/m - K x(_IOOOC/mZ)
at 1600 kg/m> x 4 kJ /kg - K
3
5 1000 W /m

1600 kg/m> x4 kJ/kg - K
—6.25%10"%°C/s +1.56 x 10~%°C/s

¥|X

—4.69 x 10~*°C/s




Comments:

1. From this result, 1t 1s evident that the temperature at
every point within the wall is decreasing with time.

2. Fourier's law can always be used to compute the
conduction heat rate from knowledge of the
temperature distribution, even for unsteady conditions
with internal heat generation.




Boundary and Initial Conditions

 For transient conduction, heat equation is first order in time, requiring
specification of an initial temperature distribution:

 Since heat equation 1s second order in space, two boundary conditions
must be specified for each coordinate direction. Some common cases:

Constant Surface Temperature: Convection:
7 To, 0.
A 100, 1) = 1, r:\}\ _kaa_i heo="h| T, =T (0,¢) ]
o TR -t
Constant Heat Flux: Insulated Surface
Applied Flux

\ = e —

y oT
v T o Gekea=
P 1(x, 1) B =0 s e

o
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Typical Methodology of a Conduction
Analysis

* Coordinates? Cartesian, Cylindrical, or Spherical?

* Solve appropriate form of heat equation to obtain the temperature
distribution.

« Knowing the temperature distribution, apply Fourier’s law to
obtain the heat flux at any time, location and direction of interest.

« Applications:
Chapter 3: One-Dimensional, Steady-State Conduction
Chapter 4. Two-Dimensional, Steady-State Conduction

Chapter 5: Transient Conduction
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Problem: Thermal Response of
Plane Wall

Problem 2.43 Thermal response of a plane wall to convection heat transfer.

eutation—2 I]]
.. :

KNOWN: Plane wall, initially at a uniform temperature, is suddenly exposed to convective heating.

FIND: (a) Differential equation and initial and boundary conditions which may be used to find the
temperature distribution, 7(x, 7); (b) Sketch T(x, ¢) for the following conditions: initial (z <0),
steady-state (r — o0), and two intermediate times; (c) Sketch heat fluxes as a function of time at the
two surfaces; (d) Expression for total energy transferred to wall per unit volume [J/m*],

SCHEMATIC: T(x,0)=T;

e || & BT
=

Insulation=?
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Problem: Thermal Response (1f3)

ASSUMPTIONS: (1) One-dimensional conduction, (2) constant properties,
(3) No internal heat generation.

ANALYSIS: (a) For one —dimensional conduction with constant properties,
the heat equation has the form,

o°T 10T -
8x2 a ot
and the rInitial: t<0 T(x, 0)=T; uniform temperature
conditions are: <Boundaries: x=0 0T/ 8x| 0 =0 adiabatic surface
x=L —koT /x|, =h [T (Lt)-T, ] surface convection

37



Problem: Thermal Response (2 of3)

(b) The temperature distributions are shown on the sketch.

o i*\_’;:?_(i’“(e:ggy-s tate,
E*—Inifia/, 716,0)

!
L

) A > x

R
=5 2
A

Note that the gradient at x = 0 1s always zero, since this boundary 1s adiabatic.
Note also that the gradient at x = L decreases with time.

38



Problem: Thermal Response of3)

c¢) The heat flux , q; (x, ?) as a function of time, is shown on the sketch for the

surfacesx =0 and x = L.

-9 (xt
IN 229

0 <20

Tt

d) The total energy transferred to the wall may be expressed as

E =

"
mn 0 qCOl’lV

Eyy=hA | (T =T(L1t))t
Dividing both sides by A,L, the energy transferred per unit volume is

b;'” = % [[m-1(Lo)ae [’ <

Adt
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Problem 2.29: Non-uniform Generation
due to Radiation Absorption

The steady-state temperature distribution in a semi- Laser imagiation
transparent material of thermal conductivity k and g é é é é é é é
thickness L exposed to laser irradiation 1s of the form -
T(x) = —Aze_ax +Bx+C ] ’
ka i L

Semitransparent medium, 7(x)

where A, a, B, and C are known constants. For this situation, radiation
absorption in the material is manifested by a distributed heat generation term, ¢(x),

(a) Obtain expressions for the conduction heat fluxes at the front and rear surfaces.

(b) Derive an expression for ¢(x),
(c) Derive an expression for the rate at which radiation is absorbed in the entire

material, per unit surface area.
Express your result in terms of the known constants for the temperature distribution,

the thermal conductivity of the material, and its thickness.

40



Problem 2.29: Non-uniform Generation
due to Radiation Absorption

KNOWN: Temperature distribution in a semi-transparent medium subjected to radiative flux.

