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1 AN ELEMENTARY INTRODUCTION TO ACOUSTICS   
 

Finn Jacobsen 

 

 

1.1 INTRODUCTION 

 

 Acoustics is the science of sound, that is, wave motion in gases, liquids and solids, 

and the effects of such wave motion. Thus the scope of acoustics ranges from fundamental 

physical acoustics to, say, bioacoustics, psychoacoustics and music, and includes technical 

fields such as transducer technology, sound recording and reproduction, design of theatres 

and concert halls, and noise control. 

 The purpose of this chapter is to give an introduction to fundamental acoustic con-

cepts, to the physical principles of acoustic wave motion, and to acoustic measurements. 

 

 

1.2 FUNDAMENTAL ACOUSTIC CONCEPTS 

 

 One of the characteristics of fluids, that is, gases and liquids, is the lack of constraints 

to deformation. Fluids are unable to transmit shearing forces, and therefore they react against 

a change of shape only because of inertia. On the other hand a fluid reacts against a change in 

its volume with a change of the pressure. Sound waves are compressional oscillatory distur-

bances that propagate in a fluid. The waves involve molecules of the fluid moving back and 

forth in the direction of propagation (with no net flow), accompanied by changes in the pres-

sure, density and temperature; see figure 1.2.1. The sound pressure, that is, the difference be-

tween the instantaneous value of the total pressure and the static pressure, is the quantity we 

hear. It is also much easier to measure the sound pressure than, say, the density or tempera-

ture fluctuations. Note that sound waves are longitudinal waves, unlike bending waves on a 

beam or waves on a stretched string, which are transversal waves in which the particles move 

back and forth in a direction perpendicular to the direction of propagation. 

 

 
 

Figure 1.2.1 Fluid particles and compression and rarefaction  in the propagating spherical sound field gener-

ated by a pulsating sphere. (From ref. [1].) 
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 In most cases the oscillatory changes undergone by the fluid are extremely small. One 

can get an idea about the orders of magnitude of these changes by considering the variations 

in air corresponding to a sound pressure level
1
 of 120 dB, which is a very high sound pressure 

level, close to the threshold of pain. At this level the fractional pressure variations (the sound 

pressure relative to the static pressure) are about 4102 −× , the fractional changes of the den-

sity are about 4104.1 −× , the oscillatory changes of the temperature are less than 0.02 °C, and 

the particle velocity
2
 is about 50 mm/s, which at 1000 Hz corresponds to a particle displace-

ment of less than 8 μm . In fact at 1000 Hz the particle displacement at the threshold of hear-

ing is less than the diameter of a hydrogen atom!
3
 

 Sound waves exhibit a number of phenomena that are characteristics of waves; see 

figure 1.2.2. Waves propagating in different directions interfere; waves will be reflected by a 

rigid surface and more or less absorbed by a soft one; they will be scattered by small obsta-

cles; because of diffraction there will only partly be shadow behind a screen; and if the me-

dium is inhomogeneous for instance because of temperature gradients the waves will be re-

fracted, which means that they change direction as they propagate. The speed with which 

sound waves propagate in fluids is independent of the frequency, but other waves of interest 

in acoustics, bending waves on plates and beams, for example, are dispersive, which means 

that the speed of such waves depends on the frequency content of the waveform. 

 

 
 

Figure 1.2.2 Various wave phenomena. 

 

 A mathematical description of the wave motion in a fluid can be obtained by combin-

ing equations that express the facts that i) mass is conserved, ii) the local longitudinal force 

caused by a difference in the local pressure is balanced by the inertia of the medium, and iii) 

sound is very nearly an adiabatic phenomenon, that is, there is no flow of heat. The observa-

tion that most acoustic phenomena involve perturbations that are several orders of magnitude 

smaller than the equilibrium values of the medium makes it possible to simplify the mathe-

matical description by neglecting higher-order terms. The result is the linearised wave equa-

tion. This is a second-order partial differential equation that, expressed in terms of the sound 

                                                 

 
1
 See section 1.3.2 for a definition of the sound pressure level. 

 
2
 The concept of fluid particles refers to a macroscopic average, not to individual molecules; therefore 

the particle velocity can be much less than the velocity of the molecules. 

 
3
 At these conditions the fractional pressure variations amount to about 102.5 10−× . By comparison, a 

change in altitude of one metre gives rise to a fractional change in the static pressure that is about 400000 times 

larger, about 10-4.  Moreover, inside an aircraft at cruising height the static pressure is typically only 80% of the 

static pressure at sea level. In short, the acoustic pressure fluctuations are extremely small compared with com-

monly occurring static pressure variations. 
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in a Cartesian (x, y, z) coordinate system.
4
 Here t is the time and, as we shall see later, the 

quantity  

Sc K ρ=  (1.2.2a) 

is the speed of sound. The physical unit of the sound pressure is pascal (1 Pa = 1 Nm
-2

). The 

quantity Ks is the adiabatic bulk modulus, and ρ is the equilibrium density of the medium. For 

gases, Ks = γp0, where ( is the ratio of the specific heat at constant pressure to that at constant 

volume ( 1.401  for air) and p0 is the static pressure (  101.3 kPa for air under normal am-

bient conditions). The adiabatic bulk modulus can also be expressed in terms of the gas con-

stant R ( 287 J·kg
-1

K
-1

 for air), the absolute temperature T, and the equilibrium density of 

the medium,  

0c p RT ρ = = , (1.2.2b) 

which shows that the equilibrium density of a gas can be written as 

0 .p RTρ =  (1.2.3) 

At 293.15 K = 20°C the speed of sound in air is 343 m/s. Under normal ambient conditions 

(20°C, 101.3 kPa) the density of air is 1.204 kgm
-3

. Note that the speed of sound of a gas de-

pends only on the temperature, not on the static pressure, whereas the adiabatic bulk modulus 

depends only on the static pressure; the equilibrium density depends on both quantities. 

 
Adiabatic compression 

 Because the process of sound is adiabatic, the fractional pressure variations in a small cavity driven by 

a vibrating piston, say, a pistonphone for calibrating microphones, equal the fractional density variations multi-

plied by the ratio of specific heats  . The physical explanation for the ‘additional’ pressure is that the pressure 

increase/decrease caused by the reduced/expanded volume of the cavity is accompanied by an increase/decrease 

of the temperature, which increases/reduces the pressure even further. The fractional variations in the density are 

of course identical with the fractional change of the volume (except for the sign); therefore, 

0

.
p V

p V

ρ ρ
Δ Δ= = −  

In section 1.4 we shall derive a relation between the volume velocity (= the volume displacement VΔ  per unit 

of time) and the resulting sound pressure. 

 

Figure 1.2.3 A small cavity driven by a vibrating piston. 

                                                 

 
4
 The left-hand side of eq. (1.2.1) is the Laplacian of the sound pressure, that is, the divergence of the 

gradient. A negative value of this quantity at a certain point implies that the gradient converges towards the 

point, indicating a high local value. The wave equation states that this high local pressure tends to decrease.  
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 The linearity of eq. (1.2.1) is due to the absence of higher-order terms in p in combi-

nation with the fact that 22 x∂∂ and 22 t∂∂ are linear operators.
5
 This is an extremely impor-

tant property. It implies that a sinusoidal source will generate a sound field in which the pres-

sure at all positions varies sinusoidally. It also implies linear superposition: sound waves do 

not interact, they simply pass through each other (see figure 1.2.5).
6
 

 The diversity of possible sound fields is of course enormous, which leads to the con-

clusion that we must supplement eq. (1.2.1) with some additional information about the 

sources that generate the sound field, surfaces that reflect or absorb sound, objects that scatter 

sound, etc. This information is known as the boundary conditions. The boundary conditions 

are often expressed in terms of the particle velocity. For example, the normal component of 

the particle velocity u is zero on a rigid surface. Therefore we need an additional equation 

that relates the particle velocity to the sound pressure. This relation is known as Euler’s equa-

tion of motion, 

,p
t

ρ ∂ +  =∂
u

0  (1.2.4) 

which is simply Newton’s second law of motion for a fluid. The operator   is the gradient 

(the spatial derivative ( zyx ∂∂∂∂∂∂  , , )). Note that the particle velocity is a vector, unlike 

the sound pressure, which is a scalar.   

 
Sound in liquids 

 The speed of sound is much higher in liquids than in gases. For example, the speed of sound in water is 

about 1500 ms-1. The density of liquids is also much higher; the density of water is about 1000 kgm-3. Both the 

density and the speed of sound depend on the static pressure and the temperature, and there are no simple gen-

eral relations corresponding to eqs. (1.2.2b) and (1.2.3).  

 

1.2.1 Plane sound waves 

 The plane wave is a central concept in acoustics. Plane waves are waves in which any 

acoustic variable at a given time is a constant on any plane perpendicular to the direction of 

propagation. Such waves can propagate in a duct. In a limited area at a distance far from a 

source of sound in free space the curvature of the spherical wavefronts is negligible and the 

waves can be regarded as locally plane. 

 

 
Figure 1.2.4 The sound pressure in a plane wave of arbitrary waveform at two different instants of time. 

                                                 

 
5
 This follows from the fact that 2 2 2 2 2 2

1 2 1 2( ) .p p t p t p t∂ + ∂ = ∂ ∂ + ∂ ∂  

 
6
 At very high sound pressure levels, say at levels in excess of 140 dB, the linear approximation is no 

longer adequate. This complicates the analysis enormously. Fortunately, we can safely assume linearity under 

practically all circumstances encountered in daily life. 
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 The plane wave is a solution to the one-dimensional wave equation, 

,
1

2

2

22

2

t

p

cx

p

∂
∂=∂

∂
 (1.2.5) 

cf. eq. (1.2.1). It is easy to show that the expression 

),()( 21 xctfxctfp ++−=  (1.2.6) 

where f1 and f2 are arbitrary functions, is a solution to eq. (1.2.5), and it can be shown this is 

the general solution. Since the argument of f1 is constant if x increases as ct it follows that the 

first term of this expression represents a wave that propagates undistorted and unattenuated in 

the positive x-direction with constant speed, c, whereas the second term represents a similar 

wave travelling in the opposite direction. See figures 1.2.4 and 1.2.5. 

 
 

Figure 1.2.5 Two plane waves travelling in opposite directions are passing through each other. 

 

 The special case of a harmonic plane progressive wave is of great importance. Har-

monic waves are generated by sinusoidal sources, for example a loudspeaker driven with a 

pure tone. A harmonic plane wave propagating in the x-direction can be written 

),sin()(sin 11 ϕωϕω +−=⎟⎠
⎞⎜⎝

⎛ +−= kxtpxct
c

pp  (1.2.7) 

where 2πfω =  is the angular (or radian) frequency and ck ω=  is the (angular) wavenum-

ber. The quantity p1 is known as the amplitude of the wave, and φ is a phase angle (the arbi-

trary value of the phase angle of the wave at the origin of the coordinate system at t = 0). At 

any position in this sound field the sound pressure varies sinusoidally with the angular fre-

quency ω, and at any fixed time the sound pressure varies sinusoidally with x with the spatial 

period 

2π 2π
.

c c

f k
λ ω= = =  (1.2.8) 

The quantity λ is the wavelength, which is defined as the distance travelled by the wave in 

one cycle. Note that the wavelength is inversely proportional to the frequency. At 1000 Hz 
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the wavelength in air is about 34 cm. In rough numbers the audible frequency range goes 

from 20 Hz to 20 kHz, which leads to the conclusion that acousticians are faced with wave-

lengths (in air) in the range from 17 m at the lowest audible frequency to 17 mm at the high-

est audible frequency. Since the efficiency of a radiator of sound or the effect of an obstacle 

on the sound field depends very much on its size expressed in terms of the acoustic wave-

length, it can be realised that the wide frequency range is one of the challenges in acoustics. It 

simplifies the analysis enormously if the wavelength is very long or very short compared with 

typical dimensions. 

 

 
Figure 1.2.6 The sound pressure in a plane harmonic wave at two different instants of time. 

 

Sound fields are often studied frequency by frequency. As already mentioned, linear-

ity implies that a sinusoidal source with the frequency ω will generate a sound field that var-

ies harmonically with this frequency at all positions.
7
 Since the frequency is given, all that 

remains to be determined is the amplitude and phase at all positions. This leads to the intro-

duction of the complex exponential representation, where the sound pressure is written as a 

complex function of the position multiplied with a complex exponential. The former function 

takes account of the amplitude and phase, and the latter describes the time dependence. Thus 

at any given position the sound pressure can be written as a complex function of the form
8
 

)j(jjj eeeeˆ
ϕωωϕω +=== ttt AAAp  (1.2.9) 

(where φ is the phase of the complex amplitude A), and the real, physical, time-varying sound 

pressure is the real part of the complex pressure, 

{ } { }j( )ˆRe Re e cos( ).tp p A A tω ϕ ω ϕ+= = = +  (1.2.10) 

 Since the entire sound field varies as e
jωt

, the operator t∂∂  can be replaced by jω 

(because the derivative of e
jωt

 with respect to time is jωe
jωt

),
9
 and the operator 22 t∂∂  can be 

replaced by -ω2
. It follows that Euler’s equation of motion can now be written 

,ˆˆj 0u =+ pωρ  (1.2.11) 

and the wave equation can be simplified to 

                                                 

 
7
 If the source emitted any other signal than a sinusoidal the waveform would in the general case 

change with the position in the sound field, because the various frequency components would change amplitude 

and phase relative to each other. This explains the usefulness of harmonic analysis. 

 
8
 Throughout this note complex variables representing harmonic signals are indicated by carets. 

 
9
 The sign of the argument of the exponential is just a convention. The ejωt convention is common in 

electrical engineering, in audio and in related areas of acoustics. The alternative convention e-jωt is favoured by 

mathematicians, physicists and acousticians concerned with outdoor sound propagation. With the alternative 

sign convention t∂ ∂ should obviously be replaced by -jω. Mathematicians and physicists also tend to prefer the 

symbol ‘i’ rather than ‘j’ for the imaginary unit. 
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which is known as the Helmholtz equation. See the Appendix (section 1.9) for further details 

about complex representation of harmonic signals. We note that the use of complex notation 

is mathematically very convenient, which will become apparent later. 

 Written with complex notation the equation for a plane wave that propagates in the x-

direction becomes 

.eˆ
)j(

i

kxtpp −= ω  (1.2.13) 

Equation (1.2.11) shows that the particle velocity is proportional to the gradient of the pres-

sure. It follows that the particle velocity in the plane propagating wave given by eq. (1.2.13) 

is 

.
ˆ

ee
ˆ

j

1
ˆ

)j(i)j(

i
c

p

c

p
p

k

x

p
u kxtkxt

x ρρωρωρ ωω ===∂
∂−= −−  (1.2.14) 

Thus the sound pressure and the particle velocity are in phase in a plane propagating wave 

(see also figure 1.2.10), and the ratio of the sound pressure to the particle velocity is ρc, the 

characteristic impedance of the medium. As the name implies, this quantity describes an im-

portant acoustic property of the fluid, as will become apparent later. The characteristic im-

pedance of air at 20°C and 101.3 kPa is about 413 kg·m
-2

s
-1

.  

 
Figure 1.2.7 A semi-infinite tube driven by a piston. 

 
Example 1.2.1 

 An semi-infinite tube is driven by a piston with the vibrational velocity je tU ω  as shown in figure 1.2.7. 

Because the tube is infinite there is no reflected wave, so the sound field can be written 

j( ) j( )i

i
ˆ ˆ( ) e , ( ) e .t kx t kx

x

p
p x p u x

c

ω ωρ− −= =  

The boundary condition at the piston implies that the particle velocity equals the velocity of the piston: 

j jiˆ (0) e et t

x

p
u U

c

ω ωρ= = . 

It follows that the sound pressure generated by the piston is  

j( )ˆ ( ) e .t kxp x U c ωρ −=  

  

The general solution to the one-dimensional Helmholtz equation is 

j( ) j( )

i r
ˆ e e ,t kx t kxp p pω ω− += +  (1.2.15) 
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which can be identified as the sum of a wave that travels in the positive x-direction and a 

wave that travels in the opposite direction (cf. eq. (1.2.6)). The corresponding expression for 

the particle velocity becomes, from eq. (1.2.11), 

.ee

ee
ˆ

j

1
ˆ

)j(r)j(i

)j(

r

)j(

i

kxtkxt

kxtkxt

x

c

p

c

p

p
k

p
k

x

p
u

+−

+−

−=
−=∂

∂−=
ωω

ωω

ρρ
ωρωρωρ

 (1.2.16) 

It can be seen that whereas cup x ρˆˆ =  in a plane wave that propagates in the positive x-

direction, the sign is the opposite, that is, cup x ρˆˆ −= , in a plane wave that propagates in the 

negative x-direction. The reason for the change in the sign is that the particle velocity is a 

vector, unlike the sound pressure, so xû  is a vector component. It is also worth noting that the 

general relation between the sound pressure and the particle velocity in this interference field 

is far more complicated than in a plane propagating wave. 

 

 
Figure 1.2.8 Instantaneous sound pressure in a wave that is reflected from a rigid surface at different instants of 

time. (Adapted from ref. [2].) 

 

 A plane wave that impinges on a plane rigid surface perpendicular to the direction of 

propagation will be reflected. This phenomenon is illustrated in figure 1.2.8, which shows 

how an incident transient disturbance is reflected. Note that the normal component of the 

gradient of the pressure is identically zero on the surface for all values of t. This is a conse-

quence of the fact that the boundary condition at the surface implies that the particle velocity 

must equal zero here, cf. eq. (1.2.4).  

 However, it is easier to analyse the phenomenon assuming harmonic waves. In this 

case the sound field is given by the general expressions (1.2.15) and (1.2.16), and our task is 

to determine the relation between pi and pr from the boundary condition at the surface, say at 

x = 0. As mentioned, the rigid surface implies that the particle velocity must be zero here, 

which with eq. (1.2.16) leads to the conclusion that pi = pr , so the reflected wave has the 

same amplitude as the incident wave. Equation (1.2.15) now becomes 

 ( ) ( ) ,ecos2eeeeeˆ
j

i

jjj

i

)j()j(

i

ttkxkxkxtkxt kxpppp ωωωω =+=+= −+−  (1.2.17) 

 

and eq. (1.2.16) becomes 
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p
u ωρ−=  (1.2.18) 

 

Note that the amplitude of the sound pressure is doubled on the surface (cf. figure 

1.2.8). Note also the nodal
10

 planes where the sound pressure is zero at x = - λ/4, x = - 3λ/4, 

etc., and the planes where the particle velocity is zero at x = - λ/2, x = - λ, etc. The interfer-

ence of the two plane waves travelling in opposite directions has produced a standing wave 

pattern, shown in figure 1.2.9.  

The physical explanation of the fact that the sound pressure is identically zero at a dis-

tance of a quarter of a wavelength from the reflecting plane is that the incident wave must 

travel a distance of half a wavelength before it returns to the same point; accordingly the in-

cident and reflected waves are in antiphase (that is, 180° out of phase), and since they have 

the same amplitude they cancel each other. This phenomenon is called destructive interfer-

ence. At a distance of half a wavelength from the reflecting plane the incident wave must 

travel one wavelength before it returns to the same point. Accordingly, the two waves are in 

phase and therefore the sound pressure is doubled here (constructive interference). The corre-

sponding pattern for the particle velocity is different because the particle velocity is a vector. 

Another interesting observation from eqs. (1.2.17) and (1.2.18) is that the resulting 

sound pressure and particle velocity signals as functions of time at any position are 90° out of 

phase (since 
( )j π 2jje e

tt ωω += ). Otherwise expressed, if the sound pressure as a function of time 

is a cosine then the particle velocity is a sine. As we shall see later this indicates that there is 

no net flow of sound energy towards the rigid surface. See also figure 1.2.10. 

 

 
Figure 1.2.9 Standing wave pattern caused by reflection from a rigid surface at x = 0; amplitudes of the sound 

pressure and the particle velocity.  

 
Example 1.2.2 

 The standing wave phenomenon can be observed in a tube terminated by a rigid cap. When the length 

of the tube, l, equals an odd-numbered multiple of a quarter of a wavelength the sound pressure is zero at the 

input, which means that it would take very little force to drive a piston here. This is an example of an acoustic 

resonance. In this case it occurs at the frequency 

0 ,
4

c
f

l
=  

                                                 

 
10

 A node on, say, a vibrating string is a point that does not move, and an antinode is a point with 

maximum displacement. By analogy, points in a standing wave at which the sound pressure is identically zero 

are called pressure nodes. In this case the pressure nodes coincide with velocity antinodes.   
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and at odd-numbered multiples of this frequency, 3f0, 5f0, 7f0, etc. Note that the resonances are harmonically 

related. This means that if some mechanism excites the tube the result will be a musical sound with the funda-

mental frequency f0 and overtones corresponding to odd-numbered harmonics.11  

Brass and woodwind instruments are based on standing waves in tubes. For example, closed organ 

pipes are tubes closed at one end and driven at the other, open end, and such pipes have only odd-numbered 

harmonics. See also example 1.4.4. 

 

 The ratio of pr to pi is the (complex) reflection factor R. The amplitude of this quantity 

describes how well the reflecting surface reflects sound. In the case of a rigid plane R = 1, as 

we have seen, which implies perfect reflection with no phase shift. However, in the general 

case of a more or less absorbing surface R will be complex and its magnitude less than unity 

(|R| ≤ 1), indicating partial reflection with a phase shift at the reflection plane. 

 If we introduce the reflection factor in eq. (1.2.15) it becomes 

( )j( ) j( )

i
ˆ e et kx t kxp p Rω ω− += + , (1.2.19) 

from which it can be seen that the amplitude of the sound pressure varies with the position in 

the sound field. When the two terms in the parenthesis are in phase the sound pressure ampli-

tude assumes its maximum value, 

( )max i 1p p R= + , (1.2.20a) 

and when they are in antiphase the sound pressure amplitude assumes the minimum value 

( )min i 1p p R= − . (1.2.20b) 

The ratio of pmax to pmin is called the standing wave ratio, 

max

min

1
.

1

Rp
s

p R

+= = −  (1.2.21) 

From eq. (1.2.21) it follows that 

,
1

1

+
−=

s

s
R  (1.2.22) 

which leads to the conclusion that it is possible to determine the acoustic properties of a ma-

terial by exposing it to normal sound incidence and measuring the standing wave ratio in the 

resulting interference field. See also chapter 1.5. 

 Figure 1.2.10 shows the instantaneous sound pressure and particle velocity at two dif-

ferent instants of time in a tube that is terminated by a material that does not reflect sound at 

all (case (a)), by a soft material that partly absorbs the incident sound wave (case (b)), and by 

a rigid material that gives perfect reflection (case (c)). 

                                                 

 
11

 A musical (or complex) tone is not a pure (sinusoidal) tone but a periodic signal, usually consisting 

of the fundamental and a number of its harmonics, also called partials. These pure tones occur at multiples of the 

fundamental frequency. The n’th harmonic (or partial) is also called the (n-1)’th overtone, and the fundamental 

is the first harmonic. The relative position of a tone on a musical scale is called the pitch [2]. The pitch of a mu-

sical tone essentially corresponds to its fundamental frequency, which is also the distance between two adjacent 

harmonic components. However, pitch is a subjective phenomenon and not completely equivalent to frequency. 

We tend to determine the pitch on the basis of the spacing between the harmonic components, and thus we can 

detect the pitch of a musical tone even if the fundamental is missing.  
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Figure 1.2.10 Spatial distributions of instantaneous sound pressure and particle velocity at two different in-

stants of time. (a) Case with no reflection (R  = 0); (b) case with partial reflection from a soft surface; (c) case 

with perfect reflection from a rigid surface (R = 1). (From ref. [3].) 

 
 
Sound transmission between fluids 

 When a sound wave in one fluid is incident on the boundary of another fluid, say, a sound wave in air 

is incident on the surface of water, it will be partly reflected and partly transmitted. For simplicity let us assume 

that a plane wave in fluid 1 strikes the surface of fluid 2 at normal incidence as shown in figure 1.2.11. Antici-

pating a reflected wave we can write 

j( ) j( )

1 i r
ˆ e et kx t kxp p pω ω− += +  

for fluid 1, and 

j( )

2 t
ˆ e t kxp p ω −=  



  12

for fluid 2. There are two boundary conditions at the interface: the sound pressure must be the same in fluid 1 
and in fluid 2 (otherwise there would be a net force), and the particle velocity must be the same in fluid 1 and in  

fluid 2 (otherwise the fluids would not remain in contact). It follows that 

i r tp p p+ =  and  ti r

1 1 2 2

.
pp p

c cρ ρ
− =  

Combining these equations gives  

r 2 2 1 1

i 2 2 1 1

,
p c c

R
p c c

ρ ρ
ρ ρ

−= = +  

which shows that the wave is almost fully reflected in phase ( 1R  ) if ρ2c2 >> ρ1c1, almost fully reflected in 

antiphase ( 1R − ) if ρ2c2 << ρ1c1, and not reflected at all if ρ2c2 = ρ1c1, irrespective of the individual properties 

of c1, c2, ρ1 and ρ2. 

 

 
Figure 1.2.11 Reflection and transmission of a plane wave incident on the interface between two fluids. 

 

 

 
 
Figure 1.2.12 Reflection of a pressure wave at the interface between a medium of high characteristic impedance 

and a medium of low characteristic impedance. (Adapted from ref. [2].) 
 

 
Figure 1.2.13 Standing wave pattern in a medium of high characteristic impedance caused by caused by reflec-

tion from a medium of low characteristic impedance; amplitudes of the sound pressure and the particle velocity.  
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Because of the significant difference between the characteristic impedances of air and water (the ratio is about 1: 

3600) a sound wave in air that strikes a surface of water at normal incidence is almost completely reflected, and 

so is a sound wave that strikes the air-water interface from the water, but in the latter case the phase of the re-

flected wave is reversed, as shown in figure 1.2.12. Compare figures 1.2.8 and 1.2.12, and figures 1.2.9 and 

1.2.13. 

 
1.2.2 Spherical sound waves 

 The wave equation can be expressed in other coordinate systems than the Cartesian. If 

sound is generated by a source in an environment without reflections (which is usually re-

ferred to as a free field) it will generally be more useful to express the wave equation in a 

spherical coordinate system (r, θ, φ). The resulting equation is more complicated than eq. 

(1.2.1). However, if the source under study is spherically symmetric there can be no angular 

dependence, and the equation becomes quite simple,
12

 

2 2

2 2 2

2 1
.

p p p

r r r c t

∂ ∂ ∂+ =∂ ∂ ∂  (1.2.23a) 

If we rewrite in the form 

,
)(1)(

2

2

22

2

t

rp

cr

rp

∂
∂=∂

∂
 (1.2.23b) 

it becomes apparent that this equation is identical in form with the one-dimensional wave 

equation, eq. (1.2.5), although p has been replaced by rp. (It is easy to get from eq. (1.2.23b) 

to eq. (1.2.23a); it is more difficult the other way.) It follows that the general solution to eq. 

(1.2.23) can be written 

),()( 21 rctfrctfrp ++−=  (1.2.24a) 
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 This can be seen as follows. Since the sound pressure depends only on r we have 

,
p p r

x r x

∂ ∂ ∂=∂ ∂ ∂  

which, with 

2 2 2 ,r x y z= + +  

becomes  

 .
p x p

x r r

∂ ∂=∂ ∂  

Similar considerations leads to the following expression for the second-order derivative, 

2 2 2 2 2

2 2 2 3

1 1 1 1 1
.

p p p p x p p x p x p
x

r r x r r r r r r r r r r rx r r r

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + = + = + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠  

Combining eq. (1.2.1) with this expression and the corresponding relations for y and z finally yields eq. 

(1.2.23a): 

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 3 2 2 2

3 2 1
.

p p p p x y z p x y z p p p p

r r r r rx y z r r r r c t

∂ ∂ ∂ ∂ + + ∂ + + ∂ ∂ ∂ ∂+ + = + − = + =∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂  
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that is 

( ),)()(
1

21 rctfrctf
r

p ++−=  (1.2.24b) 

where f1 and f2 are arbitrary functions. The first term is wave that travels outwards, away 

from the source (cf. the first term of eq. (1.2.6)). Note that the shape of the wave is preserved. 

However, the sound pressure is seen to decrease in inverse proportion to the distance. This is 

the inverse distance law.
13

 The second term represents a converging wave, that is, a spherical 

wave travelling inwards. In principle such a wave could be generated by a reflecting spherical 

surface centred at the source, but that is a rare phenomenon indeed. Accordingly we will ig-

nore the second term when we study sound radiation in chapter 1.6. 

  

 
Figure 1.2.14 (a) Measurement far from a spherical source in free space; (b) measurement close to a spherical 

source. ––, Instantaneous sound pressure; - - -, instantaneous particle velocity multiplied by Dc. (From ref. [4].) 

 
A harmonic spherical wave is a solution to the Helmholtz equation 

.0ˆ
)ˆ( 2

2

2 =+∂
∂

prk
r

pr
 (1.2.25) 

Expressed in the complex notation the diverging wave can be written 

.
e

ˆ

)j(

r
Ap

krt −= ω
 (1.2.26) 
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 The inverse distance law is also known as the inverse square law because the sound intensity is in-

versely proportional to the square of the distance to the source. See chapters 1.5 and 1.6. 
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The particle velocity component in the radial direction can be calculated from eq. (1.2.11), 

 

.
j

1
1

ˆ

j

1
1

eˆ

j

1
ˆ

)j(

⎟⎟⎠
⎞⎜⎜⎝

⎛ +=⎟⎟⎠
⎞⎜⎜⎝

⎛ +=∂
∂−= −

krc

p

krrc

A

r

p
u

krt

r ρρωρ
ω

 (1.2.27) 

Because of the spherical symmetry there are no components in the other directions. Note that 

far
14

 from the source the sound pressure and the particle velocity are in phase and their ratio 

equals the characteristic impedance of the medium, just as in a plane wave. On the other 

hand, when kr << 1 the particle velocity is larger than cp ρˆ and the sound pressure and the 

particle velocity are almost in quadrature, that is, 90° out of phase. These are near field char-

acteristics, and such a sound field is also known as a reactive field. See figure 1.2.14. 

 
 
1.3 ACOUSTIC MEASUREMENTS 

  

 The most important measure of sound is the rms sound pressure,
15

 defined as 

½

2 2

rms
0

1
( ) lim ( )d .

T

T
p p t p t t

T∞
⎛ ⎞= = ⎜ ⎟⎝ ⎠∫  (1.3.1) 

However, as we shall see, a frequency weighting filter
16

 is usually applied to the signal before 

the rms value is determined. Quite often such a single value does not give sufficient informa-

tion about the nature of the sound, and therefore the rms sound pressure is determined in fre-

quency bands. The resulting sound pressures are practically always compressed logarithmi-

cally and presented in decibels. 

 
Example 1.3.1 

 The fact that sin2ωt = ½ (1 - cos2ωt) and thus has a time average of ½ leads to the conclusion that the 

rms value of a sinusoidal signal with the amplitude A is / 2A . 

 

1.3.1 Frequency analysis 

 Single frequency sound is useful for analysing acoustic phenomena, but most sounds 

encountered in practice have ‘broadband’ characteristics, which means that they cover a wide 

frequency range. If the sound is more or less steady, it will practically always be more useful 

to analyse it in the frequency domain than to look at the sound pressure as a function of time. 

 Frequency (or spectral) analysis of a signal involves decomposing the signal into its 

spectral components. This analysis can be carried out by means of digital analysers that em-

ploy the discrete Fourier transform (‘FFT analysers’). This topic is outside the scope of this 

note, but see, e.g., refs. [5, 6]. Alternatively, the signal can be passed through a number of 

                                                 

 
14

 In acoustics, dimensions are measured in terms of the wavelength, so that ‘far from’ means that r >> 

λ  (or kr >> 1), just as ‘near’ means that r << λ (or kr << 1). The dimensionless quantity kr is known as the 

Helmholtz number. 

 
15

 Root mean square value, usually abbreviated rms. This is the square root of the mean square value, 

which is the time average of the squared signal. 

 
16

 A filter is a device that modifies a signal by attenuating some of its frequency components. 
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contiguous analogue or digital bandpass filters
17

 with different centre frequencies, a ‘filter 

bank.’ The filters can have the same bandwidth or they can have constant relative bandwidth, 

which means that the bandwidth is a certain percentage of the centre frequency. Constant 

relative bandwidth corresponds to uniform resolution on a logarithmic frequency scale. Such 

a scale is in much better agreement with the subjective pitch of musical sounds than a linear 

scale, and therefore frequencies are often represented on a logarithmic scale in acoustics, and 

frequency analysis is often carried out with constant percentage filters. The most common 

filters in acoustics are octave band filters and one-third octave band filters. 

 

 
Figure 1.3.1 The keyboard of a small piano. The white keys from C to B correspond to the seven notes of the C 

major scale. (Adapted from ref. [7].) 

 

 An octave
18

 is a frequency ratio of 2:1, a fundamental unit in musical scales. Accord-

ingly, the lower limiting frequency of an octave band is half the upper frequency limit, and 

the centre frequency is the geometric mean, that is, 

,     ,2     ,2 ulcc

½

u

½

cl fffffff ===  (1.3.2a, 1.3.2b, 1.3.2c) 

where fc is the centre frequency. In a similar manner a one-third octave
19

 band is a band for 

which fu = 2
⅓
 fl , and 

,     ,2     ,2 ulccucl
6

1
6

1

fffffff ===  (1.3.3a, 1.3.3b, 1.3.3c) 

 Since 10 32 1024 10=    it follows that 10 32 10  and 1 3 1 102 10 , that is, ten one-third 

octaves very nearly make a decade, and a one-third octave is almost identical with one tenth 

of a decade. Table 1.3.1 gives the nominal centre frequencies of standardised octave and one-

third octave band filters.
20

 As mentioned earlier, the human ear may respond to frequencies in 

the range from 20 Hz to 20 kHz, that is, a range of three decades, ten octaves or thirty one-

third octaves. 
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 An ideal bandpass filter would allow frequency components in the passband to pass unattenuated, 

but would completely remove frequency components outside the passband. Real filters have, of course, a certain 

passband ripple and a finite stopband attenuation. 

 
18

 Musical tones an octave apart sound very similar. The diatonic scale contains seven notes per octave 

corresponding to the white keys on a piano keyboard; see figure 1.3.1. Thus an octave spans eight notes, say, 

from C to C'; hence the name octave (from Latin octo: eight).  

 
19

 A semitone is one twelfth of an octave on the equally tempered scale (a frequency ratio of 21/12:1). 

Since 2⅓ = 24/12 it can be seen that a one-third octave is identical with four semitones or a major third (e.g. from 

C to E, cf. figure 1.3.1). Accordingly, one-third octave band filters are called Terzfilters in German. 

 
20

 Round numbers are convenient. The standardised nominal centre frequencies are based on the fact 

that the series 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8, 10 is in reasonable agreement with 10n/10, with n = 1, 2,....., 10. 
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Table 1.3.1 Standardised one-third octave and octave (bold characters) band centre frequencies (in hertz). 

 

20   25   31.5   40   50   63   80   100   125   160   200   250   315   400   500   630   800  1000 

1250   1600   2000   2500   3150   4000   5000   6300   8000   10000   12500   16000   20000 

 

 An important property of the mean square value of a signal is that it can be partitioned 

into frequency bands. This means that if we analyse a signal in, say, one-third octave bands, 

the sum of the mean square values of the filtered signals equals the mean square value of the 

unfiltered signal. The reason is that products of different frequency components average to 

zero, so that all cross terms vanish; the different frequency components are uncorrelated sig-

nals. This can be illustrated by analysing a sum of two pure tones with different frequencies, 

.2/)(

sinsin2sinsin)sinsin(

22

212

22

1

222

21

BA

ttABtBtAtBtA

+=
++=+ ωωωωωω

 (1.3.4) 

Note that the mean square values of the two signals are added unless ω1 = ω2. The validity of 

this rule is not restricted to pure tones of different frequency; the mean square value of any 

stationary signal equals the sum of mean square values of its frequency components, which 

can be determined with a parallel bank of contiguous filters. Thus 

2 2

rms rms, ,i

i

p p= ∑  (1.3.5) 

where prms,i is the rms value of the output of the i’th filter. Equation (1.3.5) is known as 

Parseval’s formula. 
 
