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Introduction

 In this chapter we treat situations for
which heat 1s transferred by diffusion |
under one-dimensional, steady-state |
conditions.
* The term one-dimensional refers to the |
fact that temperature gradients exist
o0

along only a single coordinate
direction, and heat transfer occurs
exclusively in that direction.

* The system is characterized by steady-state conditions if the temperature
at each point 1s independent of time.

* Despite their inherent simplicity, one-dimensional, steady-state models
may be used to accurately represent numerous engineering systems.




* We begin our consideration of one-dimensional, steady-state
conduction by discussing heat transfer with no internal generation
of thermal energy (Sections 3.1 through 3.4).

* The objective 1s to determine expressions for the temperature
distribution and heat transfer rate in common (planar, cylindrical,
and spherical) geometries.

* For such geometries, an additional objective is to introduce the concept
of thermal resistance and to show how thermal circuits may be used to
model heat flow, much as electrical circuits are used for current flow.

* The effect of internal heat generation is treated in Section 3.5, and
again our objective 1s to obtain expressions for temperature
distributions and heat transfer rates.




* In Section 3.6, we consider the special case of one-dimensional,
steady-state conduction for extended surfaces.

e In their most common form, these surfaces are termed fins and are used
to enhance heat transfer by convection to an adjoining fluid.

* In addition to determining related temperature distributions and heat
rates, our objective 1s to introduce performance parameters that may be
used to determine their efficacy.




B
The Plane Wall

* For one-dimensional conduction in a plane wall, temperature 1s a
function of the x-coordinate only and heat 1s transferred exclusively
in this direction.

* In Figure 3.1a, a plane wall separates two fluids of different
temperatures.

* Heat transter occurs by convection from the hot fluid at T, ; to one
surface of the wall at T |, by conduction through the wall, and by
convection from the other surface of the wall at T , to the cold fluid
at T,




T.\
T,
FIGURE 3.1 Heat T2
transfer through a plane ‘L I,
wall. T 1 T >
(a) T§mperqmre —r—
distribution. T
(b) Equivalent thermal —ex ol I T T
circuit. Cold fluid
T,.ohy
(a)
Too 1 7; 1 7;'.2 Too 2
q.!' 1 _é— 1

(h)




* We begin by considering conditions within the wall.

* We first determine the temperature distribution, from which we
can then obtain the conduction heat transfer rate.




Temperature Distribution

* The temperature distribution in the wall can be determined by
solving the heat equation with the proper boundary conditions.

* For steady-state conditions with no distributed source or sink of
energy within the wall, the appropriate form of the heat equation 1s

d ,dT, _
dx\kdx) L

* Hence, for one-dimensional, steady-state conduction 1n a plane wall
with no heat generation, the heat flux is a constant, independent of x.




If the thermal conductivity of the wall material 1s assumed to be
constant, the equation may be integrated twice to obtain the general
solution

T(X) = C1X+C2

To obtain the constants of integration, C1 and C2, boundary conditions
must be imntroduced. We choose to apply conditions of the first kind at
x =0 and x = L, in which case

T0)=T,; and T(L) =T, ,

Applying the condition at x = 0 to the general solution, 1t follows that

T

N

1 =0




Similarly, at x =L,
Ts,2 = C1L+C2 = C1L+Ts,1

in which case

Lsoy =g 4
S L S, =C1

Substituting into the general solution, the temperature distribution
1s then

e =00 0 =08 )




From this result it 1s evident that, for one-dimensional, steady-state
conduction in a plane wall with no heat generation and constant thermal
conductivity, the temperature varies linearly with x.

dT _ kA
qx kAdX I (T - Ts,2)

Now that we have the temperature distribution, we may use Fourier's
law, Equation 2.1, to determine the conduction heat transfer rate. That
18,

4 q

qx A L(T - Ts, 2 )




* The equations indicate that both the heat rate qx and heat flux
are constants, independent of x.

* In the foregoing paragraphs we have used the standard approach to
solving conduction problems.

