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*6.8 Curved Beams

The flexure formula applies to a straight member, since it was shown that
the normal strain within it varies linearly from the neutral axis. If the
member is curved, however, this assumption becomes inaccurate, and so
we must develop another method to describe the stress distribution. In
this section we will consider the analysis of a curved beam, that is, a
member that has a curved axis and is subjected to bending. Typical
examples include hooks and chain links. In all cases, the members are
not slender, but rather have a sharp curve, and their cross-sectional
dimensions are large compared with their radius of curvature.

The following analysis assumes that the cross section is constant and
has an axis of symmetry that is perpendicular to the direction of the
applied moment M, Fig. 6-40a. Also, the material is homogeneous and
isotropic, and it behaves in a linear-elastic manner when the load is
applied. Like the case of a straight beam, we will also assume that the
cross sections of the member remain plane after the moment is applied.
Furthermore, any distortion of the cross section within its own plane will
be neglected.

To perform the analysis, three radii, extending from the center of
curvature O’ of the member, are identified in Fig. 6-40a. Here 7
references the known location of the centroid for the cross-sectional area,
R references the yet unspecified location of the neutral axis, and r locates
the arbitrary point or area element dA on the cross section.
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320 CHAPTER 6 BENDING

If we isolate a differential segment of the beam, Fig. 6-40b, the stress
tends to deform the material such that each cross section will rotate
through an angle 86/2. The normal strain € in the strip (or line) of
material located at r will now be determined. This strip has an original
length r d6, Fig. 6-40b. However, due to the rotations 66/2 the strip’s
total change in length is 66(R — r). Consequently, e = 86(R — r)/r df.
If we let k = 86/d6, which is the same for any particular strip, we have
€ = k(R — r)/r. Unlike the case of straight beams, here it can be seen
that the normal strain is a nonlinear function of r, in fact it varies in a
hyperbolic fashion. This occurs even though the cross section of the
beam remains plane after deformation. If the material remains linearly
elastic then o = Ee and so

r

o
) o= Ek(R r) (6-22)
Fig. 6-40 (cont) This variation is also hyperbolic, and since it has now been established,
we can determine the location of the neutral axis and relate the stress
distribution to the resultant internal moment M.
To obtain the location R of the neutral axis, we require the resultant
internal force caused by the stress distribution acting over the cross
section to be equal to zero;i.e.,

Fr=2F,; /a'dA=0
A
R—r
TABLE 6-1 /Ek( )dA =0
A r
dA
Shape &T Since Ek and R are constants, we have

dA
. R/—/dA=0
b[- ok ok

\H T Solving for R yields
A
7 R=——
| lj - " dA (6-23)
— |-b -
<l (’2"1)( rl) AT
Li’ 2 Here
_ R = the location of the neutral axis, specified from the center of
“‘ _ (7 _ 7o Cz) curvature O’ of the member
‘ A = the cross-sectional area of the member

r = the arbitrary position of the area element dA on the cross
section, specified from the center of curvature O’ of the member

| % (7 — /7= az) The integral in Eq. 6-23 has been evaluated for various cross-sectional
4 geometries, and the results for some common cross sections are listed in
Table 6-1.
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6.8 CURVED BEAMS

In order to relate the stress distribution to the resultant bending
moment, we require the resultant internal moment to be equal to the
moment of the stress distribution calculated about the neutral axis.
From Fig. 6-40a, the stress o, acting on the area element dA and located
a distance y from the neutral axis, creates a moment about the neutral
axis of dM = y(o0dA). For the entire cross section, we require
M = [yo dA.Since y = R — r, and ¢ is defined by Eq. 6-22, we have

M= A(R - r)Ek<R - ’) dA

Expanding, realizing that Ek and R are constants, then

A
M=Ek<R2/d—2R/dA+/rdA>
AT A A

The first integral is equivalent to A/R as determined from Eq. 6-23, and
the second integral is simply the cross-sectional area A. Realizing that
the location of the centroid of the cross section is determined from
v = f r dA/ A, the third integral can be replaced by 7 A. Thus,

