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To the Student

With the hope that this work will stimulate
an interest in Engineering Mechanics
and provide an acceptable guide to its understanding.






| PREFACE

The main purpose of this book is to provide the student with a clear and thorough
presentation of the theory and application of engineering mechanics. To achieve this
objective, this work has been shaped by the comments and suggestions of hundreds
of reviewers in the teaching profession, as well as many of the author’s students.

New to this Edition

Preliminary Problems. This new feature can be found throughout the text, and
is given just before the Fundamental Problems. The intent here is to test the student’s
conceptual understanding of the theory. Normally the solutions require little or no
calculation, and as such, these problems provide a basic understanding of the concepts
before they are applied numerically. All the solutions are given in the back of the text.

Expanded Important Points Sections. Summaries have been added which
reinforce the reading material and highlights the important definitions and concepts
of the sections.

Re-writing of Text Material. Further clarification of concepts has been
included in this edition, and important definitions are now in boldface throughout
the text to highlight their importance.

End-of-Chapter Review Problems. All the review problems now have
solutions given in the back, so that students can check their work when studying
for exams, and reviewing their skills when the chapter is finished.

New Photos. The relevance of knowing the subject matter is reflected by the
real-world applications depicted in the over 60 new or updated photos placed
throughout the book. These photos generally are used to explain how the relevant
principles apply to real-world situations and how materials behave under load.

New Problems. There are approximately 30% new problems that have been
added to this edition, which involve applications to many different fields of
engineering.

VIl
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Hallmark Features

Besides the new features mentioned above, other outstanding features that define
the contents of the text include the following.

Organization and Approach. Each chapter is organized into well-defined
sections that contain an explanation of specific topics, illustrative example problems,
and a set of homework problems. The topics within each section are placed into
subgroups defined by boldface titles. The purpose of this is to present a structured
method for introducing each new definition or concept and to make the book
convenient for later reference and review.

Chapter Contents. Each chapter begins with an illustration demonstrating a
broad-range application of the material within the chapter. A bulleted list of the
chapter contents is provided to give a general overview of the material that will be
covered.

Emphasis on Free-Body Diagrams. Drawing a free-body diagram is
particularly important when solving problems, and for this reason this step is strongly
emphasized throughout the book. In particular, special sections and examples are
devoted to show how to draw free-body diagrams. Specific homework problems have
also been added to develop this practice.

Procedures for Analysis. A general procedure for analyzing any mechanical
problem is presented at the end of the first chapter. Then this procedure is customized
to relate to specific types of problems that are covered throughout the book. This
unique feature provides the student with a logical and orderly method to follow when
applying the theory. The example problems are solved using this outlined method in
order to clarify its numerical application. Realize, however, that once the relevant
principles have been mastered and enough confidence and judgment have been
obtained, the student can then develop his or her own procedures for solving problems.

Important Points. This feature provides a review or summary of the most
important concepts in a section and highlights the most significant points that should
be realized when applying the theory to solve problems.

Fundamental Problems. These problem sets are selectively located just after
most of the example problems. They provide students with simple applications of the
concepts, and therefore, the chance to develop their problem-solving skills before
attempting to solve any of the standard problems that follow. In addition, they can
be used for preparing for exams, and they can be used at a later time when preparing
for the Fundamentals in Engineering Exam.

Conceptual Understanding. Through the use of photographs placed
throughout the book, theory is applied in a simplified way in order to illustrate some
of its more important conceptual features and instill the physical meaning of many



of the terms used in the equations. These simplified applications increase interest in
the subject matter and better prepare the student to understand the examples and
solve problems.

Homework Problems. Apart from the Fundamental and Conceptual type
problems mentioned previously, other types of problems contained in the book
include the following:

® Free-Body Diagram Problems. Some sections of the book contain
introductory problems that only require drawing the free-body diagram for the
specific problems within a problem set. These assignments will impress upon the
student the importance of mastering this skill as a requirement for a complete
solution of any equilibrium problem.

* General Analysis and Design Problems. The majority of problems in the
book depict realistic situations encountered in engineering practice. Some of
these problems come from actual products used in industry. It is hoped that this
realism will both stimulate the student’s interest in engineering mechanics and
provide a means for developing the skill to reduce any such problem from its
physical description to a model or symbolic representation to which the principles
of mechanics may be applied.

Throughout the book, there is an approximate balance of problems using either
SI or FPS units. Furthermore, in any set, an attempt has been made to arrange the
problems in order of increasing difficulty except for the end of chapter review
problems, which are presented in random order.

e Computer Problems. An effort has been made to include some problems that
may be solved using a numerical procedure executed on either a desktop computer
or a programmable pocket calculator. The intent here is to broaden the student’s
capacity for using other forms of mathematical analysis without sacrificing the
time needed to focus on the application of the principles of mechanics. Problems
of this type, which either can or must be solved using numerical procedures, are
identified by a “square” symbol (H) preceding the problem number.

The many homework problems in this edition, have been placed into two different
categories. Problems that are simply indicated by a problem number have an
answer and in some cases an additional numerical result given in the back of the
book. An asterisk (*) before every fourth problem number indicates a problem
without an answer.

Accuracy. As with the previous editions, apart from the author, the accuracy of
the text and problem solutions has been thoroughly checked by four other parties:
Scott Hendricks, Virginia Polytechnic Institute and State University; Karim Nohra,
University of South Florida; Kurt Norlin, Bittner Development Group; and finally
Kai Beng, a practicing engineer, who in addition to accuracy review provided
suggestions for problem development.

PREFACE
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Contents

Statics

The book is divided into 11 chapters, in which the principles are first applied to
simple, then to more complicated situations. In a general sense, each principle is
applied first to a particle, then a rigid body subjected to a coplanar system of forces,
and finally to three-dimensional force systems acting on a rigid body.

Chapter 1 begins with an introduction to mechanics and a discussion of units. The
vector properties of a concurrent force system are introduced in Chapter 2. This
theory is then applied to the equilibrium of a particle in Chapter 3. Chapter 4 contains
a general discussion of both concentrated and distributed force systems and the
methods used to simplify them. The principles of rigid-body equilibrium are
developed in Chapter 5 and then applied to specific problems involving the
equilibrium of trusses, frames, and machines in Chapter 6, and to the analysis of
internal forces in beams and cables in Chapter 7. Applications to problems involving
frictional forces are discussed in Chapter 8, and topics related to the center of gravity
and centroid are treated in Chapter 9. If time permits, sections involving more
advanced topics, indicated by stars (%), may be covered. Most of these topics are
included in Chapter 10 (area and mass moments of inertia) and Chapter 11 (virtual
work and potential energy). Note that this material also provides a suitable
reference for basic principles when it is discussed in more advanced courses. Finally,
Appendix A provides a review and list of mathematical formulas needed to solve
the problems in the book.

Alternative Coverage. At the discretion of the instructor, some of the
material may be presented in a different sequence with no loss of continuity. For
example, it is possible to introduce the concept of a force and all the necessary
methods of vector analysis by first covering Chapter 2 and Section 4.2 (the cross
product). Then after covering the rest of Chapter 4 (force and moment systems), the
equilibrium methods of Chapters 3 and 5 can be discussed.

Dynamics
The book is divided into 11 chapters, in which the principles are first applied to
simple, then to more complicated situations.

The kinematics of a particle is discussed in Chapter 12, followed by a discussion of
particle kinetics in Chapter 13 (Equation of Motion), Chapter 14 (Work and Energy),
and Chapter 15 (Impulse and Momentum). The concepts of particle dynamics
contained in these four chapters are then summarized in a “review” section, and the
student is given the chance to identify and solve a variety of problems. A similar
sequence of presentation is given for the planar motion of a rigid body: Chapter 16
(Planar Kinematics), Chapter 17 (Equations of Motion), Chapter 18 (Work and
Energy), and Chapter 19 (Impulse and Momentum), followed by a summary and
review set of problems for these chapters.

If time permits, some of the material involving three-dimensional rigid-body
motion may be included in the course. The kinematics and kinetics of this motion
are discussed in Chapters 20 and 21, respectively. Chapter 22 (Vibrations) may



be included if the student has the necessary mathematical background. Sections of
the book that are considered to be beyond the scope of the basic dynamics course
are indicated by a star (%) and may be omitted. Note that this material also provides
a suitable reference for basic principles when it is discussed in more advanced
courses. Finally, Appendix A provides a list of mathematical formulas needed to
solve the problems in the book, Appendix B provides a brief review of vector
analysis, and Appendix C reviews application of the chain rule.

Alternative Coverage. At the discretion of the instructor, it is possible to cover
Chapters 12 through 19 in the following order with no loss in continuity: Chapters 12
and 16 (Kinematics), Chapters 13 and 17 (Equations of Motion), Chapter 14 and 18
(Work and Energy), and Chapters 15 and 19 (Impulse and Momentum).
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your answer specific feedback

Express your answer numerically in feet to three significant figures.

d= 711 ft

m Hints My Answers Give Up Review Part
) )

Incorrect; Try Again; 5 attempts remaining

The sum of the two forces do not contribute to the moment about point A. The magnitude of the moment about A is
equal to the force multiplied by the perpendicular distance between point A and the line of action of the force. What
is the perpendicular distance between each force's line of action and point A?

www.MasteringEngineering.com



Resources for Instructors

* MasteringEngineering. This online Tutorial Homework program allows you to integrate dynamic homework
with automatic grading and adaptive tutoring. MasteringEngineering allows you to easily track the performance
of your entire class on an assignment-by-assignment basis, or the detailed work of an individual student.

e Instructor’s Solutions Manual. This supplement provides complete solutions supported by problem
statements and problem figures. The fourteenth edition manual was revised to improve readability and was
triple accuracy checked. The Instructor’s Solutions Manual is available on Pearson Higher Education website:
www.pearsonhighered.com.

e Instructor’s Resource. Visual resources to accompany the text are located on the Pearson Higher Education
website: www.pearsonhighered.com. If you are in need of a login and password for this site, please contact your
local Pearson representative. Visual resources include all art from the text, available in PowerPoint slide and
JPEG format.

¢ Video Solutions. Developed by Professor Edward Berger, Purdue University, video solutions are located
in the study area of MasteringEngineering and offer step-by-step solution walkthroughs of representative
homework problems from each section of the text. Make efficient use of class time and office hours by
showing students the complete and concise problem-solving approaches that they can access any time and
view at their own pace. The videos are designed to be a flexible resource to be used however each instructor
and student prefers. A valuable tutorial resource, the videos are also helpful for student self-evaluation as
students can pause the videos to check their understanding and work alongside the video. Access the videos
at www.masteringengineering.com.

Resources for Students

e MasteringEngineering. Tutorial homework problems emulate the instructor’s office-hour environment,
guiding students through engineering concepts with self-paced individualized coaching. These in-depth tutorial
homework problems are designed to coach students with feedback specific to their errors and optional hints
that break problems down into simpler steps.

e Statics Study Pack. This supplement contains chapter-by-chapter study materials and a Free-Body Diagram
Workbook.

* Dynamics Study Pack. This supplement contains chapter-by-chapter study materials and a Free-Body Diagram
Workbook.

¢ Video Solutions. Complete, step-by-step solution walkthroughs of representative homework problems
from each section. Videos offer fully worked solutions that show every step of representative homework
problems—this helps students make vital connections between concepts.

e Statics Practice Problems Workbook. This workbook contains additional worked problems. The problems
are partially solved and are designed to help guide students through difficult topics.

* Dynamics Practice Problems Workbook. This workbook contains additional worked problems. The
problems are partially solved and are designed to help guide students through difficult topics.
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The Statics and Dynamics Study Packs and MasteringEngineering resources are available as stand-alone items for
student purchase and are also available packaged with the texts. The ISBN for each valuepack is as follows:

e Engineering Mechanics: Statics with Study Pack: ISBN 0134136683

e Engineering Mechanics: Statics Plus MasteringEngineering with Pearson eText— Access Card Package:
ISBN: 0134160681

e Engineering Mechanics: Dynamics with Study Pack: ISBN: 0134116658

e Engineering Mechanics: Dynamics Plus MasteringEngineering with Pearson eText — Access Card Package:
ISBN: 0134116992

Custom Solutions
Please contact your local Pearson Sales Representative for more details about custom options or visit

www.pearsonlearningsolutions.com, keyword: Hibbeler.
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Chapter 1

(© Andrew Peacock/Lonely Planet Images/Getty Images)

Large cranes such as this one are required to lift extremely large loads. Their
design is based on the basic principles of statics and dynamics, which form
the subject matter of engineering mechanics.



General Principles

CHAPTER OBJECTIVES

m To provide an introduction to the basic quantities and idealizations
of mechanics.

m To give a statement of Newton’s Laws of Motion and Gravitation.
m To review the principles for applying the Sl system of units.

m To examine the standard procedures for performing numerical
calculations.

m To present a general guide for solving problems.

1.1 Mechanics

Mechanics is a branch of the physical sciences that is concerned with the
state of rest or motion of bodies that are subjected to the action of forces.
In general, this subject can be subdivided into three branches: rigid-body
mechanics, deformable-body mechanics, and fluid mechanics. In this book
we will study rigid-body mechanics since it is a basic requirement for the
study of the mechanics of deformable bodies and the mechanics of fluids.
Furthermore, rigid-body mechanics is essential for the design and analysis
of many types of structural members, mechanical components, or electrical
devices encountered in engineering.

Rigid-body mechanics is divided into two areas: statics and dynamics.
Statics deals with the equilibrium of bodies, that is, those that are either
at rest or move with a constant velocity; whereas dynamics is concerned
with the accelerated motion of bodies. We can consider statics as a special
case of dynamics, in which the acceleration is zero; however, statics
deserves separate treatment in engineering education since many objects
are designed with the intention that they remain in equilibrium.



CHAPTER 1

GENERAL PRINCIPLES

Historical Development. The subject of statics developed very
early in history because its principles can be formulated simply from
measurements of geometry and force. For example, the writings of
Archimedes (287-212 B.C.) deal with the principle of the lever. Studies
of the pulley, inclined plane, and wrench are also recorded in ancient
writings—at times when the requirements for engineering were limited
primarily to building construction.

Since the principles of dynamics depend on an accurate measurement
of time, this subject developed much later. Galileo Galilei (1564-1642)
was one of the first major contributors to this field. His work consisted of
experiments using pendulums and falling bodies. The most significant
contributions in dynamics, however, were made by Isaac Newton
(1642-1727), who is noted for his formulation of the three fundamental
laws of motion and the law of universal gravitational attraction. Shortly
after these laws were postulated, important techniques for their
application were developed by other scientists and engineers, some of
whom will be mentioned throughout the text.

1.2 Fundamental Concepts

Before we begin our study of engineering mechanics, it is important to
understand the meaning of certain fundamental concepts and principles.

Basic Quantities. The following four quantities are used throughout
mechanics.

Length. Lengrh is used to locate the position of a point in space and
thereby describe the size of a physical system. Once a standard unit of
length is defined, one can then use it to define distances and geometric
properties of a body as multiples of this unit.

Time. Time is conceived as a succession of events. Although the
principles of statics are time independent, this quantity plays an
important role in the study of dynamics.

Mass. Mass is a measure of a quantity of matter that is used to
compare the action of one body with that of another. This property
manifests itself as a gravitational attraction between two bodies and
provides a measure of the resistance of matter to a change in velocity.

Force. In general, force is considered as a “push” or “pull” exerted by
one body on another. This interaction can occur when there is direct
contact between the bodies, such as a person pushing on a wall, or it can
occur through a distance when the bodies are physically separated.
Examples of the latter type include gravitational, electrical, and magnetic
forces. In any case, a force is completely characterized by its magnitude,
direction, and point of application.



Idealizations. Models or idealizations are used in mechanics in
order to simplify application of the theory. Here we will consider three
important idealizations.

Particle. A particle has a mass, but a size that can be neglected. For
example, the size of the earth is insignificant compared to the size of its
orbit, and therefore the earth can be modeled as a particle when studying
its orbital motion. When a body is idealized as a particle, the principles of
mechanics reduce to a rather simplified form since the geometry of the
body will not be involved in the analysis of the problem.

Rigid Body. A rigid body can be considered as a combination of a
large number of particles in which all the particles remain at a fixed
distance from one another, both before and after applying a load. This
model is important because the body’s shape does not change when a
load is applied, and so we do not have to consider the type of material
from which the body is made. In most cases the actual deformations
occurring in structures, machines, mechanisms, and the like are relatively
small, and the rigid-body assumption is suitable for analysis.

Concentrated Force. A concentrated force represents the effect of
a loading which is assumed to act at a point on a body. We can represent
a load by a concentrated force, provided the area over which the load is
applied is very small compared to the overall size of the body. An
example would be the contact force between a wheel and the ground.

Steel is a common engineering material that does not deform
very much under load. Therefore, we can consider this
railroad wheel to be a rigid body acted upon by the
concentrated force of the rail. (© Russell C. Hibbeler)

1.2 FUNDAMENTAL CONCEPTS

Three forces act on the ring. Since these
forces all meet at a point, then for any
force analysis, we can assume the ring to
be represented as a particle. (© Russell
C. Hibbeler)




CHAPTER 1

GENERAL PRINCIPLES

Newton’s Three Laws of Motion. Engineering mechanics is
formulated on the basis of Newton’s three laws of motion, the validity of
which is based on experimental observation. These laws apply to the
motion of a particle as measured from a nonaccelerating reference frame.
They may be briefly stated as follows.

First Law. A particle originally at rest, or moving in a straight line with
constant velocity, tends to remain in this state provided the particle is not
subjected to an unbalanced force, Fig. 1-1a.

F F,
v
D
F3
Equilibrium
(2)

Second Law. A particle acted upon by an unbalanced force F
experiences an acceleration a that has the same direction as the force
and a magnitude that is directly proportional to the force, Fig. 1-1b.*
If F is applied to a particle of mass m, this law may be expressed
mathematically as

F = ma (1-1)

Accelerated motion

(b)

Third Law. The mutual forces of action and reaction between two
particles are equal, opposite, and collinear, Fig. 1-1c.

force of A on B

F—@@TF
A B £

orce of Bon A
Action - reaction
(©)
Fig. 1-1

*Stated another way, the unbalanced force acting on the particle is proportional to the
time rate of change of the particle’s linear momentum.



