SOLAR RADIATION
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SOLAR DRYER!!
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EXAMPLE:

A 100 W bulb is switched ON for 8 hours. If the price of electricity

is 50 fils / kWh, what is the cost of energy consumed during that
period?

Solution:



All bulbs provide about 850 lumens of light. u

s
COST OF BULB INCANDESCENT BULB HALOGEN COMPACT FLUORESCENT (CFL)  LIGHT EMITTING DIODE (LED)
Life of bulb (how bang it will light) 1,000 hours 3,000 hours 10,000 hours 25,000 hours
Number of bulbs to get 25,000 hours 25 bulbs 8.3 bulbs 2.5 bulbs 1bulb
x  Price per bulb 50.50 53.00 53.00 515.00
= Cost of bulbs for 25,000 hours of light
COST OF ELECTRICITY INCANDESCENT BULB COMPACT FLUORESCENT (CFL)  LIGHT EMITTING DIODE (LED)
Total Hours 25,000 haurs 25 000 hours 25,000 hours 25,000 hours
X Wattage B0 watts = 0.060 kW 43 watts = 0.043 kW Tiwatts=0.013 kW 12 watts = 0.012 kW
= Total k¥h consumption
X Price of electricity per kWh §0.12 50.12 50.12 $0.12
= Costof Electridty

LIFE CYCLE COST INCANDESCENT BULB COMPACT FLUORESCENT (CFL)  LIGHT EMITTING DIODE (LED)

Cost of bulbs
+  Costof electricity

= Life cycle cost




Estim .S. Energy Consumption in 2019: 100.2 M Lawrence Livermore

stimated U.S. Energy Consumption in 2019: 100.2 Quads National Laboratory
Net Electricity 0.05

Solar 0.65 Imports

Nuclear
8.46

Hydro

2.5
417 Rejected

Residential Energy

Wind

67.5
2.74

Geothermal
0.209 . . Commercial
9.41

Natural Gas
321
Industrial

26.4 Energy
) Services

32.7

Biomass
4.98 Transportation

28.2
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36.7

Source: LLNL March, 2020. Data is based on DOE/EIA MER (2019). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory

and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA

reports consumption of renewable resources (i.e., hydro, wind, geothermal and sclar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The

efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is

estimated as 65% for the residential sector, 65% for the commercial sector, 21% for the transportation sector and 49% for the industrial sector, which was updated in 2017 to reflect
DOE's analysis of manufacturing. Totals may not egual sum of components due to independent rounding. LLNL-MI-410527
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SOLAR RADIATION

How much solar energy reaches the ground?
Where to find and how to read solar radiation data?
Slope and orientation of solar collectors

Shadow effects



1. HOW MUCH SOLAR ENERGY REACHES THE GROUND?



1. THE SUN
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Solar constant G
irradiance on top of the atmosphere
(=1rradiance on a plane perpendicular to the rays, ‘

at the distance of one AU)
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EXTRATERRESTRIAL RADIATION




VARIATION OF
EXTRATERRESTRIAL RADIATION

Two sources of variation in
extraterrestrial radiation must
be considered.

1420 The first is the variation
. - in the radiation emitted
1400 \\ // by the sun.
© \ /| Variation of the earth-
= 1980 \ / sun distance does lead
& 1360 \ / to variation <.>f
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Figure 1.4.1 Variation of extraterrestrial solar radiation with time of year.













BEAM AND DIFFUSE RADIATION ON HORIZONTAL SURFACES
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SOLAR RADIATION AT GROUND LEVEL

| Solar constant
Solar radiation 1367 W /m?

Losses due to

Atmosphere atmosphere

Reflection by

Diffuse radiation
clouds

Absorption by atmosphere o _
Beam radiation Radiazione diffusa

Reflection by ground i ! v

Global radiation at ground level 1100 W /m?
Source: Target/e.u.z.



‘ Absorption

Ozone =1%

Rayleigh scattering + absorption
=15%

Air molecules

Scaﬁerihg + absarption

Aerosol varlabl?. typically 15%

Scattering + absorption
very variable, 0—100%
Clouds

Absorption
Water vapor | =15%

o
o
g2

3.7 The main processes influencing solar radiation in the atmosphere
and split into the major three components (global, direct, diffuse).



GLOBAL SOLAR IRRADIANCE AND ITS
COMPONENTS

Global g

Direct (Beam) %RS—%

Diffused direct

Gg = Gy + Gy

. i i Ll

Even when the sky is clear and cloudless part of the sun’s radiation comes from
other directions and not just directly from the sun. This proportion of the radiation,
which reaches the eye of the observer through the scattering of air molecules and dust
particles, 1s known as diffuse radiation, G ;. Part of this is also due to radiation
reflected at the earth’s surface. The radiation from the sun that meets the earth
without any change in direction is called direct radiation, G,. The sum of direct and
diffuse radiation is known as global solar irradiance, G (Figure 1.5).