M = EKA(F — R)

Finally, solving for Ek in Eq. 6-22, substituting into the above equation,
and solving for o, we have

_ m (6 24)
77 Ar(F - R) a

Here
o = the normal stress in the member

M = the internal moment, determined from the method of sections
and the equations of equilibrium and calculated about the
neutral axis for the cross section. This moment is positive if it
tends to increase the member’s radius of curvature, i.e., it tends
to straighten out the member

A = the cross-sectional area of the member

R = the distance measured from the center of curvature to the
neutral axis, determined from Eq. 6-23

the distance measured from the center of curvature to the
centroid of the cross section

~|
Il

r = the distance measured from the center of curvature to the
point where the stress o is to be determined
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Fig. 6-40 (cont.)

From Fig. 6-40a, r = R — y. Also, the constant and usually very small
distance between the neutral axis and the centroid is e = ¥ — R. When
these results are substituted into Eq. 624, we can also write

__ My
o= Ae(R — ) (6-25)

These two equations represent two forms of the so-called curved-
beam formula, which like the flexure formula can be used to determine
the normal-stress distribution in a curved member. This distribution is,
as previously stated, hyperbolic; an example is shown in Fig. 6-40c and
6-40d. Since the stress acts along the circumference of the beam, it is
sometimes called circumferential stress. Note that due to the curvature
of the beam, the circumferential stress will create a corresponding
component of radial stress, so called since this component acts in the
radial direction. To show how it is developed, consider the free-body
diagram of the segment shown in Fig. 6—40e. Here the radial stress o, is
necessary since it creates the force dF, that is required to balance
the two components of circumferential forces dF which act along the
line O'B.

Sometimes the radial stresses within curved members may become
significant, especially if the member is constructed from thin plates and
has, for example, the shape of an I-section. In this case the radial stress
can become as large as the circumferential stress, and consequently the
member must be designed to resist both stresses. For most cases,
however, these stresses can be neglected, especially if the member has a
solid section. Here the curved-beam formula gives results that are in very
close agreement with those determined either by experiment or by a
mathematical analysis based on the theory of elasticity.

The curved-beam formula is normally used when the curvature of the
member is very pronounced, as in the case of hooks or rings. However,
if the radius of curvature is greater than five times the depth of the
member, the flexure formula can normally be used to determine the
stress. For example, for rectangular sections for which this ratio equals 5,
the maximum normal stress, when determined by the flexure formula,
will be about 7% less than its value when determined by the curved-
beam formula. This error is further reduced when the radius of
curvature-to-depth ratio is more than 5.%

*See, for example, Boresi, A. P, et al., Advanced Mechanics of Materials, 3rd ed., p. 333,
1978, John Wiley & Sons, New York.
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Important Points

® The curved-beam formula should be used to determine the
circumferential stress in a beam when the radius of curvature is
less than five times the depth of the beam.

® Due to the curvature of the beam, the normal strain in the beam
does not vary linearly with depth as in the case of a straight beam.
As a result, the neutral axis does not pass through the centroid of
the cross section.

¢ The radial stress component caused by bending can generally be
neglected, especially if the cross section is a solid section and not
made from thin plates.

Procedure for Analysis

In order to apply the curved-beam formula the following procedure
is suggested.

Section Properties.

® Determine the cross-sectional area A and the location of the
centroid, 7, measured from the center of curvature.

® Find the location of the neutral axis, R, using Eq. 6-23 or
Table 6-1. If the cross-sectional area consists of n “composite”
parts, determine f dA/r for each part. Then, from Eq. 6-23, for
the entire section, R = SA/3( [ dA/r). In all cases, R < .

Normal Stress.

® The normal stress located at a point » away from the center of
curvature is determined from Eq. 6-24. If the distance y to the
point is measured from the neutral axis, then find e = 7 — R and
use Eq. 6-25.

® Since 7 — R generally produces a very small number, it is best to
calculate 7 and R with sufficient accuracy so that the subtraction
leads to a number e having at least four significant figures.