Newton’s Law of Gravitational Attraction. Shortly after
formulating his three laws of motion, Newton postulated a law governing
the gravitational attraction between any two particles. Stated mathematically,

mym;

F=G 2

(1-2)
where

F = force of gravitation between the two particles

G = universal constant of gravitation; according to experimental
evidence, G = 66.73(10712) m*/(kg * s?)

my, m, = mass of each of the two particles

r = distance between the two particles

Weight. According to Eq. 1-2, any two particles or bodies have a
mutual attractive (gravitational) force acting between them. In the case
of a particle located at or near the surface of the earth, however, the only
gravitational force having any sizable magnitude is that between the
earth and the particle. Consequently, this force, termed the weight, will
be the only gravitational force considered in our study of mechanics.

From Eq. 1-2, we can develop an approximate expression for finding the
weight W of a particle having a mass m; = m. If we assume the earth to be a
nonrotating sphere of constant density and having a mass m, = M., then if
r is the distance between the earth’s center and the particle, we have

mM,

W=G 2

Letting g¢ = GM, /7 yields

W = mg (1-3)

By comparison with F = ma, we can see that g is the acceleration due to
gravity. Since it depends on 7, then the weight of a body is not an absolute
quantity. Instead, its magnitude is determined from where the measurement
was made. For most engineering calculations, however, g is determined at
sealevel and at a latitude of 45°, which is considered the “standard location.”

1.3 Units of Measurement

The four basic quantities—length, time, mass, and force—are not all
independent from one another; in fact, they are related by Newton’s
second law of motion, F = ma. Because of this, the units used to measure
these quantities cannot all be selected arbitrarily. The equality F = ma is
maintained only if three of the four units, called base units, are defined
and the fourth unit is then derived from the equation.

1.3 UNITS OF MEASUREMENT

The astronaut’s weight is diminished since
she is far removed from the gravitational
field of the earth. (© NikoNomad/
Shutterstock)




CHAPTER 1

(b)
Fig. 1-2

GENERAL PRINCIPLES

SI Units. The International System of units, abbreviated SI after the
French “Systeme International d’Unités,” is a modern version of the
metric system which has received worldwide recognition. As shown in
Table 1-1, the SI system defines length in meters (m), time in seconds (s),
and mass in kilograms (kg). The unit of force, called a newton (N), is
derived from F = ma. Thus, 1 newton is equal to a force required to give
1 kilogram of mass an acceleration of 1 m/s*> (N = kg-m/s?).

If the weight of a body located at the “standard location” is to be
determined in newtons, then Eq. 1-3 must be applied. Here measurements
give g = 9.806 65 m/s*;however,for calculations, the value g = 9.81 m/s>
will be used. Thus,

W=mg (g=981m/s?) (1-4)

Therefore, a body of mass 1 kg has a weight of 9.81 N, a 2-kg body weighs
19.62 N, and so on, Fig. 1-2a.

U.S. Customary. In the US. Customary system of units (FPS)
length is measured in feet (ft), time in seconds (s), and force in pounds (Ib),
Table 1-1. The unit of mass, called a slug, is derived from F = ma. Hence,
1 slug is equal to the amount of matter accelerated at 1 ft/s> when acted
upon by a force of 11b (slug = Ib - s?/ft).

Therefore, if the measurements are made at the “standard location,”
where g = 32.2 ft/s, then from Eq. 1-3,

m = % (g = 32.21t/s?) (1-5)

And so a body weighing 32.2 1b has a mass of 1 slug, a 64.4-1b body has a
mass of 2 slugs, and so on, Fig. 1-2b.

TABLE 1-1 Systems of Units

Name Length Time Mass Force
International meter second kilogram
System of Units N
SI m S kg kg-m
2

U.S. Customary foot second pound

FPS 5
Ib-s
ft S < f > Ib

*Derived unit.
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Conversion of Units. Table 1-2 provides a set of direct conversion
factors between FPS and SI units for the basic quantities. Also, in the
FPS system, recall that 1 ft = 12 in. (inches), 5280 ft = 1 mi (mile),
1000 1b =1 kip (kilo-pound), and 2000 1b =1 ton.

TABLE 1-2 Conversion Factors

Unit of Unit of
Quantity Measurement (FPS) Equals Measurement (SI)
Force Ib 4.448 N
Mass slug 14.59 kg
Length ft 0.3048 m

1.4 The International System of Units

The SI system of units is used extensively in this book since it is intended to
become the worldwide standard for measurement. Therefore, we will
now present some of the rules for its use and some of its terminology
relevant to engineering mechanics.

Prefixes. When a numerical quantity is either very large or very
small, the units used to define its size may be modified by using a prefix.
Some of the prefixes used in the SI system are shown in Table 1-3. Each
represents a multiple or submultiple of a unit which, if applied
successively, moves the decimal point of a numerical quantity to every
third place.* For example, 4 000 000 N = 4 000 kN (kilo-newton) =
4 MN (mega-newton), or 0.005 m = 5 mm (milli-meter). Notice that the
ST system does not include the multiple deca (10) or the submultiple
centi (0.01), which form part of the metric system. Except for some
volume and area measurements, the use of these prefixes is to be avoided
in science and engineering.

TABLE 1-3 Prefixes

Exponential Form Prefix SI Symbol

Multiple

1 000 000 000 10° giga G

1 000 000 100 mega M
1000 103 kilo k
Submultiple

0.001 103 milli m
0.000 001 106 micro n
0.000 000 001 107 nano n

*The kilogram is the only base unit that is defined with a prefix.
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Computers are often used in engineering for
advanced design and analysis. (© Blaize
Pascall/Alamy)

Rules for Use. Here are a few of the important rules that describe
the proper use of the various SI symbols:

e Quantities defined by several units which are multiples of one
another are separated by a dot to avoid confusion with prefix
notation, as indicated by N = kg-m/s> = kg-m-s 2. Also, m-s
(meter-second), whereas ms (milli-second).

e The exponential power on a unit having a prefix refers to both the
unit and its prefix. For example, uN?> = (uN)? = uN - uN. Likewise,
mm? represents (mm)? = mm - mm.

e With the exception of the base unit the kilogram, in general avoid
the use of a prefix in the denominator of composite units. For
example, do not write N/mm, but rather kN/m; also, m/mg should
be written as Mm /kg.

e  When performing calculations, represent the numbers in terms of
their base or derived units by converting all prefixes to powers of 10.
The final result should then be expressed using a single prefix. Also,
after calculation, it is best to keep numerical values between 0.1 and
1000; otherwise, a suitable prefix should be chosen. For example,

(50 kN)(60 nm) = [50(10°) N|[60(10™) m
3000(10°®) N-m = 3(10°*) N-m = 3mN+m

1.5 Numerical Calculations

Numerical work in engineering practice is most often performed by using
handheld calculators and computers. It is important, however, that the
answers to any problem be reported with justifiable accuracy using
appropriate significant figures. In this section we will discuss these topics
together with some other important aspects involved in all engineering
calculations.

Dimensional Homogeneity. The terms of any equation used to
describe a physical process must be dimensionally homogeneous; that is,
each term must be expressed in the same units. Provided this is the case,
all the terms of an equation can then be combined if numerical values
are substituted for the variables. Consider, for example, the equation
s = vt + %atz, where, in SI units, s is the position in meters, m, ¢ is time in
seconds, s, v is velocity in m/s and a is acceleration in m /s%. Regardless of
how this equation is evaluated, it maintains its dimensional homogeneity.
In the form stated, each of the three terms is expressed in meters
[m, (m/%), (m/s?)s* | or solving for a,a = 25/ — 2v/t, the terms are
each expressed in units of m/s> [m/s%, m/s?, (m/s)/s].

Keep in mind that problems in mechanics always involve the solution
of dimensionally homogeneous equations, and so this fact can then be
used as a partial check for algebraic manipulations of an equation.
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Significant Figures. The number of significant figures contained
in any number determines the accuracy of the number. For instance, the
number 4981 contains four significant figures. However, if zeros occur at
the end of a whole number, it may be unclear as to how many significant
figures the number represents. For example, 23 400 might have three
(234), four (2340), or five (23 400) significant figures. To avoid these
ambiguities, we will use engineering notation to report a result. This
requires that numbers be rounded off to the appropriate number of
significant digits and then expressed in multiples of (10%), such as (10°),
(10%), or (107°). For instance, if 23 400 has five significant figures, it is
written as 23.400(10%), but if it has only three significant figures, it is
written as 23.4(10%).

If zeros occur at the beginning of a number that is less than one, then the
zeros are not significant. For example, 0.008 21 has three significant
figures. Using engineering notation, this number is expressed as 8.21(1073).
Likewise, 0.000 582 can be expressed as 0.582(1073) or 582(1079).

Rounding Off Numbers. Rounding off a number is necessary so
that the accuracy of the result will be the same as that of the problem
data. As a general rule, any numerical figure ending in a number greater
than five is rounded up and a number less than five is not rounded up.
The rules for rounding off numbers are best illustrated by examples.
Suppose the number 3.5587 is to be rounded off to three significant
figures. Because the fourth digit (8) is greater than 5, the third number is
rounded up to 3.56. Likewise 0.5896 becomes 0.590 and 9.3866 becomes
9.39. If we round off 1.341 to three significant figures, because the fourth
digit (1) is less than 5, then we get 1.34. Likewise 0.3762 becomes 0.376
and 9.871 becomes 9.87 There is a special case for any number that ends
in a 5. As a general rule, if the digit preceding the 5 is an even number,
then this digit is not rounded up. If the digit preceding the 5 is an odd
number, then it is rounded up. For example, 75.25 rounded off to three
significant digits becomes 75.2, 0.1275 becomes 0.128, and 0.2555
becomes 0.256.

Calculations.  When a sequence of calculations is performed, it is
best to store the intermediate results in the calculator. In other words, do
not round off calculations until expressing the final result. This procedure
maintains precision throughout the series of steps to the final solution. In
this text we will generally round off the answers to three significant
figures since most of the data in engineering mechanics, such as geometry
and loads, may be reliably measured to this accuracy.

11
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When solving problems, do the work as
neatly as possible. Being neat will
stimulate clear and orderly thinking,
and vice versa. (© Russell C. Hibbeler)

1.6 General Procedure for Analysis

Attending a lecture, reading this book, and studying the example problems
helps, but the most effective way of learning the principles of engineering
mechanics is to solve problems. To be successful at this, it is important to
always present the work in a logical and orderly manner, as suggested by
the following sequence of steps:

Read the problem carefully and try to correlate the actual physical
situation with the theory studied.

Tabulate the problem data and draw to a large scale any necessary
diagrams.

Apply the relevant principles, generally in mathematical form. When
writing any equations, be sure they are dimensionally homogeneous.
Solve the necessary equations, and report the answer with no more
than three significant figures.

Study the answer with technical judgment and common sense to
determine whether or not it seems reasonable.

Statics is the study of bodies that are at rest or move with constant
velocity.

A particle has a mass but a size that can be neglected, and a rigid
body does not deform under load.

A force is considered as a “push” or “pull” of one body on another.
Concentrated forces are assumed to act at a point on a body.
Newton’s three laws of motion should be memorized.

Mass is measure of a quantity of matter that does not change
from one location to another. Weight refers to the gravitational
attraction of the earth on a body or quantity of mass. Its magnitude
depends upon the elevation at which the mass is located.

In the SI system the unit of force, the newton, is a derived unit.
The meter, second, and kilogram are base units.

Prefixes G, M, k, m, i, and n are used to represent large and small
numerical quantities. Their exponential size should be known,
along with the rules for using the SI units.

Perform numerical calculations with several significant figures,
and then report the final answer to three significant figures.

Algebraic manipulations of an equation can be checked in part by
verifying that the equation remains dimensionally homogeneous.

Know the rules for rounding off numbers.
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EXAMPLE [1:1 .

Convert 2 km/h to m/s How many ft/s is this?

SOLUTION
Since 1 km = 1000 m and 1 h = 3600 s, the factors of conversion are
arranged in the following order, so that a cancellation of the units can
be applied:

_ 2km(1000m [ 1K
2km/h == \ ><36OOS>

2000 m
3600 s

= 0.556 m/s Ans.

From Table 1-2, 1 ft = 0.3048 m. Thus,

0.556 nf 1 ft
D55 mys = ( s ><0.3048 m)

= 1.82ft/s Ans.

NOTE: Remember to round off the final answer to three significant
figures.

EXAMPLE | 1.2

Convert the quantities 300 Ib + s and 52 slug/ft> to appropriate SI units.

SOLUTION
Using Table 1-2,11b = 4.448 N.
4.448 N
Ib-s = 0
3001b-s = 300 I s< s >
= 13345N-s = 1.33kN"s Ans.

Since 1 slug = 14.59 kg and 1 ft = 0.3048 m, then
52 shag (14.59 kg>< 1 )3
¢ \ 1skig /\0.3048 m
= 26.8(10°) kg/m’
= 26.8 Mg/m’ Ans.

52 slug /ft* =
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EXAMPLE [1.3

Evaluate each of the following and express with SI units having an
appropriate prefix: (a) (50 mN)(6 GN), (b) (400 mm)(0.6 MN)?,
(c) 45 MN?/900 Gg.

SOLUTION
First convert each number to base units, perform the indicated
operations, then choose an appropriate prefix.

Part (a)

(50 mN)(6 GN) = [50(107) N][6(10°) N]

= 300(10%) N?
1kN \/ 1kN

= 300(10°) N2< > >< 3 )
10°X/\10° N

= 300 kN? Ans.

NOTE: Keep in mind the convention kN> = (kN)? = 10° N2,

Part (b)

(400 mm)(0.6 MN)? = [400(107) m | [0.6(10°) N |2
= [400(107%) m][0.36(10'%) N? ]
= 144(10°) m - N?
= 144 Gm-N? Ans.
We can also write

144(10°) m* N* = 144(109)m-N2<1 MN><1 MN)

10X /\ 10° X
0.144 m - MN? Ans.

Part (c)
45MN?  45(10°N)?
900 Gg  900(10°) kg
= 50(10”) N° /kg
1kN\? 1
= 50(10° N@’( ) —
(10°) 10X/ kg
= 50 kN°/kg Ans.
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“leromiews

The answers to all but every fourth problem (asterisk) are given in the back of the book.

1-1. What is the weight in newtons of an object that
has a mass of (a) 8 kg, (b) 0.04 kg, and (c) 760 Mg?

1-2. Represent each of the following combinations of
units in the correct SI form: (a) kN/us, (b) Mg/mN, and
(c) MN/(kg - ms).

1-3. Represent each of the following combinations of
units in the correct SI form: (a) Mg/ms, (b) N/mm,

(c) mN/(kg - us).

*1-4. Convert: (a) 200 1b - ft to N - m, (b) 350 Ib/ft> to kN /m?,
(c) 8 ft/h to mm/s. Express the result to three significant
figures. Use an appropriate prefix.

1-5. Represent each of the following as a number between
0.1 and 1000 using an appropriate prefix: (a) 45320 kN,
(b) 568(10°) mm, and (c) 0.00563 mg.

1-6. Round off the following numbers to three significant
figures: (a) 58 342 m, (b) 68.534 s, (c) 2553 N, and (d) 7555 kg.

1-7. Represent each of the following quantities in the
correct SI form using an appropriate prefix: (a) 0.000 431 kg,
(b) 35.3(10°) N, (c) 0.005 32 km.

*1-8. Represent each of the following combinations of units
in the correct SI form using an appropriate prefix: (a) Mg/mm,
(b) mN/pss, (c) wm - Mg.

1-9. Represent each of the following combinations of
units in the correct SI form using an appropriate prefix:
(a) m/ms, (b) ukm, (c) ks/mg, and (d) km - uN.

1-10. Represent each of the following combinations of units
in the correct SI form: (a) GN - um, (b) kg/um, (c) N/ks?,
and (d) kN/ us.

1-11. Represent each of the following with SI units having
an appropriate prefix: (a) 8653 ms, (b) 8368 N, (c) 0.893 kg.

*1-12. Evaluate each of the following to three significant
figures and express each answer in SI units using
an appropriate prefix: (a) (684 um)/(43 ms),
(b) (28 ms)(0.0458 Mm) /(348 mg), (c) (2.68 mm)(426 Mg).

1-13. The density (mass/volume) of aluminum is
5.26 slug/ft’. Determine its density in SI units. Use an
appropriate prefix.

1-14. Evaluate each of the following to three significant
figures and express each answer in SI units using an
appropriate prefix: (a) (212 mN)% (b) (52 800 ms)?, and
(c) [548(10%)]'/% ms.

1-15. Using the SI system of units, show that Eq. 1-2 is a
dimensionally homogeneous equation which gives F in
newtons. Determine to three significant figures the
gravitational force acting between two spheres that are
touching each other. The mass of each sphere is 200 kg and
the radius is 300 mm.

#1-16. The pascal (Pa) is actually a very small unit of
pressure. To show this, convert 1Pa = 1 N/m? to Ib/ft.
Atmosphere pressure at sea level is 14.7 Ib/in?>. How many
pascals is this?

1-17. Water has a density of 1.94 slug/ft’. What is the
density expressed in SI units? Express the answer to three
significant figures.

1-18. Evaluate each of the following to three significant
figures and express each answer in SI units using an
appropriate prefix: (a) 354 mg(45 km)/(0.0356 kN),
(b) (0.004 53 Mg)(201 ms), (c) 435 MN/23.2 mm.

1-19. A concrete column has a diameter of 350 mm and
a length of 2 m. If the density (mass/volume) of concrete is
2.45 Mg/m?, determine the weight of the column in pounds.

#1-20. If a man weighs 155 Ib on earth, specify (a) his
mass in slugs, (b) his mass in kilograms, and (c) his weight in
newtons. If the man is on the moon, where the acceleration
due to gravity is g, = 5.30 ft/s?, determine (d) his weight
in pounds, and (e) his mass in kilograms.

1-21. Two particles have a mass of 8 kg and 12 kg,
respectively. If they are 800 mm apart, determine the force
of gravity acting between them. Compare this result with
the weight of each particle.
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(© Vasiliy Koval/Fotolia)

This electric transmission tower is stabilized by cables that exert forces on the
tower at their points of connection. In this chapter we will show how to express
these forces as Cartesian vectors, and then determine their resultant.



