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Introduction to Fatigue in Metals

Loading produces stresses that are variable, repeated, alternating,
or fluctuating

Maximum stresses well below yield strength
Failure occurs after many stress cycles
Failure is by sudden ultimate fracture

No visible warning in advance of failure



Stages of Fatigue Failure

o Stage /— Initiation of micro- e —
crack due to cyclic plastic & -
deformation

o Stage Il — Progresses to
macro-crack that repeatedly f
opens and closes, creating
bands called beach marks

o Stage /11— Crack has
propagated far enough that
remaining material Is
Insufficient to carry the load,
and fails by simple ultimate
failure

Shigley’s Mechanical Engineering Design



Schematics of Fatigue Fracture Surfaces

. High nominal stress — N — Low nominal stress <
MNo stress . ~ Mild stress . Severe stress ~ No stress Mild stress Severe stress
“ concentration “toncentration " concentration " concentration 7 concentration @ 7 concentration

-Tension-tension or tension-compression —

Fig. 6-2
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Schematics of Fatigue Fracture Surfaces

—————————— High nominal stress ——————  —

- Low nominal stress —————————

No stress . _ Mild stress . Severe stress _ No stress _ Mild stress Severe stress
“concentration " concentration " “concentration ““concentration ' 7 concentration concentration

LUl

-~ —————— Unidirectional bending ——

Fig. 6-2

Reversed bending ———
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Schematics of Fatigue Fracture Surfaces

High nominal stress — S — Low nominal stress —

-

Mo stress ~ Mild stress Severe stress Mo stress Mild stress Severe stress

concentration " concentration ' © concentration " concentration "

concentration " toncentration

N

- Torsion : e :
Fast-fracture zone 11 Beach marks [ Stress-concentration notch

Fig. 6-2
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Fatigue Fracture Examples

o AISI 4320 drive
shaft

e B-crack initiation at
stress concentration
In keyway

o C— Final brittle
failure

Shigley’s Mechanical Engineering Design



Fatigue Fracture Examples

 Fatigue failure
Initiating at
mismatched grease
holes

» Sharp corners (at
arrows) provided
stress concentrations

Fig. 64

Shigley’s Mechanical Engineering Design



Fatigue Fracture Examples

 Fatigue failure of
forged connecting rod

o Crack INnitiated at flash

left edge of picture

» Beach marks show
crack propagation
halfway around the hole
before ultimate fracture

Fig. 6-5

Shigley’s Mechanical Engineering Design



Fatigue Fracture Examples

 Fatigue failure of a
200-mm diameter
piston rod of an alloy
steel steam hammer

» Loaded axially

e Crack initiated at a
forging flake internal to
the part

Internal crack grew
outward symmetrically

Shigley’s Mechanical Engineering Design



Fatigue Fracture Examples

» Double-flange trailer wheel
 Cracks Initiated at stamp marks

Medium-carbon steel
(ASTM A186)

Fracture Flange
(1of2)
Fracture 1read

(a) Coke-oven-car wheel




Fatigue Fracture Examples

o Aluminum allow landing-gear torque-arm assembly redesign to
eliminate fatigue fracture at lubrication hole

Aluminum alloy 7075-T73

494 r&ﬁ 5535
e
= L__

Primary-fracture

Lubrication hole surface

1.750-in.-dia
bushing,
0.090-in. wall

1in

3.62 dia Secondary
fracture

Original design Improved design (h)

[ J

Detail A -
(a) F I g . 6_8 Shigley’s Mechanical Engineering Design



Fatigue-Life Methods

Three major fatigue life models

Methods predict life in number of cycles to failure, A, for a
specific level of loading

Stress-life method

> Least accurate, particularly for low cycle applications

> Most traditional, easiest to implement

Strain-life method

- Detailed analysis of plastic deformation at localized regions

o Several idealizations are compounded, leading to uncertainties
In results

Linear-elastic fracture mechanics method
o Assumes crack exists
> Predicts crack growth with respect to stress intensity



Stress-Life Method

» Test specimens are subjected to repeated stress while counting cycles
to failure

e Most common test machine is R. R. Moore high-speed rotating-beam
machine

 Subjects specimen to pure bending with no transverse shear

» As specimen rotates, stress fluctuates between equal magnitudes of
tension and compression, known as completely reversed stress cycling

» Specimen is carefully machined and polished

Fig. 6-9




S-N Diagram

» Number of cycles to failure at varying stress levels is plotted on log-
log scale

 For steels, a knee occurs near 10° cycles
« Strength corresponding to the knee is called endurance limit S,

N
o

Fatigue strength S, kpsi

10° 10! 10 10° 104 10° 10° 107 10

«——— Low cycle > High cycle >

-
-

Finite life =I Infinite
|

'

life

Fig. 6-10

Number of stress cycles, N



S-N Diagram for Steel

o Stress levels below S, predict infinite life
» Between 102 and 10° cycles, finite life is predicted

» Below 102 cycles is known as fow cycle, and is often considered
quasi-static. Yielding usually occurs before fatigue in this zone.

-
-<

Finite life >

l«—— Low cycle =i< High cycle >
Infinite
-~
| V|

life

N
o

Fatigue strength S, kpsi

Fig. 6-10

10" 10! 10° 10° 10* 10° 10° 10’ 10®

Number of stress cycles, N



Peak alternating bending stress S, kpsi (log)

S-N Diagram for Nonferrous Metals

Nonferrous metals often do not have an endurance limit.
Fatigue strength Sgis reported at a specific number of cycles
Figure 6-11 shows typical S-Ndiagram for aluminums
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Strain-Life Method

» Method uses detailed analysis of plastic deformation at localized
regions

o Compounding of several idealizations leads to significant
uncertainties in numerical results

» Useful for explaining nature of fatigue



Strain-Life Method

Fatigue failure almost
always begins at a local
discontinuity

When stress at
discontinuity exceeds
elastic limit, plastic
strain occurs

Cyclic plastic strain can
change elastic limit,
leading to fatigue

Fig. 6-12 shows true
stress-true strain
hysteresis loops of the
first five stress reversals

g

I st reversal

3d
Sth

4th

20

Fig. 6-12



Relation of Fatigue Life to Strain

» Figure 6-13 plots relationship of fatigue life to true-strain
amplitude

o Fatigue auctility coefficient s 1s true strain corresponding to
fracture in one reversal (point A in Fig. 6-12)

 Fatigue strength coefficient o' 1s true stress corresponding to
fracture in one reversal (point A in Fig. 6-12)

10()

<1
Ep

107!

1072
Total strain

Plastic strain

Strain amplitude, Ae/2

1.0

Elastic strain =

1074
10° 10! 102 10° 10* 10° 10°

Reversals to failure, 2N



Relation of Fatigue Life to Strain

o Fatigue auctility exponent c is the slope of plastic-strain line, and is
the power to which the life 2/ must be raised to be proportional to the

true

plastic-strain amplitude. Note that 2/Vstress reversals corresponds

to AV cycles.

o Fatigue strength exponent b is the slope of the elastic-strain line, and
IS the power to which the life 2/ must be raised to be proportional to
the true-stress amplitude.

10()

107

Strain amplitude, Ae/2

16+

1074

<1
Ep

Total strain

Plastic strain

Elastic strain =

10° 10! 102 10° 10* 10° 10°

Reversals to failure, 2N



Relation of Fatigue Life to Strain

Total strain is sum of elastic and plastic strain
Total strain amplitude is half the total strain range
E Ag, Aeg)

2_2+2

The equation of the plastic-strain line in Fig. 6-13

ASP / C
= p (2N

The equation of the elastic strain line in Fig. 6-13

/

OF b
— LoonN
E( )

Ee

2

Applying Eq. (), the total-strain amplitude is

B¢ _ OF Ny 4 e 2N
> T E or

(a)

(6-1)

(6-2)

(6-3)



Relation of Fatigue Life to Strain

/

Ae _ 9r Q2N + & (2N)* (6-3)
> T F °F

» Known as Manson-Coffin relationship between fatigue life and
total strain
» Some values of coefficients and exponents given in Table A-23

» Equation has limited use for design since values for total strain at
discontinuities are not readily available



Linear-Elastic Fracture Mechanics Method

- Assumes Stage | fatigue (crack initiation) has occurred

> Predicts crack growth in Stage Il with respect to stress
Intensity

o Stage 111 ultimate fracture occurs when the stress intensity
factor K, reaches some critical level K,



o

Crack length a

Q

Crack Growth

Stress intensity factor Is given by

K; = Bo/ma (56-37)
For a stress range Ag, the stress intensity range per cycle is
AK) = ﬂ(o'max — Omin)V/7Td = ﬁAO"\/ wd (6_4)

Testing specimens at various levels of Ao provide plots of crack
length vs. stress cycles

(Ao), (Ao), (Ao),
/ da

dN

(Ao)z > (Ao )y > (Ao,

Loen Fig.6-14

Stress cycles N



Crack Growth

» Log-log plot of rate v

of crack growth, Region | Region II /
aa/a, shows all . .
three stages Of initiation propagation Region III
growth s s
« Stage Il data are AN
linear on log-log /
scale
e Similar curves can
be generated by
changing the stress .
ratio R =c..../ G @y | | .

Fig. 6-15



Crack Growth

o Crack growth in Region 1l is approximated by the Paris equation

da
— = C(AK)" 6-5
N (AK) (6-5)

o Cand mare empirical material constants. Conservative

representative values are shown in Table 6-1.
Table 6-1 in/cyel
2 le in/cycle
: Material C, "'/L C,————
Conservative Values of (MPa Jﬁ)m (kpsi xﬂﬁ)
Factor C and Exponent
m in Eq. (6-5) for Ferritic-pearlitic steels 6.89(10~12) 3.60(10710) 3.00
Various Forms of Steel Martensitic steels 1.36(10719) 6.60(107%) 2.25
(R = Omax/Omin = 0) Austenitic stainless steels 5.61(10712) 3.00(10710) 8.25

From J. M. Barsom and S. T. Rolfe, Fatigue and Fracture Control in Structures, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, 1987, pp. 288-291, Copyright ASTM International. Reprinted with permission.

Shigley’s Mechanical Engineering Design



Crack Growth

Substituting Eq. (6-4) into Eg. (6-5) and integrating,

/ VN =N, = L[ __da (6-6)
0 T C a (ﬁAO'\/T[a)m

a;1s the initial crack length
as1s the final crack length corresponding to failure

N,is the estimated number of cycles to produce a failure after the
Initial crack is formed



Crack Growth

 If Bis not constant, then the following numerical integration
algorithm can be used.

8aJ,- = C(AK[);”(SN)J
dj+1 = dj + 50!]'

Nit1 = N; +0N; (6—7)

Ny =) 6N,



Example 6-1

The bar shown in Fig. 6-16 1s subjected to a repeated moment 0 < M < 1200 Ibf - in.
The bar 1s AISI 4430 steel with S,; = 185 kpsi, Sy = 170 kpsi, and Ky = 73 kpsi\/E :

Material tests on various specimens of this material with identical heat treatment
indicate worst-case constants of C = 3.8(10_“)(inicycle)/ (kpsi\/E)’” and m = 3.0.
As shown, a nick of size 0.004 in has been discovered on the bottom of the bar. Estimate
the number of cycles of life remaining.

E
-4—1n<-—>

M ( j M 3 in
\—Nick

Fig. 6-16

Shigley’s Mechanical Engineering Design



Example 6-1

The stress range Ao is always computed by using the nominal (uncracked) area. Thus
I bh? B 0.25(0.5)?

