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Introduction

• In this chapter, we apply the energy balance relation to systems that do not involve 
any mass flow across their boundaries; that is, closed systems.

• We start this chapter with a discussion of the moving boundary work or P dV work 
commonly encountered in reciprocating devices such as automotive engines and 
compressors. 

• We continue by applying the general energy balance relation, which is simply 
expressed as Ein-Eout = △Esystem, to systems that involve pure substance. 

• Then we define specific heats, obtain relations for the internal energy and enthalpy 
of ideal gases in terms of specific heats and temperature changes, and perform 
energy balances on various systems that involve ideal gases. 

• We repeat this for systems that involve solids and liquids, which are approximated 
as incompressible substances.
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Objectives 
The objectives of Chapter 4 are to:

• Examine the moving boundary work or P dV work commonly encountered in 
reciprocating devices such as automotive engines and compressors.

• Identify the first law of thermodynamics as simply a statement of the conservation of 
energy principle for closed (fixed mass) systems.

• Develop the general energy balance applied to closed systems.

• Define the specific heat at constant volume and the specific heat at constant 
pressure.

• Relate the specific heats to the calculation of the changes in internal energy and 
enthalpy of ideal gases.

• Describe incompressible substances and determine the changes in their internal 
energy and enthalpy.

• Solve energy balance problems for closed (fixed mass) systems that involve heat 
and work interactions for general pure substances, ideal gases, and incompressible 
substances.
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MOVING BOUNDARY WORK

• One form of mechanical work frequently 
encountered in practice is associated with the 
expansion or compression of a gas in a piston–
cylinder device. 

• During this process, part of the boundary (the 
inner face of the piston) moves back and forth. 
Therefore, the expansion and compression 
work is often called moving boundary work, 
or simply boundary work (Fig. 4–1). 

• Some call it the P dV work for reasons 
explained later. Moving boundary work is the 
primary form of work involved in automobile 
engines. During their expansion, the 
combustion gases force the piston to move, 
which in turn forces the crankshaft to rotate.
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• The moving boundary work associated with real engines or compressors cannot 
be determined exactly from a thermodynamic analysis alone because the piston 
usually moves at very high speeds, making it difficult for the gas inside to 
maintain equilibrium. 

• Then the states through which the system passes during the process cannot be 
specified, and no process path can be drawn. Work, being a path function, 
cannot be determined analytically with- out a knowledge of the path. Therefore, 
the boundary work in real engines or compressors is determined by direct 
measurements.

• In this section, we analyze the moving boundary work for a quasi- equilibrium 
process, a process during which the system remains nearly in equilibrium at all 
times. 

• A quasi-equilibrium process, also called a quasi- static process, is closely 
approximated by real engines, especially when the piston moves at low 
velocities. 
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• Under identical conditions, the work output of the engines is found to be a
maximum, and the work input to the compressors to be a minimum when quasi-
equilibrium processes are used in place of nonquasi-equilibrium processes.
Below, the work associated with a moving boundary is evaluated for a quasi-
equilibrium process.

Consider the gas enclosed in the piston 
cylinder device shown in Fig. 4–2. The 
initial pressure of the gas is P, the total 
volume is V, and the cross- sectional area 
of the piston is A. If the piston is allowed 
to move a distance ds in a quasi-
equilibrium manner, the differential work 
done during this process is
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• That is, the boundary work in the differential form is equal to the product of 
the absolute pressure P and the differential change in the volume dV of the 
system. 

• This expression also explains why the moving boundary work is sometimes 
called the P dV work. Note in Eq. 4–1 that P is the absolute pressure, which 
is always positive. 

• However, the volume change dV is positive during an expansion process 
(volume increasing) and negative during a compression process (volume 
decreasing). 

• Thus, the boundary work is positive during an expansion process and 
negative during a compression process. 

• Therefore, Eq. 4–1 can be viewed as an expression for boundary work 
output, Wb,out. A negative result indicates boundary work input 
(compression).
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• The total boundary work done during the entire process as the piston moves 
is obtained by adding all the differential works from the initial state to the final 
state:

• This integral can be evaluated only if we know the functional relationship 
between P and V during the process. That is, P = f(V) should be available. 
Note that P = f (V) is simply the equation of the process path on a P-V 
diagram.
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• The quasi-equilibrium expansion process described is shown on a P-V diagram 
in Fig. 4–3. On this diagram, the differential area dA is equal to P dV, which is 
the differential work. The total area A under the process curve 1–2 is obtained 
by adding these differential areas:

A comparison of this equation with Eq. 4–2
reveals that the area under the process curve on
a P-V diagram is equal, in magnitude, to the
work done during a quasi-equilibrium
expansion or compression process of a closed
system. (On the P-v diagram, it represents the
boundary work done per unit mass.)
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• A gas can follow several different paths as it expands from state 1 to state 2. In
general, each path will have a different area underneath it, and since this area
represents the magnitude of the work, the work done will be different for each
process (Fig. 4–4).

