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*6.8 Curved Beams

The flexure formula applies to a straight member, since it was shown that
the normal strain within it varies linearly from the neutral axis. If the
member is curved, however, this assumption becomes inaccurate, and so
we must develop another method to describe the stress distribution. In
this section we will consider the analysis of a curved beam, that is, a
member that has a curved axis and is subjected to bending. Typical
examples include hooks and chain links. In all cases, the members are 
not slender, but rather have a sharp curve, and their cross-sectional
dimensions are large compared with their radius of curvature.

The following analysis assumes that the cross section is constant and
has an axis of symmetry that is perpendicular to the direction of the
applied moment M, Fig. 6–40a. Also, the material is homogeneous and
isotropic, and it behaves in a linear-elastic manner when the load is
applied. Like the case of a straight beam, we will also assume that the
cross sections of the member remain plane after the moment is applied.
Furthermore, any distortion of the cross section within its own plane will
be neglected.

To perform the analysis, three radii, extending from the center of
curvature of the member, are identified in Fig. 6–40a. Here 
references the known location of the centroid for the cross-sectional area,
R references the yet unspecified location of the neutral axis, and r locates
the arbitrary point or area element dA on the cross section.
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of a curved beam.
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If we isolate a differential segment of the beam, Fig. 6–40b, the stress
tends to deform the material such that each cross section will rotate
through an angle . The normal strain in the strip (or line) of
material located at r will now be determined. This strip has an original
length Fig. 6–40b. However, due to the rotations the strip’s
total change in length is Consequently, .
If we let which is the same for any particular strip, we have

Unlike the case of straight beams, here it can be seen
that the normal strain is a nonlinear function of r, in fact it varies in a
hyperbolic fashion. This occurs even though the cross section of the
beam remains plane after deformation. If the material remains linearly
elastic then and so

(6–22)

This variation is also hyperbolic, and since it has now been established,
we can determine the location of the neutral axis and relate the stress
distribution to the resultant internal moment M.

To obtain the location R of the neutral axis, we require the resultant
internal force caused by the stress distribution acting over the cross
section to be equal to zero; i.e.,

Since Ek and R are constants, we have

Solving for R yields

(6–23)

Here

the location of the neutral axis, specified from the center of
curvature of the member

the cross-sectional area of the member

the arbitrary position of the area element dA on the cross
section, specified from the center of curvature of the member

The integral in Eq. 6–23 has been evaluated for various cross-sectional
geometries, and the results for some common cross sections are listed in
Table 6–1.
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In order to relate the stress distribution to the resultant bending
moment, we require the resultant internal moment to be equal to the
moment of the stress distribution calculated about the neutral axis.
From Fig. 6–40a, the stress acting on the area element dA and located
a distance y from the neutral axis, creates a moment about the neutral
axis of For the entire cross section, we require

Since and is defined by Eq. 6–22, we have

Expanding, realizing that Ek and R are constants, then

The first integral is equivalent to as determined from Eq. 6–23, and
the second integral is simply the cross-sectional area A. Realizing that
the location of the centroid of the cross section is determined from

the third integral can be replaced by Thus,

Finally, solving for Ek in Eq. 6–22, substituting into the above equation,
and solving for we have

(6–24)

Here

the normal stress in the member

the internal moment, determined from the method of sections
and the equations of equilibrium and calculated about the
neutral axis for the cross section. This moment is positive if it
tends to increase the member’s radius of curvature, i.e., it tends
to straighten out the member

the cross-sectional area of the member

the distance measured from the center of curvature to the
neutral axis, determined from Eq. 6–23

the distance measured from the center of curvature to the
centroid of the cross section

the distance measured from the center of curvature to the
point where the stress is to be determineds
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From Fig. 6–40a, Also, the constant and usually very small
distance between the neutral axis and the centroid is When
these results are substituted into Eq. 6–24, we can also write

(6–25)