=, = — = 0.01042 in®
c- 6 6 -
Therefore, before the crack initiates, the stress range 1s
AM 1200

Ao — 115.2(10%) psi = 115.2 kpsi

~I/c 0.01042
which 1s below the yield strength. As the crack grows, it will eventually become long
enough such that the bar will completely yield or undergo a brittle fracture. For the ratio
of Sy /Sy 1t1s highly unlikely that the bar will reach complete yield. For brittle fracture,
designate the crack length as ar. If g =1, then from Eq. (5-37) with K; = Kj., we
approximate ay as

| ( Ky \° 1/ 73 \?
afz—( "’) i—(—) — 0.1278 in
T \ BOmax 7 \115.2

E
Z]ﬂ(—*

{ » Wl

\_ Nick Shigley’s Mechanical Engineering Design




Example 6-1

From Fig. 5-27, we compute the ratio ar/h as

ﬂf 0.1278 2.0 f A
A — 0.256 L
h 0.5 g » *A?
‘F
1.8 )
o
2 UL ¥
e [ —e— 1 —
1.6
B

Pure bending

1.4

1.2

1.0

Fig. 5-27

0 0.2 0.4 0.6 0.8
a/h ratio

Shigley’s Mechanical Engineering Design



Example 6-1

Thus ag/h varies from near zero to approximately 0.256. From Fig. 5-27, for this range
B 1s nearly constant at approximately 1.07. We will assume it to be so, and re-evaluate
ar as

_ /3 2—0112'
“U=7\Toay) TN

Thus, from Eq. (6-6), the estimated remaining life is

N B 1 fﬂf dﬂ B l 0.112 dﬂ
1=C )., (BAoyma)" ~ 38(0101) Jooes [1.07(115.2)/7al’
5.047(10%) |12
= — %) = 64.7 (10°) cycles
\/E 0.004

Shigley’s Mechanical Engineering Design



The Endurance Limit

» The endurance limit for steels has been experimentally found to be
related to the ultimate strength

-
.,/
140 e, 3
N\
L7 ?
S\c 7 g ®
120 O Carbon steels 5 z g
® Alloy steels ," o ° 02
. <
+ Wrought irons .‘/6 iy _——
Z_ 100 O&(‘ o) °® oo 105 kpsi
—
g [ O ® ° @
) [}
= 80 .
P
9
S
= 60
£
-
40 8
@
O
#1155
20 /*
,/
,/
0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Fig. 6-17

Tensile strength S, ,, kpsi



The Endurance Limit

» Simplified estimate of endurance limit for steels for the rotating-
beam specimen, S,
0.55, S < 200 kpsi (1400 MPa)
S, = 1 100 kpsi S > 200 kpsi (6-8)
700 MPa S, > 1400 MPa

-
140 Al
; -
\\"'\/’
. // L ]
%“ /, °
120 O Carbon steels & s g
® Alloy steels ,/‘ @ < (]
. ~
+ Wrought irons :.,6 <. S < =
z 100 C&‘ O g0 00 105kpsi
= o . °
Ly 7’ L ]
) [ ]
£ 80 ®
3
9
g
_'___:: 60
£
[
40
Pedlo) 2
o]
++15%
20 e
,/
(s -
Z Fig. 6-17
0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Tensile strength S, ,, kpsi



Fatigue Strength

For design, an approximation of the idealized S-N diagram is

desirable.

To estimate the fatigue strength at 10° cycles, start with Eq. (6-2)
Ae, O’F

: (2N)‘) (6-2)

Define the specimen fatigue strength at a specific number of

cycles as
(5})3‘9’ — EAE{’/Q

Combine with Eq. (6-2),
(S))n = 0 (2N)" (6-9)



Fatigue Strength
(SpIN = o (2N)" (6-9)

At 103 cycles, (Sp)ip = 0(2-10°)" = fSu
fis the fraction of S, represented by (S})
Solving for £,

=3 10Y (6-10)

ur

10°

The SAE approximation for steels with A5 <500 may be used.

or = Sy + 50 kpsi or o = Sy, + 345 MPa (6-11)

To find b, substitute the endurance strength and corresponding

cycles into Eq. (6-9) and solve for 6
log (07/S,)

log (2N ) 6-12)

b =



Fatigue Strength

(SpIN = o (2N)” (6-9)
f=2L2.10%" (6-10)
Sur
or = Sy + 50 kpsi or o = Sy + 345 MPa (6-11)
log (o/S.)
_ - 6-12
b log(2N,) | |

» Egs. (6-11) and (6-12) can be substituted into Egs. (6-9) and
(6-10) to obtain expressions for S and 7



Equations for S-NV Diagram

Write equation for S-Aline f —t B
from 103 to 106 cycles
Two known points
At N=103 cycles,
S,=FS,
At N =106 cycles,
S5;=85,
Equations for line: EE R
Sy =a N" (6—13)
o (fgjf)2 6-14)




Equations for S-NV Diagram

 |f a completely reversed stress o, IS given, setting S;= o, IN
Eq. (6-13) and solving for A/ gives,

N = (Uz")l/b (6-16)

» Note that the typical S-Ndiagram is only applicable for
completely reversed stresses

 For other stress situations, a completely reversed stress with the
same life expectancy must be used on the S-NVdiagram



Fatigue Strength Fraction £

« Plot Eq. (6-10) for the fatigue strength fraction fof S, at 103

cycles

» Use ffrom plot for S%= S, at 103 cycles on S-Ndiagram
» Assumes S, =S5,=0.55,,at 10° cycles

f 09

0.88

0.86

0.84

0.82

0.8

0.78

0.76
70 80

90 100 110 120 130 140 150 160 170 180 190 200
S,;» kpsi

Fig. 6-18



Low-cycle Fatigue

» Low-cycle fatigue is defined for fatigue failures in the range
1<N <103

e On the idealized S-Ndiagram on a log-log scale, failure is
predicted by a straight line between two points (10°, 7S,,) and

(1, S.)

S > S, N©EDE 1 <N <10° (6-17)



Example 6-2

Given a 1050 HR steel, estimate
(a) the rotating-beam endurance limit at 10° cycles.

(b) the endurance strength of a polished rotating-beam specimen corresponding to 10*
cycles to failure

(c) the expected life of a polished rotating-beam specimen under a completely reversed
stress of 55 kpsi.

Solution
(a) From Table A-20, S,; = 90 kpsi. From Eq. (6-8),

S, = 0.5(90) = 45 kpsi
(b) From Fig. 618, for S,; = 90 kpsi, f = 0.86. From Eq. (6-14),

L [0.86(90)]?
- 45

= 133.1 Kpsi

From Eq. (6-15),

| [0.86(90)
D | Pt
08 [ 45

= —0.0785
i[5

Shigley’s Mechanical Engineering Design



Example 6-2

Thus, Eq. (6-13) 1s

S} = 133.1 N=00783

For 10* cycles to failure, 7 = 133.1(10%)7%%7% = 64.6 kpsi

(c) From Eq. (6-16), with opy = 55 kpsi,

55 \ 1/-0.0785
N = (m) = 77 500 = 7.75(10%) cycles

Keep in mind that these are only estimates. So expressing the answers using three-place
accuracy 1s a little misleading.

Shigley’s Mechanical Engineering Design



Endurance Limit Modifying Factors

» Endurance limit S, is for carefully prepared and tested specimen
 If warranted, S,is obtained from testing of actual parts

» When testing of actual parts is not practical, a set of Marin factors
are used to adjust the endurance limit

Se = kc‘{kbk(?kdkekf S(,) (6_] 8)

k, = surface condition modification factor

k;, = size modification factor

k. = load modification factor

kq = temperature modification factor

k. = reliability factor’

kr = miscellaneous-effects modification factor
S, = rotary-beam test specimen endurance limit

Se = endurance limit at the critical location of a machine part in the
geometry and condition of use



Surface Factor &,

» Stresses tend to be high at the surface

« Surface finish has an impact on initiation of cracks at localized
stress concentrations

 Surface factor Is a function of ultimate strength. Higher strengths
are more sensitive to rough surfaces.

ko = asS,, (6-19)
Table 6-2 Factor a Exponent
Parameters for Marin Surface Finish Sur, kpsi Sut, MPa b
Surface Modification Ground 1.34 1.58 —0.085
Factor, Eq. (6-19) Machined or cold-drawn 2.70 451 —0.265

Hot-rolled 144 57.7 —0.718

As-forged 399 272. —0.995

From C.J. Noll and C. Lipson, “Allowable Working Stresses,” Society for Experimental
Stress Analysis, vol. 3, no. 2, 1946 p. 29. Reproduced by O.J. Horger (ed.) Merals
Engineering Design ASME Handbook, McGraw-Hill, New York. Copyright © 1953 by
The McGraw-Hill Companies, Inc. Reprinted by permission.

Shigley’s Mechanical Engineering Design



Example 6-4

A steel has a minimum ultimate strength of 520 MPa and a machined surface.
Estimate k.

Solution From Table 6-2, a = 4.51 and b = —0.265. Then, from Eq. (6-19)

Answer k, = 4.51(520)7%2% = 0.860

Shigley’s Mechanical Engineering Design



Size Factor k,

Larger parts have greater surface area at high stress levels
Likelihood of crack initiation is higher
Size factor is obtained from experimental data with wide scatter

For bending and torsion loads, the trend of the size factor data is
given by

[ (d/0.3)79107 = (0.8794 0107 0.11 <d <2in
—0.157 .
ky — | 0.91(1_ 2 <d<101n (6-20)
(d/7.62)70197 = 1.244—9-107 2.79 <d <51 mm
| 1.51470157 51 <d <254 mm

» Applies only for round, rotating diameter
 For axial load, there is no size effect, so &, = 1



Size Factor k,

For parts that are not round and rotating, an equivalent round
rotating diameter Is obtained.

Equate the volume of material stressed at and above 95% of the
maximum stress to the same volume in the rotating-beam
specimen.

Lengths cancel, so equate the areas.

For a rotating round section, the 95% stress area is the area of a
ring,

T 0 2 0
Apos, = Z[d — (0.95d)°1 = 0.0766d (6—22)

Equate 95% stress area for other conditions to Eq. (6-22) and
solve for d'as the equivalent round rotating diameter



Size Factor k,

For non-rotating round,

Apose = 0.01046d" (6-23)
Equating to Eq. (6-22) and solving for equivalent diameter,
d, = 0.370d (6—24)

Similarly, for rectangular section /7 x b, Ay .= 0.05 Ab.
Equating to Eq. (6-22),
d, = 0.808(hb)'/* (6-25)

Other common cross sections are given in Table 6-3



Size Factor k,

Table 6-3

/?\ Aposs = 0.01046d 2

\<’z/ d, = 0.370d
Agys . for common

non-rotating
structural shapes

‘ Ao.9ss = 0.05hb

I T dp = 0.808v/Iib

O.IOarf axis 1-1

Ag.95 ={
1 005ha 1 > 00250 axis2-2

0.05ab axis 1-1

Agoss =
P77 | 0.052va + 0147 (b —x)  axis 22

e

%]

!
Tﬂ\
|
|
_V
4>‘

Shigley’s Mechanical Engineering Design



Example 6-4

A steel shaft loaded in bending 1s 32 mm in diameter, abutting a filleted shoulder 38 mm
in diameter. The shaft material has a mean ultimate tensile strength of 690 MPa.
Estimate the Marin size factor kp 1f the shaft 1s used in

(a) A rotating mode.

(h) A nonrotating mode.

Solution (@) From Eq. (6-20)

d —0.107 32 —0.107
A ky = —— — (== — 0.858
ewer b (7.62) (7.62)

(b) From Table 6-3,

de = 0.37d = 0.37(32) = 11.84 mm
From Eq. (6-20),

11.84\ 17
A kp = | ——— — 0.954
nswer b ( =0 )

Shigley’s Mechanical Engineering Design



oading Factor k.

» Accounts for changes in endurance limit for different types of fatigue
loading.

» Only to be used for single load types. Use Combination Loading
method (Sec. 6-14) when more than one load type is present.

| bending
k. = {0.85 axial (6-26)
0.59 torsion'’



Temperature Factor k&,

» Endurance limit appears to maintain same relation to ultimate
strength for elevated temperatures as at room temperature

o This relation 1s summarized in Table 64

Table 6-4 Temperature, °C S1/SrT Temperature, °F
Effect of Operating 20 1.000 70 1.000
Temperature on the 50 1.010 100 1.008
Tensile Strength of 100 1.020 200 1.020
Steel.* (St = tensile 150 1.025 300 1.024
strength at operating 200 1.020 400 1.018
temperature; 250 1.000 500 0.995
Srr = tensile strength 300 0.975 600 0.963
at room temperature; 350 0.943 700 0.927
0.099 <6 <0.110) 400 0.900 800 0.872
450 0.843 900 0.797
500 0.768 1000 0.698
550 0.672 1100 0.567
600 0.549

*Data source: Fig. 2-9.

Shigley’s Mechanical Engineering Design



Temperature Factor k,

If ultimate strength is known for operating temperature, then just
use that strength. Let &,= 1 and proceed as usual.

