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Introduction

A transformer is an electrical device that transfers energy from one electrical circuit to 
another by magnetic coupling but without any moving parts. 



 
Its action is based on the laws of electromagnetic induction.



 
There is no electrical connection between primary and secondary.



 
There is no change in frequency.



 
The ac power is transferred from primary to secondary through magnetic flux. 



 
Transformer has no moving parts.



 
Rugged and durable in construction. 



 
High efficiency as well as 99%.



 
Transformers alone cannot do the following:
1. Convert DC to AC or vice versa 
2. Change the voltage or current of DC 

3. Change the frequency (the "cycles") of AC.
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Introduction
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Transmission Transformer

161 kV Primary Delta-13.8 kV Secondary WYE, (47MVA), Transformer at the SNS site, Oak Ridge, Tennessee, USA. 

220 KV – 1MV
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Distribution Transformer

5 KV – 220 KV
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Service Transformer

11 KV – 415V

Circuit Transformer
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Iron Core Insulated Copper Wire

Basic Components

Primary 
winding 
connected to 
the source 

Secondary 
winding 
connected to 
the load 

Both coils are electrically separated but magnetically linked through a low reluctance 
path (Iron Core)
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Basic Components

Laminated 
iron core

Insulated 
copper wire
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The Two-Winding Theory

E1 is the root-mean-square value
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• Voltages are in phase (no phase shift)
• Voltage magnitudes vary with turns ratio.

The Two-Winding Theory  (cont.)
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This impedance transfer is very useful because it eliminates a coupled circuit in an 
electrical circuit and thereby simplifies the circuit.

Impedance Transfer
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 In practice Im is required to establish flux fm in the core. 
=> This effect can be represented by a magnetizing inductance Lm .

 The core loss can be represented by a resistance Rc .

Im1V1

I2

R1 R2

V2

Xl1

N1 : N2

Xl2

Ideal Transformer

Xm1
Rc1

Ic1

If1I1

I’2

E1 E2

A practical transformer is equivalent to an ideal transformer + external  
impedances that represent imperfections of an actual transformer.

Equivalent Circuit: Practical Transformer
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Even when no load is connected to the secondary coil of the transformer, a current will 
flow in the primary coil. This current consists of:
1.The magnetization current im needed to produce the flux in the core;
2.The core-loss current ih+e hysteresis and eddy current losses.

Flux causing the 
magnetization current

Typical magnetization curve
20

The magnetization current in a real transformer
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• Rated voltage: The device can continuously 
operate at the rated voltage without being 
damaged due to insulation failure

• Rated current: The device can continuously 
operate at the rated current without being 
damaged due to thermal destruction

Rated Values
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10kVA
1100/110 Volts

• The transformer has two windings one rated 
for 1100V an the other one for 110V

a = 1100/110 = 10 = turns ratio

• Each winding is designed for 10 kVA.

• The current rating for high-voltage winding 
is 10000/1100 = 9.09 A

• The current rating for lower-voltage winding 
is 10000/110 = 90.9 A

Transformer Rating and Name Plate



26

NoNo--Load test (OpenLoad test (Open--Circuit Test)Circuit Test)

V

WA

~ Im1
Voc Xm1Rc1

Ic1

I1

Equivalent Circuit Parameters

1
1

2
1

2
1

1
1

2

1

    ,

m

oc
m

cocm
c

oc
c

oc

oc
c

I
VX

III
R
VI

P
VR







1
m1

1
1

11

    ,

)sin(&)cos(

)cos(

)cos(

m

oc

C

oc
c

oocmoocc

ococ

oc
o

oocococ

I
VX

I
VR

IIII
VI

P
VIP









Ioc



27

ShortShort--Circuit TestCircuit Test

V

WA

~

22

2

eqeqeq

sc

sc
eq

sc

sc
eq

RZX

I
VZ

I
PR







A

Req Xeq

ZeqVsc

I

eqeq XXaXRRaR  2
2

112
2

1 &

Equivalent Circuit Parameters

)sin(

)cos(

)cos(

scsceq

scsceq

sc

sc
sc

scsc

sc
sc

ZX

ZR
I
VZ

VI
P









The primary resistance R1 can be measured directly.
The leakage reactance is assumed to be divided equally, X1 = a2X2 = 0.5 Xeq