These two equations represent two forms of the so-called curved-
beam formula, which like the flexure formula can be used to determine
the normal-stress distribution in a curved member. This distribution is,
as previously stated, hyperbolic; an example is shown in Fig. 6–40c and
6–40d. Since the stress acts along the circumference of the beam, it is
sometimes called circumferential stress. Note that due to the curvature
of the beam, the circumferential stress will create a corresponding
component of radial stress, so called since this component acts in the
radial direction. To show how it is developed, consider the free-body
diagram of the segment shown in Fig. 6–40e. Here the radial stress is
necessary since it creates the force that is required to balance
the two components of circumferential forces dF which act along the
line 

Sometimes the radial stresses within curved members may become
significant, especially if the member is constructed from thin plates and
has, for example, the shape of an I-section. In this case the radial stress
can become as large as the circumferential stress, and consequently the
member must be designed to resist both stresses. For most cases,
however, these stresses can be neglected, especially if the member has a
solid section. Here the curved-beam formula gives results that are in very
close agreement with those determined either by experiment or by a
mathematical analysis based on the theory of elasticity.

The curved-beam formula is normally used when the curvature of the
member is very pronounced, as in the case of hooks or rings. However,
if the radius of curvature is greater than five times the depth of the
member, the flexure formula can normally be used to determine the
stress. For example, for rectangular sections for which this ratio equals 5,
the maximum normal stress, when determined by the flexure formula,
will be about 7% less than its value when determined by the curved-
beam formula. This error is further reduced when the radius of
curvature-to-depth ratio is more than 5.*
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*See, for example, Boresi, A. P., et al., Advanced Mechanics of Materials, 3rd ed., p. 333,
1978, John Wiley & Sons, New York.
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Important Points

• The curved-beam formula should be used to determine the
circumferential stress in a beam when the radius of curvature is
less than five times the depth of the beam.

• Due to the curvature of the beam, the normal strain in the beam
does not vary linearly with depth as in the case of a straight beam.
As a result, the neutral axis does not pass through the centroid of
the cross section.

• The radial stress component caused by bending can generally be
neglected, especially if the cross section is a solid section and not
made from thin plates.

Procedure for Analysis

In order to apply the curved-beam formula the following procedure
is suggested.

Section Properties.

• Determine the cross-sectional area A and the location of the
centroid, measured from the center of curvature.

• Find the location of the neutral axis, R, using Eq. 6–23 or
Table 6–1. If the cross-sectional area consists of n “composite”
parts, determine for each part. Then, from Eq. 6–23, for
the entire section, In all cases,

Normal Stress.

• The normal stress located at a point r away from the center of
curvature is determined from Eq. 6–24. If the distance y to the
point is measured from the neutral axis, then find and
use Eq. 6–25.

• Since generally produces a very small number, it is best to
calculate and R with sufficient accuracy so that the subtraction
leads to a number e having at least four significant figures.

• If the stress is positive it will be tensile, whereas if it is negative it
will be compressive.

• The stress distribution over the entire cross section can be
graphed, or a volume element of the material can be isolated and
used to represent the stress acting at the point on the cross
section where it has been calculated.

r
r - R

e = r - R

R 6 r.R = ©A>©11  dA>r2.1dA>r

r,
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EXAMPLE 6.19

The curved bar has a cross-sectional area shown in Fig. 6–41a. If it is
subjected to bending moments of determine the maximum
normal stress developed in the bar.

4 kN # m,

200 mm

250 mm

B

A

200 mm

50 mm

30 mm

50 mm
280 mm

4 kN·m 4 kN·m

–r

(a)

O ¿

Fig. 6–41

SOLUTION
Internal Moment. Each section of the bar is subjected to the
same resultant internal moment of Since this moment tends
to decrease the bar’s radius of curvature, it is negative. Thus,

Section Properties. Here we will consider the cross section to be
composed of a rectangle and triangle. The total cross-sectional area is

The location of the centroid is determined with reference to the center
of curvature, point Fig. 6–41a.

 = 0.23308 m

 =
[0.225 m]10.05 m210.05 m2 + [0.260 m] 

1
210.050 m210.030 m2

3.250110-32 m2

 r =
© r

'
A

©A

O¿,

©A = 10.05 m22 +
1
2

 10.05 m210.03 m2 = 3.250110-32 m2

M = -4 kN # m.