* That 1s, the general solution for the temperature distribution 1s first
obtained by solving the appropriate form of the heat equation.

* The boundary conditions are then applied to obtain the particular
solution, which 1s used with Fourier's law to determine the heat
transfer rate.




* Note that we have opted to prescribe surface temperatures at x =0
and x = L as boundary conditions, even though it 1s the fluid
temperatures, not the surface temperatures, that are typically known.

* However, since adjoining fluid and surface temperatures are easily
related through a surface energy balance (see Section 1.3.1),1t1s a
simple matter to express Equations 3.3 through 3.5 1n terms of fluid,
rather than surface, temperatures.

* Alternatively, equivalent results could be obtained directly by using
the surface energy balances as boundary conditions of the third kind
in evaluating the constants of Equation 3.2 (see Problem 3.1).




Thermal Resistance

» At this point we note that, for the special case of one-dimensional heat
transfer with no internal energy generation and with constant
properties, a very important concept is suggested by Equation 3.4.

* In particular, an analogy exists between the diffusion of heat and
electrical charge.

e Just as an electrical resistance is associated with the conduction of
electricity, a thermal resistance may be associated with the
conduction of heat.

* Defining resistance as the ratio of a driving potential to the
corresponding transfer rate, the thermal resistance for conduction in a
plane wall 1s




Rt,cond = — q, = A

Similarly, for electrical conduction in the same system, Ohm's law
provides an electrical resistance of the form

Es,l - Es,2 L
T = I oA
The analogy analogy exists between the heat transfer by convection
and electrical charge as well. A thermal resistance may also be
associated with heat transfer by convection at a surface. From
Newton's law of cooling,

g=hA (T, -T,)




The thermal resistance for convection is then

=Ts — _ 1
t,conv — q _hA

R

Circuit representations provide a useful tool for both conceptualizing
and quantifying heat transfer problems. The equivalent thermal circuit
for the plane wall with convection surface conditions 1s shown in
Figure 3.1b. The heat transfer rate may be determined from separate
consideration of each element in the network. Since gx is constant
throughout the network, 1t follows that

Too,l _Ts,l _Ts,l _Ts,2 _Ts,2 — 10,2

x " 1/hA  LIkA  1/hA




In terms of the overall temperature difference, Too,1 — Too,2, and the
total thermal resistance, Rtot, the heat transfer rate may also be
expressed as

P Too,l — Too,2

T = Ry

Because the conduction and convection resistances are 1n series and
may be summed, it follows that

1 L 1
R =
ot = AT kA hA
Radiation exchange between the surface and surroundings may also
be important 1f the convection heat transfer coefficient 1s small. A

thermal resistance for radiation may be defined as the following

R — Ts _Tsur — 1
t,rad qrad hrA




* For radiation between a surface and large surroundings, h. 1s
determined Chapter 1.

* Surface radiation and convection resistances act in parallel,
and if T =T, they may be combined to obtain a single,
effective surface resistance.

A

e Sca, T.

Solid
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The Composite Wall

* Equivalent thermal circuits may also be used for more complex
systems, such as composite walls.

* Such walls may involve any number of series and parallel thermal
resistances due to layers of different materials.

* Consider the series composite wall of Figure 3.2. The one-
dimensional heat transfer rate for this system may be expressed as
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where T, | — T, 4 1s the overall temperature difterence, and the
summation includes all thermal re

Too,l - Too,4
q

x " [(7h A + (L, /K, A)+ (L, Tky A) + (L Tk A) + (17hy A)]

Alternatively, the heat transfer rate can be related to the temperature
difference and resistance associated with each element. For example,

Too,l _Ts,l Ts,l _T2 _ T2 _T3

(I A) (L, Tk, A) (Lg Tky A)

9. =




With composite systems, it 1s often convenient to work with an overall
heat transfer coefficient U, which 1s defined by an expression

analogous to Newton's law of cooling. Accordingly,
Too,l - Too,4

g, =UAAT “T73R

where AT 1s the overall temperature difference. The overall heat
transfer coefficient is related to the total thermal resistance, and from

Equations 3.14 and 3.17 we see that UA = 1/Rtot. Hence, for the
composite wall of Figure 3.2,

_ 1 _ 1
U= RA [(1/hy)+ (LA /kA ) (LB /kB )+ (LC /kC )+ (1/hy)]

AT 1
In general, we may write R = LR, = 7 UA




* Composite walls may also be characterized by series—parallel
configurations, such as that shown in Figure 3.3.