® [f the stress is positive it will be tensile, whereas if it is negative it
will be compressive.

® The stress distribution over the entire cross section can be
graphed, or a volume element of the material can be isolated and
used to represent the stress acting at the point on the cross
section where it has been calculated.
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EXAMPLE |6.19

The curved bar has a cross-sectional area shown in Fig. 6-41a. If it is
subjected to bending moments of 4 kN - m, determine the maximum
normal stress developed in the bar.

4 kN-m 4 kN-m

200 mm

~|

LSO mm
-

.-

()

Fig. 6-41

SOLUTION

Internal Moment. Each section of the bar is subjected to the
same resultant internal moment of 4 kN + m. Since this moment tends
to decrease the bar’s radius of curvature, it is negative. Thus,
M = —4 kN -m.

Section Properties. Here we will consider the cross section to be
composed of a rectangle and triangle. The total cross-sectional area is

1
SA = (0.05m)? + 5(0‘05 m)(0.03 m) = 3.250(107°) m?

The location of the centroid is determined with reference to the center
of curvature, point O’, Fig. 6-41a.
STA
A
[0.225 m](0.05 m)(0.05 m) + [0.260 m]%(0.0SO m)(0.030 m)
B 3.250(107%) m?

Y =

= 0.23308 m
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We can find f 4 dA/r for each part using Table 6-1. For the rectangle,

dA 0.250 m

— =0. | = 0.0111

I 005m<n0'200m> 0.011157 m
And for the triangle,

dA (0.05m)(0.280 m) ( 0.280 m

~ 0.05m = 0.0028867
7 (0280m — 0250m) \ " 0.250 m) m m

Thus the location of the neutral axis is determined from

SA 3.250(107%) m?

= = 0.23142m
.0111 + 0.002
E/dA/r 0.011157 m + 0.0028867 m
A

R =

Note that R < 7 as expected. Also, the calculations were performed
with sufficient accuracy so that (¥ — R) = 0.23308 m — 0.23142m =
0.00166 m is now accurate to three significant figures.

Normal Stress. The maximum normal stress occurs either at A or
B. Applying the curved-beam formula to calculate the normal stress at
B, rz = 0.200 m, we have

M(R —rg)  (—4kN-m)(0.23142m — 0.200 m)
7T Arg(F — R)  3.250(10") m?(0.200 m)(0.00166 m)

= —116 MPa
At point A, r, = 0.280 m and the normal stress is

MR —r,) (—4kN-m)(0.23142m — 0.280 m)
~ Ara(F — R)  3.250(107%) m?(0.280 m)(0.00166 m)
= 129 MPa Ans.

04

By comparison, the maximum normal stress is at A. A two-dimensional
representation of the stress distribution is shown in Fig. 6-41b.

4 kN-m

B

A

(b)
Fig. 6-41 (cont.)

116 MPa

129 MPa
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*6-144. The member has an elliptical cross section. If it is
subjected to a moment of M = 50 N-m, determine the
stress at points A and B. Is the stress at point A’, which is
located on the member near the wall, the same as that at A?
Explain.

¢0-145. The member has an elliptical cross section. If the
allowable bending stress is o0 = 125 MPa, determine the
maximum moment M that can be applied to the member.

B

Probs. 6-144/145

6-146. Determine the greatest magnitude of the applied
forces P if the allowable bending stress is (0 ow)c = 50 MPa
in compression and (o y0w); = 120 MPa in tension.

6-147. If P = 6 kN, determine the maximum tensile and
compressive bending stresses in the beam.

75 mm

H l10
*F mm

10 mm 150 mm

1
ﬁm mm

150 mm

Probs. 6-146/147

*6-148. The curved beam is subjected to a bending
moment of M = 900 N -m as shown. Determine the stress
at points A and B, and show the stress on a volume element
located at each of these points.

¢6-149. The curved beam is subjected to a bending
moment of M = 900 N - m. Determine the stress at point C.

Probs. 6-148/149

6-150. The elbow of the pipe has an outer radius of
0.75 in. and an inner radius of 0.63 in. If the assembly is
subjected to the moments of M = 25 1b-in., determine the
maximum stress developed at section a—a.