Force Vectors

CHAPTER OBJECTIVES

m To show how to add forces and resolve them into components
using the Parallelogram Law.

m To express force and position in Cartesian vector form and
explain how to determine the vector’s magnitude and direction.

m To introduce the dot product in order to use it to find the angle
between two vectors or the projection of one vector onto another.

2.1 Scalars and Vectors

Many physical quantities in engineering mechanics are measured using
either scalars or vectors.

Scalar. A scalaris any positive or negative physical quantity that can
be completely specified by its magnitude. Examples of scalar quantities
include length, mass, and time.

Vector. A vector is any physical quantity that requires both a
magnitude and a direction for its complete description. Examples of
vectors encountered in statics are force, position, and moment. A vector
is shown graphically by an arrow. The length of the arrow represents the
magnitude of the vector, and the angle 6 between the vector and a fixed
axis defines the direction of its line of action. The head or tip of the arrow
indicates the sense of direction of the vector, Fig. 2-1.

In print, vector quantities are represented by boldface letters such as
A, and the magnitude of a vector is italicized, A. For handwritten work, it
is often convenient to denote a vector quantity by simply drawing an
arrow above it, g

Line of action

Head\ >/
P
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Scalar multiplication and division

Fig. 2-2

2.2 Vector Operations

Multiplication and Division of a Vector by a Scalar. Ifa
vector is multiplied by a positive scalar, its magnitude is increased by that
amount. Multiplying by a negative scalar will also change the directional
sense of the vector. Graphic examples of these operations are shown
in Fig. 2-2.

Vector Addition. When adding two vectors together it is important
to account for both their magnitudes and their directions. To do this we
must use the parallelogram law of addition. To illustrate, the two
component vectors A and B in Fig. 2-3a are added to form a resultant
vector R = A + B using the following procedure:

e First join the tails of the components at a point to make them
concurrent, Fig. 2-3b.

e From the head of B, draw a line parallel to A. Draw another line
from the head of A that is parallel to B. These two lines intersect at
point P to form the adjacent sides of a parallelogram.

e The diagonal of this parallelogram that extends to P forms R, which
then represents the resultant vector R = A + B, Fig. 2-3c.

Parallelogram law

(a) (b) ()
Fig. 2-3

We can also add B to A, Fig. 2-4a, using the triangle rule, which is a
special case of the parallelogram law, whereby vector B is added to
vector A in a “head-to-tail” fashion, i.e., by connecting the head of
A to the tail of B, Fig. 2-4b. The resultant R extends from the tail of A to
the head of B. In a similar manner, R can also be obtained by adding
A to B, Fig. 2-4c. By comparison, it is seen that vector addition is
commutative; in other words, the vectors can be added in either order,
ie,R=A+B =B+ A.



2.2 VECTOR OPERATIONS

R
\ B 1
B
R=A+B R=B+A
Triangle rule Triangle rule
() (b) ©
Fig. 24

As a special case, if the two vectors A and B are collinear, i.e., both
have the same line of action, the parallelogram law reduces to an
algebraic or scalar addition R = A + B, as shown in Fig. 2-5.

R

AL

A B
R=A+B

Addition of collinear vectors

Fig. 2-5

Vector Subtraction. The resultant of the difference between two
vectors A and B of the same type may be expressed as

R =A-B=A+(-B)

This vector sum is shown graphically in Fig. 2—6. Subtraction is therefore
defined as a special case of addition, so the rules of vector addition also
apply to vector subtraction.

-B
A
R Ao R A
B > < -B
Parallelogram law Triangle construction

Vector subtraction

Fig. 2-6

19
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2.3 Vector Addition of Forces

Experimental evidence has shown that a force is a vector quantity since
it has a specified magnitude, direction, and sense and it adds according to
the parallelogram law. Two common problems in statics involve either
finding the resultant force, knowing its components, or resolving a known
force into two components. We will now describe how each of these
problems is solved using the parallelogram law.

Finding a Resultant Force. The two component forces F; and F,
acting on the pin in Fig. 2-7a can be added together to form the resultant
force Fr =F; + F,, as shown in Fig. 2-7b. From this construction, or using

The parallelogram law must be used the triangle rule, Fig. 2-7¢, we can apply the law of cosines or the law of
to determine the resultant of the sines to the triangle in order to obtain the magnitude of the resultant
two forces acting on the hook. force and its direction.

(© Russell C. Hibbeler)

Fr=F +tF,
(b) (c)
Fig. 2-7

Finding the Components of a Force. Sometimes it is necessary
to resolve a force into two components in order to study its pulling or
pushing effect in two specific directions. For example, in Fig. 2-8a, F is to
be resolved into two components along the two members, defined by the
u and v axes. In order to determine the magnitude of each component, a
parallelogram is constructed first, by drawing lines starting from the tip
of F, one line parallel to u, and the other line parallel to v. These lines
then intersect with the v and u axes, forming a parallelogram. The force
components F, and F, are then established by simply joining the tail of F
to the intersection points on the u and v axes, Fig.2-8b. This parallelogram
can then be reduced to a triangle, which represents the triangle rule,

Using the parallelogram law the
supporting force F can be resolved into ° g . 3 3
components acting along the u and v axes. ~ Fig. 2-8c. From this, the law of sines can then be applied to determine the

(© Russell C. Hibbeler) unknown magnitudes of the components.
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(a) (®) ©

Fig. 2-8

Addition of Several Forces. If more than two forces are to be
added, successive applications of the parallelogram law can be carried
out in order to obtain the resultant force. For example, if three forces
Fy, F,, F5 act at a point O, Fig. 2-9, the resultant of any two of the forces
is found, say, F; + F,—and then this resultant is added to the third force,
yielding the resultant of all three forces; i.e., Fr = (F; + F,) + F5. Using
the parallelogram law to add more than two forces, as shown here, often
requires extensive geometric and trigonometric calculation to determine
the numerical values for the magnitude and direction of the resultant.
Instead, problems of this type are easily solved by using the “rectangular-
component method,” which is explained in Sec. 2.4.

Fig. 2-9

The resultant force Fg on the hook requires
the addition of F; + F,, then this resultant is
added to F;. (© Russell C. Hibbeler)
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Important Points

¢ A scalar is a positive or negative number.

¢ A vector is a quantity that has a magnitude, direction, and sense.

¢ Multiplication or division of a vector by a scalar will change the
magnitude of the vector. The sense of the vector will change if the

scalar is negative.

¢ As a special case, if the vectors are collinear, the resultant is
formed by an algebraic or scalar addition.

A/ ¢ B
b a
C
Cosine law:
C=VA2+ B> —2ABcosc
Sine law:
A _ B _ C

sina sinb sinc

(c)
Fig. 2-10

Procedure for Analysis

Problems that involve the addition of two forces can be solved as
follows:

Parallelogram Law.

® Two “component” forces F; and F, in Fig. 2-10a add according to
the parallelogram law, yielding a resultant force Fy that forms the
diagonal of the parallelogram.

® If a force F is to be resolved into components along two axes
u and v, Fig. 2-10D, then start at the head of force F and construct
lines parallel to the axes, thereby forming the parallelogram. The
sides of the parallelogram represent the components, F,, and F,,

® Label all the known and unknown force magnitudes and the angles
on the sketch and identify the two unknowns as the magnitude and
direction of Fp, or the magnitudes of its components.

Trigonometry.

® Redraw a half portion of the parallelogram to illustrate the
triangular head-to-tail addition of the components.

® From this triangle, the magnitude of the resultant force can be
determined using the law of cosines, and its direction is
determined from the law of sines. The magnitudes of two force
components are determined from the law of sines. The formulas
are given in Fig. 2-10c.
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EXAMPLE | 2.1

The screw eye in Fig. 2-11a is subjected to two forces, F; and F,.
Determine the magnitude and direction of the resultant force.

(2)

SOLUTION

Parallelogram Law. The parallelogram is formed by drawing a line
from the head of Fy that is parallel to F,, and another line from
the head of F, that is parallel to F;. The resultant force Fz extends to
where these lines intersect at point A, Fig. 2-11b. The two unknowns
are the magnitude of Fx and the angle 6 (theta).

Trigonometry. From the parallelogram, the vector triangle is
constructed, Fig. 2-11c. Using the law of cosines

Fp = \/(100 N)? + (150 N)> — 2(100 N)(150 N) cos 115°
= \/10 000 + 22500 — 30 000(—0.4226) = 212.6 N
= 213N Ans.

Applying the law of sines to determine 6,
ISON  212.6N 150N
= inh = ——— (sin 115°
sin®  sin 115° Sinb = 2zeN G 1)
0 = 39.8°
Thus, the direction ¢ (phi) of Fg, measured from the horizontal, is

¢ = 39.8° + 15.0° = 54.8° Ans.

NOTE: The results seem reasonable, since Fig. 2-11b shows Fy to have
a magnitude larger than its components and a direction that is
between them.

A
150 N
115° 65°
10 F
360° — 2(65°
360° 22065 _ 450
) 100 N
j15°
90° — 25° = 65°
(b)
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EXAMPLE | 2.2

Resolve the horizontal 600-1b force in Fig. 2-12a into components
acting along the u and v axes and determine the magnitudes of these
components.

(c)
Fig. 2-12

SOLUTION

The parallelogram is constructed by extending a line from the sead of
the 600-1b force parallel to the v axis until it intersects the u axis at
point B, Fig.2-12b. The arrow from A to B represents F,.. Similarly, the
line extended from the head of the 600-1b force drawn parallel to the
u axis intersects the v axis at point C, which gives F,,.

The vector addition using the triangle rule is shown in Fig. 2-12c.
The two unknowns are the magnitudes of F, and F,.. Applying the law
of sines,

F,  6001lb
sin 120°  sin 30°
F, = 1039 1b Ans.
F, _ 6001lb
sin30°  sin 30°
F, = 600 1b Ans.

NOTE: The result for F, shows that sometimes a component can have
a greater magnitude than the resultant.
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EXAMPLE

Determine the magnitude of the component force F in Fig. 2-13a and
the magnitude of the resultant force Fy if Fp is directed along the
positive y axis.

y
y
A
|
¥ 45°
Fr
45 200 Ib s5)
o {
FN 452 600 30
30° 200 1b
30°
(a) (b) (c)
Fig. 2-13
SOLUTION

The parallelogram law of addition is shown in Fig. 2-13b, and the
triangle rule is shown in Fig. 2-13¢. The magnitudes of F and F are the
two unknowns. They can be determined by applying the law of sines.

F  2001b
sin 60°  sin 45°

F=2451b Ans.

Fr  2001b
sin 75°  sin 45°

Fr =273 1b Ans.
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EXAMPLE | 2.4

i

It is required that the resultant force acting on the eyebolt in Fig. 2-14a
be directed along the positive x axis and that F, have a minimum
magnitude. Determine this magnitude, the angle 6,and the corresponding
resultant force.

F, = 800N

\\
60° S
\ L.
0
(b) (c)
F,
(a)
Fig. 2-14
SOLUTION

The triangle rule for Fir = F; + F, is shown in Fig. 2-14b. Since the
magnitudes (lengths) of Fr and F, are not specified, then F, can actually
be any vector that has its head touching the line of action of Fg, Fig.2-14c.
However, as shown, the magnitude of F, is a minimum or the shortest
length when its line of action is perpendicular to the line of action of
Fg, that is, when

0 = 90° Ans.
Since the vector addition now forms the shaded right triangle, the two
unknown magnitudes can be obtained by trigonometry.

Ans.
Ans.

Fr = (800 N)cos 60° = 400 N
F, = (800 N)sin 60° = 693 N

It is strongly suggested that you test yourself on the solutions to these
examples, by covering them over and then ftrying to draw the
parallelogram law, and thinking about how the sine and cosine laws
are used to determine the unknowns. Then before solving any of
the problems, try to solve the Preliminary Problems and some of the
Fundamental Problems given on the next pages. The solutions and
answers to these are given in the back of the book. Doing this throughout
the book will help immensely in developing your problem-solving skills.
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. PRELIMINARY PROBLEMS

Partial solutions and answers to all Preliminary Problems are given in the back of the book.

P2-1. In each case, construct the parallelogram law to P2-2. In each case, show how to resolve the force F into
show Fi = F; + F,. Then establish the triangle rule, where components acting along the u and v axes using the
Fr = F; + F,. Label all known and unknown sides and parallelogram law. Then establish the triangle rule to show

internal angles. Fr = F, + F,. Label all known and unknown sides and

interior angles.

F=200N

v
F, = 200N .
F, = 100N
15° 200 .30°
45° 45°
(a)

(a)

F =400 N
70° D)
Fl = 400 N 1300
F,=500N 120°
(b)
u

()
F, = 450N
20° v
40°
<—
F, = 300N u F=600N

(©) (©
Prob. P2-1 Prob. P2-2
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. FUNDAMENTAL PROBLEMS

Partial solutions and answers to all Fundamental Problems are given in the back of the book.

F2-1. Determine the magnitude of the resultant force
acting on the screw eye and its direction measured clockwise
from the x axis.

f
45°

2 kN
6 kN Prob. F2-1

F2-2. Two forces act on the hook. Determine the magnitude
of the resultant force.

!
30°

/
TN 200N
40°

\<500 N

F2-3. Determine the magnitude of the resultant force and
its direction measured counterclockwise from the positive
X axis.

Prob. F2-2

800 N

1
30°

600 N
Prob. F2-3

F2-4. Resolve the 30-Ib force into components along the
u and v axes, and determine the magnitude of each of these
components.

301b

30°

Prob. F2-4

F2-5. The force F'=450 Ib acts on the frame. Resolve this
force into components acting along members AB and AC,
and determine the magnitude of each component.

Prob. F2-5

F2-6. If force F is to have a component along the u axis of
F,=6kN, determine the magnitude of F and the magnitude
of its component F,, along the v axis.

u

Prob. F2-6



2-1. If # = 60° and F = 450 N, determine the magnitude
of the resultant force and its direction, measured
counterclockwise from the positive x axis.

2-2. If the magnitude of the resultant force is to be 500 N,
directed along the positive y axis, determine the magnitude
of force F and its direction 6.

y
F
0
15° x
700 N

Probs. 2-1/2

2-3. Determine the magnitude of the resultant force
F, = F, + F, and its direction, measured counterclockwise
from the positive x axis.

F, =2501b

~30°..
)—
45°

F,=3751b

Prob. 2-3
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*2—4. The vertical force F acts downward at A on the two-
membered frame. Determine the magnitudes of the two
components of F directed along the axes of AB and AC.
Set F = 500 N.

2-5. Solve Prob. 24 with F = 350 Ib.

Probs. 2-4/5

2-6. Determine the magnitude of the resultant force
Fr = F, + F, and its direction, measured clockwise from
the positive u axis.

2-7. Resolve the force F; into components acting along
the u and v axes and determine the magnitudes of the
components.

*2-8. Resolve the force F, into components acting along
the u and v axes and determine the magnitudes of the
components.

F,=6kN

Probs. 2—-6/7/8
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2-9. If the resultant force acting on the support is to be
1200 1b, directed horizontally to the right, determine the
force F in rope A and the corresponding angle 6.

- 60 900 Ib

Prob. 2-9

2-10. Determine the magnitude of the resultant force and its
direction, measured counterclockwise from the positive x axis.

500 1b
Prob. 2-10

2-11. The plate is subjected to the two forces at A and B as
shown. If § = 60°, determine the magnitude of the resultant
of these two forces and its direction measured clockwise
from the horizontal.

*2-12. Determine the angle 6 for connecting member A to
the plate so that the resultant force of F, and Fp is directed
horizontally to the right. Also, what is the magnitude of the
resultant force?

FA=8kN

B N Fy=6kN

Probs. 2-11/12

2-13. The force acting on the gear tooth is F = 201b.
Resolve this force into two components acting along the
lines aa and bb.

2-14. The component of force F acting along line aa is
required to be 30 Ib. Determine the magnitude of F and its
component along line bb.

80°

60°

Probs. 2-13/14

2-15. Force F acts on the frame such that its component
acting along member AB is 650 1b, directed from B
towards A, and the component acting along member BC is
500 Ib, directed from B towards C. Determine the magnitude
of F and its direction 6. Set ¢ = 60°.

*2-16. Force F acts on the frame such that its component
acting along member AB is 650 1b, directed from B
towards A. Determine the required angle ¢ (0° = ¢ = 45°)
and the component acting along member BC.Set F = 850 1b
and 6 = 30°.

Probs. 2-15/16



2-17. Determine the magnitude and direction of the
resultant F, = F; + F, + F; of the three forces by first
finding the resultant F' = F, + F, and then forming
F;, = F' + F,.

2-18. Determine the magnitude and direction of the
resultant ¥, = F; + F, + F; of the three forces by first
finding the resultant F' = F, + F; and then forming
Fr = F + F,.

F2:20N

Probs. 2-17/18

2-19. Determine the design angle 6 (0° < 6 =< 90°) for
strut AB so that the 400-1b horizontal force has a component
of 500 Ib directed from A towards C. What is the component
of force acting along member AB? Take ¢ = 40°.

*2-20. Determine the design angle ¢ (0° = ¢ = 90°)
between struts AB and AC so that the 400-Ib horizontal
force has a component of 600 Ib which acts up to the left, in
the same direction as from B towards A.Take 6 = 30°.

4001b A

Probs. 2-19/20
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2-21. Determine the magnitude and direction of the
resultant force, Frp measured counterclockwise from
the positive x axis. Solve the problem by first finding the
resultant F' = F; + F, and then forming Fz =F' + F;.

2-22. Determine the magnitude and direction of the
resultant force, measured counterclockwise from the positive
x axis. Solve [ by first finding the resultant F' = F, + F; and
then forming Fr=F’' + F,.

F, = 400N

Probs. 2-21/22

2-23. Two forces act on the screw eye. If F; = 400 N and
F, = 600 N, determine the angle 6 (0° = 6 = 180°) between
them, so that the resultant force has a magnitude of
Fr = 800 N.

*2-24. Two forces F; and F, act on the screw eye. If their
lines of action are at an angle # apart and the magnitude of
each force is F; = F, = F, determine the magnitude of the
resultant force Fr and the angle between Fy and F;.