4 kN # m.
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6

We can find for each part using Table 6–1. For the rectangle,

And for the triangle,

LA

dA
r

= 0.05 ma ln 
0.250 m
0.200 m

b = 0.011157 m

1A dA>r

Thus the location of the neutral axis is determined from

LA

dA
r

=
10.05 m210.280 m2
10.280 m - 0.250 m2  a ln 

0.280 m
0.250 m

b - 0.05 m = 0.0028867 m

Note that as expected. Also, the calculations were performed
with sufficient accuracy so that 

is now accurate to three significant figures.

Normal Stress. The maximum normal stress occurs either at A or
B. Applying the curved-beam formula to calculate the normal stress at
B, we have

At point A, and the normal stress is

Ans.

By comparison, the maximum normal stress is at A. A two-dimensional
representation of the stress distribution is shown in Fig. 6–41b.

= 129 MPa

 sA =
M1R - rA2
ArA1r - R2 =

1-4 kN # m210.23142 m - 0.280 m2
3.250110-32 m210.280 m2(0.00166 m2

rA = 0.280 m

 = -116 MPa

 sB =
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Fig. 6–41 (cont.)
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*6–144. The member has an elliptical cross section. If it is
subjected to a moment of , determine the
stress at points A and B. Is the stress at point , which is
located on the member near the wall, the same as that at A?
Explain.

•6–145. The member has an elliptical cross section. If the
allowable bending stress is determine the
maximum moment M that can be applied to the member.

sallow = 125 MPa,

A¿
M = 50 N # m

6

*6–148. The curved beam is subjected to a bending
moment of as shown. Determine the stress
at points A and B, and show the stress on a volume element
located at each of these points.

•6–149. The curved beam is subjected to a bending
moment of . Determine the stress at point C.M = 900 N # m

M = 900 N # m

B

A¿

A

100 mm

250 mm

150 mm

M

75 mm

Probs. 6–144/145

30�

B

A

100 mm

150 mm

20 mm
15 mm

400 mm

B

A

M

C

C

Probs. 6–148/149

75 mm

250 mm

150 mm

10 mm

10 mm

10 mm

150 mm

160 mm

P

P

Probs. 6–146/147

� 25 lb�in.M

= 25 lb�in.M

1 in.
30�

a

a

0.75 in.

0.63 in.

Prob. 6–150

6–146. Determine the greatest magnitude of the applied
forces P if the allowable bending stress is 
in compression and in tension.

6–147. If determine the maximum tensile and
compressive bending stresses in the beam.

P = 6 kN,

(sallow)t = 120 MPa
(sallow)c = 50 MPa

6–150. The elbow of the pipe has an outer radius of
0.75 in. and an inner radius of 0.63 in. If the assembly is
subjected to the moments of determine the
maximum stress developed at section .a-a

M = 25 lb # in.,
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•6–153. The ceiling-suspended C-arm is used to support
the X-ray camera used in medical diagnoses. If the camera
has a mass of 150 kg, with center of mass at G, determine
the maximum bending stress at section A.

6

6–151. The curved member is symmetric and is subjected
to a moment of Determine the bending
stress in the member at points A and B. Show the stress
acting on volume elements located at these points.

M = 600 lb # ft.

8 in.

A

MM

B

2 in.

1.5 in.

0.5 in.

Prob. 6–151

A

G

20 mm
100 mm

200 mm

40 mm

1.2 m

Prob. 6–153

75 mm

50 mm

150 mm

162.5 mm

a

a

60� 60�

250 N

250 N

75 mm

Prob. 6–152

*6–152. The curved bar used on a machine has a
rectangular cross section. If the bar is subjected to a couple
as shown, determine the maximum tensile and compressive
stress acting at section . Sketch the stress distribution
on the section in three dimensions.

a-a

200 mm210 mm

220 mm

10 mm

20 mm

A

Probs. 6–154/155

6–154. The circular spring clamp produces a compressive
force of 3 N on the plates. Determine the maximum bending
stress produced in the spring at A. The spring has a
rectangular cross section as shown.

