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Reasons for Non-permanent Fasteners

 Field assembly

 Disassembly

 Maintenance

 Adjustment
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Thread Standards and Definitions
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 Pitch – distance between 

adjacent threads.  

Reciprocal of threads per 

inch

 Major diameter – largest 

diameter of thread

 Minor diameter –

smallest diameter of 

thread

 Pitch diameter –

theoretical diameter 

between major and 

minor diameters, where 

tooth and gap are same 

width

Fig. 8–1



Standardization
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• The American National (Unified) thread standard defines 

basic thread geometry for uniformity and interchangeability

• American National (Unified) thread

• UN normal thread

• UNR  greater root radius for fatigue applications

• Metric thread

• M series  (normal thread)

• MJ series  (greater root radius)



Standardization
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• Coarse series UNC

• General assembly

• Frequent disassembly

• Not good for vibrations

• The “normal” thread to specify

• Fine series UNF

• Good for vibrations

• Good for adjustments

• Automotive and aircraft

• Extra Fine series  UNEF

• Good for shock and large vibrations

• High grade alloy

• Instrumentation

• Aircraft



Bolt Specification
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Nominal diameter

¼-20 x ¾ in UNC-2 Grade 5 Hex head bolt

Threads per inch

length

Thread series

Class fit

Material grade

Head type

M12 x 1.75 ISO 4.8 Hex head bolt

Metric

Nominal diameter

Pitch

Material class



Standardization
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 Basic profile for metric M and MJ threads shown in Fig. 8–2

 Tables 8–1 and 8–2 define basic dimensions for standard threads

Fig. 8–2



Diameters and Areas for Metric Threads



Diameters and Areas for Unified Screw Threads

Table 8–2



Tensile Stress Area

• The tensile stress area, At , is the area of an unthreaded rod 

with the same tensile strength as a threaded rod.

• It is the effective area of a threaded rod to be used for stress 

calculations.

• The diameter of this unthreaded rod is the average of the 

pitch diameter and the minor diameter of the threaded rod.
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Square and Acme Threads

 Square and Acme threads are used when the threads are intended to 

transmit power
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Table 8-3  Preferred Pitches for Acme Threads

Fig. 8–3



Mechanics of Power Screws

 Power screw

◦ Used to change 

angular motion 

into linear motion

◦ Usually transmits 

power

◦ Examples include 

vises, presses, 

jacks, lead screw 

on lathe
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Mechanics of Power Screws

 Find expression for torque required to 

raise or lower a load

 Unroll one turn of a thread

 Treat thread as inclined plane

 Do force analysis
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Fig. 8–5

Fig. 8–6



Mechanics of Power Screws

 For raising the load

 For lowering the load

Shigley’s Mechanical Engineering Design
Fig. 8–6



Mechanics of Power Screws

 Eliminate N and solve for P to raise and lower the load

 Divide numerator and denominator by cos and use relation 

tan = l / dm
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Raising and Lowering Torque

 Noting that the torque is the product of the force and the mean 

radius,
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Self-locking Condition

 If the lowering torque is negative, the load will lower itself by 

causing the screw to spin without any external effort.

 If the lowering torque is positive, the screw is self-locking.

 Self-locking condition is  f dm > l

 Noting that l /  dm = tan , the self-locking condition can be 

seen to only involve the coefficient of friction and the lead 

angle.
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Power Screw Efficiency

 The torque needed to raise the load with no friction losses can 

be found from Eq. (8–1) with f = 0.

 The efficiency of the power screw is therefore
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Power Screws with Acme Threads

 If Acme threads are used instead of square 

threads, the thread angle creates a wedging 

action.

 The friction components are increased.

 The torque necessary to raise a load (or 

tighten a screw) is found by dividing the 

friction terms in Eq. (8–1) by cos
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Collar Friction

 An additional component of 

torque is often needed to 

account for the friction 

between a collar and the load.

 Assuming the load is 

concentrated at the mean 

collar diameter dc
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Fig. 8–7



Stresses in Body of Power Screws

 Maximum nominal shear stress in torsion of the screw body

 Axial stress in screw body
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Stresses in Threads of Power Screws

 Bearing stress in threads,

where nt is number of 

engaged threads
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Stresses in Threads of Power Screws

 Bending stress at root of thread,
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Stresses in Threads of Power Screws

 Consider stress element at the top of the root “plane”

 Obtain von Mises stress from Eq. (5–14),
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Thread Deformation in Screw-Nut Combination

 Power screw thread is in compression, causing elastic shortening 

of screw thread pitch.

 Engaging nut is in tension, causing elastic lengthening of the nut 

thread pitch.