* Although the heat flow 1s now multidimensional, it is often reasonable to
assume one-dimensional conditions.

* Subject to this assumption, two different thermal circuits may be used.
* For case (a) it 1s presumed that surfaces normal to the x-direction are
isothermal, whereas for case (b) it is assumed that surfaces parallel to the

x-direction are adiabatic.

» Different results are obtained for Rtot, and the corresponding values of q
bracket the actual heat transfer rate.

* These differences increase with increasing |kF — kG|, as
multidimensional effects become more significant.
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e
Contact Resistance

* Although neglected until now, it 1s important to recognize that, in
composite systems, the temperature drop across the interface
between materials may be appreciable.

* This temperature change 1s attributed to what 1s known as the
thermal contact resistance, Rt,c.

* The effect 1s shown 1n Figure 3.4, and for a unit area of the
interface, the resistance 1s defined as

TA —TB

R, . =

»C

"
qx




FIGURE 3.4 Temperature drop due to thermal contact resistance.




* The existence of a finite contact resistance is due principally to
surface roughness effects.

* Contact spots are interspersed with gaps that are, in most instances,
air filled.

* Heat transfer is therefore due to conduction across the actual
contact area and to conduction and/or radiation across the gaps.

* The contact resistance may be viewed as two parallel resistances:
that due to the contact spots and that due to the gaps.

* The contact area is typically small, and, especially for rough
surfaces, the major contribution to the resistance is made by the

84aps




For solids whose thermal conductivities exceed that of the interfacial
fluid, the contact resistance may be reduced by increasing the area of
the contact spots.

Such an increase may be affected by increasing the contact
pressure and/or by reducing the roughness of the mating
surfaces.

The contact resistance may also be reduced by selecting an
interfacial fluid of large thermal conductivity.

In this respect, no fluid (an evacuated interface) eliminates
conduction across the gap, thereby increasing the contact resistance.




* The effect of loading on metallic interfaces can be seen in Table
3.1a, which presents an approximate range of thermal resistances
under vacuum conditions.

* The effect of interfacial fluid on the thermal resistance of an
aluminum interface is shown in Table 3.1b.




TABLE 3.1 Thermal contact resistance for (a) metallic interfaces under vacuum
conditions and (b) aluminum interface (10-um surface roughness, 10° N/m?) with
different interfacial fluids [1]

Thermal Resistance, R,,"c x 10% (m? - K/W)

(a) Vacuum Interface (b) Interfacial Fluid
Contact pressure 100 kN/m? 10,000 kN/m? Air 2.75
Stainless steel 6—25 0.7—4.0 Helium 1.05
Copper 1-10 0.1-0.5 Hydrogen 0.720
Magnesium 1.5—3.5 0.2—0.4 Silicone oil 0.525

Aluminum 1.5—5.0 0.2-0.4 Glycerine 0.265




* Contrary to the results of Table 3.1, many applications involve
contact between dissimilar solids and/or a wide range of
possible interstitial (filler) materials (Table 3.2).

* Any interstitial substance that fills the gap between
contacting surfaces and whose thermal conductivity exceeds
that of air will decrease the contact resistance.

* Two classes of materials that are well suited for this purpose are
soft metals and thermal greases.

* The metals, which include indium, lead, tin, and silver, may
be inserted as a thin foil or applied as a thin coating to one of
the parent materials.




* Silicon-based thermal greases are attractive on the basis of
their ability to completely fill the interstices with a material
whose thermal conductivity is as much as 50 times that of air.