6–155. Determine the maximum compressive force the
spring clamp can exert on the plates if the allowable
bending stress for the clamp is sallow = 4 MPa.
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Ans.

Ans.

No, because of localized stress concentration at the wall. Ans.

sB =

M(R - rB)

ArB (r - R)
=

50(0.166556941 - 0.25)

2.8125(10- 3)p (0.25)(0.0084430586)
= 224 kPa (C)

sA =

M(R - rA)

ArA (r - R)
=

50(0.166556941 - 0.1)

2.8125(10- 3)p (0.1)(0.0084430586)
= 446k Pa (T)

r - R = 0.175 - 0.166556941 = 0.0084430586

R =

A

1A
dA
r

=

2.8125(10- 3)p

0.053049301
= 0.166556941

A = p ab = p(0.075)(0.0375) = 2.8125(10- 3)p

 =

2p(0.0375)

0.075
 (0.175 - 20.1752

- 0.0752 ) = 0.053049301 m

 
LA

 
dA
r

=

2p b
a

 (r - 2r2
- a2 )

6–143. Continued

*6–144. The member has an elliptical cross section. If it is
subjected to a moment of , determine the
stress at points A and B. Is the stress at point , which is
located on the member near the wall, the same as that at A?
Explain.

A¿

M = 50 N # m

B

A¿

A

100 mm

250 mm

150 mm

M

75 mm

 =

Mr

AI
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B

A¿

A

100 mm

250 mm

150 mm

M

75 mm•6–145. The member has an elliptical cross section. If the
allowable bending stress is determine the
maximum moment M that can be applied to the member.

sallow = 125 MPa

Assume tension failure.

Ans.

Assume compression failure:

M = 27.9 kN # m

-125(106) =

M(0.166556941 - 0.25)

0.0028125p(0.25)(8.4430586)(10- 3)

M = 14.0 kN # m (controls)

125(106) =

M(0.166556941 - 0.1)

0.0028125p(0.1)(8.4430586)(10- 3)

s =

M(R - r)

Ar(r - R)

r - R = 0.175 - 0.166556941 = 8.4430586(10- 3) m

R =

A

1A
dA
r

=

0.0028125p
0.053049301

= 0.166556941 m

 = 0.053049301 m

 
LA

 
dA
r

=

2pb
a

 (r - 2r2
- a2) =

2p(0.0375)

0.075
 (0.175 - 20.1752

- 0.0752)

A = p(0.075)(0.0375) = 0.0028125 p

a = 0.075 m; b = 0.0375 m
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Internal Moment: is positive since it tends to increase the beam’s
radius of curvature.

Section Properties:

Allowable Normal Stress: Applying the curved-beam formula

Assume tension failure

Assume compression failure

Ans. P = 55195 N = 55.2 kN (Controls !)

 -50 A106 B =

0.16P(0.306243 - 0.42)

0.00375(0.42)(0.012757)

 (sallow)t =

M(R - r)

Ar(r - R)

 P = 159482 N = 159.5 kN

 120 A106 B =

0.16P(0.306243 - 0.25)

0.00375(0.25)(0.012757)

 (sallow)t =

M(R - r)

Ar(r - R)

r - R = 0.319 - 0.306243 = 0.012757 m

R =

A

© 1A
dA
r

=

0.00375
0.012245

= 0.306243 m

 = 0.012245 m

 ©
LA

 
dA
r

= 0.15 ln 
0.26
0.25

+ 0.01 ln 
0.41
0.26

+ 0.075 ln 
0.42
0.41

A = 0.15(0.01) + 0.15(0.01) + 0.075(0.01) = 0.00375 m2

 = 0.3190 m

 =

0.255(0.15)(0.01) + 0.335(0.15)(0.01) + 0.415(0.075)(0.01)

0.15(0.01) + 0.15(0.01) + 0.075(0.01)

 r =

©yA

©A

M = 0.160P

6–146. Determine the greatest magnitude of the applied
forces P if the allowable bending stress is 
in compression and in tension.(sallow)t = 120 MPa

(sallow)c = 50 MPa
75 mm

250 mm

150 mm

10 mm

10 mm

10 mm

150 mm

160 mm

P

P
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Internal Moment: is positive since it tends to increase
the beam’s radius of curvature.