Random noise 

 Many generators of sound produce noise rather than pure tones. Whereas pure tones and other periodic 

signals are deterministic, noise is a stochastic or random phenomenon. Stationary noise is a stochastic signal 

with statistical properties that do not change with time. 

 White noise is stationary noise with a flat power spectral density, that is, constant mean square value 

per hertz. The term white noise is an analogy to white light. When white noise is passed through a bandpass 

filter, the mean square of the output signal is proportional to the bandwidth of the filter. It follows that when 

white noise is analysed with constant percentage filters, the mean square of the output is proportional to the cen-

tre frequency of the filter. For example, if white noise is analysed with a bank of octave band filters, the mean 

square values of the output signals of two adjacent filters differ by a factor of two. 

 Pink noise is stationary noise with constant mean square value in bands with constant relative width, 

e.g., octave bands. Thus compared with white noise low frequencies are emphasised; hence the name pink noise, 

which is an analogy to an optical phenomenon. It follows that the mean square value of a given pink noise sig-

nal in octave bands is three times larger than the mean square value of the noise in one-third octave bands. 

 

Example 1.3.2 

 The fact that noise, unlike periodic signals, has a finite power spectral density (mean square value per 

hertz) implies that one can detect a pure tone in noise irrespective of the signal-to-noise ratio by analysing with 

sufficiently fine spectral resolution: As the bandwidth is reduced, less and less noise passes through the filter, 

and the tone will emerge. Compared with filter bank analysers FFT analysers have the advantage that the spec-

tral resolution can be varied over a wide range [6]; therefore FFT analysers are particular suitable for detecting 

tones in noise. 

 

 When several independent sources of noise are present at the same time the mean 

square sound pressures generated by the individual sources are additive. This is due to the 
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fact that independent sources generate uncorrelated signals, that is, signals whose product av-

erage to zero; therefore the cross terms vanish: 

.)()()()(2)()())()(( 2

2

2

121

2

2

2

1

2

21 tptptptptptptptp +=++=+  (1.3.6) 

It follows that 

∑=
i

ipp .2

rms,

2

totrms,  (1.3.7) 

Note the similarity between eqs. (1.3.5) and (1.3.7). It is of enormous practical importance 

that the mean square values of uncorrelated signals are additive, because signals generated by 

different mechanisms are invariably uncorrelated. Almost all signals that occur in real life are 

mutually uncorrelated. 

 
Example 1.3.3 

 Equation (1.3.7) leads to the conclusion that the mean square pressure generated by a crowd of noisy 

people in a room is proportional to the number of people. Thus the rms value of the sound pressure in the room 

is proportional to the square root of the number of people. 

 
Example 1.3.4 

 Consider the case where the rms sound pressure generated by a source of noise is to be measured in the 

presence of background noise that cannot be turned off. It follows from eq. (1.3.7) that it is possible to correct 

the measurement for the influence of the stationary background noise; one simply subtracts the mean square 

value of the background noise from the total mean square pressure. For this to work in practice the background 

noise must not be too strong, though, and it is absolutely necessary that it is completely stationary. 

 

1.3.2 Levels and decibels 

The human auditory system can cope with sound pressure variations over a range of 

more than a million times. Because of this wide range, the sound pressure and other acoustic 

quantities are usually measured on a logarithmic scale. An additional reason is that the sub-

jective impression of how loud noise sounds correlates much better with a logarithmic meas-

ure of the sound pressure than with the sound pressure itself. The unit is the decibel,
21

 abbre-

viated dB, which is a relative measure, requiring a reference quantity. The results are called 

levels. The sound pressure level (sometimes abbreviated SPL) is defined as 

,log20log10
ref

rms
102

ref

2

rms
10

p

p

p

p
Lp ==  (1.3.8) 

where pref is the reference sound pressure, and log10 is the base 10 logarithm, henceforth writ-

ten log. The reference sound pressure is 20 μPa for sound in air, corresponding roughly to the 

lowest audible sound at 1 kHz.
22

 Some typical sound pressure levels are given in figure 1.3.2. 
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 As the name implies, the decibel is one tenth of a bel. However, the bel is rarely used today. The use 

of decibels rather than bels is probably due to the fact that most sound pressure levels encountered in practice 

take values between 10 and 120 when measured in decibels, as can be seen in figure 1.3.2. Another reason might 

be that to be audible, the change of the level of a given (broadband) sound must be of the order of one decibel.  

22
 For sound in other fluids than atmospheric air (water, for example) the reference sound pressure is 1 

:Pa. To avoid possible confusion it may be advisable to state the reference sound pressure explicitly, e.g., ‘the 

sound pressure level is 77 dB re 20 μPa.’ 
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Figure 1.3.2 Typical sound pressure levels. (Source: Brüel & Kjær.) 
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The fact that the mean square sound pressures of independent sources are additive (cf. 

eq. (1.3.7)) leads to the conclusion that the levels of such sources are combined as follows: 

,0.1

,tot 10log 10 .p iL

p

i

L
⎛ ⎞= ⎜ ⎟⎝ ⎠∑  (1.3.9) 

Another consequence of eq. (1.3.7) is that one can correct a measurement of the sound 

pressure level generated by a source for the influence of steady background noise as follows: ( ),tot ,background0.1 0.1

,source 10log 10 10p pL L

pL = − . (1.3.10) 

This corresponds to subtracting the mean square sound pressure of the background noise 

from the total mean square sound pressure as described in example 1.3.5. However, since all 

measurements are subject to random errors, the result of the correction will be reliable only if 

the background level is at least, say, 3 dB below the total sound pressure level. If the back-

ground noise is more than 10 dB below the total level the correction is less than 0.5 dB. 

 
Example 1.3.5 

 Expressed in terms of sound pressure levels the inverse distance law states that the level decreases by 6 

dB when the distance to the source is doubled. 

 
Example 1.3.6 

 When each of two independent sources in the absence of the other generates a sound pressure level of 

70 dB at a certain point, the resulting sound pressure level is 73 dB (not 140 dB!), because 10log 2 3 . If one 

source creates a sound pressure level of 65 dB and the other a sound pressure level of 59 dB, the total level is 
6.5 5.910log(10 10 ) 66 dB+  . 

 
Example 1.3.7 

 Say the task is to determine the sound pressure level generated by a source in background noise with a 

level of 59 dB. If the total sound pressure level is 66 dB, it follows from eq. (1.3.10) that the source would have 

produced a sound pressure level of 6.6 5.910 log(10 10 ) 65 dB−   in the absence of the background noise. 

 

Example 1.3.8 

 When two sinusoidal sources emit pure tones of the same frequency they create an interference field, 

and depending on the phase difference the total sound pressure amplitude at a given position will assume a value 

between the sum of the two amplitudes and the difference: 

A Bj jj je e e e .t tA B A B A B A B A Bϕ ϕω ω− ≤ + = + = + ≤ +  

For example, if two pure tone sources of the same frequency each generates a sound pressure level of 70 dB in 

the absence of the other source then the total sound pressure level can be anywhere between 76 dB (constructive 

interference) and - ∞ dB (destructive interference). Note that eqs. (1.3.7) and (1.3.9) do not apply in this case 

because the signals are not uncorrelated. See also figure 1.9.2 in the Appendix. 

 

 Other first-order acoustic quantities, for example the particle velocity, are also often 

measured on a logarithmic scale. The reference velocity is 1 nm/s = 10
-9

 m/s.
23

 This reference 

is also used in measurements of the vibratory velocities of vibrating structures. 

 The acoustic second-order quantities sound intensity and sound power, defined in 

chapter 1.5, are also measured on a logarithmic scale. The sound intensity level is 

                                                 

 
23

 The prefix n (for ‘nano’) represents a factor of 10-9. 
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,log10
refI

I
LI =  (1.3.11) 

where I is the intensity and Iref = 1 pWm
-2

 = 10
-12

 Wm
-2

,
24

 and the sound power level is  

,log10
ref

a

P

P
LW =  (1.3.12) 

where Pa is the sound power and Pref = 1 pW. Note than levels of linear quantities (pressure, 

particle velocity) are defined as twenty times the logarithm of the ratio of the rms value to a 

reference value, whereas levels of second-order (quadratic) quantities are defined as ten times 

the logarithm, in agreement with the fact that if the linear quantities are doubled then quanti-

ties of second order are quadrupled. 
 
Example 1.3.9 

 It follows from the constant spectral density of white noise that when such a signal is analysed in one-

third octave bands, the level increases 1 dB from one band to the next 1 3(10 log(2 ) 1dB) . 

 

1.3.3 Noise measurement techniques and instrumentation 

 A sound level meter is an instrument designed to measure sound pressure levels. To-

day such instruments can be anything from fairly simple devices with analogue filters and 

detectors and a moving coil meter to advanced digital analysers. Figure 1.3.3 shows a block 

diagram of a simple sound level meter. The microphone converts the sound pressure to an 

electrical signal, which is amplified and passes through various filters. After this the signal is 

squared and averaged with a detector, and the result is finally converted to decibels and 

shown on a display. In the following a very brief description of such an instrument will be 

given; see e.g. refs. [8, 9] for further details. 

 The most commonly used microphones for this purpose are condenser microphones, 

which are more stable and accurate than other types. The diaphragm of a condenser micro-

phone is a very thin, highly tensioned foil. Inside the housing of the microphone cartridge is 

the other part of the capacitor, the back plate, placed very close to the diaphragm (see figure 

1.3.4). The capacitor is electrically charged, either by an external voltage on the back plate or 

(in case of prepolarised electret microphones) by properties of the diaphragm or the back 

plate. When the diaphragm moves in response to the sound pressure, the capacitance changes, 

and this produces an electrical voltage proportional to the instantaneous sound pressure.  

 
Figure 1.3.3 A sound level meter. (From ref. [10].) 
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 The prefix p (for ‘pico’) represents a factor of 10-12. 
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Figure 1.3.4 A condenser microphone. (From ref. [11].) 

 

 
 

Figure 1.3.5 The ‘free-field correction’ of a typical measurement microphone for sound coming from various 

directions. The free-field correction is the fractional increase of the sound pressure (usually expressed in dB) 

caused by the presence of the microphone in the sound field. (From ref. [11].) 

 

 
Figure 1.3.6 Free-field response of a microphone of the ‘free-field’ type at axial incidence. (From ref. [11].) 

 

The microphone should be as small as possible so as not to disturb the sound field. 

However, this is in conflict with the requirement of a high sensitivity and a low inherent 

noise level, and typical measurement microphones are ‘½-inch’ microphones with a diameter 
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of about 13 mm. At low frequencies, say below 1 kHz, such a microphone is much smaller 

than the wavelength and does not disturb the sound field appreciably. In this frequency range 

the microphone is omnidirectional as of course it should be since the sound pressure is a sca-

lar and has no direction. However, from a few kilohertz and upwards the size of the micro-

phone is no longer negligible compared with the wavelength, and therefore it is no longer 

omnidirectional, which means that its response varies with the nature of the sound field; see 

figure 1.3.5. 

 One can design condenser microphones to have a flat response in as wide a frequency 

range as possible under specified sound field conditions. For example, ‘free-field’ micro-

phones are designed to have a flat response for axial incidence (see figure 1.3.6), and such 

microphones should therefore be pointed towards the source. ‘Random-incidence’ micro-

phones are designed for measurements in a diffuse sound field where sound is arriving from 

all directions, and ‘pressure’ microphones are intended for measurements in small cavities. 

The sensitivity of the human auditory system varies significantly with the frequency 

in a way that changes with the level. In particular the human ear is, at low levels, much less 

sensitive to low frequencies than to medium frequencies. This is the background for the stan-

dardised frequency weighting filters shown in figure 1.3.7. The original intention was to 

simulate a human ear at various levels, but it has long ago been realised that the human audi-

tory system is far more complicated than implied by such simple weighting curves, and B- 

and D-weighting filters are little used today. On the other hand the A-weighted sound pres-

sure level is the most widely used single-value measure of sound, because the A-weighted 

sound pressure level correlates in general much better with the subjective effect of noise than 

measurements of the sound pressure level with a flat frequency response. C-weighting, which 

is essentially flat in the audible frequency range, is sometimes used in combination with A-

weighting, because a large difference between the A-weighted level and the C-weighted level 

is a clear indication of a prominent content of low frequency noise. The results of measure-

ments of the A- and C-weighted sound pressure level are denoted LA and LC respectively, and 

the unit is dB.
25

 If no weighting filter is applied, the level is sometimes denoted LZ. 

 

 
Figure 1.3.7 Standardised frequency weighting curves. (From ref. [8].) 
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 In practice the unit is often written dB (A) and dB (C), respectively.  
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Table 1.3.2 The response of standard A- and C-weighting filters in one-third octave bands. 

Centre frequency (Hz) A-weighting (dB) C-weighting (dB) 

8 

10 

12.5 

16 

20 

25 

31.5 

40 

50 

63 

80 

100 

125 

160 

200 

250 

315 

400 

500 

630 

800 

1000 

1250 

1600 

2000 

2500 

3150 

4000 

5000 

6300 

8000 

10000 

12500 

16000 

20000 

-77.8 

-70.4 

-63.4 

-56.7 

-50.5 

-44.7 

-39.4 

-34.6 

-30.2 

-26.2 

-22.5 

-19.1 

-16.1 

-13.4 

-10.9 

-8.6 

-6.6 

-4.8 

-3.2 

-1.9 

-0.8 

0.0 

0.6 

1.0 

1.2 

1.3 

1.2 

1.0 

0.5 

-0.1 

-1.1 

-2.5 

-4.3 

-6.6 

-9.3 

-20.0 

-14.3 

-11.2 

-8.5 

-6.2 

-4.4 

-3.0 

-2.0 

-1.3 

-0.8 

-0.5 

-0.3 

-0.2 

-0.1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

-0.1 

-0.2 

-0.3 

-0.5 

-0.8 

-1.3 

-2.0 

-3.0 

-4.4 

-6.2 

-8.5 

-11.2 

 In the measurement instrument the frequency weighting filter is followed by a squar-

ing device, a lowpass filter that smooths out the instantaneous fluctuations, and a logarithmic 

converter. The lowpass filter corresponds to applying a time weighting function. The most 

common time weighting in sound level meters is exponential, which implies that the squared 

signal is smoothed with a decaying exponential so that recent data are given more weight 

than older data: 

2 ( ) / 2

ref

1
( ) 10log ( )e d .

t
t u

pL t p u u pττ − −
−∞

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫  (1.3.13) 

Two values of the time constant τ are standardised: S (for ‘slow’) corresponds to a time con-

stant of 1 s, and F (for ‘fast’) is exponential averaging with a time constant of 125 ms. 

  The alternative to exponential averaging is linear (or integrating) averaging, in which 

all the sound is weighted uniformly during the integration. The equivalent sound pressure 

level is defined as 
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2

1

2 2

eq ref

2 1

1
10log ( )d .

t

t
L p t t p

t t

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠∫  (1.3.14) 

 Measurements of random noise with a finite integration time are subject to random 

errors that depend on the bandwidth of the signal and on the integration time. It can be shown 

that the variance of the measurement result is inversely proportional to the product of the 

bandwidth and the integration time [6].
26

 

 As can be seen by comparing with eqs. (1.3.1) and (1.3.8), the equivalent sound pres-

sure level is just the sound pressure level corresponding to the rms sound pressure determined 

with a specified integration period. The A-weighted equivalent sound pressure level LAeq is 

the level corresponding to a similar time integral of the A-weighted instantaneous sound 

pressure. Sometimes the quantity is written LAeq,T where T is the integration time. 

 Whereas exponential averaging corresponds to a running average and thus gives a 

(smoothed) measure of the sound at any instant of time, the equivalent sound pressure level 

(with or without A-weighting) can be used for characterising the total effect of fluctuating 

noise, for example noise from road traffic. Typical values of T are 30 s for measurement of 

noise from technical installations, 8 h for noise in a working environment and 24 h for traffic 

noise. 

 Sometimes it is useful to analyse noise signals in one-third octave bands, cf. section 

1.3.1. From eq. (1.3.5) it can be seen that the total sound pressure level can be calculated 

from the levels in the individual one-third octave bands, Li, as follows: 

0.1

Z 10log 10 .iL

i

L
⎛ ⎞= ⎜ ⎟⎝ ⎠∑  (1.3.15) 

In a similar manner one can calculate the A-weighted sound pressure level from the one-third 

octave band values and the attenuation data given in table 1.3.2, 

,10log10
)(1.0

A ⎟⎠
⎞⎜⎝

⎛= ∑ +
i

KL iiL  (1.3.16) 

where Ki is the relative response of the A-weighting filter (in dB) in the i’th band, given in 

table 1.3.2.  

 
Example 1.3.10 

 A source gives rise to the following one-third octave band values of the sound pressure level at a cer-

tain point, 

Centre frequency (Hz) Sound pressure level (dB) 

315 

400 

500 

630 

800 

52 

68 

76 

71 

54 

                                                 

 
26

 In the literature reference is sometimes made to the equivalent integration time of exponential de-

tectors. This is two times the time constant (e.g. 250 ms for ‘F’), because a measurement of random noise with 

an exponential detector with a time constant of τ has the same statistical uncertainty as a measurement with lin-

ear averaging over a period of 2τ [9]. 
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and less than 50 dB in all the other bands. It follows that  

( )5.2 6.8 7.6 7.1 5.4

Z 10log 10 10 10 10 10 77.7 dB,L + + + +   

and 

( )(5.2 0.66) (6.8 0.48) (7.6 0.32) (7.1 0.19) (5.4 0.08)

A 10log 10 10 10 10 10 74.7 dB.L − − − − −+ + + +   

 

 Noise that changes its level in a regular manner is called intermittent noise. Such 

noise could for example be generated by machinery that operates in cycles. If the noise oc-

curs at several steady levels, the equivalent sound pressure level can be calculated from the 

formula 

0.1

eq, 10log 10 .iLi
T

i

t
L

T

⎛ ⎞= ⎜ ⎟⎝ ⎠∑  (1.3.17) 

This corresponds to adding the mean square values with a weighting that reflects the relative 

duration of each level. 

 
Example 1.3.11 

 The A-weighted sound pressure level at a given position in an industrial hall changes periodically be-

tween 84 dB in intervals of 15 minutes, 95 dB in intervals of 5 minutes and 71 dB in intervals of 20 minutes. 

From eq. (1.3.17) it follows that the equivalent sound pressure level over a working day is 

 8.4 9.5 7.1

Aeq

15 5 20
10log 10 10 10 87.0 dB.

40 40 40
L

⎛ ⎞= + +⎜ ⎟⎝ ⎠   

  

Most sound level meters have also a peak detector for determining the highest abso-

lute value of the instantaneous sound pressure (without filters and without time weighting), 

ppeak. The peak level is calculated from this value and eq. (1.3.8) in the usual manner, that is, 

 
peak

ref

20log .p

p
L

p
=  (1.3.18) 

 
Example 1.3.12    
 The crest factor of a signal is the ratio of its peak value to the rms value (sometimes expressed in dB). 

From example 3.1 it follows that the crest factor of a pure tone signal is 2  or 3 dB.   

 

 The sound exposure level (sometimes abbreviated SEL) is closely related to LAeq, but 

instead of dividing the time integral of the squared A-weighted instantaneous sound pressure 

by the actual integration time one divides by t0 = 1 s. Thus the sound exposure level is a 

measure of the total energy
27

 of the noise, normalised to 1 s: 

 

                                                 

 
27

 In signal analysis it is customary to use the term ‘energy’ in the sense of the integral of the square of 

a signal, without regard to its units. This should not be confused with the potential energy density of the sound 

field introduced in chapter 1.5.  
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2

1

2 2

AE A ref

0

1
10log ( )

t

t
L p t dt p

t

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫  (1.3.19) 

 

This quantity is used for measuring the total energy of a ‘noise event’ (say, a hammer blow or 

the take off of an aircraft), independently of its duration. Evidently the measurement interval 

should encompass the entire event. 

 
Example 1.3.13 

 It is clear from eqs. (1.3.14) and (1.3.19) that LAeq,T of a noise event of finite duration decreases with 

the logarithm of T if the T exceeds its duration: 

2 2

Aeq, A ref AE

0

1
10log ( )d 10log .T

T
L p t t p L

T t

∞
−∞

⎛ ⎞⎛ ⎞= = −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫  

Example 1.3.14    
 If n identical noise events each with a sound exposure level of LAE occur within a period of T (e.g., one 

working day) then the A-weighted equivalent sound level is 

Aeq, AE

0

10log 10log ,
T

T
L L n

t
= + −  

because the integrals of the squared signals are additive; cf. eq. (1.3.7).28 

 
 
1.4 THE CONCEPT OF IMPEDANCE 

 

 By definition an impedance is the ratio of the complex amplitudes of two signals rep-

resenting cause and effect, for example the ratio of an AC voltage across a part of an electric 

circuit to the corresponding current, the ratio of a mechanical force to the resulting vibra-

tional velocity, or the ratio of the sound pressure to the particle velocity. The term has been 

coined from the verb ‘impede’ (obstruct, hinder), indicating that it is a measure of the opposi-

tion to the flow of current etc. The reciprocal of the impedance is the admittance, coined from 

the verb ‘admit’ and indicating lack of such opposition. Note that these concepts require 

complex representation of harmonic signals; it makes no sense to divide, say, the instantane-

ous sound pressure with the instantaneous particle velocity. There is no simple way of de-

scribing properties corresponding to a complex value of the impedance without the use of 

complex notation.     

 The mechanical impedance is perhaps simpler to understand than the other impedance 

concepts, since it is intuitively clear that it takes a certain vibratory force to generate me-

chanical vibrations. The mechanical impedance of a structure at a given point is the ratio of 

the complex amplitude of a harmonic point force acting on the structure to the complex am-

plitude of the resulting vibratory velocity at the same point,29
 

                                                 

 
28

 Strictly speaking this requires that the instantaneous product of the ‘event’ and any of its time shif-

ted versions time average to zero.  In practice this will always be the case. 

 
29

 Note that the sign of the imaginary part of the impedance changes if the e-iωt convention is used in-

stead of the ejωt convention. Cf. footnote no 9 on p. 6. 



  28

.
ˆ

ˆ
m

v

F
Z =  (1.4.1a) 

The unit is kg/s. The mechanical admittance is the reciprocal of the mechanical impedance, 

.
ˆ

ˆ
m

F

v
Y =  (1.4.1b) 

This quantity is also known as the mobility. The unit is s/kg. 

 
Example 1.4.1 

 It takes a force of F = a·M to set a mass M into the acceleration a (Newton’s second law of motion); 

therefore the mechanical impedance of the mass is 

 m

ˆ ˆ
j .

ˆ ˆ j

F F
Z M

v a
ωω= = =  

Example 1.4.2 

 It takes a force of  F = ξK to stretch a spring with the stiffness K a length of  ξ (Hooke’s law); therefore 

the mechanical impedance of the spring is 

 m

ˆ ˆ
.

ˆˆ jj

F F K
Z

v ωωξ= = =  

 

 
 

Figure  1.4.1 A mass hanging from a spring. 

 
Example 1.4.3 

 A simple mechanical oscillator consists of a mass M suspended from a spring with a stiffness constant 

of K, as sketched in figure 1.4.1. In order to set the mass into vibrations one will have to move the mass and 

displace the spring from its equilibrium value. It follows that the mechanical impedance of this system is the 

sum of the impedance of the mass and the impedance of the spring,  

 ( )( )2

m 0j j j 1 ,
j

K K
Z M M Mω ω ω ω ωω ω

⎛ ⎞= + = − = −⎜ ⎟⎝ ⎠  

where 

 0 K Mω =  

is the angular resonance frequency. Note that the impedance is zero at the resonance, indicating that even a very 

small harmonic force at this frequency will generate an infinite velocity. In practice there will always be some 

losses, of course, so the impedance is very small but not zero at the resonance frequency. 

 

 The acoustic impedance is associated with average properties on a surface. This quan-

tity is mainly used under conditions where the sound pressure is more or less constant on the 

surface. It is defined as the complex ratio of the average sound pressure to the volume veloc-

ity, which is the surface integral of the normal component of the particle velocity, 



 29

ˆ ˆ d ,
S

q = ⋅∫ u S  (1.4.2) 

where S is the surface area. Thus the acoustic impedance is 

a av
ˆ ˆZ p q= . (1.4.3) 

The unit is kgm
-4

s
-1

. Since the total force acting on the surface equals the product of the aver-

age sound pressure and the area, and since nuSq ˆˆ =  if the velocity is uniform, it can be seen 

that there is a simple relation between the two impedance concepts under such conditions: 

.2

am SZZ =  (1.4.4) 

This equation makes it possible to calculate the force it would take to drive a massless piston 

with the velocity nû . In other words, the acoustic impedance describes the load on a (real or 

fictive) piston caused by the medium. If the piston is real, the impedance is called the radia-

tion impedance. This quantity is used for describing the load on, for example, a loudspeaker 

membrane caused by the motion of the medium.
30

 

 The concept of acoustic impedance is essentially associated with approximate low-

frequency models. For example, it is a very good approximation to assume that the sound 

field in a tube is one-dimensional when the wavelength is long compared with the cross-

sectional dimensions of the tube. Under such conditions the sound field can be described by 

eqs. (1.2.15) and (1.2.16), and a tube of a given length behaves as an acoustic two-port.
31

 It is 

possible to calculate the transmission of sound through complicated systems of pipes using 

fairly simple considerations based the assumption of continuity of the sound pressure and the 

volume velocity at each junction [12].
32

 The acoustic impedance is also useful in studying the 

properties of acoustic transducers. Such transducers are usually much smaller than the wave-

length in a significant part of the frequency range. This makes it possible to employ so-called 

lumped parameter models where the system is described by an analogous electrical circuit 

composed of simple lumped element, inductors, resistors and capacitors, representing masses, 

losses and springs [13, 14]. Finally it should be mentioned that the acoustic impedance can be 

used for describing the acoustic properties of materials exposed to normal sound incidence.
33

 
 

                                                 

 
30

 The load of the medium on a vibrating piston can be described either in terms of the acoustic radia-

tion impedance (the ratio of the sound pressure to the volume velocity) or the mechanical radiation impedance 

(the ratio of the force to the velocity). 

 
31

 ‘Two-port’ is a term from electric circuit theory denoting a network with two terminals. Such a net-

work is completely described by the relations between four quantities, the voltage and current at the input ter-

minal and the voltage and current at the output terminal. By analogy, an acoustic two-port is completely de-

scribed by the relations between the sound pressures and the volume velocities at the two terminals. In case of a 

cylindrical tube such relations can easily be derived from eqs. (1.2.15) and (1.2.16) [12]. 

 
32

 Such systems act as acoustic filters. Silencers (or mufflers) are composed of coupled tubes. 

 
33

 In the general case we need to describe the properties of acoustic materials with the local ratio of the 

sound pressure on the surface to the resulting vibrational velocity. In most literature this quantity, which is used 

mainly in theoretical work, is called the specific acoustic impedance. In many practical applications the proper-

ties of acoustic materials are described in terms of absorption coefficients (or absorption factors), assuming ei-

ther normal or diffuse sound incidence (see chapter 1.5). It is possible to calculate the absorption coefficient of a 

material from its specific acoustic impedance, but not the impedance from the absorption coefficient.  
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Example 1.4.4 

 The acoustic input impedance of a tube terminated by a rigid cap can be deduced from eqs. (1.2.17) and 

(1.2.18) (with x = -l), 

 a j cot ,
c

Z kl
S

ρ= −  

where l is the length of the tube and S is its cross-sectional area. Note that the impedance goes to infinity when l 

equals a multiple of half a wavelength, indicating that it would take an infinitely large force to drive a piston at 

the inlet of the tube at these frequencies (see figure 1.4.2). Conversely, the impedance is zero when l equals an 

odd-numbered multiple of a quarter of a wavelength; at these frequencies the sound pressure on a vibrating pis-

ton at the inlet of the tube would vanish. Cf. example 1.2.2. 

 

 

 
 

Figure 1.4.2 The acoustic input impedance of a tube terminated rigidly. 

 
 At low frequencies the acoustic impedance of the rigidly terminated tube analysed in 

example 1.4.4 can be simplified. The factor cotkl approaches 1/kl, and the acoustic imped-

ance becomes 

2

a j ,
j

c c
Z

Slk V

ρ ρ
ω− =  (1.4.5) 

where V = Sl is the volume of the tube, indicating that the air in the tube acts as a spring. 

Thus the acoustic impedance of a cavity much smaller than the wavelength is spring-like, 

with a stiffness that is inversely proportional to the volume and independent of the shape of 

the cavity. Since, from eq. (1.2.2b), 

2

0 ,c pρ =  (1.4.6) 

it can be seen that the acoustic impedance of a cavity at low frequencies also can be written 

0

a ,
j

p
Z

V


ω=  (1.4.7) 

in agreement with the considerations on p. 3. 
 
Example 1.4.5 

 A Helmholtz resonator is the acoustic analogue to the simple mechanical oscillator described in exam-

ple 1.4.3; see figure 1.4.3. The dimensions of the cavity are much smaller that the wavelength; therefore it be-

haves as a spring with the acoustic impedance  
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2

a ,
j

c
Z

V

ρ
ω=  

where V is the volume; cf. eq. (1.4.5). The air in the neck moves back and forth uniformly as if it were incom-

pressible; therefore the air in the neck behaves as a lumped mass with the mechanical impedance 

 m effj ,Z Slωρ=  

where leff is the effective length and S is the cross-sectional area of the neck. (The effective length of the neck is 

somewhat longer than the physical length, because some of the air just outside the neck is moving along with 

the air in the neck.) The corresponding acoustic impedance follows from eq. (1.4.4): 

 eff

a

j l
Z

S

ωρ= . 

By analogy with example 1.4.3 we conclude that the angular resonance frequency is 

 0

eff

.
S

c
Vl

ω =  

Note that the resonance frequency is independent of the density of the medium.  

 It is intuitively clear that a larger volume or a longer neck would correspond to a lower frequency, but 

it is perhaps less obvious that a smaller neck area gives a lower frequency. 

 

 
Figure 1.4.3 A Helmholtz resonator. 

 

 Yet another impedance concept, the characteristic impedance, has already been intro-

duced. As we have seen in section 1.2.1, the complex ratio of the sound pressure to the parti-

cle velocity in a plane propagating wave equals the characteristic impedance of the medium 

(cf. eq. (1.2.14)), and it approximates this value in a free field far from the source (cf. eq. 

(1.2.27)). Thus, the characteristic impedance describes a property of the medium, as we have 

seen on p. 12. The unit is kgm
-2

s
-1

. 

 

1.5 SOUND ENERGY, SOUND INTENSITY, SOUND POWER AND SOUND AB-
SORPTION  
 

 The most important quantity for describing a sound field is the sound pressure. How-

ever, sources of sound emit sound power, and sound fields are also energy fields in which 

potential and kinetic energies are generated, transmitted and dissipated. Some typical sound 

power levels are given in table 1.5.1.  

It is apparent that the radiated sound power is a negligible part of the energy conver-

sion of almost any source. However, energy considerations are nevertheless of great practical 

importance in acoustics. The usefulness is due to the fact that a statistical approach where the 

energy of the sound field is considered turns out to give very useful approximations in room 

acoustics and in noise control. In fact determining the sound power of sources is a central 
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point in noise control engineering. The value and relevance of knowing the sound power ra-

diated by a source is due to the fact that this quantity is largely independent of the surround-

ings of the source in the audible frequency range.  

 

Table 1.5.1 Typical sound power levels. 

Aircraft turbojet engine 10 kW 160 dB 

Gas turbine (1 MW) 32 W 135 dB 

Small airplane 5 W 127 dB 

Tractor (150 hp) 100 mW 110 dB 

Large electric motor (0.5 MW) 10 mW 100 dB 

Vacuum cleaner 100 μW 80 dB 

Office machine 32 μW 75 dB 

Speech 10 μW 70 dB 

Whisper 10 nW 40 dB 

 

 

1.5.1 The energy in a sound field 

 It can be shown that the instantaneous potential energy density at a given position in a 

sound field (the potential sound energy per unit volume) is given by the expression 

( ) ( )
.

2 2

2

pot
c

tp
tw ρ=  (1.5.1) 

This quantity describes the local energy stored per unit volume of the medium because of the 

compression or rarefaction; the phenomenon is analogous to the potential energy stored in a 

compressed or elongated spring, and the derivation is similar. 

 The instantaneous kinetic energy density at a given position in a sound field (the ki-

netic energy per unit volume) is 

( ) ( )2

kin

1

2
w t u tρ= . (1.5.2) 

This quantity describes the energy per unit volume at the given position represented by the 

mass of the particles of the medium moving with the velocity u. This corresponds to the ki-

netic energy of a moving mass, and the derivation is similar. 

 The instantaneous sound intensity at a given position is the product of the instantane-

ous sound pressure and the instantaneous particle velocity, 

( ) ( ) ( )t p t t=I u . (1.5.3) 

This quantity, which is a vector, expresses the magnitude and direction of the instantaneous 

flow of sound energy per unit area at the given position, or the work done by the sound wave 

per unit area of an imaginary surface perpendicular to the vector.  
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Energy conservation 

 By combining the fundamental equations that govern a sound field (the conservation of mass, the rela-

tion between the sound pressure and density changes, and Euler’s equation of motion), one can derive the equa-

tion  

( )
( ) ,

w t
t

t

∂ ⋅ = − ∂I    

where ( )t ⋅I  is the divergence of the instantaneous sound intensity and w(t) is the sum of the potential and 

kinetic energy densities. This is the equation of conservation of sound energy, which expresses the simple fact 

that the rate of change of the total sound energy at a given point in a sound field is equal to the flow of converg-

ing sound energy; if the sound energy density at the point increases there must be a net flow of energy towards 

the point, and if it decreases there must be net flow of energy diverging away from the point. 

 The global version of this equation is obtained using Gauss’s theorem,34 ( ) ( )
( )d ( ) d (t)d ,

V S V

E t
t V t w V

t t

∂ ∂ ⋅ = ⋅ = − = −∂ ∂∫ ∫ ∫I I S    

where S is the area of an arbitrary, closed surface, V is the volume inside the surface, and E(t) is the total instan-

taneous sound energy within the surface. This equation shows that the rate of change of the total sound energy 

within a closed surface is identical with the surface integral of the normal component of the instantaneous sound 

intensity. 
 

 In practice the time-averaged energy densities, 

,
2

1
             ,

2

2

rmskin2

2

rms
pot uw

c

p
w ρρ ==  (1.5.4a, 1.5.4b) 

are more important than the instantaneous quantities, and the time-averaged sound intensity 

(which is usually referred to just as the ‘sound intensity’), 

( ) ( ) ( ),t p t t= =I I u  (1.5.5) 

is more important than the instantaneous intensity I(t). Energy conservation considerations 

lead to the conclusion that the integral of the normal component of the sound intensity over a 

closed surface is zero, 

d 0
S

⋅ =∫ I S  (1.5.6) 

in any sound field unless there is generation or dissipation of sound power within the surface 

S. If, on the other hand, the surface encloses a source the integral equals the radiated sound 

power of the source, irrespective of the presence of other sources of noise outside the surface:  

ad
S

P⋅ =∫ I S  (1.5.7) 

 Often we will be concerned with harmonic signals and make use of complex notation, 

as in chapters 1.2 and 1.4. Expressed in the complex notation eqs. (1.5.4) and (1.5.5) become 

2

2

pot kin2

ˆ 1
ˆ,              ,
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p
w w u

c
ρρ= =   (1.5.8a, 1.5.8b) 

                                                 

 
34

 According to Gauss’s theorem the volume integral of the divergence of a vector equals the cor-

responding surface integral of the (outward pointing) normal component of the vector.  
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{ }*1
ˆ ˆRe

2
p=I u . (1.5.9) 

(Note that the two complex exponentials describing the time dependence of the sound pres-

sure and the particle velocity cancel each other because one of them is conjugated; see the 

Appendix.) The component of the sound intensity in the x-direction is 

{ }*1
ˆ ˆRe

2
x xI pu= . (1.5.10) 

Inserting the expressions for the sound pressure (eq. (1.2.13)) and the particle velocity (eqs. 

(1.2.14)) in a plane propagating wave into eq. (1.5.10) shows that 

c

p

c

p
I x ρρ

2

rms

2

2

ˆ ==  (1.5.11) 

in this particular sound field. Moreover, inserting expressions for the sound pressure and the 

particle velocity in a simple spherical wave, eqs. (1.2.26) and (1.2.27), into eq. (1.5.10) gives 

the same relation for the radial sound intensity: 

{ } ( ) ( ) 2 2j j 2*
* rms

2

ˆ1 e e 1
ˆ ˆRe Re 1 .

