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• Our primary objective is to determine convection coefficients for 
different flow geometries. 

• In particular, we wish to obtain specific forms of the functions that 
represent these coefficients. 

• By nondimensionalizing the boundary layer equations in Chapter 
6, we found that the local and average convection coefficients may 
be correlated by equations of the form

Heat Transfer:
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INTRODUCTION
• The experimental or empirical approach involves performing heat 

transfer measurements under controlled laboratory conditions and 
correlating the data in terms of appropriate dimensionless parameters. 

• A general discussion of the approach is provided in Section 7.1. It has been 
applied to many different geometries and flow conditions, and important 
results are presented in Sections 7.2 through 7.8.

• The theoretical approach involves solving the boundary layer equations 
for a particular geometry. 

• For example, obtaining the temperature profile T* from such a solution, It 
may be used to evaluate the local Nusselt number Nux, and therefore the 
local convection coefficient hx. With knowledge of how hx varies over the 
surface, then it may be used to determine the average convection coefficient , 
and therefore the average Nusselt number .
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The Empirical Method
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• The manner in which a convection heat transfer correlation may be obtained 
experimentally is illustrated in Figure 7.1. 

• If a prescribed geometry, such as the flat plate in parallel flow, is heated 
electrically to maintain Ts > T∞, convection heat transfer occurs from the 
surface to the fluid. 

• It would be a simple matter to measure Ts and T∞, as well as the electrical 
power, E ⋅ I, which is equal to the total heat transfer rate q. 

• The convection coefficient , which is an average associated with the entire 
plate, could then be computed from Newton’s law of cooling, Moreover, from 
knowledge of the characteristic length L and the fluid properties, the 
Nusselt, Reynolds, and Prandtl numbers could be computed from their 
definitions.
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The Empirical Method
• The foregoing procedure could be repeated for a variety of test conditions. 

We could vary the velocity u∞ and the plate length L, as well as the 
nature of the fluid, using, for example, air, water, and engine oil, which 
have substantially different Prandtl numbers. 

• We would then be left with many different values of the Nusselt number 
corresponding to a wide range of Reynolds and Prandtl numbers, and 
the results could be plotted on a log–log scale, as shown in Figure 7.2a. 
Each symbol represents a unique set of test conditions. 

• As is often the case, the results associated with a given fluid, and hence a 
fixed Prandtl number, fall close to a straight line, indicating a power law 
dependence of the Nusselt number on the Reynolds number. Considering 
all the fluids, the data may then be represented by an algebraic expression 
of the form

……7.1
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The Empirical Method
• Since the values of C, m, and n are often independent of the nature of the 

fluid, the family of straight lines corresponding to different Prandtl numbers 
can be collapsed to a single line by plotting the results in terms of the ratio, 
as shown in Figure 7.2b.

• Because Equation 7.1 is inferred from experimental measurements, it is 
termed an empirical correlation. The specific values of the coefficient C 
and the exponents m and n vary with the nature of the surface geometry 
and the type of flow.

• We will use expressions of the form given by Equation 7.1 for many special 
cases, and it is important to note that the assumption of constant fluid 
properties is often implicit in the results. 
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The Empirical Method
• However, we know that the fluid properties vary with temperature 

across the boundary layer and that this variation can certainly influence 
the heat transfer rate. 

• This influence may be handled in one of two ways. In one method, Equation 
7.1 is used with all properties evaluated at a mean boundary layer 
temperature Tf, termed the film temperature. 

• The alternate method is to evaluate all properties at T∞ and to multiply 
the right‐hand side of Equation 7.1 by an additional parameter to 
account for the property variations. The parameter is commonly of the 
form (Pr∞/Prs)r or (μ∞/μs)r, where the subscripts ∞ and s designate 
evaluation of the properties at the free stream and surface temperatures, 
respectively. Both methods are used in the results that follow.
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The Flat Plate in Parallel Flow
• As discussed before, laminar boundary layer development begins at the leading 

edge (x = 0) and transition to turbulence may occur at a downstream location (xc) 
for which a critical Reynolds number Rex,c is achieved. 

• We begin by analytically determining the velocity and temperature, and 
distributions in the laminar boundary layers that are shown qualitatively in 
Figures 6.1, 6.2, and 6.3, respectively. 

• From knowledge of these distributions, we will determine expressions for the 
local and average friction coefficients and Nusselt numbers. 

• Subsequently, we will report experimentally determined correlations for the 
friction coefficient and Nusselt numbers for turbulent boundary layers.
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The Flat Plate in Parallel Flow
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Laminar Flow over an Isothermal Plate: A Similarity Solution

• The major convection parameters may be obtained by solving the 
appropriate form of the boundary layer equations. 

