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• A major objective in a conduction analysis is to determine the 
temperature field in a medium resulting from conditions imposed 
on its boundaries. 

• That is, we wish to know the temperature distribution, which 
represents how temperature varies with position in the medium. 

• Once this distribution is known, the conduction heat flux at any 
point in the medium or on its surface may be computed from 
Fourier's law. 

The Heat Diffusion Equation



• Other important quantities of interest may also be determined: 

• For a solid, knowledge of the temperature distribution could be 
used to ascertain structural integrity through determination of 
thermal stresses, expansions, and deflections. 

• The temperature distribution could also be used to optimize the 
thickness of an insulating material or to determine the 
compatibility of special coatings or adhesives used with the 
material.



• We now proceed to derive a differential equation whose solution 
provides the temperature distribution in the medium. 

• Consider a homogeneous medium within which there is no bulk 
motion (advection) and the temperature distribution T(x, y, z) is 
expressed in Cartesian coordinates. 

• The medium is assumed to be incompressible, that is, its density 
can be treated as constant. 

• Following the four-step methodology of applying conservation of 
energy (Section 1.3.1), 

• we first define an infinitesimally small (differential) control 
volume, dx · dy · dz, as shown in Figure 2.11. 



• Choosing to formulate the first law at an instant of time, the second step is to 
consider the energy processes that are relevant to this control volume. 

• In the absence of motion, there are no changes in mechanical energy and no 
work being done on the system. 

• Only thermal forms of energy need be considered. 

• Specifically, if there are temperature gradients, conduction heat transfer will 
occur across each of the control surfaces. 

• The conduction heat rates perpendicular to each of the control surfaces at the x-, 
y-, and z-coordinate locations are indicated by the terms qx, qy, and qz, 
respectively. 

• The conduction heat rates at the opposite surfaces can then be expressed as a 
Taylor series expansion where, neglecting higher-order terms,





• In words, the first equation in this slide 
simply states that the x-component of the 
heat transfer rate at x + dx is equal to the 
value of this component at x plus the 
amount by which it changes with respect to 
x times dx.

• Within the medium there may also be an 
energy source term associated with the rate 
of thermal energy generation. This term is 
represented as

• where 𝑞̇ is the rate at which 
energy is generated per unit 
volume of the medium (W/m3). 



• In addition, changes may occur in the amount of the internal 
thermal energy stored by the material in the control volume. 

• If the material is not experiencing a change in phase, latent energy 
effects are not pertinent, and the energy storage term reduces to 
the rate of change of sensible energy:



• Here, use has been made of the fact that cp = cv for an incompressible 
substance.2

• Once again it is important to note that the terms 𝐸̇! and 𝐸̇" represent 
differenhet physical processes. 

• T energy generation term  is due to energy conversion process 
involving some forms of energy, such as chemical, electrical, or 
nuclear, on the other. 

• The term is positive (a source) if thermal energy is being 
generated in the material at the expense of some other energy 
form; it is negative (a sink) if thermal energy is being consumed. 

• In contrast, the energy storage term  refers to the rate of change of 
thermal energy stored by the matter.



• The last step in the methodology outlined in Section 1.3.1 is to 
express conservation of energy using the foregoing rate equations. 
On a rate basis, the general form of the conservation of energy 
requirement is

• Hence, recognizing that the conduction rates constitute the 
energy inflow  and outflow , and substituting the previous 
equations:



The conduction heat rates in an isotropic material may be evaluated 
from Fourier's law, 

After substitution



Substituting the equations into the last equation and dividing out the 
dimensions of the control volume (dx dy dz), we obtain

This is the general form, in Cartesian coordinates, of 
the heat diffusion equation. 



• This equation, often referred to as the heat equation, provides the 
basic tool for heat conduction analysis. 

• From its solution, we can obtain the temperature distribution 
T(x, y, z) as a function of time. 

• You should have a clear understanding of the physical 
significance of each term appearing in the equation. 



• The heat equation states that at any point in the medium the net 
rate of energy transfer by conduction into a unit volume plus the 
volumetric rate of thermal energy generation must equal the rate 
of change of thermal energy stored within the volume.



• It is often possible to work with simplified versions of the heat 
equation. For example, if the thermal conductivity is constant, the 
heat equation is

where α = k/ρcp is the thermal diffusivity. 

• Additional simplifications of the general form of the heat 
equation are often possible. 

• For example, under steady-state conditions, there can be no 
change in the amount of energy storage; hence Equation 2.19 
reduces to



Moreover, if the heat transfer is one-dimensional (e.g., in the x-
direction) and there is no energy generation, Equation 2.22 reduces to

• The important implication of this result is that, under steady-state, 
one-dimensional conditions with no energy generation, the heat 
flux is a constant in the direction of transfer .



The heat equation may also be expressed in cylindrical 
and spherical coordinates. The differential control 
volumes for these two coordinate systems are shown in 
Figures 2.12 and 2.13.



FIGURE 2.12 Differential control volume, dr · r dϕ · dz, for conduction analysis in cylindrical 
coordinates (r, ϕ, z).