)

1in. M =251b-in.

0.63 in.
0.75 in.

w_/

M =251b-in.

Prob. 6-150



6-151. The curved member is symmetric and is subjected
to a moment of M = 600 1b-ft. Determine the bending
stress in the member at points A and B. Show the stress
acting on volume elements located at these points.

Prob. 6-151

*6-152. The curved bar used on a machine has a
rectangular cross section. If the bar is subjected to a couple
as shown, determine the maximum tensile and compressive
stress acting at section a—a. Sketch the stress distribution
on the section in three dimensions.

Prob. 6-152

6.9  STRESS CONCENTRATIONS 333

*6-153. The ceiling-suspended C-arm is used to support
the X-ray camera used in medical diagnoses. If the camera
has a mass of 150 kg, with center of mass at G, determine
the maximum bending stress at section A.

Prob. 6-153

6-154. The circular spring clamp produces a compressive
force of 3 N on the plates. Determine the maximum bending
stress produced in the spring at A. The spring has a
rectangular cross section as shown.

6-155. Determine the maximum compressive force the
spring clamp can exert on the plates if the allowable
bending stress for the clamp is o7 = 4 MPa.

10mmﬁ‘j
D;ZO mm

Probs. 6-154/155
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6-143. Continued

As 20
r
Yy
7 _ y dA '\ _y YA
A<1+$>d’4_ and r[,<1+{>_rff‘dA_r
Mr yA) My
Theref == ()= =2 E.D.
erefore, o AI( - 1 «Q )

*6—144. The member has an elliptical cross section. If it is
subjected to a moment of M = 50 N-m, determine the
stress at points A and B. Is the stress at point A’, which is
located on the member near the wall, the same as that at A?
Explain.

A _Zmb G _NEo

AT a

2(0.0375) ; i
= =05 (0175 = V075> — 0.075) = 0.053049301 m

A = mab = w(0.075)(0.0375) = 2.8125(10"%)7r

A 2812510 )7

R = -
S A# 0.053049301

= 0.166556941

r— R =0.175 — 0.166556941 = 0.0084430586

M(R — ry) 50(0.166556941 — 0.1)

oq= = = — = 446k Pa (T) Ans.
Ary (r — R)  2.8125(10 )7 (0.1)(0.0084430586)
M(R — rp) 50(0.166556941 — 0.25)

op = = = 3 = 224 kPa (C) Ans.
Arg(r — R)  2.8125(10°)7r (0.25)(0.0084430586)

No, because of localized stress concentration at the wall. Ans.
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¢0-145. The member has an elliptical cross section. If the
allowable bending stress is o, = 125 MPa determine the
maximum moment M that can be applied to the member.

a = 0.075 m; b = 0.0375 m

A = 7(0.075)(0.0375) = 0.0028125 7

. 2m(0.0375
/ da _2mb o Ny = OB (195 - Nea7st = 0075
AT a 0.075

= 0.053049301 m

A 0.00281257

R = =
S A# 0.053049301

= 0.166556941 m

r— R =0.175 — 0.166556941 = 8.4430586(10 %) m

MR -7
77 Arr - R)

Assume tension failure.

M(0.166556941 — 0.1)

125(10%) =
(10% 0.00281257(0.1)(8.4430586)(10~3)

M = 140kN-m (controls) Ans.
Assume compression failure:

M(0.166556941 — 0.25)
0.00281257(0.25)(8.4430586)(10 )

—125(10%) =

M =279kN-m

432



06 Solutions 46060 Part2 5/26/10 1:18 PM Page 433 $

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6-146. Determine the greatest magnitude of the applied
forces P if the allowable bending stress is (0 yow)c = 50 MPa
in compression and (o oy), = 120 MPa in tension.