• Assuming steady, incompressible, laminar flow with constant fluid 
properties and negligible viscous dissipation and recognizing that 
dp/dx = 0, the boundary layer equations reduce to

Equations 7.4 

Equations 7.5

Equations 7.6 
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The Flat Plate in Parallel Flow
• Solution of these equations is simplified by the fact that for constant 

properties, solution of the velocity (hydrodynamic) boundary layer 
is independent of temperature.

• Hence, we may begin by solving the hydrodynamic problem by 
solving the continuity and momentum equations

• Once the hydrodynamic problem has been solved, solutions to the 
energy equation, which depend on u and υ, may be obtained.
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Hydrodynamic Solution
The hydrodynamic solution follows the method of Blasius [1, 2]. The first step 
is to define a stream function ψ(x, y), such that

Continuity equation is then automatically satisfied and hence is no longer 
needed. 

New dependent and independent variables, f and η, respectively, are then 
defined such that

Equations 7.8 

Equations 7.10 

Equations 7.9 
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Hydrodynamic Solution
• As we will find, use of these variables simplifies matters by reducing the 

partial differential equation, (momentum equation) , to an ordinary 
differential equation.

• The Blasius solution is termed a similarity solution, and η is a 
similarity variable. This terminology is used because, despite growth of 
the boundary layer with distance x from the leading edge, the velocity 
profile u/u∞ remains geometrically similar. 

• This similarity is of the functional form

where δ is the boundary layer thickness. We will find from the Blasius solution 
that δ varies as (νx/u∞)1/2; thus, it follows that

Equations 7.11 
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Hydrodynamic Solution
• Hence the velocity profile is uniquely determined by the similarity 

variable η, which depends on both x and y.
• From Equations 7.8 through 7.10 we obtain

By differentiating the velocity components, it may also be shown that

Equations 7.14 

Equations 7.13 

Equations 7.12 
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Hydrodynamic Solution

Substituting these expressions into Equation 7.5, we then obtain

Hence the hydrodynamic boundary layer problem is reduced to one of solving a 
nonlinear, third‐order ordinary differential equation. The appropriate boundary 
conditions are

Equations 7.17 

Equations 7.16 

Equations 7.15 

Equations 7.18 
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Hydrodynamic Solution
• The solution subject to the conditions, may be obtained by a series 

expansion or by numerical integration. 

• Selected results are presented in Table 7.1, from which useful information may 
be extracted. 

• The x‐component velocity distribution from the third column of the table is 
plotted in Figure 7.4a. 

• We also note that, to a good approximation, (u/u∞) = 0.99 for η = 5.0. 

• Defining the boundary layer thickness δ as that value of y for which (u/u∞) = 
0.99, it follows from Equation 7.10 that
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Hydrodynamic Solution
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FIGURE 7.4 Similarity solution for laminar flow over an isothermal plate. (a) The 
x-component of the velocity. (b) Temperature distributions for Pr = 0.6, 1, and 7.

Hydrodynamic Solution
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From Equation 7.19 it is clear that δ increases with increasing x and ν but 
decreases with increasing u∞ (the larger the free stream velocity, the thinner 
the boundary layer). In addition, from Equation 7.15 the wall shear stress may 
be expressed as

Equation 7.19 

Equation 7.20 

Hydrodynamic Solution
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Heat Transfer Solution
From knowledge of conditions in the velocity boundary layer, the energy equation 
may now be solved. We begin by introducing the dimensionless temperature 
T* ≡ [(T − Ts)/(T∞ − Ts)] and assume a similarity solution of the form T* = T*(η). 
Making the necessary substitutions, Equation 7.6 reduces to

Note the dependence of the thermal solution on hydrodynamic conditions through 
appearance of the variable f in Equation 7.21. The appropriate boundary 
conditions are

Equation 7.21 

Equation 7.22 



23

• Subject to the conditions of Equation 7.22, Equation 7.21 may be solved by 
numerical integration for different values of the Prandtl number; representative 
temperature distributions for Pr = 0.6, 1, and 7 are shown in Figure 7.4b. 

• The temperature distribution is identical to the velocity distribution for Pr
= 1. 

• Thermal effects penetrate farther into the velocity boundary layer with 
decreasing Prandtl number and transcend the velocity boundary layer for Pr < 1. 