 Consequently, the engaged threads cannot share the load equally.

 Experiments indicate the first thread carries 38% of the load, the 

second thread 25%, and the third thread 18%.  The seventh 

thread is free of load.

 To find the largest stress in the first thread of a screw-nut 

combination, use 0.38F in place of F, and set nt = 1.
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Example 8-1
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Fig. 8–3a
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Power Screw Safe Bearing Pressure
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Power Screw Friction Coefficients
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Head Type of Bolts

 Hexagon head bolt

◦ Usually uses nut

◦ Heavy duty

 Hexagon head cap screw

◦ Thinner head

◦ Often used as screw (in 
threaded hole, without nut)

 Socket head cap screw

◦ Usually more precision 
applications

◦ Access from the top

 Machine screws

◦ Usually smaller sizes

◦ Slot or philips head common

◦ Threaded all the way
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Fig. 8–9

Fig. 8–10



Machine Screws
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Fig. 8–11



Hexagon-Head Bolt

 Hexagon-head bolts are one of the most common for engineering 

applications

 Standard dimensions are included in Table A–29

 W is usually about 1.5 times nominal diameter

 Bolt length L is measured from below the head
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Threaded Lengths
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Metric

English



Nuts

 See Appendix A–31 for typical specifications

 First three threads of nut carry majority of load

 Localized plastic strain in the first thread is likely, so nuts should 

not be re-used in critical applications.

Shigley’s Mechanical Engineering Design

End view Washer-faced, 

regular

Chamfered both 

sides, regular

Washer-faced, 

jam nut

Chamfered 

both sides, 

jam nut
Fig. 8–12



Tension Loaded Bolted Joint

 Grip length l includes 

everything being compressed 

by bolt preload, including 

washers

 Washer under head prevents 

burrs at the hole from 

gouging into the fillet under 

the bolt head
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Fig. 8–13
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Pressure Vessel Head

 Hex-head cap screw in 

tapped hole used to fasten 

cylinder head to cylinder 

body

 Note O-ring seal, not 

affecting the stiffness of the 

members within the grip

 Only part of the threaded 

length of the bolt contributes 

to the effective grip l

Shigley’s Mechanical Engineering Design
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Effective Grip Length for Tapped Holes

 For screw in tapped hole, 

effective grip length is
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Bolted Joint Stiffnesses

 During bolt preload

◦ bolt is stretched

◦ members in grip are 

compressed

 When external load P is 

applied

◦ Bolt stretches further

◦ Members in grip 

uncompress some

 Joint can be modeled as a 

soft bolt spring in parallel 

with a stiff member spring

Shigley’s Mechanical Engineering Design

Fig. 8–13



Bolt Stiffness

 Axially loaded rod, 

partly threaded and 

partly unthreaded

 Consider each portion as 

a spring

 Combine as two springs 

in series
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Procedure to Find Bolt Stiffness
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Procedure to Find Bolt Stiffness

Shigley’s Mechanical Engineering Design



Procedure to Find Bolt Stiffness
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Member Stiffness

 Stress distribution spreads from face of 

bolt head and nut

 Model as a cone with top cut off

 Called a frustum
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Member Stiffness

 Model compressed members as if they are frusta spreading 

from the bolt head and nut to the midpoint of the grip

 Each frustum has a half-apex angle of 

 Find stiffness for frustum in compression

Shigley’s Mechanical Engineering Design

Fig. 8–15



Member Stiffness
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Member Stiffness

 With typical value of  = 30º,

 Use Eq. (8–20) to find stiffness for each frustum

 Combine all frusta as springs in series 

Shigley’s Mechanical Engineering DesignFig. 8–15b



Member Stiffness for Common Material in Grip

 If the grip consists of any number of members all of the same 

material, two identical frusta can be added in series.  The entire 

joint can be handled with one equation,

 dw is the washer face diameter

 Using standard washer face diameter of 1.5d, and with  = 30º,
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Finite Element Approach to Member Stiffness

 For the special case of common material within the grip, a finite 

element model agrees with the frustum model
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Fig. 8–16



Finite Element Approach to Member Stiffness

 Exponential curve-fit of finite element results can be used for 

case of common material within the grip
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Example 8-2
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Bolt Materials

 Grades specify material, heat treatment, strengths

◦ Table 8–9 for SAE grades

◦ Table 8–10 for ASTM designations

◦ Table 8–11 for metric property class

 Grades should be marked on head of bolt
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Bolt Materials

