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Mechanical Springs

 Exert Force

 Provide flexibility

 Store or absorb energy
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Helical Spring

 Helical coil spring with round wire 

 Equilibrium forces at cut section anywhere in the body of the 

spring indicates direct shear and torsion
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Stresses in Helical Springs

 Torsional shear and direct shear

 Additive (maximum) on inside fiber of 

cross-section

 Substitute terms
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Stresses in Helical Springs
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Curvature Effect

 Stress concentration type of effect on inner fiber due to curvature

 Can be ignored for static, ductile conditions due to localized cold-

working

 Can account for effect by replacing Ks with Wahl factor or 

Bergsträsser factor which account for both direct shear and 

curvature effect

 Cancelling the curvature effect to isolate the curvature factor
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Deflection of Helical Springs
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Use Castigliano’s method to relate force and deflection

Fig. 10–1a



Ends of Compression Springs
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Formulas for Compression Springs With Different Ends
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Table 10–1



Set Removal

 Set removal or presetting is a process used in manufacturing a 

spring to induce useful residual stresses.

 The spring is made longer than needed, then compressed to solid 

height, intentionally exceeding the yield strength.

 This operation sets the spring to the required final free length.

 Yielding induces residual stresses opposite in direction to those 

induced in service.

 10 to 30 percent of the initial free length should be removed.

 Set removal is not recommended when springs are subject to 

fatigue.
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Critical Deflection for Stability

 Buckling type of instability can occur in compression springs 

when the deflection exceeds the critical deflection ycr

 Leff is the effective slenderness ratio

  is the end-condition constant, defined on the next slide

 C'1 and C'2 are elastic constants
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End-Condition Constant

 The  term in Eq. (10–11) is the end-condition constant.

 It accounts for the way in which the ends of the spring are 

supported.

 Values are given in Table 10–2.
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Absolute Stability

 The condition for absolute stability

 For steels, this turns out to be 
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Some Common Spring Steels

 Hard-drawn wire (0.60-0.70C)

◦ Cheapest general-purpose

◦ Use only where life, accuracy, and deflection are not too 

important

 Oil-tempered wire (0.60-0.70C)

◦ General-purpose

◦ Heat treated for greater strength and uniformity of properties

◦ Often used for larger diameter spring wire

 Music wire (0.80-0.95C)

◦ Higher carbon for higher strength

◦ Best, toughest, and most widely used for small springs

◦ Good for fatigue
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Some Common Spring Steels

 Chrome-vanadium

◦ Popular alloy spring steel

◦ Higher strengths than plain carbon steels

◦ Good for fatigue, shock, and impact

 Chrome-silicon

◦ Good for high stresses, long fatigue life, and shock
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Strength of Spring Materials

 With small wire diameters, strength is a function of diameter.

 A graph of tensile strength vs. wire diameter is almost a straight 

line on log-log scale.

 The equation of this line is

where A is the intercept and m is the slope.

 Values of A and m for common spring steels are given in Table 

10–4.
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Constants for Estimating Tensile Strength
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Estimating Torsional Yield Strength

 Since helical springs experience shear stress, shear yield strength 

is needed.

 If actual data is not available, estimate from tensile strength

 Assume yield strength is between 60-90% of tensile strength

 Assume the distortion energy theory can be employed to relate 

the shear strength to the normal strength.

Ssy = 0.577Sy

 This results in 
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Mechanical Properties of Some Spring Wires (Table 10–5)
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Maximum Allowable Torsional Stresses
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Example 10–1
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Helical Compression Spring Design for Static Service

 Limit the design solution space by setting some practical limits

 Preferred range for spring index

 Preferred range for number of active coils
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Helical Compression Spring Design for Static Service

 To achieve best linearity of spring constant, preferred to limit 

operating force to the central 75% of the force-deflection curve 

between F = 0 and F = Fs.

 This limits the maximum operating force to Fmax ≤ 7/8 Fs

 Define fractional overrun to closure as ξ where

 This leads to

 Solving the outer equality for ξ, ξ = 1/7 = 0.143 0.15

 Thus, it is recommended that 
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Summary of Recommended Design Conditions

 The following design conditions are recommended for helical 

compression spring design for static service

where ns is the factor of safety at solid height.
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Figure of Merit for High Volume Production

 For high volume production, the figure of merit (fom) may be the 

cost of the wire.

 The fom would be proportional to the relative material cost, 

weight density, and volume
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Design Flowchart for Static Loading
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Continue on next slide



Design Flowchart for Static Loading
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Continued from previous slide



Design Flowchart for Static Loading
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Finding Spring Index for As-Wound Branch

 In the design flowchart, for the branch with free, as-wound 

condition, the spring index is found as follows:

 From Eqs. (10–3) and (10–17),

 Let

 Substituting (b) and (c) into (a) yields a quadratic in C.
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Critical Frequency of Helical Springs

 When one end of a spring 

is displaced rapidly, a 

wave called a spring surge

travels down the spring.