• This is expected, since work is a path function (i.e., it depends on the path
followed as well as the end states). If work were not a path function, no cyclic
devices (car engines, power plants) could operate as work-producing devices.

• The work produced by these devices during one part of the cycle would have to be
consumed during another part, and there would be no net work output.

• The cycle shown in Fig. 4–5 produces a net work output because the work done
by the system during the expansion process (area under path A) is greater than
the work done on the system during the compression part of the cycle (area under
path B), and the difference between these two is the net work done during the
cycle (the colored area).
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• If the relationship between P and V during an expansion or a compression 
process is given in terms of experimental data instead of in a functional form, 
obviously we cannot perform the integration analytically. 

• But we can always plot the P-V diagram of the process, using these data points, 
and cal- culate the area underneath graphically to determine the work done.

• Strictly speaking, the pressure P in Eq. 4–2 is the pressure at the inner surface 
of the piston. It becomes equal to the pressure of the gas in the cylinder only if 
the process is quasi-equilibrium and thus the entire gas in the cylinder is at the 
same pressure at any given time. 

• Equation 4–2 can also be used for nonquasi-equilibrium processes provided that 
the pressure at the inner face of the piston is used for P. (Besides, we cannot 
speak of the pressure of a system during a nonquasi-equilibrium process since 
prop- erties are defined for equilibrium states only.) 

• Therefore, we can generalize the boundary work relation by expressing it as

where Pi is the pressure at the inner face of the piston.
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• Note that work is a mechanism for energy interaction between a system and its
surroundings, and Wb represents the amount of energy transferred from the
system during an expansion process (or to the system during a compression
process).

• Therefore, it has to appear somewhere else and we must be able to account for it
since energy is conserved. In a car engine, for example, the boundary work done
by the expanding hot gases is used to overcome friction between the piston and
the cylinder, to push atmospheric air out of the way, and to rotate the crankshaft.
Therefore
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• Of course, the work used to overcome friction appears as frictional heat and 
the energy transmitted through the crankshaft is transmitted to other 
components (such as the wheels) to perform certain functions. 

• But note that the energy transferred by the system as work must equal the 
energy received by the crankshaft, the atmosphere, and the energy used to 
overcome friction.

• The use of the boundary work relation is not limited to the quasi-equilibrium 
processes of gases only. It can also be used for solids and liquids.
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• The energy balance (or the first-law) relations already given are intuitive in nature and
are easy to use when the magnitudes and directions of heat and work transfers are
known.

• However, when performing a general analytical study or solving a problem that
involves an unknown heat or work interaction, we need to assume a direction for the
heat or work interactions.

• In such cases, it is common practice to use the classical thermodynamics sign
convention and to assume heat to be transferred into the system (heat input) in the
amount of Q and work to be done by the system (work output) in the amount of W, and
then to solve the problem. The energy balance relation in that case for a closed system
becomes

Where

Q = Qnet,in = Qin - Qout is the net heat input 
and W = Wnet,out= Wout - Win is the net work output. 

• Obtaining a negative quantity for Q or W simply means that the assumed direction for 
that quantity is wrong and should be reversed. Various forms of this “traditional” first-
law relation for closed systems are given in Fig. 4–12.
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• The first law cannot be proven mathematically, but no process in nature is known to 
have violated the first law, and this should be taken as sufficient proof. 

• Note that if it were possible to prove the first law on the basis of other physical 
principles, the first law then would be a consequence of those principles instead of 
being a fundamental physical law itself.

• As energy quantities, heat and work are not that different, and you probably wonder 
why we keep distinguishing them. 

• After all, the change in the energy content of a system is equal to the amount of energy 
that crosses the system boundaries, and it makes no difference whether the energy 
crosses the boundary as heat or work. 

• It seems as if the first-law relations would be much simpler if we had just one quantity 
that we could call energy interaction to represent both heat and work. Well, from the 
first-law point of view, heat and work are not different at all. 

• From the second-law point of view, however, heat and work are very different, as is 
discussed in later chapters.
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4–3 SPECIFIC HEATS

• We know from experience that it takes different amounts of energy to raise the
temperature of identical masses of different substances by one degree.

• For example, we need about 4.5 kJ of energy to raise the temperature of 1 kg
of iron from 20 to 30°C, whereas it takes about 9 times this energy (41.8 kJ to
be exact) to raise the temperature of 1 kg of liquid water by the same amount
(Fig. 4–17).