Section Properties:

Normal Stress: Applying the curved-beam formula

Ans.

Ans. = -5.44 MPa

 =

0.960(103)(0.306243 - 0.42)

0.00375(0.42)(0.012757)

 (smax)c =

M(R - r)

Ar(r - R)

 = 4.51 MPa

 =

0.960(103)(0.306243 - 0.25)

0.00375(0.25)(0.012757)

 (smax)t =

M(R - r)

Ar(r - R)

r - R = 0.319 - 0.306243 = 0.012757 m

R =

A

©1A dA
r

=

0.00375
0.012245

= 0.306243 m

 = 0.012245 m

 © 
LA

 
dA
r

= 0.15 ln 
0.26
0.25

+ 0.01 ln 
0.41
0.26

+ 0.075 ln 
0.42
0.41

A = 0.15(0.01) + 0.15(0.01) + 0.075(0.01) = 0.00375 m2

 = 0.3190 m

 =

0.255(0.15)(0.01) + 0.335(0.15)(0.01) + 0.415(0.075)(0.01)

0.15(0.01) + 0.15(0.01) + 0.075(0.01)

 r =

©yA

©A

M = 0.160(6) = 0.960 kN # m

6–147. If determine the maximum tensile and
compressive bending stresses in the beam.

P = 6 kN, 75 mm

250 mm

150 mm

10 mm

10 mm

10 mm

150 mm

160 mm

P

P

06 Solutions 46060_Part2  5/26/10  1:18 PM  Page 434



435

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Internal Moment: is negative since it tends to decrease the beam’s
radius curvature.

Section Properties:

Normal Stress: Applying the curved-beam formula

Ans.

Ans. = -9.73 MPa = 9.73 MPa (C)

 sB =

M(R - rB)

ArB (r - R)
=

-900(0.509067 - 0.4)

0.00425(0.4)(5.933479)(10- 3)

 = 3.82 MPa (T)

 sA =

M(R - rA)

ArA (r - R)
=

-900(0.509067 - 0.57)

0.00425(0.57)(5.933479)(10- 3)

r - R = 0.515 - 0.509067 = 5.933479(10- 3) m

R =

A

©1A
dA
r

=

0.00425
8.348614(10- 3)

= 0.509067 m

©

LA
 
dA
r

= 0.015 ln 
0.55
0.4

+ 0.1 ln 
0.57
0.55

= 8.348614(10- 3) m

r =

©rA

©A
=

2.18875 (10- 3)

0.00425
= 0.5150 m

©rA = 0.475(0.15)(0.015) + 0.56(0.1)(0.02) = 2.18875(10- 3) m3

©A = 0.15(0.015) + 0.1(0.02) = 0.00425 m2

M = -900 N # m

*6–148. The curved beam is subjected to a bending
moment of as shown. Determine the stress
at points A and B, and show the stress on a volume element
located at each of these points.

M = 900 N # m

30�

B

A

100 mm

150 mm

20 mm
15 mm

400 mm

B

A

M

C

C
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Internal Moment: is negative since it tends to decrease the beam’s
radius of curvature.

Section Properties:

Normal Stress: Applying the curved-beam formula

Ans. = 2.66 MPa (T)

 sC =

M(R - rC)

ArC(r - R)
=

-900(0.509067 - 0.55)

0.00425(0.55)(5.933479)(10- 3)

r - R = 0.515 - 0.509067 = 5.933479(10- 3) m

R =

A

©1A
dA
r

=

0.00425
8.348614(10- 3)

= 0.509067 m

©

LA
 
dA
r

= 0.015 ln 
0.55
0.4

+ 0.1 ln 
0.57
0.55

= 8.348614(10- 3) m

r =

©rA

©A
=

2.18875 (10- 3)

0.00425
= 0.5150 m

©rA = 0.475(0.15)(0.015) + 0.56(0.1)(0.02) = 2.18875(10- 3) m

©A = 0.15(0.015) + 0.1(0.02) = 0.00425 m2

M = -900 N # m

•6–149. The curved beam is subjected to a bending
moment of . Determine the stress at point C.M = 900 N # m
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30�

B

A

100 mm

150 mm

20 mm
15 mm

400 mm

B

A

M

C

C
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Ans.

