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Shaft Design

Material Selection

Geometric Layout

Stress and strength

o Static strength

> Fatigue strength

Deflection and rigidity

- Bending deflection

> Torsional deflection

> Slope at bearings and shaft-supported elements
> Shear deflection due to transverse loading of short shafts
Vibration due to natural frequency



Shaft Materials

 Deflection primarily controlled by geometry, not material
« Stress controlled by geometry, not material
« Strength controlled by material property



Shaft Materials

» Shafts are commonly made from low carbon, CD or HR steel,
such as ANSI 1020-1050 steels.

 Fatigue properties don’t usually benefit much from high alloy
content and heat treatment.

« Surface hardening usually only used when the shaft is being
used as a bearing surface.



Shaft Materials

Cold drawn steel typical for d< 3 in.

HR steel common for larger sizes. Should be machined all over.
Low production quantities

> Lathe machining is typical

> Minimum material removal may be design goal

High production quantities

> Forming or casting IS common

> Minimum material may be design goal



Shaft Layout

o Issues to consider for
shaft layout

o Axial layout of
components

° Supporting axial
loads

° Providing for torque
transmission

> Assembly and
Disassembly

Shigley’s Mechanical Engineering Design



Axial Layout of Components

(a) (b)

Fan

(©) (d)
Fig. 7-2
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Supporting Axial Loads

 Axial loads must be supported through a bearing to the frame.

e Generally best for only one bearing to carry axial load to
shoulder

» Allows greater tolerances and prevents binding
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Providing for Torgue Transmission

» Common means of transferring torque to shaft
o Keys
> Splines
o Setscrews
> Pins
> Press or shrink fits
> Tapered fits
» Keys are one of the most effective
> Slip fit of component onto shaft for easy assembly
- Positive angular orientation of component
> Can design key to be weakest link to fail in case of overload



Assembly and Disassembly

I

Fig. 7-5

Fig. 7-6
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Assembly and Disassembly
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Shaft Design for Stress

 Stresses are only evaluated at critical locations
 Critical locations are usually

> On the outer surface

> Where the bending moment is large

> Where the torque Is present

> Where stress concentrations exist



Shaft Stresses

Standard stress equations can be customized for shafts for
convenience

Axial loads are generally small and constant, so will be ignored
In this section

Standard alternating and midrange stresses

M,c M,,c
g{?:Kf_;{ HHI:K'LI{ (7-1)
{ [
I4c Iyc
Tg = KfsT;{ Tm = Kf.s ji (7-2)
Customized for round shafts
32M 32M
Oa = Kf J'Td;! Om = Ay ;'Td;” (7-3)
167, 167,
T, =K o Tm = il (7-4)

P S



Shaft Stresses

o Combine stresses into von Mises stresses

o) = (0 + 3t =

o) = (07 +3tH)* =

(32K M, )\ 16K, 70\ ]"
rd3 +3 Cadd (7-5)
_ 1/2
32K M, \* 16K 1T, \
( Jr{ﬁ ) +3( JT£3 ):| (7=6)
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Shaft Stresses

» Substitute von Mises stresses into failure criteria equation. For

example, using modified Goodman line,

l _ J{; gr;r
no Se N Sut
L_ o] [4(KM,)* + 3(K s, Ty)?
B == J'Td3 Sg fia ~ fsta P

 Solving for d'is convenient for design purposes

1/2

[6n [ 1 5 )
d = ( 5—,[4(Kfoe}“+3{Kf.s?}e}“]

T e

l 2 ; 211/2 .
+ o [4(K M) + 3(KpaT)]

Mt

1/2 l 11/
} -+ S_ [4(Kme]2 +3{Kf5?jrn}u] }

7

=

(7-7)



Shaft Stresses

Similar approach can be taken with any of the fatigue failure
criteria

Equations are referred to by referencing both the Distortion
Energy method of combining stresses and the fatigue failure
locus name. For example, DE-Goodman, DE-Gerber, etc.

In analysis situation, can either use these customized equations
for factor of safety, or can use standard approach from Ch. 6.

In design situation, customized equations for dare much more
convenient.



Shaft Stresses

o DE-Gerber
| 8A
n  wd3S,

where

4

4

S3nA
TS,

1 +

I +

A= \JAK Mo + 3Ky, T )

1;2]
1;2])”3

B = \JAK M) + 3Ky, )2

(7-9)

(7-10)
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Shaft Stresses
o DE-ASME Elliptic

116 KM, \ KT, \” KiMy\° KT \2 1"
—=— 4( +3 +4 +3(
n wd? S, S, Sy Sy

(7-11)

2 2 2 712 1P
ton [, (KMa\ o (KpTa\? | (KeMa\? | Ky
T S, S, S, S,

(7-12)

d =

o DE-Soderberg

1 16 (1 , ,
piatr A K |4(K¢Ma)” + 3(KssTy)

l

1" + — [4(K M) + 3(Kf3Tm')2]”2}
yi

l6n | 1 (7-13)

d = (Tﬁ {; [4(K; M)* +3(K 7, T)*]"?

1 » (7-14)
+ o [40K M) + 3(KfsTm)2]”2})
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Shaft Stresses for Rotating Shaft

 For rotating shaft with steady bending and torsion

- Bending stress is completely reversed, since a stress element
on the surface cycles from equal tension to compression
during each rotation

> Torsional stress Is steady
> Previous equations simplify with M_and 7,equal to O



Checking for Yielding in Shafts
Always necessary to consider static failure, even in fatigue
situation
Soderberg criteria inherently guards against yielding

ASME-Elliptic criteria takes yielding into account, but is not
entirely conservative

Gerber and modified Goodman criteria require specific check for
yielding



Checking for Yielding in Shafts

» Use von Mises maximum stress to check for yielding,

, h91/2

Hl“ﬂx — [(GJ'H + H{j)j + 3 (rﬂi —I_ Iﬂ}u]

a11/2
32K; (M + M)\ 16K s (T + T2) \~
_ +3
wd3 Td3

(7-15)
(7=16)

Sy

!
1("-'rl"]'liiﬁ'[

ny =

/4

Mmax

« Alternate simple check is to obtain conservative estimate of o
by summing o, and o/,

! ! !
O o ] o, +t0,



Example 7-1

At a machined shaft shoulder the small diameter d 1s 1.100 in, the large diameter D is
1.65 1n, and the fillet radius 1s 0.11 in. The bending moment is 1260 Ibf - in and the
steady torsion moment 1s 1100 Ibf - in. The heat-treated steel shaft has an ultimate

strength of S, = 105 kpsi and a yield strength of §y = 82 kpsi. The reliability goal
1s 0.99.

(a) Determine the fatigue factor of safety of the design using each of the fatigue failure
criteria described 1n this section.

(b) Determine the yielding factor of safety.
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Example 7-1
(a) D/d =1.65/1.100 =1.50,r/d =0.11/1.100 = 0.10, K; = 1.68 (Fig. A-15-9),
K. = 1.42 (Fig. A-15-8), ¢ = 0.85 (Fig. 6-20), gspear = 0.88 (Fig. 6-21).
From Eq. (6-32),
Kf=1+4+0.85(1.68—1)=1.58
Kfo =1+4+0388(1.42—1) = 1.37

Eq. (6-8): S, = 0.5(105) = 52.5kpsi
Eq. (6-19): k, = 2.70(105)~%265 — (.787
1.100 ~1%7
L (6=20): ky = [ —— = 0.870
Eq. (6-20) b (0.30)
ke =kg =k; =1
Table 6—6: k, = 0.814

Se = 0.787(0.870)0.814(52.5) = 29.3 kpsi
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Example 7-1

For a rotating shaft, the constant bending moment will create a completely reversed
bending stress.