2 j 2 2

t kr t kr

r r

A p pA A
I pu

r cr kr cr c c

ω ω
ρ ρ ρ ρ

− − −⎧ ⎫⎛ ⎞ = = − = = =⎨ ⎬⎜ ⎟ ⎝ ⎠⎩ ⎭  (1.5.12) 

It is apparent that there is a simple relation between the sound intensity and the mean square 

sound pressure in these two extremely important cases.
35

 However, it should be emphasised 

that in the general case eq. (1.5.11) is not valid, and one will have to measure both the sound 

pressure and the particle velocity simultaneously and average the instantaneous product over 

time in order to measure the sound intensity. Equipment for such measurements has been 

commercially available since the early 1980s [3].  

 
Example 1.5.1 

 It follows from eq. (1.5.11) that the sound intensity in a plane propagating wave with an rms sound 

pressure of 1 Pa is 2 3 1 2(1 Pa) (1.2 kgm 343 ms ) 2.4 mW m− −⋅  . 

 
Example 1.5.2 

 The sound intensity in the interference field generated by a plane sound wave reflected from a rigid 

surface at normal incidence can be determined by inserting eqs. (1.2.17) and (1.2.18) into eq. (1.5.10):  

2
*

ii

i

2jj21
Re 2 cos sin Re sin 2 0.

2
x

pp
I p kx kx kx

c cρ ρ
⎧ ⎫⎧ ⎫  = = =⎨ ⎬ ⎨ ⎬⎩ ⎭  ⎩ ⎭

 

This result shows that there is no net flow of sound energy towards the rigid surface. 

 

Under conditions where the sound pressure and the particle velocity are constant over 

a surface in phase as well as in amplitude we can write 
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 Eq. (1.5.11) implies that the sound intensity level is almost identical with the sound pressure level in 

air at 20°C and 101.3 kPa:  

  ( ) ( ) ( ) ( )2 2 2 2

ref rms rms ref ref refref
10 log 10 log ( ) 10 log 10 log 0.14 dB .I p pL I I p c I p p cI p L Lρ ρ= = = − −   
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aˆˆ Zqp =  (1.5.13) 

(cf. eq. (1.4.4)), and the sound power passing through the surface can be expressed in terms 

of the acoustic impedance: 

{ } { } { }2

2*

a a a

ˆ1 1
ˆ ˆ ˆRe Re Re .

2 2 2

q
P pq q Z Z= = =  (1.5.14) 

This expression demonstrates that the radiated sound power of a vibrating surface is closely 

related to the volume velocity and to the real part of the radiation impedance.  

Equation (1.5.7) implies that one can determine the sound power radiated by a source 

by integrating the normal component of the sound intensity over a surface that encloses the 

source. This is the sound intensity method of measuring sound power. Note that special 

equipment for such measurements is required. 

In an environment without reflecting surfaces the sound field generated by a source of 

finite extent is locally plane far from the source, as mentioned in section 1.2.2, and therefore 

the local sound intensity is to a good approximation given by eq. (1.5.11). With eq. (1.5.7) we 

now conclude that one can estimate the radiated sound power of a source by integrating the 

mean square pressure generated by the source over a spherical surface centred at the source: 

( )2

a rms ( ) d .
S

P p c Sρ= ∫  (1.5.15) 

However, whereas eq. (1.5.7) is valid even in the presence of sources outside the measure-

ment surface eq. (1.5.11) is not; therefore only the source under test must be present. In prac-

tice one measures the sound pressure at a finite number of discrete points. This is the free-

field method of measuring sound power. Note that an anechoic room (a room without any re-

flecting surfaces) is required. 

 Yet another method of measuring sound power requires a diffuse sound field in a re-

verberation room; see chapter 3.  

 

1.5.2 Sound absorption 

 Most materials absorb sound. As we have seen in chapter 1.2 we need a precise de-

scription of the boundary conditions for solving the wave equation, which leads to a descrip-

tion of material properties in terms of the specific acoustic impedance, as mentioned in chap-

ter 1.4. However, in many practical applications, for example in architectural acoustics, a 

simpler measure of the acoustic properties of materials, the absorption coefficient (or absorp-

tion factor), is more useful. By definition the absorption coefficient of a given material is the 

absorbed fraction of the incident sound power. From this definition it follows that the absorp-

tion coefficient takes values between naught and unity. A value of unity implies that all the 

incident sound power is absorbed. 

 

 
 
Figure 1.5.1 A standing wave tube for measuring the normal incidence absorption coefficient. (From ref. [15].) 
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In general the absorption coefficient of a given material depends on the structure of 

the sound field (plane wave incidence of a given angle of incidence, for example, or random 

or diffuse incidence in a room). Here we will study only the absorption for plane waves of 

normal incidence. 

 Consider the sound field in a tube driven by a loudspeaker at one end and terminated 

by the material under test at the other end, as sketched in figure 1.5.1. This is a one-

dimensional field, which means that it has the general form given by eqs. (1.2.15) and 

(1.2.16). The amplitudes pi and pr depend on the boundary conditions, that is, the vibrational 

velocity of the loudspeaker and the properties of the material at the end of the tube. The 

sound intensity is obtained by inserting eqs. (1.2.15) and (1.2.16) into eq. (1.5.10), 

( ) ( )
( )( )

2 2* j * j

i r i rj j

i r
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e e
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2 2
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−⎧ ⎫− − = + =⎨ ⎬ ⎩ ⎭

+ −= =
        (1.5.16) 

where the last equation sign follows from eq. (1.2.20). (Note that pmax and pmin are ampli-

tudes.) The incident sound intensity is the value associated with the incident wave, that is,  
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p
I ρ=  (1.5.17) 

The absorption coefficient is the ratio of Ix to Iinc, 
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−−=−=−==α  (1.5.18) 

where we have introduced the reflection factor and the standing wave ratio (cf. eqs. (1.2.19) 

and (1.2.22)). Note that the absorption coefficient is independent of the phase angle of R, 

which shows that there is more information in the complex reflection factor than in the ab-

sorption coefficient. Equation (1.5.18) demonstrates that one can determine the normal inci-

dence absorption coefficient of a material by exposing it to normal sound incidence in a tube 

and measuring the standing wave ratio of the resulting interference field. 

 

 
Figure 1.5.2 Standing wave pattern for various  absorption coefficients: 0.9 (–––); 0.6 (– –); 0.3 (···). 

 
Example 1.5.3 

 If the material under test is completely reflecting then |R| = 1, corresponding to an absorption coeffi-

cient of zero. In this case the standing wave ratio is infinitely large. If the material is completely absorbing, R = 

0, corresponding to an absorption coefficient of unity. In the latter case there is no reflected wave, so the sound 

pressure amplitude is constant in the tube, corresponding to a standing wave ratio of one. 



 37

1.6 RADIATION OF SOUND 

 

 Sound can be generated by many different mechanisms. In this note we will study 

only the simplest one, which is also the most important: that of a solid vibrating surface. As 

we shall see, the most efficient mechanism for radiation of sound involves a net volume dis-

placement. 

 
1.6.1 Point sources 

 The simplest source to describe mathematically is a sphere that expands and contracts 

harmonically with spherical symmetry. In free space such a source generates the simple 

spherical sound field we studied in section 1.2.2. Say the source has a radius of a. From eq. 

(1.2.27) we know that the particle velocity on the surface of the source is 

.
j

1
1

e
)(ˆ

)j(

⎟⎟⎠
⎞⎜⎜⎝

⎛ += −

kaac

A
au

kat

r

ω
ρ  (1.6.1) 

The boundary condition on the surface implies that the vibrational velocity tU ωje must equal 

the normal component of the particle velocity; therefore  

( )
2 j jj e j e

,
1 j 4π 1 j

ka kacka U Q
A

ka ka

ρ ρω= =+ +  (1.6.2) 

where we have introduced the volume velocity of the pulsating sphere, 

 24π ,Q a U=  (1.6.3) 

by multiplying with the surface area of the sphere. Inserting into eq. (1.2.26) gives an expres-

sion for the sound pressure generated by the source, 

( )
j( ( ))j e

ˆ .
4π 1 j

t k r aQ
p

r ka

ωρω − −= +  (1.6.4) 

We can now calculate the radiation impedance of the pulsating sphere. This is the ratio of the 

sound pressure on the surface of the sphere to the volume velocity (cf. eq. (1.4.3)): 

( )
2

a,r j

ˆ ( ) j j
,

e 4π 1 j 4π 4πt

p a ck
Z

Q a ka aω
ρω ρ ωρ= = ++   (1.6.5) 

where the approximation to the right is based on the assumption that ka << 1. Note that the 

imaginary part of the radiation impedance is much larger than the real part at low frequencies, 

indicating that most of the force it takes to expand and contract the sphere goes to moving the 

mass of the air in a region near the sphere (cf. example 1.4.1). This air moves back and forth 

almost as if it were incompressible.  

 In the limit of a vanishingly small sphere the source becomes a monopole, also known 

as a point source or a simple source. With ka << 1, the expression for the sound pressure 

generated by a point source with the volume velocity je tQ ω becomes 

j( )j e
ˆ .

4π

t krQ
p

r

ωρω −=  (1.6.6) 
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A vanishingly small sphere with a finite volume velocity
36

 may seem to be a rather academic 

source. However, the monopole is a central concept in theoretical acoustics. At low frequen-

cies it is a good approximation to any source that produces a net displacement of volume, that 

is, any source that is small compared with the wavelength and changes its volume as a func-

tion of time, irrespective of its shape and the way it vibrates. An enclosed loudspeaker is to a 

good approximation a monopole at low frequencies. A source that injects fluid, the outlet of 

an engine exhaust system, for example, is also in effect a monopole. 

 The sound intensity generated by the monopole can be determined from eq. (1.5.10): 

{ } ( )2
*

*

2 2

1 1 j j 1
ˆ ˆRe Re 1 .

2 2 4π 4π j 32πr r

QQ Q
I pu

r r c kr r c

ρωρω ρω
ρ ρ

⎧ ⎫⎛ ⎞−= = − =⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭  (1.6.7) 

By multiplying with the surface of the area of a sphere with the radius r we get the sound 

power radiated by the monopole, 

( )2 22

2

a 2 2
4 .

32π 8π
Q ck Q

P r
r c

ρω ρπρ= =  (1.6.8) 

We could also obtain this result from eqs. (1.5.14) and (1.6.5), of course. Note that the sound 

power is proportional to the square of the frequency, indicating that a small pulsating sphere 

is not a very efficient radiator of sound at low frequencies. 

  
Reciprocity 

 The reciprocity principle states that if a monopole source at a given point generates a certain sound 

pressure at a another point then the monopole would generate the same sound pressure if we interchange listener 

and source position, irrespective of the presence of reflecting or absorbing surfaces. This is a strong statement 

with many practical implications. 

 

 It is easy to take account of a large reflecting plane surface, say, at z = 0, if one makes 

use of the concept of image sources. If the surface is rigid the boundary condition implies 

that uz = 0 at z = 0, and simple symmetry considerations show that this is satisfied if we re-

place the rigid plane with an image source; see figure 1.6.1. The resulting sound pressure is 

simply the sum of the sound pressures generated by the source and the image source, 

1 2

1 1 2

j( ) j( )
j( ) j ( )1

1 2 1 2

j e j e j
ˆ e 1 e .

4π 4π 4π

t kR t kR
t kR k R RRQ Q Q

p
R R R R

ω ω ωρω ρω ρω− − − −⎛ ⎞= + = +⎜ ⎟⎝ ⎠  (1.6.9) 

The parenthesis shows the effect of the reflecting plane, that is, it represents the sound pres-

sure normalised by the free field value. The normalised equation can be used for studying 

outdoor sound propagation over a hard surface, and it is common practice to present the 

‘ground effect’, that is, the effect of reflections from the ground on outdoor sound propaga-

tion, in this form. 

 At very low frequencies k(R1 - R2) << 1, and the rigid surface can be seen to have the 

effect of increasing the sound pressure by a factor of 1+ R1/R2. Destructive interference oc-

curs when the second term in the parenthesis is real and negative, and the first interference 
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 The volume velocity of the monopole is sometimes referred to as the source strength. However, 

some authors use other definitions of the source strength. The term ‘volume velocity’ is unambiguous. 
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dip occurs when k(R1 – R2)  = π, corresponding to (R1 – R2) being half a wavelength. Figure 

1.6.2 shows the sound pressure relative to free field for sound propagation over a rigid plane 

surface. 

 

Figure 1.6.1 The sound pressure generated by a monopole above a rigid plane is the sum of two terms: direct 

sound and the contribution from the image source.(From ref. [16].) 

 

 

Figure 1.6.2 The sound pressure in one-third octave bands generated by a monopole above a rigid plane and 

shown relative to free field for five different source-receiver distances.(From ref. [16].) 

 
 If the distance between the source and the observation point is much longer than the 

distance between the source and the reflecting plane (see figure 1.6.3) we can make use of the 

far-field approximation and let 1 2r r r   in the denominator of eq, (1.6.6). However, the two 

contributions will arrive with a different phase no matter how far from the source we are. If 

the observation point is sufficiently far we can approximate the two distances by 

1 cosr r h θ−  and 2 cosr r h θ+  in the complex exponentials. The resulting sound pressure 

now becomes 
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Inspection of eq. (1.6.10) leads to the conclusion that the sound pressure in the far field de-

pends on kh and on θ unless kh << 1, in which case the sound pressure is simply doubled. 

 

 
Figure 1.6.3 Far field sound pressure generated by a monopole near a rigid plane surface. 

 The sound power of the monopole is affected by the presence of the reflecting surface 

unless it is far away, kh >> 1. We can calculate the sound power by integrating the sound in-

tensity over a hemisphere, cf. eq. (1.5.7). (Since the normal component of the particle velocity 

is zero at all points on the plane between the source and the image source, the normal compo-

nent of the intensity is also zero, so this surface does not contribute to the integral.) Moreover, 

the considerations that lead to eq. (1.5.15) are also valid for combinations of sources. It fol-

lows that 
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 (1.6.11) 

Figure 1.6.4 shows the factor in parentheses. It is apparent that the sound power is doubled if 

the source is very close to the surface, and that the rigid surface has an insignificant influence 

on the sound power output of the source when h exceeds a quarter of a wavelength, corre-

sponding to kh = π/2. 

 

Figure 1.6.4 The influence of a rigid surface on the sound power of a monopole. 

Example 1.6.1 

 It can be deduced from eq. (1.6.11) that two identical monopoles in close proximity (two enclosed loud-

speakers driven with the same signal, for example) at very low frequencies will radiate twice as much sound 

power as they do when they are far from each other. The physical explanation is that the radiation load on each 

source is doubled; the sound pressure on each source is not only generated by the source itself but also by the 

neighbouring source. Alternatively one might regard the two loudspeakers as one compound source with twice 

the volume velocity of each loudspeaker. Because of the quadratic relation between volume velocity and power  

(cf. eq. (1.6.8)) this source will radiate four times more sound power than one single loudspeaker in isolation. 
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 Two monopoles of the same volume velocity but vibrating in antiphase constitute a 

point dipole if the distance between them is much less than the wavelength; see figure 1.6.5. It 

is clear that the combined source has no net volume velocity. A point dipole is a good ap-

proximation to a small vibrating body that does not change its volume as a function of time. 

Such a source exerts a force on the fluid. The oscillating sphere shown in figure 1.6.6, for ex-

ample, is in effect a dipole, and so is an unenclosed loudspeaker unit. Other examples include 

vibrating beams and wires. 

 

 
Figure 1.6.5 A point dipole. 

 

The sound pressure generated by the two monopoles is  

1 2j( ) j( )
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j e j e
ˆ .
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ω ωρω ρω− −= −  (1.6.12) 

The near field of this combination of sources is fairly complicated. However, the far field is 

relatively simple. We can calculate the sound pressure in the far field in the same way we 

used in deriving eq. (1.6.10),  
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 (1.6.13) 

Note that the sound pressure is proportional to h|Q|, varies as cosθ and is identically zero in 

the plane between the two monopoles.
37

  

The sound power of the dipole is calculated by integrating the mean square sound 

pressure over a spherical surface centred midway between the two monopoles: 
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 (1.6.14) 

Note that the sound power of the dipole is proportional to the fourth power of the frequency, 

indicating very poor sound radiation at low frequencies. The physical explanation of the poor 

radiation efficiency of the dipole is of course that the two monopoles almost cancel each 

other. 

                                                 

 
37

 The quantity 2hQ is referred to by some authors as the dipole strength. However, other authors use 

other definitions. 
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Figure 1.6.6 Fluid particles in the sound field generated by an oscillating sphere. (From ref. [1].) 
 

1.6.2 Sound radiation from a circular piston in an infinite baffle 

 Apart from the pulsating sphere, a vibrating circular piston in an infinite, rigid baffle is 

one of the simplest cases of a spatially extended sound source that can be dealt with analyti-

cally. It is often used in connection with loudspeaker modelling.  

 The basic approach to extended sound sources is to consider them as composed of 

many simple sources, just as a dipole is made up of two monopoles. Thus, the piston is the 

sum of many monopoles that all radiate in phase. Because of the infinite baffle each mono-

pole gives rise to an image source which coincides with the monopole, cf. eqs. (1.6.9) and 

(1.6.10)); in other words, the baffle has the effect of doubling the volume velocity of each 

monopole. Let the piston vibrate with the velocity je tU ω . It follows that the volume velocity 

of each elementary monopole is UdS. By linear superposition we conclude that the sound 

pressure radiated by the piston can be evaluated at any position in front of the baffle simply 

by integrating over the surface of the piston, 

j( )e
ˆ j d
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S
p U S

h

ωωρ −= ∫ , (1.6.15) 

where h is the distance between the observation point and the running position on the piston, 

and S is the surface of the piston of radius a (see figure 1.6.7).This is a special case of what is 

known as Rayleigh’s integral, which can be used for computing the sound radiation into half 

space of any plane infinite surface with a given vibrational velocity [17]. Note the factor of 

two in the denominator instead of four for the monopole, which is due to the contribution of 

the image sources.  

 

 

 

 
 

 

 

 

 

 

Figure 1.6.7 Definition of the variables. (From ref. [18].) 
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 The far field sound pressure, that is, the sound pressure at long distances from the cen-

tre of the piston compared with the radius and the wavelength, can be calculated by expanding 

h in the complex exponential, 
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y
h r y ry r

r
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= + − −
−




 (1.6.16) 

while retaining only the first term of eq. (1.6.16) in the denominator (cf. eq. (1.6.10)). Thus 

the expression for the sound pressure becomes 
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The calculation makes use of the Bessel functions J0(z) and J1(z), defined by 
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(see figure 1.6.8), and leads to the following expression for the far field sound pressure, 
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where we have introduced the volume velocity of the piston, Q = π a2
U. The factor in brack-

ets is called the directivity of the piston, which is a frequency dependent function that de-

scribes the directional characteristics of the source in the far field,  
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⎡ ⎤= ⎢ ⎥⎣ ⎦ . (1.6.21) 

This function has its maximum value, unity, when θ = 0, indicating maximum radiation in the 

axial direction all frequencies. Figure 1.6.9 shows the directivity for different values of the 

normalised frequency ka. Note that the piston is an omnidirectional source (a monopole 

placed on a rigid surface) at low frequencies, just as one would expect. At high frequencies 

the radiation of the piston is concentrated in a beam near the axial direction. 

 

 
Figure 1.6.8 Bessel functions. 
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E

 
 

Figure 1.6.9 Directivity of the piston as a function of the normalised frequency ka. (From ref. [18].) 

 

 The sound pressure on the axis of the piston can be evaluated fairly easily. Since sin θ 
= 0 on the axis, the expression for the distance h reduces to 

2 2 ,h r y= +   (1.6.22) 

from which, 

2 2

d
d d

y y y
h y

hr y
= =+ . (1.6.23) 

Thus the sound pressure on the axis is given by 

2 2
2 22π

j j j j j

0

j
ˆ e e d d e e e .

2π
r a

t - kh t - kr - k r a

r

U
p h cUω ωωρ ϕ ρ+ +⎡ ⎤= = −⎢ ⎥⎣ ⎦∫ ∫  (1.6.24) 

If we introduce the quantity ( ) ,222 rar −+=Δ  (1.6.25) 

the sound pressure can be written 

 ( ) ).sin(ej2ˆ
j Δ= Δ+− kcUp rktωρ  (1.6.26) 

It can be seen that the sound pressure is zero when k) is a multiple of π, that is, when ) is a 

multiple of half a wavelength, corresponding to the positions 

1

2 2

a n
r a

n a

λ
λ

⎡ ⎤= −⎢ ⎥⎣ ⎦  (1.6.27) 

on the axis, where n is a positive integer. In a similar way, the sound pressure assumes a 

maximum value for 

2)12(2 22 λ+=−+=Δ mrar   (1.6.28) 

(where m is a positive integer), that is, for 
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1 2 1
.

2 1 4

a m
r a

m a

λ
λ

+⎡ ⎤= −⎢ ⎥+⎣ ⎦  (1.6.29) 

 

Figure 1.6.10 shows the normalised sound pressure on the axis of the piston as a function of 

the distance, which for a given frequency is defined by the corresponding ka-factor.  

  

Figure 1.6.10 Sound pressure on the axis of a baffled piston for ka/2π = 5.5. (From ref. [19].) 
 

It may seem surprising that the sound pressure is zero at some positions right in front of the 

vibrating piston. The explanation is destructive interference, caused by the fact that the dis-

tance from such a position to the various parts of the piston varies in such a manner that the 

contributions cancel out. 
 
Example 1.6.2 

 In the far field, when r >> a and r >> a2/λ, one obtains 

2 2

2

1
1 ,

2 42

a a
r r

rr

⎡ ⎤⎛ ⎞Δ + − =⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  

and the sound pressure reduces to 

2
j( ) j( )j

ˆ j e e .
2 2π

t kr t krka ckQ
p cU

r r

ω ωρρ − −⎛ ⎞= =⎜ ⎟⎝ ⎠  

This expression agrees with eq. (1.6.20) for θ = 0 (D(f) = 1), as of course it should. This asymptotic expression is 

plotted as a dashed line in figure 1.6.10. 

 
Example 1.6.3 

 The distances at which the minima occur, normalised by the radius of the piston, are given in terms of 

normalised frequencies by
 

π
.

4π
ka nr

a n ka

⎡ ⎤= −⎢ ⎥⎣ ⎦  

Minima of order n only occur for ka ≥ 2πn > 6. Thus for a loudspeaker with a radius of 50 mm, minima only 

occur at frequencies higher than 6900 Hz, that is, far above the frequencies at which the piston approximation is 

valid. It follows that the minima are never observed in front of loudspeakers in real life. 

 

 In the near field there is no possible approximation except on the axis. However, by 

developing the spherical monopole field in cylindrical coordinates, the force exerted on the 

piston can be calculated analytically. The calculations are rather complicated (see ref. [19] or 
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[20] for a complete treatment), and lead to an expression in terms of special functions such as 

Bessel and Struve functions. The result is, 

2 j 1 1J (2 ) H (2 )ˆ ˆd π e 1 j ,t

S

ka ka
F p S c a U

ka ka

ωρ ⎡ ⎤= = − +⎢ ⎥⎣ ⎦∫  (1.6.30) 

where H1 is the first Struve function.  

 The radiation impedance is the impedance seen by the piston, that is, the ratio of the 

average sound pressure to the volume velocity, 

.
e

ˆ

e

ˆ
jjra, tt SQ

F

Q

p
Z ωω =><=  (1.6.31) 

Combining eqs.(1.6.30) and (1.6.31) gives 

1 1
a,r 2

J (2 ) H (2 )
1 j .

π
ka kac

Z
a ka ka

ρ ⎡ ⎤= − +⎢ ⎥⎣ ⎦  (1.6.32) 

Figure 1.6.11 shows the normalised, dimensionless radiation impedance (the bracket in eq. 

(1.6.32)), 

2

a,r

1 1

π
j .

Z a
R X

cρ = +  (1.6.33) 

At low frequencies and at high frequencies the radiation impedance takes simple expressions: 

2

a,r a,r a,r 2

1 8
1 j j ,

2π 3 π
ka Z r m ck

a
ω ρ ωρ<< = + = +  (1.6.34a) 

a,r 2 2 2 3 2

2 4 π
1 j 1 j .

π π π 2

c c
ka Z

a k a a ka

ρ ρωρ ⎛ ⎞>> = + = +⎜ ⎟⎝ ⎠  (1.6.34b) 

 
 

 
 

Figure 1.6.11 Radiation impedance of a piston as a function of the normalised frequency. (From ref. [19].) 
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The first expression is fundamental for designing loudspeakers. Note that the real part of the 

radiation impedance equals that of a small pulsating sphere, eq. (1.6.5), multiplied by a factor 

of two because of the rigid plane. The quantity ma,r can be interpreted as the acoustic mass of 

the air driven along by the piston. Interference effects in the near field make it different from 

the imaginary part of impedance of the pulsating sphere. However, as in the case of the pul-

sating sphere, eq. (1.6.5), the imaginary part of the acoustic radiation impedance diverges 

when the radius a goes to zero. 
 
Example 1.6.4 
 The mechanical radiation impedance is given by eqs. (1.4.4) and (1.6.33) as Zm,r = ρcπa2(R1+jX1). Its 

low frequency approximation is therefore: 

 
4 2 3

m,r

π 8
j .

2 3

a ck a
Z

ρ ωρ= +  

The imaginary part of this impedance is the impedance of the mass of a layer of air in front of the piston. This 

layer of air is moving back and forth as if it were incompressible. 
 

 The radiated sound power is defined in chapter 1.5 as the integral of the normal com-

ponent of the sound intensity over a surface than encloses the source. This method can also be 

used for computing the sound power of a piston in an infinite baffle. However, by far the sim-

plest approach is to use eq. (1.5.14), which expresses the sound power in terms of the mean 

square volume velocity and the real part of the acoustic radiation impedance: 

{ }2 2 2 11 1 1
a a,r 12 2 22 2

J (2 )
Re 1 .

π π
kac c

P Q Z Q R Q
a a ka

ρ ρ ⎡ ⎤= = = −⎢ ⎥⎣ ⎦  (1.6.35) 

At low frequencies this becomes, with eq. (1.6.34a), 

22

a ,
4π

ck Q
P

ρ=  (1.6.36) 

which is just what we would expect since the piston acts as a monopole on a rigid plane in 

this frequency range (cf. eq. (1.6.11)). 

 
Example 1.6.5 

 Instead of using the volume velocity and the acoustic impedance we could equally well compute the 

sound power from the mean square velocity and the real part of the mechanical radiation impedance, since, with 

eq. (1.4.4), 

 { } { }2 21 1
a a,r m,r2 2

Re Re .P Q Z U Z= =  

 
Example 1.6.6 

 Equation (1.6.36) shows that the sound power of the piston is proportional to |ωQ|2 at low frequencies,  

that is, the sound power is independent of the frequency if the volume acceleration is independent of the fre-

quency. This implies that the displacement of the piston should be inversely proportional to the square of the 

frequency if we want the sound power to be independent of the frequency. In other words, it implies very large 

displacements at low frequencies. Since mechanical systems such as loudspeakers only allow a limited excur-

sion, the low frequency sound power output of a loudspeaker is always limited: the only way to increase the 

sound power is to increase the size of the membrane. This explains why very large loudspeakers are found in 

subwoofers. 
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 The directivity factor of a source is defined as the sound intensity on the axis in the far 

field normalised by the sound intensity of an omnidirectional source with the same sound 

power. From eq. (1.6.20) the sound intensity on the axis is 

2

2

22

1 ⎟⎟⎠
⎞⎜⎜⎝

⎛=
r

Q
ckI r πρ  (1.6.37) 

(see also example 1.6.2). Normalising with Pa/4πr2
 (eq. (1.6.35)) gives the directivity factor 

Q(f), 
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R

ka
fQ

−
==  (1.6.38) 

The directivity factor of the piston is plotted in figure 1.6.12 as a function of the normalised 

frequency ka. Note that the directivity factor approaches two at low frequencies rather than 

one, reflecting the fact that all the sound power is radiated in only half a sphere. 

 In practice, one often uses the directivity index, defined by 

).(log10)( fQfDI =  (1.6.40) 

                                 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.6.12 Directivity factor of a piston in a baffle. (From ref. [18].) 
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1.9 APPENDIX: COMPLEX NOTATION 

 

 In a harmonic sound field the sound pressure at any point is a function of the type 

cos(Tt + n). It is common practice to use complex notation in such cases. This is a symbolic 

method that makes use of the fact that complex exponentials give a more condensed notation 

that trigonometric functions because of the complicated multiplication theorems of sines and 

cosines. 

 We recall that a complex number A can be written either in terms of its real and 

imaginary part or in terms of its magnitude (also called absolute value or modulus) and phase 

angle, 

,ej
j

ir
AAAAA

ϕ=+=  (1.9.1) 

where 

1j −=  (1.9.2) 

is the imaginary unit, and 

 

{ } { } ,sinIm,cosRe ir AA AAAAAA ϕϕ ====  (1.9.3, 1.9.4) 

2

i

2

r AAA +=  (1.9.5) 

 

(see figure 1.9.1). The complex conjugate of A is 

;ej
j

ir

* AAAAA
ϕ−=−=  (1.9.6) 

therefore the magnitude can also be written 

.*AAA ⋅=  (1.9.7) 

Multiplication and division of two complex numbers are most conveniently carried out if they 

are given in terms of magnitudes and phase angles, 

.e,e
)j()j( BABA

B

A
BABAAB

ϕϕϕϕ −+ ==  (1.9.8, 1.9.9) 

 

 
 

Figure 1.9.1. Complex representation of a harmonic signal. 
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 Complex representation of harmonic signals makes use of the fact that 

xxx sinjcose j +=  (1.9.10) 

(Euler’s equation) or, conversely, 

( ) ( )j j j j1 1
cos e e , sin j e e

2 2

x x x xx x− −= + = − − . (1.9.11a, 1.9.11b) 

In a harmonic sound field the sound pressure at a given position can be written 

,eˆ
j tAp ω=  (1.9.12) 

where A is the complex amplitude of the sound pressure. The real, physical sound pressure is 

of course a real function of the time, 

{ } { } ),cos(eReˆRe
)j(

A

t
tAApp A ϕωϕω +=== +  (1.9.13) 

which is seen to be an expression of the form cos(ωt + φ). The magnitude of the complex 

quantity |A| is called the amplitude of the pressure, and φA is its phase. It can be concluded 

that complex notation implies the mathematical trick of adding another solution, an expres-

sion of the form sin(ωt + φ), multiplied by a constant, the imaginary unit j. This trick relies on 

linear superposition. 

 

Figure 1.9.2. Two simple harmonic signals with identical frequencies. (From ref. [21].) 
 

The mathematical convenience of the complex representation of harmonic signals can 

be illustrated by an example. A sum of two harmonic signals of the same frequency, A1e
jωt

 

and A2e
jωt

, is yet another harmonic signal with an amplitude of |A1 + A2| (see figure 1.9.2). 

Evidently, this can also be derived without complex notation, 

( ) ( )
( ) ( )

1 1 2 2

1 1 2 2 1 1 2 2

½
2 2

1 1 2 2 1 1 2 2

cos( ) cos( )

cos cos cos sin sin sin

cos cos sin sin cos( ),

p A t A t

A A t A A t

A A A A t

ω ϕ ω ϕ
ϕ ϕ ω ϕ ϕ ω
ϕ ϕ ϕ ϕ ω ϕ

= + + +
= + − +

⎡ ⎤= + + + +⎢ ⎥⎣ ⎦
 (1.9.14) 

where 
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,
coscos

sinsin
arctan

2211

2211 ϕϕ
ϕϕϕ

AA

AA

+
+=  (1.9.15) 

but the expedience and convenience of the complex method seems indisputable. 

Since 

 

,eje
d

d jj tt

t

ωω ω=  (1.9.16) 

 

it follows that differentiation with respect to time corresponds to multiplication by a factor of 

jω. Conversely, integration with respect to time corresponds to division with jω. If, for exam-

ple, the vibrational velocity of a surface is, in complex representation, 

 
j( )jˆ e e ,Bttv B B

ω ϕω += =  (1.9.17) 

 

which means that the real, physical velocity is 

 { } ),cos(ˆRe BtBvv ϕω +==  (1.9.18) 

 

then the acceleration is written 

 

,ˆjˆ va ω=  (1.9.19) 

 

which means that the physical acceleration is 

 { } { }jˆRe Re j e sin( )t

Ba a B B tωω ω ω ϕ= = = − + , (1.9.20) 

 

and this is seen to agree with the fact that 

 

).sin()cos(
d

d
BB tt

t
ϕωωϕω +−=+  (1.9.21) 

 

In a similar manner we find the displacement, 

 

,
j

ˆˆ ωξ v=  (1.9.22) 

 

which means that 

 

{ } ),sin(
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e
j

1
ReˆRe j

B

t tBB ϕωωωξξ ω +=⎭⎬
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⎩⎨
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in agreement with the fact that 
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).cos()sin(
1

d

d
BB tt

t
ϕωϕωω +=⎟⎠

⎞⎜⎝
⎛ +  (1.9.24) 

 

 Acoustic second-order quantities involve time averages of squared harmonic signals 

and, more generally, products of harmonic signals. Such quantities are dealt with in a special 

way, as follows. Expressed in terms of the complex pressure amplitude p̂ , the mean square 

pressure becomes  

 

,2ˆ
22

rms

2 ppp ==  (1.9.25) 

 

in agreement with the fact that the average value of a squared cosine is ½. Note that it is the 

squared magnitude of p̂  that enters into the expression, not the square of p̂ , which in general 

would be a complex number proportional to e
2jωt

. 

 The time average of a product is given by the following expression 

 { } { }1 1
ˆˆ ˆ ˆRe Re

2 2
xy xy x y∗ ∗= = . (1.9.26) 

 

This can be seen as follows, 

 { } { }j( )j( )1 1 1
ˆˆ ˆ ˆ ˆ ˆRe Re e e cos( ),

2 2 2

yx
tt

x yxy x y x y
ω φω φ φ φ− ++∗ = = −  (1.9.27) 

 

which is seen to in agree with 

  

).cos(ˆˆ
2

1
)cos(ˆ)cos(ˆ yxyx yxtytxxy ϕϕϕωϕω −=++=  (1.9.28) 

 

Note that either x̂  or ŷ  must be conjugated.½ 
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2 Ear, Hearing and Speech 
Torben Poulsen 

 

2.1 Introduction 
 

The aim of the present chapter is to give the student a basic understanding of the function of 

the ear, the perception of sound and the consequences for speech understanding. The content 

covers the basic psychoacoustic aspects of a situation where two persons speak to each other. 

The major topics are: the ear and its functional principles, basic psychoacoustics (hearing 

threshold, loudness, masking) and speech intelligibility.  

 

2.2 The Ear 
 

 

 

Figure 2.2.1 Drawing of the ear. A is the outer ear. B is the middle ear. C is the inner ear. From [1] 

 

The ear may be divided into four main parts: The outer ear, the middle ear, the inner ear and 

the nerve connection to the brain. The first three parts (the peripheral parts) are shown in 

Figure 2.2.1. Part A being the outer ear, B is the middle ear and C is the inner ear. The sound 

will reach the outer ear, progress through the outer ear canal, reach the tympanic membrane 

(the ear drum), transmit the movements to the bones in the middle ear, and further transmit 

the movements to the fluid in the inner ear. The fluid movements will be transformed to 

nerve impulses from the hair cells in the inner ear and the impulses are transmitted to the 

brain through the auditory nerve. 
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Ear, hearing and speech  
 

 

2.2.1 The outer ear 
The outer ear consists of the pinna (or the auricle) and the ear canal. The Pinna plays an 

important role for our localisation of sounds sources. The special shape of pinna produces 

reflections and diffraction so that the signal that reaches the ear will be dependent on the 

direction to the sound. The pinna has common features from person to person but there are 

big individual differences in the details. Localisation of sound sources is difficult if a hearing 

protector or a crash helmet covers the pinna. The outer part of the ear canal is relatively soft 

whereas the inner part is stiff and bony. At the end of the ear canal the tympanic membrane is 

situated. The length of the ear canal is approximately 25 mm and the diameter is 

approximately 7 mm. The area is approximately 1 cm
2
. These numbers are approximate and 

vary from person to person.  