 If the other end is fixed, 

the wave can reflect back.

 If the wave frequency is 

near the natural frequency 

of the spring, resonance 

may occur resulting in 

extremely high stresses.

 Catastrophic failure may 

occur, as shown in this 

valve-spring from an over-

revved engine.
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Critical Frequency of Helical Springs

 The governing equation is the wave equation
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Critical Frequency of Helical Springs

 The solution to this equation is harmonic and depends on the given 

physical properties as well as the end conditions.

 The harmonic, natural, frequencies for a spring placed between 

two flat and parallel plates, in radians per second, are

 In cycles per second, or hertz,

 With one end against a flat plate and the other end free,
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Critical Frequency of Helical Springs

 The weight of a helical spring is

 The fundamental critical frequency should be greater than 15 to 

20 times the frequency of the force or motion of the spring.

 If necessary, redesign the spring to increase k or decrease W.
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Fatigue Loading of Helical Compression Springs

 Zimmerli found that size, material, and tensile strength have no 

effect on the endurance limits of spring steels in sizes under 3/8 

in (10 mm).

 Testing found the endurance strength components for infinite life 

to be

 These constant values are used with Gerber or Goodman failure 

criteria to find the endurance limit.
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Fatigue Loading of Helical Compression Springs

 For example, with an unpeened spring with Ssu = 211.5 kpsi, the 

Gerber ordinate intercept for shear, from Eq. (6-42), is

 For the Goodman criterion, it would be Sse = 47.3 kpsi.

 Each possible wire size would change the endurance limit since 

Ssu is a function of wire size.
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Fatigue Loading of Helical Compression Springs

 It has been found that for polished, notch-free, cylindrical 

specimens subjected to torsional shear stress, the maximum 

alternating stress that may be imposed is constant and 

independent of the mean stress.

 Many compression springs approach these conditions.

 This failure criterion is known as the Sines failure criterion.
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Torsional Modulus of Rupture

 The torsional modulus of rupture Ssu will be needed for the 

fatigue diagram.

 Lacking test data, the recommended value is
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Stresses for Fatigue Loading

 From the standard approach, the alternating and midrange forces 

are

 The alternating and midrange stresses are
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Extension Springs

 Extension springs are similar to compression springs within the 

body of the spring.

 To apply tensile loads, hooks are needed at the ends of the 

springs.

 Some common hook types:
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Stress in the Hook

 In a typical hook, a critical stress location is at point A, where there 

is bending and axial loading.

 (K)A is a bending stress-correction factor for curvature
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Stress in the Hook

 Another potentially critical stress location is at point B, where 

there is primarily torsion.

 (K)B is a stress-correction factor for curvature.
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An Alternate Hook Design

 This hook design reduces the coil diameter at point A.
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Close-wound Extension Springs

 Extension springs are often made with coils in contact with one 

another, called close-wound.

 Including some initial tension in close-wound springs helps hold 

the free length more accurately.

 The load-deflection curve is offset by this initial tension Fi

Shigley’s Mechanical Engineering Design
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Terminology of Extension Spring Dimensions

 The free length is measured inside the end hooks.

 The hooks contribute to the spring rate.  This can be handled by 

obtaining an equivalent number of active coils.
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Initial Tension in Close-Wound Springs

 Initial tension is created 

by twisting the wire as it 

is wound onto a mandrel.

 When removed from the 

mandrel, the initial 

tension is locked in 

because the spring cannot 

get any shorter.

 The amount of initial 

tension that can routinely 

be incorporated is shown.

 The two curves bounding 

the preferred range is 

given by
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Guidelines for Maximum Allowable Stresses

 Recommended maximum allowable stresses, corrected for 

curvature effect, for static applications is given in Table 10–7.
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Helical Coil Torsion Springs

 Helical coil springs 

can be loaded with 

torsional end loads.

 Special ends are used 

to allow a force to be 

applied at a distance 

from the coil axis.

 Usually used over a 

rod to maintain 

alignment and provide 

buckling resistance.
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End Locations of Torsion Springs

 Terminology for locating relative positions of ends is shown.

 The initial unloaded partial turn in the coil body is given by

 The number of body turns Nb will be the full turns plus the initial 

partial turn.
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End Locations of Torsion Springs

 Commercial tolerances on relative end positions is given in Table 

10–9
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Stress in Torsion Springs

 The coil of a torsion spring experiences bending stress (despite the 

name of the spring).

 Including a stress-correction factor, the stress in the coil can be 

represented by

 The stress-correction factor at inner and outer fibers has been 

found analytically for round wire to be 

 Ki is always larger, giving the highest stress at the inner fiber.

