Axially Loaded Members

CHAPTER OVERVIEW

In Chapter 2, we consider several other aspects of axially loaded members,
beginning with the determination of changes in lengths caused by loads
(Sections 2.2 and 2.3). The calculation of changes in lengths is an essentlal
ingredient in the analysis of statically indeterminate structures, a tOpic we
introduce in Section 2.4. If the member is statically indeterminate, we must
augment the equations of statical equilibrium with compatibility equations
(which rely on force-displacement relations) to solve for any unknowns of
interest, such as support reactions or internal axial forces in members.
Changes in lengths also must be calculated whenever it is necessary to con-
trol the displacements of a structure, whether for aesthetic or functional
reasons. In Section 2.5, we discuss the effects of temperature on the length of
a bar, and we introduce the concepts of thermal stress and thermal strain.
Also included in this section is a discussion of the effects of misfits and
prestrains. A generalized view of the stresses in axially loaded bars is pre-
sented in Section 2.6, where we discuss the stresses on inclined sections (as
distinct from cross sections) of bars. Although only normal stresses act on
cross sections of axially loaded bars, both normal and shear stresses act on
inclined sections. Stresses on inclined sections of axially loaded members
are investigated as a first step toward a more complete consideration of plane
stress states in later chapters. We then introduce several additional topics of
importance in mechanics of materials, namely, strain energy (Section 2.7),
impact loading (Section 2.8), fatigue (Section 2.9), stress concentrations
(Section 2.10), and nonlinear behavior (Sections 2.11 and 2.12). Although
these subjects are discussed in the context of members with axial loads, the
discussions provide the foundation for applying the same concepts to other
structural elements, such as bars in torsion and beams in bending.

Chapter 2 is organized as follows:

2.1 Introduction 91

2.2 Changes in Lengths of Axially Loaded Members 91

2.3 Changes in Lengths Under Nonuniform Conditions 100
2.4 Statically Indeterminate Structures 107

2.5 Thermal Effects, Misfits, and Prestrains 116

2.6 Stresses on Inclined Sections 128

2.7 Strain Energy 140
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f6. 213 Example 24. Change in length
of a tapered bar of solid circular cross
soction

A tapered bar AB of solid circular cross section and length L (Fig. 2-13a) is
supported at end B and subjected to a tensile load P at the free end A. The diame-
ters of the bar at ends A and B are d, and dp, respectively.

Determine the elongation of the bar due to the load P, assuming that the
angle of taper is small.

Solution

The bar being analyzed in this example has a constant axial force (equal to
the load P) throughout its length. However, the cross-sectional area varies
continuously from one end to the other. Therefore, we must use integration (see
Eq. 2-7) to determine the change in length.

Cross-sectional area. The first step in the solution is to obtain an expres-
sion for the cross-sectional area A(x) at any cross section of the bar. For this
purpose, we must establish an origin for the coordinate x. One possibility is to
place the origin of coordinates at the free end A of the bar. However, the inte-
grations to be performed will be slightly simplified if we locate the origin of
coordinates by extending the sides of the tapered bar until they meet at point O,
as shown in Fig. 2-13b.

The distances L, and Lg from the origin O to ends A and B, respectively, are
in the ratio

Lo Y

In i (@)

as obtained from similar triangles in Fig. 2-13b. From similar triangles we also
get the ratio of the diameter d(x) at distance x from the origin to the diameter d,
at the small end of the bar:

or dx)=—— b

Therefore, the cross-sectional area at distance x from the origin is

_ mdw)? _ wdix
e gty
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Change in length. We now substitute the expression for A(x) into Eq, 2-7)
and obtain the elongation &

I‘h' 2 > I,H
. f Nedx f Pdx(4L}) _ 4PL J d
FA() )., E(mdix®  wEd; 2 (d)

A La X

By performing the integration (see Appendix C for integration formulas) and
substituting the limits, we get

4Pl [ 1w 4pPL; (1 1
d = = =— |7 (e)
mEdy | x|, mEda \Lx Ls

This expression for & can be simplified by noting that

1 1 Ly —Ly _ L ®
Ly Lpg LaLg LiLg

Thus, the equation for & becomes

_ 4PL (Ly
) wEdi(LB) (8)

Finally, we substitute L/Lg=da/dp (see Eq. a) and obtain

4PL
o=— = $hoenl

This formula gives the elongation of a tapered bar of solid circular cross section.
By substituting numerical values, we can determine the change in length for any

particular bar.
Note 1- A common mistake is to assume that the elongation of a tapered bar

can be determined by calculating the elongation of a prismatic bar that has the
same cross-sectional area as the midsection of the tapered bar. Examination of
Eq. (2-8) shows that this idea is not valid.

Note 2: The preceding formula for a tapered bar (Eq. 2-8) can be
reduced to the special case of a prismatic bar by substituting dy = dp = d.

The result is

_4PL _ PL
mEd* EA

o

which we know to be correct.
A general formula such as Eq. (2-8) should be checked whenever possible

by verifying that it reduces to known results for special cases. If the reduction
does not produce a correct result, the original formula is in error. If a correct
result is obtained, the original formula may still be incorrect but our confidence
in it increases. In other words, this type of check is a necessary but not sufficient
condition for the correctness of the original formula.
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If the gap botween € and the rigid wall at D is
initially 0.15 mm, determine the support reactions at A and
1 when the force P = 200 kN is applied. The assembly
s made of A3 steol.

. .lSmm.

Equation of Equilibrium: Referring o the free-body disgram of the assembly
shown in Fig. a,

B IF, = 0 010" ~ Fp~ Fy=0 L

Compatibility Equation: Using the method of superposition, Fig. b,

() 5= 8p—8p,

2000 10M){600) Fin (600) Ifls F i (600)
FO.0SH200)(10%) | FOOS)HR00(10Y) * FO0257H200)(10%

015
Fp = 2036505N = 204 kN Ans.

Substituting this result into Eq. (1),

F oo 1796395N « 180 kN Kl
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