FIND: (a) Expressions for the heat flux at the front and rear surfaces, (b) The heat generation
rate ¢(x), and (c) Expression for absorbed radiation per unit surface area.

l l[ aser irradiation

SCHEMATIC: 2 (0) W
me— X_Semitransparent medium,
S ; A

77x)='/<—a'2 e 9% Bx+C
2xlL) L

41



Problem: Non-uniform Generation (i of2)

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in
medium, (3) Constant properties, (4) All laser irradiation is absorbed and can be
characterized by an internal volumetric heat generation

ANALYSIS: (a) Knowing the temperature distribution, the surface heat fluxes are found
using Fourier’s law,

gl
dx ka
Front surface,x =0: q, (0)——1{—+B}=—[—+k3} <

A _ A _
Rear surface,x=L: q; (L)=—/{—e “L+B}={—e "L+kB} <

ka

(b) The heat diffusion equation for the medium is

d(de 9y o q__kd(de

dx \ dx k dx \ dx
q'(x)=—ki{+ie_ax+B}=Ae_ax. <
dx| ka

() Performmg an energy balance on the medium,
E E ¢ T E =0

42



Problem: Non-uniform Generation 2 of2)

On a unit area basis

. . . A _
El=—El +E ——q;;(o)+q;;(L)=+—(1—e “L). <

out
a
Alternatively, evaluate E ¢ Dby integration over the volume of the medium,

Eg =I0Lcj(x)dx= IOLAe_“xdx= —f[e_“x]j =§(1—e_“L).

43



B
Problem 2.24

2.24 Temperature distributions within a series of one-dimensional
plane walls at an 1nitial time, at steady state, and at several
intermediate times are as shown

44



Problem 2.24

For each case, write the
appropriate form of the heat
diffusion equation. Also write the
equations for the initial condition
and the boundary conditions that
are applied at x =0 and x =L. If
volumetric generation occurs, it 1s
uniform throughout the wall. The
properties are constant.

PR

[N

[ — oo

.....

> X L

(b)

....

> X i
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B
Problem 2.24

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3)
Negligible radiation. <
ANALYSIS: The general form of the heat equation in Cartesian coordinates for
constant k 1s

Equation 2.21. For one-dimensional conduction it reduces to

T 4 _10r

ok ao

hi :
At steady state this becomes IT g
—+--=0
dx~ k
If there 1s no thermal energy generation the steady-state temperature distribution is
linear (or could be constant). If there is uniform thermal energy generation the

steady-state temperature distribution must be parabolic.
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B
Problem 2.24

In case (a), the steady-state temperature distribution is constant, therefore there must not be any
thermal energy generation. The heat equation is

ox* «a ot

o°’T 10T

The initial temperature is uniform throughout the solid, thus the initial condition is

T'(x,0)=T

At x = 0, the slope of the temperature distribution is zero at all times, therefore the heat flux is zero
(insulated condition). The boundary condition is

ar
ax x=0

=0

At x = L, the temperature is the same for all #> 0. Therefore the surface temperature is constant:

T(L0)=T,

47



B
Problem 2.24

For case (), the steady-state temperature distribution is not linear and appears to be parabolic,
therefore there is thermal energy generation. The heat equation is

o0°T oT

71
r,a_1or <
ox° k «a ot
The initial temperature is uniform, the temperature gradient at x = 0 is zero, and the temperature at x =
L is equal to the initial temperature for all # > 0, therefore the initial and boundary conditions are
oT
T(x,00=T, —| =0, T(L,t)=T <
ax x=0

With the left side insulated and the right side maintained at the initial temperature, the cause of the
decreasing temperature must be a negative value of thermal energy generation.
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B
Problem 2.24

In case (c), the steady-state temperature distribution is constant, therefore there is no thermal energy
generation. The heat equation is

T _1ar
ox> a ot
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B
Problem 2.24

The initial temperature is uniform throughout the solid. At x = 0, the slope of the temperature
distribution is zero at all times. Therefore the initial condition and boundary condition at x = 0 are

6_T
Ox

=0

x=0

I'(x,00=T,

At x = L, neither the temperature nor the temperature gradient are constant for all time. Instead, the
temperature gradient is decreasing with time as the temperature approaches the steady-state
temperature. This corresponds to a convection heat transfer boundary condition. As the surface
temperature approaches the fluid temperature, the heat flux at the surface decreases. The boundary
condition is:

—k‘Z—T =h[T(L,t)-T,]

x=L

The fluid temperature, 7., must be higher than the initial solid temperature to cause the solid
temperature to increase.

50



B
Problem 2.24

For case (d), the steady-state temperature distribution is not linear and appears to be parabolic,
therefore there is thermal energy generation. The heat equation is

2 .
oT g_1or <
k

ox* a Ot

Since the temperature is increasing with time and it is not due to heat conduction due to a high surface
temperature, the energy generation must be positive.

The initial temperature is uniform and the temperature gradient at x = 0 is zero. The boundary
condition at x = L is convection. The temperature gradient and heat flux at the surface are increasing
with time as the thermal energy generation causes the temperature to rise further and further above the
fluid temperature. The initial and boundary conditions are:

=0, —kZ—T =h[T(L,t)-T,] <

x=L

or

T(x0) =L,
(x,0)=T, o

x=0

COMMENTS: 1. You will learn to solve for the temperature distribution in transient conduction in
Chapter 5. 2. Case (b) might correspond to a situation involving a spatially-uniform endothermic
chemical reaction. Such situations, although they can occur, are not common.
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