 Proof load is the maximum load that 

a bolt can withstand without 

acquiring a permanent set

 Proof strength is the quotient of proof 

load and tensile-stress area

◦ Corresponds to proportional limit

◦ Slightly lower than yield strength

◦ Typically used for static strength of 

bolt

 Good bolt materials have stress-strain 

curve that continues to rise to fracture

Shigley’s Mechanical Engineering Design

Fig. 8–18



SAE Specifications for Steel Bolts
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Table 8–9



ASTM Specification for Steel Bolts
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Table 8–10



Metric Mechanical-Property Classes for Steel Bolts
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Table 8–11



Tension Loaded Bolted Joints
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Tension Loaded Bolted Joints

 During bolt preload

◦ bolt is stretched

◦ members in grip are 

compressed

 When external load P is 

applied

◦ Bolt stretches an 

additional amount 

◦ Members in grip 

uncompress same  

amount 
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Stiffness Constant

 Since P = Pb + Pm,

 C is defined as the stiffness constant of the joint

 C indicates the proportion of external load P that the bolt will 

carry.  A good design target is around 0.2.
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Bolt and Member Loads

 The resultant bolt load is

 The resultant load on the members is

 These results are only valid if the load on the members remains 

negative, indicating the members stay in compression.
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Relating Bolt Torque to Bolt Tension

 Best way to measure bolt preload is by relating measured bolt 

elongation and calculated stiffness

 Usually, measuring bolt elongation is not practical

 Measuring applied torque is common, using a torque wrench

 Need to find relation between applied torque and bolt preload  
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Relating Bolt Torque to Bolt Tension

 From the power screw equations, Eqs. (8–5) and (8–6), we get

 Applying tan = l/dm,

 Assuming a washer face diameter of 1.5d, the collar diameter is

dc = (d + 1.5d)/2 = 1.25d, giving 
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Relating Bolt Torque to Bolt Tension

 Define term in brackets as torque coefficient K
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Typical Values for Torque Coefficient K

 Some recommended values for K for various bolt finishes is 

given in Table 8–15

 Use K = 0.2 for other cases
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Distribution of Preload vs Torque

 Measured preloads for 20 tests at same torque have considerable 

variation

◦ Mean value of 34.3 kN

◦ Standard deviation of 4.91

Shigley’s Mechanical Engineering Design

Table 8–13



Distribution of Preload vs Torque

 Same test with lubricated bolts

◦ Mean value of 34.18 kN (unlubricated 34.3 kN)

◦ Standard deviation of 2.88 kN (unlubricated 4.91 kN)

 Lubrication made little change to average preload vs torque

 Lubrication significantly reduces the standard deviation of 

preload vs torque
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Table 8–14
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Tension Loaded Bolted Joints: Static Factors of Safety

Shigley’s Mechanical Engineering Design

Axial Stress:

Yielding Factor of Safety (guarding against the static stress 

exceeding the proof strength):

Load Factor (against overloading of P):

Joint Separation Factor (against Fm=0):



Recommended Preload
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Gasketed Joints

 For a full gasket compressed between members of a bolted 

joint, the gasket pressure p is found by dividing the force in the 

member by the gasket area per bolt.

 The force in the member, including a load factor n,

 Thus the gasket pressure is
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Gasketed Joints

 Uniformity of pressure on the gasket is important

 Adjacent bolts should no more than six nominal diameters apart 

on the bolt circle

 For wrench clearance, bolts should be at least three diameters 

apart

 This gives a rough rule for bolt spacing around a bolt circle of 

diameter Db
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Fatigue Loading of Tension Joints

 Fatigue methods of Ch. 6 are directly applicable

 Distribution of typical bolt failures is

◦ 15% under the head

◦ 20% at the end of the thread

◦ 65% in the thread at the nut face

 Fatigue stress-concentration factors for threads and fillet are 

given in Table 8–16
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Endurance Strength for Bolts

 Bolts are standardized, so endurance strengths are known by 

experimentation, including all modifiers.  See Table 8–17.

 Fatigue stress-concentration factor Kf is also included as a 

reducer of the endurance strength, so it should not be applied to 

the bolt stresses.

 Ch. 6 methods can be used for cut threads.
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Fatigue Stresses

 With an external load on a per bolt basis fluctuating between Pmin

and Pmax, 
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Typical Fatigue Load Line for Bolts

 Typical load line starts from constant preload, then increases 

with a constant slope
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Typical Fatigue Load Line for Bolts

 Equation of load line:

 Equation of Goodman line:

 Solving (a) and (b) for intersection point,
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Fatigue Factor of Safety

 Fatigue factor of safety based on Goodman line and constant 

preload load line,

 Other failure curves can be used, following the same approach.
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Repeated Load Special Case

 Bolted joints often experience repeated load, where external load 

fluctuates between 0 and Pmax

 Setting Pmin = 0 in Eqs. (8-35) and (8-36),

 With constant preload load line,

 Load line has slope of unity for repeated load case
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Repeated Load Special Case

 Intersect load line equation with failure curves to get 

intersection coordinate Sa

 Divide Sa by a to get fatigue factor of safety for repeated load 

case for each failure curve.