SOLAR RESOURCE MAP
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SOLAR RESOURCE MAP

DIRECT NORMAL IRRADIATION
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WHY THERE IS A
DIFFERENCE IN THE
SOLAR RADIATION
BETWEEN DIFFERENT
LOCATIONS ?



1. SUN PATH
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Figure 9
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| SUN TRAJECTORY IN CAIRO AND ROME

Sun's Course at Highest Point




andrewmarsh.com/a i sunpath3d.html



http://andrewmarsh.com/apps/staging/sunpath3d.html
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The Sun's Rays
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Irradiance GHI calculated (W/m 2)
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TYPICAL DAYS IN JANUARY AND JUNE
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Figure 4

Solar radiation intensity (Btu/hr/sq.ft.)
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4. WEATHER
CONDITIONS




| SOLAR RADIATION IS ALEATORY




After the general astronomical conditions, the cloud cover or state of the sky is the
second decisive factor that has an effect on the supply of solar radiation: both the
irradiated power and the proportions of direct and diffuse radiation vary greatly
according to the amount of cloud (Figure 1.8).

0 200 400 600 800 1000
irradiated power in watts per m?



Solar radiation at ground level

Source: ITW



The sum of direct horizontal irradiance and the diffuse horizontal irradiance (DHI) results in the
total irradiance or global horizontal irradiance:

G — Gn’ + Gb — DHI + DNI/ COS(QZ)



Meteonorm:
http:/ /www.meteonorm.com/media/maps_
online /gh_map_africa.pdf

PV GIS:
http:/ /re.jrc.ec.europa.eu/pvgis/countries/
afr/4-gs13.png

NASA:
http:/ /swera.unep.net/index.php2id=wms_c
ompliant

Design Software: T*Sol, Transol, Polysun

WHERE CAN RADIATION
DATA BE FOUND?
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E/ TILT

COLLECTOR SLOE




¢ - solar azimuth

B - solar altitude
y - surface azimuth

> - surface tilt angle
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SLOPE (TILT), B

The angle between the plane of the
surface in question and the horizontal:

0°<B<180°
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Winter Spring
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downward-facing component.
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Radiation on sloped surfaces
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slope [7]

Optimal slope angle

kWh / (m2 a)
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Losses due to different slope and orientation
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90 60 -60 -90

0 92 92 92 92
10 91 94 94 91
20 89 94 94 89
25 a7 94 94 87
30 85 93 93 85
90 31 57 57 51




Example of monthly values

G Horizontal

[kwWh,/m*]
January 103
February 120
March 168
April 194
May 228
June 233
July 235
August 219
September 184
Cctober 153
Movember 109
December 94
Year 2040

Source: T Sol



The 100 MW "Shams 1" Parabolic Trough plant is the largest solar plant under
development in the region, and will likely be the largest in the world once completed in
2012 (although the 392 MW Ivanpah will likely eclipse it shortly thereafter). The
recently released GTM Research report CSP 2011 contains detailed project specs for
every one of the 195 CSP projects in operation or under development globally.

While there were some hiccups in the early days of the project, since the triple
handshake of Abengoa/Total/Masdar in July 2010, things seem to be back on track and
progressing smoothly. A quick re-cap of the timeline:

May 2009: Project put on hold, when DNI estimate was reduced by 12.5%

July 2010: Construction started
July 2012: Expected commissioning
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Shadow effect between collector rows
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SOLAR RADIATION
MEASUREMENT




MEASUREMENT INSTRUMENTS

Name Type of Use Comment
Receiver
Pyranometer Thermopile Outdoor global Very high accuracy,
measurements slow response
Photovoltaic Sensor Solar Cell Outdoor global High accuracy, fast
(Solarimeter) measurements response
Reference Cell Solar Cell Indoor calibration
Spectroradiometer Photodiode or | Spectral measurements Slow, medium
CCD accuracy
Campbell Stokes | Cardboard strips Sunshine hours Crude
Satellite Photo Film/CCD Estimation of global Broad coverage
irradiation, cloud cover




CAMBELL-STOKES SUNSHINE RECORDER
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| PYRHELIOMETER
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Pyranometer 1:
measures diffuse
horizontal irradiance

Shading disc for
pyranometer 1

Pyranometer 2:
measures total
horizontal irradiance.
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THERMAL CAMERA!!
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3. THE ELECTROMAGNETIC WAVES

Electromagnetic waves transport Electromagnetic waves are
energy just like other waves, and characterized by their frequency
all electromagnetic waves travel or wavelength .

at the speed of light in a vacuum,

which is

Cy =2.9979 108 m/s.