TABLE 3.2 Thermal resistance of representative solid/solid interfaces

Interface R,,”c x 10* (m? - K/W) Source
Silicon chip/lapped aluminum in air (27-500 kN/m?) 0.3—0.6 [2]
Aluminum/aluminum with indium foil filler (~100 kN/m?) ~0.07 [1, 3]
Stainless/stainless with indium foil filler (~3500 kN/m?) ~0.04 [1, 3]
Aluminum/aluminum with metallic (Pb) coating 0.01-0.1 [4]
Aluminum/aluminum with Dow Corning 340 grease (~100 kN/m?) ~0.07 [1, 3]
Stainless/stainless with Dow Corning 340 grease (~3500 kN/m?2) ~0.04 [1, 3]
Silicon chip/aluminum with 0.02-mm epoxy 0.2—-0.9 [5]

Brass/brass with 15-um tin solder 0.025-0.14 [6]




* Unlike the foregoing interfaces, which are not permanent,
many interfaces involve permanently bonded joints.

* The joint could be formed from an epoxy, a soft solder rich in
lead, or a hard solder such as a gold/tin alloy.

* Due to interface resistances between the parent and bonding
materials, the actual thermal resistance of the joint exceeds the
theoretical value (L/k) computed from the thickness L and
thermal conductivity k of the joint material.

* The thermal resistance of epoxied and soldered joints is also
adversely affected by voids and cracks, which may form during
manufacture or as a result of thermal cycling during normal
operation.




* Comprehensive reviews of thermal contact resistance results and
models are provided by Snaith et al. [3], Madhusudana and
Fletcher [7], and Yovanovich [8].




e
Porous Media

In many applications, heat transfer occurs within porous media
that are combinations of a stationary solid and a fluid.

When the fluid is either a gas or a liquid which fills the pores of
the material, the resulting porous medium is said to be

saturated.

In contrast, all three phases coexist in an unsaturated porous
medium.

Examples of porous media:




Rocks




Sponges




Cardboard







* A saturated porous medium that consists of a stationary solid phase
through which a fluid flows is referred to as a packed bed and is
discussed 1n Section 7.8.

* Consider a saturated porous medium that is subjected to surface
temperatures T1 at x =0 and T2 at x = L, as shown 1n Figure 3.5a.
After steady-state conditions are reached and 1f T1 > T2, the heat
rate may be expressed as

keit A
9, =~ T ~T)
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FIGURE 3.5 A porous medium. (a) The medium and its properties. (b) Series
thermal resistance representation. (c) Parallel resistance representation.




* where keff 1s an effective thermal conductivity.

* This equation 1s valid if fluid motion, as well as radiation heat
transfer within the medium, are negligible.

* The effective thermal conductivity varies with the porosity or void
fraction of the medium ¢ which is defined as the volume of fluid
relative to the total volume (solid and fluid).

* In addition, keff depends on the thermal conductivities of each of
the phases and, in this discussion, it is assumed ks > kf.

* The detailed solid phase geometry, for example the size distribution
and packing arrangement of individual powder particles, also
affects the value of keff.




Contact resistances that might evolve at interfaces between
adjacent solid particles can impact the value of keff.

As discussed in Section 2.2.1, nanoscale phenomena might also
influence the effective thermal conductivity.

Despite the complexity of the situation, the value of the effective
thermal conductivity may be bracketed by considering the composite
walls of Figures 3.5b and 3.5c.

In Figure 3.5b, the medium is modeled as an equivalent, series
composite wall consisting of a fluid region of length €L. and a solid
region of length (1 — ¢)L.




* Applying the previous equations to this model for which there 1s no
convection (hl = h2 = 0) and only two conduction terms, 1t follows

T =e) Lik, +eLlk;

_ 1
T (T —o)k, +elk;

Keft min

Alternatively, the medium of Figure 3.5a could be described by the

equivalent, parallel composite wall consisting of a fluid region of width
ew and a solid region of width (1 — €)w, as shown 1n Figure 3.5c.