 

The ear canal may be looked upon as a tube that is closed in one end and open in the other. 

This will give resonances for frequencies where the length of the ear canal corresponds to 1/4 

of the wavelength of the sound. With a length of 25 mm and a speed of sound of 340 m/s the 

resonance frequency will be 

 

kHz
m

sm
f res 4,3

025,0*4

/340 ==  

 

This calculation is correct if the ear canal was a cylindrical tube. Most ear canals will have 

one or two bends. This implies that it is usually not possible from the outside to see the 

tympanic membrane at the end of the ear canal. It’s necessary to make the canal straighter, 

which may be done by pulling pinna upward and backwards. 

 

The tympanic membrane is found at the end of the canal. The membrane is not perpendicular 

to the axis of the ear canal but tilted approx. 30 degrees. The tympanic membrane is shaped 

like a cone with the top of the cone pointing inwards into the middle ear. The thickness is 

approx. 0.1 mm. 

 

 

2.2.2 The middle ear 
The middle ear consists of three small bones: hammer, anvil and stirrup. The Latin names are 

also often used: Malleus, Incus and Stapes. These bones are the smallest bones in the human 

body. A drawing is shown in Figure 2.2.2. The function of the middle ear is to transmit the 

vibrations of the tympanic membrane to the fluid in the inner ear. From Figure 2.2.2 it is seen 

that the hammer (Maleus, M) is fixed to the tympanic membrane (1) from the edge and into 

the centre of the membrane (the top of the cone). The anvil (Incus, I, 2) connects the hammer 

and the stirrup (Stapes, S) and the footplate of the stirrup makes the connection into the inner 

ear. This connection is sometimes called the oval window. The footplate rotates around the 

point marked (3). The middle ear is filled with air and is connected to the nose cavity (and 

thus the atmospheric pressure) through The Eustachian tube (ET, 4). The fluid in the inner 

ear is incompressible and an inwards movement of the stirrup will be equalised by a 

corresponding outward movement by the round window (5). 
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Figure 2.2.2 Drawing of the middle ear. See text for details. From [2] 

 

 

Usually the Eustachian tube is closed but opens up when you swallow or yawn. When the 

tube is open, the pressure at the two sides of the tympanic membrane is equalised. If the 

Eustachian tube becomes blocked (which is typically the case when you catch a cold) the 

equalisation will not take place and after some time the oxygen in the middle ear will be 

assimilated by the tissue and an under-pressure will build up in the middle ear. This causes 

the tympanic membrane to be pressed inwards and thus the sensitivity of the hearing is 

reduced.  

 

The chain of middle ear bones forms a lever function that - together with the area ratio 

between the tympanic membrane and the footplate of stapes - makes an impedance match 

between the air in the outer ear and the liquid in the inner ear. The lever ratio is approx. 1.3 

and the area ratio is approx. 14. The total ratio is thus 18, which corresponds to approx. 

25 dB. 

 

Two small muscles, tensor tympani (6) and stapedius (7), see Figure 2.2.2, are attached to the 

bones and will be activated by the so-called middle ear reflex. The reflex is elicited when the 

ear is exposed to sounds above approx. 70 dB SPL whereby the transmission through the 

middle ear is reduced. The reduction is about 20 dB at 125 Hz, 10 dB at 1000 Hz and less 

than 5 dB at frequencies above 2000 Hz. The middle ear reflex can to some extent protect the 

inner ear from excessive exposure. Because the reflex is activated by a signal from the brain 

there will be a delay of about 25 to 150 ms before the effect is active. The reflex has 

therefore no protective effect on impulsive sounds. 

 

 

2.2.3 The inner ear 
The inner ear consists of a snail-shell shaped structure in the temporal bone called Cochlea. 

The cochlea is filled with lymph and is closely connected to the balance organ that contains 

the three semicircular canals. There are 2.75 turns in the snail shell and the total length from 

the base to the top is 32 mm. A cross section of one of the turns is shown in Figure 2.2.3. 
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This figure shows that the cochlea is divided into three channels (latin: Scala) called scala 

vestibuli (1), scala media (2), and scala tympani (3).  

 

 

 

Figure 2.2.3 Cross section of a cochlea turn. See text for details. From [1] 

 

There are two connections (windows) from cochlea to the middle ear cavity. The oval 

window is the footplate of the stirrup and is connected to Scala Vestibuli (1). The round 

window is connected to Scala Tympani (3). The round window prevents an over-pressure to 

build up when the oval window moves inwards. Scala Vestibuli and Scala Tympani are 

connected at the top of the cochlea with a hole called Helicotrema. 

 

The Basilar membrane (6 in Figure 2.2.3) divides scala tympani from scala media. The width 

of the basilar membrane (BM) changes from about 0.1 mm at the base of the cochlea to about 

0.5 mm at the top of the cochlea (at helicotrema). The change of the BM-width is thus the 

opposite of the width of the snail shell. The function of the BM is very important for the 

understanding of the function of the ear. 

 

A structure - called the organ of Corti - is positioned on top of the Basilar Membrane in Scala 

Media. The organ of Corti consists of one row of inner hair cells (7 in Figure 2.2.3) and three 

rows of outer hair cells (8 in Figure 2.2.3).  The designations ‘inner’ and ‘outer’ refer to the 

centre axis of the snail shell which is to the left in Figure 2.2.3. The hair cells are special 

nerve cells where small hairs protrude from the top of the cells. There are approx. 3000 inner 

hair cells and about 12000 outer hair cells. A soft membrane (5 in Figure 2.2.3) covers the 

top of the hair cells. The organ of Corti transforms the movements of the Basilar membrane 

to nerve impulses that are then transmitted to the hearing centre in the brain. 

 

The inner hair cells are the main sensory cells. Most of the nerve fibres are connected to the 

inner hair cells. When sound is applied to the ear, the basilar membrane and the organ of 

Corti will vibrate and the hairs on the top of the hair cells will bend back and forth. This will 

trigger the (inner) hair cells to produce nerve impulses. 

 

The outer hair cells contain muscle tissue and these cells will amplify the vibration of the 

basilar membrane when the ear is exposed to weak sounds so that the vibrations are big 

enough for the inner hair cells to react. The amplification function of the outer hair cells is 

nonlinear which means that they have an important effect at low sound levels whereas they 
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are of almost no importance at high sound levels. The amplifier function - sometimes called 

the cochlear amplifier - is destroyed if the ear is exposed to loud sounds such as gunshots or 

heavy industrial noise. This is called a noise induced hearing loss. The amplifier function 

also deteriorates with age. This is called an age related hearing loss. 

 

 

2.2.4 The frequency analyzer at the Basilar membrane 
The basilar membrane acts like a frequency analyser. When the ear is exposed to a pure tone 

the movement of the basilar membrane will show a certain pattern and the pattern is 

connected to a certain position on the basilar membrane. If the frequency is changed, the 

pattern will not change but the position of the pattern will move along the basilar membrane. 

This is illustrated in Figure 2.2.4 for the frequencies 400 Hz, 1600 Hz and 6400 Hz. The 

400 Hz component produce BM-movement close to the top of the cochlea. 6400 Hz produces 

a similar pattern but close to the base of the cochlea. Note that a single frequency produces 

movements of the basilar membrane over a broad area. This means that even for a single 

frequency many hair cells are active at the same time. Note also that the deflection of the BM 

is asymmetrical. The envelope of the deflection (shown dotted in Figure 2.2.4) has a steep 

slope towards the low frequency side and a much less steep slope towards the high frequency 

side. The same different slopes are also found in masking thresholds and it can be shown that 

masking is closely related to the basilar membrane movements. 

 

 

 

Figure 2.2.4 Movement of the basilar membrane (b) when the ear is exposed to a combination of 400 
Hz, 1600 Hz and 6400 Hz (a). O.W.: Owal window (base of cochlea). Hel: Helicotrema (top of 
cochlea). From [3] 

 

 

The non-linear behaviour of the outer hair cells and their influence on the BM movement is 

illustrated in Figure 2.2.5. This figure shows the BM-amplitude at a certain position of the 

basilar membrane as a function of the stimulus frequency. (Note that this is different from 

Figure 2.2.4 where the amplitude is shown as a function of basilar membrane position for 

different frequencies). There are at least three nonlinear phenomena illustrated in the figure. 

 

1) At low exposure levels (20 dB) the amplitude is very selective and a ‘high’ amplitude is 

achieved only in a very narrow frequency range. For high exposure levels (80 dB) the 
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‘high’ amplitude is achieved at a much wider frequency range. Thus, the filter 

bandwidth of the auditory analyser changes with the level of the incoming sound. 

 

2) The frequency where the maximum amplitude is found change with level. At high 

levels it is almost one octave below the max-amplitude frequency at low levels.   

 

3) The maximum amplitude grows non-linearly with level. At low levels (20 dB) the 

maximum BM-amplitude is about 60 dB (with some arbitrary reference). At an input 

level of 80 dB the maximum BM amplitude is about 85 dB. In other words the change 

in the outside level from 20  dB to 80 dB, i.e., 60 dB, is reduced (compressed) to a 

change in the maximum BM-amplitude of only 25 dB. 

 

 

These non-linear phenomena are caused by the function of  the outer hair cells. The increase 

of amplitude at low levels is sometimes called ‘the cochlear amplifier’. In a typical cochlear 

hearing loss,  the outer hair cells are not functioning correctly or may be destroyed. In other 

words: The cochlear amplifier does not work. This will be seen as an elevated hearing 

threshold and this is called a hearing loss. 
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Figure 2.2.5 Movement of the Basilar membrane at a fixed point for stimulus levels from 20 dB SPL 
to 80 dB SPL. Redrawn from [4]  
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2.3 Human hearing 
The human hearing can handle a wide range of frequencies and sound pressure levels. The 

weakest audible sound level is called the hearing threshold and the sound level of the loudest 

sound is called the threshold of discomfort or the threshold of pain. 

  

2.3.1 The hearing threshold 
 

The hearing threshold is frequency dependent, see Figure 2.3.1. At 1000 Hz the threshold is 

about 2 dB SPL whereas it is about 25 dB SPL at 100 Hz and about 15 dB at 10000 Hz. 
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Figure 2.3.1 The binaural hearing threshold in a free field. From [5]  

 

 

The threshold curve in Figure 2.3.1 is measured under the following conditions: • Free field (no reflections from walls, floor, ceiling) • Frontally incoming sound (called frontal incidence) • signals are single pure tones • binaural listening (i.e. listening with both ears) • no background noise • test subjects between 18 and 25 years of age • the threshold is determined by means of either the ascending or the bracketing method 

 

The curve is the median value (not the mean) over the subject’s data. The sound pressure 

level, which is shown in the figure, is the level in the room at the position of the test subject’s 

head but measured without the presence of the test subject. This curve is also called the 

absolute threshold (in a free field) and data for the curve may be found in ISO 389-7 [6] and 

in ISO 226 [5]. 
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In ISO 389-7 also threshold data for narrow band noise in a diffuse sound field are found. 

The threshold curve is similar to the curve in Figure 2.3.1 and deviates from the pure tone 

curve only by a few dB (-2 to +6) in the frequency range 500 Hz to 16 kHz. 

 

 

2.3.2 Audiogram 
For practical use it is not convenient to measure the hearing threshold in a free or a diffuse 

sound field in the way described in the previous section. For practical and clinical purposes, 

usually only the deviation from normal hearing is of interest. Such deviations are determined 

by means of a calibrated audiometer and the result of the measurement is called an 

audiogram. 
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Figure 2.3.2 Audiogram for a typical age related hearing loss. 

 

Figure 2.3.2 shows an audiogram for a person in the frequency range 125 Hz til 8000 Hz. 

The zero line indicates the average threshold for young persons and a normal audiogram will 

give data points within 10 to 15 dB from the zero line. An elevated hearing threshold (i.e. a 

hearing loss) is indicated downwards in an audiogram and the values are given in dB HL. 

The term ‘HL’ (hearing level) is used to emphasise that it is the deviation from the average 

normal hearing threshold. 

 

The measurements are performed with headphones for each ear separately. The results from 

the left ear are shown with '×' and the results from the right ear are shown with '○'. 

 

Sound pressure level, dB SPL, and hearing level, dB HL, is not the same. An example: From 

Figure 2.3.1 it can be seen that the hearing threshold at 125 Hz is 22 dB SPL (measured in 

the way described previously). If a person has a hearing loss of 5 dB HL at this frequency the 
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threshold would be 27 dB SPL. In an audiogram the 5 dB hearing loss will be shown as a 

point 5 dB below the zero line (e.g. right ear, Figure 2.3.2). Another example: At 4000 Hz the 

free field threshold is -6 dB (see Figure 2.3.1). A hearing loss of 50 dB HL (e.g. left ear, 

Figure 2.3.2) will give a threshold of 44 dB SPL. 

 

In order for the audiometry to give correct results, the audiometer must be calibrated 

according to the ISO 389 series of standards. These standards specify the SPL values that 

shall be measured in a specific coupler (an artificial ear) when the audiometer is set to 0 dB 

HL. The values in the standards are headphone specific, which means that the audiometer 

ust be recalibrated if the headphone is exchanged with another headphone.  m 
Table 2.3.1 shows reference values for two headphones commonly used in audiometry. 

 

 
 
F, Hz 

 
125 

 
250 

 
500 

 
1k 

 
2k 

 
3k 

 
4k 

 
6k 

 
8k 

 
10k 

 
12,5k 

 
14k 

 
16k 

 
TDH 39 
HDA 200 

 
45,0 
30,5 

 
25,5 
18,0 

 
11,5 
11,0 

 
7,0 
5,5 

 
9,0 
4,5 

 
10,0 
2,5 

 
9,5 
9,5 

 
15,5 
17,0 

 
13,0 
17,5 

 
- 
22,0 

 
- 
28,0 

 
- 
36,0 

 
- 
56,0 

 

Table 2.3.1. Calibration values in dB SPL for a Telephonics TDH 39 earphone and a Sennheiser HDA 
200 earphone. The TDH 39 earphone can not be used above 8 kHz. The TDH 39 data are from ISO 
389-1 [7]. The HDA 200 data are from ISO 389-5 [8] and ISO 389-8 [9]. 

 

 

 

2.3.3 Loudness Level 
The definition of loudness levels is as follows: For a given sound, A, the loudness level is 

defined as the sound pressure level (SPL) of a 1000-Hz tone which is perceived equally loud 

as sound A. The unit for loudness level is Phon (or Phone). In order to measure loudness 

level a 1 kHz tone is needed and this tone should then be adjusted up and down in level until 

it is perceived just as loud as the other sound. When this situation is achieved, the sound 

pressure level of the 1 kHz tone is per definition equal to the loudness level in phone. For a 

1000-Hz tone the value in dB SPL and in Phone will be the same. 

 

The loudness level for pure tones has been measured for a great number of persons with 

normal hearing under the same conditions as for the absolute threshold (Figure 2.3.1). The 

result is shown in Figure 2.3.3.  
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Figure 2.3.3 Equal loudness level contours. Redrawn from [5] 

 

Some examples, see Figure 2.3.3: A 4000-Hz tone at 26 dB SPL will be perceived with the 

same loudness as a 1000-Hz tone at 30 dB SPL and thus the loudness level of the 4000 Hz 

tone is 30 Phone. A 125-Hz tone at 90 dB SPL will have a loudness level of 80 Phone. 

 

The curves in Figure 2.3.3 are - in principle - valid only for the special measurement situation 

where the tones are presented one at a time. They should not be used directly to predict the 

perception of more complicated signals such as music and speech because the curves do not 

take masking and temporal matters into account. Reflections in a room are not taken into 

account either. 

 

Translations of Loudness Level: 

Danish:  Hørestyrkeniveau (enhed: Phon) 

German:  Lautstärkepegel (Einheit: Phon) 

French:  Niveau de Sonie.  

 

 

 

 

 

2.4 Masking 
The term ‘Masking’ is used about the phenomenon that the presence of a given sound (sound 

A) can make another sound (sound B) inaudible, in other words A masks B or B is masked 

by A. Masking is a very common phenomenon which is experienced almost every day, e.g. 

when you need to turn down the radio in order to be able to use the telephone.  

 

The situation described above is also called simultaneous masking because both the masking 

signal and the masked signal are present at the same time. This is not the case in backward 

and forward masking. Backward and forward refer to time. E.g. forward masking means 

masking after a signal has stopped (i.e. forward in time). Simultaneous masking is best 
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described in the frequency domain and is closely related to the movements of the Basilar 

membrane in the inner ear. 

 

The masking phenomenon is usually investigated by determining the hearing threshold for a 

pure tone when various masking signals are present. The threshold determined in this 

situation is called the masked threshold contrary to the absolute threshold. 

 

 

2.4.1 Complete masking 
If the ear is exposed to white noise, the hearing threshold (i.e. masked threshold) will be as 

shown in Figure 2.4.1 where also the absolute threshold is shown. The masked threshold is 

shown for different levels of the white noise. 

 

 

Figure 2.4.1 Masking from white noise. The curves show the masked threshold for different spectrum 
levels of white noise. From [3] 

 

 

The masked thresholds are almost independent of frequency up to about 500 Hz. Above 

500 Hz the threshold increases by about 10 dB per decade (= 3 dB/octave). A 10-dB change 

in the level of the noise will also change the masked threshold by 10 dB. 

 

If a narrow band signal is used instead of the white noise, the masked threshold will be as 

shown in Figure 2.4.2. Here the masked threshold is shown for a narrow band signal centred 

at 250 Hz, 1 kHz and 4 kHz respectively. Generally the masking curves have steep slopes 

(about 100 dB/octave) towards the low frequency side and less steep slopes (about 

60 dB/octave) towards the high frequency side. 
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Figure 2.4.2 Masking from narrow band noise. The curves show the masked threshold when the ear is 
exposed to narrow band noise (critical band noise) at 250 Hz, 1 kHz and 4 kHz respectively. From 
[3] 

 

 

The masking curves for narrow band noise are very level dependent. This is illustrated in 

Figure 2.4.3. The slope at the low frequency side is almost independent of level but the slope 

at the high frequency side depends strongly on the level of the narrow band noise. The dotted 

lines near the top of the curves indicate experimental difficulties due to interference between 

the noise itself and the pure tone used to determine the masked threshold. 

 

 
Figure 2.4.3 The influence of level on the masked threshold. The slope towards higher frequencies 
decreases with increasing level, i.e. masking increases non-linearly with level. From [3] 

 

The masked threshold for narrow band noise is mainly caused by the basilar membrane 

motion. The different slopes towards the low and the high frequency side are also seen here 

and also the nonlinear level dependency is seen. Compare with Figure 2.2.4. 
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2.4.2 Partial masking 
The term ‘Complete masking’ is used when the presence of a given sound (sound A) can 

make another sound (sound B) inaudible. Partial masking is a situation where sound A 

influences the perception of sound B even though sound B is still audible. The influence is 

mainly seen in the loudness of sound B. 

 

An example: When you listen to a standard car-radio while you are driving at, e.g. 100 km/h, 

you will adjust the level of the radio to a comfortable level. There will be some background 

noise from the engine, the tires, and the wind around the car (at least in ordinary cars). Then, 

when you come to a crossing or a traffic light and have to stop you will hear that the radio-

volume is much too high. This is an example of partial masking where the background noise 

masks part of the radio signal and when the background noise disappears the masking 

disappears too and the radio signal becomes louder than before. (Some modern car radios are 

equipped with a speed dependent automatic level control. The example above is therefore not 

fully convincing in this situation.) 

 

 

2.4.3 Forward masking 
It has been shown that a strong sound signal can mask another (weak) signal which is 

presented after the strong signal. This kind of masking goes forward in time and is therefore 

called forward masking. The effect lasts for about 200 ms after the end of the strong signal.  

 

Forward masking is also called post-masking. 

 

2.4.4 Backward masking 
It has been shown that a strong sound signal can mask another (weak) signal which appears 

before the strong signal. This kind of masking goes back in time and is therefore called 

backward masking. The effect is restricted to about 20 ms before the start of the strong 

signal.  

 

Backward masking is also called pre-masking. 
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2.5 Loudness 
The term ‘loudness’ denotes the subjective perception of strength or powerfulness of the 

sound signal. The unit for loudness is Son or Sone. Note that ‘loudness’ and ‘loudness level’ 

are two different concepts. Translation of terms:  

 

 Loudness Loudness Level 
Danish Hørestyrke Hørestyrkeniveau 

German Lautheit Lautstärkepegel 

French Sonie Niveau de Sonie 

 

 

2.5.1 The loudness curve 
The Sone scale was established in order to avoid the confusion between dB SPL values and 

the perception of loudness: A 1 kHz tone at 80 dB SPL is not perceived double as loud as the 

same tone at 40 dB SPL. Figure 2.5.1 shows the relation between the Sone and the Phone 

scales. (Hint: for a 1 kHz tone, phone and dB SPL is the same number). Arbitrarily it has 

been decided that one sone should correspond to 40 phones. The curve is based on a great 

number of loudness comparisons. The curve is called a loudness curve. 

 

 

 

Figure 2.5.1 The loudness curve for a normal hearing test subject (solid line) and for a person with a 
cochlear hearing loss (dashed) 
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The straight part of the solid line in Figure 2.5.1 corresponds to Stevens’ power law: 

 
10/)40(2 −= LN  

 

where N is the loudness (in sone) and L is the loudness level ( in phones). The curve shows 

that a doubling of the loudness corresponds to a 10-phone increase in loudness level (or a 10-

dB increase in SPL if we are dealing with a 1 kHz tone).  For many daily life sounds a rule of 

thumb says that a 10-dB increase is needed in order to perceive a doubling of the loudness. 

 

The loudness curve becomes steeper near the hearing threshold. This is also the case for a 

person with a cochlear hearing loss (e.g., the very common hearing impairment caused by 

age). An example of such a hearing loss is shown by the dashed curve in Figure 2.5.1 where 

the threshold (1 kHz) is a little less than 40 dB SPL. The steeper slope means that - near the 

threshold - the loudness increases rapidly for small changes in the sound level. This effect is 

called loudness recruitment. Recent research have shown that – for this kind of hearing loss – 

the loudness at threshold has a value significantly different from nil as indicated in the figure 

[10]. In other words, listeners with cochlear hearing loss have softness imperception, rather 

than loudness recruitment. Note that at higher sound levels the loudness perception is the 

same for both normal and impaired listeners. 

 

2.5.2 Temporal integration 
The perception of loudness needs some time to build up. This means that short duration 

sounds (less than one second) are perceived as less loud than the same sound with longer 

duration. The growth of loudness as a function of duration is called temporal integration. The 

growth resembles the exponential growth of a time constant. It has been shown that the time 

constant is about 100 ms. 

 

Short sounds - like a pistol shot, fireworks, handclap, etc. - are perceived as weak sounds 

although their peak sound pressure levels may be well above 150 dB SPL. This is one of the 

reasons why impulsive sounds generally are more dangerous than other sounds. 

 

 

2.5.3 Measurement of loudness 
Many years ago it was thought that a sound level meter with filters corresponding to the ears’ 

sensitivity (described by the equal loudness level contours (Figure 2.3.3)) could be used to 

easure loudness. This is not the case. m  
Figure 2.5.2 show the characteristics for the commonly used A- and C- filters, but due to 

masking and other phenomena these filters will not give a result that corresponds to loudness. 

For the determination of loudness, special calculation software is needed. For stationary 

sounds two procedures can be found in [11]. For non-stationary sound, loudness calculations 

are found in professional Sound Quality calculation software. For research purposes loudness 

models (software) can be found on the Internet (e.g. at  

http://hearing.psychol.cam.ac.uk/Demos/demos.html ) 
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Figure 2.5.2 Filter characteristics for the A, C and D filter. The data for the A and the C filter are 
from [12]. The data for the D filter is from [13]. 

 

 

 

The main effect of the A-filter is that it attenuates the low frequency part of the signal. The 

attenuation is e.g. 20 dB at 100 Hz and 30 dB at 50 Hz. Wind noise and other low frequency 

components are attenuated by the A-filter and is therefore very practical for many noise 

measurement situations.  

 

The C-filter is ‘flat’ in the major part of the audible frequency range. It may me used as an 

approximation to a measurement with linear characteristic. 

 

The D-filter is mainly used in connection with evaluation of aircraft noise. The frequency 

range around 3 kHz is known to be annoying and therefore this frequency range is given a 

higher weight.  
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2.6 The auditory filters 
The movements of the basilar membrane in the inner ear constitute a frequency analyser 

where the peak of the envelope moves along the basilar membrane as a function of 

frequency. See Figure 2.2.4. The width of the envelope peak may be seen as an indication of 

the selectivity of the analyser filter and it has been common practice to describe the 

frequency selectivity of the ear as a set of filters, a filter bank, which cover the audible 

frequency range. It should be noted though that the concept of a filter bank is a very coarse 

description and should be seen as a typical engineering approximation to the real situation. 

 

Frequency selectivity is important for the perception of the different frequencies in complex 

sound signals such as speech and music. We rely e.g. on our frequency selectivity when we 

distinguish different vowels from each other. 

 

The concept of frequency discrimination is different from frequency selectivity. Frequency 

discrimination is the ability to hear the difference between two tones that are close in 

frequency (one frequency at a time). 

 

 

2.6.1 Critical bands 
The bandwidth of the filters in the filter bank can be determined by means of various 

psychoacoustic experiments. Many of these are masking experiments and led to the 

formulation of the critical band model. It is outside the scope of the present text to go into 

the background and the details of this model.  

 

The results of the investigations are shown in Figure 2.6.1. It is seen that the bandwidth 

(Critical Bands) is almost constant at 100 Hz up to a centre frequency of about 500 Hz and 

above this frequency the bandwidth increases. The increase in bandwidth above 500 Hz is 

similar to the increase in bandwidth for one-third-octave filters. 

 

 

The critical bandwidth may be calculated from the empirical formula: 

 
69,02 )4,11(7525 fCB ++=  

 

where CB is the bandwidth in Hz of the critical band and f is the frequency in kHz (not in 

Hz).  
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Figure 2.6.1 Bandwidth of critical bands and Equivalent Rectangular bandwidth, ERB. The 
bandwidth of 1/3-octave filters (straight line) is shown for comparison. The curves are computed from 
the formulas given in the text.  

 

If the audible frequency range is ‘filled up’ with consecutive critical bands from the lowest 

frequency to the highest frequency, it is seen that 24 critical bands will cover the whole 

frequency range. Each of the ‘filters’ has been given a number called Bark. Bark number one 

is the band from zero to 100 Hz; Bark number two is the band from 100 Hz to 200 Hz, etc. 

Band no. 8 has a centre frequency of 1000 Hz and goes from 920 Hz to 1080 Hz. The band 

around 4000 Hz is no. 17 and has a bandwidth of 700 Hz. 

 

The critical bands are not fixed filters similar to the filters in a physical filter bank as the 

numbers given above may indicate. The critical bands are a result of the incoming sound 

signal and as such much more ‘flexible’ than physical filters would be. 

 

 

2.6.2 Equivalent Rectangular Bands 
The auditory filters have also been determined by means of notched noise measurements 

where the threshold of a pure tone is determined in the notch of a broadband noise as a 

function of the width of the notch. This leads to the concept of equivalent rectangular 

bandwidth, i.e. the bandwidth of a rectangular filter that transmits the same amount of energy 

as the auditory filter. The bandwidth of such rectangular filters is shown in Figure 2.6.1 as a 

function of centre frequency. 

 

The rectangular bandwidth may be calculated from the empirical formula: 

 
)137,4(7,24 += fERB  

 

where ERB is the bandwidth in Hz and f is the centre frequency in kHz. 
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2.7 Speech 
A speech signal is produced in the following way. Air is pressed from the lungs up through 

the vocal tract, through the mouth cavities and/or the nose cavities and the sound is radiated 

from the mouth and the nose. The vocal folds will vibrate when voiced sounds are produced. 

 

 

2.7.1 Speech production 
A schematic illustration of the production of voiced sounds is given in Figure 2.7.1 where the 

vocal folds vibrate. The source spectrum is a line spectrum where the distance between the 

lines corresponds to the fundamental frequency. The fundamental frequency is around 

125 Hz for men, around 250 Hz for woman and around 300 for children, but there are big 

individual variations. There are thus more lines in a male spectrum compared to a female. 

The source spectrum decreases with the square of the frequency (1/f
2
). The source spectrum 

is transformed by the ‘tube’ consisting of trachea, throat (pharynx) and the mouth. This 

structure is simulated in Figure 2.7.1 by a cylindrical tube of length 17 cm.  

 

 

Figure 2.7.1 The principle of vowel generation. From [14] 

 

The tube has pronounced resonances (where the length of the tube corresponds to the odd 

multiples of 1/4 wavelength) indicated by the peaks at 500, 1500 and 2500 Hz. The final 

spectrum radiated from the mouth is then the product of the two spectra. The final spectrum 

is a line spectrum with characteristic peaks caused by the transfer function. The peaks are 

called formants and the formants are positioned differently for each vowel. Table 2.7.1 shows 

the formants frequencies (in round numbers) for the three most different vowels. The sounds 

are /i/: as in eve, /a/ as in father, /u/ as in moon. There are individual differences from person 

to person. 
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/i/ 

 

/a/ 

 

/u/ 

 

1. formant 

2. formant 

3. formant 

 

225 

2200 

3000 

 

700 

1200 

2500 

 

250 

700 

2200 

Table 2.7.1 Formant frequencies in Hz of the vowels /i/, /a/ and /u/. 

 

The unvoiced sounds are produced in many different ways, e.g. by pressing air out through 

the teeth /s/, out between the lips and the teeth /f/, by sudden opening of the lips /p/, sudden 

opening between tongue and teeth /t/ and between tongue and palate /k/. These sounds are 

called unvoiced because the vocal folds do not vibrate but stays open in order for the air to 

pass. 

 

 

2.7.2 Speech spectrum, speech level 
A general long-term speech spectrum is shown in Figure 2.7.2 that is based on the average of 

18 speech samples from 12 languages.  

 

The spectrum is a one-third octave spectrum which means that the curves are tilted 

3 dB/octave compared to the result of a FFT-calculation. (The result of a FFT is a density 

spectrum). 

 

It is worth to note that the speech spectrum is almost independent of the language. This is not 

surprising when the speech production mechanism is taken into account. The spectrum in 

Figure 2.7.2 is based on English (several dialects), Swedish, Danish, German, French 

(Canadian), Japanese, Cantonese, Mandarin, Russian, Welsh, Singhalese and Vietnamese. A 

total of 392 talkers participated in the investigation. 

 

The spectrum for women falls off below 200 Hz because their fundamental frequency 

typically is around 250 Hz. The maximum is found around 500 Hz for both gender and above 

500 Hz the two curves are almost identical. The slope above 500 Hz is approximately minus 

10 dB per decade (or -3 dB/octave). 
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Figure 2.7.2 The long-term speech spectrum for male and female speech shown as a 1/3-octave 
spectrum. For comparison a line with slope –3 dB per octave (= –10 dB per decade) is shown. 
Redrawn from [15] 

 

 

 

The average level of male speech is about 65 dB SPL, measured at 1 m in front of the mouth. 

For women the level is typically 3 dB lower, i.e. 63 dB. (Compare the number of lines in the 

spectrum). During normal speech the level will vary ±15 dB around the mean value. 

 

 

2.7.3 Speech intelligibility 
The speech intelligibility of a transmission system is usually measured by means of a list of 

words (or sentences) where the percentage of correctly understood words gives the 

intelligibility score. The transmission system could be almost anything, e.g. a telephone line 

or a room. The intelligibility depends on the word material (sentences, single words, 

numbers, etc.), the speaker, the listener, the scoring method and the quality of the 

transmission system. 

 

Often the intelligibility score is given as a function of the signal-to-noise ratio. An example 

of this is shown in Figure 2.7.3 for the word-material on the Dantale CD. This CD contains 

eight tracks of 25 words each. The words are common Danish single-syllable words that are 

distributed phonetically balanced over the eight lists so that the lists can be regarded as 

equivalent. The words are recorded on the left channel of the CD and on the right channel a 

noise signal is recorded with (almost) the same spectrum as the words. The noise signal is 

amplitude modulated in order to make it resemble normal speech. The Dantale CD is 

described in [16] 

 

The result in Figure 2.7.3 is obtained with the words and the noise on the Dantale CD with 

untrained Danish normal hearing listeners. It is seen that even at a signal-to-noise ratio of 
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0 dB almost all words are understood. It is also seen that an increase of just 10 dB in SNR 

can change the situation from impossible to reasonable, e.g. from  -15 dB (10%) to - 5 dB 

(70%). It is a general finding that such a relatively small improvement of the signal-to-noise 

ratio can improve the intelligibility situation dramatically. In other words, if the background 

noise in a room is a problem for the understanding of speech in the room, then just a small 

reduction of the background noise will be beneficial. 
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Figure 2.7.3 Word score for the speech material DANTALE as a function of speech-to-noise ratio 
(SNR). Redrawn from [17] 

 

It is time consuming and complicated to measure speech intelligibility with test subjects. 

Therefore measurement and calculation methods have been developed for the estimation of 

the expected speech intelligibility in a room or on a transmission line. 

 

Articulation Index, AI [18]: Determination of the signal-to-noise ratio in frequency bands 

(usually one octave or one-third octave). The SNR values are weighted according to the 

importance of the frequency band. The weighted values are added and the result normalised 

to give an index between zero and one. The index can then be translated to an expected 

intelligibility score for different speech materials. 

 

Speech Intelligibility Index, SII [19]: This method is based on the AI principle, but the 

weighting functions are changed and a number of ‘corrections’ to the AI-method are 

implemented. One of these is the correction for the change in speech spectrum according to 

the vocal effort (shouting, raised voice, low voice). 

 

Speech Transmission Index, STI [20]: In this method the modulation transfer function, MTF, 

from the source (the speaker) to the receiver (the listener) is determined. The MTF is 

determined for octave bands of noise (125 Hz to 8 kHz) and for a number of modulation 
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frequencies (0,63 Hz to 12,5 Hz). The reduction in modulation is transformed to an 

equivalent signal-to-noise ratio and as in the AI method these values are added and 

normalised in order to yield an index between zero and one. The index can then be translated 

to an expected intelligibility score for different speech materials. 

 

Rapid Speech Transmission Index, RASTI [21]: This is an abbreviated version of STI. Only 

the frequency bands 500 Hz and 2 kHz and only nine different modulation frequencies are 

used. The result is an index which is used in the same way as in STI. 
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3. An introduction to room acoustics 
Jens Holger Rindel 
 

3.1 SOUND WAVES IN ROOMS 

3.1.1 Standing waves in a rectangular room 
A rectangular room has the dimensions lx, ly, and lz. The wave equation can then be written 
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where p is the sound pressure and k = ω /c is the angular wave number, ω is the angular 
frequency and c is the speed of sound in air. The equation can be solved by separation of the 
variables and it is assumed that the solution can be written in the form: 
  tzZyYxXp ωje)()()( ⋅⋅⋅=
Insertion in (3.1.1) and division by p gives 
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This can be separated, and for the x-direction it yields 

 0
1 2

2

2 =+∂
∂

xk
x

X

X
 

Similar equations hold for the y- and z-directions. The angular wave number k has been divided 
into three  
          (3.1.2) 2222

zyx kkkk ++=
The general solution to the above one-dimensional equation is 
 )cos()( xxx xkCxX ϕ+=  

in which the constants Cx and ϕx are determined from the boundary conditions. 
 
The room surfaces are now assumed to be rigid, i.e. the normal component of the particle velocity 
is zero at the boundaries 
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This means that ϕx = 0 and 
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 where  nx = 0, 1, 2, 3, …      (3.1.3) 

Two similar boundary conditions hold for the y- and z-directions. With these conditions the 
solution to (3.1.1) is 
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The time factor ejωt is understood. The amplitude of the sound pressure does not move with time, 
so the waves that are solutions to (3.1.4) are called standing waves. They are also called the 
modes of the room, and each of them is related to a certain natural frequency (or eigenfrequency) 
given by  
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The modes can be divided into three groups: 
Axial modes are one-dimensional, only one of nx, ny, nz is > 0. 
Tangential modes are two-dimensional, two of nx, ny, nz are > 0. 
Oblique modes are three-dimensional, all three of nx, ny, nz are > 0. 
 