• Therefore, it is desirable to have a property that will enable us to compare the
energy storage capabilities of various substances. This property is the specific
heat.

• The specific heat is defined as the energy required to raise the temperature of
a unit mass of a substance by one degree (Fig. 4–18). In general, this energy
depends on how the process is executed.

• In thermodynamics, we are interested in two kinds of specific heats: specific
heat at constant volume cv and specific heat at constant pressure cp.
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• Physically, the specific heat at constant
volume cv can be viewed as the energy
required to raise the temperature of the unit
mass of a substance by one degree as the
volume is maintained constant.

• The energy required to do the same as the
pressure is maintained constant is the
specific heat at constant pressure cp. This
is illustrated in Fig. 4–19.

• The specific heat at constant pressure cp is
always greater than cv because at constant
pressure the system is allowed to expand
and the energy for this expansion work
must also be supplied to the system.
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• Note that cv and cp are expressed in terms of other properties; thus, they
must be properties themselves. Like any other property, the specific heats of a
substance depend on the state that, in general, is specified by two
independent, intensive properties.

• That is, the energy required to raise the temperature of a substance by one
degree is different at different temperatures and pressures (Fig. 4–21). But
this difference is usually not very large

• A few observations can be made from Eqs. 4–19 and 4–20. First, these
equations are property relations and as such are independent of the type of
processes.

• They are valid for any substance undergoing any process. The only relevance
cv has to a constant-volume process is that cv happens to be the energy
transferred to a system during a constant-volume process per unit mass per
unit degree rise in temperature.
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• This is how the values of cv are determined. This is also how the name
specific heat at constant volume originated. Likewise, the energy transferred
to a system per unit mass per unit temperature rise during a constant-
pressure process happens to be equal to cp.

• This is how the values of cp can be determined and also explains the origin of
the name specific heat at constant pressure.

• Another observation that can be made from Eqs. 4–19 and 4–20 is that cv is
related to the changes in internal energy and cp to the changes in enthalpy.

• In fact, it would be more proper to define cv as the change in the internal
energy of a substance per unit change in temperature at constant volume.
Likewise, cp can be defined as the change in the enthalpy of a substance per
unit change in temperature at constant pressure.

• In other words, cv is a measure of the variation of internal energy of a
substance with temperature, and cp is a measure of the variation of enthalpy
of a substance with temperature.
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• Both the internal energy and enthalpy of a substance can be changed by the
transfer of energy in any form, with heat being only one of them.

• Therefore, the term specific energy is probably more appropriate than the
term specific heat, which implies that energy is transferred (and stored) in the
form of heat.

• A common unit for specific heats is kJ/kg · °C or kJ/kg · K. Notice that these
two units are identical since ∆T(°C) = ∆T(K), and 1°C change in temperature
is equivalent to a change of 1 K.

• The specific heats are some- times given on a molar basis. They are then
denoted by c–v and c–p and have the unit kJ/kmol · °C or kJ/kmol · K.
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4-4 INTERNAL ENERGY, ENTHALPY, AND SPECIFIC 
HEATS OF IDEAL GASES

• We defined an ideal gas as a gas whose temperature, pressure, and specific 
volume are related by

• In his classical experiment, Joule submerged two tanks connected with a
pipe and a valve in a water bath, as shown in Fig. 4–22.

• Initially, one tank contained air at a high pressure and the other tank was
evacuated. When thermal equilibrium was attained, he opened the valve to
let air pass from one tank to the other until the pressures equalized. Joule
observed no change in the temperature of the water bath and assumed that
no heat was transferred to or from the air.
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• Since there was also no work done, he concluded that the internal energy
of the air did not change even though the volume and the pressure
changed.

• Therefore, he reasoned, the internal energy is a function of temperature
only and not a function of pressure or specific volume. (Joule later showed
that for gases that deviate significantly from ideal-gas behavior, the internal
energy is not a function of temperature alone.)

• Using the definition of enthalpy and the equation of state of an ideal gas, we
have
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• To carry out these integrations, we need to have relations for cv and cp as
functions of temperature.

• At low pressures, all real gases approach ideal-gas behavior, and
therefore their specific heats depend on temperature only.

• The specific heats of real gases at low pressures are called ideal-gas
specific heats, or zero-pressure specific heats, and are often denoted cp0
and cv0.

• Accurate analytical expressions for ideal-gas specific heats, based on
direct measurements or calculations from statistical behavior of molecules,
are available and are given as third-degree polynomials in the appendix
(Table A–2c) for several gases. A plot of $cp0(T) data for some common
gases is given in Fig. 4–24.