Combining Equation 3.21 with an expression for the equivalent
resistance of two resistors in parallel gives

Keff, max = Ekf + (1 —€)k;




* While Equations 3.23 and 3.24 provide the minimum and maximum
possible values of keff, more accurate expressions have been derived
for specific composite systems within which nanoscale effects are
negligible.

 Maxwell [9] derived an expression for the effective electrical
conductivity of a solid matrix interspersed with uniformly
distributed, noncontacting spherical inclusions.

* After doing the analogy between the electrical and thermal
systems, Maxwell's result may be used to determine the effective
thermal conductivity of a saturated porous medium consisting of an
interconnected solid phase within which a dilute distribution of

spherical fluid regions exists, resulting in an expression of the form
[10]




keff =

- [kf ) (e kf)]k
S

kr+ 2k +€ (ks —kys)




* Equation 3.25 is valid for relatively small porosities (¢ < 0.25) as
shown schematically in Figure 3.5a [11].

* It is equivalent to the expression introduced in Example 2.2 for a fluid

that contains a dilute mixture of solid particles, but with reversal of the
fluid and solid.

* When analyzing conduction within porous media, it 1s important to
consider the potential directional dependence of the effective thermal
conductivity.

* For example, the media represented in Figure 3.5b or Figure 3.5¢
would not be characterized by isotropic properties, since the
effective thermal conductivity in the x-direction is clearly different
from values of keff in the vertical direction.




* Hence, although Equations 3.23 and 3.24 can be used to bracket the
actual value of the effective thermal conductivity, they will generally
overpredict the possible range of keff for isotropic media.

* For 1sotropic media, expressions have been developed to determine the
minimum and maximum possible effective thermal conductivities
based solely on knowledge of the porosity and the thermal
conductivities of the solid and fluid.
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EXAMPLE 3.1

In Example 1.6, we calculated the rate of heat loss from a human
body 1n air and water environments.

Now we consider the same conditions except that the surroundings
(air or water) are at 10°C. To reduce the rate of heat loss, the person
wears special sporting gear (snow suit or wet suit) made from silica
aerogel insulation with an extremely low thermal conductivity of
0.014 W/m - K. The emissivity of the outer surface of the snow and
wet suits 1s 0.95. What thickness of aerogel insulation is needed to
reduce the rate of heat loss to 100 W (a typical metabolic heat
generation rate) in air and water? What are the resulting skin
temperatures?




SOLUTION

Known: Inner surface temperature of a skin/fat layer of known
thickness, thermal conductivity, and surface area. Thermal
conductivity and emissivity of snow and wet suits. Ambient

conditions.
Find: Insulation thickness needed to reduce rate of heat loss to 100

W and corresponding skin temperature.




o —£=0.95
=9 v—] L T,, =10°C

Skinffat | Insulation
etk =0.014 Wm-K
k. = 0.3 Wm-K .

T_=10°C
h =2 W/m2K (Air)
T T T h = 200 W/m?®K (Water)

I‘_Lsf=3mm_’l‘_Lms_’I

Air or
water




Assumptions:

* Steady-state conditions.

* One-dimensional heat transfer by conduction through the skin/fat
and 1nsulation layers.

* Contact resistance 1s negligible.

* Thermal conductivities are uniform.

* Radiation exchange between the skin surface and the surroundings
1s between a small surface and a large enclosure at the air
temperature.

* Liquid water 1s opaque to thermal radiation.

* Solar radiation is negligible.

* Body 1s completely immersed in water in part 2.




Analysis: The thermal circuit can be constructed by recognizing that
resistance to heat flow is associated with conduction through the
skin/fat and insulation layers as well as convection and radiation at the

outer surface. Accordingly, the circuit and the resistances are of the
following form (with hr = 0 for water):




The total thermal resistance needed to achieve the desired rate of
heat loss 1s found from Equation 3.19,

I, - T, _(35-10)K

Riot = 100 W

= 0.25 K/W

The total resistance between the inside of the skin/fat layer and the
cold surroundings includes conduction resistances for the skin/fat
and 1nsulation layers as well as an effective resistance associated
with convection and radiation, which act in parallel. Hence,

L L. 1 1 Y 1(Lg¢ L 1
Ry =—L 4 —ns 41 =z Tzt
ot TF A Koy A (1/hA+1/h,. A) A(ksf Kins R+,




This equation can be solved for the insulation thickness.