F,

Probs. 2-23/24
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2-25. If Fy =301b and F, = 40 Ib, determine the angles 6 *2-28. Determine the magnitude of force F so that the

and ¢ so that the resultant force is directed along the resultant Fy of the three forces is as small as possible. What
positive x axis and has a magnitude of Fr =60 Ib. is the minimum magnitude of Fp?
8 kN

30°
6 kN

Prob. 2-28
Prob. 2-25
2-29. If the resultant force of the two tugboats is 3 kN,
directed along the positive x axis, determine the required
magnitude of force Fp and its direction 6.
2-26. Determine the magnitude and direction 6 of F, so 2-30. If Fz=3KkN and 6 = 45°, determine the magnitude
that the resultant force is directed along the positive x axis of the resultant force of the two tugboats and its direction
and has a magnitude of 1250 N. measured clockwise form the positive x axis.
2-27. Determine the magnitude and direction, measured 2-31. If the resultant force of the two tugboats is required
counterclockwise from the positive x axis, of the resultant to be directed towards the positive x axis, and Fy is to be a
force acting on the ring at O, if F4, =750 N and 6 = 45°. minimum, determine the magnitude of F; and Fp and the
angle 6.

Probs. 2-26/27 Probs. 2-29/30/31
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2.4 Addition of a System of Coplanar
Forces

When a force is resolved into two components along the x and y axes, the
components are then called rectangular components. For analytical work
we can represent these components in one of two ways, using either scalar
or Cartesian vector notation.

Scalar Notation. The rectangular components of force F shown in
Fig. 2-15a are found using the parallelogram law, so that F = F, + F,.
Because these components form a right triangle, they can be
determined from

F. = Fcos0 and F, = Fsin0

Instead of using the angle 6, however, the direction of F can also be
defined using a small “slope” triangle, as in the example shown in
Fig. 2-15b. Since this triangle and the larger shaded triangle are similar,
the proportional length of the sides gives

E_a
F ¢
or
a
FX=F()
c
and
K _b
F c
or
_ b
F, = —F -

Here the y component is a negative scalar since F, is directed along the
negative y axis.

It is important to keep in mind that this positive and negative scalar
notation is to be used only for computational purposes, not for graphical
representations in figures. Throughout the book, the head of a vector
arrow in any figure indicates the sense of the vector graphically; algebraic
signs are not used for this purpose. Thus, the vectors in Figs. 2-15a and
2-15b are designated by using boldface (vector) notation.* Whenever
italic symbols are written near vector arrows in figures, they indicate the
magnitude of the vector, which is always a positive quantity.

*Negative signs are used only in figures with boldface notation when showing equal but
opposite pairs of vectors, as in Fig. 2-2.

y
A
F,
‘\0
F,
(a)
y
F,
C
F, b
a
 /
(b)
Fig. 2-15

33
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Qi o
—

_ F
M
Fy
1 FX 1 i
Fig. 2-16
y
1
X
F;
(a)
y
F
AN, A
. (o S~ t—”— o Fio
— > X
~ g F3x
AN
F;ly
(b)

The resultant force of the four cable forces
acting on the post can be determined by
adding algebraically the separate x and y
components of each cable force. This resultant
Fi produces the same pulling effect on the
post as all four cables. (© Russell C. Hibbeler)

Cartesian Vector Notation. It is also possible to represent the
x and y components of a force in terms of Cartesian unit vectors i and j.
They are called unit vectors because they have a dimensionless magnitude
of 1, and so they can be used to designate the directions of the x and y
axes, respectively, Fig. 2-16.*

Since the magnitude of each component of F is always a positive quantity,
which is represented by the (positive) scalars F, and F,, then we can
express F as a Cartesian vector,

F=Fi+Fj

Coplanar Force Resultants. We can use either of the two
methods just described to determine the resultant of several coplanar
Jorces, i.e., forces that all lie in the same plane. To do this, each force is first
resolved into its x and y components, and then the respective components
are added using scalar algebra since they are collinear. The resultant force
is then formed by adding the resultant components using the parallelogram
law. For example, consider the three concurrent forces in Fig. 2-17a, which
have x and y components shown in Fig. 2-17b. Using Cartesian vector
notation, each force is first represented as a Cartesian vector, i.e.,

Fy = Fi,i+ F,j
F2 - _F2xi + F2yj
F3xi - F3yj

e
[

The vector resultant is therefore

F,=F +F + F
=Fp i+ Fiyj— Fud + By j+ Fid = Fyj
= (Fiy — Fy +F3x)i+ (Fly +F2y _F3y)j
= (Froi + (Fry)i

If scalar notation is used, then indicating the positive directions of
components along the x and y axes with symbolic arrows, we have

i, (FR)x:le_F2x+F3x
+1 oy =Py + By — B
These are the same results as the i and j components of Fy determined
above.

*For handwritten work, unit vectors are usually indicated using a circumflex, e.g., i and j.
Also, realize that F, and F), in Fig. 2-16 represent the magnitudes of the components, which
are always positive scalars. The directions are defined by i and j. If instead we used scalar
notation, then F, and F, could be positive or negative scalars, since they would account for
both the magnitude and direction of the components.
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We can represent the components of the resultant force of any number
of coplanar forces symbolically by the algebraic sum of the x and y
components of all the forces, i.e.,

(FR)x = EFx

2-1
(FR)y = E’F‘y ( )

Once these components are determined, they may be sketched along
the x and y axes with their proper sense of direction, and the resultant
force can be determined from vector addition, as shown in Fig. 2-17c.
From this sketch, the magnitude of Fg is then found from the Pythagorean
theorem; that is,

Fr = V(Fp)i + (Fg);

Also, the angle 6, which specifies the direction of the resultant force, is
determined from trigonometry:

(FR)y
(FR)x

6 = tan™'

The above concepts are illustrated numerically in the examples which
follow.

Important Points

¢ The resultant of several coplanar forces can easily be determined
if an x, y coordinate system is established and the forces are
resolved along the axes.

¢ The direction of each force is specified by the angle its line of
action makes with one of the axes, or by a slope triangle.

¢ The orientation of the x and y axes is arbitrary, and their positive
direction can be specified by the Cartesian unit vectors i and j.

¢ The x and y components of the resultant force are simply the
algebraic addition of the components of all the coplanar forces.

¢ The magnitude of the resultant force is determined from the
Pythagorean theorem, and when the resultant components are
sketched on the x and y axes, Fig. 2-17¢, the direction 6 can be
determined from trigonometry.

(FR)y
A

N

Fr

(©

'(FR )x

Fig. 2-17 (cont.)
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y
F, =200N
30°
X
NG
12
F, =260 N
(a)
y
F, = 200N
X A /1, = 200 cos 30° N
\\\
30°
et
\
\
<€ X

Fy, =260 (%) Ny

Fig. 2-18

Determine the x and y components of F; and F, acting on the boom
shown in Fig. 2-18a. Express each force as a Cartesian vector.

SOLUTION

Scalar Notation. By the parallelogram law, F; is resolved into x and y
components, Fig. 2-18b. Since F;, acts in the —x direction, and F;, acts in
the +y direction, we have

F,, = —2005sin30°N = —100N = 100 N < Ans.

Fj, = 200 cos 30°N = 173N = 173 N Ans.

The force F, is resolved into its x and y components, as shown in
Fig. 2-18c. Here the slope of the line of action for the force is indicated.
From this “slope triangle” we could obtain the angle 6, e.g.,
6 = tan”! (%), and then proceed to determine the magnitudes of the
components in the same manner as for F;. The easier method, however,
consists of using proportional parts of similar triangles, i.e.,

P _ 12 F,. = 260 N<12> = 240N
260N 13 o 13)
Similarly,

5
Fyy = 260 N(B) = 100N

Notice how the magnitude of the horizontal component, F,,, was
obtained by multiplying the force magnitude by the ratio of the
horizontal leg of the slope triangle divided by the hypotenuse; whereas
the magnitude of the vertical component, F,, was obtained by
multiplying the force magnitude by the ratio of the vertical leg divided
by the hypotenuse. Hence, using scalar notation to represent these
components, we have

F,, = 240N = 240N — Ans.
—100N = 100 N} Ans.

F,,
Cartesian Vector Notation. Having determined the magnitudes
and directions of the components of each force, we can express each
force as a Cartesian vector.

F, = {—100i + 173j}N Ans.
F, = {240i — 100j}N Ans.
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The link in Fig. 2-19a is subjected to two forces F; and F,. Determine
the magnitude and direction of the resultant force. y

F, =400 N F; = 600N
SOLUTION | 450

Scalar Notation. First we resolve each force into its x and y
components, Fig. 2-19b, then we sum these components algebraically.
& (Fp)y = 3F,; (Fg), = 600 cos 30° N — 400 sin 45° N
= 2368 N— (a)
+1(Fg)y = 2F; (Fg), = 600 sin 30° N + 400 cos 45° N
= 5828N1

30°

The resultant force, shown in Fig. 2-19¢, has a magnitude of

Fr = V(236.8 N2 + (582.8 N)?
= 629N Ans.

From the vector addition,

582.8N
= tan”' = 67.9° Ans.
0 = tan (236.8 N) 67.9 ns. (b)
SOLUTION I
Cartesian Vector Notation. From Fig. 2-19b, each force is first
expressed as a Cartesian vector. y
F, = {600 cos 30°i + 600 sin 30°j } N | F
582.8 NA
F, = {—400 sin 45°% + 400 cos 45°j } N
Then,
~o
Fr = F, + F, = (600 cos 30° N — 400 sin 45° N)i f >
+ (600 sin 30° N + 400 cos 45° N)j 268N
= {236.8i + 582.8j} N (©)
The magnitude and direction of Fy are determined in the same Fig. 2-19

manner as before.

NOTE: Comparing the two methods of solution, notice that the use
of scalar notation is more efficient since the components can be
found directly, without first having to express each force as a
Cartesian vector before adding the components. Later, however, we
will show that Cartesian vector analysis is very beneficial for solving
three-dimensional problems.
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y
250N
200N \ 45°
s ‘
7’
— X
0 400N

(®)

The end of the boom O in Fig. 2-20a is subjected to three concurrent
and coplanar forces. Determine the magnitude and direction of the
resultant force.

SOLUTION
Each force is resolved into its x and y components, Fig. 2-20b. Summing
the x components, we have

B (Foe = SF: (Fp)y = —400N + 250 sin 45° N — 200() N
= —3832N = 3832 N <«

The negative sign indicates that Fy, acts to the left,i.e.,in the negative
x direction, as noted by the small arrow. Obviously, this occurs because
F; and F; in Fig. 2-20b contribute a greater pull to the left than F,
which pulls to the right. Summing the y components yields

+1(Fp)y = 3F,;  (Fg), = 250 cos 45° N + 200(2) N
= 296.8 N1

The resultant force, shown in Fig. 2-20c, has a magnitude of

Fr = V(=3832N)? + (296.8 N)?
= 485N Ans.

From the vector addition in Fig. 2-20c, the direction angle 0 is
296.
0= tan1<968> = 37.8° Ans.

NOTE: Application of this method is more convenient, compared to
using two applications of the parallelogram law, first to add F; and F,
then adding Fj to this resultant.
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. FUNDAMENTAL PROBLEMS

F2-7. Resolve each force acting on the post into its x and F2-10. If the resultant force acting on the bracket is to be
y components. 750 N directed along the positive x axis, determine the
y magnitude of F and its direction 6.

| F, = 300N

F,=450N

Fy;= 600N

5/

3
45°
X
Prob. F2-7

F2-8. Determine the magnitude and direction of the

resultant force.
Prob. F2-10

400N F2-11. If the magnitude of the resultant force acting on
the bracket is to be 80 Ib directed along the u axis, determine
the magnitude of F and its direction 6.

. Prob. F 2-8 Prob. F2-11
F2-9. Determine the magnitude of the resultant force
acting on the corbel and its direction § measured F2-12. Determine the magnitude of the resultant force
counterclockwise from the x axis. and its direction # measured counterclockwise from the
Y positive x axis.
y

F; = 600 1b F,=4001b
F, =700 1b

30°

Prob. F2-9 Prob. F2-12
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| PROBLEMS

*2-32. Determine the magnitude of the resultant force
and its direction, measured counterclockwise from the
positive x axis.

y
F,=200N
l 45°
X
30°
F,=150N
Prob. 2-32

2-33. Determine the magnitude of the resultant force and
its direction, measured clockwise from the positive x axis.

<

400 N

30°

R T,
> /A

800 N

Prob. 2-33

2-34. Resolve F; and F, into their x and y components.

2-35. Determine the magnitude of the resultant force
and its direction measured counterclockwise from the
positive x axis.

F,=250N

Probs. 2-34/35

*2-36. Resolve each force acting on the gusset plate into
its x and y components, and express each force as a
Cartesian vector.

2-37. Determine the magnitude of the resultant force
acting on the plate and its direction, measured counter-
clockwise from the positive x axis.

Probs. 2-36/37
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2-38. Express each of the three forces acting on the 2-42. Express F;, F,, and F; as Cartesian vectors.
support in Cartesian vector form and determine the
magnitude of the resultant force and its direction, measured
clockwise from positive x axis.

2-43. Determine the magnitude of the resultant force and its
direction, measured counterclockwise from the positive x axis.

y F,=50N

F,=625N
F,=80N

Probs. 2-42/43

Prob. 2-38 ) )
*2-44. Determine the magnitude of the resultant force

and its direction, measured clockwise from the positive
*2-40. Determine the magnitude of the resultant force X axis.

and its direction, measured counterclockwise from the y

positive x axis.

2-39. Determine the x and y components of F; and F,.

401b

F, = 200N

F=150N "\

Probs. 2-39/40

2-41. Determine the magnitude of the resultant force

13\ 12
and its direction, measured counterclockwise from the
positive x axis.
911b
y
F;=8kN Prob. 2-44

2-45. Determine the magnitude and direction 6 of the
resultant force Fy. Express the result in terms of the
magnitudes of the components F; and F, and the angle ¢.

F,

Prob. 2-41 Prob. 245



42 CHAPTER 2 FORCE VECTORS

2-46. Determine the magnitude and orientation 6 of Fg so
that the resultant force is directed along the positive y axis
and has a magnitude of 1500 N.

2-47. Determine the magnitude and orientation, measured
counterclockwise from the positive y axis, of the resultant
force acting on the bracket, if 7z = 600 N and 6 = 20°.

F,=700N

Probs. 2-46/47

*2-48. Three forces act on the bracket. Determine the
magnitude and direction 6 of F; so that the resultant force
is directed along the positive x’ axis and has a magnitude
of 800 N.

2-49. If F; = 300 Nand 6 = 10° determine the magnitude
and direction, measured counterclockwise from the positive
x' axis, of the resultant force acting on the bracket.

A F,=200N

Probs. 2-48/49

2-50. Express Fy, F,, and F; as Cartesian vectors.

2-51. Determine the magnitude of the resultant force
and its direction, measured counterclockwise from the
positive x axis.

Fy=15kN

F,=26kN 40°
13

30°

Fy=36kN

Probs. 2-50/51

*2-52. Determine the x and y components of each force
acting on the gusset plate of a bridge truss. Show that the
resultant force is zero.

Prob. 2-52



2-53. Express F; and F, as Cartesian vectors.

2-54. Determine the magnitude of the resultant force and
its direction measured counterclockwise from the positive
X axis.

Probs. 2-53/54

2-55. Determine the magnitude of force F so that the
resultant force of the three forces is as small as possible.
What is the magnitude of the resultant force?

14 kN F

300 4?0
{ 8 kN

Prob. 2-55
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*2-56. If the magnitude of the resultant force acting on
the bracket is to be 450 N directed along the positive u axis,
determine the magnitude of F; and its direction ¢.

2-57. If the resultant force acting on the bracket is
required to be a minimum, determine the magnitudes of F,
and the resultant force. Set ¢ =30°.

Probs. 2-56/57

2-58. Three forces act on the bracket. Determine the
magnitude and direction 0 of F so that the resultant force is
directed along the positive x’ axis and has a magnitude
of 8 kN.

2-59. If F=5KkN and 0 =30°, determine the magnitude of
the resultant force and its direction, measured counter-
clockwise from the positive x axis.

Probs. 2-58/59
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Fig. 2-21 (© Russell C. Hibbeler)

N

2.5 Cartesian Vectors

The operations of vector algebra, when applied to solving problems in
three dimensions, are greatly simplified if the vectors are first represented
in Cartesian vector form. In this section we will present a general method
for doing this; then in the next section we will use this method for finding
the resultant force of a system of concurrent forces.

Right-Handed Coordinate System. We will use a right-
handed coordinate system to develop the theory of vector algebra that
follows. A rectangular coordinate system is said to be right-handed if the
thumb of the right hand points in the direction of the positive z axis when
the right-hand fingers are curled about this axis and directed from the
positive x towards the positive y axis, Fig. 2-21.

Rectangular Components of a Vector. A vector A may have
one, two, or three rectangular components along the x, y, z coordinate
axes, depending on how the vector is oriented relative to the axes. In
general, though, when A is directed within an octant of the x, y, z frame,
Fig. 2-22, then by two successive applications of the parallelogram law,
we may resolve the vector into components as A = A’ + A. and then
A’ = A, + A,. Combining these equations, to eliminate A’, A is
represented by the vector sum of its three rectangular components,

A=A +A +A, (2-2)

Cartesian Unit Vectors. In three dimensions, the set of Cartesian
unit vectors, 1, j, k, is used to designate the directions of the x, y, z axes,
respectively. As stated in Sec. 2-4, the sense (or arrowhead) of these
vectors will be represented analytically by a plus or minus sign, depending
on whether they are directed along the positive or negative x, y, or z axes.
The positive Cartesian unit vectors are shown in Fig. 2-23.

Fig. 2-23



Cartesian Vector Representation. Since the three components
of A in Eq. 2-2 act in the positive i, j, and k directions, Fig. 2-24, we can
write A in Cartesian vector form as

A=Aj+Aj+Ak (2-3)

There is a distinct advantage to writing vectors in this manner.
Separating the magnitude and direction of each component vector will
simplify the operations of vector algebra, particularly in three dimensions.

Magnitude of a Cartesian Vector. Tt is always possible to
obtain the magnitude of A provided it is expressed in Cartesian vector
form. As shown in Fig. 2-25, from the blue right triangle, A = VA'*> + AZ,

and from the gray right triangle, A’ = VA7 + A;. Combining these
equations to eliminate A ' yields

A = VAI + A + A? (2-4)

Hence, the magnitude of A is equal to the positive square root of the sum
of the squares of its components.