Shigley’s Mechanical Engineering Design

Load line:

Goodman:

Gerber:

ASME-elliptic:



Repeated Load Special Case

 Fatigue factor of safety equations for repeated loading, constant 

preload load line, with various failure curves:

Shigley’s Mechanical Engineering Design

Goodman:

Gerber:

ASME-elliptic:



Further Reductions for Goodman

 For convenience, a and i can be substituted into any of the 

fatigue factor of safety equations.

 Doing so for the Goodman criteria in Eq. (8–45),

 If there is no preload, C = 1 and Fi = 0, resulting in 

 Preload is beneficial for resisting fatigue when nf / nf0 is greater 

than unity.  This puts an upper bound on the preload, 
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Yield Check with Fatigue Stresses

 As always, static yielding must be checked.

 In fatigue loading situations, since a and m are already 

calculated, it may be convenient to check yielding with 

 This is equivalent to the yielding factor of safety from Eq. (8–28).
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Bolted and Riveted Joints Loaded in Shear

 Shear loaded joints are 
handled the same for 
rivets, bolts, and pins

 Several failure modes are 
possible

(a) Joint loaded in shear

(b) Bending of bolt or 
members

(c) Shear of bolt

(d) Tensile failure of 
members

(e) Bearing stress on bolt 
or members

(f) Shear tear-out

(g) Tensile tear-out

Shigley’s Mechanical Engineering DesignFig. 8–23



Failure by Bending

 Bending moment is approximately M = Ft / 2, where t is the 

grip length, i.e. the total thickness of the connected parts.

 Bending stress is determined by regular mechanics of materials 

approach, where I/c is for the weakest member or for the 

bolt(s).
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Failure by Shear of Bolt

 Simple direct shear

 Use the total cross sectional area of bolts that are carrying the 
load.

 For bolts, determine whether the shear is across the nominal 
area or across threaded area.  Use area based on nominal 
diameter or minor diameter, as appropriate. 
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Failure by Tensile Rupture of Member

 Simple tensile failure

 Use the smallest net area of the member, with holes removed
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Failure by Bearing Stress

 Failure by crushing known as bearing stress

 Bolt or member with lowest strength will crush first

 Load distribution on cylindrical surface is non-trivial

 Customary to assume uniform distribution over projected 

contact area, A = td

 t is the thickness of the thinnest plate and d is the bolt diameter
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Failure by Shear-out or Tear-out

 Edge shear-out or tear-out is avoided by spacing bolts at least 

1.5 diameters away from the edge

Shigley’s Mechanical Engineering Design
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Fig. 8–25
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On the basis of bolt shear, the limiting value of the 
force is 49.7 kip, if the threads extend into a shear 
plane. However, it would be poor design to allow the 
threads to extend into a shear plane. So, assuming a 
good design based on bolt shear, the limiting value of 
the force is 62.5 kip. For the members, the bearing 
stress
limits the load to 54 kip.



Shear Joints with Eccentric Loading

 Eccentric loading is when the load does not pass along a line of 

symmetry of the fasteners.

 Requires finding moment about centroid of bolt pattern

 Centroid location

Shigley’s Mechanical Engineering Design

Fig. 8–27a



Shear Joints with Eccentric Loading

Shigley’s Mechanical Engineering Design

(a) Example of eccentric 

loading

(b) Free body diagram

(c) Close up of bolt pattern

Fig. 8–27



Shear Joints with Eccentric Loading

Shigley’s Mechanical Engineering Design

 Primary Shear

 Secondary Shear, due to moment 

load around centroid
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(b) Bolts A and B are critical because they carry the largest shear load. The problem
stated to assume that the bolt threads are not to extend into the joint. This would 
require special bolts. If standard nuts and bolts were used, the bolts would need to be 
45 mm long with a thread length of LT = 38 mm. Thus the unthreaded portion of the 
bolt is 45-38 = 7 mm long. This is less than the 15 mm for the plate in Figure 8-30, and 
the bolts would tend to shear along the minor diameter at a stress of τ = F/As = 
21.0(10)3/144 =146 MPa. Using bolts not extending into the joint, or shoulder bolts, is 
preferred. For this example, the body area of each bolt is A = π(162)/4 = 201.1 mm2, 
resulting in a shear stress of

Answer
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