>
|
<O



solar spectrum ranges from wavelengths of approximately 0.2 to 2.6 micrometers
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3.B PHOTON ENERGY

each photon of frequency V is considered to have an energy of:

he
e = hy = —

A

h =6.6256 x 1034 - s is Planck’s constant

The Energy of a photon is

inversely proportional to its

wavelength



3.C THERMAL RADIATION

Thermal radiation emitted as a result of energy transitions of
molecules, atoms, and electrons of a substance.

Thermal radiation is defined as the portion of the electromagnetic
spectrum that extends from about 0.1 to 100 Um.

thermal radiation includes the entire visible and infrared (IR) radiation
as well as a portion of the ultraviolet (UV) radiation.



3.C THERMAL RADIATION
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light is simply the visible portion of the electromagnetic
spectrum that lies between 0.40 and 0.76 um.

Light, or the visible spectrum, consists of narrow bands

of color from violet (0.40-0.44 Um) to red (0.63-0.76
Hm)

A body that emits some radiation in the visible range is
called a light source.

The sun is obviously our primary light source.



The electromagnetic radiation emitted by the sun is
known as solar radiation, and nearly all of it falls into
the wavelength band 0.3-3 um.



3.D FUNDAMENTALS OF THERMAL RADIATION

Vacuum
chamber

Radiation

FIGURE 11-1
A hot object in a vacuum chamber
loses heat by radiation only.

Person
30°C

=
FIGURE 11-2
Unlike conduction and convection,
heat transfer by radiation can occur
between two bodies, even when they
are separated by a medium colder than
both of them.



3.d FUNDAMENTALS OF THERMAL RADIATION

Thermal radiation is continuously
emitted by all matter whose
temperature is above absolute
zero.

“everything around us such as

walls, furniture, and our friends
constantly emits (and absorbs)
radiation.”




3.E BLACKBODY RADIATION

The amount of radiation energy emitted from a surface at a given
wavelength depends on the:

material of the body

the condition of its surface

the surface temperature.

0 A blackbody is defined as a perfect emitter and
absorber of radiation.



£, “TOTAL BLACKBODY EMISSIVE POWER”

The radiation energy emitted by a blackbody per unit time and per unit
surface area was determined experimentally by Joseph Stefan in 1879
and expressed as:

E(T) = oT* (W/m2)

E, is the total blackbody emissive power, which is the sum
of the radiation emitted over all wavelengths.

o = 5.67 X 107® W/m? - K* is the Stefan—Boltzmann constant



Eb)\ SPECTRAL BLACKBODY EMISSIVE POWER

the amount of radiation energy emitted by a blackbody at an absolute
temperature T per unit time, per unit surface area, and per unit
wavelength about the wavelength A.




SPECTRAL BLACKBODY EMISSIVE POWER

The relation for the spectral blackbody emissive power E, ;, was

developed by Max Planck in T901 in conjunction with his famous
quantum theory.

This relation is known as Planck’s law and is expressed as

C

Eo (N, T) =— —
(- 1) N[exp (Cy/NT) — 1]

(W/m? - pm)

C, = 2mhc; = 3.742 X 10° W - pm*/m?
C, = hey/k = 1439 X 10* pm - K
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As the temperature increases, the peak of the curve shifts toward
shorter wavelengths. The wavelength at which the peak occurs for a
specified temperature is given by Wien’s displacement law as

(\T) — 28978 um - K

max power

The peak of the solar radiation. for example, occurs at A = 2897.8/
5780 = 0.50 pm, which 1s near the middle of the visible range. The peak of
the radiation emitted by a surface at room temperature (77 = 298 K) occurs at
9.72 pm, which 1s well into the infrared region of the spectrum.



SOLAR SPECTRUM IN COMPARISON TO THE SPECTRUM OF A BLACK RADIATOR AT
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Spectrum of Solar Radiation (Earth)
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SPECTRAL DISTRIBUTION OF EXTRATERRESTRIAL RADIATION

2

Solar spectral irradiance (W/m  pm)
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Figure 1.3.1 The WRC standard spectral irradiance curve at mean earth-sun distance.