Some examples are shown in Fig. 3.1.1. It is observed that the set of numbers (nx, ny, nz) indicate 
the number of nodes (places with p = 0) along each coordinate axis.  
 
 

 
Figure 3.1.1. Examples of room modes. (2,0,0) is one-dimensional and (2,1,0) is two-
dimensional. The lines are iso-sound pressure amplitude curves.
 
 

nx ny nz fn (Hz) 
0 1 0 25 
1 0 0 30 
0 0 1 36 
1 1 0 39 
0 1 1 43 
1 0 1 47 
0 2 0 49 
1 1 1 53 
1 2 0 58 
2 0 0 60 
0 2 1 61 
2 1 0 65 
1 2 1 68 
2 0 1 70 
0 0 2 72 

 
Table 3.1.1. Calculated natural frequencies at low frequencies using (3.1.5) in a rectangular 
room with dimensions 5.7 m, 7.0 m, 4.8 m. 
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3.1.2 Transfer function in a room 
The transfer function is the frequency response from a source position to a receiver position in a 
room. A measured transfer function is shown in Fig. 3.1.2. It fluctuates very much with frequency 
and the maxima can be identified as the natural frequencies of the room. The example in Fig. 
3.1.2 has the same room dimensions as was used for the calculations in Table 3.1.1. 
 
 

 
Figure 3.1.2. Transfer function in a rectangular room. At low frequencies it is possible to identify 
the modes by their modal numbers. 
 

3.1.3 Density of natural frequencies 
A closer inspection of equation (3.1.5) shows that the natural frequencies of a rectangular room 
may be interpreted in a geometrical way. A three-dimensional frequency space is shown in Fig. 
3.1.3. The natural frequencies of the one-dimensional modes are marked on each of the axes, 
representing the axial modes of the length, the width and the height, respectively. The interesting 
observation is now that the points in the grid represent the oblique modes, and the distance to 
each point from the origin is the natural frequency of that mode. So, the number of oblique modes 
below a certain frequency f is equal to the number of grid points inside the sphere with radius f.  
 
The volume is 1/8 of the sphere with radius f, i.e. (4 π f 3 / 3) / 8 = π f 3 / 6. Each mode occupies a 
volume c3 / (8 lx ly lz) = c3 / (8 V). So, the number of oblique modes below f is approximately: 
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The tangential modes are found in the plane between two of the axes. If these and the axial modes 
are also taken into account, the number of modes with natural frequencies below the frequency f 
is: 
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V is the volume of the room, S = 2( lx ly + lx lz + ly lz) is the total area of the surfaces, and L = 4 (lx 
+ l y + lz) is the total length of all edges. It should be noted that the modal points of the tangential 
and axial modes in Fig. 3.1.3 are located on the coordinate planes and axes, respectively. 
Therefore we count the tangential points only as halves and those on the axes only as quarters. 
 
At high frequencies the oblique modes dominate, and the first term in (3.1.6) is a good 
approximation for any room, not only for rectangular rooms.  
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Figure 3.1.3. Frequency-grid, in which each grid point represents a room mode.
 
The modal density is the average number of modes per hertz. 
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In Fig. 3.1.4 this is compared to the actual modal density in a room. For high frequencies it is 
sufficient to use the first term (oblique modes) for the modal density: 
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Figure 3.1.4. Modal density as a function of frequency. Actual number of modes per 10 Hz in a 
rectangular room and estimated by (3.1.7). 
 

3.2 STATISTICAL ROOM ACOUSTICS 

3.2.1 The diffuse sound field 
In this chapter the acoustical behaviour of a room is treated from a statistical point of view, based 
on energy balance considerations. It is assumed that the modal density is high enough, so the 
influence of single modes in the room can be neglected. It is also assumed that the reflection 
density is high enough, so the phase relations between individual reflections can be neglected. 
This means that the reflections in the room are assumed to be uncorrelated and their contribution 
can be added on an energy basis. 
 
The diffuse sound field is defined as a sound field in which: 
The energy density is the same everywhere 
All directions of sound propagation occur with the same probability  
 
It is obvious that the direct sound field near a sound source is not included in the diffuse sound 
field. Neither are the special interference phenomena that are known to give increased energy 
density near the room boundaries and corners. The diffuse sound field is an ideal sound field that 
does not exist in any room. However, in many cases the diffuse sound field can be a good and 
very practical approximation to the real sound field.  
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3.2.2 Incident sound power on a surface 
In a plane propagating sound wave the relation between rms sound pressure p1 and sound 
intensity I1 is 
  cIp ρ⋅= 1

2
1

In a diffuse sound field the rms sound pressure pdiff is the result of sound waves propagating in all 
directions, and all having the sound intensity I1. By integration over a sphere with the solid angle ψ = 4π the rms sound pressure in the diffuse sound field is 
       (3.2.1) cIcIpdiff ρπψρ
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In the case of a plane wave with the angle of incidence θ  relative to the normal of the surface, the 
incident sound power per unit area on the surface is 
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where pdiff  is the rms sound pressure in the diffuse sound field. This is just the sound intensity in 
the plane propagating wave multiplied by the cosine, which is the projection of a unit area as seen 
from the angle of incidence, see Fig. 3.2.1. 
 
 

 pdiff p1

 
 
 
 
 
 
 

 I inc Iθθ 

ba 

 
 
 
 
 
 
 
 
Figure 3.2.1. a: Plane wave at oblique incidence on a surface. b: Diffuse incidence on a surface. 
 
The total incident sound power per unit area is found by integration over all angles of incidence 
covering a half sphere in front of the surface, see Fig. 3.2.2. The integration covers the solid angle ψ = 2π. 
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It is noted that this is four times less than in the case of a plane wave of normal incidence.  
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Figure 3.2.2. Definition of angles of incidence in a diffuse sound field. 
 
 

3.2.3 Equivalent absorption area 
The absorption coefficient α is defined as the ratio of the non-reflected sound energy to the 
incident sound energy on a surface. It can take values between 0 and 1, and α = 1 means that all 
incident sound energy is absorbed in the surface. An example of a surface with absorption 
coefficient, α = 1 is an open window.  
 
The product of area and absorption coefficient of a surface material is the equivalent absorption 
area of that surface, i.e. the area of open windows giving the same amount of sound absorption as 
the actual surface. The equivalent absorption area of a room is 
 

m
i

ii SSSSA αααα =++== ∑ .....2211       (3.2.4) 

where S is the total surface area of the room and αm is the mean absorption coefficient. The unit 
of A is m2. In general, the equivalent absorption area may also include sound absorption due to 
the air and due to persons or other objects in the room. 

3.2.4 Energy balance in a room 
The total acoustic energy in a room is the sum of potential energy and kinetic energy, or twice the 
potential energy, since the time average of the two parts must be equal. The total energy E is the 
energy density multiplied by the room volume V: 
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Here and in the following, p denotes the rms sound pressure in the diffuse sound field (called pdiff 
in section 3.2.2). The energy absorbed in the room is the incident sound power per unit area 
(3.2.3) multiplied by the total surface area and the mean absorption coefficient, i.e. the equivalent 
absorption area (3.2.4), 
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If Pa is the sound power of a source in the room, the energy balance equation of the room is 
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With a constant sound source a steady state situation is reached after some time, and the right side 
of the equation is zero. So, the absorbed power equals the power emitted from the source, and the 
steady state sound pressure in the room is 
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This equation shows that the sound power of a source can be determined by measuring the sound 
pressure generated by the source in a room, provided that the equivalent absorption area of the 
room is known. It also shows how the absorption area in a room has a direct influence on the 
sound pressure in the room. For some cases it is more convenient to express eq. (3.2.8) in terms 
of the sound pressure level Lp and the sound power level LW , 
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where A0 = 1 m2 is a reference area. The approximation comes from neglecting the term with the 
constants and reference values 
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3.2.5 Reverberation time. Sabine´s formula 
If the sound source is turned off after the sound pressure has reached the stationary value, the first 
term in the energy balance equation (3.2.7b) is zero, and the rms sound pressure is now a function 
of time: 
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The solution to this equation can be written 
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where ps
2 is the mean square sound pressure in the steady state and t = 0 is the time when the 

source is turned off. It is seen that the mean square sound pressure, and hence the sound energy, 
follows an exponential decay function. On a logarithmic scale the decay is linear, and this is 
called the decay curve, see Fig. 3.2.3.  
 
If instead the source is turned on at the time t = 0, the sound build-up in the room follows a 
similar exponential curve, also shown in Fig. 3.2.3. 
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Figure 3.2.3. Build-up and decay of sound in a room. Here the source is turned on a t = 0 and 
turned off at t = 1 s. Top: linear scale (sound pressure squared). Bottom: logarithmic scale (dB). 
 
The reverberation time T60 is defined as the time it takes for the sound energy in the room to 
decay to one millionth of the initial value, i.e. a 60 dB decay of the sound pressure level. Hence, 
for t = T60 , 
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So, the reverberation time is 
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This is Sabine’s formula named after Wallace C. Sabine, who introduced the reverberation time 
concept around 1896. He was the first to demonstrate that T60 is inversely proportional to the 
equivalent absorption area A.  
 
Note: Sabine’s formula is often written as T60 = 0.16 V/A. However, this implies that V must be in 
m3 and A in m2.  
 

3.2.6 Stationary sound field in  a room. Reverberation distance 
A reverberation room is a special room with long reverberation time and a good diffusion. In 
such a room the diffuse sound field is a good approximation, and the results for stationary 
conditions (3.2.8) and for sound decay (3.2.13) can be applied to measure the sound power of a 
sound source: 
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The reverberation time and the average sound pressure level in the reverberation room are 
measured, and the sound power level is calculated from 
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      (3.2.15) 

where V0 = 1 m3 and t0 = 1 s. 
 
In most ordinary rooms the diffuse sound field is not a good approximation. Each of the 
following conditions may indicate that the sound field is not diffuse 
 
An uneven distribution of sound absorption on the surfaces, e.g. only one surface is highly 
absorbing 
A lack of diffusing or sound scattering elements in the room 
The ratio of longest to shortest room dimension is higher than three 
The volume is very large, say more than 5000 m3

 

A rather simple modification to the stationary sound field is to separate the direct sound. The 
sound power radiated by an omni-directional source is the sound intensity at the distance r in a 
spherical sound field multiplied by the surface area of a sphere with radius r  
           (3.2.16) 24 rIP ra π⋅=
Thus, the sound pressure squared of direct sound in the distance r from the source is 

 c
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The stationary sound is described by (3.2.8) 

 c
A

P
p a

s ρ42 =  

The reverberation distance rrev is defined as the distance where pdir
2 = ps

2 when an omni-
directional point source is placed in a room. It is a descriptor of the amount of absorption in a 
room, since the reverberation distance depends only on the equivalent absorption area 
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rrev 14.0
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At a distance closer to the source than the reverberation distance, the direct sound field 
dominates, and this is called the direct field. At longer distances the reverberant sound field 
dominates, and in this so-called far field the stationary, diffuse sound field may be a usable 
approximation.  
 
An expression for the combined direct and diffuse sound field can derived by simple addition of 
the squared sound pressures of the two sound fields. However, since the direct sound is treated 
separately, it should be extracted from the energy balance equation, which was used to describe 
the diffuse sound field. To do this, the sound power of the source should be reduced by a factor of 
(1 - αm), which is the fraction of the sound power emitted to the room after the first reflection. So, 
the squared sound pressure in the total sound field is 
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Normal sound sources like a speaking person, a loudspeaker or a musical instrument radiate 
sound with different intensity in different directions. The directivity factor Q is the ratio of the 
intensity in a certain direction to the average intensity,  
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So, the squared sound pressure of the direct sound is 
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This leads to a general formula for the sound pressure level as a function of the distance from a 
sound source in room. 
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where A0 = 1 m2. In a reverberant room with little sound absorption (say, αm < 0.1) the sound 
pressure level in the far field will be approximately as predicted by the diffuse field theory, i.e. 
the last term will be close to zero. In the case of a highly directive sound source like a trumpet (Q  
>> 1) the direct field can be extended to distances much longer than the reverberation distance. In 
the latter situation the last term in (3.2.23) raises the sound pressure level above the diffuse field 
value. 

 
 
Figure 3.2.4. Relative sound pressure level as a function of distance in a room with 
approximately diffuse sound field. The source has a directivity factor of one. The parameter on 
the curves is A / (1 - αm) in m2. 
 
In large rooms with medium or high sound absorption (say, αm > 0.2) the sound pressure level 
will continue to decrease as a function of the distance, because the diffuse field theory is not valid 
in such a room. Instead, the slope of the spatial decay curve may be taken as a measure of the 
degree of acoustic attenuation in a room. So, in large industrial halls the attenuation in dB per 
doubling of the distance may be a better descriptor than the reverberation time. 

 91



3.3 GEOMETRICAL ROOM ACOUSTICS 

3.3.1 Sound rays and a general reverberation formula 
In geometrical acoustics rays are used to describe the sound propagation. The concept of rays 
implies that the wavelength and the phase of the sound are neglected, and only the direction of 
sound energy propagation is treated in geometrical acoustics.  
 
The sound decay shall now be studied by following a plane wave travelling as a ray from wall to 
wall, see Fig. 3.3.1. The energy of the wave is gradually decreased due to absorption at the 
surfaces, all of which are assumed to have the mean absorption coefficient αm. 
 
The ray representing a plane wave may start in any direction and it is assumed that the decay of 
energy in the ray is representative for the decay of energy in the room. The room may have any 
shape. 

 
Figure 3.3.1. A plane wave travelling as a ray from wall to wall in a room. 
 
By each reflection the energy is reduced by a factor (1 - αm). The initial sound pressure is p0 and 
after n reflections the squared sound pressure is 
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The distance of the ray from one reflection to the next is l i and the total distance traveled by the 
ray up to the time t is 
          (3.3.2) m

i
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where lm is the mean free path. So, the squared sound pressure is 
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When the squared sound pressure has dropped to 10- 6 of the initial value, the time t is by 
definition the reverberation time T60: 
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This leads to an interesting pair of general reverberation formulas: 
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The last approximation is valid if αm < 0.3, i.e. only in rather reverberant rooms. The 
approximation comes from: 
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With the assumption that all directions of sound propagation appear with the same probability, it 
can be show (Kosten, 1960) that the mean free path in a three-dimensional room is 

 
S

V
lm

4=  (3-dimensional)       (3.3.5) 

where V is the volume and S is the total surface area.  
 
Similarly, the mean free path in a two-dimensional room can be derived. This could be the 
narrow air space in a double wall, or structure-borne sound in a plate. The height or thickness 
must be small compared to the wavelength. In this case the mean free path is 
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where Sx is the area and U is the perimeter. The one-dimensional case is just the sound travelling 
back and forth between two parallel surfaces with the distance l = lm.  
 
Insertion of (3.3.5) in the last part of (3.3.4) gives the Sabine formula (3.2.13), whereas insertion 
in the first part of (3.3.4) leads to the so-called Eyring’s formula for reverberation time in a room: 
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In a reverberant room (αm < 0.3) it gives the same result as Sabine’s formula, but in highly 
absorbing rooms Eyring’s formula is theoretically more correct. In practice the absorption 
coefficients are not the same for all surfaces and the mean absorption coefficient is calculated as 
in (3.2.4): 
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In the extreme case of an anechoic room (αm = 1) Eyring’s formula gives correctly a 
reverberation time of zero, whereas Sabine’s formula is obviously wrong, giving the value T60 = 
55.3 V/c S. However, in normal rooms with a mixture of different absorption coefficients it is 
recommended to use Sabine’s formula. 

3.3.2 Sound absorption in the air 
A sound wave travelling through the air is attenuated by a factor m, which depends on the 
temperature and the relative humidity of the air, see Fig. 3.3.2. The unit of the air attenuation 
factor is  m - 1. If this attenuation is included in (3.3.3) the squared sound pressure in the decay is 
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 The general reverberation formula then becomes 
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In the three-dimensional case with (3.3.5) we then have 
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These two expressions are the Eyring and the Sabine formula, respectively, with the air 
absorption included. By comparison with (3.2.13) it is seen that the equivalent absorption area 
including air absorption is 
          (3.3.12) mVSA

i
ii 4+= ∑ α

Some typical values of m are found later in Table 3.4.3.  
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Figure 3.3.2. The air attenuation factor m as a function of the relative humidity. The air 
temperature is 20 °C. (Ref.: Harris1966). 

3.3.3 Sound reflections and image sources 
The direction of a sound reflection from a large plane surface follows the same geometrical law, 
as known from optics, i.e. the angle of reflection is equal to the angle of incidence. This means 
that the reflected sound can be interpreted as sound coming from an image source behind the 
reflecting surface, see Fig. 3.3.3. This principle can be extended to higher order reflections. 
 

 
Figure 3.3.3. Reflection in one surface (a) and in two surfaces (b). A is the source and R is the 
receiver. First order image sources are indicated by A’ and second order image sources by A’’. 

 94



 
Echo is a well-known acoustic phenomenon. It is defined as a single sound reflection that is 
clearly audible as separate from the direct sound. The human ear is able to hear a reflection as an 
echo if the time delay is approximately 50 ms. The so-called echo-ellipse is shown in Fig. 3.3.4. 
Any point E on the ellipse represents a potential reflection with a delay of 50 ms, i.e. the distance 
LE + EP = 17 m. Reflections from room surfaces outside the ellipse (as R2 on the figure) are 
delayed more than 50 ms and may cause an echo at the receiver point.  
 

 
Figure 3.3.4. The echo-ellipse in the longitudinal section of an auditorium. L is the source and P 
the receiver. (Ref.: Petersen 1984). 
 

3.3.4 Reflection de nsity in a room 
The image source principle can easily be applied to higher order reflections in a rectangular 
room. An infinite number of image rooms make a grid, and each cell in the grid is an image room 
containing an image source. The principle is shown for the two-dimensional case in Fig. 3.3.5.  
 

Figure 3.3.5. Rectangular room with a sound source and image sources, here shown in two 
dimensions. Image sources located inside the circle with radius ct will contribute reflections up 
to time t. 
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If an impulse sound is emitted the number of reflections that will arrive within the time t can be 
calculated as the volume of a sphere with radius ct divided by the room volume V: 
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The reflection density is then the number of reflections within a small time interval dt, and by 
differentiation: 
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The reflection density increases with the time squared, so the higher order reflections are 
normally so dense in arrival time that it is impossible to distinguish separate reflections. If 
(3.3.14) is compared to (3.1.8), it is striking to observe the analogy between reflection density in 
the time domain and modal density in the frequency domain.  
 

3.4 ROOM ACOUSTICAL DESIGN  

3.4.1 Choice of room dimensions 
The room dimensions determine the natural frequencies of a room. A good acoustical design of a 
room implies that the transfer function should be as smooth as possible. With reference to Fig. 
3.1.2 is clear that the room dimensions of a rectangular room should not be identical, because in a 
cubic room many modes will have the same natural frequency, and thus there will be bigger gaps 
in the transfer function. This would be very unfortunate, especially at low frequencies in small 
rooms for speech, music or acoustic measurements. The dimensions of such rooms should be 
designed after calculations of the normal modes below 100 Hz, see also Table 3.1.1. 

3.4.2 Reflection control 
In room with an audience it is very important to design the room surfaces with respect to the early 
reflections. First of all in order to avoid problems with echo and focusing, but also to ensure a 
good distribution of reflections to the audience area, see Fig. 3.4.1. In rooms for speech the 
ceiling reflections are most important, whereas rooms for music should not give too much 
reflection directly from the ceiling. In such room the ceiling should rather give diffuse reflections, 
but the side walls are important because lateral reflections contribute to the acoustic of a concert 
hall, see Fig. 3.4.2. 

 
 
Figure 3.4.1. Ceiling reflections in auditoriums. a) concave ceiling causing focusing and uneven 
sound distribution. b) plane reflectors causing an even sound distribution. (Ref.: Petersen 1984). 
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Figure 3.4.2. Wall reflections in auditoriums. a) rectangular room, b) fan shape room, c) inverse 
fan shape room. 

3.4.3 Calculation of reverberation time 
Sabine’s formula (3.2.13) is the most well known and simple method for calculation of 
reverberation time in a room 
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with volume V in m3 and A in m2. The equivalent absorption area is calculated as in (3.3.12), but 
in addition to absorption from surfaces and air, the absorption from persons or other items in the 
room should be included, if relevant 
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Here nj is the number of items, each contributing with an absorption area Aj. Examples of 
absorption coefficients of common materials and absorption areas for persons are given in Table 
3.4.1 and 3.4.2, respectively. The air attenuation can be taken from Table 3.4.3. 
 

Frequency (Hz)  
Material 125 250 500 1000 2000 4000 
Brick, bare concrete 
Parquet floor on studs 
Needle-punch carpet 
Window glass 
Curtain draped to half 
its area, 100 mm air 
space 

0.01 
0.16 
0.03 
0.35 
0.10 

0.02 
0.14 
0.04 
0.25 
0.25 

0.02 
0.11 
0.06 
0.18 
0.55 

0.02 
0.08 
0.10 
0.12 
0.65 

0.03 
0.08 
0.20 
0.07 
0.70 

0.04 
0.07 
0.35 
0.04 
0.70 

 
Table 3.4.1. Typical values of the absorption coefficient α  for some common materials. 
 
 

Frequency (Hz)  
Persons 125 250 500 1000 2000 4000 
Standing, normal 
clothing  
Standing, with 
overcoat 
Sitting musician with 
instrument 

0.12 
 

0.17 
 

0.60 

0.24 
 

0.41 
 

0.95 

0.59 
 

0.91 
 

1.06 

0.98 
 

1.30 
 

1.08 

1.13 
 

1.43 
 

1.08 

1.12 
 

1.47 
 

1.08 

 
Table 3.4.2. Typical values of absorption area A in m2 for persons. 
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Frequency Relative 
humidity (%) 1 kHz 2 kHz 4 kHz 8 kHz 

40 
50 
60 
70 
80 

0.0011 
0.0010 
0.0009 
0.0009 
0.0008 

0.0026 
0.0024 
0.0023 
0.0021 
0.0020 

0.0072 
0.0061 
0.0056 
0.0053 
0.0051 

0.0237 
0.0192 
0.0162 
0.0143 
0.0133 

 
Table 3.4.3. Examples of air attenuation factor m (m-1) at a temperature of 20°C. 
 

3.4.4 Reverberation time  in non-diffuse rooms 
In a room with the sound absorption unequally distributed on the surfaces the assumption of a 
diffuse sound field is not fulfilled, and thus Sabine’s formula will not be reliable. The measured 
reverberation time may be either shorter or longer than predicted by Sabine’s formula.  
 
A shorter reverberation time will appear in a room in which the first reflections are directed 
towards the most absorbing surface. In an auditorium this is typically the floor with the audience, 
see Fig. 3.4.1 b. 
 
In a rectangular room without sound scattering surfaces or elements, there is a possibility of 
prolonged decay in certain directions. In order to give an idea of the problem it is possible to 
calculate the different reverberation times associated to one-dimensional decays in each of the 
three main directions using the general reverberation formula (3.3.4). 
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Figure 3.4.3. A rectangular room with indicated absorption coefficients. 
 
As an example the room in Fig. 3.4.3 is considered. The ceiling has a high absorption coefficient 
(α = 0.8), but all other surfaces are acoustically hard (α = 0.1).  

Volume V = 5 ⋅ 10 ⋅ 20 = 1000 m3

Surface area S = 700 m2

Equivalent absorption area A = 200 ⋅ 0.8 + 500 ⋅ 0.1 = 210 m2

Mean absorption coefficient αm = A / S = 210 / 700 = 0.30 
Mean absorption coefficient (height) αm = (0.8 + 0.1) / 2 = 0.45 

 Mean free path (3-dim.) lm = 4 V / S = 4 ⋅ 1000 / 700 = 5.7 m 
 Mean free path (2-dim.) lm = π Sx / U = π ⋅ 200 / 60 = 10.5 m 
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The results are shown in Table 3.4.4. A two-dimensional reverberation in the horizontal plane 
between the walls has also been calculated (4.2 s). The one-dimensional decays are the extreme 
cases with the longest reverberation time being 20 times the shortest one, 8.0 s and 0.4 s, 
respectively!  
 

 
Direction 

lm (m) αm T60 (s) 

3-dim. (Sabine) 
3-dim. (Eyring) 
2-dim. (horizontal) 
1-dim. (length) 
1-dim. (width) 
1-dim. (height) 

5.7 
5.7 
10.5 
20 
10 
5 

0.30 
0.30 
0.10 
0.10 
0.10 
0.45 

0.8 
0.6 
4.2 
8.0 
4.0 
0.4 

 
Table 3.4.4. Calculation of the one-dimensional reverberation times of the rectangular room in 
Fig. 3.4.3. 
 
The real decay that is measured in the room will be a mixture of these different decays, and the 
reverberation time will be considerably longer than predicted from Sabine’s formula. Eyring’s 
formula is even worse. The measured decay curve will be bent, and thus the measuring result 
depends on which part of the decay curve is considered for the evaluation of reverberation time. 
 
In a room with long reverberation time due to non-diffuse conditions and at least one sound-
absorbing surface, introducing some sound scattering elements in the room can have a significant 
effect. It could be furniture or machines on the floor or some diffusers on the walls. This will 
make the sound field more diffuse, and the reverberation time will be reduced, i.e. it will come 
closer to the Sabine value. In other words: The sound absorption available in the room becomes 
more efficient when scattering elements are introduced to the room. 
 
Note. In the one-dimensional case it is strictly not correct to use the arithmetic average of the 
absorption coefficients, if one of them is high. By inspection of (3.3.1) it is seen that the mean 
absorption coefficient should be calculated from 

 ( )( )21 11)1( ααα −−=− m         (3.4.4) 

So, if one of the surfaces is reflective and the other is totally absorbing, αm  = 1 and hence the 
reverberation time is zero. 

3.4.5 Optimum reverberation time and acoustic regulation of rooms 
The optimum reverberation time depends of the activities in the room. It is important to choose 
the room volume and the surface materials with such sound absorbing properties that the 
reverberation time can get the right value for the purpose. In workshops with noise sources it is 
important to have a reverberation time as short as possible. In schools the classrooms should have 
a reverberation time between 0.6 and 0.9 s and independent of the frequency between 100 and 
4000 Hz in order to obtain good acoustical conditions for speech. In concert halls the 
reverberation time should be around 1.5 to 2.2 s at mid frequencies (500 – 1000 Hz) with the 
longer values in the bigger halls. For music the reverberation time may be up to 50% longer at 
low frequencies (125 Hz) and somewhat shorter at high frequencies. The latter is unavoidable in a 
big hall due to the air attenuation. 
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Use of room Optimum reverberation time, s 
(500 – 1000 Hz) 

Cinema 
Rock concert 
Lecture  
Theatre 
Opera 
Symphony concert 
Choir concert 
Organ music 

0,4 – 1,0 
0,8 – 1,1 
0,8 – 1,2 
1,0 – 1,2 
1,3 – 1,7 
1,5 – 2,2 
1,7 – 2,5 
2,0 – 3,0 

 
Table 3.4.5. Optimum reverberation time at mid frequencies for various purposes in rooms with 
an audience. 
 

3.4.6 Measurement of reverberation time 
The reverberation time in a room can be measured with a noise signal or with an impulse. The 
traditional method uses white noise emitted by a loudspeaker and a microphone to measure the 
sound pressure level as a function of time after the source is switched off. This gives a decay 
curve and a typical example is shown in Fig. 3.4.4.  
 

 
Figure 3.4.4. Typical decay curve measured with noise interrupted at the time t = 0. 
 
From the microphone the signal is led to a frequency filter, which is either an octave filter of a 
one-third octave filter. If the sound in the room is sufficiently diffuse and a sufficient large 
number of modes are excited the decay curve is close to a straight line between the excitation 
level and the background level. The dynamic range is seldom more than around 50 dB and the 
whole range of the measured decay curve is not used. The lower part of the decay curve is 
influenced by the background noise and the upper part may be influenced by the direct sound, 
which gives a steeper start of the curve. So, the part of the decay curve used for evaluation begins 
5 dB below the average stationary level and ends normally 35 dB below the same level. The 
evaluation range is thus 30 dB and the slope is determined by fitting a straight line or 
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automatically by calculating the slope of a linear regression line. From the slope of the decay 
curve in dB per second is calculated the reverberation time, which is the time for a 60 dB drop 
following the straight line. The result is sometimes denoted T30 in order to make it clear that the 
actually used evaluation range is 30 dB.  
 
If the background noise is too high and a sufficient dynamic range is not available the 
reverberation time can instead be measured as T20. In this case the slope of the decay curve is 
evaluated between –5 dB and –25 dB below the excitation level. 
 
The reverberation time is measured in a number of source- and receiver positions, and in each 
position the decay is determined as an average of a number of excitations. White noise is a 
random noise signal and thus the measured decay curves are always a little different. 
 
Sometimes the decay curves are not nice and straight and it is difficult to measure a certain 
reverberation time. One reason can be that it is a measurement at low frequencies in a small room 
and maybe only two or three modes are excited within the frequency band of the measurement. In 
this case there may be interference between the modes causing very irregular decay curves.  
 
Another difficult situation is coupled rooms, i.e. a room divided into sections with different 
reverberation times. A typical example is a theatre with a reverberant stage house and a rather 
dead auditorium. In this case the decay curve will be bent, i.e. the upper part shows a short 
reverberation time and the lower part shows a longer reverberation time. It might be possible to 
determine both of these reverberation times, however, the shorter one representing the initial 
decay is the most important one, because the subjective evaluation of the reverberation is related 
to the initial decay. 
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4 Sound absorbers and their application in room design 
 

Anders Chr. Gade 

4.1 Introduction 
 

The reverberation time T60 as defined in Section 3.2.5 is the most important descriptor of the 

acoustics of a room. Therefore, calculating predictions of T60 (e.g. according to Equation 3.4.1) is a 

very basic part of room acoustical design which in turn calls for the availability of reliable data on 

the frequency dependant sound absorption characteristics of materials used for room surface 

cladding and for furnishing of rooms (such as furniture, people and machinery). 

 

In Table 3.4.1 absorption coefficients per octave band were listed for some materials generally 

found in rooms. The values indicate that some of these, e.g. windows and wooden floors on studs, 

primarily absorb low frequency sounds. On the other hand, curtains and persons (see Table 3.4.2) 

mainly absorb middle and high frequencies. In order to obtain a well balanced T60 versus frequency 

for a given type of room it is therefore important to mix properly different types of materials when 

designing the room. 

 

In this chapter we will give a basic introduction to the physical mechanisms involved in sound 

absorption and present some types of sound absorption materials well suited for - or specifically 

designed for - sound absorption and reverberation control. The absorption properties will be 

described in terms of the sound absorption coefficient as defined in Section 1.5.2. 

 

For certain types of rooms, such as schools and work rooms, general demands on reverberation 

control exist. Therefore the last section in this chapter is devoted to examples on how sound 

absorbing materials can be applied in the design of such rooms. 

 

4.2 The room method for measurement of sound absorption. 

In Section 1.5.2, a method for measuring the absorption coefficient, the tube method, was presented 

which reveals the absorption coefficient for a single angle of incidence (usually normal incidence as 

illustrated to the left in Figure 4.2.1). However, the absorption will normally depend on the 

direction of sound incidence
1
. Materials applied in rooms with a (more or less) diffuse sound field 

will be exposed to sound arriving from many different directions as illustrated in Fig. 4.2.1(c). 

Therefore we will start this chapter by presenting a method for measurement of sound absorption, 

which provides the relevant diffuse field absorption coefficient: the reverberation room method. 

Figure 4.2.1 Different conditions for sound incidence on a surface. From [1] 

 

                                                 
1 The absorption for oblique incidence as illustrated in case (b) in Figure 4.2.1 – or as a function of angle of incidence - 

can be measured using various techniques using separation in time or subtraction of incident and reflected sound pulses. 

However, these techniques are not always very reliable. 
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The measurement takes place in a reverberation room, with highly irregular or non parallel surfaces 

and/or suspended, sound diffusing elements. Hereby it can be assumed that the sound field will 

fulfil the requirements for application of the Sabine reverberation equation. Assume the room has a 

volume V, total surface area S and that αempty is the absorption coefficient of the room surfaces 

(which ideally should all be made from the same, acoustically hard material). In this case equations 

3.4.1 and 3.4.2 (disregarding air absorption) yields: 

 60,

0.16
empty

Room empty

V
T

S α=  (4.1) 

If now we place a test sample of a material with area Ssample (usually 10 m
2
) in the room, the 

equation changes into: 

 ( )60,

0.16
sample

sample sample Room sample empty

V
T

S S Sα α= + −  (4.2) 

in which we have considered that an area, Ssample, of the room surface has now been covered by the 

sample. Combining equations 4.1 and 4.2 by eliminating S yields for the unknown absorption 

coefficient, αsample, of the test sample: 

 
60, 60,

0,16 1 1
sample empty

sample sample empty

V

S T T
α α⎡ ⎤= −⎢ ⎥⎢ ⎥⎣ ⎦ +  (4.3) 

The measurement is normally carried out in 1/1 or 1/3 octave bands from 100 to 5000 Hz. 

 

If absorption measurements using the room method is carried out on small sized samples, these 

sometimes appear to have a absorption coefficient larger than 1.0, as seen in Figure 4.2.2. Of course 

this is not logical, if the absorption power should be related 

solely to the physical area of the sample. The phenomenon 

is probably due to diffraction of sound around the edges of 

the sample, which dominates the behaviour in cases where 

the linear dimension of the sample approaches the wave 

length of the sound, i.e. the effect is more pronounced at low 

frequencies. 

 

Although a complication in documentation of absorption 

properties, this phenomenon can be applied successfully in 

Fig. 4.2.2  Absorption coefficients         practice by providing increased absorption effect, if the 

of different materials versus area          available absorption material can be provided in smaller 

(measured in square feet). From [1].    pieces and spread out over the room surfaces. 

 

 

4.3 Different types of sound absorbers 

 
In this section the three most common types of sound 

absorbing constructions will be described, each with its 

own characteristic frequency dependency of the 

absorption coefficient as sketched in Fig. 4.3.1. 

 

Fig. 4.3.1  Typical behaviour of absorption versus 

frequency for Porous, resonating and membrane 

absorbers respectively. 
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4.3.1 Porous absorbers 

Porous absorbers are present in rooms in the form of textiles like curtains, carpets and furniture 

upholstery, porous mortar in (unpainted !) brick walls and not least as a wide variety of dedicated 

sound absorbing products for suspended ceilings. 

 
 

Figure 4.3.2  Left: Standing wave pattern formed by an incident and a reflected sound wave in front 

of a porous material of a certain thickness flush mounted on a heavy and hard surface. Right: 

Absorption versus frequency of a thin, porous sheet placed in front of a hard surface. From [1].  

 

Porous materials are characterized by having an open structure of e.g. of fibres glued or woven 

together which is accessible by the air. Thus, air can be pressed through the material more or less 

easily depending on the flow resistance (determined e.g. by how densely a fabric is woven – try for 

yourself by blowing through clothing or curtains !). The absorption properties are caused by viscous 

friction between the moving air molecules in the sound waves and the often huge internal surface 

area of the structure whereby the (kinetic) sound energy is converted into heat. 

 

Fig. 4.3.3  Absorption coefficients for mineral 

wool (glasswool) with thickness as parameter 

(a) and with wall distance as parameter (b).  

 

 

 

f the 

r 

, for a 

tion 

If a porous sheet of a certain thickness is placed

flush on a rigid surface and hit by an normal 

incidence sound wave a standing wave pattern

will be created with pressure amplitude as 

indicated to the left in Fig. 4.3.2. As seen from

Figure 1.2.10 (c), with a rigid termination, the 

particle velocity and so the kinetic energy o

sound field will be high where the pressure 

amplitude (the potential energy) is low. In othe

words, for the absorber to be efficient (with 

normal incidence of the sound wave), the 

thickness of the porous layer need to be at least 

λ/4, so that friction takes place where the 

energy is primarily kinetic. In other words

given thickness of the material, there is a lower 

limiting frequency below which the absorp

drops off because the material can no longer 

“reach” the region of high kinetic energy. On 

the other hand, as the absorber is not absorbing 

the potential energy anyway, one can save 

material and just place a thin sheet (but still 
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with a suitable flow resistance) at a certain dista  from the rigid wall (like a curtain in front of 

window). In the case of normal incidence, a

nce a 

pplying a thin sheet will cause the absorption to drop 

 

 mineral wool mats of 

ifferent thickness (upper graph) and different distances to the rigid wall (lower graph). It is seen 

m melted 

lass (Glasswool) or stone (Rockwool) much like “Candy Floss”. Mineral wool is used as porous 

, 

ete 

 

l 

rane absorbers 

 membrane absorber is characterized by consisting of a non porous sheet or panel placed at a 

 backing whereby an air filled cavity is formed. This system can 

on 

again at a higher frequency where the distance between sheet and hard wall equals λ/2; but with 

diffuse field incidence this dip will not be very pronounced. Diffuse field incidence also causes the

absorbers to be effective (α > 0,8) if just the thickness/distance is > λ/8. 