Determining the values of components 
Example:

Example 2: We need to determine the equivalent circuit impedances of a 20 kVA, 
8000/240 V, 60 Hz transformer. The open-circuit and short-circuit tests led to the 
following data:

VOC = 8000 V VSC = 489 V
IOC = 0.214 A ISC = 2.5 A
POC = 400 W PSC = 240 W

The power factor during the open-circuit test is

400cos 0.234
8000 0.214

OC

OC OC

PPF lagging
V I

    


The excitation admittance is

1 10.214 1 1cos cos 0.234 0.0000063 0.0000261
8000

OC
E

OC C M

IY PF j j
V R X

        

28



Therefore:
1 1159 ; 38.3

0.0000063 0.0000261C MR k X k        

240cos 0.196
489 2.5

SC

SC SC

PPF lagging
V I

    


1 489cos 78.7
2.5

38.4 192

SC
SE

SC

VZ PF
I

j

    

  

The power factor during the short-circuit test is

The series impedance is given by

Therefore:

38.3 ; 192eq eqR X    

The equivalent circuit

Determining the values of components 
Example:

29
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Multi-secondary windings
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Advantages:
• Lower leakage reactances
• Lower losses
• Lower exciting current
• Increased kVA rating
• Variable voltage output

Disadvantage:
• The direct connection between

the primary and secondary sides.

Autotransformer
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The Variac can adjust the load voltage from zero to greater than the supply voltage. 

VARIC: Output Voltage
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voltage regulation is the ability of a system to provide near constant voltage over a 
wide range of load conditions. 
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The transformer efficiency: 
Example

Example : A 15 kVA, 2300/230 V transformer was tested to by open-circuit and closed-circuit 
tests. The following data was obtained:

VOC = 2300 V VSC = 47 V
IOC = 0.21 A ISC = 6.0 A
POC = 50 W PSC = 160 W

a. Find the equivalent circuit of this transformer referred to the high-voltage side.

b. Find the equivalent circuit of this transformer referred to the low-voltage side.

c. Calculate the full-load voltage regulation at 0.8 lagging power factor, at 1.0 power 
factor, and at 0.8 leading power factor.

d. Plot the voltage regulation as load is increased from no load to full load at power 
factors of 0.8 lagging, 1.0, and 0.8 leading.

e. What is the efficiency of the transformer at full load with a power factor of 0.8 lagging?
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1 1 50cos cos 84
2300 0.21

oc
oc

oc oc

P
V I

     


0.2184 84 0.0000 095 0.0000 908
2300

oc
E

oc

IY j S
V

            

a. The excitation branch values of the equivalent circuit can be determined as:

The excitation admittance is:

The elements of the excitation branch referred to the primary side are:

1 105
0.0000095

1 11
0.0000908

c

M

R k

X k

   

   
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The transformer efficiency: 
Example



From the short-circuit test data, the short-circuit impedance angle is

1 1 160cos cos 55.4
47 6

SC
SC

SC SC

P
V I

     


The equivalent series impedance is thus

47 55.4 4.45 6.45
6

SC
SE SC

SC

VZ j
I

       

The series elements referred to the 
primary winding are:

4.45 ; 6.45eq eqR X    

The equivalent circuit
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The transformer efficiency: 
Example



b. To find the equivalent circuit referred to the low-voltage side, we need to divide the 
impedance by a2. Since a = 10, the values will be:

1050 110 0.0445 0.0645C M eq eqR X R X       

The equivalent circuit will be
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The transformer efficiency: 
Example



c. The full-load current on the secondary side of the transformer is

,
,

15 000 65.2
230

rated
S rated

S rated

SI A
V




   

Since: p
S eq S eq S

V
V R I jX I

a
  

At PF = 0.8 lagging, current 165.2 cos (0.8) 65.2 36.9sI A    

and    230 0 0.0445 65.2 36.9 0.0645 65.2 36.9 234.85 0.40pV
j V

a
            

The resulting voltage regulation is, therefore:

,

,

100%

234.85 230 100%
230

2.1%

p S fl

S fl

V a V
VR

V


 


 