• A practical consequence of this solution is that, for Pr ≳ 0.6, results for the 
surface temperature gradient dT*/dη|η=0 may be correlated by the 
following relation:

Heat Transfer Solution
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• Expressing the local convection coefficient as

it follows that the local Nusselt number is

Equation 7.23 

Heat Transfer Solution
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From the solution to Equation 7.21, it also follows that, for Pr ≳ 0.6, the ratio of 
the velocity to thermal boundary layer thickness is

Equation 7.24 

Heat Transfer Solution
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Average Boundary Layer Parameters for Laminar 
Conditions 
From the foregoing local results, average boundary layer parameters may be 
determined. With the average friction coefficient defined as
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Liquid Metals 
For fluids of small Prandtl number, namely, liquid metals, Equation 7.23 
does not apply. 

However, for this case the thermal boundary layer development is much 
more rapid than that of the velocity boundary layer 
(δt ≫ δ), and it is reasonable to assume uniform velocity (u = u∞) 
throughout the thermal boundary layer. 

From a solution to the thermal boundary layer equation based on this 
assumption [5], it may then be shown that

NOTE: For liquid metals, the Prandtl number is typically very low compared to other fluids 
like water or air. This is because liquid metals generally have high thermal conductivity and 
low viscosity.
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where Pex ≡ Rex Pr is the Peclet number (Table 6.2). Despite the corrosive 
and reactive nature of liquid metals, their unique properties (low melting 
point and vapor pressure, as well as high thermal capacity and 
conductivity) render them attractive as coolants in applications requiring 
high heat transfer rates.

A single correlating equation, which applies for all Prandtl numbers, 
has been recommended by Churchill and Ozoe [6]. For laminar flow 
over an isothermal plate, the local convection coefficient may be obtained 
from
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Turbulent Flow over an Isothermal Plate

It is not possible to obtain exact analytical solutions for turbulent 
boundary layers, which are inherently unsteady. From experiment [2] it is 
known that, for turbulent flows with Reynolds numbers up to approximately 
108, the local friction coefficient is correlated to within 15% accuracy by an 
expression of the form

Using Equation 7.34 with the modified Reynolds, or Chilton–Colburn, analogy, the 
local Nusselt number for turbulent flow is
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Unheated Starting Length
All the foregoing Nusselt number expressions are restricted to situations 
for which the surface temperature Ts is uniform. A common exception 
involves existence of an unheated starting length (Ts = T∞) upstream of a 
heated section (Ts ≠ T∞). As shown in Figure 7.5, velocity boundary layer 
growth begins at x = 0, while thermal boundary layer development begins 
at x = ξ. Hence there is no heat transfer for 0 ≤ x ≤ ξ. Through use of an 
integral boundary layer solution [5], it is known that, for laminar flow
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It has also been found that, for turbulent flow,

For a plate of total length L, with laminar or turbulent flow over the 
entire surface, the expressions are of the form
(7.44)

where p = 2 for laminar flow and p = 8 for 
turbulent flow.
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Flat Plates with Constant Heat Flux Conditions

It is also possible to have a uniform surface heat flux, rather than a 
uniform temperature, imposed at the plate. For laminar flow, it may be 
shown that [5]

An average surface temperature 

Where:
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The Cylinder in Cross Flow

Another common external flow involves fluid motion normal to the axis of 
a circular cylinder. 

As shown in Figure 7.6, the free stream fluid is brought to rest at the 
forward stagnation point, with an accompanying rise in pressure. 

From this point, the pressure decreases with increasing x, the streamline 
coordinate, and the boundary layer develops under the influence of a 
favorable pressure gradient (dp/dx < 0). 

However, the pressure must eventually reach a minimum, and toward the 
rear of the cylinder further boundary layer development occurs in the 
presence of an adverse pressure gradient (dp/dx > 0).
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FIGURE 7.6 Boundary layer formation and separation on a circular cylinder in cross flow.
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FIGURE 7.7 Velocity profile associated with separation on a circular cylinder in cross flow
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In Figure 7.6, the distinction between the upstream velocity V and the free stream 
velocity u∞ should be noted. 

Unlike conditions for the flat plate in parallel flow, these velocities differ, with 
u∞ now depending on the distance x from the stagnation point. 

From Euler’s equation for an inviscid flow [10], u∞(x) must exhibit behavior 
opposite to that of p(x). 

That is, from u∞ = 0 at the stagnation point, the fluid accelerates because of the 
favorable pressure gradient (du∞/dx > 0 when dp/dx < 0), reaches a maximum 
velocity when dp/dx = 0, and decelerates because of the adverse pressure gradient 
(du∞/dx < 0 when dp/dx > 0). 