FIGURE 2.13 Differential control volume, dr · r sinθ dϕ · r dθ, for conduction analysis in 
spherical coordinates (r, ϕ, θ).



Cylindrical Coordinates 

When the del operator ∇ is expressed in cylindrical coordinates, with 
i, j, and k representing the unit vectors in the r, ø, and z directions, 
the general form of the heat flux vector and hence of Fourier's law is

are heat flux components in the radial, circumferential, and axial 
directions, respectively. 



Applying an energy balance to the differential control volume of Figure 
2.12, the following general form of the heat equation is obtained:



Spherical Coordinates:

In spherical coordinates, with i, j, and k representing the unit 
vectors in the r, θ, and ø directions, the general form of the heat flux 
vector and Fourier's law is

are heat flux components in the radial, polar, and azimuthal directions, 
respectively. Applying an energy balance to the differential control 
volume of Figure 2.13, the following general form of the heat 
equation is obtained:



• You should attempt to do the derivation to gain experience in 
applying conservation principles to differential control volumes 
(see Problems 2.27 and 2.28). 

• Note that the temperature gradient in Fourier's law must have units 
of K/m. Hence, when evaluating the gradient for an angular 
coordinate, it must be expressed in terms of the differential change 
in arc length. 



For example, the heat flux component in the circumferential direction 
of a cylindrical coordinate system is 





EXAMPLE 2.3

The temperature distribution across a wall 1 m thick at a certain instant 
of time is given as

where T is in degrees Celsius and x is in meters, while a = 900°C, b = 
−300°C/m, and c = −50°C/m2. A uniform heat generation,  is present in 
the wall of area 10 m2 having the properties ρ = 1600 kg/m3, k = 40 
W/m · K, and cp = 4 kJ/kg · K.

1. Determine the rate of heat transfer entering the wall (x = 0) and 
leaving the wall (x = 1 m).
2. Determine the rate of change of energy storage in the wall.
3. Determine the time rate of temperature change at x = 0, 0.25, and 0.5 
m.



SOLUTION
Known: Temperature distribution T(x) at an instant of time t in a one-
dimensional wall with uniform heat generation.
Find:
1. Heat rates entering, qin (x = 0), and leaving, qout (x = 1 m), the wall.
2. Rate of change of energy storage in the wall, .
3. Time rate of temperature change at x = 0, 0.25, and 0.5 m





Assumptions:

1. One-dimensional conduction in the x-direction.
2. Incompressible, isotropic medium with constant properties.
3. Uniform internal heat generation, .
Analysis:
1. Recall that once the temperature distribution is known for a 
medium, it is a simple matter to determine the conduction heat 
transfer rate at any point in the medium or at its surfaces by using 
Fourier's law. Hence the desired heat rates may be determined by 
using the prescribed temperature distribution with Equation 2.1. 
Accordingly,



2. The rate of change of energy storage in the wall  may be determined 
by applying an overall energy balance to the wall. Using Equation 
1.12c for a control volume about the wall,



3. The time rate of change of the temperature at any point in the 
medium may be determined from the heat equation, Equation 2.21, 
rewritten as



From the prescribed temperature distribution, it follows that

Note that this derivative is independent of position in the medium. Hence the time rate 
of temperature change is also independent of position and is given by



Comments:

1. From this result, it is evident that the temperature at 
every point within the wall is decreasing with time.

2. Fourier's law can always be used to compute the 
conduction heat rate from knowledge of the 
temperature distribution, even for unsteady conditions 
with internal heat generation.



Boundary and Initial Conditions
• For transient conduction, heat equation is first order in time, requiring 

specification of an initial temperature distribution:
• Since heat equation is second order in space, two boundary conditions

must be specified for each coordinate direction. Some common cases: 
Constant Surface Temperature:

T(0, t) = Ts

Constant Heat Flux:
Applied Flux

0
¶ ¢¢-
¶ x= s
Tk | = q
x

Convection:

( )0 0¥
¶

- -é ùë û¶ x=
Tk | = h T T ,t
x

Insulated Surface

0 0¶
¶ x=
T | =
x
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Typical Methodology of a Conduction 
Analysis
• Coordinates? Cartesian, Cylindrical, or Spherical?
• Solve appropriate form of heat equation to obtain the temperature 

distribution. 
• Knowing the temperature distribution, apply Fourier’s law to 

obtain the heat flux at any time, location and direction of interest.
• Applications:

Chapter 3: One-Dimensional, Steady-State Conduction
Chapter 4: Two-Dimensional, Steady-State Conduction
Chapter 5: Transient Conduction
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Problem: Thermal Response of  
Plane Wall
Problem 2.43 Thermal response of a plane wall to convection heat transfer.

KNOWN: Plane wall, initially at a uniform temperature, is suddenly exposed to convective heating.

FIND: (a) Differential equation and initial and boundary conditions which may be used to find the 
temperature distribution, T(x, t); (b) Sketch T(x, t) for the following conditions: initial (t ≤ 0), 
steady-state (t → ∞), and two intermediate times; (c) Sketch heat fluxes as a function of time at the 
two surfaces; (d) Expression for total energy transferred to wall per unit volume 3[J / m ].