45

The transformer efficiency: 
Example



At PF = 1.0, current 165.2 cos (1.0) 65.2 0sI A    

and    230 0 0.0445 65.2 0 0.0645 65.2 0 232.94 1.04pV
j V

a
            

The resulting voltage regulation is, therefore:

,

,

232.94 230100% 100% 1.28%
230

p S fl

S fl

V a V
VR

V
 

    
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The transformer efficiency: 
Example



At PF = 0.8 leading, current 165.2 cos (0.8) 65.2 36.9sI A    

and    230 0 0.0445 65.2 36.9 0.0645 65.2 36.9 229.85 1.27pV
j V

a
            

The resulting voltage regulation is, therefore:

,

,

229.85 230100% 100% 0.062%
230

p S fl

S fl

V a V
VR

V
 

     
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The transformer efficiency: 
Example



Similar computations can be 
repeated for different values of 
load current. As a result, we 
can plot the voltage regulation 
as a function of load current for 
the three Power Factors.
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The transformer efficiency: 
Example



e. To find the efficiency of the transformer, first calculate its losses.
The copper losses are:

2 265.2 0.0445 189Cu S eqP I R W    

The core losses are:

 2
2234.85 52.5

1050
p

core
C

V a
P W

R
   

The output power of the transformer at the given Power Factor is:

cos 230 65.2 cos36.9 12 000out S SP V I W       

Therefore, the efficiency of the transformer is

100% 98.03%out

Cu core out

P
P P P

   
 
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The transformer efficiency: 
Example



Transformer taps and voltage regulation

We assumed before that the transformer turns ratio is a fixed (constant) for the given 
transformer. Frequently, distribution transformers have a series of taps in the windings to 
permit small changes in their turns ratio. Typically, transformers may have 4 taps in 
addition to the nominal setting with spacing of 2.5 % of full-load voltage. Therefore, 
adjustments up to 5 % above or below the nominal voltage rating of the transformer are 
possible.

Example : A 500 kVA, 13 200/480 V transformer has four 2.5 % taps on its primary winding. 
What are the transformer’s voltage ratios at each tap setting?

+ 5.0% tap 13 860/480 V
+ 2.5% tap 13 530/480 V
Nominal rating 13 200/480 V
- 2.5% tap 12 870/480 V
- 5.0% tap 12 540/480 V
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3-phase transformers
The majority of the power generation/distribution systems in the world are 3-phase 
systems. The transformers for such circuits can be constructed either as a 3-phase 
bank of independent identical transformers (can be replaced independently) or as a 
single transformer wound on a single 3-legged core (lighter, cheaper, more 
efficient).
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3-phase transformers



We assume that any single transformer in a 3-phase transformer 
(bank) behaves exactly as a single-phase transformer. The impedance, 
voltage regulation, efficiency, and other calculations for 3-phase 
transformers are done on a per-phase basis, using the techniques 
studied previously for single-phase transformers.

Four possible connections for a 3-phase transformer bank are:
1.Y-Y
2.Y-
3.- 
4.-Y
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3-phase transformer Connection



1. Y-Y connection:
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3-phase transformer Connection

N1

I

V 3
V N2

a
Va3

V

Ia

Y-Y
a

V
V

V
V

a
N
N

V
V

ph

ph

L

L

ph

ph





2

1

2

1

2

1

2

1

3
3



2. Y-
 

connection:
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3-phase transformer Connection



3. 
 

-Y connection:
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3-phase transformer Connection

Delta – Way Connection 
 

- Y

N1

N2

I

V

a
V

a
V3

3
Ia


 

- Y

3
I



4. 
 

- 
 

connection:
The primary voltage on each phase of the 
transformer is

P LPV V 

The secondary phase voltage is

LS SV V

The overall voltage ratio is

PLP

LS S

VV a
V V





 

No phase shift, no problems with 
unbalanced loads or harmonics.
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3-phase transformer

• A three phase transformer can be constructed by having three 
primary and three secondary windings on a common magnetic 
core as shown in the following Figure.

a

bc
0 cba 

a

c

b

a

c

b

A 
a

B 
b

C 
c

Advantages

Weight less, Cost less, Required less space

Disadvantages

Magnetic current imbalance

3-phase transformer
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