Ans.(smax)c = =

M(R - rB)

ArB(r - R)
=

25(1.606902679 - 2.5)

0.1656p(2.5)(0.14309732)
= 120 psi (C)

(smax)t =

M(R - rA)

ArA(r - R)
=

25(1.606902679 - 1)

0.1656 p(1)(0.14309732)
= 204 psi (T)

r - R = 1.75 - 1.606902679 = 0.14309732 in.

R =

A

1A
dA
r

=

0.1656 p
0.32375809

= 1.606902679 in.

A = p(0.752) - p(0.632) = 0.1656 p

 = 0.32375809 in.

 = 2p(1.75 - 21.752
- 0.752) - 2p (1.75 - 21.752

- 0.632)

 
LA

 
dA
r

= ©2p (r - 2r2
- c2)

6–150. The elbow of the pipe has an outer radius of
0.75 in. and an inner radius of 0.63 in. If the assembly is
subjected to the moments of determine the
maximum stress developed at section .a-a

M = 25 lb # in.,
� 25 lb�in.M

= 25 lb�in.M

1 in.
30�

a

a

0.75 in.

0.63 in.

Ans.

Ans.sB =

600(12)(8.7993 - 10)

2(10)(0.03398)
= -12.7 ksi = 12.7 ksi (C)

sA =

600(12)(8.7993 - 8)

2(8)(0.03398)
= 10.6 ksi (T)

s =

M(R - r)

Ar(r - R)

r - R = 8.83333 - 8.7993 = 0.03398 in.

R =

A

1A
dA
r

=

2
0.22729

= 8.7993 in.

LA
 
dA
r

= 0.5 ln 
10
8

+ c 1(10)

(10 - 8)
 c ln 

10
8

 d - 1 d = 0.22729 in.

r =

©rA

©A
=

9(0.5)(2) + 8.6667 A12 B(1)(2)

2
= 8.83333 in.

A = 0.5(2) +

1
2

 (1)(2) = 2 in2

6–151. The curved member is symmetric and is subjected
to a moment of Determine the bending
stress in the member at points A and B. Show the stress
acting on volume elements located at these points.

M = 600 lb # ft.

8 in.

A

MM

B

2 in.

1.5 in.

0.5 in.
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a

Ans.

Ans.sB =

M(R - rB)

ArB(r - R)
=

41.851 (0.197633863 - 0.1625)

3.75(10- 3)(0.1625)(0.002366137)
= 1.02 MPa (T)

 = 792 kPa (C)

 sA =

M(R - rA)

ArA(r - R)
=

41.851(0.197633863 - 0.2375)

3.75(10- 3)(0.2375)(0.002366137)
= -791.72 kPa

r - R = 0.2 - 0.197633863 = 0.002366137

R =

A

1A
dA
r

=

3.75(10- 3)

0.018974481
= 0.197633863 m

A = (0.075)(0.05) = 3.75(10- 3) m2

LA
 
dA
r

= b ln 
r2

r1
= 0.05 ln 

0.2375
0.1625

= 0.018974481 m

 M = 41.851 N # m

 + ©MO = 0; M - 250 cos 60° (0.075) - 250 sin 60° (0.15) = 0

*6–152. The curved bar used on a machine has a
rectangular cross section. If the bar is subjected to a couple
as shown, determine the maximum tensile and compressive
stress acting at section . Sketch the stress distribution
on the section in three dimensions.

a-a
75 mm

50 mm

150 mm

162.5 mm

a

a

60� 60�

250 N

250 N

75 mm
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Section Properties:

Internal Moment: The internal moment must be computed about the neutral axis as
shown on FBD. is negative since it tends to decrease the
beam’s radius of curvature.

