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• In the treatment of conduction, we began with the simple case of 
one-dimensional, steady-state conduction with no internal 
generation, and we subsequently considered more realistic situations 
involving generation effects with different coordinates. Then, the 
analysis of fins was tackled.

• However, we have not yet considered situations for which conditions 
change with time.

• We now recognize that many heat transfer problems are time 
dependent. 

• Such unsteady, or transient, problems typically arise when the 
boundary conditions of a system are changed. 
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Introduction
• For example, if the surface temperature of a system is altered, the 

temperature at each point in the system will also begin to change. 

• The changes will continue to occur until, as is often the case, a steady-
state temperature distribution is ultimately reached. 

• Consider a hot metal billet that is removed from a furnace and exposed 
to a cool airstream. 

• Energy is transferred by convection and radiation from its surface to the 
surroundings. 

• Energy transfer by conduction also occurs from the interior of the metal 
to the surface, and the temperature at each point in the billet decreases 
until a steady-state condition is reached.



• The objective in this chapter is to develop procedures for determining 
the time dependence of the temperature distribution within a solid 
during a transient process, as well as for determining heat transfer 
between the solid and its surroundings. 

• The nature of the procedure depends on assumptions that may be made 
for the process. 

• If, for example, temperature gradients within the solid may be 
neglected, a comparatively simple approach, termed the lumped 
capacitance method, may be used to determine the variation of 
temperature with time. 
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• Under conditions for which temperature gradients are not negligible, but 
heat transfer within the solid is one-dimensional, exact solutions to the 
heat equation may be used to compute the dependence of temperature on 
both location and time or

• Finite-difference or finite-element methods must be used to predict the 
time dependence of temperatures within the solid, as well as heat rates at 
its boundaries.
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The Lumped Capacitance Method
• A simple, yet common, transient conduction problem is one for 

which a solid experiences a sudden change in its thermal 
environment. 

• Consider a hot metal forging that is initially at a uniform temperature 
Ti and is quenched by immersing it in a liquid of lower temperature 
T∞ < Ti (Figure 5.1). 

• If the quenching is said to begin at time t = 0, the temperature of the 
solid will decrease for time t > 0, until it eventually reaches T∞. 

• This reduction is due to convection heat transfer at the solid–liquid 
interface. 



The Lumped Capacitance Method
• The essence of the lumped capacitance method is the assumption that 

the temperature of the solid is spatially uniform at any instant during 
the transient process. 

• This assumption implies that temperature gradients within the solid are 
negligible.
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• From Fourier's law, heat conduction in the absence of a temperature 
gradient implies the existence of infinite thermal conductivity. 

• Such a condition is clearly impossible. However, the condition is 
closely approximated if the resistance to conduction within the solid is 
small compared with the resistance to heat transfer between the solid 
and its surroundings. 

• For now we assume that this is, in fact, the case.

• In neglecting temperature gradients within the solid, we can no longer 
consider the problem from within the framework of the heat equation, 
since the heat equation is a differential equation governing the spatial 
temperature distribution within the solid. 
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• Instead, the transient temperature response is determined by 
formulating an overall energy balance on the entire solid. 

• This balance must relate the rate of heat loss at the surface to the rate of 
change of the internal energy. Applying Equation 1.12c to the control 
volume of Figure 5.1, this requirement takes the form

The Lumped Capacitance Method



The Lumped Capacitance Method



The Lumped Capacitance Method

where Rt is the resistance to convection heat transfer and Ct is the lumped 
thermal capacitance of the solid. 

Any increase in Rt or Ct will cause the solid to respond more slowly to 
changes in its thermal environment. 

This behavior is analogous to the voltage decay that occurs when a 
capacitor is discharged through a resistor in an electrical RC circuit.

It is also evident that the quantity (ρVc/hAs) may be interpreted as a thermal 
time constant expressed as
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FIGURE 5.2 Transient temperature response of lumped capacitance solids 
for different thermal time constants τi.

These  results indicate that the 
difference between the solid and 
fluid temperatures decays 
exponentially to zero as t 
approaches infinity. 
This behavior is shown in Figure 
5.2. 



The Lumped Capacitance Method
To determine the total energy transfer Q occurring up to some time t, we 
simply write

The quantity Q is, of course, related to the change in the internal energy 
of the solid



Validity of the Lumped Capacitance Method

• The foregoing results demonstrate that the lumped capacitance method is 
a simple and convenient method for solving transient heating and 
cooling problems. 

• In this section, we determine under what conditions it may be used 
with reasonable accuracy.

• To develop a suitable criterion, consider steady-state conduction through 
the plane wall of area A (Figure 5.3). 

• Although we are assuming steady-state conditions, the following 
criterion is readily extended to transient processes. 



Validity of the Lumped Capacitance Method
• One surface is maintained at a temperature Ts, 1 and the other surface is 

exposed to a fluid of temperature T∞ < Ts, 1. 

• The temperature of this surface will be some intermediate value Ts, 2, 
for which T∞ < Ts, 2 < Ts, 1. 