 With a bending moment of M = Fr, for round wire the bending 

stress is
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Spring Rate for Torsion Springs

 Angular deflection is commonly expressed in both radians and 

revolutions (turns).

 If a term contains revolutions, the variable will be expressed with a 

prime sign.

 The spring rate, if linear, is

where moment M can be expressed as Fl or Fr.
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Deflection in the Body of Torsion Springs

 Use Castigliano’s method to find the deflection in radians in the 

body of a torsion spring.

 Let M = Fl = Fr, and integrate over the length of the body-coil 

wire.  The force F will deflect through a distance r.

 Using I for round wire, and solving for ,
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Deflection in the Ends of Torsion Springs

 The deflection in the ends of the spring must be accounted for.

 The angle subtended by the end deflection is obtained from 

standard cantilever beam approach.
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Deflection in Torsion Springs

 The total angular deflection is obtained by combining the body 

deflection and the end deflection.

 With end lengths of l1 and l2, combining the two deflections 

previously obtained gives,
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Equivalent Active Turns

 The equivalent number of active turns, including the effect of the 

ends, is
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Spring Rate in Torsion Springs

 The spring rate, in torque per radian

 The spring rate, in torque per turn

 To compensate for the effect of friction between the coils and an 

arbor, tests show that the 10.2 should be increased to 10.8.

 Expressing Eq. (10–47) in revolutions, and applying the same 

correction for friction, gives the total angular deflection as
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Decrease of Inside Diameter

 A torsion spring under load will experience a change in coil 

diameter.

 If the spring is over a pin, the inside diameter of the coil must not 

be allowed to decrease to the pin diameter.

 The angular deflection of the body of the coil, extracted from the 

total deflection in Eq. (10–52), is

 The new helix diameter D' of a deflected coil is 

 The new inside diameter is 
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Decrease of Inside Diameter

 The diametral clearance  between the body coil and the pin of 

diameter Dp is 

 Solving for Nb, 

 This gives the number of body turns necessary to assure a 

specified diametral clearance.
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Static Strength for Torsion Springs

 To obtain normal yield strengths for spring wires loaded in 

bending, divide values given for torsion in Table 10–6 by 0.577 

(distortion energy theory).  This gives
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Fatigue Strength for Torsion Springs

 The Sines method and Zimmerli data were only for torsional 

stress, so are not applicable.

 Lacking better data for endurance limit in bending, use Table 10–

10, from Associated Spring for torsion springs with repeated load, 

to obtain recommended maximum bending stress Sr.
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Fatigue Strength for Torsion Springs

 Next, apply the Gerber criterion to obtain the endurance limit.  

 Note that repeated loading is assumed.

 This accounts for corrections for size, surface finish, and type of 

loading, but not for temperature or miscellaneous effects.
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Fatigue Factor of Safety for Torsion Springs

 Applying the Gerber criterion as usual from Table 6–7, with the 

slope of the load line r = Ma/Mm,

 Or, finding nf directly using Table 6–7,
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Belleville Springs

 The Belleville 
spring is a coned-
disk spring with 
unique properties

 It has a non-linear 
spring constant

 With h/t ≥ 2.83, the 
S curve can be 
useful for snap-
acting mechanisms

 For 1.41≤ h/t ≤ 2.1 
the flat central 
portion provides 
constant load for a 
considerable 
deflection range
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Constant-Force Springs

 The extension spring shown is made of slightly curved strip steel, 

not flat.

 The fore required to uncoil it remains constant.

 Known as a constant-force spring.
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Conical Spring

 A conical spring is wound in the shape of a cone.  

 Most are compression springs, made with round wire.

 The principal advantage is that the solid height is only a single 

wire diameter.
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Volute Spring

 A volute spring is a conical spring made from a wide, thin strip, or 
“flat”, of material wound on the flat so that the coils fit inside one 
another.  

 Since the coils do not stack on each other, the solid height is the width 
of the strip.

 A variable-spring scale is obtained by permitting the coils to contact the 
support.

 As deflection increases (in compression), the number of active coils 
decreases.
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Constant-Stress Cantilever Spring

 A uniform-section cantilever spring made 

from flat stock has stress which is 

proportional to the distance x.

 It is often economical to proportion the 

width b to obtain uniform stress, 

independent of x.
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Constant-Stress Cantilever Spring

 For a rectangular section, I/c = bh2/6.

 Combining with Eq. (a),

 Solving for b,

 Since b is linearly related to x, the width bo at 

the base is
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Constant-Stress Cantilever Spring

 Apply Castigliano’s method to obtain 

deflection and spring constant equations.

 The width is a function of x,

 Integrating Castigliano’s deflection equation 

with M and I both functions of x,

 Thus, the spring constant, k = F/y, is
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