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INTRODUCTION

* Our primary objective is to determine convection coefficients for
different flow geometries.

* In particular, we wish to obtain specific forms of the functions that
represent these coefficients.

* By nondimensionalizing the boundary layer equations in Chapter
6, we found that the local and average convection coefficients may
be correlated by equations of the form

Heat Transfer:
Nu, = f(x" ,Re_,Pr)

Nu, = f(Re,,Pr)




INTRODUCTION

* The experimental or empirical approach involves performing heat
transfer measurements under controlled laboratory conditions and
correlating the data in terms of appropriate dimensionless parameters.

* A general discussion of the approach is provided in Section 7.1. It has been
applied to many different geometries and flow conditions, and important
results are presented in Sections 7.2 through 7.8.

* The theoretical approach involves solving the boundary layer equations
for a particular geometry.

* For example, obtaining the temperature profile T* from such a solution, It
may be used to evaluate the local Nusselt number Nu,, and therefore the
local convection coefficient h,. With knowledge of how h, varies over the
surface, then it may be used to determine the average convection coefficient ,
and therefore the average Nusselt number .




The Empirical Method

e The manner in which a convection heat transfer correlation may be obtained
experimentally 1s illustrated in Figure 7.1.

« Ifaprescribed geometry, such as the flat plate in parallel flow, 1s heated
electrically to maintain Ts > Too, convection heat transfer occurs from the
surface to the fluid.

* It would be a simple matter to measure Ts and Too, as well as the electrical
power, E - I, which is equal to the total heat transfer rate q.

* The convection coefficient , which is an average associated with the entire
plate, could then be computed from Newton’s law of cooling, Moreover, from
knowledge of the characteristic length L and the fluid properties, the
Nusselt, Reynolds, and Prandtl numbers could be computed from their
definitions.
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The Empirical Method

u.,, T_ s
I'E=q=mAJ(T,-T.)
—
=
e L— -

e
P
PR
- =
.\’
N
i - . s W - ». .
4 - N . A
v
cfenall, b2 L2t el T

| I [— Insulation
— |||l
I g

FIGURE 7.1 Experiment for measuring the average convection heat transfer coefficient 4, .
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The Empirical Method

* The foregoing procedure could be repeated for a variety of test conditions.
We could vary the velocity uco and the plate length L, as well as the
nature of the fluid, using, for example, air, water, and engine oil, which
have substantially different Prandtl numbers.

*  We would then be left with many different values of the Nusselt number
corresponding to a wide range of Reynolds and Prandtl numbers, and
the results could be plotted on a log—log scale, as shown in Figure 7.2a.
Each symbol represents a unique set of test conditions.

* As is often the case, the results associated with a given fluid, and hence a
fixed Prandtl number, fall close to a straight line, indicating a power law
dependence of the Nusselt number on the Reynolds number. Considering
all the fluids, the data may then be represented by an algebraic expression

of the form
Nu, =CRe} Pr" .. .. 7.1
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The Empirical Method
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FIGURE 7.2 Dimensionless representation of convection heat transfer measurements.
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The Empirical Method

* Since the values of C, m, and n are often independent of the nature of the
fluid, the family of straight lines corresponding to different Prandtl numbers
can be collapsed to a single line by plotting the results in terms of the ratio,
as shown in Figure 7.2b.

* Because Equation 7.1 is inferred from experimental measurements, it is
termed an empirical correlation. The specific values of the coefficient C
and the exponents m and n vary with the nature of the surface geometry
and the type of flow.

*  We will use expressions of the form given by Equation 7.1 for many special
cases, and it 1s important to note that the assumption of constant fluid
properties is often implicit in the results.
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The Empirical Method

 However, we know that the fluid properties vary with temperature
across the boundary layer and that this variation can certainly influence
the heat transfer rate.

e This influence may be handled in one of two ways. In one method, Equation
7.1 is used with all properties evaluated at a mean boundary layer
temperature Tf, termed the film temperature.

_TS+TOO
T, = 3

* The alternate method is to evaluate all properties at Too and to multiply
the right-hand side of Equation 7.1 by an additional parameter to
account for the property variations. The parameter i1s commonly of the
form (Proo/Prs)" or (poo/ps)’, where the subscripts oo and s designate
evaluation of the properties at the free stream and surface temperatures,
respectively. Both methods are used in the results that follow.
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e
The Flat Plate in Parallel Flow

* As discussed before, laminar boundary layer development begins at the leading
edge (x = 0) and transition to turbulence may occur at a downstream location (Xxc)
for which a critical Reynolds number Rex,c is achieved.

*  We begin by analytically determining the velocity and temperature, and
distributions in the laminar boundary layers that are shown qualitatively in
Figures 6.1, 6.2, and 6.3, respectively.

*  From knowledge of these distributions, we will determine expressions for the
local and average friction coefficients and Nusselt numbers.

* Subsequently, we will report experimentally determined correlations for the
friction coefficient and Nusselt numbers for turbulent boundary layers.
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The Flat Plate in Parallel Flow
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FIGURE 7.3 The flat plate in parallel flow.
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Laminar Flow over an Isothermal Plate: A Similarity Solution

* The major convection parameters may be obtained by solving the
appropriate form of the boundary layer equations.

* Assuming steady, incompressible, laminar flow with constant fluid
properties and negligible viscous dissipation and recognizing that
dp/dx = 0, the boundary layer equations reduce to

du _do _ Equations 7.4
ox 0y
du, ou_ u .
U—=+v— = v—-—
ox oy o) Equations 7.5

ug;l; + vgyr = agig Equations 7.6
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e
The Flat Plate in Parallel Flow

* Solution of these equations is simplified by the fact that for constant
properties, solution of the velocity (hydrodynamic) boundary layer
is independent of temperature.

* Hence, we may begin by solving the hydrodynamic problem by
solving the continuity and momentum equations

* Once the hydrodynamic problem has been solved, solutions to the
energy equation, which depend on u and v, may be obtained.

13



Hydrodynamic Solution

The hydrodynamic solution follows the method of Blasius [1, 2]. The first step
1s to define a stream function y(x, y), such that

oy

L Equations 7.8
ax q

u

%andv

Continuity equation is then automatically satisfied and hence is no longer
needed.

New dependent and independent variables, f and 1, respectively, are then
defined such that

fn) i’
Usy A /vx/uoo Equations 7.9

N=y\ue /Ivx Equations 7.10
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Hydrodynamic Solution

* As we will find, use of these variables simplifies matters by reducing the
partial differential equation, (momentum equation) , to an ordinary
differential equation.

* The Blasius solution is termed a similarity solution, and 1 is a
similarity variable. This terminology is used because, despite growth of
the boundary layer with distance x from the leading edge, the velocity
profile u/uco remains geometrically similar.