 

Fig. 4.3.3 shows how the absorption coefficient varies with frequency for

d

that more low frequencies are absorbed as the thickness or the wall distance increases. 

 

Mineral wool consists of thin fibres pressed and glued together. The fibres are made fro

g

sound absorbers, very often in the form of tiles which can be mounted in a suspended ceiling 

system. Such ceilings will often be placed below ventilation ducts and other technical installations

whereby a large distance (typically between 20 cm and one metre) is ensured to the hard concr

deck behind. Hereby the ceiling can absorb efficiently over a wide frequency range – as well as hide

the installations. Mineral wool ceiling tiles are normally given a carefully controlled layer of specia

paint from the factory to make them look like normal (white) plaster ceilings as much as possible. 

However, if one tried to repaint them, the porous properties and so the absorption normally 

disappears. 

 

4.3.2 Memb

A

certain distance from a hard

resonate at frequency determined by the mass per unit area of the plate, m, and the spring functi

of the enclosed air, which is determined by the depth, L, of the cavity: 

 
2

0

1

2

c
f

m L

ρ
π=  (4.4) 

owever, Equation 4.4 only apply if the plate is complete

frequency is also determined by the plate stiffness and mode of plate vibration, of which a few are 

ional 

H ly limp. Normally, the resonance 

illustrated in Fig. 4.3.4, with p and q being integers determining the shape of the two dimens

oscillation pattern of the plate. 

 
Fig.  4.3.4  Different modes of vibration in a stiff plate. 

 

 follows: In this case the resonance frequency can be described as

( )
2

2 22 41
r

c p q
f

ρ π 3

22 12 1

Eh

m L m a bπ ν
⎡ ⎤⎛ ⎞ ⎛ ⎞= + + ⎢ ⎥ −⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦  (4.5) 

 which a and b are the dimensions of the plate (or the distance between 

plate), h is the thickness while E and ν are the Young’s modulus and the Poisson ratio respectively. 

⎜ ⎟ ⎜ ⎟
in studs supporting the 
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From this formula it is seen that a resonance frequency is determined completely by the stiffnes

the depth of the cavity is infinitely deep – as is the case e.g. with a single pane window. 

 

 

s if 

 
Fig. 4.3.5 absorption versus frequency of 

membrane absorber for two different plate 

ood placed 

ency 

ms in the for  

he effect is a controlled low frequency T60 value as opposed to rooms 

thicknesses and with and without mineral 

wool in the cavity. From [1] 

 

Membrane absorbers are often found in roo

oard or wood panel walls. T

Fig. 4.3.5 show  absorption versus frequency 

for two different thickness of plyw

45 mm from a hard backing – with and 

without mineral wool in the cavity. As 

expected it is seen that the thicker and heavier 

plate result in the lowest resonance frequ

as expected from equations 4.4 and 4.5. 

Besides, it is observed that the mineral wool 

inlay, which increases the internal damping of 

the construction causes a significant 

improvement in the absorption around the 

resonance frequency and also causes the 

resonance frequency to become lower.

m of wooden floors on joists or as gypsum

b

made entirely from heavy concrete or masonry which  causes the sound to be “dark” and blurred at 

low frequencies.  

 

 
 

Fig. 4.3.6  Example of membrane absorbers attached to the concrete side wall in the multi purpose 

all (Kolding Teater). Besides controlling low frequency reverberation, the panels also provide 

ome diffusion of the sound.   

h

s
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4.3.3 Resonator absorbers 

In stead of having a plate forming the mass of the resonating system, the mass can be oscillating air 

 an opening between a closed cavity and the open atmosphere. Also in this case, the enclosed air  

and resonating panel (right). From [1

 

in the cavity provides the spring function. An example of such a single resonator, called a Helmholz 

n be experienced by 

lowing across the opening of a bottle) is given by: 

in

Fig. 4.3.7   Single resonator (left) ]. 

resonator, is illustrated in Figure 4.3.7. The resonance frequency (which ca

b

 ( )0
2

c S
f

V lπ δ= +  (

S V

4.6) 

with  being the area of the opening,  being the enclosed volume, l the length of the neck and δ a 

orrection to the neck length which is due to the fact that th

with very high velocity - is not confined to the physical length of the neck; but some of the air 

owever, if a perforated panel is placed in front of a cavity as seen to the right in Fig. 4.3.7, then 

c e oscillating air mass - often moving 

outside both ends of the neck will be moving as well.  

 

Resonators like the build in “bottle” in the left side of Fig. 4.3.7 are not very practical, as the 

frequency range of the absorption is normally very limited around the sharp resonance frequency. 

H

this construction can be regarded as a large number of single resonators put together, and the 

physical proportions in this case often causes a much more useful frequency range of absorption. 

For the resonance frequency of the panel we have: 

 ( )0
2

c P
f

L lπ δ= +  (4.

which is almost identical with Equation 4.6 except for the opening area being rep

7) 

laced by the 

egree of perforation, P, of the panel and the volume V bein

If the holes are circular with diameter d, we have for the end correction: δ ≈ 0.8 d. Resonating 

y 

 

ised by placing a thin layer of mineral wool or glass felt 

alled vlies) in the cavity. Like in the case of the membrane absorber, it is important to adjust the 

d g changed into the depth of the cavity L. 

panels will often have a higher resonance frequency and absorb efficiently in a wider frequenc

range than the membrane absorbers. 

 

Regarding damping, the viscous damping can be significant if the hole/slit dimensions are small;

but often the absorption can be optim

(c

damping to achieve optimal absorption.  

 

108 



Perforated panels are found in the form of perforated gypsum board or steel plates (used e.g. for 

suspended ceilings)
2
, or as panels made of wooden boards with slits between the individual boards 

s illustrated to the left in Figure 4.3.8. Other possibilities are walls made from perforated tiles, 

e 

n

ontrolled gaps in front of a former window niche filled with mineral wool. The panel controls low 

equency reverberation in a former power plant building made from heavy masonry converted into 

 multi 

 room acoustic design 

he main purpose of introducing absorption for reverberation control in rooms is to reduce noise 

Danish Building Law 

ygningsreglementet af 1995, BR95) [2] contains demands on maximum T60 values in school class 

re 

                                                

a

which make use of the cavity already present in a double masonry wall as shown to the right in th

same Figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3.8  Resonating panel constructions i  practice. Left: Wooden boards separated by 

c

fr

a concert hall (Værket, Randers). Right: Perforated bricks on the rear wall in a sports and

purpose hall. By making this wall absorbing, echoes back to the stage placed more than 50 m away 

are avoided (Frihedshallen, Sønderborg). 

 

 

4.4 Application of sound absorbers in
 

T

levels (see Fig. 3.2.4) and in some cases to increase intelligibility. The 

(B

rooms, day care institutions and apartment buildings, whereas the Danish Working Environment 

Agency have issued rules for industrial buildings and offices [3]. These current Danish rules a

 
2 It should be added that in many cases with perforated gypsum or steel plates used as suspended ceilings, the 

combinations of perforation and cavity depth causes the absorber to act more like a porous absorber but with reduced 

performance at high frequencies due to the panel shielding off the porous layer to some degree. 
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briefly listed in Figure 4.4.1. Recommendable values for other types of rooms – including auditoria 

and concert halls were listed in Table 3.4.5. Special standards exist for design of cinemas and stud

control rooms and listening rooms. In Denmark, no rules exist for other public spaces like traffic 

terminals, sports arenas and restaurants - although the acoustic conditions in these places are often 

horrible. However, acoustic concerns a generally included in modern design of these spaces as well. 

io 

ximum values of reverberation time in buildings. 

corridors in office buildings just reflect common 

s 

ecified in terms of a required minimum absorption area. The reason for this is that 

ften calculation as well as measurement of T60 is often questionable in these rooms. 

ause here the 

ften delicate absorption materials are not subject to mechanical damage. 

eiling of mineral wool tiles with integrated light fixtures. Right: Vertical Mineral wool baffles.   

 

Fig. 4.4.1 Listing of Danish rules regarding ma

(The values listed for single person offices and 

design practice.) 

 

As indicated in Figure 4.4.1 the rules for large industrial halls as well as open plan areas in office

and schools are sp

o

 

In most cases the ceiling is the most obvious surface to treat with absorption, as it constitutes a large 

area which is normally available apart from a few light or ventilation fixtures and bec

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4.2  Examples of acoustic treatment mounted in ceiling in industrial halls. Left: suspended 

c

 

110 



In Figure 4.4.2 are shown two examples of acoustic treatment of ceilings. To the left a normal 

suspended ceiling of mineral wool tiles with integrating lighting and ventilation. This type of 

ceiling is often found in offices, schools, shops etc.. The vertical mineral wool baffles shown to the 

ot 

lways sufficient to place the absorption in the ceiling surface alone; but also available wall areas 

right can be a solution when the ceiling is already heavily occupied by technical installations. 

 

In rooms where practically all the absorption is placed in the ceiling, the reverberation time 

basically becomes a function of the room height as shown in Figure 4.4.3. In high rooms, it is n

a

must be used as illustrated by the mineral wool tiles to the right in Figure 4.4.3. 

 

 
 

 

 

ig. 4.4.3   Simplified calculation of T60 in room with all ab

urface(left) shows the need for additional absorption on walls in tall rooms (right). 

coustic 

nsure proper 

telligibility of speech (often emitted through loudspeakers). In Figure 4.4.4 is illustrated how a 

Fig. 4.4.4   Schematic illustration of the influence of reverberation on the intelligibility of speech.

 

F sorption placed on the ceiling 

s

 

In many public places like traffic terminals, department stores, sports halls etc., the room a

absorption treatment is not only done with the purpose of reducing noise but also to e

in

long room decay can cover (mask) the weak phonems illustrated schematically as vertical bars. In 

speech the consonant sounds are often the weaker elements; but they contain most of the 

information. Therefore, a long reverberation can seriously deteriorate intelligibility. 
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In room  acoustic design not 

only consists of reverberation con  surfaces. In these rooms 

also the design of the room  the 

 surfaces. And 

in order to support intelligi s) after the direct 

sound. 

 

Even in norma pplied by 

leaving a central part of the ce rface areas can be found to 

provide the required reverberation 

ODEON programm e part of the 

terms of the  

 

Fig. 4.4.5 Illustrations from the room acoustic simulation programme ODEON  of a class room 

design with a partly absorbing (dark) and reflective (lighter grey) ceiling.   
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s dedicated for speech like auditoria, class rooms and theatres, the room

trol by absorption treating of the room

 geometry is important to ensure proper propagation of sound from

source to the listeners through reflection of the sound waves off non absorbing room

bility, these reflections must arrive not long (up to 40 m

l sized class rooms this concern about supporting reflections may be a

iling reflective (given that enough other su

control). Thus, Fig. 4.4.5 illustrates such a case in which the 

e was used to balance the application of absorbing and reflectiv

ceiling for a school project and to predict reverberation time and the intelligibility in 

Speech Transmission Index mentioned in Section 2.7. 
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5. An introduction to sound insulation 
Jens Holger Rindel 
 

5.1 THE SOUND TRANSMISSION LOSS 

5.1.1 Definition 
A sound wave incident on a wall or any other surface separating two adjacent rooms partly 
reflects back to the source room, partly dissipates as heat within the material of the wall, partly 
propagates to other connecting structures, and partly transmits into the receiving room.  
 
The power incident on the wall is P1 and the power transmitted into the receiving room is P2. 
The sound transmission coefficient τ is defined as the ratio of transmitted to incident sound 
power 

1

2

P

P=τ          (5.1.1) 

However, the sound transmission coefficients are typically very small numbers, and it is more 
convenient to use the sound transmission loss R  with the unit deciBel (dB). It is defined as 

 (dB)     log10
1

log10log10
2

1 ττ −===
P

P
R    (5.1.2) 

Another name for the same term is the sound reduction index. 

5.1.2 Sound insulation between two rooms 
 

 
Figure 5.1.1. Airborne sound transmission from source room (1) to receiving room (2) 
 
The most common case is the sound insulation between two rooms. With the assumption of 
diffuse sound fields in both rooms it is possible to derive a simple relation between the 
transmission loss and the sound pressure levels in the two rooms. The rooms are called the 
source room and the receiving room, respectively. In the first room is a sound source that 
generates the average sound pressure p1. The sound power incident on the wall is, see eq. 
(3.2.6) 
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The area of the wall is S. In the receiving room the average sound pressure p2 is generated from 
the sound power P2 radiated into the room, see eq. (3.2.8) 

 c
A

P
p ρ

2

22
2

4=         (5.1.4) 

Here A2 denotes the absorption area in the receiving room. Insertion in the definition (5.1.2) 
gives 

 (dB)     log10log10
2

21
2

2
2

2
1

A

S
LL

Ap

Sp
R +−==    (5.1.5) 

Here L1 and L2 are the sound pressure levels in the source and receiving room, respectively. 
This important result is the basis for transmission loss measurements.  

5.1.3 Measurement of sound insulation 
Sound insulation is measured in one-third octave bands covering the frequency range from 100 
Hz to 3150 Hz. In recent years the international standards for measurement of sound insulation 
have been revised and it is recommended to extend the frequency range down to 50 Hz and up 
to 5000 Hz. One reason for this is that the low frequencies 50 – 100 Hz are very important for 
the subjective evaluation of the sound insulation properties of lightweight constructions. In 
recent years lightweight constructions have been more commonly used in new building 
technology, whereas heavy constructions have traditionally been used for sound insulation. 
 
The sound pressure levels are measured as the average of a number of microphone positions or 
as the average from microphones slowly moving on a circular path. The results are averaged 
over two different source positions. More details are given in ISO 140 Part 3 and 4. 
 
In addition to the two sound pressure levels it is also necessary to measure the reverberation 
time in the receiving room in order to calculate the absorption area. Sabine’s equation is used 
for this, see eq. (3.2.13) 

2

2
2

3.55

Tc

V
A =         (5.1.6) 

Only under special laboratory conditions it is possible to measure the transmission loss of a 
wall without influence from other transmission paths. In a normal building the sound will not 
only be transmitted through the separating construction, but the flanking constructions will also 
influence the result, see later in section 5.5.4.  
 
For measurements of sound insulation in buildings the apparent sound transmission loss is 

 (dB)     log10
2

21 A

S
LLR +−=′       (5.1.7) 

The apostrophe after the symbol indicates that flanking transmission can be assumed to 
influence the result. 

5.1.4 Multi-element partitions and apertures 
A partition is often divided into elements with different sound insulation properties, e.g. a wall 
with a door. Each element is described by the area Si and the transmission coefficient τi . If the 
sound intensity incident on the surfaces of the source room is denoted I inc the total incident 
sound power on the partition is 
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The total area is called S. The total sound power transmitted through the partition is 

∑=
= n

i
incii ISP

1
2 τ  

Thus, the transmission coefficient of the partition is 

 ∑== =
n

i
iires S

SP

P

11

2 1 ττ       (5.1.8) 

The same result can also be written in terms of the transmission losses Ri of each element 

 ⎟⎠
⎞⎜⎝

⎛−=−= ∑=
−n

i

R
iresres

iS
S

R
1

1,010
1

log10log10 τ    (5.1.9) 

In the simple case on only two elements the graph in Fig. 5.1.2 may be used.  
 

 
Figure 5.1.2. Graph for estimating the transmission loss of a multi-element partition  
 
An aperture in a wall is a special example of an element with different transmission properties. 
As an approximation it can be assumed that the transmission coefficient of the aperture is 1. If 
also the area of the aperture Sap is very small compared to the total area, this leads to the 
following result for the resulting transmission loss of the wall with aperture: 

( ) ⎟⎟⎠
⎞⎜⎜⎝

⎛ +−≅⎟⎠
⎞⎜⎝

⎛ +−= −−
S

S
SS

S
R apR

ap
R

res
11 1,01,0

1 10log1010
1

log10  (5.1.10) 

Fig. 5.1.3 can illustrate the result. It is seen that the relative area of the aperture defines an 
upper limit of the sound insulation that can be achieved. 
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Figure 5.1.3. Graph for estimating the transmission loss of a construction with an aperture  
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5.2 SINGLE LEAF CONSTRUCTIONS 

5.2.1 Sound transmission through a solid material 
The solid material is supposed to have the shape of a large plate with thickness h. The material 
is characterised by the density ρm and the speed of longitudinal waves cL . The surface of the 
material defines two transition planes where the sound waves change from one medium to 
another. It is assumed that the medium on either side is air with the density ρ and the speed of 
sound c (also longitudinal waves). The symbols and notation are explained in Fig. 5.2.1. 
 
 
  h 
 

   pi             p1                      p2           pt

 pr             p4                      p3   

 
Figure 5.2.1. Thick wall with incident, reflected and transmitted sound waves  
 
The sound pressure is equal on either side of the two transition planes: 

         (5.2.1) 
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Also the particle velocity is equal on either side of the two transition planes: 
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        (5.2.2) 

The characteristic impedance in the surrounding medium (air) is denoted Z0 and that in solid 
material is denoted Zm. Thus the ratio of sound pressure to particle velocity in each of the plane 
propagating waves is: 
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    (5.2.3) 

Using (5.2.3) in (5.2.2) leads to: 
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       (5.2.4) 

Assuming propagation from one side of the material to the other without losses means that there 
is only a phase difference between the pressure at the two intersections: 
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         (5.2.5) 
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Here km = ω /cL  is the angular wave number for longitudinal sound propagation in the solid 
material. 
 
From the above equations (5.2.1), (5.2.4) and (5.2.5) can be derived the ratio between the sound 
pressures pi and pt and thus the transmission loss can be expressed by:  
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R0, dB 

 
Fig. 5.2.2. Transmission loss at normal incidence of sound on a 600 mm thick concrete wall. 
 
At high frequencies some dips can be observed in the transmission loss curve. They occur at 
frequencies where the thickness is equal to half a wavelength in the solid material, or a multiple 
of half wavelengths. However, the dips are very narrow and they are mainly of theoretical 
interest. 
 
Two special cases can be studied. First the case of a thin wall: Zm >> Z0   and   kmh << 1 
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The other special case is a very thick wall: Zm >> Z0   and   kmh >> 1 
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The cross-over frequency from (5.2.7) to (5.2.8) is the frequency fh at which kmh = 1:    

 
h

c
f L

h π2
=         (5.2.9) 

This is the frequency at which the thickness is approximately one sixth of the longitudinal 
wavelength λL in the material: 
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The result for the thin wall is the so-called mass law, which will de derived in a different way in 
the next section. The result for a very thick wall (5.2.8) means that there is an upper limit on the 
sound insulation that can be achieved by a single-leaf construction, and this limit depends on 
the density of the material. For wood it is 68 dB, for concrete 80 dB and for steel 94 dB. (These 
numbers should be reduced by 5 dB in the case of random incidence instead of normal 
incidence, see section 5.2.3). 

5.2.2 The mass law 
 
 

   pi         

 pr                                  pt 

vn      
 
vt  =  vn  / cos θ  

θ 

 
 
Figure 5.2.3. Thin wall with sound pressures and particle velocities 
 
A thin wall with the mass per unit area m is considered, see Fig. 5.2.3. The application of 
Newton’s second law (force = mass ⋅ acceleration) gives: 

 n
n

tri vm
t

v
mpppp ωj

d

d ==−+=Δ     (5.2.10) 

where vn is the velocity of the wall vibrations (in the direction normal to the wall). The 
separation impedance Zw is introduced: 

 m
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p
Z

n
w ωj=Δ=        (5.2.11) 

The separation impedance will be more complicated if the bending stiffness of the wall is also 
taken into account, see below. 
 
The particle velocities in the sound waves are called u with the same indices as the 
corresponding sound pressures. Due to the continuity requirement the normal component of the 
velocity on both sides of the wall is: 
 θθ cos)(cos ritn uuuv −==       (5.2.12) 

which leads to 
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The sound transmission loss Rθ at a certain angle of incidence θ  is: 
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In the special case of normal sound incidence (θ = 0) the insertion of (5.2.11) gives the 
important mass law of sound insulation: 
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Since m = ρmh this result is the same as derived above in (5.2.7). 

5.2.3 Sound insulation at random incidence 
The transmission coefficient at the angle of incidence θ  is from (5.2.14) 
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Random incidence means that the sound field on the source side of the partition is 
approximately a diffuse sound field. In a diffuse sound field the incident sound power P1 on a 
surface is found by integration over the solid angle ψ = 2 π assuming the same sound intensity 
I1 in all directions. The principle is the same as used in section 3.2.2. Since, in each direction 
the transmitted sound power is equal to the incident sound power multiplied by the transmission 
coefficient, the ratio between transmitted and incident power is: 
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This is the theoretical result for random incidence, and for typical values (R0 between 30 and 60 
dB) it means that R is 8 to 11 dB lower than R0. However, in real life this is not true and it can 
be shown that the result is related to partitions of infinite size. Taking the finite size into 
account the result is approximately: 
         (5.2.18) dB 50 −≅ RR

This is in good agreement with measuring results on real walls. 
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5.2.4 The critical frequency 
The bending stiffness per unit length of a plate with thickness h is: 
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ν−= hE
B         (5.2.19) 

where E is Young’s modulus of  the material and ν is Poisson’s ratio. (ν  ≅ 0.3 for most rigid 
materials). 
 
The speed of propagation of bending waves in a plate with bending stiffness per unit width  B 
and mass per unit area m is (see section 6.3.3): 
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Here fc is introduced as the critical frequency. It is defined as the frequency at which the speed 
of bending waves equals the speed of sound in air, cb  =  c. 
 
The critical frequency is: 
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A sound wave with the angle of incidence θ  propagates across the wall with the phase speed  
c / sin θ , i.e. the phase speed is in general higher than c, see Fig. 5.2.4. If the bending wave 
speed happens to be equal to the phase speed of the incident sound wave, this is called 
coincidence: θsin/ccb =  

 

 
 
Figure 5.2.4. Thin wall with bending wave and indication of speed of propagation along the 
wall 
 
The coincidence leads to a significant dip in the sound transmission loss. The coincidence dip 
will be at a frequency higher than or equal to the critical frequency: 
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 θ2sincco ff =         (5.2.22) 

The separation impedance (5.2.11) is replaced by: 
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Insertion in the general equation (5.2.14) leads to the sound transmission loss at a certain angle 
of incidence: 

 ( ) (dB)     sin1log20coslog20 42
0 θθθ cffRR −++=   (5.2.24) 

 

5.2.5 A general model of sound insulation of single constructions 
The general model of sound insulation is based on mass law as given in (5.2.15). However, the 
following results are valid for sound insulation between rooms with approximately diffuse 
sound fields. In the frequency range below the critical frequency, f < fc: 
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In the frequency range above the critical frequency, f  ≥ fc: 
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where η is the loss factor (see section 6.2.2.3). 
 
The upper limit for sound insulation of a single-leaf construction is, according to (5.2.8): 
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A sketch of the transmission loss as a function of frequency is shown in Fig. 5.2.5 
 
 
 
 

 

R, dB  
 
 
 
 
 
 
 
 
 
 
 
                                                  fc                      

      Frequency (log)  
 
Figure 5.2.5. Sound insulation of a single-leaf construction, fc is the critical frequency and the 
upper limit is the dotted line. 
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5.3 DOUBLE LEAF CONSTRUCTIONS 
 

5.3.1 Sound transmission through a double construction 
 
 

       m1             d              m2 

   pi                   p1           p2                  pt

pr                  p4           p3   

 

     v1                              v2

 
Fig. 5.3.1. A double construction with indication of sound pressures and particle velocities 
 
A double construction with two plates in the distance d is considered, see Fig. 5.3.1. The 
separation impedance of the two plates is denoted Z1 and Z2, respectively. As for the single 
construction in (5.2.10) the movement of each wall is: 
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The velocity of each wall equals the particle velocity on either side: 
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Assuming propagation from one side of the cavity to the other without losses means that there 
is only a phase difference between the pressure at the two intersections: 
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From the above equations (5.3.1), (5.3.2) and (5.3.3) can be derived the ratio between the sound 
pressures pi and pt and thus the transmission loss can be expressed by:  
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If only the mass of each wall is taken into account the separation impedances are: 
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 Neglecting the smaller parts and inserting Z0 = ρ c together with (5.3.5) yields: 
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This result will be discussed and simplified below. 
 

5.3.2 The mass-air-mass resonance frequency 
The transmission loss is minimum when the last term is zero, i.e. 
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For a cavity that is narrow compared to the wave length (kd << 1) we get: 
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The solution is the mass-air-mass resonance frequency f0  =  ω 0 / 2 π  
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If the depth d of the cavity is comparable to the wavelength there are many solutions to (5.3.7) 
and they are approximately kd = n π. The dips in the sound insulation occur at frequencies at 
which the cavity depth equals one or more half wavelenghts: d = n λ /2. 
 
However, more important than these dips is the shift from low- to high-frequency behaviour of 
the air cavity. The cross-over frequency has no particular physical meaning, but it is the 
frequency fd at which kd = 1:    
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This is quite similar to the result (5.2.9) found for the sound transmission through a solid 
material. Only, in this case the transmission is through air. The spring-like behaviour of the air 
cavity changes from that of a simple spring below the cross-over frequency to that of a 
transmission channel at higher frequencies. 

5.3.3 A general model of sound insulation of double constructions 
The result (5.3.6) can be simplified in different way depending on the frequency range. In the 
frequency range below the resonance frequency, f  <  f0: 
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This means that the construction behaves as a single construction with the mass per unit area 
(m1 + m2). In the frequency range above the resonance frequency,  f0 < f < fd: 
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In this a much better sound insulation can be obtained, and it depends on the product of the 
three parameters m1, m2 and d. At frequencies above fd where the cavity is wide compared to the 
wavelength, sin (kd) is replaced by its maximum value 1, and for f  ≥ fd: 
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In this high-frequency range, d is no longer an important parameter. 
A sketch of the transmission loss as a function of frequency is shown in Fig. 5.3.2. 
 
 
 

                                       f0                fd                              
      Frequency (log) 

R, dB  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3.2. Sound insulation of a double-leaf construction, f0 is the resonance frequency and 
fd is the cross-over frequency of the cavity. 
 
 
 
 R, dB 
 
 
 
 
 
 
 
                     f0                       fd         fc1   fc2                           

      Frequency (log)  
 
Figure 5.3.3. Sound insulation of an asymmetric double-leaf construction with two thin plates 
having different critical frequencies, fc1 and fc2, respectively. 
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5.4 FLANKING TRANSMISSION 
 
 

 
 
Fig. 5.4.1. Direct transmission and three flanking transmission paths via the floor.  
 
The transmission of sound from a source room to a receiver room can be via flanking 
constructions like the floor, the ceiling or the façade. When all relevant transmission paths are 
considered the sound insulation is described by the apparent sound transmission loss: 
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where P2 is the sound power transmitted through the partition wall to the receiver room and P3 
is the sound power radiated to the receiver room from the flanking surfaces and other flanking 
paths: 
         (5.4.2) ∑=

i
iFPP ,3

Each single flanking transmission path i can be characterised by the flanking transmission loss, 
RF,i : 
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It is convenient to keep the incident sound power P1 on the partition wall as a reference for all 
the flanking transmission losses. In this way it is very simple to add all the contributions 
together, and the apparent transmission loss is calculated from: 
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In the typical case of horizontal transmission through a wall the will be 12 flanking paths, 
namely three possible paths for each of the four surrounding flanking constructions, see Fig. 
5.4.1. 
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5.5 ENCLOSURES 
A noise source is supposed to radiate the sound power Pa. The noise source is totally covered 
by an enclosure with surface area S, absorption coefficient α on the inside, and the enclosure is 
made from a plate with transmission loss R or transmission coefficient τ. The average sound 
pressure in the enclosure pencl can be estimated, if a diffuse sound field is assumed: 
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The sound power incident on the inner surface of the enclosure is (still with the assumption of a 
diffuse sound field): 
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The sound power transmitted through the enclosure is then: 
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The insertion loss of the enclosure is the difference in radiated sound power level without and 
with the enclosure: 
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This result cannot be considered to be very accurate. Especially the assumption of a diffuse 
sound field inside the enclosure is doubtful. However, the result is not bad as a rough estimate 
for the design of an enclosure. It is clearly seen from (5.5.4) that both transmission loss and 
absorption coefficient are important for an efficient reduction of noise by an enclosure. 
 

5.6 IMPACT SOUND INSULATION 
The noise generated from footsteps on floors is characterised by the impact noise level. It is 
measured according to ISO 140 Part 6 and 7 by a standardised tapping machine. The main data 
for the tapping machine are: 
 • The noise is generated by steel hammers with a fall height of 40 mm • Each steel hammer has a mass of 500 g • The number of taps per second is 10. 

 
In the source room the tapping machine is placed on the floor in a number of positions. In the 
room below - or any other room in the building – the calibrated sound pressure level L2 is 
measured. The reverberation time in the receiving room must also be measured in order to 
calculate the absorption area A2. The impact sound pressure level is the sound pressure level in 
dB re 20 μPa that would be measured if the absorption area is A0 = 10 m2: 
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The frequency range is the same as for airborne sound insulation, i.e. the 16 one-third octave 
bands from 100 Hz to 3150 Hz. However, it is recommended to extend the frequency range 
down to 50 Hz, especially in the case of lightweight floor constructions. 
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Fig. 5.6.1. Principle of measuring the impact sound pressure level from a floor to a receiving 
room (2)   
 
 

5.7 SINGLE-NUMBER RATING OF SOUND INSULATION 

5.7.1 The weighted sound reduction index 
The single-number rating of sound insulation is practical for several purposes:  
 • to characterise the measuring result of a building construction,  • for quick comparison of the sound insulation obtained with different constructions, and  • to specify requirements for sound insulation.  
 
The weighted sound reduction index Rw is based on a standardised reference curve that is 
defined in one-third octaves in the frequency range 100 Hz – 3150 Hz. The reference curve is 
made from three straight lines with a slope of 9 dB per octave from 100 to 400 Hz, 3 dB per 
octave from 400 to 1250 Hz, and 0 dB per octave from 1250 to 3150 Hz.  
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The measured transmission loss is compared to the reference curve, and the sum of 
unfavourable deviations is calculated. An unfavourable deviation is the deviation between the 
reference curve and the measured curve if the measured sound insulation is lower than the value 
of the reference curve.  
 
The reference curve is shifted up or down in steps of 1 dB, and the correct position of the 
reference curve is found when the sum of unfavourable deviations is as large as possible, but do 
not exceed 32 dB. The value of the reference curve at 500 Hz is taken as the single-number 
value of the measuring result. The method is also shown in Fig. 5.7.1. 
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Fig. 5.7.1. Determination of the weighted sound reduction index. M is the measured curve, V1 is 
the reference curve in position 52 dB, and V2 is the shifted reference curve. The result is Rw = 
60 dB. 
 
 

5.7.2 The weighted impact sound pressure level 
The weighted impact sound pressure level Ln,w is very similar to the weighted sound reduction 
index. It is based on a standardised reference curve that is defined in one-third octaves in the 
frequency range 100 Hz – 3150 Hz. The reference curve is made from three straight lines with a 
slope of 0 dB per octave from 100 to 315 Hz, -3 dB per octave from 315 to 1000 Hz, and -9 dB 
per octave from 1000 to 3150 Hz.  
 
The measured impact sound pressure level is compared to the reference curve, and the sum of 
unfavourable deviations is calculated. An unfavourable deviation is the deviation between the 
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reference curve and the measured curve if the measured impact sound pressure level is higher 
than the value of the reference curve.  
 
The reference curve is shifted up or down in steps of 1 dB, and the correct position of the 
reference curve is found when the sum of unfavourable deviations is as large as possible, but do 
not exceed 32 dB. The value of the reference curve at 500 Hz is taken as the single-number 
value of the measuring result. The method is also shown in Fig. 5.7.2. 
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Fig. 5.7.2. Determination of the weighted impact sound pressure level. M is the measured 
curve, V1 is the reference curve in position 60 dB, and V2 is the shifted reference curve. The 
result is Ln,w = 47 dB.   
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5.8 REQUIREMENTS FOR SOUND INSULATION 
 
The Danish requirements for new buildings are laid down in “Bygningsreglement 1995” (BR-
95) and in “Bygningsreglement for småhuse 1998” (BR-S 98).  
 
For dwellings in multi-storey houses and for hotels the main requirements are: 
 • The airborne sound insulation shall be R ẃ ≥ 52 dB in horizontal directions and R ẃ ≥ 53 dB 

in vertical directions. • The impact sound pressure level shall be L´n,w ≤ 58 dB. • Between rooms for common service or commercial use and dwellings the airborne sound 
insulation shall be R ẃ ≥ 60 dB and the impact sound pressure level shall be L´n,w ≤ 48 dB. 

 
For row-houses or semi-detached houses the main requirements are: 
 • The airborne sound insulation shall be R ẃ ≥ 55 dB. • The impact sound pressure level shall be L´n,w ≤ 53 dB. 
 
In schools the main requirements are: 
 • Between classrooms the airborne sound insulation shall be R ẃ ≥ 48 dB in horizontal 

directions and R ẃ ≥ 51 dB in vertical directions. • The impact sound pressure level in classrooms shall be L´n,w ≤ 63 dB. • From rooms for music or workshops to classrooms the airborne sound insulation shall be 
R ẃ ≥ 60 dB and the impact sound pressure level shall be L´n,w ≤ 53 dB. 

 
The sound insulation of facades is not specified directly, but in buildings where then outdoor 
traffic noise exceeds LAeq, 24 ≥ 55 dB, the indoor noise in living rooms shall not exceed LAeq, 24 ≤ 
30 dB. 
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6  MECHANICAL VIBRATION AND STRUCTUREBORNE SOUND  

Mogens Ohlrich 

 

6.1 INTRODUCTION 
 

Audio frequency vibration of mechanical systems and waves in solid structures form an 

integral part of engineering acoustics in describing the dynamic phenomena in solids and 

fluids, and their interaction. This subject, referred to as phenomena of structureborne sound 

or vibro-acoustics, is important because sound or noise is very often generated directly by 

mechanical vibration of solid bodies or by waves transmitted in solid structures, and 

eventually radiated into the fluid as audible sound. Examples are musical sound from a string 

instrument or noise from a pump in a central heating system. 

 Vibration of simple resonant systems (resonators) is characterised by mass and stiffness 

properties and by some form of damping mechanism, which dissipate vibrational energy. The 

simplest description of dynamic behaviour applies to resonators that can be modelled as a 

(minimal) combination of discrete or ‘lumped’ elements. If the response of the resonator 

primarily occurs in only one direction, ie in a single motion coordinate, then the system is said 

to have a single degree of freedom (sdof). Figure 6.1.1 shows examples of sdof-resonators. 

The mathematical description of the vibration of such systems is governed by an ordinary 

second-order differential equation. This is usually derived from a force balance of the mass 

element. Solution of the equation shows that such systems have a single preferred ‘natural’ 

frequency of vibration, which can exist in the absence of external excitation. 

 

 

 

 

 

 

Figure 6.1.1 Examples of single degree of freedom resonators. After ref. [1]. 

 

 Vibration of more complex systems requires more than one motion coordinate for a 

complete description. For example, in the case of a loudspeaker three degrees of freedom are 

required for describing the designed translational motion of the ‘piston cone’ and its 

unintentional rocking motions, which can occur in two planes. In general such motions will be 

governed by three coupled, second-order differential equations. However, by using a special 

set of coordinates these equations can be uncoupled and solved independently, as is the case 
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for the sdof-resonator. 

 Vibration of different phase, ie, structural wave motion, can occur when the wavelength 

of vibration in a solid structure is less than one of its typical dimensions. If this is the case it is 

natural to threat the system as a continuous one. The response of such a system is governed by 

a partial differential equation, because the response depends upon both time and a spatial 

position coordinate that specifies the location at which the response is to be determined.          