If ultimate strength is known only at room temperature, then use
Table 64 to estimate ultimate strength at operating temperature.
With that strength, let &,= 1 and proceed as usual.

Alternatively, use ultimate strength at room temperature and
apply temperature factor from Table 64 to the endurance limit.

St
kg = —
' Skr
A fourth-order polynomial curve fit of the underlying data of
Table 64 can be used in place of the table, if desired.

kg = 0.975 +0.432(107)TF — 0.115(107°) T
+0.104(107%) T2 — 0.595(10~'H) T}

(6—28)

(6-27)



Example 6-5

A 1035 steel has a tensile strength of 70 kpsi and is to be used for a part that sees 450°F
in service. Estimate the Marin temperature modification factor and (S, )4s0° 1f

(a) The room-temperature endurance limit by test is (S,)7¢0c = 39.0 kpsi.

(b) Only the tensile strength at room temperature 1s known.

Solution  (a) First, from Eq. (6-27),
kg = 0.975 + 0.432(1073)(450) — 0.115(107°)(450?)

+ 0.104(107%)(450%) — 0.595(1072)(450%*) = 1.007
Thus,

Answer (Se)asoe = kq(S,)700 = 1.007(39.0) = 39.3 kpsi

Shigley’s Mechanical Engineering Design



Example 6-5

(b) Interpolating from Table 6-4 gives

450 — 400
.= 1.018 + (0.995 — 1.018 = 1.007
(S7/Sr1)450 +(0.99 ) 500 = 200

Thus, the tensile strength at 450°F 1s estimated as
(Sut)asoe = (S7/SrT)as0e (Sur)70e = 1.007(70) = 70.5 kpsi
From Eq. (6-8) then,
Answer (Se)asoe = 0.5 (Su)asee = 0.5(70.5) = 35.2 kpsi

Part a gives the better estimate due to actual testing of the particular material.

Shigley’s Mechanical Engineering Design



Reliability Factor k,

e From Fig. 6-17, 5,=0.5 5, Is typical of the data and represents
50% reliability.

» Reliability factor adjusts to other reliabilities.

o Onlyadjusts Fig. 6-17 assumption. Does notimply overall
reliability.

Ll
140 §
\\-"\/’
// L
S 4 o
120 O Carbon steels s g
® Alloy steels e Z (]
. ~
+ Wrought irons :&’/0 & ——b—.— -
o 5 kpsi
z 100 (0 o&t o o® &° I
= o ® o
- ]
) [ ]
= 80 )
P
9
=
E 60
=
-
40 8
o
+415%
20 27
”~
,/
Fig. 6-17 2
0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Tensile strength S, ,, kpsi



Reliability

o Reliability, R— The statistical measure of the probability that a
mechanical element will not fail in use

» Probability of Failure, p.— the number of instances of failures
per total number of possible instances

R=1—ps (1-4)

o Example: If 1000 parts are manufactured, with 6 of the parts
failing, the reliability is

§
R=1-————0994 0r99.4 %
1000



Reliability Factor k,

» Simply obtain &, for desired reliability from Table 6-5.

Reliability, % Transformation Variate z, Reliability Factor k.
50 0 1.000
90 1.288 0.897
95 1.645 0.868
99 2.326 0.814
99.9 3.091 0.753
99.99 3.719 0.702
99.999 4.265 0.659
99.9999 4.753 0.620

Table 6-5
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Miscellaneous-Effects Factor A;

» Reminder to consider other possible factors.
> Residual stresses
> Directional characteristics from cold working
> Case hardening
> Corrosion
o Surface conditioning, e.g. electrolytic plating and metal
spraying
> Cyclic Frequency
> Frettage Corrosion
» Limited data is available.
» May require research or testing.



Stress Concentration

 Localized increase of stress near discontinuities
» K,Is Theoretical (Geometric) Stress Concentration Factor

K, = 2mx g Imax (3-48)

|< 1) T‘-l
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Theoretical Stress Concentration Factor

Graphs available for
standard configurations Figure A-15-1

Bar in tension or simple

See Appendix A-15 and

hode. op = F/A, where
A = (w —d)t and{ is the

A-16 for common
examples

Many more in Peterson’s
Stress-Concentration
Factors

Note the trend for higher  |Fewe s
K: at sharper discontinuity | e = e s
radius, and at greater

disruption




Stress Concentration and Notch Sensitivity

For dynamic loading, stress concentration effects must be applied.
Obtain K, as usual (e.g. Appendix A-15)

For fatigue, some materials are not fully sensitive to K, so a
reduced value can be used.

Define K} as the fatigue stress-concentration factor.

Define gas notch sensitivity, ranging from 0 (not sensitive) to 1
(fully sensitive).

Kf—1 Kpy — 1
— ) shear — : 6-31
q K — ] or qsl K, ] { )
Forg=0, K,=1

Forg=1, K= K,



Notch Sensitivity

e Obtain gfor bending or axial loading from Fig. 6-20.
o Then get K. from Eq. (6-32): K=1+qg( K,—1)

Notch radius r, mm

- 0 0.5 1.0 1.5 2.0 23 3.0 3.5 4.0
’ : (1.4 GPa)
L0 1.0)
%\\\/ ( -

0.8 N (O] meeme—="""T"" = | ==
SH
>
T 0.6
<
2 04
Z Steels

====Alum. alloy
0.2
Fig. 6-20
0
0 0.02 0.04 0.06 0.08 0.10 D.12 0.14 0.16

Notch radius r, in



» Obtain g,
e Then get
» Note that

1.0

0.8

S
o)

o
~

Notch sensitivity g, ...

0.2

Notch Sensitivity

for torsional loading from Fig. 6-21.
K, from Eq. (6-32): Kg=1+g( K.—1)
Fig. 6-21 is updated in 9t edition.
Notch radius , mm
0 0.5 1.0 1.5 240 2.5 3.0 3.5 4.0
700 kpsi S ———
Steels
==== Alum. alloy
1
I
I
I
'l
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Notch radius r, in

Fig. 6-21



Notch Sensitivity

« Alternatively, can use curve fit equations for Figs. 6-20 and 6-21
to get notch sensitivity, or go directly to K.

|

q:
1+% (6-34)
K:=1+ K — 1 (6-33)
f= L+ Jair

Bending or axial:
Ja = 0246 —3.08(107)S,; + 1.51(107°) 8>, — 2.67(107%) 5>

ur ur

(6-354q)
Torsion:

Ja =0.190 — 2.51(107°)S,; + 1.35(107°) S%, — 2.67(107®)S> (6-35h)

ur



Notch Sensitivity for Cast Irons

» Cast irons are already full of discontinuities, which are included
In the strengths.

 Additional notches do not add much additional harm.
» Recommended to use g = 0.2 for cast irons.



Example 6-6

A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fillet

radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate K¢ using:
(a) Figure 6-20.

(b) Equations (6-33) and (6-35).

Solution

From Fig. A—15-9, using D/d = 38/32 = 1.1875, r/d = 3/32 = 0.093 75, we read
the graph to find K; = 1.65.

(a) From Fig. 620, for S,; = 690 MPa and r = 3 mm, ¢ = 0.84. Thus, from Eq. (6-32)

Kfr=1+¢q(K;—1) =1+4+0.84(1.65—-1) =1.55

(b) From Eq. (6-35a) with S,; = 690 MPa = 100 kpsi, »/a = 0.0622+/in = 0.313/mm.
Substituting this into Eq. (6-33) with r = 3 mm gives

K,—1 . 1.65 — 1

=1
|+ /a/r * l+0.313

V3
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Application of Fatigue Stress Concentration Factor

Use K as a multiplier to increase the nominal stress.

Some designers (and previous editions of textbook) sometimes
applied 1/ K as a Marin factor to reduce S, .

For infinite life, either method is equivalent, since

. S, _(1/K]¢)Se
f_KfG_ o

For finite life, increasing stress is more conservative. Decreasing
S, applies more to high cycle than low cycle.



Example 6-7

For the step-shaft of Ex. 6-6, it is determined that the fully corrected endurance limit is
Se = 280 MPa. Consider the shaft undergoes a fully reversing nominal stress in the fil-
let of (6rey)nom = 260 MPa. Estimate the number of cycles to failure.

Solution

From Ex. 6-6, Kf= 1.55, and the ultimate strength is §,; = 690 MPa = 100 kpsi. The
maximum reversing stress is

(Orev)max = Kf(grev]'nom = 1.55(260) = 403 MPa
From Fig. 6-18, f = 0.845. From Egs. (6-14), (6-15), and (6-16)
L fSu)?  [0.845(690)]7

— 1214 MP
S, 280 !
| fSu 1. [0.845(690)

b= —=l — ——log — —0.1062
T 3 C’D[ 280 ]

Ub 403 \ 1/-0-1062
N = (Jm') = (—) = 32.3(10%) cycles

Shigley’s Mechanical Engineering Design



Example 6-8

A 1015 hot-rolled steel bar has been machined to a diameter of | in. It 1s to be placed
in reversed axial loading for 70 000 cycles to failure in an operating environment of
S550°E. Using ASTM minimum properties, and a reliability of 99 percent, estimate the
endurance limit and fatigue strength at 70 000 cycles.

Solution
From Table A-20, S,; = 50 kpsi at 70°F. Since the rotating-beam specimen endurance

limit 1s not known at room temperature, we determine the ultimate strength at the ele-
vated temperature first, using Table 6—4. From Table 64,

= 0.979

( St ) 0995 +0.963
550° 2

SRT
The ultimate strength at 550°F is then
(Suf )55{]& — (ST/SRT)ﬁs[]U (SMF)T{]':’ — {]979(50) — 490 kpSl

The rotating-beam specimen endurance limit at 550°F is then estimated from Eq. (6-8)
as

S’ = 0.5(49) = 24.5 kpsi

Shigley’s Mechanical Engineering Design



Example 6-8

Next, we determine the Marin factors. For the machined surface, Eq. (6-19) with
Table 6-2 gives

k, = aS? =2.70(49792%) = 0.963

ur —

For axial loading, from Eq. (6-21), the size factor k; = 1, and from Eq. (6—26) the load-
ing factor is k. = 0.85. The temperature factor k; = 1, since we accounted for the tem-
perature in modifying the ultimate strength and consequently the endurance limit. For
99 percent reliability, from Table 6-5, k, = 0.814. Finally, since no other conditions

were given, the miscellaneous factor is kf = 1. The endurance limit for the part 1s esti-
mated by Eq. (6-18) as

Se = kakpkckgkeky S,
= 0.963(1)(0.85)(1)(0.814)(1)24.5 = 16.3 kpsi
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Example 6-8

For the fatigue strength at 70 000 cycles we need to construct the S-N equation. From
p. 285, since S;; = 49 < 70kpsi, then f = 0.9. From Eq. (6-14)

L Su)® _ [09¢9)F
S, 163

= 119.3 kpsi

and Eq. (6-15)

I S, I 0.9(4
b= —=log S Su) _ —— log YO | = _0.1441
3 Se 3 16.3

Finally, for the fatigue strength at 70 000 cycles, Eq. (6—13) gives

Sy =a N’ =119.3(70000) %! = 23.9 kpsi

Shigley’s Mechanical Engineering Design



Example 6-9

Figure 6-22a shows a rotating shaft simply supported in ball bearings at A and D and
loaded by a nonrotating force F of 6.8 kN. Using ASTM “minimum’ strengths, estimate
the life of the part.

A B 6.8 kKN C D
~<— 250 > 75 100 —={=— 125 —
—> 10 10 <—
Lrﬂh X — _»1 —_t
T
Rl RE

Fig. 6-22 (@
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Example 6-9

From Fig. 6-22b we learn that failure will probably occur at B rather than at C or at the
point of maximum moment. Point B has a smaller cross section, a higher bending
moment, and a higher stress-concentration factor than C. and the location of maximum
moment has a larger size and no stress-concentration factor.