Coordinate Direction Angles. We will define the direction of
A by the coordinate direction angles « (alpha), B (beta),and y (gamma),
measured between the tail of A and the positive x, y, z axes provided they
are located at the tail of A, Fig. 2-26. Note that regardless of where A is
directed, each of these angles will be between 0° and 180°.

To determine «, B, and vy, consider the projection of A onto the x, y, z
axes, Fig. 2-27 Referring to the colored right triangles shown in the
figure, we have

cos a = cosB=— cosy=— (2-5)

These numbers are known as the direction cosines of A. Once they
have been obtained, the coordinate direction angles «, 3, y can then be
determined from the inverse cosines.

2.5 CARTESIAN VECTORS

Fig. 2-26
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A

Fig. 2-27

An easy way of obtaining these direction cosines is to form a unit
vector u, in the direction of A, Fig. 2-26. If A is expressed in Cartesian
vector form, A = A,i + A,j + Ak, then u, will have a magnitude of
one and be dimensionless provided A is divided by its magnitude, i.e.,

A A, Ay, A
=—=—"i+—j+—Kk 2-6
w=r= it (2-6)

where A = VA2 + A§ + A%, By comparison with Egs. 2-5, it is seen
that the i, j,k components of w, represent the direction cosines of A, 1i.e.,

u, = cos ai + cos Bj + cos vk (2-7)

Since the magnitude of a vector is equal to the positive square root of
the sum of the squares of the magnitudes of its components, and u, has a
magnitude of one, then from the above equation an important relation
among the direction cosines can be formulated as

cos’a + cos’ B + cos’y = 1 (2-8)

Here we can see that if only two of the coordinate angles are known,
the third angle can be found using this equation.

Finally, if the magnitude and coordinate direction angles of A are
known, then A may be expressed in Cartesian vector form as

A =AuA
= A cosai + A cos Bj + A cos yk (2-9)
= Ai+Aj+AK

Transverse and Azmuth Angles. Sometimes, the direction of A
can be specified using two angles, namely, a transverse angle 6 and an
azmuth angle ¢ (phi), such as shown in Fig. 2-28. The components of A
can then be determined by applying trigonometry first to the light blue
right triangle, which yields

A, = Acos ¢
and
A" = Asin¢

Now applying trigonometry to the dark blue right triangle,
A, =A'" cosf = A sin¢cosb

A, =A’ sinf = Asindsing
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Therefore A written in Cartesian vector form becomes
A =Asindcosfi+ Asingdsinfj+ A cosodk

You should not memorize this equation, rather it is important to
understand how the components were determined using trigonometry.

2.6 Addition of Cartesian Vectors

The addition (or subtraction) of two or more vectors is greatly simplified
if the vectors are expressed in terms of their Cartesian components. For
example, if A = A,i +A,j+ Akand B = B,i + B,j + Bk, Fig. 2-29,
then the resultant vector, R, has components which are the scalar sums of
the i, j, k components of A and B, i.e.,

R=A+B=@A,+B)i+(@,+B)j+ @A, +Bk

If this is generalized and applied to a system of several concurrent
forces, then the force resultant is the vector sum of all the forces in the
system and can be written as

F, = SF = 3Fi + 3F,j + SFk (2-10)

Here XF,, 2F,, and X F, represent the algebraic sums of the respective
X, y, z or i, j, k components of each force in the system.

Important Points

o A Cartesian vector A has i, j, k components along the x, y, z axes.
If A is known, its magnitude is defined by A = VAZ + A + AZ.

o The direction of a Cartesian vector can be defined by the three
angles «, B, vy, measured from the positive x, y, z axes to the tail of
the vector. To find these angles formulate a unit vector in the
direction of A,i.e.,uy = A /A, and determine the inverse cosines of
its components. Only two of these angles are independent of one
another; the third angle is found from cos?a + cos? 8 + cos?y = 1.

o The direction of a Cartesian vector can also be specified using a
transverse angle 6 and azimuth angle ¢.

Z

} .+ Bk

R
A
(A, + B,)j
A > y
(A, + Byi
X
Fig. 2-29

':: of *-ln.ml

Cartesian  vector analysis provides a
convenient method for finding both the
resultant force and its components in three
dimensions. (© Russell C. Hibbeler)
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z Express the force F shown in Fig. 2-30a as a Cartesian vector.

F=1001b SOLUTION

The angles of 60° and 45° defining the direction of F are not coordinate
direction angles. Two successive applications of the parallelogram law
are needed to resolve F into its x, y, z components. First F = F' + F,,

60° . . .
- L 7 thenF’ = F, + F,,Fig.2-30b. By trigonometry, the magnitudes of the
45° components are

F. = 100 sin 60° b = 86.6 1b
(a) F' =100 cos 60°1b = 50 1b
F. = F' cos45° = 50 cos 45°1b = 35.41b

F, = F'sin45° = 50sin45°1b = 35.41b
Realizing that F, has a direction defined by —j, we have
10t F = {354i — 35.4j + 86.6k} Ib Ans.
To show that the magnitude of this vector is indeed 100 Ib, apply

Eq.2-4,
F=VFE+F +F
F / , = V(35.4) + (35.4) + (86.6 = 1001b

x If needed, the coordinate direction angles of F can be determined from
(b) the components of the unit vector acting in the direction of F. Hence,

F Fx . F‘ . F,
u=—=—i+—-j+ =Kk
z F F F F
354, 354, 86.6
= i— j k
100 100 100

0.354i — 0.354j + 0.866k

F=1001b

so that

a = cos 1(0.354) = 69.3°
B = cos '(—0.354) = 111°
y = cos (0.866) = 30.0°

Fig. 2-30 These results are shown in Fig. 2-30c.
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Two forces act on the hook shown in Fig. 2-31a. Specify the magnitude z
of F, and its coordinate direction angles so that the resultant force Fp

F
acts along the positive y axis and has a magnitude of 800 N. / 2
120°
SOLUTION

To solve this problem, the resultant force Fx and its two components, / Y
. . . 60

F; and F,, will each be expressed in Cartesian vector form. Then, as 45°

shown in Fig. 2-31b, it is necessary that Fr = F; + F,. F;=300N

Applying Eq. 2-9, x
F, = Ficosaqi + Fjcos B1j + F;cosyk
= 300 cos 45°1i + 300 cos 60° j + 300 cos 120° k
= {212.1i + 150j — 150k} N
F, = Fyi + Fp,j + Fp.k . F,=700N

Since Fy has a magnitude of 800 N and acts in the +j direction,

Fr = (800 N)(+j) = {800j} N

B, =218 Fr=800N

We require
FR - Fl + Fz
X
800j = 212.1i + 150j — 150k + F,,i + F,,j + F5.k (b)
800j = (212.1 + Fy)i + (150 + F5)j + (=150 + F, )k Fig. 2-31

To satisfy this equation the i, j, k components of Fz must be equal to
the corresponding i, j, k components of (F, + F,). Hence,

0 =212.1 + F,, F,, = —212.1N
800 = 150 + F,, Fy, = 650N
0=—-150 + F,, F,, = 150N
The magnitude of F, is thus

F, = V(=212.1 N> + (650 N)> + (150 N)2

= 700 N Ans.
We can use Eq. 2-9 to determine «;, 85, y».
—212.1 R
cos ay = 700 ; a, = 108 Ans.
650 R
cos B, = m; B, = 21.8 Ans.
150 .
Cos Yy = ﬁ; v, = T77.6 Ans.

These results are shown in Fig. 2-31b.
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. PRELIMINARY PROBLEMS

P2-3. Sketch the following forces on the x, y, z coordinate
axes. Show a, B, v.

P2-5. Show how to resolve each force into its x, y, z
components. Set up the calculation used to find the

a) F={50i+60j — 10k} kN magnitude of each component.
Z
b) F={—40i — 80j + 60k} kN
P2-4. In each case, establish F as a Cartesian vector, and
find the magnitude of F and the direction cosine of 3.
F=600N
z *—45°
F
y
2kN y
X
4 kN
. (a)
— € y
4 kN z
F=500N
X
(a)
X
(b)
z
z
F=800N
20N _
> y
20N TON
e \
60°
F | y
(b) x
(©)

Prob. P24 Prob. P2-5
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. FUNDAMENTAL PROBLEMS

F2-13. Determine the coordinate direction angles of the F2-16. Express the force as a Cartesian vector.
force.

z
y
N X300 Prob. F2-16
F2-17. Express the force as a Cartesian vector.
F=1751b

Prob. F2-13
F2-14. Express the force as a Cartesian vector.

< F=500N

60°

<

Prob. F2-17
X
y
F2-18. Determine the resultant force acting on the hook.
Prob. F2-14
F2-15. Express the force as a Cartesian vector.
z
45° .
S
F=500N o0 y
X

F, = 800 1b

Prob. F2-15 Prob. F2-18
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“leromiews

*2-60. The force F has a magnitude of 80 Ib and acts
within the octant shown. Determine the magnitudes of the
X, ¥, z components of F.

F,
A
F=2801b
B=45°
> y
a=60° F,
F,
X
Prob. 2-60

2-61. The bolt is subjected to the force F, which has
components acting along the x, y, z axes as shown. If the
magnitude of Fis 80 N,and « = 60° and y = 45°, determine
the magnitudes of its components.

AE
7/
f ;\—‘\ '@ﬁ\' y
Fy a
F,
X
Prob. 2-61

2-62. Determine the magnitude and coordinate direction
angles of the force F acting on the support. The component
of F in the x—y plane is 7 kN.

Prob. 2-62

2-63. Determine the magnitude and coordinate direction
angles of the resultant force and sketch this vector on the
coordinate system.

*2-64. Specify the coordinate direction angles of F; and F,
and express each force as a Cartesian vector.

F, = 801b

30°
40°

YF=1301b

Probs. 2-63/64



2-65. The screw eye is subjected to the two forces shown.
Express each force in Cartesian vector form and then
determine the resultant force. Find the magnitude and
coordinate direction angles of the resultant force.

2-66. Determine the coordinate direction angles of F.

F,=500N

Probs. 2-65/66

2-67. Determine the magnitude and coordinate direction
angles of F; so that the resultant of the three forces acts
along the positive y axis and has a magnitude of 600 Ib.

*2-68. Determine the magnitude and coordinate direction
angles of F; so that the resultant of the three forces is zero.

F, = 3001b

Probs. 2-67/68
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2-69. Determine the magnitude and coordinate direction
angles of the resultant force, and sketch this vector on the
coordinate system.

x F, = 400N

Prob. 2-69

2-70. Determine the magnitude and coordinate direction
angles of the resultant force, and sketch this vector on the
coordinate system.

z
F,=55N
60°
45°
X
F, = 450N
Prob. 2-70

2-71. Specify the magnitude and coordinate direction
angles a1, B, y; of Fy so that the resultant of the three
forces acting on the bracket is Fx = {—350k } 1b. Note that
F; lies in the x—y plane.

F, =2001b

Prob. 2-71
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*2-72. Two forces F; and F, act on the screw eye. If the
resultant force Fp has a magnitude of 150 1b and
the coordinate direction angles shown, determine the
magnitude of F, and its coordinate direction angles.

Prob. 2-72

2-73. Express each force in Cartesian vector form.

2-74. Determine the magnitude and coordinate direction
angles of the resultant force, and sketch this vector on the
coordinate system.

Fy;=200N
F,=150N

F, = 90N Fe—=a 60°

45°

Probs. 2-73/74

2-75. The spur gear is subjected to the two forces caused
by contact with other gears. Express each force as a
Cartesian vector.

*2-76. The spur gear is subjected to the two forces caused
by contact with other gears. Determine the resultant of the
two forces and express the result as a Cartesian vector.

F,=501b

Probs. 2-75/76

2-77. Determine the magnitude and coordinate direction
angles of the resultant force, and sketch this vector on the
coordinate system.

F,=500N

Prob. 2-77



2-78. The two forces F; and F, acting at A have a resultant
force of Fx = {—100k } Ib. Determine the magnitude and
coordinate direction angles of F,.

2-79. Determine the coordinate direction angles of the
force F; and indicate them on the figure.

N

Fy=601b
FZ

Probs. 2-78/79

*2-80. The bracket is subjected to the two forces shown.
Express each force in Cartesian vector form and then
determine the resultant force Fg. Find the magnitude and
coordinate direction angles of the resultant force.

Prob. 2-80

2.6 ADDITION OF CARTESIAN VECTORS 55

2-81. If the coordinate direction angles for F; are
az = 120° B3 = 60° and y; = 45°, determine the magnitude
and coordinate direction angles of the resultant force acting
on the eyebolt.

2-82. If the coordinate direction angles for F; are
ay = 120°, B3 = 45° and vy; = 60° determine the
magnitude and coordinate direction angles of the resultant
force acting on the eyebolt.

2-83. If the direction of the resultant force acting on the
eyebolt is defined by the unit vector ug, = cos 30% +sin 30°k,
determine the coordinate direction angles of F; and the
magnitude of Fy.

/F3 =800 Ib
’A‘t,

F, = 600 1b

F, =17001b

Probs. 2-81/82/83

*2-84. The pole is subjected to the force F, which has
components acting along the x, y, z axes as shown. If the
magnitude of F is 3 kN, g = 30°, and y = 75°, determine
the magnitudes of its three components.

2-85. The pole is subjected to the force F which has
components F, = 1.5kN and F, = 1.25kN. If B = 75°,
determine the magnitudes of F and F,.

Y

Probs. 2-84/85
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2.7 Position Vectors

In this section we will introduce the concept of a position vector. It will
be shown that this vector is of importance in formulating a Cartesian force
vector directed between two points in space.

x, y, z Coordinates. Throughout the book we will use a right-
handed coordinate system to reference the location of points in space. We
will also use the convention followed in many technical books, which
requires the positive z axis to be directed upward (the zenith direction) so
that it measures the height of an object or the altitude of a point. The x, y
axes then lie in the horizontal plane, Fig. 2-32. Points in space are located
relative to the origin of coordinates, O, by successive measurements along
the x, y, z axes. For example, the coordinates of point A are obtained by
starting at O and measuring x4 = +4 m along the x axis, then y, =+2 m
along the y axis, and finally z4 = — 6 m along the z axis, so that
A(4m,2 m,— 6 m). In a similar manner, measurements along the x, y, z
axes from O to B yield the coordinates of B, that is, B(6 m,—1 m, 4 m).

Position Vector. A pesition vector r is defined as a fixed vector
which locates a point in space relative to another point. For example, if r
extends from the origin of coordinates, O, to point P(x, y, z), Fig. 2-33a,
then r can be expressed in Cartesian vector form as

r=uxi+yj+zk

Note how the head-to-tail vector addition of the three components yields
vector r, Fig. 2-33b. Starting at the origin O, one “travels” x in the +H
direction, then y in the +j direction, and finally z in the +k direction to
arrive at point P(x, y, 7).

zk \
P(x,y,z)

r r
10) Vi o zk

P(x,y, 2)

(a) (b)
Fig. 2-33



In the more general case, the position vector may be directed from
point A to point B in space, Fig. 2-34a. This vector is also designated by
the symbol r. As a matter of convention, we will sometimes refer to this
vector with two subscripts to indicate from and to the point where it is
directed. Thus, r can also be designated as r, 5. Also, note thatr, and rg in
Fig. 2-34a are referenced with only one subscript since they extend from
the origin of coordinates.

From Fig. 2-34a, by the head-to-tail vector addition, using the triangle
rule, we require

A(x4, Y4, 24)

Iy T r=ry
Solving for r and expressing r, and rp in Cartesian vector form yields
r=up — 1y = (i + ypj + 25K — (Al + yaj + 24K)

or

r= (xg —x)i + (g = ya)j + (2g — 24K (2-11)

Thus, the i, j, k components of the position vector ¥ may be formed by
taking the coordinates of the tail of the vector A (x4, y4, z4) and subtracting
them from the corresponding coordinates of the head B(xg, yg, 75)- We can
also form these components directly, Fig. 2-34b, by starting at A and
moving through a distance of (xz —x4) along the positive x axis (+i), then
(ys — y4) along the positive y axis (+j), and finally (zz — z4) along the
positive z axis (+k) to get to B.

(xp — x)i

If an x, y, z coordinate system is established,
! then the coordinates of two points A and B
] on the cable can be determined. From this
\ the position vector r acting along the cable
can be formulated. Its magnitude represents
the distance from A to B, and its unit vector,
u=r/r,gives the direction defined by «, 3, y.

(© Russell C. Hibbeler)
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B(xp, yp, 2)
r
I'p
y
(a)
B
/ P (zp — za)k
’ |
y

(b)

k (vs

—yali

Fig. 2-34
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EXAMPLE | 2.10

N

=

vl
AR

el

3m

(a)

An elastic rubber band is attached to points A and B as shown in
Fig. 2-35a. Determine its length and its direction measured from
A toward B.

SOLUTION
We first establish a position vector from A to B, Fig. 2-35b. In
accordance with Eq. 2-11, the coordinates of the tail A(1 m,0,—3 m)
are subtracted from the coordinates of the head B(—2 m, 2 m, 3 m),
which yields

r=[-2m—1mli+ 2m—0]j+ [3m — (—3m)]k
={-3i+2j+6k}m

These components of r can also be determined directly by realizing
that they represent the direction and distance one must travel along
each axis in order to move from A to B, i.e., along the x axis {=3i} m,
along the y axis {2j} m, and finally along the z axis {6k } m.

The length of the rubber band is therefore

r= \/(—3 m)Y> + 2m)’ + (6m)> = 7m Ans.

Formulating a unit vector in the direction of r, we have

r 3, 2, 6
u=-= ——i+—-j+ -k
r 7 7 7
The components of this unit vector give the coordinate direction
angles

3
a = cos_1< 7> = 115° Ans.
2
B = cos_1<7> = 73.4° Ans.
6
Yy = cos_1<7> = 31.0° Ans.