250 mm

Internal Moment: M = 0.160P is positive since it tends to increase the beam’s

radius of curvature.
Section Properties:
STA
SA
B 0.255(0.15)(0.01) + 0.335(0.15)(0.01) + 0.415(0.075)(0.01)
a 0.15(0.01) + 0.15(0.01) + 0.075(0.01)

;=

= 0.3190 m

A = 0.15(0.01) + 0.15(0.01) + 0.075(0.01) = 0.00375 m?

dA 026 0.41 0.42
s [ 015m 222 4 001 In 22 + 0.075In —>
| 0 Ingos 00T e+ 0075 In i
= 0.012245m
R A 000375 o6 i3m

T3 [d4 0012245

r — R =0.319 — 0.306243 = 0.012757 m
Allowable Normal Stress: Applying the curved-beam formula

Assume tension failure

MR - r)
(Uallow)l - Ar(; _ R)

o 0.16P(0.306243 — 0.25)
120(10°) =
0.00375(0.25)(0.012757)

P = 159482 N = 159.5 kN

Assume compression failure

( M (R-1r)
Tallow)r = Ar(; ~R)
o 0.16P(0.306243 — 0.42)
-50(10°) =
0.00375(0.42)(0.012757)

P = 55195 N = 552 kN (Controls !)

Ans.

75 mm
<P— }‘—" 7i 10 mm
160 mm10 mm 150 mm
_Il,_> :# 10 mm
o
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6-147. If P = 6 kN, determine the maximum tensile and 75 mm
compressive bending stresses in the beam. F— |
<—P 10 mm
160 mm10 mm 150 mm
_Il,_> ‘ ‘ :# 10 mm
150 mm
250 mm
Internal Moment: M = 0.160(6) = 0.960 kN - m is positive since it tends to increase
the beam’s radius of curvature.
Section Properties:
_ SyA
PR —
A
~0.255(0.15)(0.01) + 0.335(0.15)(0.01) + 0.415(0.075)(0.01)
B 0.15(0.01) + 0.15(0.01) + 0.075(0.01)
= 0.3190 m
A = 0.15(0.01) + 0.15(0.01) + 0.075(0.01) = 0.00375 m>
dA 0.26 0.41 0.42
X[ —=015In——+00lln— + 0.075In ——
TSI gs 00 g 00T I
= 0.012245 m
A 0.00375
R=— = = 0.306243
s/, 44 0012245 "
r — R =0.319 — 0306243 = 0.012757 m
Normal Stress: Applying the curved-beam formula
( ), = M(R —r)
Tmat T Ar(r — R)
~0.960(10%)(0.306243 — 0.25)
©0.00375(0.25)(0.012757)
= 4.51 MPa Ans.
(on), = MR 1)
Tmade T Ar(r — R)
~0.960(10%)(0.306243 — 0.42)
~0.00375(0.42)(0.012757)
= —5.44 MPa Ans.
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*6-148. The curved beam is subjected to a bending
moment of M = 900 N -m as shown. Determine the stress
at points A and B, and show the stress on a volume element
located at each of these points.

400 mm

Internal Moment: M = —900 N - m is negative since it tends to decrease the beam’s

radius curvature.

Section Properties:
S A = 0.15(0.015) + 0.1(0.02) = 0.00425 m>
SrA = 0.475(0.15)(0.015) + 0.56(0.1)(0.02) = 2.18875(10%) m*

_ SrA 218875 (107

SA 000425 0d0m

~|

d 0.55 0.57
S| = =0015In— + 0.1ln —— = 8.348614(10 >
/A r 04 1055 (107 m

A 0.00425 = 0.509067 m

R=—
s/,-44 8.348614(107)

r — R = 0.515 — 0.509067 = 5.933479(10 %) m
Normal Stress: Applying the curved-beam formula

_ M(R—ry)  —900(0.509067 — 0.57)
TAT Ara(r— R) 0.00425(0.57)(5.933479)(10%)

= 3.82 MPa (T)

MR —rg)  —900(0.509067 — 0.4)
BT Arg(r — R) | 0.00425(0.4)(5.933479)(107%)

= —9.73 MPa = 9.73 MPa (C)

Ans.

Ans.