* This similarity is of the functional form
U — p2
= 6C)
where 0 1s the boundary layer thickness. We will find from the Blasius solution

that o varies as (vx/uw)1/2; thus, it follows that
e d(n) Equations 7.11

Uso
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Hydrodynamic Solution o=t n=y/u =

(o]

* Hence the velocity profile is uniquely determined by the similarity
variable 1, which depends on both x and y.
* From Equations 7.8 through 7.10 we obtain

_ oy _dyon Y A df , U — df Uy, Equations 7.12
ay a,rl ay Uy dn VX dn

Uy
= —(Ueo u‘f: g,f( + =V /) Equations 7.13

_ LT df
) (dn f)

By differentiating the velocity components, it may also be shown that

ox | 2x dn Equations 7.14
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Hydrodynamic Solution

u_, L fiod f |
ay e VX drf Equations 7.15
o u _ "go d’ Vi
aw  arg Equations 7.16
Substituting these expressions into Equation 7.5, we then obtain  ¥50+ %5, = Vay—;‘
Pe 2 |
2 3f+fd 2f= 0 Equations 7.17
dn dn

Hence the hydrodynamic boundary layer problem is reduced to one of solving a
nonlinear, third-order ordinary differential equation. The appropriate boundary

conditions are
u(x,0) =0(x,0) =0 and u(x,0) =ug,

df = f(0) =0 and df =1 Equations 7.18
dn| dn
n=0 n— o
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Hydrodynamic Solution

* The solution subject to the conditions, may be obtained by a series
expansion or by numerical integration.

* Selected results are presented in Table 7.1, from which useful information may
be extracted.

* The x-component velocity distribution from the third column of the table 1s
plotted in Figure 7.4a.

* We also note that, to a good approximation, (u/uw) = 0.99 for n = 5.0.

* Defining the boundary layer thickness ¢ as that value of y for which (u/u«) =
0.99, it follows from Equation 7.10 that
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Hydrodynamic Solution

TABLE 7.1 Flat plate laminar boundary layer functions [3]

_ df d*
e R

) d,'z
0] o 0 0.332
0.4 0.027 0.133 0.331
0.8 0.106 0.265 0.327
1.2 0.238 0.394 0.317
1.6 0.420 0.517 0.297
2.0 0.650 0.630 0.267
2.4 0.922 0.729 0.228
2.8 1.231 0.812 0.184
3.2 1.569 0.876 0.139
3.6 1.930 0.923 0.098
4.0 2.306 0.956 0.064
4.4 2.602 0.976 0.039
4.8 3.085 0.988 0.022
5.2 3.482 0.994 0.011
5.6 3.880 0.997 0.005
6.0 4.280 0.999 0.002
6.4 4.679 1.000 0.001
6.8 5.079 1.000 0.000
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Hydrodynamic Solution
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FIGURE 7.4 Similarity solution for laminar flow over an isothermal plate. (a) The
x-component of the velocity. (b) Temperature distributions for Pr=0.6, 1, and 7.
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Hydrodynamic Solution

n= Y\ us /vx 5= 5.0 . 5x
\ /uoo /vx /Rex Equation 7.19
From Equation 7.19 it is clear that o increases with increasing x and v but

decreases with increasing uco (the larger the free stream velocity, the thinner
the boundary layer). In addition, from Equation 7.15 the wall shear stress may

be expressed as P
ou
T, = P— = Uy, \Uy /vx—zl‘
dy dn

y=0

7, = 0.332u_, \/pyuoo /x

_ Tsx ~1/2 :
Cry = = 0.664 Re. Equation 7.20
2
pug, 12
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Heat Transfer Solution

From knowledge of conditions in the velocity boundary layer, the energy equation
may now be solved. We begin by introducing the dimensionless temperature

T* = [(T — Ts)/(Teo — Ts)] and assume a similarity solution of the form T* = T*(n).
Making the necessary substitutions, Equation 7.6 reduces to

T
dn2

Pr dT" .
+2r dn =0 Equation 7.21

Note the dependence of the thermal solution on hydrodynamic conditions through
appearance of the variable f in Equation 7.21. The appropriate boundary
conditions are

T (0)=0 and T" (c0) = 1 Equation 7.22
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e
Heat Transfer Solution

* Subject to the conditions of Equation 7.22, Equation 7.21 may be solved by
numerical integration for different values of the Prandtl number; representative
temperature distributions for Pr = 0.6, 1, and 7 are shown in Figure 7.4b.

* The temperature distribution is identical to the velocity distribution for Pr
=1.

* Thermal effects penetrate farther into the velocity boundary layer with
decreasing Prandtl number and transcend the velocity boundary layer for Pr < 1.

* A practical consequence of this solution is that, for Pr = 0.6, results for the
surface temperature gradient dT*/dn|n=0 may be correlated by the
following relation:

ar |  _332pr!3
dn
=0
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e
Heat Transfer Solution

* Expressing the local convection coefficient as

14

h — qs _ TOO - Skatr

x T T,-T, T, -T, oy

S

1i2
ar"
hy = kG2
d
" n

Il
o

it follows that the local Nusselt number 1s

=

Nu

)1C/2 Prl’3 Pr > 0.6 Equation 7.23
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Heat Transfer Solution

From the solution to Equation 7.21, it also follows that, for Pr = 0.6, the ratio of
the velocity to thermal boundary layer thickness i1s

T | Pr AT _
" +5 an =0
8 pprlh

01 Equation 7.24
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Average Boundary Layer Parameters for Laminar

Conditions

From the foregoing local results, average boundary layer parameters may be
determined. With the average friction coefficient defined as

T
C —_'5X
ki pu>, 12

A |
Ty 5 =§/;Ts,x dx

Cr, = 1328 Re; '

1/2
he =2 [ hodx =0332%pc ! Hoy T pr dX

X 0_1/2 Nu, = ’% =0.332Re!?Pr' Pr 206
X

Integrating and substituting from Equation 7.23, it follows that 4, = 2h, . Hence

Nu Eh"x

1/2 p..1/3
. ==—=0664Re;Pr' Pr206
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Liquid Metals

For fluids of small Prandtl number, namely, liquid metals, Equation 7.23
does not apply.

However, for this case the thermal boundary layer development is much
more rapid than that of the velocity boundary layer

(ot > 0), and 1t is reasonable to assume uniform velocity (u = uoo)
throughout the thermal boundary layer.

From a solution to the thermal boundary layer equation based on this
assumption [5], it may then be shown that

Nu, =0.564Pe.’* Pr $0.05, Pe_ > 100

NOTE: For liguid metals, the Prandtl number is typically very low compared to other fluids
like water or air. This is because liquid metals generally have high thermal conductivity and

low viscosity.
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where Pe, = Re, Pr is the Peclet number (Table 6.2). Despite the corrosive
and reactive nature of liquid metals, their unique properties (low melting
point and vapor pressure, as well as high thermal capacity and
conductivity) render them attractive as coolants in applications requiring
high heat transfer rates.

Peclet number (Pej) % =Re, Pr Ratio of advection to conduction heat transfer rates

A single correlating equation, which applies for all Prandtl numbers,
has been recommended by Churchill and Ozoe [6]. For laminar flow
over an 1sothermal plate, the local convection coefficient may be obtained
from

0.3387 Rel’? pr'/
Nu, = 7 Pe_ 2 100

x ~/
[1 + (0.0468/Pr)*"? ]

with Nu, =2Nu,.
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Turbulent Flow over an Isothermal Plate

It is not possible to obtain exact analytical solutions for turbulent
boundary layers, which are inherently unsteady. From experiment [2] it 1s

known that, for turbulent flows with Reynolds numbers up to approximately
108, the local friction coefficient is correlated to within 15% accuracy by an

expression of the form

C/, =0.0592Re;'” Re _, SRe, S 10°

xX,c ~

§=0.37xRe; '’

Using Equation 7.34 with the modified Reynolds, or Chilton—Colburn, analogy, the
local Nusselt number for turbulent flow i1s

Nu, = St Re, Pr = 0.0296 Re;’ Pr'”> 0.6 S Pr <60
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Unheated Starting Length

All the foregoing Nusselt number expressions are restricted to situations
for which the surface temperature Ts 1s uniform. A common exception
involves existence of an unheated starting length (Ts = Too) upstream of a
heated section (Ts # To). As shown in Figure 7.5, velocity boundary layer
growth begins at x = 0, while thermal boundary layer development begins
at x = &. Hence there is no heat transfer for 0 < x < ¢&. Through use of an
integral boundary layer solution [5], it is known that, for laminar flow

x=1L

FIGURE 7.5 Flat plate in parallel flow with unheated starting length.
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Nu, 1, g
Nu, = 173

[1-(&/x)**]

It has also been found that, for turbulent flow,

Nu. = iyl —o
X 1/9
[1—(&/x)"°]

For a plate of total length L, with laminar or turbulent flow over the
entire surface, the expressions are of the form
(7.44)

p/p+1)
Nu, =Nu, g O—LI: 1= @D Ve

where p = 2 for laminar flow and p = 8 for
turbulent flow.
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Flat Plates with Constant Heat Flux Conditions

It 1s also possible to have a uniform surface heat flux, rather than a
uniform temperature, imposed at the plate. For laminar flow, it may be

shown that [5]

Nu, = 0.0308 Re}’””> Pr'® 0.6 < Pr < 60

q
T,(x) =T, ++—
hy

2 1 4 x
An average surface temperature (T, =T, ) = T /(f (T, - T, )dx = Ts /(f de
q,L
kNu ,

@ =Ty )=
Where:

Nu, =0.680 Re;/* Pr'’
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IHT ExampPLE 7.1
A

Air at a pressure of 6 kN/m? and a temperature of 300°C flows with a velocity of 10 m/s over a flat plate 0.5 m long:
Estimate the cooling rate per unit width of the plate needed to maintain it at a surface temperature of 27°C.

SOLUTION

Known: Airflow over an isothermal flat plate.

Find: Cooling rate per unit width of the plate, ¢’ (W/m).

Schematic:
air
T_=300°C —>»
u_=10m/s —»
p.. = 6 kN/m?—> l—T’ =27°C
N\
+——L =0.5m——|
_._“
Assumptions:

1. Steady-state, incompressible flow conditions.
2. Negligible radiation effects.

Properties: Table A.4, air (Tf= 437 K, p=1atm): v =30.84 x 1076 m?/s, k =36.4 x 1073 W/m - K, Pr = 0.687. As
noted in Example 6.6, the properties k, Pr, ¢y, and ;2 may be assumed to be independent of pressure. However, for an
ideal gas, the kinematic viscosity is inversely proportional to pressure. Hence the kinematic viscosity of air at 437 K
and py, = 6 x 103 N/m? is
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1.0133 x 10°> N/m*
6 x 10° N/m?

Analysis: For a plate of unit width, it follows from Newton’s law of cooling that the rate of convection heat transfer to
the plate is

v=230.84%x10"% m?/s x =521%10"* m?/s

g =hL(T, —T,)
To determine the appropriate convection correlation for computing 4, the Reynolds number must first be determined

L
ReL — uo% — 10 m/s X405 ;n = 9597
521X 107" m~/s

Hence the flow is laminar over the entire plate, and the appropriate correlation is given by Equation 7.30.
Nu, =0.664Re}? Pr'”® =0.664(9597)""% (0.687)'"* = 57.4

The average convection coefficient is then

Nu, k
h= uL =57.4X0.0364W/m'K=4.18W/m2 .K
L 0.5m

and the required cooling rate per unit width of plate is

ql =418 W/m? -K x0.5m (300 — 27)°C =570 W/m <
Comments:
1. The results of Table A.4 apply to gases at atmospheric pressure.

2. Example 7.1 in IHT demonstrates how to use the Correlations and Properties tools, which can facilitate performing
convection calculations.
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ExamPLE 7.2 0

A flat plate of width w = 1 m is maintained at a uniform surface temperature of 7 = 230°C by using independently
controlled heated segments, each of which is Ly, = 50 mm long. If atmospheric air at 25°C flows over the plate at a
velocity of 60 m/s, which segment requires the largest heater power, and what is the value of this power?

SoLuTION
Known: Airflow over a flat plate with segmented heaters.

Find: Maximum heater power requirement.

Schematic:
Air
T.=25C
u_=60m/s
—>» —— Segment 1 :
- T, = 230°C S
|
T N BN =1V SN B
f r'“’-'f*l
— L,=50 mm . Qoo Typical Insulation
‘ heater
X
Assumptions:

1. Steady-state, incompressible flow conditions.
2. Negligible radiation effects.

3. Bottom surfaces of heated segments are adiabatic.

Properties: Table A.4, air (Tf= 400 K, p = 1atm): v = 26.41 x 10~%m?/s, k = 0.0338 W/m - K, Pr = 0.690.
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Analysis: The Reynolds number based upon the length, L, of the first heated segment is 0

Re, _YoLp _ 60m/s x0.05m _ 4 14y 10°
26.41 x 10°° m? /s

If the transition Reynolds number is assumed to be Re, . = 5 x 109, it follows that transition will occur at

~LRe, _2641x107% m?/s
¢ 60 m/s

which is within the fifth heated segment. Knowing how the local convection coefficient varies with distance from the
leading edge of the plate, there are three possibilities regarding which segment will have the maximum power
requirement:

5%10° =0.22m

1. Segment 1, since it corresponds to the largest local, laminar convection coefficient.
2. Segment 5, since it corresponds to the largest local, turbulent convection coefficient.
3. Segment 6, since turbulent conditions exist over the entire segment.

In general, for heater segment N, the power requirement is
qelec,N = qconv,N = hN Lh w(TS - T°° ) (1)

Applying the conservation of energy principle, the power requirement for segment N may be determined by
subtracting the rate of heat loss associated with the first N — 1 segments from the rate of heat loss associated with all N
segments. With 4, _ defined as the average convection heat transfer coefficient over segments 1 through N, the

power requirement for segment N is equal to the rate of convection heat transfer from the segment, which may be
expressed as

= hl_N(NLh)w(Ts _Too)_ h]_(N_ 1) [(N_ l)Lh ]w(Ts _Too) (2)
= [Nh,_n —~(N=Dh, _n_n1LpwT —Ty)

qconv, N
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Combining Equations 1 and 2 yields N

hy =Nhy_n —(N=Dhy_ y_y (3)

Segment 1: The flow is laminar, and the average convection coefficient, 4, , may be determined from Equation 7.30,

N

1/2
Nu; =0.664 Re;*Pr'” =0.664(1.14x 10°) ~ (0.69)'"* =198
yielding

B = Nu, k —198x0.0338 W/m - K _ 134 w/m2 .K
1 L; 0.05m

Segment 5: Mixed conditions exist. The average Nusselt number for segments 1 through 5 may be obtained from
Equation 7.38 with A = 871 and Re;; = 5Re; = 5.68 x 10°:

4/5

Nus = (0.037 Re?” — 871)Pr'”? = [0.037(5.68 x 10°) ~ — 871](0.69)"* =542

Therefore

Nusk _ 542x0.0338 W/m -K _ 73 3 w/m? . K

h =
-5 775, 0.25m
The value of Nu, may be obtained from Equation 7.30. With Re, = 4Re; = 4.54 x 109,

1/2
Nu, =0.664(4.54%10°) (0.69)'"* =396

Therefore

Nusk 396 x0.0338 W/m -K _ ¢ e w/m? . K

hi-a = 4L, 02 m
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Evaluation of Equation 3 yields
hs =5h; _s —4h,_4 =5x733W/m? -K —4x66.8 W/m? - K =99.3 W/m? - K

Segment 6: The value of Nu, may be obtained from Equation 7.38. With Reg = 6Re; = 6.84 x 102,

4/5
Nug =[0.037(6.82 x 10°) ~ — 871](0.69)'% = 748

Therefore

Nugk 748 %0.0338 W/m - K 2
hi_¢ = 6L, = 03m =843W/m“ -K

Equation 3 yields
he =6h, _¢ —5h;_s =6x843W/m? -K -=5x733W/m? -K = 139 W/m? -K

Since hg > h; > hs, the maximum power requirement is associated with segment 6 and is

= hg L, w(T, — T, ) =139 W/m? -K x0.05m X 1 m X (230°C—25°C) = 1430 W

qconv, 6
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Comments:

1. A less accurate, alternative approach is to assume that the average heat transfer coefficient for a particular segment
N is well represented by the value of the local heat transfer coefficient at the middle of the segment, xyy;q - The

following results were obtained using this approach.

Segment Xpyiq n (m) Flow Correlation hy ;g (W/m? . K)

1 0.025 Laminar Equation 7.23 95 # h,
5 0.225 Turbulent Equation 7.36 145 # hs
6 0.275 Turbulent Equation 7.36 139 = hg

With this approach, we not only predict incorrect values of the average heat transfer coefficient for each segment, but
we also incorrectly identify segment 5 as having the largest power requirement. This procedure yields reasonable
results only when spatial variation of the convection coefficient is gradual, such as in regions of turbulent flow that are
not in the vicinity of the flow transition.
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The Cylinder in Cross Flow

Another common external flow involves fluid motion normal to the axis of
a circular cylinder.

As shown 1n Figure 7.6, the free stream fluid is brought to rest at the
forward stagnation point, with an accompanying rise in pressure.

From this point, the pressure decreases with increasing x, the streamline
coordinate, and the boundary layer develops under the influence of a
favorable pressure gradient (dp/dx < 0).

However, the pressure must eventually reach a minimum, and toward the
rear of the cylinder further boundary layer development occurs in the
presence of an adverse pressure gradient (dp/dx > 0).
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FIGURE 7.6 Boundary layer formation and separation on a circular cylinder in cross flow.
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FIGURE 7.7 Velocity profile associated with separation on a circular cylinder in cross flow
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In Figure 7.6, the distinction between the upstream velocity V and the free stream
velocity uco should be noted.

Unlike conditions for the flat plate in parallel flow, these velocities differ, with
uco now depending on the distance x from the stagnation point.

From Euler’s equation for an inviscid flow [10], uco(x) must exhibit behavior
opposite to that of p(x).

That is, from uco = 0 at the stagnation point, the fluid accelerates because of the
favorable pressure gradient (duco/dx > 0 when dp/dx < 0), reaches a maximum

velocity when dp/dx = 0, and decelerates because of the adverse pressure gradient
(duco/dx < 0 when dp/dx > 0).

As the fluid decelerates, the velocity gradient at the surface, du/dyly =0,
eventually becomes zero (Figure 7.7).
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At this location, termed the separation point, fluid near the surface lacks
sufficient momentum to overcome the pressure gradient, and continued
downstream movement is impossible.

Since the oncoming fluid also precludes flow back upstream, boundary layer
separation must occur.

This 1s a condition for which the boundary layer detaches from the surface, and a
wake 1s formed in the downstream region.

Flow in this region 1s characterized by vortex formation and is highly irregular.
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The occurrence of boundary layer transition, which depends on the Reynolds
number, strongly influences the position of the separation point. For the circular
cylinder the characteristic length is the diameter, and the Reynolds number 1s
defined as

Since the momentum of fluid in a turbulent boundary layer is larger than in the
laminar boundary layer, it 1s reasonable to expect transition to delay the
occurrence of separation. If ReD < 2 x 107, the boundary layer is laminar, and
separation occurs at 0 = 80° (Figure 7.8). However, if ReD = 2 x 10°, boundary
layer transition occurs, and separation 1s delayed to 6 = 140°.

Laminar Laminar Transition Turbulent
boundary =< T e boundary
layer 2 > _)\J) ~ layer
LN
— 5 0.4 Ric — >
vV —> ) /’_‘\- NS Yy —>
: G A .
Re, <2 x10° g D C Re, 22 x 10°
CRTA
Separation =D C Separation

FI1GURE 7.8 The effect of turbulence on separation.
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The foregoing processes strongly influence the drag force, FD, acting on the
cylinder.

This force has two components, one of which is due to the boundary layer
surface shear stress (friction drag).

The other component is due to a pressure differential in the flow direction
resulting from formation of the wake (form, or pressure, drag).

A dimensionless drag coefficient CD may be defined as

C, = p
P AR 12)

where A¢is the cylinder frontal area (the area projected perpendicular to the free
stream velocity).
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Oep ~ 80°

No separation Osep ~ 140°

Smooth cylinder

Re,, . Sphere —

0.06
107! 10° 10} 10? 10° 10* 10° 10°

V
Rep, = ‘_D

FIGURE 7.9 Drag coefficients for a smooth circular cylinder in cross flow and for a sphere. Boundary layer separation angles are
for a cylinder. Based on Schlichting, H., and K. Gersten, Boundary Layer Theory, Springer, New York, 2000.
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Convection Heat

An empirical correlation due to Hilpert [12] that has been modified to account
for fluids of various Prandtl numbers,

Nu

hD _ 1/3
p == CRe’, Pr

is widely used for Pr = 0.7,

All properties are evaluated at the film temperature.
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TABLE 7.2 Constants of Equation 7.52 for the circular cylinder in cross flow [12, 13]

ReD C m
0.4—4 0.989 0.330
4—40 0.911 0.385

40—4000 0.683 0.466
4000—40,000 0.193 0.618
40,000—400,000 0.027 0.805
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TABLE 7.3 Constants of Equation 7.52 for noncircular cylinders in cross flow of a gas [14, 15]2

Geometry Rep C m
Square iin

V— <> _1?_ 6000—60,000 0.304 0.59
= ID 5000—-60,000 0.158 0.66
Hexagon

5200—-20,400 0.164 0.638
20,400—105,000 0.039 0.78

-@
v—><:> 4 4500—90,700 0.150 0.638

Thin plate perpendicular to flow

S | o

10,000—-50,000 0.667 0.500

7 Ky Front
S I:I ¥ Back 7000—-80,000 0.191 0.667
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Other correlations have been suggested for the circular cylinder in cross flow
[16, 17, 18]. The correlation due to Zukauskas [17] 1s of the form

1/4
Pr
NuD = CRe], Pr”" (—)

N
0.7 S Pr < 500
1 SRe, $10°

TABLE 7.4 Constants of Equation 7.53 for the circular cylinder in cross flow [18]

Rep C m
1—40 0.75 0.4
40-1000 0.51 0.5
103-2 x 10° 0.26 0.6

6

2 x 109-10 0.076 0.7

where all properties are evaluated at Too, except Prs, which is evaluated at Ts.

Values of C and m are listed in Table 7.4. If Pr < 10, n=0.37; 1f Pr = 10, n = 0.36.
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Churchill and Bernstein [ 18] have proposed a single comprehensive equation that
covers the entire range of ReD for which data are available, as well as a wide range
of Pr. The equation is recommended for all Rep Pr = 0.2 and has the form

Nu, =03+

4/5
0.62Rep’ Pr'® [ ( Re, "
282,000

[1+ (0.4/Pr)*? ]”4 [
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EXAMPLE 7.4

Experiments have been conducted using a metallic cylinder 12.7 mm in diameter and 94
mm long. The cylinder is heated internally by an electrical heater and is subjected to a
cross flow of air in a low-speed wind tunnel. Under a specific set of operating conditions
for which the upstream air velocity and temperature were maintained at V = 10 m/s and
26.2°C, respectively, the heater power dissipation was measured to be P =46 W, while
the average cylinder surface temperature was determined to be Ts = 128.4°C.

It is estimated that 15% of the power dissipation is lost through the cumulative effects of
surface radiation and conduction through the endpieces. The cumulative uncertainty
associated with (i) the air velocity and temperature measurements, (ii) estimating the
heat losses by radiation and from the cylinder ends, and (iii) averaging the cylinder
surface temperature, which varies axially and circumferentially, renders the experimental
value of the convection coefficient accurate to no better than 20%.

1. Determine the convection heat transfer coefficient from the experimental
observations.

2. Compare the experimental result with the convection coefficient computed from an
appropriate correlation.
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Thermocouple for measuring
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Wind
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54



SOLUTION

Known: Operating conditions for a heated cylinder.
Find:

1. Convection coefficient associated with the operating conditions.
2. Convection coefficient from an appropriate correlation.

Schematic:
T_=26.2°C T,=128.4°C

V=10m/s

g=39.1W
-
_—
P=460W
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Assumptions:
1. Steady-state, incompressible flow conditions.

2, Uniform cylinder surface temperature.

Properties: Table A.4, air (T, = 26.2°C = 300 K): v = 15.89 x 10”9 m2/s, k = 26.3 x 10"3 W/m - K, Pr = 0.707. Table

A.4, air (Tf~ 350 K): v = 20.92 x 1079 m?/s, k = 30 x 1073 W/m - K, Pr = 0.700. Table A.4, air (T = 128.4°C = 401 K):
Pr =0.690.
Analysis:
1. The convection heat transfer coefficient may be determined from the data by using Newton’s law of cooling. That is,
"= AT - T
With g = 0.85 P and A = DL, it follows that

B = 0.85 x 46 W
7% 0.0127 m x 0.094 m (128.4 — 26.2)°C

2. Working with the Zukauskas relation, Equation 7.53,
1/4
P
Nu, = CRep Pr"(—r)

=102 W/m? - K <

Pr

N

all properties, except Prg, are evaluated at T,,. Accordingly,

Re, =YD = 10m/s x0.0127m _ 799
15.89 X 10~ m? /s
Hence, from Table 7.4, C = 0.26 and m = 0.6. Also, since Pr < 10, n = 0.37. It follows that

_ 0.6 037 0.707,%% _
Nu , =0.26(7992)"" (0.707) (m) = 50.5

_ Ny Kk — 50500263 W/m - K _ 2.
h=Nu = 50520027000 105 W/m? - K <
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Using the Churchill relation, Equation 7.54,

Nu, =03+

4/5
0.62Rey” Pr'” [ ( Re, 5’8]
D

+ | —=—
1/4
[1+©4/pn237™ ] 282,000

With all properties evaluated at T, Pr = 0.70 and

Re. —VD _10m/s ><00127m 6071
20.92 % 10°% m?/s

D v
Hence the Nusselt number and the convection coefficient are

12 1/3 s/ TH3
Nu. =034 0-62(6071) (070) [1 (6071) ] 406

D
[1 + (0.4/0.70)3] 4] " (282,000
h=Nu, k = 40.6%: 0(3)%‘1";4“‘ K —96.0W/m? -K 4

Alternatively, from the Hilpert correlation, Equation 7.52,
13
Nu, = CRe} Pr

With all properties evaluated at the film temperature, Rep, = 6071 and Pr = 0.70. Hence, from Table 7.2, C = 0.193 and
m = 0.618. The Nusselt number and the convection coefficient are then

Nu ,, =0.193(6071)*°"® (0.700)'”* = 37.3

_ & 30.030 W/m - K 2
h=Nu,£=373250 0002 = 882 W/m® - K <

Comments:

1. Calculations based on the three correlations are within the range of the measured value of the convection heat
transfer coefficient, 4 = 102 +20 W/m? - K.

2. Recognize the importance of using the proper temperature when evaluating fluid properties.

57



ExamPLE 7.5

Hydrogen is often stored by adsorbing it into a metal hydride powder. The hydrogen can be desorbed as needed, by
heating the metal hydride throughout its volume. Cons1der a hydrogen fuel cell-powered automobile cruising at a

speed of V'= 25 m/s. The car consumes m;; = 1.35x10~ 4 kg/s of hydrogen, which is supplied from a cylindrical,
stainless steel canister loaded with metal hydrlde powder. The canister is of inside diameter D; = 0.1 m, length L = 0.8
m, and wall thickness t = 0.5 mm, and is subject to air in cross flow at V=25 m/s, T, = 23°C.

In order for desorption to occur, the metal hydride must be maintained at an operating temperature of at least 275 K.
The desorption process is an endothermic reaction corresponding to a thermal generation rate expressed as

E, = —-m, X(29.5%10° kI/kg)
2
where m,, is the hydrogen desorption rate (kg/s). Determine how much additional heating, beyond that due to
HZ

convection from the air, should be supplied to the canister to maintain the required operating temperature.

Flow regulator

Metal hydride
storage tank

Fuel cell
stack
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SOLUTION

Known: Size and shape of a hydrogen storage canister, hydrogen desorption rate, required hydroge
pressure, velocity and temperature of air in cross flow.

Find: The rate of convective heat transfer to the canister and the additional heating needed to susta

Schematic:
T,.=23C
V=25mis T,
P
Air t=0.05 mm
5 L=08m Stainless steel wall
~ \
D.=0.1nm= Metal hydride, E,
Assumptions:

1. Steady-state, incompressible flow conditions.

2. Uniform cylinder surface temperature.

3. Negligible heat gain through the ends of the cylinder.
4. Uniform metal hydride temperature.

5. Negligible contact resistance between the canister wall and the metal hydride.




Properties: Table A.4, air (Tf= 285 K): v = 14.56 x 10~%m?2/s, k = 25.2 x 1073 W/m - K, Pr = 0.712. Table A.1, AISI
316 stainless steel (T = 300 K): kgg =13.4 W/m - K.

Analysis: The thermal energy generation rate associated with the desorption of hydrogen from the metal hydride at
the required flow rate is

E, = —(135x 10~ kg/s) X (29.5 x 10° J/kg) = 3982 W

To determine the convective heat transfer rate, we begin by calculating the Reynolds number:
_WD; +20) _23m/s x (0.1 m +2x0.005m) _

Re 173,760
P v 14.56 X 10~ m? /s
Use of Equation 7.54
4/5
062 Rel/2 pyl/3 R 5/8
Nu, =03+ °p T [1+ _°p ]
D 1/4
[1+ (0.4/Pr)*?] 282,000
yields
1/2 13 5/8
NuD — 03+ 0.62(173,760) (0.7112/)4 1+ (;g;,ggg) | =3158
[1+(0.4/0.712)*?] ’
Therefore, the average convection heat transfer coefficient is
-3
h=Nu, Kk _=3158x23x10" W/m-K _ 5 cy/m2.g

D(D; +21) (0.1m +2x0.005m)

Simplifying Equation 3.34, we find
_ T, - T,
Teonv = ) In[(D; +20)/D,]
7L(D; +20h 2rky L
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or, substituting values,

g _ 296 K —275.2K
conv 1 In[(0.1 m +2Xx0.005m)/0.1 m]

7(0.8 m)(0.1 m + 2 X 0.005 m)(72.6 W/m? - K) 27(13.4 W/m - K)(0.8 m)
= 406 W

The additional thermal energy, g,44, that must be supplied to the canister to maintain the steady-state operating
+4,,,, T E; =0.Therefore,

temperature may be found from an energy balance, E

9add

Quad = ~ ooy — Eg = —406 W +3982 W =3576 W <

Comments:

1. Additional heating will occur due to radiation, conduction from the canister mounting hardware and fuel lines, and
possibly condensation of water vapor on the cool canister.

2, The thermal resistances associated with conduction in the canister wall and convection are 0.0014 K/W and 0.053
K/W, respectively. The convection resistance dominates and can be reduced by adding fins to the exterior of the
canister.

3. The amount of additional heating that is required will increase if the automobile is operated at a higher speed, since

the hydrogen consumption scales as V3, while the convective heat transfer coefficient increases as V°7 to V°-8,
Additional heating is also needed when the automobile is operated in a cooler climate.
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The Sphere

Boundary layer effects associated with flow over a sphere are much like those for
the circular cylinder, with transition and separation playing prominent roles.

_ 24
C, _E ReD <0.5

1/4
1/2 2/3 0.4
Nu, = 2+(0.4Res2 +0.06Re¥)Pr (”L)

0.71 S Pr < 380 |
3.5 SRe, $7.6x10°

1.0 S (u/p,) $3.2

Nu, =2+0.6Re;” Pr'"

All properties except us are evaluated at Teo,
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ExAmPLE 7.6

Electrical circuitry is written onto a photovoltaic panel by depositing a stream of small (D = 55 um) droplets of
electrically conducting ink from a thermal inkjet printer. The drops are at an initial temperature of T; = 200°C, and it

is desirable for them to strike the panel at a temperature of T§,,1 = 50°C. The quiescent air and surroundings are at T,
= Tsur = 25°C, and the drops are ejected from the print head at their terminal velocity. Determine the required
standoff distance L between the printer and the photovoltaic panel. The properties of the electrically conducting ink

drop are pg = 2400 kg/m3, ¢4 = 800 J/kg - K, and kg = 5.0 W/m - K.

SOLUTION

Known: Droplet size and properties, initial and desired final droplet temperature. Droplet injected at its terminal
velocity.

Find: Required standoff distance between the printer and the photovoltaic panel.

Schematic:
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T,, = 25°C

Printer head motion

Thermal inkjet printer

T,=200°C 43 i) f
Quiescent air ¢
- =25°C
O > Droplets, L
, o D =55 pum
Written circuit \ d)
[ = \G ~) Ttinal = 50°C v

Photovoltaic panel
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Assumptions: B
1. Constant air properties evaluated at 25°C.

2. Negligible radiation effects.

3. Negligible temperature variation within the droplets (lumped capacitance approximation).

Properties: Table A.4, air (Tf= 75°C): p = 1.002 kg/m3, v = 20.72 x 10~% m?2/s. Table A.4, air (T, = 25°C): v = 15.71
x 10°9m?2/s, k = 0.0261 W/m - K, Pr = 0.708.

Analysis: Since the droplets travel at their terminal velocities, the net force on each drop must be zero. Hence the
weight of the drop is offset by the buoyancy force associated with the displaced air and the drag force:

3 3 2
1
i )=o)+ o)) .
where Equation 7.50 has been used to express the drag force Fpy. Since the droplets are small, we anticipate that the
Reynolds number will also be small. If this is the case, Stokes’ law, Equation 7.55 may be used to express the drag

coefficient as

_ 24 _24v (2)

Substituting Equation (2) into Equation (1) and solving for the velocity,

2

2 6 2
_ &b N 9.8m/s” X (55x 107" m)
V= 187 Vp(pd p) =

18 x 20.72 % 10~% m? /s x 1.002 kg/m>
= 0.190m/s =190 mm/s

X (2400 — 1.002)kg /m>
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Therefore, the Reynolds number is Repy = VD/v = 0.190 m/s x 55 x 1070 m/20.72 x 1070 m?/s = 0.506, and use of

Stokes’ law is appropriate. The Nusselt number and convection coefficient can be calculated from the Ranz and
Marshall correlation, Equation 7.57, using properties evaluated at the free stream temperature (see Table 7.7):

6\l
Nu, = 2+0.6Re’2 Pr'® =24+0.6x[2120m/sX5X1077m) 570813 =244
= P 15.71x 107 m? /s

B - Nuﬁ)k ~ 244X 00261 W/m K _ 1160 W m? - K
55x107° m
Applying the lumped capacitance method, Equation 5.5, the required time-of-flight is then
Pchd!n( 6; )= PdClen( T, - T, )
hA;  \Bfna 6h  \Thna — T
_ 2400kg/m® x 800J/kg - K x 55 x 10~° mln((zoo - 25)°C)
6x 1160 W/m? - K (50 =25)°C

T =

= 0.030s
and the standoff distance is

L=Vt=0.190m/s xX0.030 s = 0.0056 m = 5.6 mm <
Comments:

1. The validity of the lumped capacitance method may be determined by calculating the Biot number. Applying
Equation 5.10 in the conservative fashion with L. = D/2,

2 -6
_h(D12) _ (1160 W/m~ -K x55x10 rn)/5.0 W/m - K = 0.006 < 0.1

5
Tk, 2

and the criterion is satisfied.

2, Use of Equation 7.55, Stokes’ law, to describe the Reynolds number dependence of the drag coefficient is valid since
Rep = 0.5. For larger particles, Figure 7.9 would need to be consulted to determine the relationship between Cp and

ReD.
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3. If the particles were not injected at their terminal velocity, they would either accelerate or decelerate during flight,
complicating the analysis.

4. Assuming blackbody behavior and using the maximum (initial) temperature of the particle, T = 473 K, the
maximum radiation heat transfer coefficient is

h, =o(T, + Ty T2 +T2,) =5.67x107% W/m? - K* x (473 K + 298 K) x [(473 K)* + (298 K)*] = 13.7 W/m? - K.
Since h, < h, radiation heat transfer is negligible.
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Flow Across Banks of Tubes

Heat transfer to or from a bank (or bundle) of tubes in cross flow is relevant to
numerous industrial applications, such as steam generation in a boiler or air
cooling in the coil of an air conditioner.

The geometric arrangement 1s shown schematically in Figure 7.11. Typically, one
fluid moves over the tubes, while a second fluid at a different temperature passes
through the tubes.

In this section we are specifically interested in the convection heat transfer
associated with cross flow over the tubes.
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Fluid in cross flow

Vg over tube bank

Internal flow of fluid
through tube

- =

FIGURE 7.11 Schematic of a tube bank in cross flow.
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(a)

D D M
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=
a"l

Row 1 Row 2 Row 3 Row 1 Row 2 Row 3
(bh)

Row 4

FIGURE 7.12 Tube arrangements in a bank. (a) Aligned. (b) Staggered.
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The tube rows of a bank can be either aligned or staggered in the direction of the
fluid velocity V (Figure 7.12).

The configuration is characterized by the tube diameter D and by the transverse
pitch ST and longitudinal pitch SL measured between tube centers.

Flow conditions within the bank are dominated by boundary layer separation
effects and by wake interactions, which in turn influence convection heat
transfer.
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Flow around the tubes in the first row of a tube bank is similar to that for a
single (isolated) cylinder in cross flow.

Correspondingly, the heat transfer coefficient for a tube in the first row is
approximately equal to that for a single tube in cross flow.

For downstream rows, flow conditions depend strongly on the tube bank
arrangement (Figure 7.13). Aligned tubes beyond the first row reside in the
wakes of upstream tubes, and for moderate values of S; convection coefficients
associated with downstream rows are enhanced by mixing, or turbulation, of the
flow.

Typically, the convection coefficient of a row increases with increasing row
number until approximately the fifth row, after which there is little change in
flow conditions and hence in the convection coefficient.

72



For large SL, the influence of upstream rows decreases, and heat transfer in the
downstream rows 1s not enhanced.

For this reason, operation of aligned tube banks with ST/SL < 0.7 1s undesirable.
For the staggered tube array, the path of the main flow 1s more tortuous, and
mixing of the cross-flowing fluid is increased relative to the aligned tube

arrangement.

In general, heat transfer enhancement 1s favored by the more tortuous flow of a
staggered arrangement, particularly for small Reynolds numbers (ReD < 100).
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ﬂ /J —3 3 C = Preferred
5 e O \ - flow lanes

FIGURE 7.13 Flow conditions for (a) aligned and (b) staggered tubes.
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Typically, we wish to know the average heat transfer coefficient for the entire tube
bank. A correlation has been proposed of the form

1/4
0.36
Nu, =Cj R} .. Pr (P_f)

S
N, >20
0.7 $ Pr 5 500

10SRe,  $2x10°

where N; 1s the number of tube rows, all properties except Pr, are evaluated at the
arithmetic mean of the fluid inlet (T; = T,) and outlet (To) temperatures, and
the constants C1 and m are listed in Table 7.5
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TABLE 7.5 Constants of Equation 7.58 for the tube bank in cross flow [17]

Configuration Rep max C, m
Aligned 10 — 102 0.80 0.40
Staggered 10 — 102 0.90 0.40
Ali 10> —10° : : : :
igned Approximate as a single (isolated) cylinder
10* - 10°

Staggered

Aligned (S7/Sy. > 0.7)2 103 -2 x10°  0.27 0.63
Staggered (S7/S <2) 103-2x105  0.35(S7/Sp)Y/5 0.60
Staggered (S7/S;. >2) 103-2x10°  0.40 0.60
Aligned 2 x 105 — 2 x 10% 0.021 0.84
Staggered 2 x 105 — 2 x 10% 0.022 0.84

For ST/SL < 0.7, heat transfer is inefficient and aligned tubes should not be used.
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If there are 20 or fewer rows of tubes, N; < 20, the average heat transfer coefficient
1s typically reduced relative to banks with more tube rows, and a correction factor
may be applied such that

where C, is given in Table 7.6. (N <20

TABLE 7.6 Correction factor C, of Equation 7.59 for N, < 20 (Rep max = 103) [17]

Ny, 1 2 3 4 5 7 10 13 16

Aligned 0.70 0.80 0.86 0.90 0.92 0.95 0.97 0.98 0.99
Staggered 0.64 0.76 0.84 0.89 0.92 0.95 0.97 0.98 0.99

The Reynolds number Rep .., for the foregoing correlation is based on the
maximum fluid velocity occurring within the tube bank, Rep, ...« = PV D/1L. For
the aligned arrangement, V., occurs at the transverse plane A, of Figure 7.12a,
and from the mass conservation requirement for a constant density fluid

Viax =5 = o7 Equation 7.60.
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For the staggered configuration, the maximum velocity may occur at either the
transverse plane A; or the diagonal plane A, of Figure 7.12b.

It will occur at A, if the rows are spaced such that

2(S, — D) < (S, — D)

1/2
: S\ S.+D
V..ax Occurs at A, if S, = [SZL n (TT) 1 < T2
S
— T
Vimax = 2(Sp — D)V
If the maximum velocity occurs at Ay:
S
Viax =5—5"
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Since the fluid may experience a large change in temperature as it moves through
the tube bank, the heat transfer rate could be significantly overpredicted by
using AT = Ts — Too as the temperature difference in Newton’s law of cooling. As
the fluid moves through the bank, its temperature approaches Ts and |AT]

decreases. The appropriate form of AT is shown to be a log-mean temperature
difference,

T. -TH— (T, -T
AT1m=(S l} _(7.5 0)
ln N )
(Ts_To)

where Ti and To are temperatures of the fluid as it enters and leaves the bank,

respectively. The outlet temperature, which is needed to determine AT),,,,, may be
estimated from

T, —T
=R
T-T"pP
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where N i1s the total number of tubes in the bank and N is the number of tubes in
each row. Once AT, is known, the heat transfer rate per unit length of the
tubes may be computed from

q = N(hzDAT;,)
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We close by recognizing that there is generally as much interest in the pressure
drop associated with flow across a tube bank as in the overall heat transfer rate.

The power required to move the fluid across the bank is often a major operating
expense and 1s directly proportional to the pressure drop, which may be expressed
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The friction factor f and the correction factor y are plotted in Figures 7.14 and
7.15. Figure 7.14 pertains to a square, in-line tube arrangement for which the
dimensionless longitudinal and transverse pitches, P, =S,/D and P = S{/D,
respectively, are equal.

The correction factor vy, plotted in the inset, 1s used to apply the results to other
in-line arrangements.

Similarly, Figure 7.15 applies to a staggered arrangement of tubes in the form of
an equilateral triangle (ST = SD), and the correction factor enables extension of
the results to other staggered arrangements.

Note that the Reynolds number appearing in Figures 7.14 and 7.15 1is based on the
maximum fluid velocity Vmax.
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10! 10? 103 10* 10° 10°

ReD,max

FIGURE 7.14 Friction factor f and correction factor y for Equation 7.65. In-line tube bundle arrangement [17]. (Used with
permission.)
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FIGURE 7.15 Friction factor f and correction factor y for Equation 7.65. Staggered tube bundle arrangement [17]. (Used with

permission.)




EXAMPLE 7.7 R

Pressurized water is often available at elevated temperatures and may be used for space heating or industrial process
applications. In such cases it is customary to use a tube bundle in which the water is passed through the tubes, while
air is passed in cross flow over the tubes. Consider a staggered arrangement for which the tube outside diameter is 16.4
mm and the longitudinal and transverse pitches are S; = 34.3 mm and St = 31.3 mm. There are seven rows of tubes in

the airflow direction and eight tubes per row. Under typical operating conditions the cylinder surface temperature is at
70°C, while the air upstream temperature and velocity are 15°C and 6 m/s, respectively. Determine the air-side
convection coefficient and the rate of heat transfer for the tube bundle. What is the air-side pressure drop?

SoLuTION

Known: Geometry and operating conditions of a tube bank.
Find:

1. Air-side convection coefficient and heat rate.

2, Pressure drop.
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Assumptions:

1. Steady-state, incompressible flow conditions.

2. Negligible radiation effects.

3. Negligible effect of change in air temperature across tube bank on air properties.

Properties: Table A.4, air (T, = 15°C): p = 1.217 kg/m3, cp=1007 J/kg - K, v =14.82 x 10~%m?2/s, k = 0.0253 W/m -
K, Pr = 0.710. Table A.4, air (T = 70°C): Pr = 0.701. Table A.4, air (Tf= 43°C): v =17.4 x 10~%m2/s, k = 0.0274 W/m
- K, Pr = 0.705.

Analysis:

1. From Equations 7.58 and 7.59, the air-side Nusselt number is

1/4
NuD = C2 Cl Reg, max PI'O'36 (lf_r)
Ty

12
Since S, = [Si + (S, /2)2 ] =37.7 mm is greater than (S + D)/2, the maximum velocity occurs on the transverse
plane, A, of Figure 7.12. Hence from Equation 7.60

Vi —SSZ V= (31.331_312.‘2‘;mm5 m/s = 12.6 m/s
With
Re _ Vo D _12.6 m/s x00164m — 13.943
D, max v 14.82x 107% m? /s
and
S,
SL gigmm—091<2
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it follows from Tables 7.5 and 7.6 that

S 1/5
C = 0.35(S—T) =0.34, m=0.60, and C, =0.95
L

Hence
_ 0.60 036 0.710,°% _
Nu p = 0.95x0.34(13,943)"™ (0.71) (0.7—01 = 87.9
and
— k _ 0.0253 W/m -K _ 2
h—NuDD 87.9 x 0.0164 m 1356 W/m~ - K <
From Equation 7.63
-7 = _T __nDNh
TS TO (TS 111 ) exp( pWT ST cp)
2
T —T, = (55°C)exp|- 7:(0.2)164 m)56 (135.6 W/m~ - K)
1.217 kg/m” (6 m/s) 8 (0.0313 m) 1007 J/kg - K

T, -T, = 44.5°C

Hence from Equations 7.62 and 7.64

_ (@, —T) - (T, —T,) _(55-44.5)°C

ATy, = ln(Ts -T,-) 1n(£) = 49.6°C
T, -1, 445
and
q = N(hzDAT,,) =56z x135.6 W/m? -K x0.0164 m x 49.6°C
g = 194kW/m <
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2, The pressure drop may be obtained from Equation 7.65.

oV e
)

With Rep max = 13,943, Pr = (S7/D) = 1.91, Pf, = (S1/D) = 2.09, and (Pp/Py) = 0.91, it follows from Figure 7.15 that x
= 1.04 and f = 0.35. Hence with N; =7

3 2
A7) = 7x1.04[1.217kg/m2(12.6m/s) ]0.35

Ap = 246 N/m? =2.46x 10~ bars <

Comments:
1. Had AT; = T — T; been used in lieu of AT}, in Equation 7.64, the heat rate would have been overpredicted by 11%.

2. Since the air temperature is predicted to increase by only 10.5°C, evaluation of the air properties at T; = 15°Cis a
reasonable approximation. However, if improved accuracy is desired, the calculations could be repeated with the
properties reevaluated at (T; + T,))/2 = 20.25°C. An exception pertains to the density p in the exponential term of
Equation 7.63. As it appears in the denominator of this term, p is matched with the inlet velocity to provide a product
(pV) that is linked to the mass flow rate of air entering the tube bank. Hence, in this term, p should be evaluated at T;.

3. The air outlet temperature and heat rate may be increased by increasing the number of tube rows, and for a fixed
number of rows, they may be varied by adjusting the air velocity. For 5 < Ny < 25 and V = 6 m/s, parametric

calculations based on Equations 7.58, 7.59, and 7.62 through 7.64 yield the following results:
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The air outlet temperature would asymptotically approach the surface temperature with increasing Ny, at which point

the heat rate approaches a constant value and there is no advantage to adding more tube rows. Note that Ap increases
linearly with increasing N. For Nj = 25 and 1 < V' < 20 m/s, we obtain
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15

N, =25

10
V (m/s)
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15 20

Although the heat rate increases with increasing V, the air outlet temperature decreases, approaching T;as V — .
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Chapter 8
Internal Flow




Velocity boundary layer:

— Inviscid flow region

r:z(r, X)

|*Boundary layer region

| < Hydrodynamic entrance region Fully developed region>
X '

Xed n

FIGURE 8.1 Laminar, hydrodynamic boundary layer development in a circular tube.

This development occurs at the expense of a shrinking inviscid flow region and concludes
with boundary layer merger at the centerline. Following this merger, viscous effects
extend over the entire cross section and the velocity profile no longer changes with
increasing x. The flow is then said to be fully developed, and the distance from the
entrance at which this condition is achieved is termed the hydrodynamic entry length,

Xfdh-
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Velocity boundary layer:

_pu, D u,D
RCD = 7 v
ReD,c ~ 2300

For laminar flow (Rep = 2300), the hydrodynamic entry length may be obtained from an expression of the form [2]

Xfd, h
( D )lam

~ 0.05 Re -
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Thermal boundary layer: = -

Surface condition

T,> T(r,0) a5
| | "
| 1
| " ’l r
|
|
|

I '
| |
l |
|
I L. L R
T (r 0) T(r 0) - A T(r,0) T, T (r,0) Tr)
I
< Thermal entrance region Fully developed region >
Xia s

FIGURE 8.4 Thermal boundary layer development in a circular tube with a hot wall.

ength may be expressed as [3]

Xfd, t
Cp )

~ 0.05Re,, Pr

lam
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