• Hence under steady-state conditions the surface energy balance, 
Equation 1.13, reduces to



FIGURE 5.3 Effect of Biot number on steady-state temperature distribution in a plane 
wall with surface convection.



where k is the thermal conductivity of the solid. Rearranging, we then 
obtain



• The quantity (hL/k) is a dimensionless parameter. It is termed the Biot
number, and it plays a fundamental role in conduction problems that 
involve surface convection effects. 

• The Biot number provides a measure of the temperature drop in the 
solid relative to the temperature difference between the solid's surface 
and the fluid. 

• The Biot number may be interpreted as a ratio of thermal resistances. 

• In particular, if Bi ≪ 1, the resistance to conduction within the solid is 
much less than the resistance to convection across the fluid boundary 
layer. 

• Hence, the assumption of a uniform temperature distribution within 
the solid is reasonable if the Biot number is small.



• Although we have discussed the Biot number in the context of steady-
state conditions, we are reconsidering this parameter because of its 
significance to transient conduction problems. 

• Consider the plane wall of Figure 5.4, which is initially at a uniform 
temperature Ti and experiences convection cooling when it is 
immersed in a fluid of T∞ < Ti. 

• The problem may be treated as one-dimensional in x, and we are 
interested in the temperature variation with position and time, T(x, t). 

• This variation is a strong function of the Biot number, and three 
conditions are shown in Figure 5.4. Again, for Bi ≪ 1 the temperature 
gradients in the solid are small and the assumption of a uniform 
temperature distribution, T(x, t) ≈ T(t) is reasonable. 



• Virtually all the temperature difference is between the solid and the 
fluid, and the solid temperature remains nearly uniform as it decreases 
to T∞. 

• For moderate to large values of the Biot number, however, the 
temperature gradients within the solid are significant. Hence T = T(x, 
t). 

• Note that for Bi ≫ 1, the temperature difference across the solid is 
much larger than that between the surface and the fluid.



FIGURE 5.4 Transient temperature distributions for different Biot numbers in a 
plane wall symmetrically cooled by convection.



We conclude this section by emphasizing the importance of the lumped 
capacitance method. 

Its inherent simplicity renders it the preferred method for solving transient 
heating and cooling problems. 

Hence, when confronted with such a problem, the very first thing that one 
should do is calculate the Biot number. If the following condition is satisfied

the error associated with using the lumped capacitance method is small. For 
convenience, it is customary to define the characteristic length of Equation 
5.10 as the ratio of the solid’s volume to surface area Lc ≡ V/As. 



• Such a definition facilitates calculation of Lc for solids of complicated 
shape and reduces to the half-thickness L for a plane wall of thickness 
2L (Figure 5.4), to ro/2 for a long cylinder, and to ro/3 for a sphere. 

• However, if one wishes to implement the criterion in a conservative fashion, 
Lc should be associated with the length scale corresponding to the 
maximum spatial temperature difference. 

• Accordingly, for a symmetrically heated (or cooled) plane wall of thickness 
2L, Lc would remain equal to the half-thickness L. 

• However, for a long cylinder or sphere, Lc would equal the actual radius ro, 
rather than ro/2 or ro/3.

• Finally, we note that, with Lc ≡ V/As, the exponent of Equation 5.6 may be 
expressed as



Fo is termed the Fourier number. It is a dimensionless time, which, with the 
Biot number, characterizes transient conduction problems. Substitutiing in 
the equation, we obtain



A thermocouple junction, which may be approximated as a sphere, is to 
be used for temperature measurement in a gas stream. The convection 
coefficient between the junction surface and the gas is h = 400 W/m2 · K, 
and the junction thermophysical properties are k = 20 W/m · K, c = 400 
J/kg · K, and ρ = 8500 kg/m3. Determine the junction diameter needed 
for the thermocouple to have a time constant of 1 s. If the junction is at 
25°C and is placed in a gas stream that is at 200°C, how long will it take 
for the junction to reach 199°C?

EXAMPLE 5.1



SOLUTION

Known: Thermophysical properties of thermocouple junction used to 
measure temperature of a gas stream.

Find:
1. Junction diameter needed for a time constant of 1 s.
2. Time required to reach 199°C in gas stream at 200°C.
Schematic:

EXAMPLE 5.1





EXAMPLE 5.1
Assumptions:
1. Temperature of junction is uniform at any instant.
2. Radiation exchange with the surroundings is negligible.
3. Losses by conduction through the leads are negligible.
4. Constant properties.

Analysis:
1. Because the junction diameter is unknown, it is not possible to begin 
the solution by determining whether the criterion for using the lumped 
capacitance method, Equation 5.10, is satisfied. However, a reasonable 
approach is to use the method to find the diameter and to then determine 
whether the criterion is satisfied. From Equation 5.7 and the fact that As 
= πD2 and V = πD3/6 for a sphere, it follows that



Accordingly, Equation 5.10 is satisfied (for Lc = ro, as well as for Lc = ro/3) and 
the lumped capacitance method may be used to an excellent approximation.
2. From Equations 5.5 and 5.6 the time required for the junction to reach a 
temperature T can be written as



Comments: Heat transfer due to radiation exchange between the junction 
and the surroundings and conduction through the leads would affect the 
time response of the junction and would, in fact, yield an equilibrium 
temperature that differs from T∞.