M, = 1260 Ibf - in I, = 1100 Ibf - in M, =T,=0

Applying Eq. (7-7) for the DE-Goodman criteria gives

116 [4(1.58-1260)2]”2+[3.:1.37.1100)2]"’2 here
n w(l.1)] 29300 105 000 -

n=1.63 DE-Goodman

Similarly, applying Egs. (7-9), (7-11), and (7-13) for the other failure criteria,
n=1.87 DE-Gerber
n = 1.88 DE-ASME Elliptic

n=1.56 DE-Soderberg
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Example 7-1

For comparison, consider an equivalent approach of calculating the stresses and apply-
ing the fatigue failure criteria directly. From Eqgs. (7-5) and (7-6),

- 1/2
32.1.58-1260\°
o = ( I )] — 15235 psi
iy .

T /16-1.37-1100\21"
o) = 3( — ) = 0988 psi
7 (1.1)

Taking. for example, the Goodman failure critera, application of Eq. (6—46)
gives

l=ﬁ+g_m 15235 0988 0615
n Se ut 29 300 105 000
n=1.63

which is identical with the previous result. The same process could be used for the other
failure criteria.
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Example 7-1

(b) For the yielding factor of safety, determine an equivalent von Mises maximum
stress using Eq. (7-15).

2 2] 1/2
y ={(32(l.58)(126(})) +3(16(1.3T)(1100))} .

e 7 (1.1)° 7 (1.1)°
S, 82 000
ny = Y — = 4.50
Yo 18220

max

For comparison, a quick and very conservative check on yielding can be obtained

by replacing o, ., with o, + o, . This just saves the extra time of calculating o, if

o, and o, have already been determined. For this example,

Sy 82000
o/ +o! 1523549988

Ny =

which 1s quite conservative compared with n, = 4.50.
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Estimating Stress Concentrations

o Stress analysis for shafts is highly dependent on stress
concentrations.

» Stress concentrations depend on size specifications, which are
not known the first time through a design process.

» Standard shaft elements such as shoulders and keys have
standard proportions, making it possible to estimate stress
concentrations factors before determining actual sizes.



Estimating Stress Concentrations

Table 7-1

First Iteration Estimates for Stress-Concentration Factors K, and K,,.

Warning: These factors are only estimates for use when actual dimensions are not yet
determined. Do not use these once actual dimensions are available.

Bending Torsional Axial

Shoulder fillet—sharp (r/d = 0.02) 2.7 22 3.0
Shoulder fillet—well rounded (r/d = 0.1) 17 1.5 1.9
End-mill keyseat (r/d = 0.02) 2.14 3.0 —
Sled runner keyseat 1.7 - —
Retaining ring groove 5.0 3.0 5.0

Missing values in the table are not readily available.
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Reducing Stress Concentration at Shoulder Fillet

» Bearings often require relatively sharp fillet radius at shoulder

o If such a shoulder is the location of the critical stress, some
manufacturing techniques are available to reduce the stress

concentration

(a) Large radius undercut into shoulder

(b) Large radius relief groove into back of shoulder

(c) Large radius relief groove into small diameter of shaft

Large radius

Sharp radius
relief groove

Large radius undercut
Stress flow

— Shoulder
= .
relief groove
A

i,

|~
7/

e T RS TaSSS
G ){ Shaft | ) 1 )
e

— R S | p—.

=k




.

Example 7-2

This example problem iIs part of a larger case study. See Chap. 18 for the full
context.

A double reduction gearbox design has developed to the point that the general
layout and axial dimensions of the countershaft carrying two spur gears has been
proposed, as shown in Fig. 7-10. The gears and bearings are located and supported
by shoulders, and held|in place by retaining rings. The gears transmit torque
through keys. Gears have been specified as shown, allowing the tangential and
radial forces transmitted through the gears to [the shaft to be determined as
follows.

Wi, = 5401bf WL, = 24311bf
W5, = 197 1bf WI, = 8851bf

4

where the superscripts t and r represent tangential and radial directions,
respectively; and, the subscripts 23 and 54 represent the forces exerted
by gears 2 and 5 (not shown) on gears 3 and 4, respectively.

Proceed with the next phase of the design, in which a suitable material
is selected, and appropriate diameters for each section of the shaft are
estimated, based on providing sufficient fatigue and static stress capacity
for infinite life of the shaft, with minimum safety factors of 1.5.
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Example 7-2
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Fig. 7-10
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Example 7-2

Solution W
Perform free body diagram y l

analysis to get reaction forces
at the bearings.

R4; = 115.01bf

R4y = 356.71bf
Rp; = 1776.0 Ibf

Rpy = 725.3 bt

|
|
From 2 M,, find the torque in T i
the shaft between the gears, |

T = Wiitds2) = 540(12/2) =

3240 1bf - 1n.
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Example 7-2
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Generate shear-moment
diagrams for two planes
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Example 7-2

3651
Combine orthogonal planes as Mror
vectors to get total moments,

e.g., at J. +/39962 4 16322 =

4316 1bf - in.

Start with Point I, where the bending moment is high, there is a stress con-
centration at the shoulder, and the torque is present.

Atl, My =36511Ibf - in, T,, = 3240 Ibt - in, My =15, =0

Assume generous fillet radius for gear at I.
From Table 7-1,estimate K7 = 1.7, Ky = -3 For quick, conservative first
pass, assume Kr = K;| K¢y = Ki5.
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Example 7-2
Choose inexpensive steel, 1020 CD, with S, = 68 kpsi. For S,

Eq. (6-19) ke = aSﬁr — 2.7(68)79265 — ().883
Guess kp == 0.9. Check later when d is known.

ke =ky =k, =1
Eq. (6-18) S, = (0.883)(0.9)(0.5)(68) = 27.0 kpsi

For first estimate of the small diameter at the shoulder at point I, use the
DE-Goodman criterion of Eq. (7-8). This criterion is good for the initial design,
since it is simple and conservative. With M,, = T, = 0, Eq. (7-8) reduces to

2 1/2 1/3
b f1on [2(KeMs) [3 (KysTn) ]

r

iy Sg SHF
5 | _ 211/2 1/3
g 11605 (2.1 B65H | {31(1.5) (3240)]7}
| = 27000 68 000
d = 1.65in

All estimates have probably been conservative, so select the next standard size
below 1.65 in. and check, d = 1.625 in.
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Example 7-2

A typical D/d ratio for support at a shoulder is D/d = 1.2/thus, D = 1.2(1.625) =
1.95 in. Increase to D = 2.0 in. A nominal 2 in. cold-drawn shaft diameter can be
used. Check if estimates were acceptable.

D/fd=2/1.625=1.23
Assume fillet radius r =d/10=0.161n. r/d = 0.1
K; = 1.6 (Fig. A-15-9), ¢ = 0.82 (Fig. 6-20)
Eq. (6-32) Kr=1+0.82(1.6-1)=1.49
Ky =135 (Fig. A=15-8), ¢s = 0.85 (Fig. 6-21)
Kes =140.85(1.35 1) = 1.30
k, = 0.883 (no change)
Eq. (6-20) kp = (%) — = 0.835
Se =/(0.883)(0.835)(0.5)(68) = 25.1 kpsi
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Example 7-2

32Kf M, 32(1.49)(36351) _
Eq.(7-5) o —|32KrMa _ 32(1.49)3631) = 12910psi HEE
a md3 m(1.625)3
16K T \2177 /3(16)(1.30)(3240)
! fsfm A . L .
Eq. (7-6 =13 — = 863
LA Tm [ ( e ) ] 7(1.625)° ops
Using Goodman criterion NS
| [ ! 129 10 865
B R o e A T g |} 7
ng Sy 8T 125 1[}0 68 000
i - onp =156 I .
Note that we could have used Eq. (7-7) directly.
Check yielding. |1
Sy S, 57000
Ny = —— > = = 2.64

x| 04t 0, 12910+ 8659
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Example 7-2

Also check this diameter at the end of the keyway, just to the right of point

and at the groove at point K. From moment diagram, estimate M at end of
keyway to be M = 3750 Ibf-in.