• The use of ideal-gas specific heat data is limited to low pressures, but
these data can also be used at moderately high pressures with reasonable
accuracy as long as the gas does not deviate from ideal-gas behavior
significantly.
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• The integrations in Eqs. 4 –25 and 4 –26 are straightforward but rather
time-consuming and thus impractical. To avoid these laborious
calculations, u and h data for a number of gases have been tabulated over
small temperature intervals.

• These tables are obtained by choosing an arbitrary reference point and
performing the integrations in Eqs. 4–25 and 4–26 by treating state 1 as
the reference state.

• In the ideal-gas tables given in the appendix, zero kelvin is chosen as the
reference state, and both the enthalpy and the internal energy are
assigned zero values at that state (Fig. 4–25).

• The choice of the reference state has no effect on �u or �h calculations.
The u and h data are given in kJ/kg for air (Table A–17) and usually in
kJ/kmol for other gases.

• The unit kJ/kmol is very convenient in the thermodynamic analysis of
chemical reactions.
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• Some observations can be
made from Fig. 4–24. First, the
specific heats of gases with
complex molecules (molecules
with two or more atoms) are
higher and increase with
temperature.

• Also, the variation of specific
heat with temperature is
smooth and may be
approximated as linear over
small temperature intervals (a
few hundred degrees or less).
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• Therefore, the specific heat functions in Eqs. 4–25 and 4–26 can be replaced by
the constant average specific heat values. Then the integrations in these
equations can be per- formed, yielding
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• The specific heat values for some common gases are listed as a function of
temperature in Table A–2b. The average specific heats cp,avg and cv,avg are
evaluated from this table at the average temperature (T1 + T2)/2, as shown
in Fig. 4–26.

• If the final temperature T2 is not known, the specific heats may be evaluated
at T1 or at the anticipated average temperature. Then T2 can be determined
by using these specific heat values. The value of T2 can be refined, if
necessary, by evaluating the specific heats at the new average temperature.

• Another way of determining the average specific heats is to evaluate them at
T1 and T2 and then take their average. Usually both methods give reason-
ably good results, and one is not necessarily better than the other.

• Another observation that can be made from Fig. 4–24 is that the ideal-gas
specific heats of monatomic gases such as argon, neon, and helium remain
constant over the entire temperature range. Thus, ∆u and ∆h of monatomic
gases can easily be evaluated from Eqs. 4–27 and 4–28.
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• Note that the ∆u and ∆h relations given previously are not restricted to any
kind of process. They are valid for all processes. The presence of the
constant-volume specific heat cv in an equation should not lead one to
believe that this equation is valid for a constant-volume process only.

• On the contrary, the relation ∆u = cv,avg ∆T is valid for any ideal gas
undergoing any process (Fig. 4–27). A similar argument can be given for cp
and ∆h.

• To summarize, there are three ways to determine the internal energy and
enthalpy changes of ideal gases (Fig. 4–28):

1. By using the tabulated u and h data. This is the easiest and most accu- rate
way when tables are readily available.

2. By using the cv or cp relations as a function of temperature and per- forming
the integrations. This is very inconvenient for hand calculations but quite
desirable for computerized calculations. The results obtained are very accurate.

3. By using average specific heats. This is very simple and certainly very
convenient when property tables are not available. The results obtained are
reasonably accurate if the temperature interval is not very large.
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Specific Heat Relations of Ideal Gases
A special relationship between cp and cv for ideal gases can be obtained by differentiating 
the relation h = u + RT, which yields
dh = du + R dT
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4–5 NTERNAL ENERGY, ENTHALPY, AND SPECIFIC 
HEATS OF SOLIDS AND LIQUIDS

• A substance whose specific volume (or density) is constant is called an
incompressible substance.

• The specific volumes of solids and liquids essentially remain constant
during a process (Fig. 4–33). Therefore, liquids and solids can be
approximated as incompressible substances without sacrificing much in
accuracy. The constant-volume assumption should be taken to imply that
the energy associated with the volume change is negligible compared with
other forms of energy.

• Otherwise, this assumption would be ridiculous for studying the thermal
stresses in solids (caused by volume change with temperature) or analyzing
liquid-in-glass thermometers.
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• It can be mathematically shown that (see Chap. 12) the constant-volume 
and constant-pressure specific heats are identical for incompressible sub-
stances (Fig. 4–34). 

• Therefore, for solids and liquids, the subscripts on cp and cv can be 
dropped, and both specific heats can be represented by a single symbol c. 
That is, 

cp = cv =c (4–32)

• This result could also be deduced from the physical definitions of constant-
volume and constant-pressure specific heats. Specific heat values for 
several common liquids and solids are given in Table A–3.



77



78



79



80



81



82



83



84



85



86