A B 6.8 kKN C D

B 250 > 5 100 —<— 125 —>

() Shigley’s Mechanical Engineering Design



Example 6-9

We shall solve the problem by first estimating the strength at point B, since the strength
will be different elsewhere, and comparing this strength with the stress at the same point.
From Table A-20 we find S,; = 690 MPa and Sy = 580 MPa. The endurance limit

S, is estimated as
S, = 0.5(690) = 345 MPa
From Eq. (6-19) and Table 6-2,
ka = 4.51(690)79265 = (0.798

From Eq. (6-20),
ky = (32/7.62)7%197 = (0.858
Since ke = kg = ke = kf =1,
Se = 0.798(0.858)345 = 236 MPa

Shigley’s Mechanical Engineering Design



Example 6-9

To find the geometric stress-concentration factor K; we enter Fig. A—15-9 with D /d =
38/32 = 1.1875 and r/d =3/32=0.09375 and read K; = 1.65. Substituting
S = 690/6.89 = 100 kpsi into Eq. (6-35a) yields /a = 0.0622 /in = 0.313,/mm.

Substituting this into Eq. (6-33) gives
K, —1 4 .65 —1
L+a/r —  1+0313/4/3

The next step 1s to estimate the bending stress at point B. The bending moment

Kf:l-l- — 1.55

18

225F 225(6.8)
— _"' T ee—— 5 T eee— — 5.5 -
Mg = Ryx 330 250 330 250 =695.5N-m

Just to the left of B the section modulus is / /¢ = 7d?/32 = 732%32 = 3.217 (10°) mm°.
The reversing bending stress 1s, assuming infinite life,

— k2B 1552222 (10)6 = 335.1(10°) Pa = 335.1 MP
oy = R T 3017 (Y (107 Fa !

This stress 1s greater than S, and less than Sy. This means we have both finite life and
no yielding on the first cycle.
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Example 6-9

For finite life, we will need to use Eq. (6-16). The ultimate strength, S,; = 690
MPa = 100 kpsi. From Fig. 618, f = 0.844. From Eq. (6-14)

(f Su)?  [0.844(690)]?
a = =

— 1437 MP
S, 736 .

and from Eq. (6-15)

L (f Su 1. [0.844(690)
h=—=1 S — —0.1308
3“3( S, ) 303[ 236 ]

From Eq. (6-16),

Croy 1/b 3351 —1,/0.1308 ;
N = (—) — (W) — 68(10%) cycles

Shigley’s Mechanical Engineering Design



Characterizing Fluctuating Stresses

e The S-Ndiagram is applicable for completely reversed stresses
 Other fluctuating stresses exist
 Sinusoidal loading patterns are common, but not necessary



Fluctuating Stresses

(d)

S
<

(D)

ompletely
eversed

Str

~]

5

Stress

!
=
<
-~ § ——
;U O
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Characterizing Fluctuating Stresses

 Fluctuating stresses can often
be characterized simply by the
minimum and maximum
stresses, o, and o,

o Define o, as midrange steady
component of stress
(sometimes called mean
stress) and o,as amplitude of
alternating component of

Stress

stress
Omax 1 Omin
. : (6—36)
Omax — Omin
Ogq = >




Characterizing Fluctuating Stresses

o Other useful definitions
Include stress ratio

R — Omin (6-37)
Omax
and amplitude ratio
2 (6-38)

Stress




Application of K, for Fluctuating Stresses

For fluctuating loads at points with stress concentration, the best
approach is to design to avoid all localized plastic strain.

In this case, Krshould be applied to both alternating and
midrange stress components.

When localized strain does occur, some methods (e.g. nominal
mean stress method and resiaual stress method) recommend only
applying K to the alternating stress.

The Dowling method recommends applying K,to the alternating
stress and K, to the mid-range stress, where K, Is

Kinw=K; Kylomax.ol < Sy
S\ — Kfo'ao

[Omo

Kf’” — Kf|o'max,0| = S)' (6-39)

Kfm =0 Kf |Omax,0 — Omin,o| > 25



Fatigue Failure for Fluctuating Stresses

» Vary the o, and o, to learn about the fatigue resistance under
fluctuating loading

» Three common methods of plotting results follow.



Modified Goodman Diagram

e Midrange stress is plotted on
abscissa

 All other components of
stress are plotted on the
ordinate

+

u

Stress

LY

Parallel

u



Master Fatigue Diagram

Displays four stress components as well as two stress ratios

Maximum stress o, , kpsi

(o))
)

~
(a)

[\
e}

4.0
-0.6

2.33 L5 A=1 0.67 0.43
~0.4 -0.2 R=0 0.2 0.4
RA

0.25
0.6

0.11 0
0.8 1.0

[ I I I [ I

I
[
I ;
&
Q‘PO- % // | : N
0&& | |
2 | Q
(,(F 370 I N
«O&/. ll |
L /I :%Q
I I I I I I / I I I I I I I I I
-120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 160 180
Flg 6—26 Minimum stress o, kpsi
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Plot of Alternating vs Midrange Stress

» Probably most common and simple to use is the plot of o, Vs o,

» Has gradually usurped the name of Goodman or Modified
Goodman diagram

» Modified Goodman line from S,to S, ,is one simple representation
of the limiting boundary for infinite life

S,

L

Alternating stress o,

Midrange stress o,,



Plot of Alternating vs Midrange Stress

» Experimental data on normalized plot of o, Vs o,
o Demonstrates little effect of negative midrange stress

Amplitude ratio S,/S’,

-12 -10 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1.0

Compression S, /S, Tension S, /S,

Midrange ratio

Fig. 6-25



Commonly Used Failure Criteria

» Five commonly used failure criteria are shown

o Gerber passes through the data
o ASME-elliptic passes through data and incorporates rough

yielding check

A
1N
N\
N\
N\ : .
\ [ Yield (Langer) line
\
X
& N
g S \
= AN Gerber line
Kp Load line, slope r=3S8 /S,
=
k= N
& \
3 N\ Modified Goodman line
Y . <
|A
| \\ ASME-elliptic line
Soderberg line | \\
{ \ Fig. 6-27
0
O SI)I S_\' Sllf

Midrange stress o,



Commonly Used Failure Criteria

» Modified Goodman is linear, so simple to use for design. Itis
more conservative than Gerber.
» Soderberg provides a very conservative single check of both

fatigue and yielding.
S,
1N
N\
N\
N\ : .
\ [ Yield (Langer) line
\
X
& N
g S \
5 AN Gerber line
g Load line, slope r=3S8 /S,
=
k= N
& \
2 N\ Modified Goodman line
D )
|A
| \\ ASME-elliptic line
Soderberg line : \\
; 1 X Fig. 6-27
S S_\' Sllf

m

Midrange stress o,



a

&

Alternating stress o

Commonly Used Failure Criteria

Langer line represents standard yield check.

It is equivalent to comparing maximum stress to yield strength.

.‘\
AN
N\
N\

\ Yield (Langer) line
N\
\[

\ Gerber line
Load line, slope r=S /S,

N\ Modified Goodman line

N ASME-elliptic line

Soderberg line | N\

| X Fig. 6-27

O S S_\' Sllf

m

Midrange stress o,



Equations for Commonly Used Failure Criteria

» Intersecting a constant slope load line with each failure criteria
produces design equations

» n1is the design factor or factor of safety for infinite fatigue life
Oq Om 1

Soderb — 4+ — = — 6-45
oderberg 9 — 5 n ( )

Oq Om 1
mod-Goodman + = — (6—46)

Sf.’ Sm‘ n

no no,, \°

Gerber — “) =1 647
Sf.’ —I_ ( SLH ) ( )

2 2
ASME-elliptic (”g) + (”;’) — 1 (6-48)
e 1.



Summarizing Tables for Failure Criteria

Tables 6-6 to 6-8 summarize the pertinent equations for
Modified Goodman, Gerber, ASME-elliptic, and Langer failure
criteria

The first row gives fatigue criterion

The second row gives yield criterion

The third row gives the intersection of static and fatigue criteria
The fourth row gives the equation for fatigue factor of safety
The first column gives the intersecting equations

The second column gives the coordinates of the intersection



Summarizing Table for Modified Goodman

Table 6-6 Intersecting Equations Intersection Coordinates
Amplitude and Steady B 5 , g rSeSus
Coordinates of Strength S_e T S_u, B S S 8,
and Important S S
P Load line r = — S = —
Intersections 1n First m r
Quadrant for Modified Sa i Sm { ¢ _ rSy
Goodman and Langer Sy Sy T+
. . . S
Failure Criteria e —— S, = —2
S 1+r

Sa\ Sm _ Sm:(Sy—Se)Sut

Se Sut Sut — Se

S S.

S_a+S_m=1 Sa =Sy — S, rerit = Sa/Sm

y y
Fatigue factor of safety
1
"= a  om
Se  Sut
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Summarizing Table for Gerber

Table 6-7 Intersecting Equations Intersection Coordinates
Amplitude and Steady s, 5 \2 g 25, \2
Coordinates of Strength 5 = (S_> =] Sa = Tm ], g 1 (rS )
t t
and Important ‘ ! ‘ !
T — g s
Intersections in First Load line r — 2% s, = 22
Quadrant for Gerber and m r
Langer Failure Criteria Sa " Sm_ | g - " Sy
Sy Sy T+
; Sa S5
Load 1 = — S, =
oad line r s, m=17
Sa | (Sa\ 8 I
Z4(ZE) =1 Sm=L1-J14+(Z=) (1-2
S ! (Su) ™= 28 ¥ S
Sa  Sm
S_+S_=1 Sa=Sy_Sm’rcrit=Sa/Sm
y y

Fatigue factor of safety
178\ &, Berin 855\ ©
= = | =— — | —1 1 0
nf 2 (O—’n ) Se + \/ + ( Suto'a ) Um >
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Summarizing Table for ASME-Elliptic

Table 6-8 Intersecting Equations Intersection Coordinates
Amplitude and Stead
- g AN LAY 25,
Coordinates of Strength =] +({=] =1 S, =
S, Sy S2+r282
and Important i
o G S
Intersections in First Load line r = S, /S,, 5, — 24
Quadrant for ASME- r
Elliptic and Langer Sa \ Sm _ 4 g _ I
= =
Failure Criteria Sy Sy I+r
, S
Loadline r = S;/Sm S = 7 -:r
s\ (sa) 2882
_a + _m = 1 Sa = 0’ 9 Y 62
Se Sy 2 + S2
S, S,
S_a_|-S—m=] Sm=Sy—Saarcrit=Sa/Sm
y y

Fatigue factor of safety

-

1

(0a/Se)* + (om/Sy)

Shigley’s Mechanical Engineering Design



Example 6-10

A 1.5-in-diameter bar has been machined from an AISI 1050 cold-drawn bar. This part
1s to withstand a fluctuating tensile load varying from O to 16 kip. Because of the ends,
and the fillet radius, a fatigue stress-concentration factor Ky 1s 1.85 for 10° or larger
life. Find S, and §,, and the factor of safety guarding against fatigue and first-cycle
yielding, using (a) the Gerber fatigue line and (/) the ASME-elliptic fatigue line.

Solution
We begin with some preliminaries. From Table A-20, S, = 100 kpsi and Sy = 84 kpsi.
Note that F; = F, = 8 kip. The Marin factors are, deterministically,

ke = 2.70(100)7%265 = 0.797: Eq. (6-19), Table 6-2, p. 288

ky = 1 (axial loading, see k)

k. = 0.85: Eq. (6-26), p. 290

ki =ke=4ks =1

Se = 0.797(1)0.850(1)(1)(1)0.5(100) = 33.9kpsi: Egs. (6-8), (6-18), p. 282, p. 287
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Example 6-10
The nominal axial stress components o,4, and o,,, are

4F, 4(8) ) 4 Fm 4(8) .
Ouo — — 5 4.53 kpsi Omo — 5 4.53 kpsi

Applying K¢ to both components o,, and oy, constitutes a prescription of no notch
yielding:
Og = Kfﬂaﬂ = 1.85(4.53) = 8.38 kpsi = on

(a) Let us calculate the factors of safety first. From the bottom panel from Table 67 the
factor of safety for fatigue 1s

1 l{]{] 8 38 2(8.38)33.9 .
ng = = = 3.66
2 8.38 33 9 100(8.38)
From Eq. (6-49) the factor of safety guarding against first-cycle yield is

Sy 84
ny = —— = = 5.01
ou + 0y  8.38+8.38
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Example 6-10

Thus, we see that fatigue will occur first and the factor of safety is 3.68. This can be
seen in Fig. 6-28 where the load line intersects the Gerber fatigue curve first at point B.
If the plots are created to true scale it would be seen that ny = OB/OA.