 

6.1.1 SOURCES OF VIBRATION   

There are many types of excitation mechanisms that generate vibration and waves in solid 

structures. Such sources are associated with nature or they involve the employment of 

machines in the broadest sense, that is, devices that do work, ranging from a miniature loud-

speaker in a hearing aid to a combustion engine of a truck, say. The sources can be classified 

by their temporal variations for which there are two types, transient and continuous that 

includes time variation of either deterministic (periodic) or random nature.   

 Examples of sources of vibration are shown in Figure 6.1.2. Transient sources 

representing local impact are very common both as a single impact and in repetition, in which 

case the excitation time-history becomes periodic. The hammer impact symbolizes a variety 

of excitation mechanisms such as musical percussion (drums, xylophones), impulsive sources 

of vibration and noise in buildings (foot-falls, door slamming), impacts in production 

machinery (punch presses, forge hammers) and periodic impacts in combustion engines 

(valves, piston slab). Figure 6.1.2b illustrates force excitation caused by an unbalanced 

rotating mass; such excitation is often of a harmonic (pure tone) nature. Other sources of 

vibration and noise are random variation of surface roughness, eg in wheel/surface contacts, 

or distributed excitation of a structure, eg caused by a sound field.  

 

 

 

 

 

 

Figure 6.1.2 Examples of sources that generate vibration and structure-borne sound. 

 

6.1.2 MEASUREMENT QUANTITIES 

Investigations of vibration in solid structures are usually carried out by measuring a local 

quantity at a specific position on the structure. Distribution of vibration over a larger area can 

be determined by measurements in a number of discrete positions. The local measurement 

quantity is either a motion (displacement, velocity or acceleration) or a force. Both types of 

variables are vectors, and thus assigned to a certain orientation or direction. 

 Vibratory motion is usually measured uni-directional with a small transducer of the 

accelerometer-type that is fastened to the structure’s surface. The accelerometer is based upon 

the piezo-electric principle with an output signal proportional to the acceleration a = a(t)  of 

the vibrating surface. Accelerometers are available with different sensitivities. The velocity  v 

or displacement ξ of the vibratory motion is obtained by integration of the acceleration signal. 
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 A localised (point) force F = F(t) is mostly measured with a piezo-electric force 

transducer, which produces an output proportional to the force. The measurement is carried 

out by inserting the transducer between a source (eg a vibration exciter) and the measurement 

object. This arrangement is mostly used for measuring the dynamic properties of structures, 

for example, the impedances or the mobilities. 

  

6.1.3 LINEAR MECHANICAL SYSTEMS 

The dynamic properties of a physical system depend upon its mass and stiffness distribution 

and damping losses. These properties are attempted described by mathematical models in the 

form of one or more differential equations of motion. The system is said to be linear if the 

dependent response variables are of first order. When this is the case, one can use the very 

important superposition principle. This means that the response contributions from 

independent excitations can be superimposed or summed as vectors.  

 Herein we assume that systems considered are linear, which is often the case when 

vibration or waves have small amplitudes. System dynamics can therefore be described by 

linear differential equations. These can be based either on a discrete model or on a continuous 

model. In the discrete model the properties of system components are described by discrete 

(‘lumped’) quantities, represented by ideal masses, massless springs and dampers, see Figure 

6.1.3. The physical properties of the continuous model are functions of the spatial coordinates. 

Dynamic properties of the system are therefore described by partial differential equations. 

 

               

 

 

Figure 6.1.3 Lumped model of a physical system, where the physical properties are represented by 

ideal discrete elements of point masses, massless springs and dampers. 

 

  The choice between the two models depends upon a number of factors such as frequency 

range of interest, structural shape and forms of excitation. However, the actual decision of the 

type of model is usually not strictly scientific, but is often based on intuition and practical 

experience. In this note we shall focus mainly on the analysis of discrete models, whereas 

only a brief summary will be given of wave motion in continuous structures (structure-borne 

sound). 

 Figure 6.1.4a shows the basic lumped elements; the quantity  s  represents the spring 

constant (stiffness),  m  is the mass and  r is the damping constant of a viscous damper; for 

translatory motion these quantities have units of [N/m], [kg] and [kg/s], respectively. The 

viscous damper represents a velocity proportional resistance that results in energy losses. 

Symbolically, the viscous damping is thought caused by motion of a piston in a fluid-filled 

cylinder.   

 The properties of the elements are independent of time t, and there is a linear relation 

between forces Fi = Fi(t) and changes in, respectively, displacement ξ = ξ(t) , velocity v = v(t) 
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and acceleration a = a(t)  over the terminals of the elements. Thus, for the ideal spring there is 

proportionality between force and deformation according to Hooke’s law. The viscous 

damping force is proportional to the velocity of the ‘deformation’ in the massless damper. 

 

 

 

 

 
Figure 6.1.4 (a) Force-response-relations for ideal lumped elements.(b) Excitation (action) and 

reaction by compression of spring. 

 

 Note that both motion and force variables are vector quantities, as shown by the example 

in Figure 6.1.4b . Both quantities are defined as positive in the direction of the vector; the 

motion variables are thus defined as positive in the x-direction. In Figure 6.1.4a, the positive 

force F required for accelerating the mass  m  is therefore  F = ma , which is Newton’s second 

law of motion in its simplest form. 

 
6.2 SIMPLE MECHANICAL RESONATORS 
 

Figure 6.2.1a shows a model of a single degree of freedom system that is connected to a rigid 

foundation. The system consists of a mass  m , a spring of spring constant  s , and a velocity 

proportional viscous damper of damping constant  r. 

 

 

 

 

 
Figure 6.2.1 (a) Viscously damped simple resonator driven by an external force F ; (b) diagram which 

shows the forces acting on the mass  m .   
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6.2.1 EQUATION OF MOTION FOR SIMPLE RESONATOR 

The system is assumed excited by a time-varying external force  F = F(t)  and it is understood 

that the system can vibrate only translatory, to and fro, in the direction of the force, that is, in 

the horizontal plane in this example. The motion of the mass from its equilibrium position is 

denoted by the displacement ξ = ξ(t) , and this is taken positive towards the right-hand side.  

 The vibration response caused by the external force is uniquely defined by the 

instantaneous value ξ . This displacement of the mass results in a compression of the spring 

that produces a restoring, elastic spring force    

 

 .     ξsFs −=  (6.2.1) 

Thus, the reaction on the mass that is caused by the spring force, acts in the opposite direction 

of the displacement imposed by the external force. If viscous damping is assumed as 

illustrated by the parallel-coupled dashpot in Figure 6.2.1 then this element will exert a 

corresponding restoring damping force 
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that is, a force which is also directed opposite to that of the motion of the mass and in 

proportion to its vibration velocity  v = dξ /dt .  

 The vector sum of forces that act on the mass, that is, F + Fs + Fr  = F − sξ − rv , thus 

serves to accelerate the mass. So, according to Newton’s second law of motion, this sum must 

be equal to the product of mass  m and acceleration  a = d
2ξ/dt
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The equation of motion for the system therefore becomes 
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This equation is often written in a reduced form as 
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where  ω0  is the natural angular frequency in [rad/s] of the corresponding undamped system 

(r = 0), defined as 
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m

s=ω  (6.2.5) 

In the literature the fraction  r/m  in eq. (6.2.4b) is often replaced either by  2δ  or by  2ȗω0  

where  δ  is the damping coefficient and  ȗ  is the non-dimensional viscous damping ratio. 

Their definitions are respectively 
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  Moreover, from Figure 6.2.1b it is seen that the total force  Ff  acting on the rigid 

foundation is equal to the sum of the spring force and the damping force, that is,  
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6.2.2 FORCED HARMONIC RESPONSE OF SIMPLE RESONATOR 

Let us assume that the excitation force F in eq. (6.2.4) varies harmonically with time as             

F = |F1|cosωt with angular frequency ω. After a certain built-up of vibration the mass will 

then also execute stationary, harmonic vibration with the same angular frequency ω. Herein 

we shall only deal with the stationary vibration of the system, since it is assumed that the 

initial built-up of vibration caused by ‘starting’ the force has completely decayed because of 

damping effects, see Figure 6.2.2. 

 

 

 

Figure 6.2.2 Time history of vibration built-up in the case of harmonic force excitation of a simple, 

damped resonator when ω < ω0 . The vibration built-up response is succeeded by a stationary 

vibration at the angular frequency ω of the excitation. 

 

6.2.2.1 Undamped system 

Initially, we shall disregard the damping of the considered system by setting r = 0 . Thus for 

harmonic excitation the equation of motion (6.2.4) reduces to  
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The complete solution for ξ = ξ(t) of such a differential equation has the well-known form 

 

 equation   the tosolutions    cos    1 shomogeneout += ωξξ  (6.2.9) 

where the first term represents the stationary harmonic vibration and the second term 

represents the above-mentioned phenomenon of vibration built-up or decay.  

 The displacement amplitude  ξ1  of the stationary vibration is obtained directly from eq. 

(6.2.8) by substituting the assumed solution ξ = ξ1 cosωt : 
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where eq. (6.2.10b) follows from eq. (6.2.5). Furthermore, the quantity  ξstat  represents the so-

called static displacement, which is the compression or extension of the spring caused by the 

force  F = |F1|cosωt  when  ω = 0: 
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The stationary part of the solution (6.2.9), which describes the forced harmonic motion of the 
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resonator, is thus given by  

 . cos  
1

1
    cos    

2
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21 tt stat ωωωξωξξ −==  (6.2.12) 

The fraction  1/(1 − ω2
/ω0

2
)  represents the variation of the vibration amplitude with respect to 

the excitation frequency ω and it is sometimes referred to as the response amplification factor; 

this quantity also reveals the phase relation between the displacement response and excitation 

force. Figure 6.2.3 shows the variation of this quantity ξ1/ξstat with angular frequency; in 

Figure 6.2.3b the same quantity is shown as absolute value (modulus) and phase. 

 From the figure it can be seen that the vibration amplitude grows towards infinity when 

the excitation frequency ω approaches the undamped natural frequency ω0 of the system; this 

excitation condition is called resonant excitation, and the frequency at which  ω = ω0  is the 

resonance frequency. At  ω = ω0 , the response  ξ1 is also seen to undergo a change in sign, 

which corresponds to a phase change of π radians. Physically, this simply means that the 

quantities ξ1 and |F1| are in-phase at low frequencies, that is, for  ω < ω0  where the system 

behaves spring-like, whereas they are in anti-phase for ω > ω0  where the response is lagging  

the harmonic force excitation by 180 degrees because of the system mass (inertia). 

 

 

 

 

Figure 6.2.3 (a) Relative displacement response  ξ1/ξstat  for an undamped simple resonator; (b) the 

same response function plotted as modulus and phase. 

 

 For this undamped case the force  Ff  that is transmitted to the foundation is caused by 

the spring force and is given by Ff  = sξ , which follows from eq. (6.2.7) for r= 0. The disturb-

ance force on the foundation thus follows directly by substituting the solution eq. (6.2.12) 
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This force ratio  Ff /|F1| has the same frequency variation as the motion ratio  ξ1/ξstat  shown in 

Figure 6.2.3. For excitation frequencies below the natural frequency of the system, that is for   

ω < ω0 , the mass has a negligible influence. This means that the excitation force is in 

equilibrium with the spring force, which is transmitted unchanged to the foundation. Thus, if 

the force on the foundation is to be reduced by vibration isolation it is required that natural 

frequency of the system is designed in such a way that  ω0 << ω/√2  is fulfilled. For a set 
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excitation frequency and system mass this is accomplished by selecting a ‘soft’ spring 

element with an appropriately small spring constant  s . 

 

6.2.2.2 Viscously damped system 

The influence of damping is now being considered. When damping losses are assumed to be 

of the viscous type as in Figure 6.2.1 then eq. (6.2.4) applies. 

 By using complex notation the harmonic excitation force F(t) = |F1|cosωt can be 

expressed as F(t) = Re{F1e
iωt

}, where  F1 is the complex amplitude of the force. The solution 

of the equation of motion is assumed to be of the same form  ξ(t) = Re{ξ1e
iωt

}, where            

ξ1 = |ξ1|e
iφ

 is the complex amplitude of the harmonic displacement with  φ  being the phase 

angle between the displacement response and the driving force. Physical quantities are of 

course always real, and it is therefore necessary to take the real part of the mathematical 

solution when we want the time variation of the physical motion. This yields  
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 By performing in eq. (6.2.4a) substitutions of   F(t) ≡ F1e
iωt

 and  ξ(t) ≡ ξ1e
iωt

 result in the 

solution for the stationary, harmonic vibration
1
 : 
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Hereby, the problem is basically solved. (If the time variation of the response is sought then 

this is obtained by substitution in eq. (6.2.14).) Furthermore, since the squared modulus is 

given by  ξ1ξ1
*
 = |ξ1|

2 
, we get 
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Thus, |ξ1| is obtained by simply taking the square-root of the expression (6.2.16c). 

 The force transmitted to the foundation follows similarly from eq. (6.2.7) 
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which by substituting eq. (6.2.16b) gives 
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 1) Here the symbol Re{··} is left out. This does not result in any trouble as long as one is strictly dealing 

with field quantities (displacement, velocity, force etc). However, when dealing with energy or power quantities, 

one must only include the real part of the field quantity. The time variation eiωt is also often left out in the 

analyses, but it is of course to be recalled and taken into account when necessary. 
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Solution in sum form. The solution (6.2.16) for the complex displacement can also be written 

in terms of its real and imaginary parts 

 . i        1 imre ξξξ +=  (6.2.19a) 

In the following we shall assume that the arbitrary phase of F1 is set equal to zero by a 

suitable choice of time-reference (t = 0); this means that the force amplitude is assumed to be 

real, ie F1 = |F1|. Thus, by transforming the denominator in eq. (6.2.16b) to a real quantity this 

yields 
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The frequency variations of this solution are sketched in Figure 6.2.4a. Shown is the real and 

imaginary parts of the displacement response of the viscously damped resonator when this is 

driven by a harmonic force of constant amplitude F1 . The damping is seen to limit the 

displacement response in the frequency range around  ω~ω0  where the response  ξ1  is 

controlled largely by its imaginary part  ξim . 

 

 

 

 

 

 
Figure 6.2.4 Frequency variation of displacement ξ1  for a viscously damped simple resonator driven 

by a harmonic force of constant amplitude. (a) Real and imaginary parts; (b) Modulus and phase. 

 

Solution in product form.  The solution for the complex displacement response eq. (6.2.16) or 

(6.2.19) is often written in the alternative ‘product form’ 

 ϕξξ i

11      e=  (6.2.20a) 

where the modulus |ξ1| and phase angle φ as usual are determined from eq. (6.2.19): 
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The squared modulus of the displacement is already given by eq. (6.2.16c), whereas the phase 

angle is found directly from eq. (6.2.19b), ie 
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Note that the phase angle becomes φ = −π/2  at resonant excitation. As previously, the actual 

physical time variation of the vibration response follows from eq. (6.2.14) 
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Figure 6.2.4b shows how the modulus and phase of the displacement varies with frequency 

for harmonic force excitation. This type of graph is the most commonly used form of 

presentation for frequency response functions. 

 The vibration velocity v(t) of the resonator is often of interest and this follows simply by 

taking the time derivative of the displacement response, eq. (6.2.16) or (6.2.20): 
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So, with respect to the complex amplitudes a differentiation is simply archived by a 

multiplication with  iω ; evidently integration is performed by a division by iω. Moreover, the 

acceleration  a(t) of the motion is obtained similarly by the time derivative of  velocity or by 

the second derivative of displacement. 

     

Non-dimensional form. It is often convenient to introduce non-dimensional parameters that 

enable solutions for a class of systems to be presented in a general form. For simple 

resonators the frequency ratio  Ω  is readily used as frequency parameter 

 . /    0ωω=Ω  (6.2.22) 

By substituting this as well as the dimensionless viscous damping ratio ȗ into eqs. (6.2.16c) 

and (6.2.20b) we obtain the general expressions for the displacement ratio |ξ1|/ξstat  and for the 

phase angle  φ : 
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here, it is recalled that the static displacement is  ξstat = |F1|/s . Amplitude and phase 

characteristics for the displacement ratio (6.2.23), are shown logarithmically in Figure 6.2.5a 

for different values of damping ratio  ȗ . It is clearly seen that the damping has a dominant 

influence on the response in the frequency range Ω ~ 1, which is close to the natural 

frequency of the system. 

 Similar expressions for the force ratio  Ff  / |F1| are obtained by substituting the non-

dimensional parameters in eq. (6.2.18). Amplitude and phase characteristics for this ratio 

between transmitted force and driving force are shown in Figure 6.2.5b.  
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 In forced harmonic vibration the displacement response of the system reaches its 

maximum value |ξmax| at, say,  Ωr = ωr /ω0 where ωr is the resonance frequency. The actual 

value of  Ωr  is determined by differentiating eq. (6.2.23a) with respect to  Ω  and by setting 

the obtained expression equal to zero. This gives the value 

  

 221      ζ−=≡ rΩΩ  (6.2.24a) 

 ⇔   ; 1  2n              whe,     1    22 <<−≅ ζζrΩ  (6.2.24b) 

in the last approximate expression use have been made of the truncated series:                  

(1−x)
½
 ≅ 1 − x/2  provided that  x << 1. The maximum displacement thus occurs at an angular 

frequency, which is slightly lower than the angular natural frequency of the undamped 

system. By substituting eq. (6.2.24a) in (6.2.23a) we get 
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Figure 6.2.5 Amplitude and phase characteristics for: (a) Displacement ratio  ξ1/ξstat  , and (b) Force 

ratio  Ff /|F1| . From ref. [2]. 

 

 However, when the damping is small (ȗ  << 0.05) the resonance frequency will nearly 

coincide with the natural frequency  ω0 of the undamped system, that is, ωr  ≅  ω0 ; the 

maximum displacement thus becomes 
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The displacement at resonance is thus equal to  ξstat divided by  2ȗ . 
 Similarly, the vibration velocity of the system can be shown to take its maximum value 

|vmax| at  ω = ω0 , that is, at  Ω =1 . Since  |v| = ω |ξ|  this yields 
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Relations for maximum acceleration can be derived in the same manner. 

 Finally, the modulus and phase of the frequency response functions for displacement and 

velocity, respectively, are sketched in log-log format in Figure 6.2.6. 

 

 

 

 
Figure 6.2.6 Logarithmic plots of the frequency response functions of a simple resonator represented 

as displacement and velocity. A unit force excitation is assumed.   

 

Characteristic properties. As apparent from previous discussions the dynamic properties of 

the resonator are predominantly spring-like at low frequencies (Ω  << 1) and predominantly 

mass-like at high frequencies (Ω  >> 1) ; the asymptotes shown in Figure 6.2.6 actually 

represent the dynamic properties of the individual elements  s, m and  r under the action of the 

force  F1. The dynamic properties of the resonator (ie, the combined system) are therefore 

characterised as being:  
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These asymptotic values for the displacement response |ξ1| follow directly from eq. (6.2.16c). 

Similar relations can be determined for velocity and acceleration. 
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6.2.2.3 Structurally damped systems 

So far we have only considered damping of the viscous type. A second type is structural 

damping, which is proportional to changes in elastic deformation, like the displacement of a 

spring. Such structural damping is therefore appropriately modelled by assigning the inherent 

losses to the spring element. For harmonic motion this can be represented by a complex 

stiffness  s = s(1 + iȘ)  where  Ș  is the damping loss factor and  s  is the real part of the 

complex spring constant. The loss factor thus defines the phase lag (hysteresis) between 

harmonic driving force and spring displacement. By using the loss factor the equation of 

motion for a single mass-spring resonator becomes 
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which, similar to eq. (6.2.15), has the solution  ξ(t) = Re{ξ1e
iωt

}, where  ξ1 = |ξ1|e
iφ

  is the 

complex amplitude: 
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 This ‘complex stiffness’ approach is very convenient, because the equation of motion 

can be formulated initially without regard to damping and finally the spring constant is 

replaced by its complex value  s = s(1 + iȘ) . 
 Now, comparing eq. (6.2.30) with (6.2.15) shows that  sȘ  corresponds to  ωr . The 

equivalent damping ‘constant’ req for a structurally damped spring thus becomes frequency 

dependent, and so does the equivalent damping ratio  ȗeq , ie  
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Alternatively, the loss factor of a parallel combination of an ideal spring and a viscous damper 

of constant  r may be expressed as  Ș = rω/s . Note also that the equivalent damping ratio eq. 

(6.2.31b) becomes  ȗeq =  Ș/2  at resonance. This relation may be used as an approximation 

for other frequencies that are close to resonance. 

 

6.2.3 FREQUENCY RESPONSE FUNCTIONS 

The frequency response of a system is defined as the ratio of complex amplitudes of two 

quantities representing the response to a certain excitation. This broad characterisation by the 

term ‘frequency response’ is often imprecise because the response quantity can be either 

displacement or one of its time derivatives: velocity and acceleration. It is therefore 

customary to assign specific names and symbols to the various types of frequency response 

functions.  

 

6.2.3.1 Receptance 

So far we have been dealing with ratios of response over force. When the system response is 

characterised by its displacement the complex frequency response is called the receptance  

H(ω) . So, this is defined as 
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where the notation with angular frequency dependence, H(ω), implies that the quantity is a 

continuous function of ω ; its amplitude spectrum  |H(ω)| and phase spectrum  φ(ω)  can be 

determined from 

 
{ }{ } . 

)(Re

)(Im
    )(tan       and       )()(    )(

2

ω
ωωϕωωω

H

H
HHH == ∗  (6.2.33) 

The definition eq. (6.2.32) states that ξ1e
iωt

 = H(ω)F1e
iωt

 , which means that the time variation 

of the displacement for harmonic excitation is 
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where the force amplitude is assumed to be real.  

 Receptances of the discrete elements: spring s, damper r and mass m , follow 

respectively from the fundamental relations between harmonic force and the associated 

motion for such elements 
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Since the ideal spring and damper are massless it is assumed in the definition of their 

receptances that one of their terminals is blocked and that a harmonic force drives the other, 

free end.  

 It is sometimes useful to use the reciprocal of the receptance function; this is called 

dynamic stiffness [3]. 

 

6.2.3.2 Mobility and Impedance 

The velocity response is often of interest in vibro-acoustics, for instance, because the radiated 

sound power from a vibrating structure is proportional to its surface velocity. The complex 

ratio between response velocity and driving force is called the mobility  Y(ω)  (or sometimes 

admittance) and is defined as 
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There is, of course, a very simple relation between mobility and receptance since the complex 

velocity amplitude is  v1 = iωξ1 , ie 
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The mobilities of the ideal components are therefore easily determined either from the 

fundamental relations or directly from eq. (6.2.35). Thus 
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The reciprocal of a mobility function is named the impedance  Z(ω) 
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 These different frequency response functions are summarized in Table 6.2.1 together 

with corresponding functions that involve acceleration response. The latter is called 

accelerance and its reciprocal, the apparent mass. The accelerance is sometimes used because 

acceleration is the response quantity that is usually measured directly. 

 

Table 6.2.1 Definition of frequency response functions  R/F  and  F/R , where  F  is the force and  R  is 

the response that represents either displacement, velocity or acceleration. 

 --------------------------------------------------------------------------------------------------------- 

 Response                    Name of frequency response function 

 quantity 

       R    R/F    F/R 

 --------------------------------------------------------------------------------------------------------- 

 Displacement  ξ  Receptance H(ω)  Dynamic stiffness S(ω) 

 --------------------------------------------------------------------------------------------------------- 

 Velocity  v  Mobility Y(ω)   Impedance Z(ω) 

 --------------------------------------------------------------------------------------------------------- 

 Acceleration  a  Acceleration A(ω)  Apparent mass M(ω) 

 --------------------------------------------------------------------------------------------------------- 

 

 

6.2.4 FORCED VIBRATION CAUSED BY MOTION EXCITATION 

Vibratory disturbances like motion excitation is very common and occurs, for example, in 

transportation of any kind, in machinery and in certain cases also in buildings. In all these 

examples and in vibration isolation of delicate equipment from disturbing environments, the 

‘foundation’ has a given motion  ξf  = ξf (t)  as shown in Figure 6.2.7. Thus we want to find the 

imposed/generated motion  ξ = ξ(t)  of the mass. 

 

 

 

 

Figure 6.2.7 Motion excitation of a damped simple resonator. 

  

 There are two motion coordinates, but despite of this the system has only one degree of 

freedom, because the motion of the system is uniquely described by a so-called generalized 

coordinate q = q(t) ; in this case by the motion differences 

 . 
..

   
.

      and          
    ξξξξ −=−= ff qq  (6.2.40) 

The quantities q and 
.  

q describe, respectively, the compression (or elongation) of the spring 

and the velocity difference over the damper. Since the total force on the mass in Figure 6.2.7 

readily can be written down, is it not necessary to use q explicitly. From eq. (6.2.3) follows 

directly 
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This gives the equation of motion 
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It is seen that there is a clear analogy between this expression and eq. (6.2.4a), if the right-

hand-side of eq. (6.2.42) simply is interpreted as a special ‘forcing function’. 

 In the case of steady-state harmonic motion excitation  ξf e
iωt

 , the solution to eq. (6.2.42) 

can be assumed to be ξ ≡ ξ1e
iωt

 ; by substituting these quantities we obtain the solution for the 

complex amplitude of the displacement  ξ = Re {ξ1e
iωt

 } 
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This expression has the same form as eq. (6.2.18a). In motion excitation the ratio between 

displacements is thus identical to the ratio between forces in the case of force excitation 

(Figure 6.2.1). The frequency variation of  ξ1 /ξf is therefore exactly identical to that of   Ff /F1  

shown in Figure 6.2.5b. 

 This finishes the analysis of simple sdof mechanical resonators. A treatment of free 

vibration of such systems and an analysis of more complicated multi-degree of freedom 

systems is outside the scope of this introductory note on discrete systems. We will therefore 

proceed with a brief introduction of continuous structures. 

  

 

6.3 VIBRATION AND WAVES IN CONTINUOUS SYSTEMS  
 

Distributed solid structures become ‘dynamically elastic’ and exhibit wave-type vibratory 

behaviour as the frequency is increased to an extent, where the wavelength become 

comparable to, or less than, the physical dimensions of the structure. Although discrete 

models can be used for analysing wave motion at the lower frequencies, it becomes expedient 

to use wave-type analysis in problems where the wavelength is short. Thus, a brief 

introduction will be given to vibration and wave motion in continuous systems. Only systems 

of one and two dimensions will be considered here, because most engineering structures have 

at least one dimension, which is small in comparison with the relevant structural wavelength 

of vibration. In the audible frequency range this is the case for basic engineering components, 

such as strings, rods, beams, membranes, plates, shells, pipes etc. 

 Equations of motion that describe different wave types and vibro-acoustic phenomena 

have been formulated for many types of continuous structures [4,5,6]. Usually each wave type 

is treated separately, although wave conversion between different types generally occurs at 

most structural discontinuities, such as edges, corners and cross sectional changes.  

 The most important wave types in structures are considered to be (a) longitudinal waves, 

(b) shear or torsional waves and (c) bending waves, which are also called flexural waves, see 

Figure 6.3.1. In the following an introduction of these waves in plane structures will be given.  
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Figure 6.3.1 Different wave types: (a) Longitudinal wave (the lateral deformations are exaggerated), 

(b) Torsional wave and (c) Bending wave. After ref. [7]. 

 

6.3.1 LONGITUDINAL WAVES 

Longitudinal waves in one-dimensional structures like rods and beams are compression-type 

waves that are similar to plane sound waves in a fluid. The local structural deformation in 

connection with longitudinal wave motion is primarily in the direction of wave propagation, 

although there is also a small lateral deformation normal to the structural surface. However, 

this deformation is generally so small that it can be neglected as a radiator of sound to the 

surrounding fluid. It should also be mentioned that the impedance of longitudinal waves in 

solids generally is very high. 

 The equation of motion for longitudinal waves in an undamped beam can be written in a 

compact form; the longitudinal displacement in the wave motion will be denoted by               

u = u(x, t), where  x  represents its spatial dependence. If we assume purely harmonic 

excitation and harmonic wave motion  u = u(x)e
iωt

  this reads 

  

 { } , )(    )()( 2 xFxumxuL ′=′− ω  (6.3.1) 

 

where  L{····} is a differential operator that describes the force gradient in the beam,  m' is its 

mass per unit length and  F '(x)  is an external force excitation per unit length. For 

longitudinal waves the operator is given by  −ES d
2
/dx

2
 , where  E  in [N/m

2
]  is Young’s 

modulus of elasticity of the beam material and  S  is the cross sectional area of the beam.  

 Two field variables are required for describing the longitudinal wave motion; these are 

the already mentioned displacement u = u(x)e
iωt

 – or its time-derivative, the velocity               

v = iωu(x)e
iωt 

= v(x)e
iωt

  – and the internal force  F = F(x)e
iωt

  associated with the wave 

motion. This is given by 

 .     
x

u
ESF ∂

∂−=  (6.3.2) 

Moreover, the wave speed  cl2  of a freely propagation longitudinal wave in the beam is  
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 ρ
E

cl     2 =  , (6.3.3) 

where  ρ  is the material mass density; index 2 on  cl2  indicates that the structure has two 

surfaces that are small compared with the wavelength of the motion. The corresponding wave 

speed in a flat, homogenous plate is slightly higher (by about 5%): 

 , 
)1(

    
21 νρ −= E

cl  (6.3.4) 

where  Ȟ  is Poisson’s ratio, which is a material constant that expresses the ratio between 

deformations in the lateral and length-wise directions of the structure. For common solid 

material Ȟ ≈ 0.3 , and for rubber-like materials Ȟ ≈ 0.5 .  

 A listing of material properties and wave speeds are given in Table 6.3.1. Note that the 

wave speed in metals is about 3000 to 5000 m/s, that is, a magnitude higher than for sound in 

air. Furthermore, the mass density for metals is seen to be up to 7000 times higher than for 

air. This means that the characteristic impedance  (ρcl) for compression waves in solid 

structures is much higher than for air; for example, the characteristic impedance for steel is 

10
5
 times higher than in air, but only 27 times higher than the impedance in water. 

 

Table 6.3.1 Material properties and wave speeds (phase speeds) for solid structures. After ref. [8]. 

 

 

 

 

 

6.3.2 SHEAR WAVES 

In this wave type only shear deformations occur, but no volume changes. Moreover, the 

direction of the ‘particle’ motion is perpendicular to the direction of propagation. Shear waves 

are of importance in plates that are built-up of several layers of material with different 

properties, eg sandwich honeycomb panels. 
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 The equation of motion for shear waves is governed by a second order partial differential 

equation [5] of a general form similar to that of longitudinal waves; the details shall not be 

given here, though. The wave speed  cs  for shear waves in a plate is given by 

 , 
)1(2 

        νρρ +== EG
cs  (6.3.5) 

where G is the shear modulus of the material. From the right-hand-side of this equation it is 

clear that there is a unique relation between Young’s modulus  E and the shear modulus  G, ie 

 . 
)1(2

    ν+= E
G  (6.3.6) 

 Shear waves in rods are called torsional waves. This type of wave motion that involves 

twisting of the cross section of the rod was shown in Figure 6.3.1b. If the rod has a circular 

cross section then the wave speed is as given by eq. (6.3.5); otherwise the wave speed will be 

lower. 

 The two wave types discussed so far have high characteristic impedances. These waves 

may therefore be important for the wave transmission over large distances (eg in buildings 

and ships) and in wave conversion to bending waves, which is the dominant wave type when 

it comes to sound radiation to the surrounding fluid media, being air or water. 

 

6.3.3 BENDING WAVES 

Bending waves in beams and plates are characterised by the motion being perpendicular to 

both the direction of propagation, and the surface of the structure, see Figure 6.3.1c. Bending 

waves do therefore play a dominant role in sound radiation from structures. The reasons for 

this are that the wave motion has a good ‘match’ to the adjacent air, and that bending waves 

are easily generated, because of their low characteristic impedance. 

 The equation of motion for bending waves in an undamped beam can be written in the 

previous compact form, but with the transverse displacement of the bending wave motion 

being denoted by w=w(x, t). If we again assume purely harmonic excitation and harmonic 

wave motion  w=w(x)e
iωt

 , we get 

 

 { } , )(    )(  )( 2 xFxwmxwL ′=′− ω  (6.3.7) 

 

where the differential operator L{···} that describes the shear force gradient in the beam now 

takes the form  B d
4
/dx

4 
. Here,  B  is the bending stiffness of the beam,  m' is its mass per unit 

length and F'(x) is an external force excitation per unit length. The operator is of fourth order, 

and four field variables are thus required for describing the bending wave motion. There are 

two motion variables, the transverse displacement w = w(x)e
iωt

 and the angular displacement 

β = β(x)e
iωt 

, which is the first spatial derivative of  w , ie dw /dx . Two force variables are 

associated with the wave motion, the internal shear force Fy = Fy(x)e
iωt

 and the internal 

bending moment  Mz = Mz(x)e
iωt

 ; these are given by 
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Moreover, the wave speed  cb  of a freely propagation bending wave in the beam is 
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which is seen to depend upon frequency; this special phenomenon is called dispersion. Such 

dependence results in complicated sound radiation properties for plates and built-up 

structures. The wave speed or phase speed is furthermore noticed to depend upon the bending 

stiffness and the mass per unit length.  

 The phase speed of bending waves in a thin homogeneous beam with a rectangular 

cross-section and of thickness  h in the direction of the motion, is given by  

 ,    8.1    2 fhcc lb ≅  (6.3.10) 

where  f  is the frequency (in Hz) and  cl2  is given by eq. (6.3.3). 

 Moreover, the phase speed in a thin homogeneous plate of thickness  h  is given by 

 ,    8.1    1 fhcc lb ≅  (6.3.11) 

where  cl1  is given by eq. (6.3.4). 

 

6.3.4 INPUT MOBILITY OF INFINITE SYSTEMS 

Finally, in this brief introduction it is appropriate to list some input mobilities for point force 

excitation. Or more specifically, input mobilities relating translational velocity  v e
iωt

  to 

translational force  F e
iωt

 , both at the same point and in the same coordinate (direction). The 

corresponding point impedances are the reciprocal of the given point mobilities. 

 

6.3.4.1 Beam or rod 

Longitudinal vibration. In the case of a semi-infinite (s∞) beam driven axially at the end, the 

input mobility is  

 . 
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where  m' is mass per unit length and  cl2  is given by eq. (6.3.3). 

 

Bending vibration. The input mobility of a semi-infinite beam driven at the end is 

 . 
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where  m' is mass per unit length and  cb  is given by eq. (6.3.9), or by eq. (6.3.10), provided 

that the beam is of rectangular cross-section and is vibrating in the direction in which the 

beam thickness  h  is measured.  

 The input mobility of an infinite beam driven in the ‘middle’ is given by  

 . 
 4

i1
    

bcm
Y ′

−=∞  (6.3.14) 

Note that this is four times lower than the input mobility of the semi-infinite beam, eq. 

(6.3.13). 

 

6.3.4.2 Plate 

Bending vibration. The input mobility of a semi-infinite plate driven normal to its surface and 

at the end (edge) is 
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where  m'' is the mass per unit area, and for a homogeneous plate of thickness  h the bending 

stiffness  B'  is  
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It is noted that this input mobility, eq. (6.3.15), is purely real, provided that the plate is 

undamped as is assumed here. 

 The input mobility of an infinite plate driven in the ‘middle’ is also real and is given by: 

 . 
 8

1
    

mB
Y ′′′=∞  (6.3.17) 

 Other point mobilities relating angular velocity to moment excitation, as well as cross 

mobilities, are given in ref. [5]. 

 

 
6.4 VIBRATION ISOLATION AND POWER TRANSMISSION 
 

Vibration isolation is one of the most effective ways of reducing the transmission of audio 

frequency vibration from a disturbing source (machine, apparatus, etc) to a connected 

receiver structure. This is generally accomplished by ‘disconnecting’ the transmission paths 

between the two systems. In practice vibration isolation is done by inserting resilient 

mechanical connections or rubber elements that are much more compliant (ie, dynamically 

soft), than both the source structure and the receiving structure. Such vibration isolators have 

spring-like properties and are often made of vulcanised rubber elements, metal springs or 

combinations thereof. The isolation principle is depicted in Figure 4.1a, and Figure 4.1b 

shows an example of measured mobilities of a rubber isolator, engine source and elastic 

receiver. 