Assume the radius at the bottom of the keyway will be the standard
rid = 0.02,r = 0.02 d = 0.02 (1.625) = 0.0325 in.

K; = 2.14 (Table 7-1), g = 0.65 (Fig. 6-20)
Ky =140.65(2.14—1)=1.74
K;s = 3.0 (Table 7-1), g, = 0.71 (Fig. 6-21)
Kes =1+0.713 =) =242
. 32KeM,  32(1.74)(3750)

e = 15490 psi
%= TR 7(1.625)° B
KfSTm V/3(16)(2.42)(3240) ,
— V/3(16 = — 16120 p:
YO 7(1.625)3 b=
L:g_g+g_;1 15490 16120 _ o,
ng | S, Sy | 25 100 63000
nyp=1.17
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Example 7-2

The keyway turns out to be more critical than the shoulder. We can either
increase the diameter or use a higher strength material. Unless the deflection
analysis shows a need for larger diameters, let us choose to increase the
strength. We started with a very low strength and can afford to increase it
some to avoid larger sizes. Try 1050 CD with S,/ = 100 kpsi.

Recalculate factors affected by Sy, i.e., kg — Se; ¢ = Ky — o,

ke = 2.7(100)7%2% = 0.797, S, = 0.797(0.835)(0.5)(100) = 33.3 kpsi

g =072, Kr=1+0.72(2.14 — 1) = 1.82
32(1.82)(3750)

0, = 2(1.623)] = 16200 psi
l 16200 16120

— = 0.648
nf [ 33 3(}0 100000
nep=1.54

Since the Goodman criterion is conservative, we will accept this as close enough
to the requested 1.5.
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Example 7-2

__@gmmMqu&ﬁﬂmﬂﬂmm@dEl

es are o very .

high. From the torque diagram, note that no torque is present at the groove.
From the moment diagram, M, = 2398 Ibf - in, M,, = T, = T,, = 0. To quickly
check if this location is potentially critical, just use Ky = K; = 5.0 as an
estimate, from Table 7-1.
32KsM,| 32(5)(2398) , B
= = = 28460
e 2(1.625)° P
Se 33300
= — =—=1.17
M= o T 28460 .

Shigley’s Mechanical Engineering Design



Example 7-2

This is low. We will look up data for a specific retaining ring to obtain Ky more
accurately. With-a quick online search of a retaining ring specification using the
website www.globalspec.com, appropriate groove specifications for a retaining ring
for a shaft diameter of 1.625 in are obtained as follows: width, a = 0.068in;
depth, 1 = 0.048 in; and corner radius at bottom of groove, r = 0.01 in. From

Fig. A-15-16, with r/t = 0.01/0.048 = 0.208, and a/t = 0.068/0.048 = 1.42

K, =4.3,q = 0.65 (Fig. 6-20)
Ki=1+06543—1)=3.15

| 32K M, 32(3.15)(23D8)

= 73 | | |=(1i625)]
S, 33300

" Ao T 17930

= 17930 psi

d

= 1.86

N
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Example 7-2

Quickly check if point M might be critical. Only bending is present, and the moment
is small, but the diameter is small and the stress concenfration is high for a sharp
fillet required for a bearing. From the moment diagram,
M; =959 1Ibf-in,and M, =T, =T, =0.
Estimate K, = 2.7 from Table 7-1, d = 1.0 in, and fillet radius r to fit a typical

bearing.

r/d =0.02, r =0.02(1) = 0.02

g = 0.7 (Fig. 6-20)

Ke =14+07(27=1)=2.19

1 32KrM, | 32(2.19)(939)

L — 211 390lns]
T T (1) b3
Se _ 33300
nf = = = |].
I = ———21390

Should be OK. Close enough to recheck after bearing is selected.
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Example 7-2

With the diameters specified for the critical locations, fill in trial values for
the rest of the diameters, taking into account typical shoulder heights for
bearing and gear support.

Dy =D;=1.01in

D>, =Dg=141n

D5 = Ds = 1.625 in

Dy =2.0in
The bending moments are much less on the left end of shaft, so D, D,, and D;
could be smaller. However, unless weight is an issue, there is|little advantage to

requiring more material removal. Also, the extra rigidity may be needed to keep
deflections small.
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Deflection Considerations

» Deflection analysis at a single point of interest requires complete
geometry information for the entire shaft.

 For this reason, a common approach is to size critical locations
for stress, then fill in reasonable size estimates for other
locations, then perform deflection analysis.

» Deflection of the shaft, both linear and angular, should be
checked at gears and bearings.



Deflection Considerations

» Allowable deflections at components will depend on the
component manufacturer’s specifications.

» Typical ranges are given in Table 7-2

Typical Maximum Tapered roller 0.0005—0.0012 rad
Ranges for Slopes and Cylindrical roller 0.0008—0.0012 rad
Transverse Deflections Deep-groove ball 0.001—0.003 rad
Spherical ball 0.026—0.052 rad
Self-align ball 0.026—0.052 rad
Uncrowned spur gear < 0.0005 rad
Spur gears with P < 10 teeth/in 0.010 in
Spur gears with 11 < P < 19 0.005 in
Spur gears with 20 < P < 50 0.003 in

Shigley’s Mechanical Engineering Design



Deflection Considerations

Deflection analysis is straightforward, but lengthy and tedious to
carry out manually.

Each point of interest requires entirely new deflection analysis.

Consequently, shaft deflection analysis is almost always done
with the assistance of software.

Options include specialized shaft software, general beam
deflection software, and finite element analysis software.



Example 7-3

This example problem is part of a larger case study. See Chap. 18 for the full

context.
In Ex. 7-2, a preliminary shaft geometry was obtained on the basis of design
for stress. The resulting shaft is shown in Fig. 7-10, with proposed diameters of

Dy =D;=11in

D), = Dg =1.41n
D3 = Ds = 1.625 in
Ds=2.01n

Check that the deflections and slopes at the gears and bearings are acceptable. If
necessary, propose changes in the geometry to resolve any problems.

——
Bearing A Bearing B
Gear 3 _—
d; =12 ear
O | a2a | |O
o R T s ¢
Dy [Dy Dy Ds| Dy
| — Fig. 7-10
=t - | wn| wn =
2l v vl v vy (=] (=] (=] S | o~ A (v
P2 P I R Y R a & ekl SlE 2 : . o :
C ADEF G H I ] KL M B N Shigley’s Mechanical Engineering Design




Example 7-3

Solution

A simple planar beam analysis program will be used. By modeling the shaft twice,
with loads in fwo orthogonal planes, and combining the results, the shaft deflec-
tions can readily be obtained. For both planes, the material is selected (steel with
E-=-30 Mpst), the shaft lengths and diameters are entered, and the bearing loca-
tions are specified. Local details like grooves and keyways are ignored, as they
will have insignificant effect on the deflections, Then the tangential gear forces
are entered in the horizontal xz plane model, and the radial gear forces are
entered in the vertical xy plane model. The software can calculate the bearing
reaction forces, and numerically integrate to generate plots for shear, moment,
slope, and deflection, as shown in Fig. 7-11.
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Example 7-3

xy plane

Beam length: 11.5 in

NG /

Deflection

—

\

Slope

Moment

|

Shear

in

deg

Ibf

xz plane

Fig. 7-11

Beam length: 11.5 in

~ /
in
Deflection
\ i
\ deg
Slope _
Ibf-in
Moment -
— i
Ibf

Shear
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Example 7-3

The deflections and slopes at points of interest are obtained from the plots,

and combined with orthogonal vector addition, that is, § = \/3.2;: + 82,. Results are
shown in Table 7-3. "