84

Load line

s

Langer line

Stress amplitude o, kpsi
Lh
=

fad Lad
(s S
-1

D — rcrit

W1~ Gerber
fatigue curve

Fig. 6-28

0
0 838 30.7 42 50 64 84 100
Midrange stress L kpSi Shigley’s Mechanical Engineering Design




Example 6-10
From the first panel of Table 6-7, r = o, /0, = 1,

S_('1)21002 | 1 2(33.9)7° 207 ko
‘=269 | T +[<1)100] I

S. 307
Sp = — = 1 — 30.7 kpsi
r

As a check on the previous result, nf = OB/OA = S;/04 = Sp/om = 30.7/8.38 =

3.66 and we see total agreement.
84

'z
&
S B
3
5 50— Load line
g' c
P R,
& .
| Langer line
& 339 B |
1 | ————
| |
| | D _-—"
et i e Gerber
| |- | fatigue curve
L A | - r |
8.38 = — _—-T | |
= | | | :
il I N Fig. 6-28
0 8.38 30.7 42 50 64 84 100

Midrange stress o, kpsi Shigley’s Mechanical Engineering Design



Example 6-10

We could have detected that fatigue failure would occur first without drawing
Fig. 6-28 by calculating r¢.;;. From the third row third column panel of Table 67, the
intersection point between fatigue and first-cycle yield 1s

1002 2(33.9)\? 84
2(33.9) 100 33.0

Sa = Sy — S = 84 — 64 = 20 kpsi

The critical slope 1s thus

S 20
m:i:@:mm

which is less than the actual load line of r = 1. This indicates that fatigue occurs before
first-cycle-yield.
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Example 6-10

(b) Repeating the same procedure for the ASME-elliptic line, for fatigue

1
_ —3.75
"f \/ (8.38/33.9)2 + (8.38/84)2

Again, this 1s less than ny = 5.01 and fatigue 1s predicted to occur first. From the first
row second column panel of Table 6-8, with r = 1, we obtain the coordinates S, and

Sm of point B in Fig. 6-29 as SN
(1)233.92(84)2 . B
Sq = = 31.4 kpsi,
‘ \/33.92 T+ (1)2842 PPhe
T
S 31.4 -
Sm — . = =314 kpSi = Load line
r s C
: L,
E ] e — B : Langer line
To verify the fatigue factor of safety, o -
Bsp-————— AL =S
ng=_5,/0q =31.4/8.38 = 3.75. B L | ASME-elliptic line
8.38 - 4 I I I
| I I I
0 Ll L || I I I I I I
0 8.38 314 42 50 60.5 84 100

Midrange stress o, , kpsi

F I g . 6_29 Shigley’s Mechanical Engineering Design



Example 6-10

As before, let us calculate re4. From the third row second column panel of
Table 68,

2(84)33.92 . '
= 3.9 1 88 =23.5kpst, Sp =Sy —S; =84 —23.5=60.5kpsi

S, 23.5

Sm 60.5

which again is less than r = 1, verifying that fatigue occurs first with ny = 3.73.

The Gerber and the ASME-elliptic fatigue failure criteria are very close to each
other and are used interchangeably. The ANSI/ASME Standard B106.1M—-1985 uses
ASME-elliptic for shafting.

Shigley’s Mechanical Engineering Design



Example 6-11

A flat-leaf spring 1s used to retain an oscillating flat-faced follower in contact with a
plate cam. The follower range of motion is 2 in and fixed, so the alternating component
of force, bending moment, and stress 1s fixed, too. The spring is preloaded to adjust to
various cam speeds. The preload must be increased to prevent follower float or jump.
For lower speeds the preload should be decreased to obtain longer life of cam and
follower surfaces. The spring is a steel cantilever 32 in long, 2 in wide, and i in thick,
as seen in Fig. 6-30a. The spring strengths are Sy, = 150 kpsi, Sy = 127 kpsi, and S, =
28 kpsi fully corrected. The total cam motion is 2 in. The designer wishes to preload
the spring by deflecting i1t 2 in for low speed and 5 in for high speed.

(a) Plot the Gerber-Langer failure lines with the load line.

(b) What are the strength factors of safety corresponding to 2 in and 5 in preload?

I_.
rin sl e {70 %}

t

32in -;!

6=2in
8 =2 in preload - - - - _ .

6=>5in

| A |
8 =5 in preload w Flg 6-302
> 1

(@) Shigley’s Mechanical Engineering Design
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Example 6-11
We begin with preliminaries. The second area moment of the cantilever cross section is

bh3  2(0.25)3
12

I = = 0.00260 in*

Since, from Table A-9, beam 1, force F and deflection y in a cantilever are related by
F =3EIy/ I’ then stress o and deflection y are related by

_ Mc  32Fc  32Q3Ely)c  96Ecy

= = = K
A RV ERNE '
96Ec  96(30-109)0.125 - .
where K = E 373 = 10.99(10°) psi/in = 10.99 kpsi/in

Now the minimums and maximums of y and o can be defined by
Ymin = ymax=2+5
Omin = K& Omax = K(2 4 6)

Shigley’s Mechanical Engineering Design



Example 6-11

The stress components are thus

K248 —K$
Oy = ( +2) = K = 10.99 kpsi
K248+ K$§
. +2)+ — K(1+58) = 10.99(1 + 5)
Fors = 0, 0q = oy = 10.99 = 11 kpsi
For § = 2 in, og = 11 kpsi, o, = 10.99(1 4+ 2) = 33 kpsi
For § = 5 in, og = 11 kpsi, o, = 10.99(1 + 5) = 65.9 kpsi

Shigley’s Mechanical Engineering Design



Example 6-11

(a) A plot of the Gerber and Langer criteria is shown in Fig. 6-30b. The three preload
deflections of 0, 2, and 5 in are shown as points A, A’, and A”. Note that since o, is
constant at 11 kpsi, the load line is horizontal and does not contain the origin. The
intersection between the Gerber line and the load line is found from solving Eq. (6-42)
for S, and substituting 11 kpsi for S;:

3 11
Sm=Sut |l —— =150,/1 — — = 116.9 kpsi

It S, 28
a
100~
bﬁ
E - Langer line
2,
£ -
:
Z
% —
E
E‘ 50 -
<

— Gerber line

A A A"

__T 1 1 ]

ob—UL 11l b 1 N Flg.6—30b

11 33 50 659 100 116 116.9127 150

Steady stress component o, kpsi Shigley’s Mechanical Engineering Design



Example 6-11

The intersection of the Langer line and the load line is found from solving Eq. (6—44)
for S,, and substituting 11 kpsi for S;:

Sm =38y —8a =127 —-11 =116 kpsi

The threats from fatigue and first-cycle yielding are approximately equal.
(b) For § =2 1n,

Sm 116.9 116
= = — 3.54 = — =3.52
T "y =733
and for § = 5 1n.
116.9 116
= —=1.77 — —— =1.76
" =650 =550

Shigley’s Mechanical Engineering Design



Example 6-12

A steel bar undergoes cyclic loading such that o, = 60 kpsi and oy, = —20 kpsi. For
the material, S, = 80 kpsi, Sy = 65 kpsi, a fully corrected endurance limit of S, =
40 kpsi, and f = 0.9. Estimate the number of cycles to a fatigue failure using:

(a) Modified Goodman criterion.

(b) Gerber criterion.

Solution

From the given stresses,

60 — (=20)
T2

60+ (=20)
2

(a) For the modified Goodman criterion, Eq. (6—46), the fatigue factor of safety based
on infinite life 1s

Ogq

= 40 kpsi i

= 20 kpsi

I I
= o O - 020 =08
Se  Su 40 80

Shigley’s Mechanical Engineering Design



Example 6-12

This indicates a finite life is predicted. The S-N diagram is only applicable for completely
reversed stresses. To estimate the finite life for a fluctuating stress, we will obtain an
equivalent completely reversed stress that is expected to be as damaging as the fluctuat-
ing stress. A commonly used approach is to assume that since the modified Goodman
line represents all stress situations with a constant life of 10° cycles, other constant-life
lines can be generated by passing a line through (S, 0) and a fluctuating stress point
(om. 04). The point where this line intersects the o, axis represents a completely reversed
stress (since at this point o, = 0), which predicts the same life as the fluctuating stress.

This completely reversed stress can be obtained by replacing S, with oy 1in Eq. (6-46)
for the modified Goodman line resulting in

o 40 :
Orey — l—i‘m = 1_20 =533 kpSl
Sut 80

Shigley’s Mechanical Engineering Design



Example 6-12
From the material properties, Egs. (6-14) to (6-16), p. 285, give
_USw? _ [09B0)P

— 129.6 kpsi
S, 40 0.6 kpsi
1 £ Su 1 [0.9(80)

h———1 — ] — —0.0851
3”3(&) 3”3[ ) ]
Oy \ 1/6 Oy \ —1/0.0851

N=(=)" =(50%) |
a 129.6 ()

Substituting oy 1nto Eq. (1) yields

—1/0.0851
N = (%) = 3.4(10%) cycles

Shigley’s Mechanical Engineering Design



Example 6-12

(b) For Gerber, similar to part (a), from Eq. (6-47),

40
Orey — i = —42.] kpSi

| — Im ’ | — E i
, Sut 30
Again, from Eq. (1),

42 7 —1/0.0851
N = ( ) = 4.6(10°) cycles

129.6

Comparing the answers, we see a large difference in the results. Again, the modified
Goodman criterion is conservative as compared to Gerber for which the moderate dif-
ference in Sy 1s then magnified by a logarithmic §, N relationship.

Shigley’s Mechanical Engineering Design



Fatigue Criteria for Brittle Materials

» For many brittle materials, the first quadrant fatigue failure
criteria follows a concave upward Smith-Dolan locus,

Sa 1 — Sm/Sur

N 6-50
Sf.’ 1 ‘|_ Sm/Suf ( )

 Or as a design equation,
noq | —noy/Su (6-51)

Sc? B 1 _I_ no’m/Suf
 For a radial load line of slope r, the intersection point is

Sur + Se 4r Sy Se
§, — 2wt |:—1+\/1+ el } (6-52)

2 (FSMT _|‘ Sc?)z

e In the second quadrant,

S() - .
S, =S, + (— — 1) S -8, <85, <0 (forcastiron) (6—53)

ur



Fatigue Criteria for Brittle Materials

» Table A—-24 gives properties of gray cast iron, including
endurance limit

» The endurance limit already includes 4, and &,
» The average k. for axial and torsional is 0.9



Example 6-13

A grade 30 gray cast iron is subjected to a load F applied to a 1 by —-1n cross-section
link with a Z-m -diameter hole drilled in the center as depicted in Flg 6-31a. The sur-
faces are machined. In the neighborhood of the hole, what is the factor of safety guard-
ing against failure under the following conditions:

(a) The load F = 1000 1bf tensile, steady.

(b) The load 1s 1000 1bf repeatedly applied.

(¢) The load fluctuates between — 1000 Ibf and 300 1bf without column action.

Use the Smith-Dolan fatigue locus. .

<~ lin—> _LinD_drill

/

Fig. 6-31a l

F Shigley’s Mechanical Engineering Design




Example 6-13

Some preparatory work is needed. From Table A-24, S,;, = 31 kpsi, S, = 109 kpsi,
kqkpS, = 14 kpsi. Since k. for axial loading is 0.9, then S, = (kzkpS,)k. = 14(0.9) =
12.6 kpsi. From Table A-15-1, A = t(w — d) = 0.375(1 — 0.25) = 0.281 in®, d/w =
0.25/1 = 0.25, and K; = 2.45. The notch sensitivity for cast iron is 0.20 (see p. 296),

S0
Kr=1+q(K,—1)=1+020245—1) = 1.29
K;F, 1.2900) K/F, 129(1000) |
_ _ —0 _ _ 107%) = 4.59 k
(@) 0a =—7 0281 Im =y oogr O ) kpsi
and
S .
e @ — 6.75
on  4.59

Shigley’s Mechanical Engineering Design



Example 6-13

F 1000
(b) F,=F, = — = —— =500 Ibf
2 7
F, 129(500) ,
6, =0, = ;“: (10 3) = 2.30 kpsi
r:ﬁzl

Om

From Eq. (6-52),

(D31 +12.6 4DH31(12.6) | ,
S, = 5 I:—1+\/1+ [(1)31+12-6]2j| = 7.63 kpsi

Sa 1.63
— = 3.32
o, 2.30

-
I
|
I
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Example 6-13

1 1.29(650
(c) Fy==1300— (—1000)| = 650 Ibf Og = X )(10_3) = 2.98 kpsi

2 0.281

| 1.29(—350
Fn = =[300 + (—1000)] = —350 Ibf Om = ( _ )(10_3) = —1.61 kpsi
2 0.281
3.0
r=22 _ — = —1.86
om  —1.61

From Eq. (6-33), S¢ = Se + (S¢/Sur — 1)Su and Sy, = Sq/r. 1t follows that

S, 12.6 |
Sa = 1 T/s. 1 = 1 7 56 1 = 18.5 kpsi
r\s, 186\ 31
S 185
n—= — = 6.20

~ o, 2.8

Shigley’s Mechanical Engineering Design



Example 6-13

Figure 6-31b shows the portion of the designer’s fatigue diagram that was constructed.