Air:
The radiation heat transfer coefficient i1s approximated as having the
same value as in Example 1.6: hr=5.9 W/m2 - K.

L 1
Lins - kins [ARtot - ksf - h+ h ]
S r

-3
= 0.014 W/m - K[l.g m? x025 K/W —>X10 " m 1 ]

03W/m-K (2459 W/m?.K
= 0.0044 m =4.4 mm




Water:

L 1
L. = ki |AR,, — =L — _]
1ns 1ns [ tot ksf h

0.014 W/m - K[1.8 m? %X 0.25 K/W —

3% 1073 m 1 ]

03W/m-K 200 W/m? - K
= 0.0061 m = 6.1 mm

q=kaA(T} _Ts)
Lsf

100 W x3x 107> m

. = 34.4°C
S kg A 0.3W/m-K %X 1.8 m?2




Comments:
* The silica aerogel 1s a porous material that 1s only about 5% solid.

 Its thermal conductivity is less than the thermal conductivity of the
gas that fills 1ts pores.

* As explained in Section 2.2, the reason for this seemingly
impossible result 1s that the pore size 1s about 20 nm, which reduces
the mean free path of the gas and hence decreases its thermal
conductivity.

* By reducing the rate of heat loss to 100 W, a person could remain in
the cold environments indefinitely without becoming chilled.




* The skin temperature of 34.4°C would feel comfortable.

e In the water case, the thermal resistance of the insulation dominates
and all other resistances can be neglected.

* The convection heat transfer coefficient associated with the air
depends on the wind conditions, and it can vary over a broad range.
As 1t changes, so will the outer surface temperature of the insulation
layer. Since the radiation heat transfer coefficient depends on this
temperature, 1t will also vary. We can perform a more complete
analysis that takes this into account. The radiation heat transfer
coefficient 1s given by Equation 1.9:

hr = &0 (Ts,o + Tsur )(T;sz,o T Tz

sSur )




Here Ts,o 1s the outer surface temperature of the msulation layer, which
can be calculated from

L L.
T =T — sf 4 _ins
tjo = q[ksf A" Kins A
where, from the problem solution:
L 1
Lins = kins (ARIOt - ksf - h+ h )
S r

Using all the values from above, these three equations have been solved
for values of h in the range 0 <h <100 W/m2 - K, and the required
insulation thickness is represented graphically.
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* Increasing h reduces the corresponding convection resistance, which

then requires additional insulation to maintain the heat transfer rate
at 100 W.

* Once the heat transfer coefficient exceeds approximately 60 W/m2 -
K, the convection resistance 1s negligible and further increases in h
have little effect on the required insulation thickness.

* The outer surface temperature and radiation heat transfer coefficient
can also be calculated. As h increases from 0 to 100 W/m?2 - K, Ts,o
decreases from 294 to 284 K, while hr decreases from 5.2 to 4.9
W/m?2 - K.




* The mitial estimate of hr = 5.9 W/m2 - K was not highly accurate.
Using this more complete model of the radiation heat transfer, with
h =2 W/m2 - K, the radiation heat transfer coefficient 1s 5.1 W/m2 -
K, and the required insulation thickness 1s 4.2 mm, close to the
value calculated 1n the first part of the problem.




An Alternative Conduction Analysis

Insulation

Adiabatic—,
surface :-7

FIGURE 3.6 System with a constant conduction heat transfer rate.
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qux
= —kAT
N k

where Ax =x; —xgand AT =T, - T,
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EXAMPLE 3.5

The diagram shows a conical section fabricated from pyroceram. It 1s
of circular cross section with the diameter D = ax, where a = 0.25. The
small end 1s at x1 = 50 mm and the large end at x2 = 250 mm. The end
temperatures are T1 =400 K and T2 = 600 K, while the lateral surface
1s well insulated.