Point of Interest

Left bearing slope 0.02263 deg 0.01770 deg 0.02872 deg
0.000501 rad
Right bearing slope 0.05711 deg 0.02599 deg 0.06274 deg
0.001095 rad
Left gear slope 0.02067 deg 0.01162 deg 0.02371 deg
0.000414 rad
Right gear slope 0.02155 deg 0.01149 deg 0.02442 deg
0.000426 rad
Left gear deflection 0.0007568 in 0.0005153 in 0.0009155 in
Right gear deflection 0.0015870 in 0.0007535 in 0.0017567 in

| Table 7-3
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Example 7-3

Whether these values are acceptable will depend on the specific bearings and
gears selected, as well as the level of performance expected. According
To the guidelines-in-Table 7-2,all of the bearing slopes are well-below typical
limits for ball bearings. The right bearing slope|is within the typical range for
cylindrical bearings. Since the load on the right bearing is relatively high, a
cylindrical bearing might be used. This constraint should be checked against
the specific bearing specifications once the bearing is selected.

The gear slopes and deflections more than satisfy the limits recommended
in Table 7-2. It is recommended to proceed with the design, with an

deflection check.

Shigley’s Mechanical Engineering Design



Adjusting Diameters for Allowable Deflections

If any deflection is larger than allowed, since /is proportional to

", a new diameter can be found from
1/4

Nd Volc
dew = doid d: o (7-17)
Vall
Similarly, for slopes,
1a(dy/dx) o |
dnew = dold 1a(dy/dx)oi (7-18)
(slope)an

Determine the largest d.,/d,,4 ratio, then multiply all diameters
by this ratio.

The tight constraint will be just right, and the others will be
loose.



Example 7-4

For the shaft in Ex. 7-3, it was noted that the slope at the right bearing is near the limit
for a cylindrical roller bearing. Determine an appropriate increase in diameters to bring
this slope down to 0.0005 rad.

Solution Applying Eq. (7-17) to the deflection at the right bearing gives

lopegia |/ 1)(0.001095) |'/*
Aoy = dlga| P20Po | ) X N 12160
slopea (0.0005)
Multiplying all diameters by the ratio
d 1.216
— = =1.216
dold 1.0

gives a new set of diameters,
Dy =D;=12161n
Dy = Dg = 1.702 in
D3 = Ds =1.976 1n
Dy =2.432in

Repeating the beam deflection analysis of Ex. 7-3 with these new diameters produces
a slope at the right bearing of 0.0005 in, with all other deflections less than their previ-

ous values. Shigley’s Mechanical Engineering Design



Angular Deflection of Shafts

For stepped shaft with individual cylinder length /;and torque 7;

the angular deflection can be estimated from
T:1

) _ ) _ it 7-19
0= 6;=)Y G (7-19)
For constant torque throughout homogeneous material

T l;
H=—=)» — 7-20
Ly 7-20

Experimental evidence shows that these equations slightly
underestimate the angular deflection.

Torsional stiffness of a stepped shaft is

] ]
IZZA_ (7-21)




Critical Speeds for Shafts

» A shaft with mass has a critical speed at which its deflections
become unstable.

» Components attached to the shaft have an even lower critical
speed than the shaft.

 Designers should ensure that the lowest critical speed is at least
twice the operating speed.



Critical Speeds for Shafts

» For a simply supported shaft of uniform diameter, the first
critical speed is

2 o7 ]
] = il ,"Iﬂ: L sE1 (7-22)
1) NV m [ Ay

e For an ensemble of attachments, Rayleigh’s method for lumped
masses gives

g ) w;y;
= ZZ” \j (7-23)
Ui Vi

N



Critical Speeds for Shafts

» Eq. (7-23) can be applied to the shaft itself by partitioning the
shaft into segments.

(@)

(b)
Fig. 7-12
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Critical Speeds for Shafts
o An /nfluence coefficientis the transverse deflection at location /
due to a unit load at location /.

e From Table A—9-6 for a simply supported beam with a single
unit load

bixi 2 5 2 .
oEni ! b =) Y=
8” = ﬂj” — Xji) 2V x ') ) - . {7_24]
AT (20x; — a; — Xx; ) X; > a;
Yy Unit load
< %

X

o —
I

Fig. 7-13



Critical Speeds for Shafts

» Taking for example a simply supported shaft with three loads, the
deflections corresponding to the location of each load is

v1 = F1611 + F2012 + F3013
v2 = Fi1621 + F2d20 + F3623 (7-25)
v3 = F1631 + F203 + F3633
« If the forces are due only to centrifugal force due to the shaft mass,
VI = m]mj_\*]&] —|-}ij_’u2}‘35]3 —i—I'}?;;(qu‘jé\lg
Vo = HI!‘]{{J‘2 y1021 + }chuzj‘j&j + I'}:-'j.(uﬁ_‘-.‘j-‘.@jj.

V3 = H?]{{)‘j‘]f)‘j] -+ H?gm"_\‘zt?;z —+ I'}’.-'gfu"j.‘jﬁjg
e Rearranging,

(m1811 — 1/@*)yy + (m2812) y2 + (m3813)y3 =0
(m1821)y1 + (m282 — 1/@*)y2 + (m3823)y3 = 0
(m1831)y1 + (M2832) v2 + (m3833 — 1 /w?) y3 =



Critical Speeds for Shafts

» Non-trivial solutions to this set of simultaneous equations will
exist when its determinant equals zero.

(mq611 — l/wjl ms812 ms013
mi1071 (modon — ]/wz} 13023 = () (7-26)
mi031 mM2639 (m3033 — lﬁuj)
» Expanding the determinant,
1\’ 1\’
( ,,) — (m1611 + M1 + m3833) (—,}) +...=0 (7-27)
= (=

o Eq. (7-27) can be written in terms of its three roots as

=22 E2)
5 T a5 0 T a5 0 T =0
w= wl“ w= wﬁ w= EU‘B‘
1> 1 1 1 1\’ |
(_ﬂ) _( LI 2)(_,}) I (7-28)
- -‘.’UT 5 w3 (D~

or




Critical Speeds for Shafts

» Comparing Egs. (7-27) and (7-28),

I I |
= + 5 + — = m 011 + mrd1 + m3d33 (7-29)

(UI (uj U_J3

» Define w;; as the critical speed if m;is acting alone.
From Eq. (7-29),

e Thus, Eg. (7-29) can be rewritten as

I B 1 1 !
—+S5+—5=—+—5+ (7-30)

2 2 2 2 2 2




Critical Speeds for Shafts

o Notethat 1/ w% > 1/ w%._ and 1/ m%

o The first critical speed can be approximated from Eq. (7—30) as

1 1 | 1
S ==+ + — (7-31)
m"l‘ 711 .-:ui'2 (V33

» Extending this idea to an /+body shaft, we obtain Dunkerley’s

equation,
1 n, ]
— =) — (7-32)
=1 i

2
[U]



Critical Speeds for Shafts

 Since Dunkerley’s equation has loads appearing in the equation, it
follows that if each load could be placed at some convenient
location transformed into an equivalent load, then the critical speed
of an array of loads could be found by summing the equivalent
loads, all placed at a single convenient location.