Alternating stress, o,

Sm [

r=-1.86
N Sﬂ = 18.5 kpsi
|
|
|
|
|
|
|
|
|

| I Sm
-5, —9.95 0 7.63 10 20 308, -
Midrange stress o, kKpsi
Fig. 6-310
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Torsional Fatigue Strength

Testing has found that the steady-stress component has no effect
on the endurance limit for torsional loading if the material is
ductile, polished, notch-free, and cylindrical.

However, for less than perfect surfaces, the modified Goodman
line Is more reasonable.

For pure torsion cases, use k.= 0.59 to convert normal endurance
strength to shear endurance strength.

For shear ultimate strength, recommended to use

Ssu = 0.675,; (6—54)



Combinations of Loading Modes

» When more than one type of loading (bending, axial, torsion)
exists, use the Distortion Energy theory to combine them.

» Obtain von Mises stresses for both midrange and alternating
components.

» Apply appropriate K,to each type of stress.

 For load factor, use k.= 1. The torsional load factor (k.= 0.59) is
Inherently included in the von Mises equations.

o If needed, axial load factor can be divided into the axial stress.

(Oa'z )axial

0.85

1/2
2

2
O}: — i |:(Kf)bending(o’u)bending + (Kf)axial :| +3 [(Kf.s)torsion(Ta)torsion] }

(6-55)

/

1/2
2 2
0, = {[(Kf)bending(olm)bending + (Kf)axial(olm)axial] +3 [(Kfs)torsion(fm)torsion] }

(6-56)



Static Check for Combination Loading

Distortion Energy theory still applies for check of static yielding
Obtain von Mises stress for maximum stresses (sum of midrange

and alternating)

Stress concentration factors are not necessary to check for
yielding at first cycle

o = |:(O-a +0o, )2 +3(7, +7, )ZT/Z

Alternate simple check is to obtain conservative estimate of o
by summing o, and o/,

! / !
O o ] o, +t0,

I

max



Example 6-14

A rotating shaft 1s made of 42- x 4-mm AISI 1018 cold-drawn steel tubing and has a
6-mm-diameter hole drilled transversely through it. Estimate the factor of safety guard-
ing against fatigue and static failures using the Gerber and Langer failure criteria for the
following loading conditions:

(a) The shaft is subjected to a completely reversed torque of 120 N - m in phase with a
completely reversed bending moment of 150 N - m.

(b) The shaft is subjected to a pulsating torque fluctuating from 20 to 160 N - m and a
steady bending moment of 150 N - m.

Shigley’s Mechanical Engineering Design



Example 6-14

Here we follow the procedure of estimating the strengths and then the stresses, followed
by relating the two.

From Table A-20 we find the minimum strengths to be §,; = 440 MPa and S, =
370 MPa. The endurance limit of the rotating-beam specimen is 0.5(440) = 220 MPa.
The surface factor, obtained from Eq. (6-19) and Table 6-2, p. 287, is

ko = 4.515,%2% = 4.51(440)7°2% = (.899
From Eq. (6-20) the size factor 1s

q 0107 42 \ 0107
kp = | =—= = | — = 0.833
7.62 7.62

The remaining Marin factors are all unity, so the modified endurance strength S, is

Se = 0.899(0.833)220 = 165 MPa

Shigley’s Mechanical Engineering Design



Example 6-14

(a) Theoretical stress-concentration factors are found from Table A-16. Using a/D =
6/42 =0.143 and d/D = 34/42 = 0.810, and using linear interpolation, we obtain

A =0.798 and K; = 2.366 for bending; and A = 0.89 and K;; = 1.75 for torsion.
Thus, for bending,

T A (0.798)
Znet = _(D4 — d4) —

4 _ 4113 3 3
32D =y Lo =EHISaal R

and for torsion

7(0.89)
32

[(42)* — (34)*] = 155 (10*)mm*

TA
Jnet = E(Ddf - d4) —

Next, using Figs. 6-20 and 6-21, pp. 295-296, with a notch radius of 3 mm we find the
notch sensitivities to be 0.78 for bending and 0.81 for torsion. The two corresponding
fatigue stress-concentration factors are obtained from Eq. (6-32) as

Kr=1+q(K;—1)=1+0.78(2.366 — 1) = 2.07
Kfs =14+081(1.75-1) = 1.6l

Shigley’s Mechanical Engineering Design



Example 6-14

The alternating bending stress 1s now found to be

M 150
—2.07 — 03.8(10%)Pa = 93.8 MP
7 331(10-9) (10%)Pa =93 .

Oxa — Kf

and the alternating torsional stress is

I'D 120(42)(1073
1 61 (42)(1077)

— 1. = 26.2(10%)Pa = 26.2 MPa
2 J et 2(155)(10-9)

Txyva — st

The midrange von Mises component o,, is zero. The alternating component o, 1s given
by

ol = (02, +312,)" =193.8% + 3(26.2%)]"/> = 104.2 MPa

xva

Since S, = S, the fatigue factor of safety ny 1s

Sa 165
= — = ———=1.38
T T 1042

Shigley’s Mechanical Engineering Design



Example 6-14

The first-cycle yield factor of safety is

Sy 370
= = VY = 3.50
= 5 T 105.6
There is no localized yielding; the threat is from fatigue. See Fig. 6-32.

400 |—

S
|

165
r=0.28

3
=
:

Von Mises amplitude stress component o,;, MPa
b
8
|
g

| Fig. 6-32

305 440 500
Von Mises steady stress component o, , MPa Shigley’s Mechanical Engineering Design




Example 6-14

(b) This part asks us to find the factors of safety when the alternating component is due
to pulsating torsion, and a steady component is due to both torsion and bending. We
have 7, = (160 — 20)/2 =70 N - m and 7,, = (160 4 20)/2 =90 N - m. The corre-
sponding amplitude and steady-stress components are

I,D 61 70(42)(1073)

=K = 1. — 15.3(10%)Pa = 15.3 MP:

e = RIsa g 2(155)(10-9) (109)%a 4
TnD 90(42)(1073) 6

o —K — 1.6 — 19.7(10%)Pa = 19.7 MP:

M= S e 2(155)(10-9) (107)Fa !

The steady bending stress component oy, 18

m

150 )
=2.07 = 93.8(10°)Pa = 93.8 MPa

— K
Oxm = RS 7 3.31(10-9)

The von Mises components o, and o,, are

o) =[3(15.3)*]"/* = 26.5 MPa
ol =[93.82 +3(19.7)%]'/? = 99.8 MPa

Shigley’s Mechanical Engineering Design



Example 6-14
From Table 6-7, p. 307, the fatigue factor of safety 1s

1 /440\* 26.5 2(99.8)1657°
ng=—\| — — —14./1+ ( ) —3.12
2 \99.8 165 440(26.5)
From the same table, with r = o /o, = 26.5/99.8 = 0.28, the strengths can be shown

to be S; = 85.5 MPa and §,, = 305 MPa. See the plot in Fig. 6-32.
The first-cycle yield factor of safety ny is

Sy 370

Mut AR =2.93
o/ +0o! 2654998

Ny =

There 1s no notch yielding. The likelihood of failure may first come from first-cycle
yielding at the notch. See the plot in Fig. 6-32.

Shigley’s Mechanical Engineering Design



Varying Fluctuating Stresses

 Loading patterns may be
complex

» Simplifications may be
necessary

» Small fluctuations may be
negligible compared to large

cycles

100 |-

50 -

=50

Fig. 6-33

|
1
|
|
|
|
1
I
|
os |
|
1
|
|
|
|
1
|
|

\

(a)

100

50

-50




Cumulative Fatigue Damage

A common situation Is to load at o; for n, cycles, then at o, for n,
cycles, etc.

The cycles at each stress level contributes to the fatigue damage

Accumulation of damage is represented by the Palmgren-Miner
cycle-ratio summation rule, also known as Miner’s rule
n;
— = (6-57)
N;
where 7;1s the number of cycles at stress level o;and N;is the
number of cycles to failure at stress level o;

¢ 1s experimentally found to be in the range 0.7 < ¢< 2.2, with an
average value near unity

Defining D as the accumulated damage,

n;
D=)" N (6-58)



Example 6-15

Given a part with Sy; = 151 kpsi and at the critical location of the part, S, = 67.5 kpsi.

For the loading of Fig. 633, estimate the number of repetitions of the stress-time block
in Fig. 6-33 that can be made before failure.

100 100

50

-50 \ =50
Fig.6-33

(a) (b) Shigley’s Mechanical Engineering Design




Example 6-15
From Fig. 6-18, p. 283, for S,; = 151 kpsi, f = 0.795. From Eq. (6-14),
(fS.)*  [0.795(151)]

= =

— 213.5 kpsi
S, 67.5 psI

From Eq. (6-15),

| FSu 1 0.795(151)

b=—=1 — —=J|og = —(.0833
q 3Dg( SE) 3”’:[ 67.5 ]
0,
Sf —1/0.0833
S; =213.5N70-0833 N = —— 1), (2
7 — (1), (2)

We prepare to add two columns to the previous table. Using the Gerber fatigue criterion,
Eq. (6-47), p. 306, with S, = S¢, and n = 1, we can write

Ja 0

Ty =

St =1 1—(om/Sur)? " (3)
Se om <0

where S¢ is the fatigue strength associated with a completely reversed stress, opey,
equivalent to the fluctuating stresses [see Ex. 612, part (b)].
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Example 6-15

Cycle 1:r = o0,4/0, = 70/10 =7, and the strength amplitude from Table 6-7, p. 307, is

721512 2(67.5)7°
—1+‘/1+[ ( )] = 67.2 kpsi

Sa = 2(67.5) 7(151)

Since o, > S, that 1s, 70 > 67.2, life is reduced. From Eq. (3),

o 70
T T =(10/151)2

70.3 \ —1/0.0833
N = (m) = 619(10°%) cycles

= 70.3 kpsi

and from Eq. (2)

Shigley’s Mechanical Engineering Design



Example 6-15
Cycle 2: r = 10/50 = 0.2, and the strength amplitude 1s

0.221512 2(67.5) 1°
Sa = — {1 + | + ¥ :2421(]351
2(67.5) 0.2(151)

Since 04 < 4, that is 10 < 24.2, then Sf = S and indefinite life follows. Thus,

N—;- OQ..

Cycle 3:r = 10/—-30 = —0.333, and since 5, < 0, S¢ = §,, indefinite life follows and

N—}OO

Cycle Number S¢, kpsi N, cycles

1 70.3 619(10%
2 67.5 00
3 67.5 o0

Shigley’s Mechanical Engineering Design



Example 6-15
From Eq. (6-58) the damage per block is
n; | 1 1 N
D - _— = N =
Z Ni [619(103) - 00 - 00] 619(10%)

Setting D = 1 yields N = 619(10°) cycles.

Shigley’s Mechanical Engineering Design



lllustration of Miner’s Rule

» Figure 634 illustrates effect of Miner’s rule on endurance limit
and fatigue failure line.

» Note that the damaged material line is predicted to be parallel to
original material line.