As the fluid decelerates, the velocity gradient at the surface, ∂u/∂y|y = 0, 
eventually becomes zero (Figure 7.7). 
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At this location, termed the separation point, fluid near the surface lacks 
sufficient momentum to overcome the pressure gradient, and continued 
downstream movement is impossible. 

Since the oncoming fluid also precludes flow back upstream, boundary layer 
separation must occur. 

This is a condition for which the boundary layer detaches from the surface, and a 
wake is formed in the downstream region. 

Flow in this region is characterized by vortex formation and is highly irregular. 
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The occurrence of boundary layer transition, which depends on the Reynolds 
number, strongly influences the position of the separation point. For the circular 
cylinder the characteristic length is the diameter, and the Reynolds number is 
defined as

Since the momentum of fluid in a turbulent boundary layer is larger than in the 
laminar boundary layer, it is reasonable to expect transition to delay the 
occurrence of separation. If ReD ≲ 2 × 105, the boundary layer is laminar, and 
separation occurs at θ ≈ 80° (Figure 7.8). However, if ReD ≳ 2 × 105, boundary 
layer transition occurs, and separation is delayed to θ ≈ 140°.
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The foregoing processes strongly influence the drag force, FD, acting on the 
cylinder. 

This force has two components, one of which is due to the boundary layer 
surface shear stress (friction drag). 

The other component is due to a pressure differential in the flow direction 
resulting from formation of the wake (form, or pressure, drag). 

A dimensionless drag coefficient CD may be defined as

where Af is the cylinder frontal area (the area projected perpendicular to the free 
stream velocity).
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An empirical correlation due to Hilpert [12] that has been modified to account 
for fluids of various Prandtl numbers,

Convection Heat

is widely used for Pr ≳ 0.7,

All properties are evaluated at the film temperature.
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Other correlations have been suggested for the circular cylinder in cross flow 
[16, 17, 18]. The correlation due to Zukauskas [17] is of the form

where all properties are evaluated at T∞, except Prs, which is evaluated at Ts. 

Values of C and m are listed in Table 7.4. If Pr ≲ 10, n = 0.37; if Pr ≳ 10, n = 0.36. 



52

Churchill and Bernstein [18] have proposed a single comprehensive equation that 
covers the entire range of ReD for which data are available, as well as a wide range 
of Pr. The equation is recommended for all ReD Pr ≳ 0.2 and has the form
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EXAMPLE 7.4

Experiments have been conducted using a metallic cylinder 12.7 mm in diameter and 94 
mm long. The cylinder is heated internally by an electrical heater and is subjected to a 
cross flow of air in a low-speed wind tunnel. Under a specific set of operating conditions 
for which the upstream air velocity and temperature were maintained at V = 10 m/s and 
26.2°C, respectively, the heater power dissipation was measured to be P = 46 W, while 
the average cylinder surface temperature was determined to be Ts = 128.4°C.

It is estimated that 15% of the power dissipation is lost through the cumulative effects of 
surface radiation and conduction through the endpieces. The cumulative uncertainty 
associated with (i) the air velocity and temperature measurements, (ii) estimating the 
heat losses by radiation and from the cylinder ends, and (iii) averaging the cylinder 
surface temperature, which varies axially and circumferentially, renders the experimental 
value of the convection coefficient accurate to no better than 20%.

1. Determine the convection heat transfer coefficient from the experimental 
observations.
2. Compare the experimental result with the convection coefficient computed from an 
appropriate correlation.
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SOLUTION

Known: Operating conditions for a heated cylinder.
Find:

1. Convection coefficient associated with the operating conditions.
2. Convection coefficient from an appropriate correlation.
Schematic:
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The Sphere
Boundary layer effects associated with flow over a sphere are much like those for 
the circular cylinder, with transition and separation playing prominent roles. 

All properties except μs are evaluated at T∞,
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Flow Across Banks of Tubes
Heat transfer to or from a bank (or bundle) of tubes in cross flow is relevant to 
numerous industrial applications, such as steam generation in a boiler or air 
cooling in the coil of an air conditioner. 

The geometric arrangement is shown schematically in Figure 7.11. Typically, one 
fluid moves over the tubes, while a second fluid at a different temperature passes 
through the tubes. 

In this section we are specifically interested in the convection heat transfer 
associated with cross flow over the tubes.



69



70



71

The tube rows of a bank can be either aligned or staggered in the direction of the 
fluid velocity V (Figure 7.12). 

The configuration is characterized by the tube diameter D and by the transverse 
pitch ST and longitudinal pitch SL measured between tube centers.

Flow conditions within the bank are dominated by boundary layer separation 
effects and by wake interactions, which in turn influence convection heat 
transfer.
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Flow around the tubes in the first row of a tube bank is similar to that for a 
single (isolated) cylinder in cross flow. 