NOTE: These angles are measured from the positive axes of a localized
coordinate system placed at the tail of r, as shown in Fig. 2-35c.
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2.8 Force Vector Directed Along a Line

Quite often in three-dimensional statics problems, the direction of a force is
specified by two points through which its line of action passes. Such a situation
is shown in Fig.2-36, where the force F is directed along the cord AB. We can
formulate F as a Cartesian vector by realizing that it has the same direction
and sense as the position vector r directed from point A to point B on the
cord. This common direction is specified by the unit vector u = r/r. Hence,

o <r> B ( (xp —x )i + (vp — ya)j + (25 — 20Dk )
F=Fu=Fl-)=
r Vg = x0% + 5 — ya)* + (25 — 24)

Although we have represented F symbolically in Fig. 2-36, note that it
has units of force, unlike r, which has units of length.

Fig. 2-36

The force F acting along the rope can be
represented as a Cartesian vector by
establishing x, y, z axes and first forming a
position vector r along the length of the rope.
Then the corresponding unit vector u =r/r
that defines the direction of both the rope
and the force can be determined. Finally, the
magnitude of the force is combined with its
direction, F = Fu. (© Russell C. Hibbeler)

Important Points

o A position vector locates one point in space relative to
another point.

-l:_h_

o The easiest way to formulate the components of a position vector is
to determine the distance and direction that must be traveled along
the x, y, z directions —going from the tail to the head of the vector.

o A force F acting in the direction of a position vector r can be
represented in Cartesian form if the unit vector u of the position
vector is determined and it is multiplied by the magnitude of the
force,i.e., F = Fu=F(x/r).
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EXAMPLE | 2.11

z The man shown in Fig. 2-37a pulls on the cord with a force of 70 Ib.
Represent this force acting on the support A as a Cartesian vector and
determine its direction.

SOLUTION

Force F is shown in Fig. 2-37b. The direction of this vector, u, is
determined from the position vector r, which extends from A to B.
30 ft Rather than using the coordinates of the end points of the cord, r can
be determined directly by noting in Fig. 2-37a that one must travel
from A {24k} ft, then {-8j} ft, and finally {12i} ft to get to B. Thus,

fit r= {12i — 8j — 24k} ft

8

12 % The magnitude of r, which represents the length of cord AB, is

r= V(2 f)? + (=8 ft)® + (=24 ft)> = 28 ft

x Forming the unit vector that defines the direction and sense of both
() r and F, we have
. _r_12. 8. u
YT T8t 28?28
Since F has a magnitude of 70 1b and a direction specified by u, then

y
B 12, 8, 24 )
F=Fa=70b| —i—-—_j— 2k
F=701b ! (2 ETRET
= {30i — 20j — 60k} Ib Ans.
The coordinate direction angles are measured between r (or F) and
the positive axes of a localized coordinate system with origin placed at
A, Fig. 2-37b. From the components of the unit vector:
12
(b) a = cos_1<28> = 64.6° Ans.
Fig. 2-37
-8
B = cos—1<28) = 107° Ans.
—24
y = cosl<28> = 149° Ans.

NOTE: These results make sense when compared with the angles identi-
tied in Fig. 2-37b.
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EXAMPLE | 2.12

The roof is supported by cables as shown in the photo. If the cables
exert forces F,p = 100 N and F4- = 120 N on the wall hook at A as
shown in Fig. 2-38a, determine the resultant force acting at A. Express
the result as a Cartesian vector.

SOLUTION

The resultant force Fy is shown graphically in Fig. 2-38b. We can
express this force as a Cartesian vector by first formulating F,5 and
F,c as Cartesian vectors and then adding their components. The
directions of F 5 and F ¢ are specified by forming unit vectors u,p
and uyc along the cables. These unit vectors are obtained from the
associated position vectors r,p and r4c. With reference to Fig. 2-38a,
to go from A to B, we must travel {—4k} m, and then {4i} m.Thus,

(© Russell C. Hiblgeler)

A
Fas=100NJ |\ Fie = 120N rp = {4i — 4k} m
4
i rap = V(@m)? + (—4m) = 5.66m
y - Lip\ 4 4 )
Fup = Fup| — ) = 100N) | —i — —k
Ap AR (m) ( )<5.66l 5.66
F.5 = {70.7i — 70.7k} N
To go from A to C, we must travel {—4k} m, then {2j} m, and finally
{4i}.Thus,
e={4i+2j— 4k} m
ac = \/(4 m)2 + (2 m)2 —+ (—4 m)2 — 6m
Tyc 4. 2. 4 )
Fic = Fic| — ) =(120N) (=i + =j — —k
e AC(rAc> ( )<6l 6‘] 6
= {80i + 40j — 80k} N
y

The resultant force is therefore

Fr = F,p + F,c = {70.7i — 70.7k} N + {80i + 40j — 80k} N

= {151i + 40j — 151k} N Ans.

(b)
Fig. 2-38
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EXAMPLE | 2.13

The force in Fig. 2-39a acts on the hook. Express it as a Cartesian vector.

B(-2m,3.464 m,3 m)

(HGEm)  A2m,0,2m)

(a) (b)
Fig. 2-39

SOLUTION

As shown in Fig. 2-39b, the coordinates for points A and B are

A2 m,0,2m)

AN\e v age (4 o (3
B{—(5>5 sin 30 m,(5>5 cos 30 m,(5>5m}

B(—2m, 3.464 m, 3 m)

and

or

Therefore, to go from A to B, one must travel {—4i} m, then {3.464j} m,
and finally {1k} m. Thus,

<r3> {—4i + 3.464j + 1k} m

u = — =

? V(=4 m)? + (3.464 m)> + (1 m)>?
= —0.7428i + 0.6433j + 0.1857k

s

Force Fp expressed as a Cartesian vector becomes

F; = Fyug = (750 N)(—0.74281i + 0.6433j + 0.1857K)

= {—557i + 482j + 139k} N Ans.




2.8 FORCE VECTOR DIRECTED ALONG A LINE

. PRELIMINARY PROBLEMS

P2-6. In each case, establish a position vector from point P2-7. 1In each case, express F as a Cartesian vector.
A to point B.
b4
z
< 4 ,/
3m ﬁ/ m 7
/ ( y /3 m
Sm 2 m | g
/ F=15kN
A L o
X B
(a)
(a)
. z
A 2m 7’
T 7

- _
7 > F=600N
X
(b)
(b)
z
A
T ]
4m
; F=300N \Am
3 T z,
3V 1m o e = 7
4 B L Jm
-

2m

(c) (©)
Prob. P2-6 Prob. P2-7
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. FUNDAMENTAL PROBLEMS

F2-19. Express the position vector ryz in Cartesian
vector form, then determine its magnitude and coordinate
direction angles.

Prob. F2-19

F2-20. Determine the length of the rod and the position
vector directed from A to B. What is the angle 6?

F2-22. Express the force as a Cartesian vector.

Prob. F2-22

F2-23. Determine the magnitude of the resultant force
atA.

Prob. F2-20

F2-21. Express the force as a Cartesian vector.

Prob. F2-21

Prob. F2-23

F2-24. Determine the resultant force at A.

Prob. F2-24
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PROBLEMS

2-86. Determine the length of the connecting rod AB by *2-88. Express each of the forces in Cartesian vector form
first formulating a Cartesian position vector from A to B and determine the magnitude and coordinate direction
and then determining its magnitude. angles of the resultant force.

C
1312 F;=801b
5
251t
oy y
4 ft A
F,=501b

Prob. 2-86 4
B

2-87. Express force F as a Cartesian vector; then determine Prob. 2-88
its coordinate direction angles.

2-89. If F = {350i — 250j — 450k} N and cable AB is
9 m long, determine the x, y, z coordinates of point A.

A
F=1351b
//
V4
P
s Q‘é'
P A
- O
s 70 T
// F
> y z
st A
e & /
L B

Prob. 2-87 Prob. 2-89
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2-90. The 8-m-long cable is anchored to the ground at A.
If x =4 m and y = 2 m, determine the coordinate z to the
highest point of attachment along the column.

2-91. The 8-m-long cable is anchored to the ground at A.
If z =5 m, determine the location +x, +y of point A. Choose
a value such that x =y.

Probs. 2-90/91

*2-92. Express each of the forces in Cartesian vector form
and determine the magnitude and coordinate direction
angles of the resultant force.

Z

0.75 m|

Y —

Prob. 2-92

2-93. If Fz =560N and F. = 700N, determine the
magnitude and coordinate direction angles of the resultant
force acting on the flag pole.

2-94. If Fz = 700N, and F. = 560N, determine the
magnitude and coordinate direction angles of the resultant
force acting on the flag pole.

Probs. 2-93/94

2-95. The plate is suspended using the three cables which
exert the forces shown. Express each force as a Cartesian
vector.

Prob. 2-95



*2-96. The three supporting cables exert the forces shown
on the sign. Represent each force as a Cartesian vector.

2-97. Determine the magnitude and coordinate direction
angles of the resultant force of the two forces acting on the
sign at point A.

Probs. 2-96/97

2-98. The force F has a magnitude of 80 Ib and acts at the
midpoint C of the thin rod. Express the force as a Cartesian
vector.

Prob. 2-98

2.8 FORCE VECTOR DIRECTED ALONG A LINE 67

2-99. The load at A creates a force of 60 1b in wire AB.
Express this force as a Cartesian vector acting on A and
directed toward B as shown.

10 ft

F=601Ib

Prob. 2-99

#2-100. Determine the magnitude and coordinate direction
angles of the resultant force acting at point A on the post.

Prob. 2-100
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2-101. The two mooring cables exert forces on the stern of
a ship as shown. Represent each force as as Cartesian vector
and determine the magnitude and coordinate direction
angles of the resultant.

Prob. 2-101

2-102. The engine of the lightweight plane is supported by
struts that are connected to the space truss that makes up
the structure of the plane. The anticipated loading in two of
the struts is shown. Express each of those forces as Cartesian
vector.

Prob. 2-102

2-103. Determine the magnitude and coordinate direction
angles of the resultant force.

- A
401b
201b -
41t
£ ¢
2550 .
T %
21t 1.5 ft
B ¢ v
3ft
X
Prob. 2-103

*2-104. If the force in each cable tied to the bin is 70 Ib,
determine the magnitude and coordinate direction angles
of the resultant force.

2-105. TIfthe resultant of the four forcesis Fr = {—360k } Ib,
determine the tension developed in each cable. Due to
symmetry, the tension in the four cables is the same.

Probs. 2-104/105



2.9 Dot Product

Occasionally in statics one has to find the angle between two lines or the
components of a force parallel and perpendicular to a line. In two
dimensions, these problems can readily be solved by trigonometry since
the geometry is easy to visualize. In three dimensions, however, this is
often difficult, and consequently vector methods should be employed for
the solution. The dot product, which defines a particular method for
“multiplying” two vectors, can be used to solve the above-mentioned
problems.

The dot product of vectors A and B, written A - B and read “A dot B,”
is defined as the product of the magnitudes of A and B and the cosine of
the angle 6 between their tails, Fig. 2-40. Expressed in equation form,

A-B = ABcos 6 (2-12)

where 0° = 0 = 180°. The dot product is often referred to as the scalar
product of vectors since the result is a scalar and not a vector.

Laws of Operation.

1. Commutative law: A-B = B-A
2. Multiplication by a scalar: a(A-B) = (¢A)-B = A - (aB)
3. Distributive law: A-(B + D) = (A-B) + (A-D)

It is easy to prove the first and second laws by using Eq. 2-12. The proof
of the distributive law is left as an exercise (see Prob. 2-112).

Cartesian Vector Formulation. Equation 2-12 must be used to
find the dot product for any two Cartesian unit vectors. For example,
i+i=(1)1)cos0°=1andi-j= (1)(1)cos90° = 0. If we want to find
the dot product of two general vectors A and B that are expressed in
Cartesian vector form, then we have

A‘B=@A,i+Aj+AK B,i+B,j+ Bk
=AB,(i-i) + A BG-j) + A,B.(-k

+AB(j D) + ABy(j-J) + AB.(j-K)

+ A B (ki) + A Bk-j) + AB,(k K

Carrying out the dot-product operations, the final result becomes

A-B=AB, +AB, +AB. (2-13)

Thus, to determine the dot product of two Cartesian vectors, multiply their
corresponding x, y, z components and sum these products algebraically. Note
that the result will be either a positive or negative scalar, or it could be zero.

2.9 Dot ProDUCT

Fig. 2-40

69
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Fig. 2-40 (Repeated)

The angle 6 between the rope and the beam
can be determined by formulating unit
vectors along the beam and rope and then
using the dot product u,-u, = (1)(1) cos 6.
(© Russell C. Hibbeler)

&

The projection of the cable force F along the beam
can be determined by first finding the unit vector
u,, that defines this direction. Then apply the dot
product, F, = F-u,. (© Russell C. Hibbeler)

Applications. The dot product has two important applications in
mechanics.

The angle formed between two vectors or intersecting lines. The
angle 6 between the tails of vectors A and B in Fig. 2-40 can be
determined from Eq.2-12 and written as

A'B
0= cos_1<AB> 0° =6 < 180°

Here A-B is found from Eq. 2-13. In particular, notice that if
A-B = 0,0 = cos”' 0 = 90° so that A will be perpendicular to B.

The components of a vector parallel and perpendicular to a line.
The component of vector A parallel to or collinear with the line aa in
Fig. 2-40 is defined by A, where A, = A cos 6. This component is
sometimes referred to as the projection of A onto the line, since a
right angle is formed in the construction. If the direction of the line is
specified by the unit vector u,, then since u, = 1, we can determine
the magnitude of A, directly from the dot product (Eq.2-12);i.e.,

A,=Acosf =A-qu,

Hence, the scalar projection of A along a line is determined from the
dot product of A and the unit vector u, which defines the direction of
the line. Notice that if this result is positive, then A, has a directional
sense which is the same as u,, whereas if A, is a negative scalar, then
A, has the opposite sense of direction to u,.

The component A, represented as a vector is therefore
Aa = A a ull

The component of A that is perpendicular to line aa can also be
obtained, Fig. 2-41. Since A = A, + A | ,then A, = A — A, There
are two possible ways of obtaining A . One way would be to
determine 6 from the dot product, § = cos '(A-u,/A), then
A | = A sin 6. Alternatively, if A, is known, then by Pythagorean’s

theorem we can also write A | = VA2 — A%

AL“

— 1 L] ‘

>
— —
A,=Acosfu, u

Fig. 2-41



Important Points

¢ The dot product is used to determine the angle between two
vectors or the projection of a vector in a specified direction.

¢ If vectors A and B are expressed in Cartesian vector form, the
dot product is determined by multiplying the respective x, y, z
scalar components and algebraically adding the results, i.e.,
A‘B=AB,+AB, +AB,.

¢ From the definition of the dot product, the angle formed between
the tails of vectors A and Bis & = cos (A - B/AB).

¢ The magnitude of the projection of vector A along a line aa
whose direction is specified by u, is determined from the dot
product A, = A-u,.

EXAMPLE | 2.14

Determine the magnitudes of the projection of the force F in Fig. 242
onto the u and v axes.

(Fu)proj

Fig. 2-42
SOLUTION
Projections of Force. The graphical representation of the projections

is shown in Fig.2-42. From this figure, the magnitudes of the projections
of F onto the u and v axes can be obtained by trigonometry:

(F)proj = (100 N)cos 45° = 70.7 N Ans.
(Fyproj = (100 N)cos 15° = 96.6 N Ans.

NOTE: These projections are not equal to the magnitudes of the
components of force F along the u and v axes found from the
parallelogram law. They will only be equal if the u and v axes are
perpendicular to one another.

2.9 Dot ProDUCT
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EXAMPLE | 2.15

The frame shown in Fig. 2-43a is subjected to a horizontal force
F = {300j} N. Determine the magnitudes of the components of this
force parallel and perpendicular to member AB.

FAB

B F={300j}N

(a) (b)
Fig. 2-43

SOLUTION

The magnitude of the component of F along AB is equal to the dot
product of F and the unit vector ug, which defines the direction of AB,
Fig. 2-43b. Since

r, 2+ 6j+3k
B NVQP+ (6 + (3

= 0.2861 + 0.857j + 0.429k

Fyp = Fcos 6 = F-ugz = (300j) - (0.286i + 0.857j + 0.429k)
= (0)(0.286) + (300)(0.857) + (0)(0.429)
= 257.1N Ans.
Since the result is a positive scalar, F 43 has the same sense of direction
as up, Fig. 2-43b.
Expressing F 45 in Cartesian vector form, we have
F,p = Fypug = (257.1 N)(0.286i + 0.857j + 0.429Kk)
= {73.5i + 220j + 110k} N Ans.

The perpendicular component, Fig. 2-43b, is therefore
F, =F — F4p = 300j — (73.51 + 220j + 110k)
= {-73.5i + 79.6j — 110k} N
Its magnitude can be determined either from this vector or by using
the Pythagorean theorem, Fig. 2-43b:

F,. = VF — By = VG0N — (257.1 N)?
= 155N Ans.
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exavpie |2e

The pipe in Fig. 2-44a is subjected to the force of /=80 lb. Determine
the angle 0 between F and the pipe segment BA and the projection of
F along this segment.

I\l

SOLUTION

Angle 6. First we will establish position vectors from B to A and B

to C; Fig. 2-44b. Then we will determine the angle 6 between the tails i

of these two vectors. ‘l
gy = {—2i — 2j + 1k} ft, rpy = 3 ft
I'gc = {_3j + lk} ft, e — \/Eft

Thus,
. =2)(0) + (=2)(=3) + (H(1
cos g = BATTEC _ (DO + (<) (D) _
TBAYBC 3\/5
0 = 42.5° Ans. (b)

Components of F. The component of F along BA is shown in
Fig. 2-44c. We must first formulate the unit vector along BA and force
F as Cartesian vectors.

I'BA (_2i - 2j + lk) 2. 2' + lk
u = = — -] — — —
A = 3 3073173
I‘BC _3j + lk .
F=80Ib{ — ) =80 ———— | = —75.89j + 25.30k
e V10
Thus,
. 2. 2. 1
Fyy = Froug, = (—75.89j + 25.30k)-<—§1 -3i+ gk)
=0 (—2> + (=75 89)(— 2) + (25.30) <1>
3 ' 3 ' 3 (©)
=59.0b Ans. Fig. 2-44

NOTE: Since 6 has been calculated, then also, Fz, = Fcosf =
80 1b cos 42.5° = 59.0 1b.
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. PRELIMINARY PROBLEMS

P2-8. 1In each case, set up the dot product to find the P2-9. 1In each case, set up the dot product to find the
angle 6. Do not calculate the result. magnitude of the projection of the force F along a-a axes.
Do not calculate the result.