T,




* Derive an expression for the temperature distribution T(x) 1n
symbolic form, assuming one-dimensional conditions.

* Sketch the temperature distribution.

* Calculate the heat rate gx through the cone.

SOLUTION
Known: Conduction in a circular conical section having a diameter
D = ax, where a = 0.25.

Find:
Temperature distribution T(x).
Heat transfer rate gx.




Schematic:

|' x;=0.05m
xz = 0.25 m
Pyroceram X




Assumptions:

Steady-state conditions.

One-dimensional conduction 1n the x-direction.
No internal heat generation.

Constant properties.

Properties: Table A.2, pyroceram (500 K): k=3.46 W/m - K.
Analysis:

Since heat conduction occurs under steady-state, one-dimensional
conditions with no internal heat generation, the heat transfer rate gx
1s a constant independent of x. Accordingly, Fourier's law, Equation
2.1, may be used to determine the temperature distribution




g, = —kAg_I
where A = 1D?/4 = ma®x?/4. Separating variables,
4q dx
b = —kdT
wa X

Integrating from x1 to any x within the cone, and recalling that qx
and k are constants, it follows that




Hence

4, 1,1
;(_g"‘ ﬁ) =—k(T—T;)
ra
or solving for T
49, 1 1
T(x)=T ——2(=—=
frazk\x1 X

Although gx is a constant, it is as yet an unknown. However, it may

be determined by evaluating the above expression at X = x2, where
T(x2) =T2. Hence




and solving for g,

_ 72d’k (T -Ty)
% T AT - (Uxy)

Substituting for g, into the expression for 7(x), the temperature distribution becomes

T(x)=T, +(T; -Tz)[ (I/x)_(“xl)]

(I/x1) —(A/xy)

From this result, temperature may be calculated as a function of x and the distribution is as shown.
’

T,

g




Note that, since dT/dx = —4qx/kma’x? from Fourier's law, it follows
that the temperature gradient and heat flux decrease with increasing
X.

Substituting numerical values into the foregoing result for the heat
transfer rate, it follows that

_ 7(0.25)* x3.46 W/m - K (400 — 600) K

=-2.12W
9, 4(1/0.05 m — 1/0.25 m)

Comments: When the parameter a increases, the cross-sectional area
changes more rapidly with distance, causing the one-dimensional
assumption to become less appropriate.




Radial Systems

Hot fluid
T°°.1' hl

Cold fluid T, |--
Tw'z, hz ,/ *

T2 e i
T, r rp
r
. s, T, T.2
P q,—> NN~ \NNNN—ANN—
T, 1 In(ryfry) 1
11127tr1L 2”’\'[4 ’122”"2[4

FiGcurE 3.7 Hollow cylinder with convective surface conditions.
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FiGURE 3.8 Temperature distribution for a composite cylindrical wall.
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The Sphere
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FIGURE 3.9 Conduction in a spherical shell.




g, = —kA(iFT = —k(4nr* )((ih'—T

qr dI'__ s,
47{/:? e /;Zk(T)dT

(. |

_47[k(Ts,1 = s,2)
& ) = ry)

1 ,1 1
Rt,cond = 471'k(r1 - r2)




e
Equations Summary

TABLE 3.3 One-dimensional, steady-state solutions to the heat equation with no generation

Plane Wall Cylindrical Wall2 Spherical Wall2

. T _ 1d 4T, _ 2dT, _
Heat equation 2 =0 W(r i =0 (r )
NP In (r/rp) 1—(ry/r)
Temperature distribution T, ; - AT% 5,2 AT m T, — AT[W
Heat flux (q ") AT kAT kAT
L rin (ry/ry) P [(1r) = (/ry)]
AT 2rLkKAT 4xkAT
Heat rate (q) kA L In (ry/ry) (I/r)=(A/ry)
In (rp /ry) (I/ry) = (1ry)

Thermal resistance (Ry, cond) - A 2Lk 4rk