49
0.95,,
72
48 |
60
| |
| |
~ | @ | |
@ 47 8 N =852010% |
- g >
N, —n, =552(10% |
f > | S’
4.6 — Y [()| S A S [ S SR N o) “
| e e T Y * /;.[ e
Lo Spa 1 Se
< L L L )= 0.648(10°) >
45 L | L1 1 1 L
10° 10* 10° 10°
N
: | 1 1 |
Fig. 6-34 3 4 5 6



Weaknesses of Miner’s Rule

» Miner’s rule fails to agree with experimental results in two ways
> |t predicts the static strength S, is damaged.

o> |t does not account for the order in which the stresses are
applied



Manson’s Method

o Manson’s method overcomes deficiencies of Miner’s rule.

« It assumes all fatigue lines on the S-/Vdiagram converge to a
common point at 0.95,,at 10° cycles.

* It requires each line to be constructed in the same historical order
In which the stresses occur.

49
72
48 _
60 L
T
Sl B o em |
g ~ N, =8.52(10°) | |
B = ——>
N,—n, =552(10% |
> |
= | | | |
%8 40 | [ 1 ~
I N :
| | | ~N
o SO Sea
MA————q— -~ —————————— o ——
45 | | [ | |
103 10* 10 10°
) N
Fig. 6-35 1 1 |
4 5 6



Surface Fatigue Strength

» When two surfaces roll or roll and slide against one another, a
pitting failure may occur after a certain number of cycles.

» The surface fatigue mechanism is complex and not definitively
understood.

 Factors include Hertz stresses, number of cycles, surface finish,
hardness, lubrication, and temperature



Surface Fatigue Strength
o From Egs. (3—73) and (3—74), the pressure in contacting cylinders,

2 2
h — \/2F (1 vl)/El + (1 vZ)/EZ (6—59)
7l (1/dy) + (1/d>)
_2f (6—60)
pmax — J'L'_b]

» Converting to radius rand width winstead of length /,
, AF (1=vi)/Ei+ (1 —v3) /E>

[ 6—61
’ TW 1/ri+ 1/ | |
2F
Pmax = (6—62)
Thw

» Define p.., as surface endurance strength (also called contact
strength, contact fatigue strength, or Hertzian endurance strength)

2F (6-63)

Thw

Sc =



Surface Fatigue Strength

Combining Egs. (6-61) and (6-63),

iy g [ e (6-64)
— | —4+— ) =785= — —
w \ 7] ) ¢ E| E> l

K, 1s known as Buckingham'’s load-stress factor, or wear factor

In gear studies, a similar factor is used,

K .
K, = T sin ¢ (6—65)

From Eq. (6-64), with material property terms incorporated into
an elastic coefficient C,

F /1 1
Sc = CP\/_ (— — —) (6-66)
w \ I )




Surface Fatigue Strength

» Experiments show the following relationships
Ki =N K,=aN"  Sc=aN’

logtk,/Ky) ) _ JoeRei/Re) -y 1080ci/5e) o)

Pr= log(N1/N>) log(N1/N>) log(N1/N>)

Data on induction-hardened steel on steel give (Sc)io7 = 271 kpsi and (Sc¢)ip¢ =
239 kpsi, so B, from Eq. (6-67), 1s

loe(271/239
_ 1og@T1/239) ) 05
log(107/10%)

Shigley’s Mechanical Engineering Design



Surface Fatigue Strength

« A longstanding correlation in steels between S.and Hyat 10°
cycles is

() — {O.4HB — 10 kpsi
7] -

_ (6-68)
2.76Hp — 70 MPa

o AGMA uses
()'L)L)(S(j)lo? = 0.327HB + 26 kpSi (6—69)



Surface Fatigue Strength

Incorporating design factor into Eq. (6-66),

oo | E (L, 1) Cp [E(1  1)_ Sc
o = — PR /
¢ : Wwig \ 1l . Jia | w \r 2 "d

Since this 1s nonlinear in its stress-load transformation, the
definition of n,depends on whether load or stress is the primary
consideration for failure.

If the loss of function is focused on the load,

ng = (Sc/oc)*
If the loss of function is focused on the stress,
ng = Sc/oc



Stochastic Analysis

. . Class No.
o Fatigue ratio All metals 380
Nonferrous 152

| T S O I S

(1_') — SJlr / SHI 3 Iron and carbon steels 111
€ Low-alloy steels 78
Special alloy steels 39
2 s
z
5
2
§
]
&
0
0.3 0.4 0.5 0.6 0.7
Table 6—9 Rotary bending fatigue ratio ¢,
Material Class $0.30 Fig. 6-36
Wrought steels 0.50
Cast steels 0.40
Powdered steels 0.38
Gray cast iron 0.35
Malleable cast iron 0.40
Normalized nodular cast iron 0.33

Shigley’s Mechanical Engineering Design




Stochastic Analysis

e Endurance Limit

[ 0.5068,,LN(1, 0.138) kpsi or MPa
107LN(1, 0.139) kpsi
| 740LN(1, 0.139) MPa

.

S,

S, < 212 kpsi (1460 MPa)
S, > 212 kpsi (6-70)
S, > 1460 MPa

(6-71)
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o Surface Factor

Kk, —aS’

ur

Table 6-10

Parameters in Marin
Surface Condition Factor

LN(1, C)

Stochastic Analysis

(S, in kpsi or MPa)

ko = aSt LN(1, C)

a
Surface Finish kpsi MPa
Ground* 1.34 1.58
Machined or Cold-rolled 2.67 4.45
Hot-rolled 14.5 58.1
As-forged 39.8 271

(6-72)

Coefficient of
Variation, C

—0.086 0.120
—0.265 0.058
—0.719 0.110
—0.995 0.145

*Due to the wide scatter in ground surface data, an alternate function is k, = 0.878LN(1, 0.120).

Note: S, in kpsi or MPa.
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Example 6-16

A steel has a mean ultimate strength of 520 MPa and a machined surface. Estimate k.

Solution
From Table 6-10,

k, = 4.45(520)7"?%LN(1, 0.058)
k, = 4.45(520)7%%%(1) = 0.848
61a = Cky = (0.058)4.45(520)7%2% = 0.049

so k, = LN(0.848, 0.049).
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Stochastic Analysis

* Size factor, &,
» Use same deterministic approach as before
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o Load factor

Stochastic Analysis

(Ke)axial = 1.238-"V7SLN(1, 0.125)

(kc)torsion —

Table 6-11

Parameters in Marin
Loading Factor

0.328 S%12LN(1, 0.125)

ur

ke = «So LN(1, C)

Mode of

Loading

Bending | 1 0
Axial 1.23 1.43 —0.0778
Torsion 0.328 0.258 0.125

(6-73)
(6-74)

Average

0 1
0.125 0.85
0.125 0.59
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Stochastic Analysis

Table 6-12 Table 6-13
Average Marin Loading Average Marin Loading
Factor for Axial Load Factor for Torsional
Sut, kpsi k: Load
- - -
50 0.907 Sur, kpsi o
100 0.860 50 0.535
150 0.832 100 0.583
200 0.814 150 0.614
*Average entry 0.85. 200 0636
* Average entry 0.59.
Table 6-14 Material Range n k. O ke
Average Marin Torsional Wrought steels 0.52-0.69 31 0.60 0.03
Loading Factor &, for Wrought Al 0.43-0.74 13 0.55 0.09
Several Materials Wrought Cu and alloy 0.41-0.67 7 0.56 0.10
Wrought Mg and alloy 0.49-0.60 2 0.54 0.08
Titanium 0.37-0.57 3 0.48 0.12
Cast iron 0.79-1.01 9 0.90 0.07
Cast Al, Mg, and alloy 0.71-0.91 5 0.85 0.09
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Example 6-17

Estimate the Marin loading factor k. for a 1-in-diameter bar that is used as follows.
(a) In bending. It 1s made of steel with S,; = T00LN(1, 0.035) kpsi, and the designer
intends to use the correlation S, = b3S, to predict S..

(b) In bending, but endurance testing gave S, = SSLN(1, 0.081) kpsi.

(c) In push-pull (axial) fatigue, S,; = LN(86.2, 3.92) kpsi, and the designer intended to
use the correlation S, = &g 30Su-

(d) In torsional fatigue. The material is cast iron, and S/, is known by test.
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Example 6-17

Solution

Answer

Answer

Answer

Answer

(a) Since the bar is in bending,

k. = (1,0)
(b) Since the test is in bending and use 1s in bending,

ke = (1,0)
(c) From Eq. (6-73),

(ke)ax = 1.23(86.2)""Y°*LN(1, 0.125)
ke = 1.23(86.2)7%9778(1) = 0.870
ke = Cke = 0.125(0.870) = 0.109

(d) From Table 6-15, I::,.: = 0.90, 64, = 0.07, and

0.07
Cio — —— — 0.08
k= 0.90
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Stochastic Analysis

o Temperature factor
k; = k,LN(1,0.11) (6-75)
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Stochastic Analysis

» Stress concentration and Notch Sensitivity
_ K-

K —1

Kf — 1 Cfgf

K, —1" K, —1

(6-76)

q

q=LN(

I{vf—l
K; — 1

. CK;
K, —1
CK
C, = —2L
K —1

N
I

(6-77)

2
I
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Stochastic Analysis

» Stress concentration and Notch Sensitivity

R, = al
/ | 2K~ D) Ja
K, Jr

K; = K;LN (1, Ck,)

(6-78)

(6-79)
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Example 6-18
Estimate Ky and q for the steel shaft given in Ex. 6-6, p. 296.

Solution
From Ex. 66, a steel shaft with S,; = 690 MPa and a shoulder with a fillet of 3 mm

was found to have a theoretical stress-concentration-factor of K; = 1.65. From
Table 613,

139 139
— — — (0.201 44.,!
va S, 690 H

From Eq. (6-78),
K K, 1.65
= oy - 2(1.65 —1)0.2014

! .
K, Jr 165 3

which is 2.5 percent lower than what was found in Ex. 6-6.

= 1.51
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Example 6-18

From Table 6-15, Cxs = 0.11. Thus from Eq. (6-79),

Answer K, = 1.51 LN(1,0.11)
From Eq. (6-77), with K, = 1.65
151 — 1
= _0.785
1= T65-1

_ Cx, Ky 0.11(151)
TT K, -1 1511

&, = C,q = 0.326(0.785) = 0.256

= 0.326

So.
Answer q = LN(0.785, 0.256)

Shigley’s Mechanical Engineering Design



Example 6-19

The bar shown in Fig. 6-37 1s machined from a cold-rolled flat having an ultimate
strength of S,; = LN(87.6,5.74) kpsi. The axial load shown i1s completely reversed.
The load amplitude 1s F, = LN(1000, 120) 1bf.

(a) Estimate the reliability.

(b) Reestimate the reliability when a rotating bending endurance test shows that S, =
LN(40, 2) kpsi.

2.nR
T (lﬁ
1000 Ibf } 1000 Ibf
~—  2-.in 13in S ——
Y : i,
l [ L \—%—inD.
o |
+ | | |
Fig. 6-37
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Example 6-19
(a) From Eq. (6-70). S, = 0.5065,,LN(1, 0.138) = 0.506(87.6)LN(1, 0.138)
= 44.3LN(1, 0.138) kpsi
From Eq. (6-72) and Table 610,
k, = 2.675 %*LN(1,0.058) = 2.67(87.6) "***LN(1, 0.058)
= 0.816LN(1, 0.058)

kp = 1 (axial loading)
From Eq. (6-73),

k. = 1.235 “78LN(1, 0.125) = 1.23(87.6) *"7*LN(1, 0.125)
= 0.869LN(1, 0.125)

ks =k; = (1,0)
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Example 6-19

The endurance strength, from Eq. (6-71), 1s
Se = kokpk kkfS,
Se = 0.816LN(1, 0.058)(1)0.869LN(1, 0.125)(1)(1)44.3LN(1, 0.138)

The parameters of S, are

S, = 0.816(0.869)44.3 = 31.4 kpsi
Cs, = (0.058% +0.1252 +0.138%)'2 = 0.195

so S, = 31.4LN(1, 0.195) kpsi.