 For the load at station 1, placed at the center of the span, the
equivalent load is found from

> 1 g g

()] ] == —— —

1011 w111 W1eOcc
or

u!'l(. = I'_,{JI —_— {7_33}



Example 7-5

Consider a simply supported steel shaft as depicted in Fig. 7-14, with | in diameter and
a 31-in span between bearings, carrying two gears weighing 35 and 55 1bf.
(a) Find the influence coefficients.
(b) Find ¥ wy and Y wy? and the first critical speed using Rayleigh’s equation,
Eq. (7-23).
(¢) From the influence coefficients, find w;; and w»,.
(d) Using Dunkerley’s equation, Eq. (7-32), estimate the first critical speed.
(e) Use superposition to estimate the first critical speed.
(/) Estimate the shaft’s intrinsic critical speed. Suggest a modification to Dunkerley’s
equation to include the effect of the shaft’s mass on the first critical speed of the
attachments.

y
w, =35 Ibf w, =55 Ibf

-:—?mAlV‘—ISin »14 11in—
£ 311in 1

Fig. 7-14 (a)
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Example 7-5

7d* B 7(1)?

— 0.049 09 in*
o4 o4 e

(a) I =

6E1l = 6(30)10%(0.049 09)31 = 0.2739(10°) Ibf - in’
From Eq. set (7-24),

24(7)(31%7 — 24% — 7%)
11 —

= 2.061(10™*) in/Ibf

0.2739(10)
11(20)(312 — 112 — 20?) L
_ — 3.534(10~%) in/Ibf
— 0.2739(10°) (107 n
[(T)312 = 112 — 73 .
810 = 80y — — 2.224(10~%) in/Ibf
2= 0.2739(10°) (10751

Vi = w1811 + wadn = 35(2.061)107* +55(2.224)107* = 0.01945 in

V2 = w18y + wrdyn = 35(2.224)107* 4+ 55(3.534)10~* = 0.027 22 in

Shigley’s Mechanical Engineering Design



Example 7-5

(b) Z w; v; = 35(0.01945) + 55(0.02722) = 2.178 Ibf - in

Y wiy? =35(0.01945)% + 55(0.027 22)* = 0.053 99 Ibf - in

386.1(2.178
w = \/ ( ) = 124.8 rad/s. or 1192 rev/min

0.053 99
(c)
| u
= = —0n
W71y g
2 386. 1 | .
_ — 231.4 rad/s, or 2210 rev/
@11 e ‘/35(2 060102 rad/s, or rev/min
386. 1
0 = | —& = L0 e o 154 e
W-079 55 (3534)]{]_4

Shigley’s Mechanical Engineering Design



Example 7-5

| | | 1 s
@) 0 2. = mie tTaog = 69050107) ()
L
. 1 .
w] = — 120.3 rad/s, or 1149 rev/min
6.905(107)

which 1s less than part b, as expected.
(e) From Eq. (7-24),

becXee(I? = b, — x%)  15.5(15.5)(312 — 15.5% — 15.5%)
6EI - 0.2739(109)
= 4.215(107%) in/Ibf

acc —

Shigley’s Mechanical Engineering Design



Example 7-5
From Eq. (7-33),

I %52.061(1{]—4) — 17.11 Ibf
e = s = 20150104

525 3.534(10~4) -
_ o s — 46.11 Ibf
Wae = 25— 1.215(10-%)

W — 5  _ | 5801 — 19T L o IS e
e > wie  \| 4215(10-4)(17.11 +46.11)

which, except for rounding, agrees with part d, as expected.

y w]fl 17.1 1bf
<~——155in 15.5 in
w,. § 46.1 1bf

=

Fig. 7-14 o)
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Example 7-5

(f) For the shaft, E = 30(10°) psi, y = 0.282 Ibf/in°, and A = 7 (1%)/4 = 0.7854 in”.
Considering the shaft alone, the critical speed, from Eq. (7-22), is

_(n\? [gEI (7 \? [386.1(30)10°(0.049 09)
“=\T)Vay T3 0.7854(0.282)

— 520.4 rad/s, or 4970 rev/min

We can simply add 1/w? to the right side of Dunkerley’s equation, Eq. (1), to include
the shaft’s contribution,

1
— = 6.905(10~5) = 7.274(107
o2 504 " = o

wy = 117.3 rad/s, or 1120 rev/min

which is slightly less than part d, as expected.

Shigley’s Mechanical Engineering Design



Example 7-5

The shaft’s first critical speed wjy 1s just one more single effect to add to Dunkerley’s
equation. Since it does not fit into the summation, it 1s usually written up front.

11
==+ — (7-34)

Common shafts are complicated by the stepped-cylinder geometry, which makes the
influence-coefficient determination part of a numerical solution.

Shigley’s Mechanical Engineering Design



Setscrews

Setscrews resist axial and rotational motion

They apply a compressive force to create friction

The tip of the set screw may also provide a slight penetration
Various tips are available

B L > - L > < L >
—| T | ‘ —| T | —| T |
VEEST T yN 17 Y e
= = I e
b R= } b {
(a) (b) (¢)
< I > < L >

| T | | T | ’

y Yy X

D __: D ___:- P

+ R + E- = T




Resistance to axial
motion of collar or
hub relative to shaft
Is called /holding
power

Typical values listed
In Table 7—4 apply to
axial and torsional
resistance

Typical factors of
safety are 1.5t0 2.0
for static, and 4 to 8
for dynamic loads

Length should be
about half the shaft
diameter

Setscrews

Table 7-4

Typical Holding Power
(Force) for Socket
Setscrews™

Source: Unbrako Division, SPS
Technologies, Jenkintown, Pa.

Size,

#2
#3
#4
#5
#6

#10

— 0l Rl oln Z|©o PRI Z|N wlw F|o =

Seating
Torque,

Ibf - in

1.8

10
10
20
36

87
165
290
430
620
620

1325
2400
5200
7200

Holding
Power,

Ibf

85
120
160
200
250
385
540

1000
1500
2000
2500
3000
3500
4000
5000
6000
7000



Keys and Pins

» Used to secure
rotating elements and
to transmit torque

(d)
Fig. 7-16
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Tapered Pins

» Taper pins are sized by diameter at large end

o Small end diameter is
d=D —0.0208L (7-35)

Table 7-5 shows some standard sizes in inches

Commercial Precision
Maximum Minimum Maximum Minimum
4/0 0.1103 0.1083 0.1100 0.1090
2/0 0.1423 0.1403 0.1420 0.1410
0 0.1573 0.1553 0.1570 0.1560
2 0.1943 0.1923 0.1940 0.1930
4 0:.2513 0.2493 0.2510 0.2500
6 0.3423 0.3403 0.3420 0.3410
8 0.4933 0.4913 0.4930 0.4920

Tab I € 7_5 Shigley’s Mechanical Engineering Design



o Keys come in
standard square
and rectangular

sizes

o Shaft diameter
determines key

size

Table 7—6

Keys

Shaft Diameter

Over

= S

—_ 0l ~|©
B— Slw oolw I =

[\
Hlw

To (Incl.)

ool > Z=

[\ —
EN O8] | AN O8] [el] [#¥] N

e e

Key Size

w

M e ot - ai —, It W
£IW BIW 00lL L NI— NI— 0w W Z|u S| Bi— si= F|w F|w wl— col— B]w

h

BIW RI= olbn ZN DI= wlw olw A= Z]w Bi— B— Z|w F|w cl— o= Blw Blw

Keyway Depth

3
64
3
64
L
16
L
16
3
32
3
32
4
8
1
8
S
32
1
8
B
16
3
16
1
4
L
32
S
16
1
1
3
8
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Keys

Failure of keys Is by either direct shear or bearing stress
Key length is designed to provide desired factor of safety

Factor of safety should not be excessive, so the inexpensive key
IS the weak link

Key length is limited to hub length

Key length should not exceed 1.5 times shaft diameter to avoid
problems from twisting

Multiple keys may be used to carry greater torque, typically
oriented 90° from one another

Stock key material is typically low carbon cold-rolled steel,
with dimensions slightly under the nominal dimensions to
easily fit end-milled keyway