 

 

 
Figure 6.4.1 (a) Vibration isolated diesel engine on elastic ship foundation; (b) Mobilities of isolator, 

engine and ship foundation. From ref. [9]. 

  

 The principle of vibration isolation has already been described in Chapter 6.2. Thus, in 

the case of a harmonically driven simple source of mass  m  resting on a spring  s  attached to 
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an idealised rigid foundation, it was found that vibration isolation is achieved when the 

angular natural frequency ω0 of the system is somewhat lower than the frequency component  

ω  of the excitation force.  

 

6.4.1 ESTIMATION OF SPRING STIFFNESS AND NATURAL FREQUENCY 

It is often easy
2
 to determine the important quantities (m, s and ms /    0 =ω ) for uncritical 

arrangements of simple machinery sources that are mounted on vibration isolators (springs). 

Usually the mass  m  of the machine is known. For a vertically loaded spring the static force  

F0 = mg from the mass results in a static deflection (compression) of the spring of magnitude  

ξ0 = F0/s . These two relations enable the determination of the static stiffness of the spring, ie 

 , 
 

    
0ξ
gm

s =  (6.4.1) 

where  g (= 9.81m/s
2
) is the gravitational acceleration. The designed natural frequency of the 

system can therefore be determined by a very simple formula: 
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 If the spring element is slender and rod-like with a cross sectional area  S , length 

(height) d  and made from a material of Young’s modulus  E , then the static spring constant  

s  can be calculated from 

 

 s = ES/d . (6.4.3) 

 

Note that the dynamic stiffness of rubber-like material generally differs from this value of 

static spring constant or stiffness  s. This will be treated in more details in Section 6.4.4. 

 

 

 

 

 
Figure 6.4.2 Static deflection of spring, which in the unloaded condition has the length d . 

 

 It was mentioned previously that the vibration isolation can be improved by reducing ω0, 

that is to say, by increasing the static deflection ξ0 . This can be accomplished by reducing  s, 

but this results in a more laterally unstable arrangement. As a compromise for a number of 

practical source cases it is therefore often ‘common’ to choose values in the approximate 

range of 0.004 m < ξ0 < 0.01 m, which corresponds to  8 > f0 > 5 Hz. 

                                                 

 2) It should be recalled, however, that the simple oscillator model is a coarse simplification of the 

reality, where an extended rigid body on springs will have six degrees of freedom and thus six natural 

frequencies, eg see ref. [2]. 
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6.4.2 TRANSMISSION OF POWER IN RIGIDLY COUPLED SYSTEMS  

In contrast to the idealised model of a simple source on a rigid foundation we shall now 

examine the more realistic case of source and foundation or receiving structure of finite 

mobilities or impedances. It is reasonable to expect that the dynamic properties of the source 

and receiver will effect the vibration isolation that is achievable in practice.  

 For reference we shall initially address the situation where the vibration source is rigidly 

connected to the receiving structure, and it is assumed that source and receiver are connected 

via a single motion coordinate (or terminal). First consider the source in a free uncoupled state 

in which the vibration activity of the source can be characterised by its free terminal velocity  

vfree  and its ability to transmit power by its terminal mobility  YS  , see Figure 6.4.3a . These 

source quantities are suitably combined into a single descriptor [10] called the terminal source 

strength |Jterm| : 

 ,     

2

S

free

term
Y

v
J =  (6.4.4) 

where 2

freev  is the time-average mean-square value of the free velocity vfree= vfree(t). This 

source strength |Jterm|, with units of power [W], is useful when comparing different vibratory 

sources. 

 

 

 

 
Figure 6.4.3 Systems with a single coupling coordinate: (a) Free vibration source, (b) Source coupled 

rigidly to receiving structure, (c) Reaction forces on systems. 

 

 In the analysis that follows we assume harmonic vibration vfree ≡ vfree e
iωt 

. The source is 

now being connected to a receiving structure, which is characterised by the input mobility YR . 

This loading of the source causes the free velocity to change to vR , because of the force 

reaction  (−F)  on the source, ie 

 .     FYvv SfreeR −=  (6.4.5) 

Since per definition vR = YRF, we find directly for the rigid coupled system: 

 ( ) ( ) .                 and                
11

freeRSRRfreeRS vYYYvvYYF
−− +=+=  (6.4.6a,b) 
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The force and velocity at the coupling point have hereby been determined for this case of 

rigid coupling. 

 The power that is transmitted to the receiving structure is given by the well-known 

relations: 

 { } { } { }.  Re     Re      Re    
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By substituting the expressions from eq. (6.4.6) herein yields 
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 For further evaluation of the transmitted power this can be written in a convenient 

alternative form. Introducing the terminal source strength |Jterm | , eq. (6.4.4), and a power 

coupling factor CP  yields 

 

 ,     Pterm CJP =  (6.4.9) 
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and  φR  is the phase angle of the receiver mobility and  θ = φR − φS  is the phase difference 

between receiver and source mobilities. This takes values in the interval: 0 ≤ |θ| ≤ π . The 

power coupling factor is noted to be symmetric with respect to the logarithm of the mobility 

ratio |YR |/|YS | . For further details see ref. [10, 11]. 

 

6.4.3 VIBRATION ISOLATED SOURCE 

The effect of a vibration isolator is now considered. The source is connected to the receiver 

via a vibration isolator as schematically shown in Figure 6.4.4a. For simplicity it is assumed 

that the isolator can be modelled as an ideal spring with a spring constant  s . Thus, because 

the spring is assumed massless, this implies that the force on the left-hand-side of the spring 

 

 

 

 

 

 

Figure 6.4.4 (a) Block diagram of vibration isolation of a source with a single coupling coordinate. 

(b) Diagram that shows the forces on the system elements. 
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is identical to the force on the receiver, F1 = FR . The velocities are different, of course, and 

similar to before given by 

 .              and               111 FYvFYvv RRSfree =′−=  (6.4.11a,b) 

The force and the velocities are related according to Hooke’s law as 
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which, together with eq. (6.4.11) give 
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By substituting F1 into the general relation, eq. (6.4.7b), gives the transmitted power to the 

receiver 

 
{ }

. 
        i

 Re
    

2

2

2
1

RS

R
free

YYs

Y
vP ++=′ ω  (6.4.14) 

So, this gives 

 ,     Pterm CJP ′=′  (6.4.15) 

where 
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 These results for the vibration-isolated source have to be compared with those for the 

rigid coupled case in order to realistically evaluate the influence of the vibration isolator. This 

influence is most suitably described by the effectiveness Eiso = Eiso(ω) of the vibration 

isolator, also called its insertion loss. This is defined as the ratio between the squared 

magnitudes of the receiver velocities before and after the installation of the vibration isolator - 

or for that matter - as the ratio of the corresponding injected powers. Eqs. (6.4.6b) and 

(6.4.13b) thus give 
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 (6.4.17) 

 From this equation it is evident that a high effectiveness (ie, large number) requires that 

the isolator mobility iω/s ≡ YI  is much higher (ie, much more mobile or compliant) than the 

sum of the source and receiver mobilities, that is,  

 

 YI  =  iω/s  >>  YS  + YR  .  (6.4.18) 

 

Such a large value of inequality is not easily accomplished over the broad audible frequency 

range, because lightly damped resonance in elastic source and receiving structures will occur 

and limit the effectiveness of the isolator. Furthermore, at high frequencies the mass of the 

isolator can no longer be ignored and resonance occur in the isolator itself, which also limit 

the effectiveness. In the case of a symmetric vibration isolator, such modal behaviour can be 

accounted for in a prediction by replacing  iω/s  in eq. (6.4.17) with the actual mobility of the 

isolator  YI , see also ref. [12]. 
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 At first, the definition of the isolator effectiveness in eq. (6.4.17) does not seem to apply 

to the ideal case of a rigid (immoveable) foundation that was assumed in Chapter 6.2. 

However, this is not so, because Eiso might as well be defined as the ratios of forces acting on 

the receiver, whether this is moving or not. This follows from the fact that velocities and 

forces are related via the receiver mobility. So, for the general elastic receiver the 

effectiveness also reads  Eiso =  |FR|
2 

/ |FR'
 
|
2
 , where the dash refers to the case with the source 

resiliently connected to the receiver. Hence, by substituting the derived expressions for the 

corresponding forces, eq. (6.4.6a) and (6.4.13a), respectively, we obtain exactly eq. (6.4.17). 

 

Example 6.4.1 The isolation effectiveness  Eiso  is to be determined for a harmonically driven mass-spring 

resonator, which is connected to a rigid foundation, similar to the systems in Figure 6.2.1 or 6.4.2. The 

undamped natural frequency of the resonator is ms /0 =ω , where m is its mass and s is the spring stiffness. It 

is here assumed that the system is structurally damped and that this is accounted for by taken the spring stiffness 

to be complex  s = s(1+iȘ). 
 The source, being the mass  m , has the mobility  YS = (iωm)–1  and the mobility of the receiver in the form 

of a rigid foundation is  YR = 0 . Substituting these into eq. (6.4.15) gives 

 ;  i1      
)i1(

1     

2
2

0

2

0

2

2 ⎟⎟⎠
⎞⎜⎜⎝

⎛+⎟⎟⎠
⎞⎜⎜⎝

⎛−≅+−= ω
ωηω

ω
ηω

s

m
Eiso  (6.4.19) 

in the last approximation it is assumed that  Ș << 1, so that  1 + Ș2  ≈ 1. By comparison it is seen that eq.(6.4.19) 

is equal to the reciprocal of the results for |Ff|
2 / |F1|

2 in Figure 6.2.5b. This can also be deduced from eq. 

(6.2.18), if the damping constant  r  is replaced by the equivalent constant  req for a structurally damped spring  

req =  sȘ/ω . 

 

 Figure 6.4.5 shows an example of measured and predicted values of the isolation 

effectiveness for a complicated vibration source (the diesel engine in Figure 6.4.1a), which is 

resiliently mounted on an elastic foundation. The source is mounted on ten multi-directional 

isolators; note that these isolators have a much higher mobility than the isolator example 

shown in Figure 6.4.1b.  The effectiveness is seen to be rather good, about 25 dB on average. 

Also shown are two course estimations based upon, respectively, a simple mass-spring-mass 

model (LF-prediction of resemblance to eq. (6.4.19)), and a simple mono-coupled model, 

where measured isolator mobility and average point mobilities of source and receiver have  

 

 

 

 

 
Figure 6.4.5 Effectiveness of vibration isolation  10 log Eiso  of a multi-coupled machinery source on 

an elastic receiving structure. 
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been used in eq. (6.4.17). Despite of the coarse simplifications in these models, a reasonable 

agreement with measurement is found in the frequency range up to 800 Hz.   

 Another example of predicted isolation effectiveness is shown in Figure 6.4.6. Here, a 

105 m tall building structure is mounted on large, flat rubber pads that allow thermal 

expansion or contraction of the huge building. Calculations were carried out in order to 

estimate their isolation effectiveness against structureborne sound transmission from 

disturbing underground rail traffic. It is apparent from Figure 6.4.6 that these thermal 

expansion devises are not very useful as vibration isolators; their static deformation is simply 

too small – in other words – the stiffness of the isolators is too high. At the fundamental 

natural frequency of the system vibration amplification is observed and in the frequency range 

above 90 Hz the effectiveness is seen to become very small at certain frequencies. These 

correspond to the natural frequencies of the foundation columns (≈ ‘source’), on which the 

rubber pads and building structure rest. 

 

 

 

 
Figure 6.4.6 Isolation effectiveness of rubber expansion devises that support a tall building.  

 

6.4.4 DESIGN CONSIDERATIONS FOR RESILIENT ELEMENTS 

It was mentioned in Section 6.4.1 that the dynamic stiffness of rubber-like material generally 

differs from the static spring stiffness s determined by static measurement. When such 

isolators are used it is therefore necessary to insert the dynamic stiffness value  sdyn  instead of  

s  in the equation for the natural frequency, eg eq. (6.4.2a). 

 

6.4.4.1 Rubber-like materials 

The dynamic stiffness of rubber isolators depends upon a number parameters. An important 

parameter is the rubber hardness, which is usually characterised in °Shore A of hardness. The 

typical hardness-range of commercial rubber isolators is from about 40°Shore A (for soft 

isolators) to 80°Shore A , which is rather hard. Table 6.4.1 presents a coarse guide that shows 

approximate, empirical values for the relation between rubber hardness, static Young’s 

modulus  E  and dynamic Young’ modulus  Edyn  , or more specifically their ratio  Edyn /E . 

 Thus, for a slender rubber isolator (of static stiffness given by eq. (6.4.3)), the 

appropriate dynamic stiffness  sdyn  becomes 

 

 sdyn = Edyn S/d . (6.4.20) 
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However, this is generally not the final estimate, because the stiffness of rubber isolators also 

depends upon another important parameter, which is basically the compactness of the isolator. 

Generally, the stiffness of a short rubber block is found to be much higher than the stiffness of 

a long slender sample. (Note, that this effect of course is accounted for when estimations are 

based on a static load-deflection test, ie on eq. (6.4.1).) 

 

Table 6.4.1 Approximate values for the relation between rubber hardness, static Young’s modulus  E  

and dynamic Young’s modulus  Edyn. The results apply to natural rubber. 

 

 --------------------------------------------------------------------------------------------------------- 

 Rubber hardness  Static Young’s modulus E               Ratio:  Edyn /E 

       °Shore A          106 N/m2        -- 

 --------------------------------------------------------------------------------------------------------- 

              40        1.5       1.2 

 --------------------------------------------------------------------------------------------------------- 

              50        2.5       1.4 

 --------------------------------------------------------------------------------------------------------- 

              60        4.0       1.8 

 --------------------------------------------------------------------------------------------------------- 

                      70        6.0       2.2 

 --------------------------------------------------------------------------------------------------------- 

 

 The stiffness expressed by eq. (6.4.18) therefore has to be corrected for the ‘bulkiness’ of 

the rubber isolator. This can be characterised by an area ratio (or shape factor) RS =Sconst /Sfree , 

in which the area  Sconstr  represents the total constrained or loaded area of the isolator, and  

Sfree  is the total free surface area of the isolator. Figure 6.4.7 shows the stiffness correction 

factor Cs to be used for a given area ratio RS . Thus,  sdyn is to be multiplied with  Cs  to give 

the actual, corrected dynamic stiffness. 

 

 

 

 

 
Figure 6.4.7 Stiffness correction  Cs  to be used as a function of the area ratio RS  of the vibration 

isolator. After ref. [13]. 

 

6.4.4.2  Metal and other elastic solids 

As oppose to the rubber-like materials, the static and dynamic elastic properties for most 

engineering materials are found to be practical identical. For a given elastic material this 

means that its Young’s modulus  E ≅ Edyn and its shear modulus  G ≅  Gdyn . Furthermore, 
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since Ȟ ≈ 0.3 for most solid materials, we have E ≈ 3G . 

 Resilient elements of metal may take many different forms. Usually they are extended, 

continuous components with distributed mass and stiffness, and basically they are designed to 

achieve a specified small stiffness at low frequencies. However, at mid and high frequencies 

such a resilient element can support different wave types, and resonances will occur in the 

resilient element because it is of finite size. This will diminish the isolator effectiveness, 

unless damping and/or rubber elements are incorporated into the final design of the resilient 

element.  

 The most common resilient element of metal is probably the helical spring, which is 

often made of harden steel. The static and low frequency stiffness in the axial direction of the 

spring is  

 , 
8 3

4

Dn

dG
s =  (6.4.21) 

where  G  is the shear modulus of the material,  D  is the average diameter of the spring,  d  is 

the diameter of the coil and  n  is the number of coils or windings.   

 Other types of resilient elements are leaf springs, which may be thin metal beams or 

plates. One example is a so-called cantilever beam, which is rigidly built-in at the receiver-

end and is completely free at the other end, where it supports the source to be isolated. For a 

beam with constant thickness h and constant rectangular cross-section  S  the spring stiffness 

is 

 , 
4

  
    

3

2

L

hSE
s =  (6.4.22) 

in which  E  is Young’s modulus and  L  is the length of the beam. However, usually the 

source will be bolted to the beam and this will hinder angular motion at its ‘free’ end. Thereby 

the spring stiffness of the resilient element will increase by a factor of four, to become            

s = E S h
2
/L

3
 . This clearly illustrates the importance of the boundary conditions at mounting 

positions. 
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LIST OF SYMBOLS 

  

a radius of sphere [m]; acceleration [m/s
2
] 

A equivalent absorption area [m
2
]; accelerance [m/Ns

2
] 

A0 reference area [m
2
] 

B bending stiffness per unit length [Nm]; bending stiffness [Nm
2
] 

B´ bending stiffness per unit width [Nm] 

c speed of sound [m/s] 

cb speed of bending waves [m/s] 

cL speed of longitudinal waves [m/s] 

CP power coupling factor [dimensionless] 

d length [m]  

D directivity [dimensionless]  

DI directivity index [dB]  

E total acoustic energy [J]; Young’s modulus of elasticity [N/ m
2
] 

Eiso vibration isolation effectiveness; insertion loss [dimensionless] 

f frequency [Hz] 

f0 resonance frequency [Hz] 

fc critical frequency [Hz] 

F force [N] 

G shear modulus [N/m
2
]  

h distance [m]; plate thickness [m] 

H receptance [m/N] 

H1 Struve function  

I sound intensity [W/m
2
]  

Iref reference sound intensity [W/m
2
]  

Ix component of sound intensity [W/m
2
]  

Jm Bessel fuction 

|Jterm| terminal source strength [W] 

k wavenumber [m
-1

]  

K stiffness constant [N/m]  

Ks adiabatic bulk modulus [N/m
2
]  

l length [m] 

lm mean free path [m] 

L loudness level [phone]; total length of edges [m]; length [m] 

LA A-weighted sound pressure level [dB re pref]  

LAeq equivalent A-weighted sound pressure level [dB re pref]  

LAE sound exposure level [dB re pref]  

LC C-weighted sound pressure level [dB re pref]  

Leq equivalent sound pressure level [dB re pref]  

LI sound intensity level [dB re Iref]  

Ln impact sound pressure level [dB re pref]  

Lp sound pressure level [dB re pref]  

LW sound power level [dB re Pref] 

LZ sound pressure level measured without frequency weighting [dB re pref] 

m air attenuation factor [m
-1

]; mass [kg]; mass per unit area [kg/m
2
]  

m´ mass per unit length [kg/m] 
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m´´ mass per unit area [kg/m
2
] 

M mass [kg] 

n natural number [dimensionless] 

N loudness [sone]; number of modes [dimensionless]  

p sound pressure [Pa] 

pA(t) instantaneous A-weighted sound pressure [Pa]  

pref reference sound pressure [Pa]  

prms rms value of sound pressure [Pa]  

p0 static pressure [Pa] 

P power [W] 

Pa sound power [W]  

Pref reference sound power [W]  

q volume velocity associated with a fictive surface [m
3
/s]; generalised coordinate [m]  

Q volume velocity of source [m
3
/s]; directivity factor [dimensionless]  

r radial distance in spherical coordinate system [m]; damping constant of viscous 

damper [kg/s] 

rrev reverberation distance in a room [m] 

R gas constant [m
2
s

-2
K

-1
]; reflection factor [dimensionless]; transmission loss [dB] 

R0 transmission loss at normal incidence [dB] 

s standing wave ratio [dimensionless]; spring constant [N/m]  

S surface area [m
2
]; cross sectional area [m

2
] 

t time [s] 

T absolute temperature [K]; averaging time [s] 

T60 reverberation time [s] 

u longitudinal displacement [m] 

u particle velocity [m/s]  

ux component of the particle velocity [m/s] 

U  velocity [m/s] 

v velocity [m/s] 

V volume [m
3
] 

w transverse displacement [m]  

wkin kinetic energy density [J/m
3
] 

wpot potential energy density [J/m
3
]  

x, y, z Cartesian coordinates [m] 

Za acoustic impedance [kg m
-4

s
-1

]  

Za, r acoustic radiation impedance [kg m
-4

s
-1

]  

Zm mechanical impedance [kg/s]  

Zm, r mechanical radiation impedance [kg/s]  

Zw separation impedance [kg m
-2

s
-1

] 

Y mobility (mechanical admittance) [s/kg] 

 

α absorption coefficient  [dimensionless] 

αm mean absorption coefficient  [dimensionless] 

β angular displacement [radian] 

γ ratio of specific heats [dimensionless] 

δ damping coefficient [s
-1

]; end correction [m] 

ΔL insertion loss [dB] 



 165

ΔV volume displacement [m
3
] 

ζ viscous damping ratio [dimensionless] η loss factor [dimensionless] 

θ polar angle in spherical coordinate system [dimensionless] 

λ wavelength [m] ν Poisson’s ratio [dimensionless]  

ξ displacement [m]  

ρ density [kgm
-3

]  

τ time constant [s]; transmission coefficient [dimensionless] 

φ phase angle [radian]; azimuth angle in spherical coordinate system [radian]  

ω angular frequency [radian/s] 

Ω frequency ratio [dimensionless]  

 

^  indicates complex representation of a harmonic variable 



 166



 167

INDEX 
 
 
Absorption area, 87, 97, 110 

Absorption coefficient, 29, 36, 87, 103 

Absorption, 29, 35 

Accelerance, 147 

Acceleration, 28, 53, 134, 137, 142, 147 

Accelerometer, 134 

Acoustic filters, 29 

Acoustic impedance, 29 

Acoustic properties of materials, 29, 35 

Acoustic two-port, 29 

Adiabatic bulk modulus, 3 

Adiabatic process, 2, 3 

Admittance, 27 

A-filter 

 see A-weighting 

AI principle, 76 

Air attenuation factor, 93, 98 

Amplitude, 5, 6, 15, 52 

Analogous electrical circuit, 29 

Angular displacement, 151 

Angular frequency, 5 

Antinode 

 see Node 

Antiphase, 9, 41 

 see also Quadrature 

Aperture, 115 

Apparent mass, 147 

Apparent sound transmission loss, 114, 127 

Audible frequency range, 6 

Audiogram, 62 

Averaging time 

 see Integration time 

A-weighting, 23, 69, 70 

Axial modes, 82 

 

Background noise, correction for, 18, 20 

Backward masking, 67 

Baffle, effect of, 39, 42 

Bandpass filters, 16 

Bark, 72 

Basilar membrane, 58, 59, 66, 71 

Beam, 148 

Bel, 18 

Bending moment, 151 

Bending stiffness, 121 

of beam, 151 

Bending waves on structures, 1, 2 

 see also Wave types 

Bessel function, 43 

Boundary conditions, 4 

 

Cancellation of sound, 9 

Cartesian coordinate system, 3 

Cavity, sound field in, 3, 30, 106 

C-filter 

 see C-weighting 

Characteristic impedance 

 see Impedance 

Cochlea, 57 

Coincidence, 121 

Combinations of monopoles, 40, 41 

Complex amplitude, 6, 52 

Complex exponential representation, 52 

Complex stiffness, 145 

Compliance 

 see Stiffness 

Condenser microphone, 21 

Conservation of mass, 2 

Conservation of sound energy, 33 

Consonant (intelligibility) 111 

Constant percentage filters, 15 

Constructive interference, 9, 20 

Continuous structure, 148 

Converging waves, 14 

Crest factor, 26 

Critical band, 66, 71, 72 

Critical frequency, 121 

Cross-over frequency, 119, 124 

C-weighting, 23, 69, 70 

 

Damping coefficient, 137 

Damping constant, 135 

Damping loss factor, 145 

Damping force, 137 

Danish Building Law, 109 

Danish Working Environment Agency, 109 

Dantale, 75 

dB HL, 62, 63 
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Decade, 16 

Decay curve, 100 

Decibels, 18 

Density of the medium, 2, 3 

Destructive interference, 9, 20 

Detection of a pure tone in noise, 17 

Deterministic signal, 17 

D-filter 

 see D-weighting 

Diatonic scale, 16 

Differentiation with respect to time,  

6, 53, 142, 149 

Diffraction, 2 

Diffuse sound field, 85, 98, 103 

Dipole, 41 

Dipole strength, 41 

Direct field, 90 

Directivity, 43 

Directivity factor, 48, 91 

Directivity index, 48 

Dispersion, 2, 152 

Displacement, 53, 134, 138, 147 

Displacement ratio, 142 

Displacement response, 139, 141, 143 

Diverging waves, 14 

Double construction, 123 

D-weighting, 23, 70 

Dwellings (reverberation control) 110 

Dynamic stiffness, 146, 159 

 

Echo, 95 

Echo-ellipse, 95 

Electret microphone, 21 

Enclosure 

 see Cavity, sound field in 

Energy balance equation, 87 

Energy density in sound field 

 kinetic, 32 

 potential, 32 

Energy of a signal, 22 

Engine exhaust system, 38 

Equally tempered scale, 16 

Equation of motion for  

 simple resonator, 137, 138 

 continuous structures, 148 

Equilibrium position, 137 

Equivalent integration time, 24 

Equivalent rectangular bandwidth, 72 

Equivalent sound pressure level, 24 

Equivalent viscous damping ratio, 145 

ERB, 72 

Euler’s equation of motion, 4, 6 

Excursion of a loudspeaker membrane, 47 

Exponential averaging 

 see Time averaging 

Eyring’s formula, 93, 99 

 

Far field, 90 

Far field approximation, 15, 35, 43 

FFT analysers, 15, 17 

Field variables, 149 

Filter, 15 

Filter bank analysers, 15 

Flanking transmission, 114, 127 

Flanking transmission loss, 127 

Flexural waves 

 see Wave types 

Fluctuating noise, 25 

 see also Intermittent noise 

Focusing, 96 

Force, 27, 135, 138, 140 

Force transducer, 135 

Formant, 74 

Forward masking, 64, 67 

Free field, 61, 63 

Free-field correction, 22 

Free-field method 

 see Sound power determination 

Free-field microphones, 23 

Free terminal velocity, 155 

Frequency, 5 

Frequency analysis, 15 

Frequency discrimination, 71 

Frequency response of microphone, 22 

Frequency selectivity, 71 

Frequency weighting filters, 23 

Fundamental frequency, 10 

 

Gas constant, 3 

Gauss’s theorem, 33 

Generalised coordinate, 147 

Ground effect, 38 

 

Harmonic sound field, 5, 52 
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Harmonics, 10 

Hearing level, 62 

Hearing threshold, 55, 60, 61, 62, 65, 69 

Helicotrema, 58, 59 

Helmholtz equation, 7 

Helmholtz resonator, 31 

Hooke’s law, 28, 136 

 

Image sources, 38, 42, 94 

Impact sound pressure level, 128 

Impedance 

 acoustic, 28 

 characteristic, 7, 31 

 mechanical, 27, 146 

 radiation, 29, 35, 37, 46 

 specific acoustic, 29 

Incident sound intensity, 36 

Incident sound power, 86 

Incoherent signals 

 see Uncorrelated signals 

Industry (reverberation control) 110 

Independent sources, 17, 20 

Inhomogeneous medium, 2 

Inner ear, 55, 56, 57, 65, 71 

Input impedance, 29 

Input point mobility 

 see Mobility 

Insertion loss, 128, 157 

Instantaneous energy density, 32 

Instantaneous sound intensity, 32 

Integration time, 25 

 see also Time averaging 

Intelligibility, 76, 109 

Intensity 

 see Sound intensity 

Interface between two fluids, 11 

Interference effects, 2, 9, 20, 38 

Intermittent noise, 26 

Inverse distance law, 14, 20 

Isolation effectiveness, 157, 161 

 

Junctions between coupled pipes, 29 

 

Kinetic energy 

 see Energy density 

 

Levels, 18 

Linear averaging 

 see Time averaging 

Linear frequency weighting, 23 

Linearised wave equation, 2 

Linearity, 4 

Liquids, sound in, 4 

Locally plane waves, 4, 34 

Logarithmic frequency scale, 16 

Longitudinal waves, 1 

 see also Wave types 

Loss factor, 122 

Loudness, 55, 63, 64, 67, 68, 69 

Loudness level, 63, 64, 69 

Loudspeakers, 47 

Lumped elements, 135, 136 

Lumped parameter models, 29 

 

Masking, 55, 59, 64, 65, 66, 67, 69 

Mass, 135 

Mass density, 150 

Mass law, 120 

Material properties, 150 

see also Acoustic properties of 

materials 

Mean absorption coefficient, 87, 99 

Mean free path, 92 

Mean square value, 15, 17 

Mechanical admittance, 28 

 see also Mobility 

Mechanical oscillator, 28 

Mechanical resonators, 136 

 see also Mechanical oscillator 

Mechanical systems, 135 

Membrane absorber, 106 

Middle ear, 55, 56, 57, 58 

Mobility, 146, 152, 155 

 see also Mechanical admittance 

Mobility, input for semi-infinite or infinite 

 beam or rod, 152 

 plate, 152 

Modal density, 84, 96 

Modes, 81 

Monopole, 37 

Motion excitation, 147 

MTF, 76 

Musical tones, 10, 16 
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Natural angular frequency, 137 

Natural frequency, 81 

 see also Resonance frequency 

Nearfield characteristics, 15 

Newton’s second law of motion, 4, 28, 136,  

137 

Node, 9, 82 

Noise 

 see Random noise 

Noise event, 27 

Nominal centre frequencies, 16 

Normal ambient conditions, 3 

Number of modes, 83 

 

Oblique modes, 82 

Octave bands, 16, 103 

ODEON programme, 112 

Office spaces (reverberation control) 110 

Omnidirectionality, 23, 43 

 see also Directivity, Monopole 

One-dimensional wave equation, 5 

One-third octave bands, 16 

Orders of magnitude of perturbations, 2 

Oscillating sphere 

 see Dipole 

Outdoor sound propagation 

 see Ground effect 

Overtones 

 see Harmonics 

 

Parseval’s formula, 17 

Partial masking, 67 

Partials 

 see Harmonics 

Particle displacement, 2 

Particle velocity, 2, 71 

Partitioning into frequency bands, 17 

Pascal, 3 

Peak level, 26 

Phase, 5, 6, 52 

Phase speed 

 see Wave speed 

Phon, 63, 64 

Phone scale, 68 

Phonems, 111 

Pink noise, 17 

 see also White noise 

Piston in a baffle, radiation from, 42 

Pitch, 10, 16 

Plane waves, 4 

Plate, 148 

Point dipole, 41 

Point source 

 see Monopole 

Poisson’s ratio, 106, 150, 161 

Porous absorber, 105 

Potential energy 

 see Energy density 

Power coupling factor, 156 

Power transmission, 155 

Pressure microphone, 23 

Pressure node 

 see Node 

Psychoacoustics, 55, 71 

Pulsating sphere, 37 

Pure-tone source 

 see Sinusoidal source 

 

Quadrature, 15 

 see also Antiphase 

 

Radiation impedance 

 see Impedance 

Radiation of sound, 37 

Random errors 

 see Statistical uncertainty 

Random incidence microphone, 23 

Random noise, 17 

Rapid Speech Transmission Index, 77 

RASTI 

see Rapid Speech Transmission 

Index 

Ratio of specific heats, 3 

Rayleigh’s integral, 42 

Reactive sound field, 15 

Receiving structure, 153, 156 

Receptance, 145, 146 

Reciprocity principle, 38 

Reduction index, 113 

Reference sound intensity, 21 

Reference sound power, 21 

Reference sound pressure, 18 

Reference velocity, 20 

Reflection, 2, 8, 94 
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Reflection density, 96 

Reflection factor, 10, 36 

Refraction, 2 

Resilient element, 159, 161 

Resonance, 9, 28, 30 

Resonance frequency, 9, 28, 30, 106, 124, 

139 

 see also Natural frequency 

Resonant excitation, 138 

Resonator absorber, 108 

Reverberation distance, 90 

Reverberation room, 89, 103 

Reverberation time, 89, 97, 98, 103, 109 

Rigid surface, reflection from, 8, 38 

Rms value 

 see Root mean square value 

Rms sound pressure, 15 

Rod, 148 

Root mean square value, 15 

Rubber hardness, 159, 160 

Rubber isolator, 159 

 

Sabine’s formula, 89, 97, 98, 99 

Scattering, 2, 99 

Schools (reverberation control) 110 

SEL 

 see Sound exposure level 

Semitone, 16 

Sensitivity of auditory system, 23 

Separation impedance, 119, 122 

Shadow 

 see Diffraction 

Shear modulus, 151 

Shear force, 151 

Shear waves 

 see Wave types 

Sign convention, 6, 27 

SII, 76 

Silencers, 29 

Simple source 

 see Monopole 

Simultaneous masking, 64 

Single degree of freedom system, 136, 147 

Sinusoidal source, 5, 6 

Solution in 

 product form, 141 

 sum form, 141 

 non-dimensional form, 142 

Son, 68 

Sone scale, 68 

Sound absorption, 103 

Sound exposure level, 26 

Sound intensity, 32 

Sound intensity in a plane wave, 34 

Sound intensity level, 20 

Sound level meter, 21 

Sound power, 31, 33 

Sound power determination, 35 

Sound power level, 21 

Sound pressure level, 18 

Sound pressure, 1 

Sound reflection 

 see Reflection 

Source spectrum, 73 

Source strength, 38, 41, 155 

Source structure, 153 

Sources of vibration, 134, 153 

Specific acoustic impedance 

 see Impedance 

Spectral density, 17 

Speech intelligibility, 55, 75, 76 

Speech intelligibility index, 76, 79, 112 

Speech level, 74, 75 

Speech spectrum, 74, 75, 76 

Speech Transmission Index, 76, 112 

Speed of sound, 3, 4 

Spherical coordinate system, 13 

Spherical sound waves, 13 

 see also Monopole 

Spherical symmetry, 12 

 see also Monopole 

SPL 

 see Sound pressure level 

Spring constant, 135, 136, 154 

 see also Stiffness 

Standing wave pattern, 9 

Standing wave ratio, 10 

 see also Standing wave tube 

Standing wave tube, 36 

Standing waves, 81 

Stapes, 56 

Static pressure, 1, 2, 3 

Static stiffness, 154 

Stationary signals, 17 
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Statistical models of sound fields, 31 

Statistical uncertainty in measurements, 25 

STI 

see Speech Transmission Index  

Stiffness, 28 

 see also Spring constant 

Stiffness correction, 160 

Stochastic signals 

 see Random noise 

Structureborne sound, 133 

Structural damping, 145 

Struve function, 46 

Subwoofer 

 see Loudspeakers 

Sum of harmonic signals, 20, 52 

Suspended ceiling, 109 

 

Tangential modes, 82 

Tapping machine, 128 

Temperature fluctuations in sound field, 2 

Temperature, influence on the speed of 

sound, 3 

Temporal integration, 69 

Thick wall, 118 

Time average of a product, 54 

Time averaging 

 exponential, 24 

 linear, 25 

Time constant, 24 

Time derivative 

see Differentiation with respect to 

time 

Time integration, 53 

 see also Time averaging 

Time weighting 

 see Time averaging 

Time-averaged energy density, 33 

Time-averaged sound intensity, 33 

Transfer function, 83 

Transmission between fluids, 11 

Transmission coefficient, 113 

Transmission loss, 113, 114 

Transmitted force, 142 

Transversal waves, 1 

Transverse displacement in beams, 151 

Two-port, 29 

Typical values of sound power levels, 32 

Typical values of sound pressure levels, 19 

 

Uncorrelated signals, 17, 18 

Undamped simple resonator, 139 

Undamped system, 137, 138, 143 

Unvoiced, 74 

 

Velocity, 27, 53, 134, 142, 144, 147 

Vibrating sphere 

 see Pulsating sphere, Dipole 

Vibration isolation, 139, 153, 156 

Vibration isolator, 153 

Vibro-acoustics, 133, 148 

Viscous damper, 135, 136 

Viscous damping ratio, 137, 142 

Viscous friction, 105 

Viscously damped system, 140 

Voiced, 73 

Volume acceleration, 47 

Volume displacement, 3 

Volume velocity, 28, 37 

 

Water, 4, 11, 19 

Wavelength, 5 

Wavenumber, 5 

Wave speed for 

 longitudinal waves, 149 

 shear waves, 150 

 bending waves, 152 

Wave types, structural 

 longitudinal waves, 148 

 shear or torsional waves, 148, 150 

 bending or flexural waves, 148, 151 

Weighted impact sound pressure level, 130 

Weighted sound reduction index, 129 

White noise, 17, 21, 100 

 

Young’s modulus of elasticity, 106,149,160 

 