In computing the stress, the section at the hole governs. Using the terminology
of Table A-15-1 we find d/w = 0.50, therefore K; = 2.18. From Table 6-15.
Ja=5/S, =5/87.6=0.0571 and Cyy = 0.10. From Egs. (6-78) and (6-79) with
r = 0.375 1n,

K, 218
Kr= 2K - 57N (L Cry) = . 2C18—1 00571 LN, 0.10)
K. Jr 218 0375

= 1.98LN(1, 0.10)
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Example 6-19

The stress at the hole is

1000LN(1, 0.12)
0.25(0.75)

F
o = Ky~ = 1.98LN(1,0.10)

1000
5 = 1.98 1072 = 10.56 kpsi
o = 19855507 Ps

Cs = (0.10* +0.12%)2 = 0.156
so stress can be expressed as & = 10.56LN(1, 0.156) kpsi.**
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Example 6-19

The endurance limit is considerably greater than the load-induced stress, indicat-

ing that finite life 1s not a problem. For interfering lognormal-lognormal distributions,
Eq. (5-43), p. 250, gives

S, [1+4+C2 | 31.4 |1 +0.1562
a 1
"V Tr e 10.56\ 1+ 0.195
7= — - = — = —4.37
\/ln [(1+C2)(1+C2)] VIn[(1 4+ 0.1952)(1 4 0.1562)]

From Table A—10 the probability of failure py = ®(—4.37) = .000 006 35, and the
reliability is

R =1 —0.000 006 35 = 0.999 993 65

Shigley’s Mechanical Engineering Design



Example 6-19

(b) The rotary endurance tests are described by S, = 40LN(1, 0.05) kpgi whose mean
1s less than the predicted mean in part a. The mean endurance strength S, is

S, = 0.816(0.869)40 = 28.4 kpsi
Cse = (0.058% +0.125% 4 0.05%)"/2 = 0.147

so the endurance strength can be expressed as S, = 28.3LN(1, 0.147) kpsi. From
Eq. (5-43),

In

8.4 \/1 10.1562

10.56\ 1 +0.1472

c— = —4.65
VIn[(1+ 0.1472) (1 4 0.1562)]
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Example 6-19

Using Table A-10, we see the probability of failure pr = ®(—4.65) = 0.000 001 71,
and

R =1-0.000001 71 = 0.999 998 29

an increase! The reduction in the probability of failure is (0.000 001 71 — 0.000
006 35)/0.000 006 35 = —0.73, a reduction of 73 percent. We are analyzing an existing
design, so in part (a) the factor of safety was n = S/5 =31.4/10.56 = 2.97. In part (b)
n = 28.4/10.56 = 2.69, adecrease. This example gives you the opportunity to see the role
of the design factor. Given knowledge of S.C s. 0, C,, and reliability (through z), the mean
factor of safety (as a design factor) separates S and & so that the reliability goal is achieved.
Knowing n alone says nothing about the probability of failure. Looking at n = 2.97 and
n = 2.69 says nothing about the respective probabilities of failure. The tests did not reduce
S, significantly, but reduced the variation C such that the reliability was increased.

When a mean design factor (or mean factor of safety) defined as 5} /o 1s said to
be silent on matters of frequency of failures, it means that a scalar factor of safety
by itself does not offer any information about probability of failure. Nevertheless,
some engineers let the factor of safety speak up, and they can be wrong in their
conclusions.
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Stochastic Analysis

» Gerber equations

2

_ 252 28,
S, = i UL | +\/1 -+ ( - ) (6—-80)
2Se rSMI

) - 5 \
25.(1 + Cg,
+—1—|—\/1—|—[_(+ S):|
(-I_I_CSM)Z rSur(1+CSur)

Csq = - — — — — 1 (6-81)

1+CS€ 25* 2
—1+ 1+( _‘“’)
rSur

w
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Stochastic Analysis

o ASME-elliptic equations
5 rSyS,
Jras+ 32

(6—-82)

r2S§-+-S2

Csq = (1 + CSy)(l + CSe)

\ 7S+ Coy)? + $2(1 4+ Cse)?

— 1 (6-83)
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Stochastic Analysis

o Smith-Dolan equations for brittle materials
YlO'a 1 T no':?i/SLfr

Se B 1 _|_ HO'm/S”[

1 T Sm/gur
1 _I_ Sm/Sur

Sa
S e

- rSu+S. 4rSuSe
G, =t —1+\/1+ o

(r Sy + S,)2

I’Sw(l - CS”;) + S(e(l -+ CS(?.)
T 2§

i ArSuS 4 Cs0 4 C) |
[rgbff(l + CSMI) + S(_)_(l - CS(.).)]Z

1

(6—84)

(6-85)

(6-86)

(6-87)



Example 6-20

A rotating shaft experiences a steady torque T = 1360LN(1, 0.05) Ibf-1in, and at a
shoulder with a I.1-in small diameter, a fatigue stress-concentration factor Ky =
1.S0LN(1,0.11), Kgg = [.28LN(1,0.11), and at that location a bending moment of
M = 1260LN(1, 0.05) Ibf - in. The material of which the shaft 1s machined 1s hot-rolled
1035 with S,; = 86.2LN(1, 0.045) kpsi and Sy = 56.0LN(1, 0.077) kpsi. Estimate the
reliability using a stochastic Gerber failure zone.
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Example 6-20
Establish the endurance strength. From Egs. (6-70) to (6-72) and Eq. (6-20), p. 288,

S, = 0.506(86.2)LN(1, 0.138) = 43.6LN(1, 0.138) kpsi
k, = 2.67(86.2)7%2LN(1, 0.058) = 0.820LN(1, 0.058)

kp = (1.170.30)%197 = 0.870
k. = ks = ks =LN(1,0)
Se = 0.820LN(1, 0.058)0.870(43.6)LN(1, 0.138)
Se = 0.820(0.870)43.6 = 31.1 kpsi
Cse = (0.058% 4 0.138%)1/2 = 0.150

and so S, = 31.1LN(1, 0.150) kpsi.
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Example 6-20

Stress (in kpsi): _ 32K/M, - 32(1.50)LN(T, 0.11) 1.26LN(1, 0.05)

7a d> 2(1.1)3
32(1.50)1.26
5, = 22120 — 14.5 kpsi
7(l.1)3

Coa = (0.112 +0.05%)'2 = 0.121

16Kz T, 16(1.28)LN(1,0.11)1.36LN(1, 0.05)
™= B 2(1.1)3

_16(1.28)1.36
=T )

= 6.66 kpsi

Com = (0.11% +0.05%)172 = 0.121
5! = (52 43%2)"" = [14.5% 4+ 3(0)21'/> = 14.5 kpsi
G = (52 +372) """ = [0+ 3(6.66)2]"/> = 11.54 kpsi

5! 14.5
2 ————— =1.26
11.54

=

<V
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Example 6-20
Strength: From Egs. (6-80) and (6-81),

_ 1.26286.22 31.) TP
Sa = 1 + 261.1) = 28.9 kpsi1
2(31.1) 1.26(86.2)

n 231.1)(1 +0.15) 77
(1 4+0.045)2 1.26(86.2)(1 + 0.045)

1 4 0.150 2(“ h 1
—1 + —
126(86.2)]

—1=0.134

Sa —
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Example 6-20

Reliability: Since S, = 28.9LN(1,0.134) kpsi and o, = 14.5LN(1,0.121) kpsi,
Eq. (5-43), p. 250, gives

5 [T+C . 28.9\/l+0.1212
ny —
o, 1+C§ 145V 1 +0.1342
: — _3.83

- _\/ln [(1+C2)(1+C2)] /[ +0.138)(1 +0.1212)]

<

From Table A-10 the probability of failure is py = 0.000 065, and the reliability is,
against fatigue,

R=1-p;=1-0.000065=0.999 935
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Example 6-20

The chance of first-cycle yielding is estimated by interfering Sy with o,,,. The
quantity o, is formed from o), 4+ o . The mean of o, is o, + 0o, = 14.5 +
[1.54 = 26.04 kpsi. The coefficient of variation of the sum is 0.121, since both
COVs are 0.121, thus Cy pax = 0.121. We interfere Sy = 56LN(1, 0.077) kpsi with

o .= 26.04LN (1,0.121) kpsi. The corresponding z variable is

max
(56 [1+0.212
"\ 26.04\ 1T+ 0.0772
— 539

/Il +0.0775)(1 + 0.1212)]

which represents, from Table A—10, a probability of failure of approximately 0.07358
[which represents 3.58(107%)] of first-cycle yield in the fillet.
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Example 6-20

The probability of observing a fatigue failure exceeds the probability of a yield
failure, something a deterministic analysis does not foresee and 1n fact could lead one
to expect a yield failure should a failure occur. Look at the ¢S, interference and the
O xSy interference and examine the z expressions. These control the relative proba-
bilities. A deterministic analysis is oblivious to this and can mislead. Check your sta-

tistics text for events that are not mutually exclusive, but are independent, to quantify
the probability of failure:

pr = p(yleld) + p(fatigue) — p(yield and fatigue)

= p(yield) + p(fatigue) — p(yield) p(fatigue)
= 0.358(1077) 4+ 0.65(10~%) — 0.358(1077)0.65(10~*) = 0.650(10~%)
R =1-0.650(10"%) = 0.999 935

against either or both modes of failure.
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Amplitude stress component o, kpsi

50

40

Example 6-20

_______ Load line

& L § 4 4 | A |

0 10 20 30 40 50 60 70 80 90

Steady stress component o, , kpsi

Fig. 6-38 e
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Stochastic Analysis

» Design Factor In Fatigue

n = exp [—z\/ln (1+ C,E) +1In,/1+ C§:| =exp|C,(—z+C,/2)] (6-88)

¢, = |GG
§ | +C2

Cop = (Cgff +Cp)

1/2

1/2
Cse = (Cl, + CL+ Cly + C + C3,)
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Example 6-21

A strap to be made from a cold-drawn steel strip workpiece is to carry a fully reversed
axial load F = LN(1000, 120) 1bf as shown in Fig. 6-39. Consideration of adjacent

parts established the geometry as shown in the figure, except for the thickness 7. Make a
decision as to the magnitude of the design factor if the reliability goal is to be 0.999 95,
then make a decision as to the workpiece thickness 7.

$5:1nm1bf

"v

|~ =-in D. drill

F I g ' 6_39 Shigley’s Mechanical Engineering Design



Example 6-21

Let us take each a priori decision and note the consequence:

A Priori Decision Consequence

Use 1018 CD steel
Function:
Carry axial load
R = 0.999 95
Machined surfaces
Hole critical
Ambient temperature

Correlation method
Hole drilled

S, = 87.6 kpsi, Cg, = 0.0655

Cp=0.12,C.=0.125
z= —3.891
Cre = 0.058
Cxr=0.10, Cor = (0.10* + 0.12%)1/2 = 0.156
Cra= 0
C5;=U.138
Cs. = (0.058% 4+ 0.125% 4+ 0.138%)1/2 = 0.195

Cs, +C2, 0.1952 4 0.1562
| Sl e (2000 90467
i+ C2 I +0.1562

i = exp [_ (—3.891)y/In( + 0.24672) + In V1 + 0.24672]
—2.65




Example 6-21

These eight a priori decisions have quantified the mean design factor as n = 2.65.
Proceeding deterministically hereafter we write

S _ F
o, =—=K;
n (w —d)t
from which
KnF
P L (1)
(w __d)Se

To evaluate the preceding equation we need S, and K f. The Marin factors are

k, = 2.675;%25LN(1, 0.058) = 2.67(87.6)"“2LN(1, 0.058)

k, = 0.816

kp = 1

k. = 1.235 0078 LN(1,0.125) = 0.868LN(1, 0.125)
k. = 0.868

ke =kf =1

and the endurance strength is

Se = 0.816(1)(0.868)(1)(1)0.506(87.6) = 31.4 kpsi
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Example 6-21

The hole governs. From Table A-15-1 we find d/w = 0.50, therefore K; = 2.18. From
Table 6-15 Ja =5/S, =5/87.6 =0.0571, r = 0.1875 in. From Eq. (6-78) the
fatigue stress-concentration factor 1s
. 2.18
Kr= [, 22I8—1) 00571 =191
2.18 0.1875
The thickness  can now be determined from Eq. (1)
. KenF 1.91(2.65)1000

~ (w—d)Se  (0.75—0.375)31 400

= 0.430 in

Use %-in-thick strap for the workpiece. The %-in thickness attains and, in the rounding

to available nominal size, exceeds the reliability goal.
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