A setscrew Is sometimes used with a key for axial positioning,
and to minimize rotational backlash



Gib-head Key

o Gib-head key is tapered so that when firmly driven it prevents
axial motion

» Head makes removal easy
 Projection of head may be hazardous

Taper% in over 12 in
/
| ) [e—
4y

1

h

+| w |-|f—

B

—

Fig. 7-17 (o



Woodruff Key

» Woodruff keys have deeper penetration
» Useful for smaller shafts to prevent key from rolling

» When used near a shoulder, the keyway stress concentration
Interferes less with shoulder than square keyway

N Q) N
N2
T N

Fig. 7-17 )




Woodruff Key

Table 7-7 Key Size Height Offset Keyseat Depth

Dimensions of Woodruff ol D b e Shaft Hub

Keys—Inch Series e 4 0.109 o 0.0728 0.0372
& 2 0.172 = 0.1358 0.0372
& = 0.172 & 0.1202 0.0529
= “ 0.203 - 0.1511 0.0529
<& 2 0.250 = 0.1981 0.0529
L 4 0.203 = 0.1355 0.0685
3 - 0.250 2 0.1825 0.0685
i 3 0.313 & 0.2455 0.0685
3 = 0.250 = 0.1669 0.0841
= o 0.313 ~ 0.2299 0.0841
B - 0.375 e 0.2919 0.0841
2 2 0.313 & 0.2143 0.0997
2 : 0.375 e 0.2763 0.0997
= 1 0.438 = 0.3393 0.0997
1 - 0.375 e 0.2450 0.1310
: 1 0.438 e 0.3080 0.1310
4 11 0.547 = 0.4170 0.1310
- 1 0.438 = 0.2768 0.1622
= 13 0.547 = 0.3858 0.1622
= 13 0.641 & 0.4798 0.1622
3 17 0.547 = 0.3545 0.1935
4 11 0.641 e 0.4485 0.1935

Shigley’s Mechanical Engineering Design



Woodruff Key

Table 7-8 Keyseat Shaft Diameter, in
Sizes of Woodruff Keys Width, in From To (inclusive)
- - I 5 I

Suitable for Various T e 5
Shaft Diameters 3 3 1

32 8 8

1 3 1

g g )

S 1 12

32 2 8

3 9

16 16 2

1 1 |

3 16 23

5 3 3

16 Z 23

3 5

8 1 23
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Stress Concentration Factors for Keys

» For keyseats cut by standard end-mill cutters, with a ratio of
1/d = 0.02, Peterson’s charts give

> K, = 2.14 for bending
> K,= 2.62 for torsion without the key in place
> K, = 3.0 for torsion with the key in place

» Keeping the end of the keyseat at least a distance of a/10 from
the shoulder fillet will prevent the two stress concentrations

from combining.



Example 7-6

A UNS GI10350 steel shaft, heat-treated to a minimum yield strength of 75 kpsi, has a
diameter of 1% in. The shaft rotates at 600 rev/min and transmits 40 hp through a gear.
Select an appropriate key for the gear.

— Ir |-1—

~f—
F
b
r

Fig. 7-19
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Example 7-6

A %-in square key 1s selected, UNS G10200 cold-drawn steel being used. The design
will be based on a yield strength of 65 kpsi. A factor of safety of 2.80 will be employed
in the absence of exact information about the nature of the load.

The torque is obtained from the horsepower equation

_ 63025H  (63025)(40)

= — = 4200 1bf - 1
n 600 .
From Fig. 7-19, the force F at the surface of the shaft 1s
T 4200
F=—= = 5850 Ibf
r 1.4375/2

By the distortion-energy theory, the shear strength is
Ssy = 0.577Sy = (0.577)(65) = 37.5 kpsi

Shigley’s Mechanical Engineering Design



Example 7-6

Failure by shear across the area ab will create a stress of T = F/fl. Substituting the
strength divided by the factor of safety for T gives
Ssy F 37.5(10)3 _ 3850

—

n 1l 2.80  0.3751

or [ = 1.16 in. To resist crushing, the area of one-half the face of the key 1s used:

Sy F 65(10)3 5850
s or = —-——
n 1l)2 280  0.3751)2

and /[ = 1.34 in. The hub length of a gear 1s usually greater than the shaft diameter, for
stability. If the key, in this example, is made equal in length to the hub, it would there-
fore have ample strength, since it would probably be 11_];5 in or longer.

Shigley’s Mechanical Engineering Design



Retaining Rings

 Retaining rings are often used instead of a shoulder to provide
axial positioning

-

S

Retaining ring

3_

<— Retaining ring

 <JH H.

(a) (b) (c)
Fig. 7-18

d)
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Retaining Rings
Retaining ring must seat well in bottom of groove to support
axial loads against the sides of the groove.

This requires sharp radius in bottom of groove.

Stress concentrations for flat-bottomed grooves are available in
Table A-15-16 and A-15-17.

Typical stress concentration factors are high, around 5 for
bending and axial, and 3 for torsion



Limits and Fits

Shaft diameters need to be sized to “fit” the shaft components
(e.g. gears, bearings, etc.)

Need ease of assembly

Need minimum slop

May need to transmit torque through press fit
Shaft design requires only nominal shaft diameters

Precise dimensions, including tolerances, are necessary to
finalize design



Tolerances

» Close tolerances generally
Increase cost

> Require additional
processing steps

> Require additional
Inspection

> Require machines with
lower production rates

400
380
360
340
320
300
280
260
240
220
200
180
160
140
120

Material: steel

Costs, %

= e )

Fig. 1-2

100 fm———— e

80 |-
60 |-
40 -
20 |-

l

|

10.030 | +0.015 | £0.010 | +0.005

+0.0005

+0.00025

Nominal tolerances (inches) |
|

I

| 075 | 2050 | =0.50 [=0.125 !

|

b +0.063 ' +0.025

; |
Nominal tolerance (mm) |

|
|

|
|
:i0.0IZ " +0.006
|
|

Rough turn

Semi-
finish
turn

Finish
turn

Grind

Hone

Machining operations




Standards for Limits and Fits

» Two standards for limits and fits in use in United States
> U.S. Customary (1967)
Metric (1978)
» Metric version will be presented, with a set of inch conversions



Nomenclature for Cylindrical Fit

Uppel‘ case |et'[eI‘S Upper deviation, 5, —>| <— Max. size, d,,,
refel’ tO h0|e Lower deviation, 6, ) ~— Min. size, d_._
Lower case letters s ] /\C
nternational tolerance q Ul

refer 10) Shaft grade, Ad (IT number) i

y ; 1 Fundamental deviation, —= [=
Basic size 1s the e
nominal diameter and |
IS same for both parts, o s, Ddj—%
D:d Lower deviation, 6, —»| <—

Upper deviation, 6, —>| «—

Toleranceis the

difference between
maximum and

Mmintmum Size
> |<— Fundamental deviation,

Deviationis the International tolerance ___| | 6 (letter)
difference between a  gade AD (T numben) <~— Min. size, D,
size and the basic size Fig. 7-20 [~ Max.size, D, , —>




Tolerance Grade Number

Tolerance is the difference between maximum and minimum size

International tolerance grade numbers designate groups of
tolerances such that the tolerances for a particular I'T number
have the same relative level of accuracy but vary depending on
the basic size

I'T grades range from ITO to IT16, but only IT6 to IT11 are
generally needed

Specifications for IT grades are listed in Table A—11 for metric
series and A-13 for inch series



