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Introduction

* In the treatment of conduction, we began with the simple case of
one-dimensional, steady-state conduction with no internal
generation, and we subsequently considered more realistic situations
involving generation effects with different coordinates. Then, the
analysis of fins was tackled.

* However, we have not yet considered situations for which conditions
change with time.

*  We now recognize that many heat transfer problems are time
dependent.

* Such unsteady, or transient, problems typically arise when the
boundary conditions of a system are changed.




e
Introduction

* For example, if the surface temperature of a system 1s altered, the
temperature at each point in the system will also begin to change.

* The changes will continue to occur until, as is often the case, a steady-
state temperature distribution is ultimately reached.

* Consider a hot metal billet that 1s removed from a furnace and exposed
to a cool airstream.

* Energy is transferred by convection and radiation from its surface to the
surroundings.

* Energy transfer by conduction also occurs from the interior of the metal
to the surface, and the temperature at each point in the billet decreases

until a steady-state condition is reached.
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* The objective in this chapter 1s to develop procedures for determining
the time dependence of the temperature distribution within a solid
during a transient process, as well as for determining heat transfer
between the solid and its surroundings.

* The nature of the procedure depends on assumptions that may be made
for the process.

* If, for example, temperature gradients within the solid may be
neglected, a comparatively simple approach, termed the lumped
capacitance method, may be used to determine the variation of
temperature with time.
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* Under conditions for which temperature gradients are not negligible, but
heat transfer within the solid 1s one-dimensional, exact solutions to the
heat equation may be used to compute the dependence of temperature on
both location and time or

* Finite-difference or finite-element methods must be used to predict the
time dependence of temperatures within the solid, as well as heat rates at
its boundaries.
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* A simple, yet common, transient conduction problem is one for

which a solid experiences a sudden change in its thermal
environment.

* Consider a hot metal forging that is initially at a uniform temperature
Ti and 1s quenched by immersing it in a liquid of lower temperature
Too <Ti (Figure 5.1).

 If the quenching is said to begin at time t = 0, the temperature of the
solid will decrease for time t > 0, until it eventually reaches Too.

* This reduction is due to convection heat transfer at the solid—liquid
interface.
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* The essence of the lumped capacitance method 1s the assumption that
the temperature of the solid 1s spatially uniform at any instant during
the transient process.

* This assumption implies that temperature gradients within the solid are
negligible.
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FIGURE 5.1 Cooling of a hot metal forging.
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* From Fourier's law, heat conduction in the absence of a temperature
gradient implies the existence of infinite thermal conductivity.

* Such a condition is clearly impossible. However, the condition is
closely approximated if the resistance to conduction within the solid is
small compared with the resistance to heat transfer between the solid
and its surroundings.

 For now we assume that this is, in fact, the case.

* Inneglecting temperature gradients within the solid, we can no longer
consider the problem from within the framework of the heat equation,
since the heat equation is a differential equation governing the spatial
temperature distribution within the solid.




.
The Lumped Capacitance Method

* Instead, the transient temperature response is determined by
formulating an overall energy balance on the entire solid.

 This balance must relate the rate of heat loss at the surface to the rate of

change of the internal energy. Applying Equation 1.12c to the control
volume of Figure 5.1, this requirement takes the form
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It 1s also evident that the quantity (pVc/hAs) may be interpreted as a thermal
time constant expressed as

_(_1 _
T, = (hAs )(ch) = R, C,

where R, 1s the resistance to convection heat transfer and C, is the lumped
thermal capacitance of the solid.

Any increase in R, or C, will cause the solid to respond more slowly to
changes in its thermal environment.

This behavior is analogous to the voltage decay that occurs when a
capacitor is discharged through a resistor in an electrical RC circuit.
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These results indicate that the
difference between the solid and
fluid temperatures decays
exponentially to zero as t
approaches infinity.

This behavior is shown in Figure
5.2.

FIGURE 5.2 Transient temperature response of lumped capacitance solids
for different thermal time constants t,.
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To determine the total energy transfer Q occurring up to some time t, we
simply write

Q=/;th=hAsj;0dt

0 = (pV0)6; [1 ~ exp(~)]

The quantity Q 1s, of course, related to the change in the internal energy
of the solid

-0 = AEst




Validity of the Lumped Capacitance Method

* The foregoing results demonstrate that the lumped capacitance method 1s
a simple and convenient method for solving transient heating and
cooling problems.

* In this section, we determine under what conditions it may be used
with reasonable accuracy.

* To develop a suitable criterion, consider steady-state conduction through
the plane wall of area A (Figure 5.3).

» Although we are assuming steady-state conditions, the following
criterion 1s readily extended to transient processes.
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One surface 1s maintained at a temperature Ts, 1 and the other surface is
exposed to a fluid of temperature Too < Ts, 1.

The temperature of this surface will be some intermediate value Ts, 2,
for which Too < Ts, 2 < Ts, 1.

Hence under steady-state conditions the surface energy balance,
Equation 1.13, reduces to
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FIGURE 5.3 Effect of Biot number on steady-state temperature distribution in a plane
wall with surface convection.




kTA(Ts,l _ s,2)=hA(Ts,2 I

(60)

where k is the thermal conductivity of the solid. Rearranging, we then
obtain

Ts,l - Ts,2 _ (L/kA) _ Rt,cond — hL = Bi
Ts,2 _ Too (1/ hA) Rt, conv k




* The quantity (hL/k) 1s a dimensionless parameter. It 1s termed the Biot
number, and it plays a fundamental role in conduction problems that
involve surface convection effects.