Table 1.3.1a  Extraterrestrial Solar Irradiance (WRC Spectrum) in Increments of Wavelength®

A G_w.',). J1r[]—}-. A Gsr,}. fﬂ—). A Gsc,). fl}—i
(um)  (W/m? pm) (=) | (gm) (W/m’>pm) (=) [ (um) (W/m®pm) (-)
0.250 81.2 0.001 | 0.520 1849.7 0.243 | 0.BBO 855.0 0.622
0.275 265.0 0.004 | 0.530 1882.8 0.257 | 0.900 008.9 0.636
0.300 499.4 0.011 | 0.540 1877.8 0.271 | 0.920 847.5 0.648
0.325 760.2 0.023 | 0.550 1860.0 0.284 | 0.940 799.8 0.660
0.340 955.5 0.033 | 0.560 1847.5 0.298 | 0.960 771.1 0.672
0.350 955.6 0.040 | 0.570 1842.5 0312 | 0.980 799.1 0.683
0.360 1053.1 0.047 | 0.580 1826.9 0.325 | 1.000 753.2 0.695
0.370 1116.2 0.056 | 0.590 1797.5 0.338 | 1.050 672.4 0.721
0.380 1051.6 0.064 | 0.600 1748.8 0.351 | 1.100 574.9 0.744
0.390 1077.5 0.071 | 0.620 1738.8 0377 | 1.200 507.5 0.785
0.400 1422.8 0.080 | 0.640 1658.7 0.402 | 1.300 427.5 0.819
0.410 1710.0 0.092 | 0.660 1550.0 0.425 | 1.400 355.0 0.847
0.420 1687.2 0.105 | 0.680 1490.2 0448 | 1.500 297.8 0.871
0.430 1667.5 0.116 | 0.700 1413.8 0.469 | 1.600 231.7 0.891
0.440 1825.0 0.129 | 0.720 1348.6 0489 | 1.800 173.8 0.921
0.450 19928 0.143 | 0.740 12927 0.508 | 2.000 91.6 0.942
0.460 20228 0.158 | 0.760 1235.0 0.527 | 2.500 54.3 0.968
0.470 2015.0 0.173 | 0.780 1182.3 0.544 | 3.000 26.5 0.981
0.480 1975.6 0.188 | 0.800 1133.6 0.561 | 3.500 15.0 0.988
0.490 1940.6 0.202 | 0.820 1085.0 0.578 | 4.000 1.7 0.992
0.500 1932.2 0.216 | 0.840 1027.7 0.593 | 5.000 25 0.996
0.510 1869.1 0.230 | 0.860 980.0 0.608 | 8.000 1.0 0.999
7G,, is the average solar irradiance over the interval from the middle of the preceding wavelength interval to

the middle of the following wavelength interval. For example, at 0.600 pm. 1748.8 W,/m? um is the average
value between 0.595 and 0.610 pem.



Calculate the fraction of the extraterrestrial solar radiation and the amount of that radiation
in the ultraviolet (A < 0.38 pm), the visible (0.38 pum < A < 0.78 pm). and the infrared
(A > 0.78 pm) portions of the spectrum.

From Table 1.3.1a, the fractions of f,_; corresponding to wavelengths of 0.38 and 0.78
pm are 0.064 and 0.544. Thus, the fraction in the ultraviolet 1s 0.064, the fraction in the
visible range 1s 0.544 — 0.064 = 0.480, and the fraction in the infrared is 1.0 — 0.544 =

0.456. Applying these fractions to a solar constant of 1367 W/m? and tabulating the
results, we have:

Wavelength range (pm) 0-0.38 0.38-0.78 0.78—00
Fraction in range 0.064 0.480 0.456
Energy in range (W/m?) 87 656 623 C



Incident
radiation
7, W/m?
Reflected

s

Absorbed
Semitransparent ol
material

Transmitted
Tl

For opaque surfaces, T = 0, and thus

adiati Gis
_ Absorbed radiation _ Gabs D=a=<1] (11-37)

Absorptivity: = - — =
OFPIVIY Incident radiation &,
. Reflected radiation  Grer )
Reflectivity: = - — = — 0=p=1 11-38
gfiectivity D Incident radiation (r P ( )
L Transmitted radiation G )
Transmissivity: T= - — =—: 0=71=1 11-39
FARSTISSTVIL Incident radiation (s ( J

a+pt+tT=1

o +p=1



The Greenhouse Effect

Glass has a transparent window in the wavelength range 0.3 um < 4 < 3 um in which
over 90% of solar radiation is emitted. The entire radiation emitted by surfaces at room
temperature falls in the infrared region (4 > 3 um).

Glass allows the solar radiation to enter but does not allow the infrared radiation from the
interior surfaces to escape. This causes a rise in the interior temperature as a result of

the energy buildup in the car.

This heating effect, which is due to the nongray characteristic of glass (or clear plastics),

is known as the greenhouse effect.
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FIGURE 12-36

The spectral transmissivity of low-iron
glass at room temperature for different
thicknesses.

Solar
radiation

Infrared
radiation

FIGURE 12-37

A greenhouse traps energy by
allowing the solar radiation to come in
but not allowing the infrared radiation
to go out.
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