100 mm
A @LL

15Smm — ~—
150 mm

20 mm
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*0-149. The curved beam is subjected to a bending
moment of M = 900 N -m. Determine the stress at point C.

100 mm
—c
30° Ae ./J

15Smm — ~—
150 mm

20 mm

400 mm .

Internal Moment: M = —900 N - m is negative since it tends to decrease the beam’s
radius of curvature.

Section Properties:
S A = 0.15(0.015) + 0.1(0.02) = 0.00425 m>
SrA = 0.475(0.15)(0.015) + 0.56(0.1)(0.02) = 2.18875(10"%) m

_ 3rA 218875(107°)
T 3SA 0.00425

= 0.5150 m

~ |

d 0.55 0.57
s [ 2 200151 —> + 0.1 In ok = 8.348614(1073
A r 04 1055 (107 m

A 0.00425
R= = —- = 0509067 m
3[,-94  8.348614(107°)

r — R = 0515 — 0.509067 = 5.933479(10 %) m
Normal Stress: Applying the curved-beam formula

_M(R-rc)  —900(0.509067 — 0.55)
7 Arc(r — R)  0.00425(0.55)(5.933479)(10 )

= 2.66 MPa (T) Ans.

436



06 Solutions 46060_Part2 5/26/10 1:18 PM Page 437 $

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6-150. The elbow of the pipe has an outer radius of
0.75 in. and an inner radius of 0.63 in. If the assembly is % a —
30° b

subjected to the moments of M = 25 1b-in., determine the

. . M =251b-in.
maximum stress developed at section a—a.

dA - =
A
0.63 in.
=27(1.75 — V175 — 075%) — 27 (1.75 — V1.75° — 0.63%) 0;5 in!

= 0.32375809 in.
A = 7(0.75%) — 7(0.63%) = 0.1656 7 %_/
A 0.1656 M =251b-in.

k= Jodd 032375809 1.606902679 in.

r— R =175 — 1.606902679 = 0.14309732 in.

M(R = r,) 251606902679 — 1)

= _ = = 204 psi (T Ans.
@man = G R) ~ 0.1656 m(1)(0.14300732) — 204 Psi(D) s
_ MR-y 250606902679 -25) N
@m)e = = T R) T 0.1656m(25)(014300732) — 120Psi(©) s
6-151. The curved member is symmetric and is subjected 0.5 in.

to a moment of M = 600 1b-ft. Determine the bending
stress in the member at points A and B. Show the stress
acting on volume elements located at these points.

A=0502) + %(1)(2) = 2in?

s7A 9(0.5)(2) +8.6667(3)(1)(2)

r= SA 2 = 8.83333 in.
dA 10 1(10) { 10 } } )
—=05In—+|———[ln— [-1]|=0. .
L OSln8 {(10—8) ln8 1 0.22729 in
R A = 2 = 8.7993 in.

T[4 022729

r — R = 8.83333 — 8.7993 = 0.03398 in.

MR~ )
7= Ar(r — R)

_60002)87993 = 8) o A
TAT T g)003308) ok "
_ 6000128793 ~10) oo A
BT TT0(10)(0.03398) s RTeHO "
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*6-152. The curved bar used on a machine has a
rectangular cross section. If the bar is subjected to a couple
as shown, determine the maximum tensile and compressive
stress acting at section a—a. Sketch the stress distribution
on the section in three dimensions.

C+SMy=0; M — 250 cos 60° (0.075) — 250 sin 60° (0.15) = 0
M = 41851 N-m

A ™ Z 0051 2237

— 0018974481
L " 01625 018974481 m

A = (0.075)(0.05) = 3.75(107%) m?

R = A _ 3750107) = (.197633863
T [4a T 0018974481 "

r — R =02 — 0.197633863 = 0.002366137

M(R —ry)  41.851(0.197633863 — 0.2375)

= —791.72 kPa

TAT Arar — R 3.75(107%)(0.2375)(0.002366137)
= 792 kPa (C) Ans.
M(R — rg) 41851 (0.197633863 — 0.1625)
op = = = = = 1.02 MPa (T) Ans.
Arg(r — R)  3.75(107%)(0.1625)(0.002366137)
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¢0-153. The ceiling-suspended C-arm is used to support
the X-ray camera used in medical diagnoses. If the camera
has a mass of 150 kg, with center of mass at G, determine
the maximum bending stress at section A.