* The Biot number provides a measure of the temperature drop in the
solid relative to the temperature difference between the solid's surface
and the fluid.

* The Biot number may be interpreted as a ratio of thermal resistances.
* In particular, if B1 << 1, the resistance to conduction within the solid 1s
much less than the resistance to convection across the fluid boundary

layer.

* Hence, the assumption of a uniform temperature distribution within
the solid is reasonable 1f the Biot number 1s small.




* Although we have discussed the Biot number 1n the context of steady-
state conditions, we are reconsidering this parameter because of its
significance to transient conduction problems.

* Consider the plane wall of Figure 5.4, which is initially at a uniform
temperature Ti and experiences convection cooling when it 1s
immersed 1n a fluid of Too < Ti.

* The problem may be treated as one-dimensional in x, and we are
interested in the temperature variation with position and time, T(X, t).

* This variation 1s a strong function of the Biot number, and three
conditions are shown in Figure 5.4. Again, for Bi < 1 the temperature
gradients in the solid are small and the assumption of a uniform
temperature distribution, T(x, t) = T(t) is reasonable.




* Virtually all the temperature difference 1s between the solid and the
fluid, and the solid temperature remains nearly uniform as it decreases
to Too.

* For moderate to large values of the Biot number, however, the
temperature gradients within the solid are significant. Hence T = T(x,

£).

* Note that for Bi > 1, the temperature difference across the solid is
much larger than that between the surface and the fluid.




FIGURE 5.4 Transient temperature distributions for different Biot numbers in a
plane wall symmetrically cooled by convection.




We conclude this section by emphasizing the importance of the lumped
capacitance method.

Its inherent simplicity renders it the preferred method for solving transient
heating and cooling problems.

Hence, when confronted with such a problem, the very first thing that one
should do 1s calculate the Biot number. If the following condition 1s satisfied

. hL,
Bi= k

< 0.1

the error associated with using the lumped capacitance method 1s small. For
convenience, it is customary to define the characteristic length of Equation
5.10 as the ratio of the solid’s volume to surface area Lc = V/As.




* Such a definition facilitates calculation of Lc for solids of complicated
shape and reduces to the half-thickness L for a plane wall of thickness
2L (Figure 5.4), to ro/2 for a long cylinder, and to ro/3 for a sphere.

* However, if one wishes to implement the criterion in a conservative fashion,
Lc should be associated with the length scale corresponding to the
maximum spatial temperature difference.

* Accordingly, for a symmetrically heated (or cooled) plane wall of thickness
2L, Lc would remain equal to the half-thickness L.

 However, for a long cylinder or sphere, Lc would equal the actual radius ro,
rather than ro/2 or ro/3.

* Finally, we note that, with Lc = V/As, the exponent of Equation 5.6 may be
expressed as
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Fo 1s termed the Fourier number. It is a dimensionless time, which, with the
Biot number, characterizes transient conduction problems. Substitutiing in
the equation, we obtain
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EXAMPLE 5.1

A thermocouple junction, which may be approximated as a sphere, is to
be used for temperature measurement in a gas stream. The convection
coefficient between the junction surface and the gas 1s h =400 W/m2 - K,
and the junction thermophysical properties are k =20 W/m - K, ¢ =400
J/kg - K, and p = 8500 kg/m3. Determine the junction diameter needed
for the thermocouple to have a time constant of 1 s. If the junction is at

25°C and 1s placed in a gas stream that 1s at 200°C, how long will it take
for the junction to reach 199°C?
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SOLUTION

Known: Thermophysical properties of thermocouple junction used to
measure temperature of a gas stream.

Find:
1. Junction diameter needed for a time constant of 1 s.
2. Time required to reach 199°C in gas stream at 200°C.

Schematic:




Leads
T_=200°C
h =400 W/m?2K Thermocouple | £k = 20 Wm-K
junction c =400 JkgK
—> T;=25°C ] p=8500 kg/m?
—

—
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Assumptions:

1. Temperature of junction is uniform at any instant.

2. Radiation exchange with the surroundings 1s negligible.
3. Losses by conduction through the leads are negligible.
4. Constant properties.

Analysis:

1. Because the junction diameter is unknown, it is not possible to begin
the solution by determining whether the criterion for using the lumped
capacitance method, Equation 5.10, 1s satisfied. However, a reasonable
approach is to use the method to find the diameter and to then determine
whether the criterion is satisfied. From Equation 5.7 and the fact that As
=nD2 and V =7D3/6 for a sphere, it follows that
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1 nD

T = 2xp6 c
hzxD

Rearranging and substituting numerical values,

2
p=0n _ _6x40W/m* -Kx1s _~0cs 1074 m <

PC 8500 kg/m> x 4001J/kg - K

With L, = r,/3 it then follows from Equation 5.10 that

_h(r,/3) _400 W/m® -K x3.53x10"* m

_ =3
k 3% 20 W/m - K =235x10

Bi

Accordingly, Equation 5.10 is satisfied (for Lc = ro, as well as for Lc =ro/3) and
the lumped capacitance method may be used to an excellent approximation.

2. From Equations 5.5 and 5.6 the time required for the junction to reach a
temperature T can be written as

pI/c (Tz_Too) (Tx_Too)
t= In =17, In| +—5—
hA, ’

Thus, the time required to reach T'= 199°C is

_ 25-200, _ _ _
t=1, ln(199 — 200) 52t, =52X1s=52s <




Comments: Heat transfer due to radiation exchange between the junction
and the surroundings and conduction through the leads would affect the
time response of the junction and would, in fact, yield an equilibrium
temperature that differs from Too.