%A
Z
3m 2m7/ a
15m
P i
0\9 T 4 — y
2m T'/
AN S N L
x Im x F=300N \_ |
o
B (a)
(a)
Z
A Z
:I:lm a
O /211’1 K
y
—2m F=500N o
3 5
! g 1m
X 2m P y
J/ 15/m Zm
Bl x
(b) (b)

Prob. P2-8 Prob. P2-9



. FUNDAMENTAL PROBLEMS

2.9 Dot ProDUCT 75

F2-25. Determine the angle 6 between the force and the
line AO.

F={-6i+9j+3kkN

2 m O
— y
Im
P4
2m
x Prob. F2-25

F2-26. Determine the angle 6 between the force and the
line AB.

Prob. F2-26

F2-27. Determine the angle 6 between the force and the
line OA.

F2-28. Determine the projected component of the force
along the line OA.

y
| A
F=650N "
0 5
TN ¥

10} X Probs. F2-27/28

F2-29. Find the magnitude of the projected component of
the force along the pipe AO.

Z

™S

4m

4m y
Ve Prob. F2-29

F2-30. Determine the components of the force acting
parallel and perpendicular to the axis of the pole.

Z

y Prob. F2-30

F2-31. Determine the magnitudes of the components of the
force F = 56 N acting along and perpendicular to line AO.
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“leromews

2-106. Express the force F in Cartesian vector form if it
acts at the midpoint B of the rod.

N

D\/4m y

Prob. 2-106

2-107. Express force F in Cartesian vector form if point B
is located 3 m along the rod from end C.

N

D\/4m y

Prob. 2-107

*2-108. The chandelier is supported by three chains which
are concurrent at point O. If the force in each chain has a
magnitude of 60 Ib, express each force as a Cartesian vector
and determine the magnitude and coordinate direction
angles of the resultant force.

2-109. The chandelier is supported by three chains which
are concurrent at point O. If the resultant force at O has a
magnitude of 130 Ib and is directed along the negative
z axis, determine the force in each chain.

o _
F,
B FC
Fa 6 ft
B
2009 <1207 410\ C
> y
A 120
X
Probs. 2-108/109

2-110. The window is held open by chain AB. Determine
the length of the chain, and express the 50-1b force acting at
A along the chain as a Cartesian vector and determine its
coordinate direction angles.

Prob. 2-110



2-111. The window is held open by cable AB. Determine
the length of the cable and express the 30-N force acting at
A along the cable as a Cartesian vector.

Prob. 2-111

#2-112. Given the three vectors A, B, and D, show that
A-B+D)=(A-B) + (A-D).

2-113. Determine the magnitudes of the components of
F = 600 N acting along and perpendicular to segment DE
of the pipe assembly.

2.9 Dot PrODUCT 77

2-114. Determine the angle 6 between the two cables.

2-115. Determine the magnitude of the projection of the
force F; along cable AC.

2~

L Cey
F,=40N
4 m
_ 9 F,=70N \
A S N
2m
3m N
2 m 3mA
N
\\73m
X
Probs. 2-114/115

*2-116. Determine the angle 6 between the y axis of the
pole and the wire AB.

Probs. 2-112/113

Prob. 2-116
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2-117. Determine the magnitudes of the projected
components of the force F = [60i + 12j — 40k] N along the
cables AB and AC.

2-118. Determine the angle 6 between cables AB and AC.

Probs. 2-117/118

2-119. A force of F = {—40Kk]} Ib acts at the end of the pipe.
Determine the magnitudes of the components F; and F,
which are directed along the pipe’s axis and perpendicular
toit.

Prob. 2-119

*2-120. Two cables exert forces on the pipe. Determine
the magnitude of the projected component of F; along the
line of action of F,.

2-121. Determine the angle 6 between the two cables
attached to the pipe.

F=301b

Probs. 2-120/121

2-122. Determine the angle 6 between the cables AB and AC.

2-123. Determine the magnitude of the projected
component of the force F = {400i — 200j + 500k} N acting
along the cable BA.

*2-124. Determine the magnitude of the projected
component of the force F = {400i — 200j + 500k} N acting
along the cable CA.

Probs. 2-122/123/124



2-125. Determine the magnitude of the projection of
force F = 600 N along the u axis.

Prob. 2-125

2-126. Determine the magnitude of the projected
component of the 100-1b force acting along the axis BC of
the pipe.

2-127. Determine the angle 6 between pipe segments BA
and BC.

Probs. 2-126/127

2.9 Dot ProDUCT 79

*2-128. Determine the angle 6 between BA and BC.

2-129. Determine the magnitude of the projected component
of the 3 kN force acting along the axis BC of the pipe.

¥ F=3kN c

Probs. 2-128/129

2-130. Determine the angles # and ¢ made between the
axes OA of the flag pole and AB and AC, respectively, of
each cable.

& N\

Prob. 2-130
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2-131. Determine the magnitudes of the components of 2-135. Determine the magnitudes of the components of
F acting along and perpendicular to segment BC of the pipe the force F = 901b acting parallel and perpendicular to
assembly. diagonal AB of the crate.

*2-132. Determine the magnitude of the projected N

component of F along AC. Express this component as a F=901b
Cartesian vector.

2-133. Determine the angle 6 between the pipe segments

BA and BC. /
3

ft
z o \/ N

Prob. 2-135

*2-136. Determine the magnitudes of the projected com-
ponents of the force F = 300 N acting along the x and y axes.

2-137. Determine the magnitude of the projected
component of the force F = 300 N acting along line OA.

F = {30i — 45§ + 50k} Ib

Probs. 2-131/132/133

Probs. 2-136/137

2-134. If the force F = 100 N lies in the plane DBEC,
which is parallel to the x—z plane, and makes an angle of 10° 2-138. Determine the angle 0 between the two cables.
with the extended line DB as shown, determine the angle

that F makes with the diagonal AB of the crate. 2-139. Determine the projected component of the force

F =12 lb acting in the direction of cable AC. Express the
result as a Cartesian vector.

Z

8 ft
b

C

10 ft
B

|
i
¥
10 ft l 4ft
A P
Frn=121b
\\;‘%"B 6 ft
e

8 ft A

Prob. 2-134 Probs. 2-138/139
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A scalar is a positive or negative number;
e.g., mass and temperature.

A vector has a magnitude and direction,
where the arrowhead represents the
sense of the vector.

Multiplication or division of a vector by a
scalar will change only the magnitude of
the vector. If the scalar is negative, the
sense of the vector will change so that it
acts in the opposite sense.

If vectors are collinear, the resultant is
simply the algebraic or scalar addition.

R =

A+ B

Parallelogram Law

Two forces add according to the
parallelogram law. The components form
the sides of the parallelogram and the
resultant is the diagonal.

To find the components of a force along
any two axes, extend lines from the head
of the force, parallel to the axes, to form
the components.

To obtain the components of the
resultant, show how the forces add by
tip-to-tail using the triangle rule, and
then use the law of cosines and the law of
sines to calculate their values.

Fr = VF? + B — 2 F,F, cos 0

Fy

F, Fr

sin 91

sinf,  sin6p

( Resultant

» b

Components
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Rectangular Components: Two Dimensions y
Vectors F, and F, are rectangular components
of F.
F
Fy“
> X
The resultant force is determined from the F.
algebraic sum of its components.
y y
F.
(FR)X = EFJC > Fly F
~~o A — (Fg), A R
(F), = 3F, P | Y B .
Fr = V(Fp; + (Fp)y v | Fa (Fr)x
\\
|y Fs, ¥
6 = tan
(F R)x

Cartesian Vectors
The unit vector u has a length of 1, no units, and u= F
it points in the direction of the vector F. F
A force can be resolved into its Cartesian
components along the x, y, z axes so that
F=Fi+ Fj+ Fk
The magnitude of F is determined from the 2 3 3

i F=V\F+ F}+ F;
positive square root of the sum of the squares of Y
its components.
The coordinate direction angles e, 3,y are _F_F N F . N F, K
determined by formulating a unit vector in the = F F ! FJ F
direction of F. The x, y, z components of u=cosai+ cosBj+ cosyk
u represent cos a, cos 3, Cos 7.




The coordinate direction angles are
related so that only two of the three
angles are independent of one another.

To find the resultant of a concurrent force
system, express each force as a Cartesian
vector and add the i, j, k components of all
the forces in the system.

Position and Force Vectors

A position vector locates one point in space
relative to another. The easiest way to
formulate the components of a position
vector is to determine the distance and
direction that one must travel along the
X, y, and z directions—going from the tail to
the head of the vector.

If the line of action of a force passes
through points A and B, then the force
acts in the same direction as the position
vector r, which is defined by the unit
vector u. The force can then be expressed
as a Cartesian vector.

Dot Product

The dot product between two vectors A
and B yields a scalar. If A and B are
expressed in Cartesian vector form, then
the dot product is the sum of the products
of their x, y, and z components.

The dot product can be used to determine
the angle between A and B.

The dot product is also used to
determine the projected component of a
vector A onto an axis aa defined by its
unit vector u,.

cos?a + cos’ B+ cos’y = 1

Fp, = 3F = XFi+ XFj + 2Fk

r—= (XB - XA)i
+ O — yadi

+ (zp — z4)k

A-B = ABcosf

=AB, + AB, + A_B,

A-B
6 = cos_l(i)
AB

A,=Acosfu, = (A-uyu,
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. REVIEW PROBLEMS

Partial solutions and answers to all Review Problems are given in the back of the book.

and its direction, measured clockwise from the positive

l R2-1. Determine the magnitude of the resultant force Fy
1 axis.

70°
u
30°
45 F, = 300N
F,=500N Y%
Prob. R2-1

R2-2. Resolve F into components along the u and v axes
and determine the magnitudes of these components.

F=250N

30° u

105°

Prob. R2-2

R2-3. Determine the magnitude of the resultant force
acting on the gusset plate of the bridge truss.

/
F, =2001b

 F2=4001b

R2-4. The cable at the end of the crane boom exerts a
force of 250 1b on the boom as shown. Express F as a
Cartesian vector.

30°

l

F=2501b

Prob. R2-4



R2-5. The cable attached to the tractor at B exerts a force
of 350 1b on the framework. Express this force as a Cartesian
vector.

A
K
K]
K
35t 4 F=3501b
K
K]
1]
20°
30 &
X
Prob. R2-5

R2-6. Express F, and F, as Cartesian vectors.

F,=450N

Prob. R2-6
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R2-7. Determine the angle 6 between the edges of the
sheet-metal bracket.

z

400 mm

\
250 mm
x \
7
300 mm
/ 50 mm

Prob. R2-7

y

R2-8. Determine the projection of the force F along

the pole.
z
F = (2i + 4j + 10k} kN
O / y
2 m
Y |
2m Im
x .

Prob. R2-8
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(© Igor Tumarkin/ITPS/Shutterstock)

When this load is lifted at constant velocity, or is just suspended, then it is in a state of
equilibrium. In this chapter we will study equilibrium for a particle and show how these
ideas can be used to calculate the forces in cables used to hold suspended loads.



Equilibrium of a
Particle

CHAPTER OBJECTIVES

m To introduce the concept of the free-body diagram for a particle.

m To show how to solve particle equilibrium problems using the
equations of equilibrium.

3.1 Condition for the Equilibrium
of a Particle

A particle is said to be in equilibrium if it remains at rest if originally at
rest, or has a constant velocity if originally in motion. Most often, however,
the term “equilibrium” or, more specifically, “static equilibrium” is used
to describe an object at rest. To maintain equilibrium, it is necessary to
satisfy Newton’s first law of motion, which requires the resultant force
acting on a particle to be equal to zero. This condition is stated by the
equation of equilibrium,

SF=0 (3-1)

where XF is the vector sum of all the forces acting on the particle.

Not only is Eq. 3-1 a necessary condition for equilibrium, it is also a
sufficient condition. This follows from Newton’s second law of motion,
which can be written as 3F = ma. Since the force system satisfies
Eq. 3-1, then ma = 0, and therefore the particle’s acceleration a = 0.
Consequently, the particle indeed moves with constant velocity or
remains at rest.
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jq

T

Cable is in tension

(b)

Fig.

3-1

EQUILIBRIUM OF A PARTICLE

3.2 The Free-Body Diagram

To apply the equation of equilibrium, we must account for all the known
and unknown forces (2F) which act on the particle. The best way to do
this is to think of the particle as isolated and “free” from its surroundings.
A drawing that shows the particle with all the forces that act on it is called
a free-body diagram (FBD).

Before presenting a formal procedure as to how to draw a free-body
diagram, we will first consider three types of supports often encountered
in particle equilibrium problems.

Springs. If a linearly elastic spring (or cord) of undeformed length
Iy 1s used to support a particle, the length of the spring will change in
direct proportion to the force F acting on it, Fig. 3-1a. A characteristic
that defines the “elasticity” of a spring is the spring constant or stiffness k.

The magnitude of force exerted on a linearly elastic spring which has a
stiffness k and is deformed (elongated or compressed) a distance
s = | — Iy, measured from its unloaded position, is

F = ks (3-2)

If s is positive, causing an elongation, then F must pull on the spring;
whereas if s is negative, causing a shortening, then F must push on it. For
example, if the spring in Fig. 3-1a has an unstretched length of 0.8 m and
a stiffness k = 500N/m and it is stretched to a length of 1 m,
so that s=1—[jy=1m — 08m = 0.2m, then a force F = ks =
500 N/m(0.2 m) = 100 N is needed.

Cables and Pulleys. Unless otherwise stated throughout this
book, except in Sec. 7.4, all cables (or cords) will be assumed to have
negligible weight and they cannot stretch. Also, a cable can support only
a tension or “pulling” force, and this force always acts in the direction of
the cable. In Chapter 5, it will be shown that the tension force developed
in a continuous cable which passes over a frictionless pulley must have a
constant magnitude to keep the cable in equilibrium. Hence, for any
angle 6, shown in Fig. 3-1b, the cable is subjected to a constant tension 7'
throughout its length.

Smooth Contact. If an object rests on a smooth surface, then the
surface will exert a force on the object that is normal to the surface at
the point of contact. An example of this is shown in Fig. 3-24. In
addition to this normal force N, the cylinder is also subjected to its
weight W and the force T of the cord. Since these three forces are
concurrent at the center of the cylinder, Fig. 3-2b, we can apply the
equation of equilibrium to this “particle,” which is the same as applying
it to the cylinder.



3.2 THE FrRee-BoDY DIAGRAM 89

Procedure for Drawing a Free-Body Diagram -

Since we must account for all the forces acting on the particle when
applying the equations of equilibrium, the importance of first
drawing a free-body diagram cannot be overemphasized. To construct
a free-body diagram, the following three steps are necessary.

Draw Outlined Shape.

Imagine the particle to be isolated or cut “free” from its surroundings.
This requires removing all the supports and drawing the particle’s
outlined shape.

Show All Forces.

Indicate on this sketch all the forces that act on the particle. These
forces can be active forces, which tend to set the particle in motion,
or they can be reactive forces which are the result of the constraints
or supports that tend to prevent motion. To account for all these
forces, it may be helpful to trace around the particle’s boundary,
carefully noting each force acting on it.

Identify Each Force.

The forces that are known should be labeled with their proper
magnitudes and directions. Letters are used to represent the
magnitudes and directions of forces that are unknown.

The bucket is held in equilibrium by
the cable, and instinctively we know
that the force in the cable must
equal the weight of the bucket. By
drawing a free-body diagram of the
bucket we can understand why this
is so. This diagram shows that there
are only two forces acting on the
bucket,namely, its weight W and the
force T of the cable. For equilibrium,
the resultant of these forces must be
equal to zero, and so T = W.
(© Russell C. Hibbeler)

5(9.81)N

The 5-kg plate is suspended by two straps
A and B. To find the force in each strap
we should consider the free-body diagram
of the plate. As noted, the three forces
acting on it are concurrent at the center.
(© Russell C. Hibbeler)
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FC E

Ny

(Force of cord CE
acting on sphere)

Nj

589N
(Weight or gravity acting on sphere)

(b)

Frc (Force of knot acting on cord CE)

A

\

\

y

Fcr (Force of sphere acting on cord CE)

(©)

(Forces of smooth planes
acting on sphere)

EQUILIBRIUM OF A PARTICLE

The sphere in Fig. 3-3a has a mass of 6 kg and is supported as shown.
Draw a free-body diagram of the sphere, the cord CFE, and the knot at C.

(a)

SOLUTION

Sphere. Once the supports are removed, we can see that there
are four forces acting on the sphere, namely, its weight,
6 kg (9.81 m/sz) = 589 N, the force of cord CE, and the two normal
forces caused by the smooth inclined planes. The free-body diagram is
shown in Fig. 3-3b.

Cord CE. When the cord CE is isolated from its surroundings, its
free-body diagram shows only two forces acting on it,namely, the force of
the sphere and the force of the knot, Fig. 3-3c¢. Notice that Fz shown here
is equal but opposite to that shown in Fig. 3-3b,a consequence of Newton’s
third law of action—reaction. Also, Fr and Fgc pull on the cord and keep
it in tension so that it doesn’t collapse. For equilibrium, Frp = Fgc.

Knot. The knot at C is subjected to three forces, Fig. 3-3d. They are
caused by the cords CBA and CE and the spring CD. As required, the
free-body diagram shows all these forces labeled with their magnitudes
and directions. It is important to recognize that the weight of the
sphere does not directly act on the knot. Instead, the cord CE subjects
the knot to this force.

Fcp4 (Force of cord CBA acting on knot)

60°\ C
F¢p (Force of spring acting on knot)

Fcr (Force of cord CE acting on knot)

(d)
Fig. 3-3
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3.3 Coplanar Force Systems

If a particle is subjected to a system of coplanar forces that lie in the x—y
plane, as in Fig. 3—4, then each force can be resolved into its i and j
components. For equilibrium, these forces must sum to produce a zero
force resultant, i.e.,

SF=0
SEi+ SEj=0

For this vector equation to be satisfied, the resultant force’s x and y
components must both be equal to zero. Hence,

SF, =0

SF, =0 (3-3)
g

These two equations can be solved for at most two unknowns, generally
represented as angles and magnitudes of forces shown on the particle’s
free-body diagram.