Maximum Normal Stress: Applying the curved-beam formula

Ans. = -26.2 MPa = 26.2 MPa (C) (Max)

 =

-1816.93(1.234749 - 1.20)

0.008(1.20)(0.251183)(10- 3)

 sB =

M(R - rB)

ArB (r - R)

 = 18.1 MPa (T)

 =

-1816.93(1.234749 - 1.26)

0.008(1.26)(0.251183)(10- 3)

 sA =

M(R - rA)

ArA (r - R)

M = -1816.93 N # m

r - R = 1.235 - 1.234749 = 0.251183 A10- 3 B  m
R =

A

1A
dA
r

=

0.008
6.479051 (10- 3)

= 1.234749 m

A = 0.1(0.04) + 0.2(0.02) = 0.008 m2

©

LA
 
dA
r

= 0.1 ln 
1.24
1.20

+ 0.2 ln 
1.26
1.24

= 6.479051 A10- 3 Bm

r =

©rA

©A
=

1.22(0.1)(0.04) + 1.25(0.2)(0.02)

0.1(0.04) + 0.2(0.02)
= 1.235 m

•6–153. The ceiling-suspended C-arm is used to support
the X-ray camera used in medical diagnoses. If the camera
has a mass of 150 kg, with center of mass at G, determine
the maximum bending stress at section A.

A

G

20 mm
100 mm

200 mm

40 mm

1.2 m
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Internal Moment: As shown on FBD, is positive since it tends to
increase the beam’s radius of curvature.

Section Properties:

Maximum Normal Stress: Applying the curved-beam formula

Ans. = 2.01 MPa (T) (Max)

 =

0.660(0.204959343 - 0.2)

0.200(10- 3)(0.2)(0.040657)(10- 3)

 st =

M(R - r1)

Ar1 (r - R)

 = -1.95MPa = 1.95 MPa (C)

 =

0.660(0.204959343 - 0.21)

0.200(10- 3)(0.21)(0.040657)(10- 3)

 sC =

M(R - r2)

Ar2(r - R)

r - R = 0.205 - 0.204959343 = 0.040657 A10- 3 B m
R =

A

1A
dA
r

=

0.200(10- 3)

0.97580328(10- 3)
= 0.204959343 m

A = (0.01)(0.02) = 0.200 A10- 3 B m2

LA
 
dA
r

= b ln 
r2

r1
= 0.02 ln 

0.21
0.20

= 0.97580328 A10- 3 B  m

r =

0.200 + 0.210
2

= 0.205 m

M = 0.660 N # m

6–154. The circular spring clamp produces a compressive
force of 3 N on the plates. Determine the maximum bending
stress produced in the spring at A. The spring has a
rectangular cross section as shown.

200 mm210 mm

220 mm

10 mm

20 mm

A
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Section Properties:

Internal Moment: The internal moment must be computed about the neutral axis as
shown on FBD. is positive since it tends to increase the beam’s
radius of curvature.

Allowable Normal Stress: Applying the curved-beam formula

Assume compression failure

Assume tension failure

Ans. P = 3.09 N (Controls !)

 4 A106 B =

0.424959P(0.204959 - 0.2)

0.200(10- 3)(0.2)(0.040657)(10- 3)

 st = sallow =

M(R - r1)

Ar1 (r - R)

 P = 3.189 N

 -4 A106 B =

0.424959P(0.204959 - 0.21)

0.200(10- 3)(0.21)(0.040657)(10- 3)

 sc = sallow =

M(R - r2)

Ar2(r - R)

Mmax = 0.424959P

r - R = 0.205 - 0.204959343 = 0.040657 A10- 3 B m
R =

A

1A
dA
r

=

0.200(10- 3)

0.97580328(10- 3)
= 0.204959 m

A = (0.01)(0.02) = 0.200 A10- 3 B m2

LA
 
dA
r

= b ln 
r2

r1
= 0.02 ln 

0.21
0.20

= 0.97580328 A10- 3 B  m

r =

0.200 + 0.210
2

= 0.205 m

6–155. Determine the maximum compressive force the
spring clamp can exert on the plates if the allowable
bending stress for the clamp is sallow = 4 MPa.

200 mm210 mm

220 mm

10 mm

20 mm

A
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Curved Beams

Derivation of stress equations
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b’

c’

Neutral Axis

Centroidal Axis

r-r

e

ρ

dA

Note that y is measured 
positive inward from the 

neutral axis.