Section Properties:

SPA _ 1.22(0.1)(0.04) + 1.25(0.2)(0.02)

"7 sa 0.1(0.04) + 0.2(0.02) - L2em
dA 1.24 1.26
—=01ln-——=-+02In— = 6. -

> [ 7= 0l D 02In o 6.479051(103)m

A = 0.1(0.04) + 0.2(0.02) = 0.008 m?

A 0.008
R= = —— = 1.234749m
[444 6479051 (107)

r— R =1235 — 1234749 = 0.251183(10 %) m

Internal Moment: The internal moment must be computed about the neutral axis as
shown on FBD. M = —1816.93 N-m is negative since it tends to decrease the
beam’s radius of curvature.

Maximum Normal Stress: Applying the curved-beam formula

M(R - rA)

TAT Ar (r - R)

—1816.93(1.234749 — 1.26)
0.008(1.26)(0.251183)(10 )

= 18.1 MPa (T)

M(R - rB)

ArB (; - R)
—1816.93(1.234749 — 1.20)
0.008(1.20)(0.251183)(10~?)

= —26.2 MPa = 26.2 MPa (C) (Max) Ans.
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6-154. The circular spring clamp produces a compressive 10 mm —| h

force of 3 N on the plates. Determine the maximum bending 0”20 mm
stress produced in the spring at A. The spring has a T
rectangular cross section as shown.

Internal Moment: As shown on FBD, M = 0.660 N - m is positive since it tends to
increase the beam’s radius of curvature.

‘ BN

Section Properties:

r = - ().2()5 m

A _ 0.21 _ -3
= bIn-% = 0.021n >0 = 0.97580328(107°) m

AT r
A = (0.01)(0.02) = 0.200(10"*) m?

A 0.200(107%)
R _ —o = 0.204959343 m
[44 0.97580328(10°7)

7 — R = 0205 — 0.204959343 = 0.040657(107%) m

Maximum Normal Stress: Applying the curved-beam formula

~ MR —n)
7€ Ar(F — R)
~0.660(0.204959343 — 0.21)
0.200(1073)(0.21)(0.040657)(10 )
= —1.95MPa = 1.95 MPa (C)
M(R - rl)
Oy = —
Ari(r — R)

~0.660(0.204959343 — 0.2)
0.200(1073)(0.2)(0.040657)(10 )

= 2.01 MPa (T) (Max) Ans.
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6-155. Determine the maximum compressive force the 10 mm —~{ |-
spring clamp can exert on the plates if the allowable :

0-"20mm
bending stress for the clamp is oo = 4 MPa.

‘ T

‘ BN

220 mm

Section Properties:

. + 0.
7= 0.200 : 0.210 _ 0205 m

A ™~ 00om
A r r 0

0.21 .
00 = 097580328(10%) m

A = (0.01)(0.02) = 0.200(10"*) m?

A 0.200(107%)
R— _ —- = 0204959 m
[44 0.97580328(10°7)

7 — R = 0205 — 0.204959343 = 0.040657(107%) m

Internal Moment: The internal moment must be computed about the neutral axis as
shown on FBD. M, = 0.424959P is positive since it tends to increase the beam’s
radius of curvature.

Allowable Normal Stress: Applying the curved-beam formula

Assume compression failure

M(R - }’2)
O¢ = Oallow = m
4(108) = 0.424959P(0.204959 — 0.21)
0.200(1073)(0.21)(0.040657)(10~3)
P =318N

Assume tension failure

M(R - }’1)
O = Oallow = m
A(10) = 0.424959P(0.204959 — 0.2)
0.200(107%)(0.2)(0.040657)(10~3)
P = 3.09N (Controls !) Ans.
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Curved Beams

Derivation of stress equations
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CURVED MEMBERS IN FLEXURE

The distribution of stress in a curved flexural member is determined by using the following
assumptions.