SCHEMATIC:
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Problem: Thermal Response (1 of 3)

ASSUMPTIONS: (1) One-dimensional conduction, (2) constant properties, 
(3) No internal heat generation.
ANALYSIS: (a) For one –dimensional conduction with constant properties, 
the heat equation has the form,

¶ ¶
¶¶

2

2
T 1 T=

a tx
<

and the 
conditions are:

( )

0

Initial:             0  0                                  uniform temperature

Boundaries:    0    0                                  adiabatic surface

                      

it    T x, = T     

x = T / x =

 x = L  

<

¶ ¶

( )   surface convectionL   k T /  x  = h T L,t T   ¥

ì
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í
ï
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Problem: Thermal Response (2 of 3)

(b) The temperature distributions are shown on the sketch.

<

Note that the gradient at x = 0 is always zero, since this boundary is adiabatic. 
Note also that the gradient at x = L decreases with time.
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Problem: Thermal Response (3 of 3)
c) The heat flux , ''

xq (x, t) as a function of time, is shown on the sketch for the
surfaces x = 0 and x = L.

<

d) The total energy transferred to the wall may be expressed as

conv0

¥
¢¢òin sE = q A dt

( )( )¥
¥ -òin s 0

E = hA T T L,t dt

Dividing both sides by A,L, the energy transferred per unit volume is 

( ) 3
0

          J/m
¥

¥ é ù-é ùë û ë ûòinE h= T T L,t dt
V L <
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Problem 2.29: Non-uniform Generation 
due to Radiation Absorption

40

The steady-state temperature distribution in a semi-
transparent material of thermal conductivity k and 
thickness L exposed to laser irradiation is of the form

where A, a, B, and C are known constants. For this situation, radiation 
absorption in the material is manifested by a distributed heat generation term, 

(a)  Obtain expressions for the conduction heat fluxes at the front and rear surfaces.
(b)  Derive an expression for 
(c) Derive an expression for the rate at which radiation is absorbed in the entire 

material, per unit surface area. 
Express your result in terms of the known constants for the temperature distribution, 
the thermal conductivity of the material, and its thickness.

( ),!q x

( ),!q x



Problem 2.29: Non-uniform Generation 
due to Radiation Absorption

KNOWN: Temperature distribution in a semi-transparent medium subjected to radiative flux.

FIND: (a) Expressions for the heat flux at the front and rear surfaces, (b) The heat generation 
rate ( ),!q x and (c) Expression for absorbed radiation per unit surface area.

SCHEMATIC:
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Problem: Non-uniform Generation (1 of 2)
ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in 
medium, (3) Constant properties, (4) All laser irradiation is absorbed and can be 
characterized by an internal volumetric heat generation 
ANALYSIS: (a) Knowing the temperature distribution, the surface heat fluxes are found 
using Fourier’s law,

-é ù é ù¢¢ - -ê ú ê úë û ë û
ax

x
dT Aq = k = k e +B
dx ka

Front surface, x = 0: ( ) é ù é ù¢¢ - -ê ú ê úë û ë û
x

A Aq 0 = k +B = +kB
ka a

<
Rear surface, x = L: ( ) - -é ù é ù¢¢ - -ê ú ê úë û ë û

aL aL
x

A Aq L = k e +B = e +kB
ka a <

(b) The heat diffusion equation for the medium is 

0 oræ ö æ ö-ç ÷ ç ÷
è ø è ø

!
!

d dT q d dT+ =           q = k
dx dx k dx dx

( ) - -é ù- ê úë û
!

ax axd Aq x = k + e +B = Ae .
dx ka

<
(c) Performing an energy balance on the medium,

in out 0-! ! !
gE E +E =
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Problem: Non-uniform Generation (2 of 2)

On a unit area basis

( ) ( ) ( )in out 0 1 -¢¢ ¢¢ ¢¢ ¢¢ ¢¢- - -! ! ! aL
g x x

AE = E +E = q +q L =+ e .
a <

Alternatively, evaluate ¢¢!gE by integration over the volume of the medium,

( ) ( )0
1- - -é ù¢¢ - -ë ûò ò! !

LL L ax ax aL
g 0 0

A AE = q x dx= Ae dx= e = e .
a a
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Problem 2.24

44

2.24 Temperature distributions within a series of one-dimensional 
plane walls at an initial time, at steady state, and at several 
intermediate times are as shown



Problem 2.24

<

45

For each case, write the 
appropriate form of the heat 
diffusion equation. Also write the 
equations for the initial condition 
and the boundary conditions that 
are applied at x = 0 and x = L. If 
volumetric generation occurs, it is 
uniform throughout the wall. The 
properties are constant.



Problem 2.24

<
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ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) 
Negligible radiation. 

ANALYSIS: The general form of the heat equation in Cartesian coordinates for 
constant k is
Equation 2.21. For one-dimensional conduction it reduces to

At steady state this becomes

If there is no thermal energy generation the steady-state temperature distribution is 
linear (or could be constant). If there is uniform thermal energy generation the 
steady-state temperature distribution must be parabolic.



Problem 2.24

<
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Problem 2.24
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Problem 2.24
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Problem 2.24
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Problem 2.24
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