CURVED MEMBERS IN FLEXURE

The distribution of stress in a curved flexural member is determined by using the following 
assumptions.

1 The cross section has an axis of symmetry in a plane along the length of the beam.
2 Plane cross sections remain plane after bending.
3 The modulus of elasticity is the same in tension as in compression.

It will be found that the neutral axis and the centroidal axis of a curved beam, unlike a straight beam, 
are not coincident and also that the stress does not vary linearly from the neutral axis. The notation 
shown in the above figures is defined as follows:

ro = radius of outer fiber
ri = radius of inner fiber 
h  = depth of section
co = distance from neutral axis to outer fiber
ci = distance from neutral axis to inner fiber 
r   = radius of neutral axis

= radius of centroidal axis
e = distance from centroidal axis to neutral axis

To begin, we define the element abcd by the angle φ. A bending moment M causes section bc to 
rotate through dφ to b’c’. The strain on any fiber at distance ρ from the center 0 is

r

( )
ρφ

φρδε dr

l

l −==



The normal stress corresponding to this strain is

(1)( )
ρφ

φρεσ drE
E

−==

Since there are no axial external forces acting on the beam, the sum of the normal 
forces acting on the section must be zero. Therefore

(2)

Now arrange Eq. (2) in the form

(3)

and solve the expression in parentheses. This gives

or (4)

This important equation is used to find the location of the neutral axis with respect to 
the center of curvature 0 of the cross section. The equation indicates that the neutral 
and the centroidal axes are not coincident.

( )
0=−= ∫∫ ρ

ρ
φ
φσ dArd

EdA

0=






 −∫ ∫ dA
dA

r
d

E
ρφ

φ

0=−∫ A
dA

r
ρ ∫

=

ρ
dA
A

r



Our next problem is to determine the stress distribution. We do this by balancing the 
external applied moment against the internal resisting moment. Thus, from Eq. (2),

(5)

Since ,   Eq. (5) can be written in the form

(6)

Note that r is a constant; then compare the first two terms in parentheses with Eq. 
(4). These terms vanish, and we have left

The first integral in this expression is the area A, and the second is the product rA. 
Therefore

Now, using Eq. (1) once more, and rearranging, we finally obtain

( )( ) ( )
M

dArd
EdAr =−=− ∫∫ ρ

ρ
φ
φσρ

2

( ) 222 2 ρρρ +−=− rrr








 +−−= ∫ ∫ ∫ ∫ dAdArdAr
dA

r
d

EM ρ
ρφ

φ 2

( )∫ ∫+−= dAdAr
d

EM ρ
φ
φ

( ) eA
d

EArr
d

EM
φ
φ

φ
φ =−=

( )yrAe

My

−
=σ



This equation shows that the stress distribution is hyperbolic. The algebraic maximum 
stresses occur at the inner and outer fibers and are

(7)

The sign convention used is that M is positive if it acts to straighten on the beam. The 
distance y is positive inwards to the center of curvature and is measured from the 
neutral axis. It follows that ci is positive and co is negative.

These equations are valid for pure bending. In the usual and more general case such 
as a crane hook, the U frame of a press, or the frame of a clamp, the bending moment 
is due to forces acting to one side of the cross section under consideration. In this case 
the bending moment is computed about the centroidal axis, not the neutral axis. Also, 
an additional axial tensile (P/A) or  compressive (-P/A) stress must be added to the 
bending stress given by Eq. (7) to obtain the resultant stress acting on the section.

Formulas for Some Common Sections

Sections most frequently encountered in the stress analysis of curved beams are shown 
below.

o

o
o

i

i
i Aer

Mc

Aer

Mc == σσ



For the rectangular section shown in (a), 
the formulae are

For the trapezoidal section in (b), the 
formulae are 
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h
rr
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=+=

( )[ ] ( )ioiooiio
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rrhrbrbbb

A
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bb

bbh
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2
3

−+−
=

+
++=

For the T section in  we have The equations for the solid round section
of Fig. (d) are 
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