1 The cross section has an axis of symmetry in a plane along the length of the beam.
2 Plane cross sections remain plane after bending.
3 The modulus of elasticity is the same in tension as in compression.

It will be found that the neutral axis and the centroidal axis of a curved beam, unlike a straight beam,
are not coincident and also that the stress does not vary linearly from the neutral axis. The notation
shown in the above figures is defined as follows:

radius of outer fiber
radius of inner fiber

q
o
1

=
1

h = depth of section

C, = distance from neutral axis to outer fiber

C, = distance from neutral axis to inner fiber

r = radius of neutral axis

r = radius of centroidal axis

e= distance from centroidal axis to neutral axis

To begin, we define the element abcd by the angle ¢@. A bending moment M causes section bc to
rotate through d@to b’c’. The strain on any fiber at distance p from the center O is

_d_(r-p)dg

| PP




The normal stress corresponding to this strain is

o= s = El =p)dg @
Py

Since there are no axial external forces acting on the beam, the sum of the normal
forces acting on the section must be zero. Therefore

jadA:Ed¢j(r_p)dA:o @
@ P
Now arrange Eq. (2) in the form
Edqa(r dA—J'dAj:O (3)
@ P
and solve the expression in parentheses. This gives
A
r d_A_A:O or r:—dA (4)
o, hadh
P

This important equation is used to find the location of the neutral axis with respect to
the center of curvature O of the cross section. The equation indicates that the neutral
and the centroidal axes are not coincident.



Our next problem is to determine the stress distribution. We do this by balancing the
external applied moment against the internal resisting moment. Thus, from Eq. (2),

_do(r-p)dA_ (5)
r-p)\cdA)=E =M
J (= p)oua)=E" [ =
Since (r - ,0)2 =r°- 200 + ,02, Eqg. (5) can be written in the form
M = E(]|—¢(r2 %—rjdA—rjdA+jpdAj (6)
@ P

Note that r is a constant; then compare the first two terms in parentheses with Eq.
(4). These terms vanish, and we have left

M = E%(—rjdmjpdA)
@
The first integral in this expression is the area A, and the second is the product rA.
Therefore

M = E%(T— r)A= £9% o
@ @

Now, using Eqg. (1) once more, and rearranging, we finally obtain o = &
Ae(r - y)



This equation shows that the stress distribution is hyperbolic. The algebraic maximum
stresses occur at the inner and outer fibers and are

Mc Mc
g =—2" g = 0 (7)
" Aer ° A

I (0]

The sign convention used is that M is positive if it acts to straighten on the beam. The
distance y is positive inwards to the center of curvature and is measured from the
neutral axis. It follows that c; is positive and c, is negative.

These equations are valid for pure bending. In the usual and more general case such
as a crane hook, the U frame of a press, or the frame of a clamp, the bending moment
is due to forces acting to one side of the cross section under consideration. In this case
the bending moment is computed about the centroidal axis, not the neutral axis. Also,
an additional axial tensile (P/A) or compressive (-P/A) stress must be added to the
bending stress given by Eq. (7) to obtain the resultant stress acting on the section.

Formulas for Some Common Sections

Sections most frequently encountered in the stress analysis of curved beams are shown

below.



7 >
T /{Z For the rectangular section shown in (a),
O 7/// J—fe{—( h the formulae are
N e h h
7 & T T r F=r+— and r=
! | b, — | | 2 In(r, /r)
¥ y

For the trapezoidal section in (b), the
formulae are

[ b0 r=r+1R*2h,

7 T T
L E ::*T—ﬂ d A W// Jﬁ _A
2 | < T “b,-b +[(ar, ~ by )/H]In(r. /1)

(c) | (d)

The equations for the solid round section
of Fig. (d) are

b +2bec, +he ) d
§ rh +—

T 2o, +he) 2
bc, +b.c, r d?

bIn((r +c)/r]+b Infr /(r +c) 4(2?—\/4r2—d2)

For the T section in we have

r

[ =