Correspondingly, the heat transfer coefficient for a tube in the first row is 
approximately equal to that for a single tube in cross flow. 

For downstream rows, flow conditions depend strongly on the tube bank 
arrangement (Figure 7.13). Aligned tubes beyond the first row reside in the 
wakes of upstream tubes, and for moderate values of SL convection coefficients 
associated with downstream rows are enhanced by mixing, or turbulation, of the 
flow. 

Typically, the convection coefficient of a row increases with increasing row 
number until approximately the fifth row, after which there is little change in 
flow conditions and hence in the convection coefficient. 
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For large SL, the influence of upstream rows decreases, and heat transfer in the 
downstream rows is not enhanced. 

For this reason, operation of aligned tube banks with ST/SL < 0.7 is undesirable. 

For the staggered tube array, the path of the main flow is more tortuous, and 
mixing of the cross‐flowing fluid is increased relative to the aligned tube 
arrangement. 

In general, heat transfer enhancement is favored by the more tortuous flow of a 
staggered arrangement, particularly for small Reynolds numbers (ReD ≲ 100).
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Typically, we wish to know the average heat transfer coefficient for the entire tube 
bank. A correlation has been proposed of the form

where NL is the number of tube rows, all properties except Prs are evaluated at the 
arithmetic mean of the fluid inlet (Ti = T∞) and outlet (To) temperatures, and 
the constants C1 and m are listed in Table 7.5
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For ST/SL < 0.7, heat transfer is inefficient and aligned tubes should not be used.
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If there are 20 or fewer rows of tubes, NL ≲ 20, the average heat transfer coefficient 
is typically reduced relative to banks with more tube rows, and a correction factor 
may be applied such that

where C2 is given in Table 7.6.

The Reynolds number ReD, max for the foregoing correlation is based on the 
maximum fluid velocity occurring within the tube bank, ReD, max ≡ ρVmaxD/μ. For 
the aligned arrangement, Vmax occurs at the transverse plane A1 of Figure 7.12a, 
and from the mass conservation requirement for a constant density fluid

Equation 7.60.
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For the staggered configuration, the maximum velocity may occur at either the 
transverse plane A1 or the diagonal plane A2 of Figure 7.12b. 

It will occur at A2 if the rows are spaced such that

Vmax occurs at A2 if

If the maximum velocity occurs at A1:
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Since the fluid may experience a large change in temperature as it moves through 
the tube bank, the heat transfer rate could be significantly overpredicted by 
using ΔT = Ts − T∞ as the temperature difference in Newton’s law of cooling. As 
the fluid moves through the bank, its temperature approaches Ts and |ΔT| 
decreases. The appropriate form of ΔT is shown to be a log‐mean temperature 
difference,

where Ti and To are temperatures of the fluid as it enters and leaves the bank, 
respectively. The outlet temperature, which is needed to determine ΔTlm, may be 
estimated from
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where N is the total number of tubes in the bank and NT is the number of tubes in 
each row. Once ΔTlm is known, the heat transfer rate per unit length of the 
tubes may be computed from
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We close by recognizing that there is generally as much interest in the pressure 
drop associated with flow across a tube bank as in the overall heat transfer rate. 

The power required to move the fluid across the bank is often a major operating 
expense and is directly proportional to the pressure drop, which may be expressed
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The friction factor f and the correction factor χ are plotted in Figures 7.14 and 
7.15. Figure 7.14 pertains to a square, in‐line tube arrangement for which the 
dimensionless longitudinal and transverse pitches, PL ≡ SL/D and PT ≡ ST/D, 
respectively, are equal. 

The correction factor χ, plotted in the inset, is used to apply the results to other 
in‐line arrangements. 

Similarly, Figure 7.15 applies to a staggered arrangement of tubes in the form of 
an equilateral triangle (ST = SD), and the correction factor enables extension of 
the results to other staggered arrangements. 

Note that the Reynolds number appearing in Figures 7.14 and 7.15 is based on the 
maximum fluid velocity Vmax.
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Chapter 8
Internal Flow
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Velocity boundary layer:

This development occurs at the expense of a shrinking inviscid flow region and concludes 
with boundary layer merger at the centerline. Following this merger, viscous effects 
extend over the entire cross section and the velocity profile no longer changes with 
increasing x. The flow is then said to be fully developed, and the distance from the 
entrance at which this condition is achieved is termed the hydrodynamic entry length, 
xfd,h. 
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Velocity boundary layer:
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Thermal boundary layer:


