Suggested Problems
Heat Transfer |
Ch2 & Ch3

2.26 A one-dimensional plane wall of thickness 2L = 80 mm experiences uniform thermal
energy generation of g=1000 W/m? and is convectively cooled at x = +40 mm by an ambient
fluid characterized by
Tee = 30°C. If the steady-state temperature distribution within the wall is T(x) =a(L2 - x2) + b
where a =15°C/m2 and b = 40°C.

1- What is the thermal conductivity of the wall, k?

2- What is the value of the convection heat transfer coefficient, h?

PROBLEM 2.26

KNOWN: Wall thickness. Thermal energy generation rate. Temperature distribution. Ambient fluid
temperature.

FIND: Thermal conductivity. Convection heat transfer coefficient.

SCHEMATIC:

{ = 1000 W/m?

Tix)=a(l?*-x%)+b

4% i I-i 2L =100 mm

ASSUMPTIONS: (1) Steady state, (2) One-dimensional conduction, (3) Constant properties, (4)
Negligible radiation.

ANALYSIS: Under the specified conditions, the heat equation, Equation 2.21, reduces to
d’T ¢

d_xz +;=0

With the given temperature distribution, @*7/dx’ = -2a. Therefore, solving for k gives

- 3
_ 4 000 WA _ 33 3 wim. <
2a 2x15°C/m

The convection heat transfer coefficient can be found by applying the boundary condition at x = L (or

atx=-L),
dr
—k— » =h[T(L)-T,)
Therefore
_kg 2kal  2x333 W/m-K x15°C/m’ x0.04 m
h=[T(L)—KT_j,]=b—Tl S e e C4wmtK <

COMMENTS: (1) In Chapter 3, you will learn how to determine the temperature distribution. (2)
The heat transfer coefficient could also have been found from an energy balance on the wall. With

E,~E, +E, =0, we find—2hA[T(L) - T..] + 24 L4 = 0. This yields the same result for /.



2.30 One-dimensional, steady-state conduction with no energy generation is occurring in a spherical shell of inner radius ry
and outer radius r,. Under what condition is the linear temperature distribution shown below possible?

T(r)
A

nry)

T(fz)

PROBLEM 2.30
KNOWN: Spherical shell under steady-state conditions with no energy generation.

FIND: Under what conditions is a linear temperature distribution possible.

SCHEMATIC:
T(r)
T(ry)
I(ry)
. 3)
T(ry)

ry 2

ASSUMPTIONS: (1) Steady state, (2) One-dimensional, (3) No heat generation.
ANALYSIS: Under the stated conditions, the heat equation in spherical coordinates, Equation 2.29,

reduces to
i krzd_T =0
dr dr

If the temperature distribution is a linear function of r, then the temperature gradient is constant, and
this equation becomes

d g o\
5(kr)_o

which implies &»* = constant, or k& ~ 1/#*. The only way there could be a linear temperature

distribution in the spherical shell is if the thermal conductivity were to vary inversely with 7. <

COMMENTS: It is unlikely to encounter or even create a material for which k varies inversely with
the spherical radial coordinate » in the manner necessary to develop a linear temperature distribution.
Assuming linear temperature distributions in radial systems is nearly always both fundamentally
incorrect and physically implausible.



2.31 The steady-state temperature distribution in a one-dimensional wall of thermal conductivity k and thickness L is of the

form T = ax? + bx + c. Derive expressions for the heat fluxes at the two wall faces (x = 0, L), and the energy generation rate in
the wall per unit wall area.

PROBLEM 2.31

KNOWN: Steady-state temperature distribution in a one-dimensional wall is T(x) = sz +
Bx + C, thermal conductivity, thickness.

FIND: Expressions for the heat fluxes at the two wall faces (x = 0,L) and the heat generation
rate in the wall per unit area.

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat flow, (3)
Homogeneous medium.

ANALYSIS: The appropriate form of the heat diffusion equation for these conditions is

2 3 2
ddx%+%=0 or q=-k3x§.

Hence, the generation rate is

q=-ki[d—T] - k-3 [24x+B +0]
dx | dx dx

g=k [2A] <
which is constant. The heat fluxes at the wall faces can be evaluated from Fourier’s law,
" dT
qx =-— a:—k[ZAx-‘-B]

using the expression for the temperature gradient derived above. Hence, the heat fluxes are:

Surface x=0:

qx (0)=—kB <
Surface x=L:

qx (L) =-k[2AL +B]. <

COMMENTS: (1) From an overall energy balance on the wall, find
i~ By + Eg =0 _
A% (0)—a% (L)+Eg :(—kB)—(—k)[2AL+B]+E”g =0
E:é =—2AkL.

From integration of the volumetric heat rate, we can also find Eg as

., (L. L
Eg = [, a(x)dx=[ -k[2A)x=k[2AL]
which agrees with the above, as it should.



2.33 A plane layer of coal of thickness L = 1 m experiences uniform volumetric generation at a
rate of g=10 W/m?3 due to slow oxidation of the coal particles. Averaged over a daily period, the
top surface of the layer transfers heat by convection to ambient air for which h =8 W/m? - K
and T = 30°C, while receiving solar irradiation in the amount GS = 500 W/m?. Irradiation from
the atmosphere may be neglected. The solar absorptivity and emissivity of the surface are each
aS =¢=0.95.

Ambient air

T h
—

Coal,

(a) Write the steady-state form of the heat diffusion equation for the layer of coal. Verify,
by direct substitution, that this equation is satisfied by a temperature distribution of the

form
L, )
_ gL _Xx
T =1, +7(1 _Lz]

From this distribution, what can you say about conditions at the bottom surface (x = 0)? Sketch
the temperature distribution and label key features.

(b) Obtain an expression for the rate of heat transfer by conduction per unit area at x = L.
Applying an energy balance to a control surface about the top surface of the layer, obtain an
expression for Ts. Evaluate Ts and T(0) for the prescribed conditions.

(c) Daily average values of GS and h depend on a number of factors, such as time of year, cloud
cover, and wind conditions. For h =8 W/m2 - K, compute and plot TS and T(0) as a function of
GS for 50 < GS £ 500 W/m2. For GS = 500 W/m2, compute and plot TS and T(0) as a function of
hfor5<h<50W/m2 - K.



PROBLEM 2.33

KNOWN: Coal pile of prescribed depth experiencing uniform volumetric generation with
convection, absorbed irradiation and emission on its upper surface,

FIND: (a) The appropriate form of the heat diffusion equation (HDE) and whether the prescribed
temperature distribution satisfies this HDE; conditions at the bottom of the pile, x = 0; sketch of the
temperature distribution with labeling of key features; (b) Expression for the conduction heat rate at
the location x = L; expression for the surface temperature T based upon a surface energy balance at x

=L; evaluate Ty and T(0) for the prescribed conditions; (c) Based upon typical daily averages for G
and h, compute and plot Ty and T(0) for (1) h=5 W/m>K with 50 < Gs < 500 W/m’, (2) Gs =400
W/m® with 5 <h < 50 W/m*K.

SCHEMATIC:
A r/ Gg =400 W/m?2
) Tw=25°C Q -
—= h=5Wm2k - ,Ts ,ag =€ =0.95
o

L=1m P T.ratatut,E ’C

Joisiniinisininioinininio: BE =20 Wim3

S

ASSUMPTIONS: (1) One-dimensional conduction, (2) Uniform volumetric heat generation, (3)
Constant properties, (4) Negligible irradiation from the surroundings, and (5) Steady-state conditions.

PROPERTIES: Table A.3, Coal (300K): k=026 W/m'K

ANALYSIS: (a) For one-dimensional, steady-state conduction with uniform volumetric heat
generation and constant properties the heat diffusion equation (HDE) follows from Eq. 2.22,

d (dT) ¢
_[_] I m<
dx\dx/) k
Substituting the temperature distribution into the HDE, Eq. (1),
v 2 2 .2 .
T(x)=T+E|1-X 1o+ [0-2% | |1 9290 2.3)
2k 12 dx 2k 12 k
we find that it does indeed satisfy the HDE for all values of x. <
From Eq. (2), note that the temperature distribution must be quadratic, with maximum value at x = 0.
At x =0, the heat flux is X
' Parabolic shape
2 l
" dT L 2x
ax (0) = —k—J =-k| 0+ q—[O — —2J =0 : Zero gradient
dx Jx=o 2k L _ ' at bottom
x=0 :
|
so that the gradient at x = 0 is zero. Hence, the bottom is insulated. 0 Tg T0) T

(b) From an overall energy balance on the pile, the conduction heat flux at the surface must be

qy (L)=Ej =dL <

Continued...



PROBLEM 2.33 (Cont.)

From a surface energy balance per unit area shown in the schematic above,
Ein _Eout"‘Eg =0 dx (L)_qgonv’LGS,abs_E:O
L —h (T — T, ) +0.95Gg —g0Tg! = 0 )
10W/m 2m -8 W/m2K (T, —303K) + 0.95x 500 W/m? — 0.95x5.67x10"® W/ m*K*T = 0
T, =305.6 K = 32.6°C <
From Eq. (2) with x =0, find

10W/m> x(2m)?
2x026W/m-K

.12 .
T(o)=TS+‘12—k=32.6 C+

=109.5°C o)<
where the thermal conductivity for coal was obtained from Table A.3.

(c) Two plots are generated using Eq. (4) and (5) for T, and T(0), respectively; (1) with h = 5 W/m*K
for 50 < Gs < 500 W/m® and (2) with Gs =400 W/m? for 5 < h < 50 W/m*K.

Solar Irradiation, Gs = 400 Wim"2
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PROBLEM 2.33 (Cont.)

From the T vs. h plot with G5 = 400 W/m’, note that the convection coefficient does not have a major
influence on the surface or bottom coal pile temperatures. From the T vs. Gg plot with h =5 W/m*K,
note that the solar irradiation has a very significant effect on the temperatures. The fact that T, is less

than the ambient air temperature, T, and, in the case of very low values of Gg, below freezing, is a
consequence of the large magnitude of the emissive power E.

COMMENTS: In our analysis we ignored irradiation from the sky, an environmental radiation effect

you’ll consider in Chapter 12. Treated as large isothermal surroundings, Gy, = O-Tsiy where T g, = -

30°C for very clear conditions and nearly air temperature for cloudy conditions. For low Gg
conditions we should consider Gy, the effect of which will be to predict higher values for T, and

T(0).

2.41 A chemically reacting mixture is stored in a thin-walled spherical container of radius rl =
200 mm, and the exothermic reaction generates heat at a uniform, but temperature-dependent

volumetric rate of

q= {:Io €Xp (_A/To ):

Where g=5000 W/m3, A = 75 K, and To is the mixture temperature in kelvins. The vessel is
enclosed by an insulating material of outer radius r2, thermal conductivity k, and emissivity €.
The outer surface of the insulation experiences convection heat transfer and net radiation
exchange with the adjoining air and large surroundings, respectively.

Chemical
reaction, §(T,)

Insulation,
ke

(a) Write the steady-state form of the heat diffusion equation for the insulation. Verify, by
direct substitution, that this equation is satisfied by the temperature distribution
Sketch the temperature distribution, T(r), labeling key features.

1—(r/
T(r) = Ts,l - (Ts,l - Ts,2 )[%:l



(b) Applying Fourier's law, show that the rate of heat transfer by conduction through the
insulation may be expressed as

Applying an energy balance to a control surface about the container, obtain an alternative
expression for qr, expressing your result in terms of g and rl.

_4ﬂ'k(Ts’1 —Ts’z)
b =) = (ry)

(c) Applying an energy balance to a control surface placed around the outer surface of the
insulation, obtain an expression from which Ts,2 may be determined as a function of g, r1, h,
Tee, €, and Tsuyr.

(d) The process engineer wishes to maintain a reactor temperature of To = T(r1) = 95°C under
conditions for which k =0.05 W/m - K, r2 =208 mm, h=5W/m2 - K, € = 0.9, T = 25°C, and Tsur
= 35°C. What is the actual reactor temperature and the outer surface temperature Ts,2 of the
insulation?

(e) Computer Icon Compute and plot the variation of Ts,2 with r2 for 201 <r2 <210 mm. The
engineer is concerned about potential burn injuries to personnel who may come into contact
with the exposed surface of the insulation. Is increasing the insulation thickness a practical
solution to maintaining Ts,2 < 45°C? What other parameter could be varied to reduce Ts,2?



PROBLEM 2.41

KNOWN: Spherical container with an exothermic reaction enclosed by an insulating material whose
outer surface experiences convection with adjoining air and radiation exchange with large
surroundings.

FIND: (a) Verify that the prescribed temperature distribution for the insulation satisfies the
appropriate form of the heat diffusion equation; sketch the temperature distribution and label key
features; (b) Applying Fourier's law, verify the conduction heat rate expression for the insulation
layer, q., in terms of Ty, and Ty,; apply a surface energy balance to the container and obtain an
alternative expression for g, in terms of q and r;; (c) Apply a surface energy balance around the
outer surface of the insulation to obtain an expression to evaluate T, ,; (d) Determine T, for the
specified geometry and operating conditions; (e) Compute and plot the variation of T, as a function
of the outer radius for the range 201 <r, <210 mm; explore approaches for reducing T, < 45°C to
eliminate potential risk for burn injuries to personnel.

SCHEMATIC:

Reaction, T, q=qpexp (-A/Ty)
Insulation, k

ASSUMPTIONS: (1) One-dimensional, radial spherical conduction, (2) Isothermal reaction in
container so that T, = Ty, (2) Negligible thermal contact resistance between the container and
insulation, (3) Constant properties in the insulation, (4) Surroundings large compared to the insulated
vessel, and (5) Steady-state conditions.

ANALYSIS: The appropriate form of the heat diffusion equation (HDE) for the insulation follows
from Eq. 2.29,

ii[rzd_T)=0 nH<
2 dr dr
The temperature distribution is given as
1-(y/r
T(r) =T51 - (Ts,l -T2 )[Q} (2)

1- ( n x'fr2 )
Continued...



Substitute T(r) into the HDE to see if it is satisfied:

0+(r1/r2)

1 d| »

— 2 ?o—(T -T.,)——Z|{|=0
2dr| (T2 1-(n/n)

1 d 1'1

= T -Ty)—L1—|=0

r? dr (% 5’2)1-(r1fr2)J

and since the expression in parenthesis is independent of r, T(r) does indeed satisfy the HDE. The

temperature distribution in the insulation and its key features are as follows:

(1) Ts,l > Ts,2 Ts_‘1
(2) Decreasing gradient with increasing radius,
r, since the heat rate is constant through

the insulation.

(b) Using Fourier’s law for the radial-spherical coordinate, the heat rate through the insulation is

dT 2\dT
qr =-kA; . = —k(47rr )I
and substituting for the temperature distribution, Eq. (2),
0+ (rl ;frz )

2
=-4k 0—(T.{-T.n)———+
qr r ( 5,1 5,2) 1_(]_1/1_2)

) 47rk(TS,1 - Ts,z)
()~ (1)

Applying an energy balance to a control surface about the container atr =r,

E.:in —Eout =0

qV—-q, =0

where qV represents the generated heat in the container,

ar = (4/3)”1'1361

@<

Continued...



PROBLEM 2.41 (Cont.)

(c) Applying an energy balance to a control surface placed around the outer surface of the insulation,

l;:in —Equt =0

where
Ag = 4:rr22 (6)

These relations can be used to determine T, in terms of the variables q,ry, 12, h, T , e and Ty,

(d) Consider the reactor system operating under the following conditions:

r, =200 mm h=5W/m*K £=09
1, =208 mm T, =25°C Tew = 35°C
k=0.05 W/mK

The heat generated by the exothermic reaction provides for a volumetric heat generation rate,
q=4,exp(-A/T,) 4o :sooow/m3 A=75K (7

where the temperature of the reaction is that of the inner surface of the insulation, T, =T,,. The
following system of equations will determine the operating conditions for the reactor.

Conduction rate equation, insulation, Eq. (3),

47 x0.05 W;'fm 'K(Ts,l —Ts2 )

= 8
T (1/0.200m—1/0.208 m) ®
Heat generated in the reactor, Egs. (4) and (7),
qr =4/37(0200m)* § )
4= 5000W/m> exp(-75K /Ty ;) (10)

Surface energy balance, insulation, Eqs. (5) and (6),

4 ~SW/m? K A (T, , ~298K) ~09A,5.67x1078 w/mz-K“(T;fz ~(308 K)4) =0 (11
Ag =47(0208m)> (12)

Continued...



PROBLEM 2.41 (Cont.)

Solving these equations simultaneously, find that

Ty =94.3°C T, 5 =52.5°C <

That is, the reactor will be operating at T, = T; = 94.3°C, very close to the desired 95°C operating
condition.

(e) Using the above system of equations, Eqgs. (8)-(12), we have explored the effects of changes in the
convection coefficient, h, and the insulation thermal conductivity, k, as a function of insulation
thickness, t=r; - r;.
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— k=005 W/mK, h=5Wim2K — k=0.05WimK, h=5W/m"2.K
—#— k=001 WimK, h=5Wm2K —#— k=0.01 WimK, h=5Wim"2K
—8— k=005 Wim.K, h =15 Wim*2K —8— k=0.05WimK, h=15W/m"2.K

In the T, vs. (r; - r;) plot, note that decreasing the thermal conductivity from 0.05 to 0.01 W/m-K
slightly increases T, while increasing the convection coefficient from 5 to 15 W/m?>K markedly
decreases T,,. Insulation thickness only has a minor effect on T, for either option. Inthe T, vs. (r;
- 11) plot, note that, for all the options, the effect of increased insulation is to increase the reaction
temperature. With k =0.01 W/m-K, the reaction temperature increases beyond 95°C with less than 2
mm insulation. For the case with h = 15 W/m*K, the reaction temperature begins to approach 95°C
with insulation thickness around 10 mm. We conclude that by selecting the proper insulation
thickness and controlling the convection coefficient, the reaction could be operated around 95°C such
that the outer surface temperature would not exceed 45°C.



2.42 A thin electrical heater dissipating 4000 W/m2 is sandwiched between two 25-mm-thick
plates whose exposed surfaces experience convection with a fluid for which Tee = 20°C and h =
400 W/m2. K. The thermophysical properties of the plate material are p = 2500 kg/m3, c = 700
J/kg - K,and k=5W/m - K.

/ -Electric heater, g/,

T

> X

-L 0 +L

(a) On T - x coordinates, sketch the steady-state temperature distribution for -L < x < +L.
Calculate values of the temperatures at the surfaces, x = £L, and the midpoint, x = 0. Label this
distribution as Case 1, and explain its salient features.

(b) Consider conditions for which there is a loss of coolant and existence of a nearly adiabatic
condition on the x = +L surface. On the T - x coordinates used for part (a), sketch the
corresponding steady-state temperature distribution and indicate the temperatures at x = 0, £L.
Label the distribution as Case 2, and explain its key features.

(c) With the system operating as described in part (b), the surface x = -L also experiences a
sudden loss of coolant. This dangerous situation goes undetected for 15 min, at which time the
power to the heater is deactivated. Assuming no heat losses from the surfaces of the plates,
what is the eventual (t = <o), uniform, steady-state temperature distribution in the plates?
Show this distribution as Case 3 on your sketch, and explain its key features. Hint: Apply the
conservation of energy requirement on a time-interval basis, Eq. 1.12b, for the initial and final
conditions corresponding to Case 2 and Case 3, respectively.

(d) On T - t coordinates, sketch the temperature history at the plate locations x = 0, L during
the transient period between the distributions for Case 2 and Case 3. Where and when will the
temperature in the system achieve a maximum value?



PROBLEM 2.42

KNOWN: Thin electrical heater dissipating 4000 W/m” sandwiched between two 25-mm thick plates
whose surfaces experience convection.

FIND: (a) On T-x coordinates, sketch the steady-state temperature distribution for -L < x < +L;
calculate values for the surfaces x = L and the mid-point, x = 0; label this distribution as Case 1 and
explain key features; (b) Case 2: sudden loss of coolant causing existence of adiabatic condition on
the x = +L surface; sketch temperature distribution on same T-x coordinates as part (a) and calculate
values for x =0, = L; explain key features; (c) Case 3: further loss of coolant and existence of
adiabatic condition on the x = - L surface; situation goes undetected for 15 minutes at which time
power to the heater is deactivated; determine the eventual (t — co0) uniform, steady-state temperature
distribution; sketch temperature distribution on same T-x coordinates as parts (a,b); and (d) On T-t
coordinates, sketch the temperature-time history at the plate locations x = 0, + L during the transient
period between the steady-state distributions for Case 2 and Case 3; at what location and when will the
temperature in the system achieve a maximum value?

SCHEMATIC:
Electric heater
q,=4000 W/m?2
T = 20°C
h = 400 W/m2-K Plates p = 2500 kg/m3

cp = 700 Jikg-K

14 | | B @> k=5 W/m-K

L> x +L =25 mm

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) No internal
volumetric generation in plates, and (3) Negligible thermal resistance between the heater surfaces and
the plates.

ANALYSIS: (a) Since the system is symmetrical, the heater power results in equal conduction fluxes
through the plates. By applying a surface energy balance on the surface x = +L as shown in the
schematic, determine the temperatures at the mid-point, x = 0, and the exposed surface, x + L.

LT
1|1 Geonv
—™
ax(+L) 1| @

!
Ein _Eout =0
q% (+L)—q¢onv =0 where qx (+L)=q5/2
q5/2—h[T(+L)-T, |=0
Ty (+L)=q4/2h+ Ty, =4000me2f(2x400W;’m2 -K)+20°C=25°C <

From Fourier’s law for the conduction flux through the plate, find T(0).
9% =96 /2 =k[T(0)-T(+L)]/L
T, (0) =Ty (+L)+q4L/ 2k = 25°C + 4000 W /m” - K x0.025m/(2x5W /m-K) = 35°C <

The temperature distribution is shown on the T-x coordinates below and labeled Case 1. The key
features of the distribution are its symmetry about the heater plane and its linear dependence with
distance.

Continued ...



PROBLEM 2.42 (Cont.)

86.1 p‘—: Case 3, Ta(x)
|

g |
< ; Case 2, To(x)
= |
= ; Case 1, T4(x)
: T1(0) = 35°C
] S
< X

(b) Case 2: sudden loss of coolant with the existence of an adiabatic condition on surface x = +L. For
this situation, all the heater power will be conducted to the coolant through the left-hand plate. From a
surface energy balance and application of Fourier’s law as done for part (a), find

Ty (-L)=q} /h+T,, =4000 W /m? /400 W /m? - K +20°C = 30°C <
T (0) =Ty (-L)+qjL/k =30°C+4000 W/m? x0.025 m/5W/m-K =50°C <

The temperature distribution is shown on the T-x coordinates above and labeled Case 2. The
distribution is linear in the left-hand plate, with the maximum value at the mid-point. Since no heat
flows through the right-hand plate, the gradient must zero and this plate is at the maximum
temperature as well. The maximum temperature is higher than for Case 1 because the heat flux
through the left-hand plate has increased two-fold.

(c) Case 3: sudden loss of coolant occurs at the x = -L surface also. For this situation, there is no heat
transfer out of either plate, so that for a 15-minute period, At,, the heater dissipates 4000 W/ and
then is deactivated. To determine the eventual, uniform steady-state temperature distribution, apply
the conservation of energy requirement on a time-interval basis, Eq. 1.12b. The initial condition
corresponds to the temperature distribution of Case 2, and the final condition will be a uniform,
elevated temperature Tt = T3 representing Case 3. We have used T, as the reference condition for
the energy terms.

Ein —Eout + Eéen =AEg =E} —Ef Q)
Note that E{, —Ep,,, =0, and the dissipated electrical energy is
Egen = oAty =4000 W/m? (15x 60)s =3.600x10°J/m? o))

For the final condition,
Ef = pc(2L)[Tf - T, ] = 2500 kg /m> x 700/ kg - K (2x0.025m [Ty —20]°C
E} =8.75x10* [Ty —20]7/m?
where T¢= T3, the final uniform temperature, Case 3. For the initial condition,
” +L 0 +L
B =pc| | [Tp(x)-Tolix = pc[j_L [ T2 (x)- T Jax+ [ [T (0)—Tw]dx} )

where T, (x) is linear for -L < x < 0 and constant at T, (0) for 0 <x <+L.

T (x) =T, (0)+[ T (0) -T2 (L) [x/L ~-L<x<0
T, (x) = 50°C+[50-30]°Cx /0.025m
T, (x)=50°C +800x 5)

Substituting for T, (x), Eq. (5), into Eq. (4)
Continued ...



PROBLEM 2.42 (Cont.)

E{= pc{jfL[50+800x—Tw]dx +|:T2(0)—Tw]L}
E! = pc {[sox +400x2 —wa]?L +[1 (0)—Tw]L}

E!=pc [—[—50L+400L2 + TwL]+[T2 (0)—Tw]L]

E{ = pcL{+50-400L — Ty, + T3 (0) — To |

E{ = 2500kg /m> x700J /kg - K x0.025 m{+50 —400x0.025 - 20 + 50— 20} K

E! =2.188x10° J/m? (6)
Returning to the energy balance, Eq. (1), and substituting Eqs. (2), (3) and (6), find T¢= Ts.

3.600x10°% J/m? =8.75x10%[ T3 —20]-2.188x10° J /m?

T3 =(66.1+20)°C = 86.1°C <

The temperature distribution is shown on the T-x coordinates above and labeled Case 3. The
distribution is uniform, and considerably higher than the maximum value for Case 2.

(d) The temperature-time history at the plate locations x = 0, + L during the transient period between
the distributions for Case 2 and Case 3 are shown on the T-t coordinates below.

T(x,t) A
T |

Maximum point

Ta(0) = Ta(+L)

T(+L,t}i

TZ(‘L) T(-L,t)
Tw '
] —
-
o 15 Time (min)
Case 2 Heater deactivated

Note the temperatures for the locations at time t = 0 corresponding to the instant when the surface
x = - L becomes adiabatic. These temperatures correspond to the distribution for Case 2. The heater
remains energized for yet another 15 minutes and then is deactivated. The midpoint temperature,

T(0,t), is always the hottest location and the maximum value slightly exceeds the final temperature T5.



2.44 Consider the steady-state temperature distributions within a composite wall composed of
Material A and Material B for the two cases shown. There is no internal generation, and the
conduction process is one-dimensional.

Tx) Tx)
\ \

e— Ly —»tle— Lp —> e— Ly —>le— Lg —>
ka kg kn kg
Lo Lwx
Case 1 Case 2

Answer the following questions for each case. Which material has the higher thermal
conductivity? Does the thermal conductivity vary significantly with temperature? If so, how?
Describe the heat flux g "x(x) distribution through the composite wall. If the thickness and
thermal conductivity of each material were both doubled and the boundary temperatures
remained the same, what would be the effect on the heat flux distribution?

Case 1. Linear temperature distributions exist in both materials, as shown.

Case 2. Nonlinear temperature distributions exist in both materials, as shown.



PROBLEM 2.44

KNOWN: Qualitative temperature distributions in two cases.

FIND: For each of two cases, determine which material (A or B) has the higher thermal conductivity,
how the thermal conductivity varies with temperature, description of the heat flux distribution through
the composite wall, effect of simultaneously doubling the wall thickness and thermal conductivity.

SCHEMATIC:
T(x) T(x)
"‘--..________h— -\
L, >+ L;—» L, e Ly
kA kB kA kB
Case 1. Case 2.

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Negligible contact resistances,
(3) No internal energy generation.

ANALYSIS: Under steady-state conditions with no internal generation, the conservation of energy

requirement dictates that the heat flux through the wall must be constant. <
For Materials A and B, Fourier’s law is written q;\ =—ky, % = q;_,, =—kg % . Therefore,
x
ko _dlg/dx >1 and kg <k, for both cases. <
kg dT,/dx

Since the heat flux through the wall is constant, Fourier’s law dictates that lower thermal conductivity
material must exist where temperature gradients are larger. For Case 1, the temperature distributions
are linear. Therefore, the temperature gradient is constant in each material, and the thermal
conductivity of each material must not vary significantly with temperature. For Case 2, Material A, the
temperature gradient is larger at lower temperatures. Hence, for Material A the thermal conductivity
increases with increasing material temperature. For Case 2, Material B, the temperature gradient is
smaller at lower temperatures. Hence, for Material B the thermal conductivity decreases with increases

in material temperature. <

COMMENTS: If you were given information regarding the relative values of the thermal
conductivities and how the thermal conductivities vary with temperature in each material, you should
be able to sketch the temperature distributions provided in the problem statement.



CHAPTER 3

3.3 The rear window of an automobile is defogged by passing warm air over its inner surface.

(a) If the warm air is at Too,i = 40°C and the corresponding convection coefficient is hi = 30 W/m2
- K, what are the inner and outer surface temperatures of 4-mm-thick window glass, if the
outside ambient air temperature is Too,0 = —10°C and the associated convection coefficient is ho
=65 W/m2 - K?

(b)Computer Icon In practice Too,0 and ho vary according to weather conditions and car speed.
For values of ho = 2, 65, and 100 W/m2 - K, compute and plot the inner and outer surface
temperatures as a function of Too,0 for =30 < Too,0 < 0°C.

PROBLEM 3.3

KNOWN: Temperatures and convection coefficients associated with air at the inner and outer surfaces
of a rear window.

FIND: (a) Inner and outer window surface temperatures, T,; and T,,, and (b) T;; and T, as a function
of the outside air temperature T,,, and for selected values of outer convection coefficient, h,.

SCHEMATIC:
Glass — T, E:EMM _‘
= l l l T 1/ Lk 1ih; q"
Too=-10°C 5,0 o |
ho = 65 Wim2* K " 1 W
Lo j=40°C
L =0.004m—}= . hj=30 Wim2 *K

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible radiation
effects, (4) Constant properties.

PROPERTIES: Table A-3, Glass (300 K): k=14 WmK.
ANALYSIS: (a) The heat flux may be obtained from Eqgs. 3.11 and 3.12,

L Tei-Tes 40°c-(-10°c)

LT 1 0.004m 1
T ot 7 + )
hy k hi 5w/ m*.Kk 14W/m-K 30w/m*.K

q = 0 C ~969W/m? .
(0.0154+0.0029+0.0333)m? - K/W

Hence, with q"=h; (Tm,i ~Te0 ) the inner surface temperature is

" / 2
T..=T ._i:40°C_%

5,1 0,1 =7.7°C <
i 30W/m” -K

=

Similarly for the outer surface temperature with ¢" =h, (TS,O - Tw,o) find

" /2
Ty =T o+ =-10°C+ M
0 65W/m”-K
(b) Using the same analysis, T,; and T, , have been computed and plotted as a function of the outside air
temperature, T, for outer convection coefficients of h, = 2, 65, and 100 W/m2K. As expected, T,; and
T,, are linear with changes in the outside air temperature. The difference between T; and T, increases
with increasing convection coefficient, since the heat flux through the window likewise increases. This
difference is larger at lower outside air temperatures for the same reason. Note that with h, = 2 W/m*K,

T;i- Ts,, is too small to show on the plot.

=49°C <

Continued ...



PROBLEM 3.3 (Cont.)

3)
3
@ 30
o
=t 20
'_
g 10 _,_,.Ja——-—_._.-——--‘“;
B 0 —-—-——"""_H__‘*_____ ﬁ

-10
k] —
§ -20
h =
@a -30

-30 -25 -20 -15 -10 -5 0

Outside air temperature, Tinfo (C)

—#&— Tsi; ho =100 W/m*2.K
—&— Tso; ho =100 W/m~2.K
—8— Tsi; ho =65 W/m"2.K
—#— Tso; ho=65W/m"2.K
Tsi or Tso; ho =2 W/m*K

3.4 A dormitory at a large university, built 50 years ago, has exterior walls constructed of Ls = 30-
mm-thick sheathing with a thermal conductivity of ks = 0.1 W/m - K. To reduce heat losses in
the winter, the university decides to encapsulate the entire dormitory by applying an Li = 30-
mm-thick layer of extruded insulation characterized by ki = 0.029 W/m - K to the exterior of the
original sheathing. The extruded insulation is, in turn, covered with an Lg = 5-mm-thick
architectural glass with kg = 1.4 W/m - K. Determine the heat flux through the original and
retrofitted walls when the interior and exterior air temperatures are Too,i = 22°C and Too,0 = 0°C,
respectively. The inner and outer convection heat transfer coefficients are hi =5 W/m2 - K and
ho =30 W/m2 - K, respectively.



PROBLEM 3.4

KNOWN: Thermal conductivities and thicknesses of original wall, insulation layer, and glass layer.
Interior and exterior air temperatures and convection heat transfer coefficients.

FIND: Heat flux through original and retrofitted walls.

SCHEMATIC: +—— Glass, k,= 1.4 W/mK
Insulation, £, = 0.029 W/m-K
- 5 .
;w : szviffnz-K | rowmk
- ,, Sheathing, £, = 0.1 W/m‘K
L,=30mm . e -

- ~— L,=30mm

— — Lf =5mm

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, (3) Constant
properties, (4) Negligible contact resistances.

ANALYSIS: The original wall with convection inside and outside can be represented by the
following thermal resistance network, where the resistances are each for a unit area:

1/h; Ly/ks 1/h,

Thus the heat flux can be expressed as

o LT, 22°C - 0°C 2 <
q_L+5 1 1 0.030m 1 =413 W/m

+ 2 + 2
h k. h, 5Wm>-K 0.IWm-K 30Wm>-K

The retrofitted wall has three layers. The thermal circuit can be represented as follows:

AV AV AN e A VAVAVE S AVAVAVE AVAVAVE AVAVAV, c¥

1/h; Ly/k, Lik; Lelkg 1/h,

Thus the heat flux can be expressed as

" _ Tu:‘f - Tm’o
AN AR
e e
h" kj k!' ks ho <
22°C-0°C )
= 1 0.030 m + 0.030 m + 0.005 m R 1 =14.0 W/m

+
SW/m*-K 0.1Wm-K 0.029W/m-K 14Wm-K 25W/m’-K

COMMENTS: The heat flux has been reduced to approximately one-third of the original value
because of the increased resistance, which is mainly due to the insulation layer.



3.13 Consider a composite wall of overall height H = 20 mm and thickness L = 30 mm. Section A
has thickness LA = 10 mm, and sections B and C each have height HB = 10 mm and thickness
LB =20 mm. The temperatures of the left and right faces of the composite wall are T1 = 50°C
and T2 = 20°C, respectively. If the top and bottom of the wall are insulated, determine the heat
rate per unit wall depth for each of the following three cases. Which case yields the largest heat
rate per unit depth? Which yields the smallest heat rate per unit depth?

PROBLEM 3.13
KNOWN: Composite wall with known dimensions and thermal conductivities.

FIND: Heat rate per unit wall depth, and which of three cases yields the largest and smallest

heat rates.
SCHEMATIC:
: H =20 mm
A B t _‘_ L=30mm
n,— I-,I" Ly=10 mm
Ly 1] H Hg =10 mm, Lg = 20 mm
| T, =50°C, T, = 20°C.
—T,
1, l Case ky (W/mK) ks (W/mK) kc(W/mK)
C 1 1 2 3
2 2 3 1
SR - 3 3 1 2

ASSUMPTIONS: (1) Surfaces normal to heat flow direction are isothermal or surfaces
parallel to the heat flow direction are adiabatic, (2) Steady-state conditions, (3) Negligible
contact resistance.

ANALYSIS: This scenario is similar to the composite wall of Figure 3.3, but without the
right-most region labeled H. If it is assumed that surfaces normal to the heat flow direction are

isothermal, the resistance network is shown to the right. Lg
kg(A/2)
In this case, the total resistance (for a unit depth) is given by j\/\/\_
-1
: L, kpH/2 kcH/2 La
Rtot =1 Ay ZB= 2, 2C kA
AH ( Lp Lc
S VAVA: BN
and the heat rate per unit depth is kc(c A/2)
_(-Ty) _ (T—=T3)
' -1
tot La N kBH/2+kcﬂ/2
kaH L Lc
Substituting values for Case 1 yields
il 2 (50-20)°C — =333 Wm<
0.0l m N 2W/m-Kx0.02m/2+3W/m-K><0.02m/2
1 W/m-Kx0.02 m 0.02m 0.02 m

Continued...



PROBLEM 3.13 (Cont.)

Repeating the calculation for the two other cases yields

q7 =40.0 W/m, q3=36.0 W/m <
On the other hand, if it is assumed that surfaces parallel to the heat flow direction are
adiabatic, the resistance network is shown to the right. La Le
ka(A/2) ke(A/2)

In this case, the total resistance (for a unit depth) is given by _/\/\/\__/\/\/\_
—1

-1 -1
Riot = La + Ls + La + Lp
kaH/2 kgH/2 kaH/2 kcH/2 .
1

LA LC
and the heat rate per unit depth is W
, (4-T
q _(n : 2)
Rtot { )
=(1-Tp) La + LB + LA + Lp
kaH/2 kgH/2 kaH/2 kcH/2
Substituting values for Case 1 yields
( 0.01 m . 0.02 m J“
q} = (50— 20)°Cx IWm-Kx0.02m/2 2Wm-Kx0.02m/2 L |=33.0W/m <

00lm N 0.02m
1Wm-Kx0.02m/2 3Wm-Kx0.02m/2

Repeating the calculation for the two other cases yields

gh =37.7 W/m, q3 =354 W/m <

COMMENTS: The results are quite close between the two different methods for
approximating the thermal resistance network. This is because the thermal conductivities of
the three materials are the same order of magnitude. If the thermal conductivities differed
more dramatically, the results of the two methods wouldn’t agree as well.