Tolerance Grades — Metric Series

Basic Tolerance Grades
Sizes IT8 IT9 IT10 IT11
0-3 0.006 0.010 0.014 0.025 0.040 0.060
3-6 0.008 0.012 0.018 0.030 0.048 0.075
6—-10 0.009 0.015 0.022 0.036 0.058 0.090
10-18 0.011 0.018 0.027 0.043 0.070 0.110
18-30 0.013 0.021 0.033 0.052 0.084 0.130
30-50 0.016 0.025 0.039 0.062 0.100 0.160
50-80 0.019 0.030 0.046 0.074 0.120 0.190
80-120 0.022 0.035 0.054 0.087 0.140 0.220
120-180 0.025 0.040 0.063 0.100 0.160 0.250
180-250 0.029 0.046 0.072 0.115 0.185 0.290
250-315 0.032 0.052 0.081 0.130 0.210 0.320
315400 0.036 0.057 0.089 0.140 0.230 0.360

Table A-11
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Tolerance Grades — Inch Series

Tolerance Grades

Basic

Sizes IT7 IT8 IT9 IT10 IT11
0-0.12 0.0002 0.0004 0.0006 0.0010 0.0016 0.0024
0.12-0.24 0.0003 0.0005 0.0007 0.0012 0.0019 0.0030
0.24-0.40 0.0004 0.0006 0.0009 0.0014 0.0023 0.0035
0.40-0.72 0.0004 0.0007 0.0011 0.0017 0.0028 0.0043
0.72-1.20 0.0005 0.0008 0.0013 0.0020 0.0033 0.0051
1.20-2.00 0.0006 0.0010 0.0015 0.0024 0.0039 0.0063
2.00-3.20 0.0007 0.0012 0.0018 0.0029 0.0047 0.0075
3.20-4.80 0.0009 0.0014 0.0021 0.0034 0.0055 0.0087
4.80-7.20 0.0010 0.0016 0.0025 0.0039 0.0063 0.0098
7.20-10.00 0.0011 0.0018 0.0028 0.0045 0.0073 0.0114
10.00-12.60 0.0013 0.0020 0.0032 0.0051 0.0083 0.0126
12.60-16.00 0.0014 0.0022 0.0035 0.0055 0.0091 0.0142

Table A—13
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Deviations

Deviation is the algebraic difference between a size and the basic
size

Upper deviationis the algebraic difference between the maximum
limit and the basic size

Lower deviation s the algebraic difference between the minimum
limit and the basic size

Fundamental deviation s either the upper or lower deviation that
IS closer to the basic size

Letter codes are used to designate a similar level of clearance or
Interference for different basic sizes



Fundamental Deviation Letter Codes

Shafts with clearance fits

o Letter codesc, d, f, g, and h

> Upper deviation = fundamental deviation

> Lower deviation = upper deviation — tolerance grade
Shafts with transition or interference fits

o Letter codes k, n, p, s, and u

> Lower deviation = fundamental deviation

> Upper deviation = lower deviation + tolerance grade
Hole

> The standard 1s a /10/e based standard, so letter code H is
always used for the hole

o Lower deviation = 0 (Therefore D, = 0)
> Upper deviation = tolerance grade

Fundamental deviations for letter codes are shown in Table A—12
for metric series and A—14 for inch series



Fundamental Deviations — Metric series

Upper-Deviation Letter Lower-Deviation Letter

d f g h n P s

0-3 —0.060 —0.020 —0.006 —0.002 0 0 +0.004 +0.006 +0.014 +0.018
3-6 —0.070 —0.030 —0.010 —0.004 0 +0.001 +0.008 +0.012 +0.019 +0.023
6-10 —0.080 —0.040 —0.013 —0.005 0 +0.001 +0.010 +0.015 +0.023 +0.028
10-14 —0.095 —0.050 —0.016 —0.006 0 +0.001 +0.012 +0.018 +0.028 +0.033
14-18 —0.095 —0.050 —0.016 —0.006 0 +0.001 +0.012 +0.018 +0.028 +0.033
18-24 —0.110 —0.065 —0.020 —0.007 0 +0.002  +0.015 +0.022 +0.035 +0.041
24-30 —0.110 —0.065 —0.020 —0.007 0 +0.002  +0.015 +0.022 +0.035 +0.048
3040 —0.120 —0.080 —0.025 —0.009 0 +0.002  +0.017 +0.026 +0.043 +0.060
40-50 —0.130 —0.080 —0.025 —0.009 0 +0.002  +0.017 +0.026 +0.043 +0.070
50-65 —0.140 —0.100 —0.030 —0.010 0 +0.002  +0.020 +0.032 +0.053 +0.087
65-80 —0.150 —0.100 —0.030 —0.010 0 +0.002  +0.020 +0.032 +0.059 +0.102
80-100 —0.170 —0.120 —0.036 —0.012 0 +0.003  +0.023 +0.037 +0.071 +0.124
100-120 —0.180 —0.120 —0.036 —0.012 0 +0.003  +0.023 +0.037 +0.079  +0.144
120-140 —0.200 —0.145 —0.043 —0.014 0 +0.003  +0.027 +0.043 +0.092 +0.170
140-160 —0.210 —0.145 —0.043 —0.014 0 +0.003  +0.027 +0.043 +0.100 +0.190
160-180 —0.230 —0.145 —0.043 —0.014 0 +0.003  +0.027 +0.043 +0.108 +0.210
180-200 —0.240 —0.170 —0.050 —0.015 0 +0.004  +0.031 +0.050 +0.122  +0.236
200-225 —0.260 —0.170 —0.050 —0.015 0 +0.004  +0.031 +0.050 +0.130 +0.258
225-250 —0.280 —0.170 —0.050 —0.015 0 +0.004  +0.031 +0.050 +0.140 +0.284
250-280 —0.300 —0.190 —0.056 —0.017 0 +0.004  +0.034 +0.056 +0.158 +0.315
280-315 —0.330 —0.190 —0.056 —0.017 0 +0.004  +0.034 +0.056 +0.170  +0.350
315-355 —0.360 —0.210 —0.062 —0.018 0 +0.004  +0.037 +0.062 +0.190 +0.390
355400 —0.400 —0.210 —0.062 —0.018 0 +0.004  +0.037 +0.062 +0.208 +0.435
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Fundamental Deviations — Inch series

Upper-Deviation Letter Lower-Deviation Letter

d f ] n P s
0-0.12 —0.0024 —0.0008 —0.0002 —0.0001 0 0 +0.0002 +0.0002 +0.0006 +0.0007
0.12-0.24 —0.0028 —0.0012 —0.0004 —0.0002 0 0 +0.0003 +0.0005 +0.0007 +0.0009
0.24-0.40 —0.0031 —0.0016 —0.0005 —0.0002 0 0 +0.0004 +0.0006 +0.0009 +0.0011
0.40-0.72 —0.0037 —0.0020 —0.0006 —0.0002 0 0 +0.0005 +0.0007 +0.0011 +0.0013
0.72-0.96 —0.0043 —0.0026 —0.0008 —0.0003 0 +0.0001 +0.0006 +0.0009 +0.0014 +0.0016
0.96-1.20 —0.0043 —0.0026 —0.0008 —0.0003 0 +0.0001 +0.0006 +0.0009 +0.0014 +0.0019
1.20-1.60 —0.0047 —0.0031 —0.0010 —0.0004 0 +0.0001 +0.0007 +0.0010 +0.0017 +0.0024
1.60-2.00 —0.0051 —0.0031 —0.0010 —0.0004 0 +0.0001 +0.0007 +0.0010 +0.0017 +0.0028
2.00-2.60 —0.0055 —0.0039 —0.0012 —0.0004 0 +0.0001 +0.0008 +0.0013 +0.0021 +0.0034
2.60-3.20 —0.0059 —0.0039 —0.0012 —0.0004 0 +0.0001 +0.0008 +0.0013 +0.0023 +0.0040
3.20-4.00 —0.0067 —0.0047 —0.0014 —0.0005 0 +0.0001 +0.0009 +0.0015 +0.0028 +0.0049
4.00-4.80 —0.0071 —0.0047 —0.0014 —0.0005 0 +0.0001 +0.0009 +0.0015 +0.0031 +0.0057
4.80-5.60 —0.0079 —0.0057 —0.0017 —0.0006 0 +0.0001 +0.0011 +0.0017 +0.0036 +0.0067
5.60-6.40 —0.0083 —0.0057 —0.0017 —0.0006 0 +0.0001 +0.0011 +0.0017 40.0039 40.0075
6.40-7.20 —0.0091 —0.0057 —0.0017 —0.0006 0 +0.0001 +0.0011 +0.0017 40.0043 +0.0083
7.20-8.00 —0.0094 —0.0067 —0.0020 —0.0006 0 +0.0002 +0.0012 +0.0020 +0.0048 +0.0093
8.00-9.00 —0.0102 —0.0067 —0.0020 —0.0006 0 +0.0002 +0.0012 +0.0020 +0.0051 +0.0102
9.00-10.00 —0.0110 —0.0067 —0.0020 —0.0006 0 +0.0002 +0.0012 +0.0020 40.0055 +0.0112
10.00-11.20 —0.0118 —0.0075 —0.0022 —0.0007 0 +0.0002 +0.0013 +0.0022 +0.0062 +0.0124
11.20-12.60 —0.0130 —0.0075 —0.0022 —0.0007 0 +0.0002 +0.0013 +0.0022 +0.0067 +0.0130
12.60-14.20 —0.0142 —0.0083 —0.0024 —0.0007 0 +0.0002 +0.0015 +0.0024 40.0075 +0.0154
14.20-16.00 —0.0157 —0.0083 —0.0024 —0.0007 0 +0.0002 +0.0015 +0.0024 +0.0082 +0.0171
Table A-14
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Specification of Fit

A particular fit is specified by giving the basic size followed by
letter code and IT grades for hole and shaft.

For example, a sliding fit of a nominally 32 mm diameter shaft
and hub would be specified as 32H7/g6

This indicates
> 32 mm basic size
> hole with IT grade of 7 (look up tolerance AD in Table A-11)

> shaft with fundamental deviation specified by letter code g
(look up fundamental deviation 6-in Table A-12)

- shaft with IT grade of 6 (look up tolerance Ad'in Table A-11)

Appropriate letter codes and IT grades for common fits are given
In Table 7-9



Description of Preferred Fits (Clearance)

Type of Fit  Description Symbol

Clearance Loose running fit: for wide commercial tolerances or Hi11/cll
allowances on external members

Free running fit: not for use where accuracy is H9/d9
essential, but good for large temperature variations,
high running speeds, or heavy journal pressures

Close running fit: for running on accurate machines H8 /17
and for accurate location at moderate speeds and
journal pressures

Sliding fit: where parts are not intended to run freely, H7/g6
but must move and turn freely and locate accurately
Locational clearance fit: provides snug fit for location H7/h6
of stationary parts, but can be freely assembled and
disassembled

Table 7-9
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Description of Preferred Fits (Transition & Interference)

Type of Fit  Description Symbol

Transition Locational transition fit: for accurate location, a H7/k6
compromise between clearance and interference

Locational transition fit: for more accurate location H7/n6
where greater interference is permissible

Interference Locational interference fit: for parts requiring rigidity H7/p6
and alignment with prime accuracy of location but
without special bore pressure requirements

Medium drive fit: for ordinary steel parts or shrink fits on H7/s6
light sections, the tightest fit usable with cast iron

Force fit: suitable for parts that can be highly stressed H7/u6
or for shrink fits where the heavy pressing forces required
are impractical

Table 7-9
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Procedure to Size for Specified Fit

Select description of desired fit from Table 7-9.

Obtain letter codes and IT grades from symbol for desired fit
from Table 7-9

Use Table A-11 (metric) or A—13 (inch) with IT grade numbers
to obtain AD for hole and Ad'for shaft

Use Table A-12 (metric) or A-14 (inch) with shaft letter code to
obtain o, for shaft

For hole
Dpax =D+ AD  Dyin=D (7-36)
For shafts with clearance fits ¢, d, f, g, and h
dpax =d +8F  dpin =d + 65 — Ad (7-37)
For shafts with interference fits k, n, p, s, and u
dpin =d +6p  dpax =d +6p + Ad (7-38)



Example 7-7

Find the shaft and hole dimensions for a loose running fit with a 34-mm basic size.

Solution

From Table 7-9, the ISO symbol 1s 34H11/c11. From Table A-11, we find that toler-
ance grade [T11 1s 0.160 mm. The symbol 34H11/c11 therefore says that AD = Ad =
0.160 mm. Using Eq. (7-36) for the hole, we get

Dpax = D+ AD =34+ 0.160 = 34.160 mm

Dpin = D = 34.000 mm

The shaft is designated as a 34c11 shaft. From Table A—-12, the fundamental deviation
i1s p = —0.120 mm. Using Eq. (7-37), we get for the shaft dimensions

dmax = d + 3 = 34 + (—0.120) = 33.880 mm

dpin = d + 6 — Ad = 34 + (—0.120) — 0.160 = 33.720 mm
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Example 7-8

Find the hole and shaft limits for a medium drive fit using a basic hole size of 2 n.

Solution

The symbol for the fit, from Table 7—8, in inch units 1s (2 in)H7/s6. For the hole, we use
Table A—13 and find the IT7 grade to be AD = 0.0010 in. Thus, from Eq. (7-36),

Dnax =D + AD =2+ 0.0010 = 2.0010 in

Dpin = D = 2.0000 1n

The IT6 tolerance for the shaft 1s Ad = 0.0006 in. Also, from Table A—14, the
fundamental deviation 1s § = 0.0017 in. Using Eq. (7-38), we get for the shaft that

dmin =d + 6 =24+ 0.0017 = 2.0017 in

dpax =d + 6 + Ad =2 +0.0017 + 0.0006 = 2.0023 in
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Stress In Interference Fits

Interference fit generates pressure at interface

Need to ensure stresses are acceptable

Treat shaft as cylinder with uniform external pressure

Treat hub as hollow cylinder with uniform internal pressure

These situations were developed in Ch. 3 and will be adapted
here



Stress In Interference Fits

The pressure at the interface, from Eqg. (3-56) converted into

terms of diameters,
5

p=

d (d§+f-ﬁ+ )+
‘l]
E, \d>—d? "

d? + ::?'f’

d (
E;

d* —d f’

If both members are of the same material,

YT

O IS diametral interference

0 = dshatt — dnub
Taking into account the tolerances,

3min — Umin

Omax = Amax —

o DITIE'IK

D min

ES [ (d? —d*)(d* — d?)
d? — d?

J— L!I-)

(7-39)

(7-40)

(7-41)

(7-42)
(7-43)



Stress In Interference Fits

e From Eqgs. (3-58) and (3-59), with radii converted to diameters,
the tangential stresses at the interface are

I* + d?
Ot,shaft = — P (q E!q (7_44)

d= — d7

a’% + d?
Ot.hub = P “{% - dz (7_45]

» The radial stresses at the interface are simply

Or, shaft = — P (7-46)
Oy, hub = — P (7-47)

» The tangential and radial stresses are orthogonal and can be
combined using a failure theory



Torgue Transmission from Interference Fit

 Estimate the torque that can be transmitted through interference
fit by friction analysis at interface

Fr = fN = f(pA) = fIp2n(d/2)l] = 7 fpld (7-48)
T = Frd/2=mnfpldd/2)
T = (7/2) fpld? (7-49)

o Use the minimum interference to determine the minimum
pressure to find the maximum torque that the joint should be
expected to transmit.