When applying each of the two equations of equilibrium, we must
account for the sense of direction of any component by using an algebraic
sign which corresponds to the arrowhead direction of the component
along the x or y axis. It is important to note that if a force has an unknown
magnitude, then the arrowhead sense of the force on the free-body
diagram can be assumed. Then if the solution yields a negative scalar, this
indicates that the sense of the force is opposite to that which was assumed.

For example, consider the free-body diagram of the particle subjected to
the two forces shown in Fig. 3-5. Here it is assumed that the unknown
force F acts to the right, that is, in the positive x direction, to maintain
equilibrium. Applying the equation of equilibrium along the x axis, we have

ESF =0; +F+ 10N =0

Both terms are “positive” since both forces act in the positive x
direction. When this equation is solved, F = —10 N. Here the negative
sign indicates that F must act to the left to hold the particle in
equilibrium, Fig. 3-5. Notice that if the +x axis in Fig. 3-5 were directed
to the left, both terms in the above equation would be negative, but
again, after solving, F = —10 N, indicating that F would have to be
directed to the left.

COPLANAR FORCE SYSTEMS

y
F,
y
F; F
4
Fig. 3-4
10N
Fig. 3-5
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Important Points

The first step in solving any equilibrium problem is to draw the
particle’s free-body diagram. This requires removing all the supports
and isolating or freeing the particle from its surroundings and then
showing all the forces that act on it.

Equilibrium means the particle is at rest or moving at constant
velocity. In two dimensions, the necessary and sufficient conditions
for equilibrium require XF, = 0 and XF, = 0.

Procedure for Analysis

Coplanar force equilibrium problems for a particle can be solved
using the following procedure.

Free-Body Diagram.
e Establish the x, y axes in any suitable orientation.

e Label all the known and unknown force magnitudes and
directions on the diagram.

e The sense of a force having an unknown magnitude can be
assumed.

Equations of Equilibrium.

y . e
‘ e Apply the equations of equilibrium, XF, = 0 and XF, = 0. For
T convenience, arrows can be written alongside each equation to
P define the positive directions.
AQ—~x e Components are positive if they are directed along a positive axis,
T and negative if they are directed along a negative axis.
B
Tc

e If more than two unknowns exist and the problem involves a

The chains exert three forces on the ring at A spring, apply F' = ks to relate the spring force to the deformation

as shown on its free-body diagram. The ring s of the spring.
will not move, or will move with constant
velocity, provided the summation of these o Since the magnitude of a force is always a positive quantity, then if

forces along the x and along the y axis equals
zero. If one of the three forces is known, the
magnitudes of the other two forces can be
obtained from the two equations of
equilibrium. (© Russell C. Hibbeler)

the solution for a force yields a negative result, this indicates that
its sense is the reverse of that shown on the free-body diagram.
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exavpie gz

Determine the tension in cables BA and BC necessary to support the
60-kg cylinder in Fig. 3-6a.

Tpp =60 (9.81) N

60 (9.81) N
(a) (b)
SOLUTION

Free-Body Diagram. Due to equilibrium, the weight of the cylinder
causes the tension in cable BD to be Tz, = 60(9.81) N, Fig. 3-6b. The
forces in cables BA and BC can be determined by investigating the
equilibrium of ring B. Its free-body diagram is shown in Fig. 3—-6¢. The
magnitudes of T4 and T are unknown, but their directions are known.

Equations of Equilibrium. Applying the equations of equilibrium
along the x and y axes, we have

BSF = 0; Tccos45° — ()T, =0 (1) NS
+ 13F, =0, Tcsind5® + (2)7, — 609.81)N =0 ) 4

45°
'

B

Equation (1) can be written as T, = 0.88397T . Substituting this into
Eq. (2) yields

Tcsin45° + (2)(0.88397¢) — 60(9.81)N = 0

Tsp = 60 (9.81) N

(©
so that Fig. 3-6
Te = 475.66 N = 476 N Ans.
Substituting this result into either Eq. (1) or Eq. (2), we get
T, = 420N Ans.

NOTE: The accuracy of these results, of course, depends on the accuracy
of the data, i.e., measurements of geometry and loads. For most
engineering work involving a problem such as this, the data as measured
to three significant figures would be sufficient.
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y
Fc
Fp
[A -
Y Fp=1962 N
(b)
Fig. 3-7

The 200-kg crate in Fig. 3-7a is suspended using the ropes AB and AC. Each
rope can withstand a maximum force of 10 kN before it breaks. If AB
always remains horizontal, determine the smallest angle 6 to which the
crate can be suspended before one of the ropes breaks.

(a)

SOLUTION

Free-Body Diagram. We will study the equilibrium of ring A . There
are three forces acting on it, Fig. 3-7b. The magnitude of Fj, is equal to
the weight of the crate, i.e., F, = 200 (9.81) N = 1962 N < 10 kN.

Equations of Equilibrium. Applying the equations of equilibrium
along the x and y axes,
Iy
1
cos 0 M)
+13F, = 0; Fesing — 1962N = 0 (2)

BIF, = 0; —~Fecos + Fg = 0; Fo=

From Eq. (1), F¢ is always greater than Fp since cos # = 1. Therefore,
rope AC will reach the maximum tensile force of 10 kN before rope AB.
Substituting F- = 10 kN into Eq. (2), we get
[10(10°)N] sin 6 — 1962N = 0

6 = sin '(0.1962) = 11.31° = 11.3° Ans.
The force developed in rope AB can be obtained by substituting the
values for 6 and F into Eq. (1).
L
cos11.31°
Fz = 9.81 kN

10(10%) N
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oxavpie (g

Determine the required length of cord AC in Fig. 3-8a so that the 8-kg
lamp can be suspended in the position shown. The undeformed length
of spring AB is [’y = 0.4 m, and the spring has a stiffness of
kAB = 300 N/m

‘i 2m

T
k4= 300 N/m 18
30°
4 >
A TAB
W=785N
(a) (b)
Fig. 3-8

SOLUTION

If the force in spring AB is known, the stretch of the spring can be
found using F' = ks. From the problem geometry, it is then possible to
calculate the required length of AC.

Free-Body Diagram. The lamp has a weight W = 8(9.81) = 78.5N
and so the free-body diagram of the ring at A is shown in Fig. 3-8b.

Equations of Equilibrium. Using the x, y axes,

B SF = 0; Tap — Tyccos30° = 0
+13F, = 0; T,csin30° — 785N =0
Solving, we obtain
Tyc = 157.0N
Typ = 1359N
The stretch of spring AB is therefore
Tap = kapSap: 1359 N = 300 N/m(s4p)
sap = 0.453 m

so the stretched length is

Iap = Usp + S
Ly =04m + 0453 m = 0.853 m

The horizontal distance from C to B, Fig. 3-8a, requires
2m = lyccos 30° + 0.853 m
lAC =132m Ans.
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. PRELIMINARY PROBLEMS

P3-1. In each case, draw a free-body diagram of the ring P3-2. Write the two equations of equilibrium, 3F, = 0
at A and identify each force. and X F, = 0.Do not solve.

(a)

200N

60° SN p

600 N

(b) (b)

P 450 N

40°

300N
(©

500N

©)
Prob. P3-1 Prob. P3-2
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. FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD. F3-4. The block has a mass of 5 kg and rests on the smooth

. . plane. Determine the unstretched length of the spring.
F3-1. The crate has a weight of 550 Ib. Determine the
force in each supporting cable.

Prob. F3-1 Prob. F3-4
F3-2. The beam has a weight of 700 Ib. Determine the F3-5. If the mass of cylinder C is 40 kg, determine the
shortest cable ABC that can be used to lift it if the maximum

o mass of cylinder A in order to hold the assembly in the
force the cable can sustain is 1500 Ib. position shown.

1 10t ‘

Prob. F3-2

F3-3. If the 5-kg block is suspended from the pulley B and
the sag of the cord is d = 0.15 m, determine the force in cord

Prob. F3-5
ABC. Neglect the size of the pulley.

F3-6. Determine the tension in cables AB, BC, and CD,

\ 04m \ necessary to support the 10-kg and 15-kg traffic lights at B
‘ ' ‘ and C, respectively. Also, find the angle 6.
&l
c | A
d=0.15m

Prob. F3-3

Prob. F3-6
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“leropiews

All problem solutions must include an FBD. *3-4. The bearing consists of rollers, symmetrically
. .. confined within the housing. The bottom one is subjected to
3-1. The members of a truss are pin connected at joint O. .

. . S a 125-N force at its contact A due to the load on the shaft.
Determine the magnitudes of F; and F, for equilibrium. . . .
Setf = 60° Determine the normal reactions Nz and N¢ on the bearing

e at its contact points B and C for equilibrium.
3-2. The members of a truss are pin connected at joint O.
Determine the magnitude of F; and its angle 6 for
equilibrium. Set F, = 6 kN.

SkN

125N

Prob. 3-4

Probs. 3-1/2 3-5. The members of a truss are connected to the gusset
plate. If the forces are concurrent at point O, determine the
magnitudes of F and T for equilibrium. Take 6 = 90°.

3-3. Determine the magnitude and direction 6 of F so that

the particle is in equilibrium. 3-6. The gusset plate is subjected to the forces of three

members. Determine the tension force in member C and its
angle 6 for equilibrium. The forces are concurrent at point O.
Take F = 8 kN.

8 kN

30°

60° SkN

4 kN

Prob. 3-3 Probs. 3-5/6
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3-7. The man attempts to pull down the tree using the 3-9. Determine the maximum force F that can be
cable and small pulley arrangement shown. If the tension in supported in the position shown if each chain can support a
AB is 60 b, determine the tension in cable CAD and the maximum tension of 600 Ib before it fails.

angle 6 which the cable makes at the pulley.

Prob. 3-9

Prob. 3-7

3-10. The block has a weight of 20 Ib and is being hoisted
at uniform velocity. Determine the angle 6 for equilibrium

#3-8. The cords ABC and BD can each support a and the force in cord AB.

maximum load of 100 1b. Determine the maximum weight 3-11. Determine the maximum weight W of the block

of the crate, and the angle 6 for equilibrium. that can be suspended in the position shown if cords AB
and CAD can each support a maximum tension of 80 Ib.
Also, what is the angle 6 for equilibrium?

Prob. 3-8 Probs. 3-10/11
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3-12. The lift sling is used to hoist a container having a
mass of 500 kg. Determine the force in each of the cables
AB and AC as a function of 6. If the maximum tension
allowed in each cable is 5 kN, determine the shortest length
of cables AB and AC that can be used for the lift. The center
of gravity of the container is located at G.

Prob. 3-12

3-13. A nuclear-reactor vessel has a weight of 500(10?) Ib.
Determine the horizontal compressive force that the
spreader bar AB exerts on point A and the force that each
cable segment CA and AD exert on this point while the
vessel is hoisted upward at constant velocity.

Prob. 3-13

3-14. Determine the stretch in each spring for equilibrium
of the 2-kg block. The springs are shown in the equilibrium
position.

3-15. The unstretched length of spring AB is 3 m. If the
block is held in the equilibrium position shown, determine
the mass of the block at D.

Probs. 3-14/15

#*3-16. Determine the mass of each of the two cylinders if
they cause a sag of s =0.5 m when suspended from the rings at
A and B. Note that s =0 when the cylinders are removed.

Prob. 3-16



3-17. Determine the stiffness k4 of the single spring such
that the force F will stretch it by the same amount s as the
force F stretches the two springs. Express k¢ in terms of
stiffness k; and k, of the two springs.

Unstretched
position

Prob. 3-17

3-18. If the spring DB has an unstretched length of 2 m,
determine the stiffness of the spring to hold the 40-kg crate
in the position shown.

3-19. Determine the unstretched length of DB to hold the
40-kg crate in the position shown. Take k =180 N/m.

‘ 2m 3m

Probs. 3-18/19
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*3-20. A vertical force P =10 1b is applied to the ends of
the 2-ft cord AB and spring AC. If the spring has an
unstretched length of 2 ft, determine the angle 6 for
equilibrium. Take k =15 1b/ft.

3-21. Determine the unstretched length of spring AC if a
force P = 80 lb causes the angle # = 60° for equilibrium.
Cord AB is 2 ft long. Take k=50 1b/ft.

Probs. 3-20/21

3-22. The springs BA and BC each have a stiffness of
500 N/m and an unstretched length of 3 m. Determine the
horizontal force F applied to the cord which is attached to
the small ring B so that the displacement of AB from the
wallis d = 1.5 m.

3-23. The springs BA and BC each have a stiffness of
500 N/m and an unstretched length of 3 m. Determine
the displacement d of the cord from the wall when a
force F =175 N is applied to the cord.

Probs. 3-22/23
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*3-24. Determine the distances x and y for equilibrium if
F;=800N and F, =1000 N.

3-25. Determine the magnitude of F; and the distance y if
x=15mand F;, =1000 N.

Probs. 3-24/25

3-26. The 30-kg pipe is supported at A by a system of five
cords. Determine the force in each cord for equilibrium.

3-27. Each cord can sustain a maximum tension of 500 N.
Determine the largest mass of pipe that can be supported.

Probs. 3-26/27

*3-28. The street-lights at A and B are suspended from
the two poles as shown. If each light has a weight of 50 Ib,
determine the tension in each of the three supporting cables
and the required height / of the pole DE so that cable AB is
horizontal.

24 ft

6ft_ "9
o o

Prob. 3-28

3-29. Determine the tension developed in each cord
required for equilibrium of the 20-kg lamp.

3-30. Determine the maximum mass of the lamp that the
cord system can support so that no single cord develops a
tension exceeding 400 N.

Probs. 3-29/30



3-31. Blocks D and E have a mass of 4 kg and 6 kg,
respectively. If x =2 m determine the force F and the sag s
for equilibrium.

*3-32. Blocks D and E have a mass of 4 kg and 6 kg,
respectively. If =80 N, determine the sag s and distance x
for equilibrium.

yF

Probs. 3-31/32

3-33. The lamp has a weight of 15 Ib and is supported by
the six cords connected together as shown. Determine the
tension in each cord and the angle 0 for equilibrium. Cord
BC is horizontal.

3-34. Each cord can sustain a maximum tension of 20 1b.
Determine the largest weight of the lamp that can be
supported. Also, determine 6 of cord DC for equilibrium.

Probs. 3-33/34
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3-35. The ring of negligible size is subjected to a vertical
force of 200 Ib. Determine the required length / of cord AC
such that the tension acting in AC is 160 1b. Also, what is the
force in cord AB? Hint: Use the equilibrium condition to
determine the required angle 6 for attachment, then
determine / using trigonometry applied to triangle ABC.

72t

200 1b
Prob. 3-35

*3-36. Cable ABC has a length of 5 m. Determine the
position x and the tension developed in ABC required for
equilibrium of the 100-kg sack. Neglect the size of the
pulley at B.

Prob. 3-36

3-37. A 4-kg sphere rests on the smooth parabolic surface.
Determine the normal force it exerts on the surface and the
mass mp of block B needed to hold it in the equilibrium
position shown.

y

<04m-

Prob. 3-37
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3-38. Determine the forces in cables AC and AB needed
to hold the 20-kg ball D in equilibrium. Take /=300 N and
d=1m.

3-39. The ball D has a mass of 20 kg. If a force of F=100 N
is applied horizontally to the ring at A, determine the
dimension d so that the force in cable AC is zero.

Probs. 3-38/39

*3-40. The 200-1b uniform container is suspended by
means of a 6-ft-long cable, which is attached to the sides of
the tank and passes over the small pulley located at O. If the
cable can be attached at either points A and B, or C and D,
determine which attachment produces the least amount of
tension in the cable. What is this tension?

Prob. 3-40

3-41. The single elastic cord ABC is used to support the
40-1b load. Determine the position x and the tension in the
cord that is required for equilibrium. The cord passes
through the smooth ring at B and has an unstretched length
of 6ft and stiffness of k = 50 Ib/ft.

Prob. 3-41

3-42. A “scale” is constructed with a 4-ft-long cord and
the 10-1b block D.The cord is fixed to a pin at A and passes
over two small pulleys. Determine the weight of the
suspended block B if the system is in equilibrium when
s=15ft.

Prob. 3-42
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. CONCEPTUAL PROBLEMS

C3-1. The concrete wall panel is hoisted into position using
the two cables AB and AC of equal length. Establish
appropriate dimensions and use an equilibrium analysis to
show that the longer the cables the less the force in each cable.

Prob. C3-1 (© Russell C. Hibbeler)

C3-2. The hoisting cables BA and BC each have a length
of 20 ft. If the maximum tension that can be supported by
each cable is 900 Ib, determine the maximum distance AC
between them in order to lift the uniform 1200-1b truss with
constant velocity.

45

Prob. C3-2 (© Russell C. Hibbeler)

C3-3. The device DB is used to pull on the chain ABC to
hold a door closed on the bin. If the angle between AB and
BC is 30°, determine the angle between DB and BC for
equilibrium.

Prob. C3-3 (© Russell C. Hibbeler)

C3—4. Chain AB is 1 m long and chain AC is 1.2 m long. If
the distance BC is 1.5 m, and AB can support a maximum
force of 2 kN, whereas AC can support a maximum force of
0.8 kN, determine the largest vertical force F that can be
applied to the link at A.

Prob. C3-4 (© Russell C. Hibbeler)
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Fig. 3-9

The joint at A is subjected to the force from the
support as well as forces from each of the three
chains. If the tire and any load on it have a
weight W, then the force at the support will be
W, and the three scalar equations of equilibrium
can be applied to the free-body diagram of the
joint in order to determine the chain forces,
Fp, F¢, and Fj,. (© Russell C. Hibbeler)

3.4 Three-Dimensional Force Systems

In Section 3.1 we stated that the necessary and sufficient condition for
particle equilibrium is

SF=0 (3-4)

In the case of a three-dimensional force system, as in Fig. 3-9, we can
resolve the forces into their respective i, j, k components, so that
2Fi+ XF,j + 2Fk = 0.To satisty this equation we require

SF, =0
SF, =0 (3-5)
SF, =0

These three equations state that the algebraic sum of the components of
all the forces acting on the particle along each of the coordinate axes
must be zero. Using them we can solve for at most three unknowns,
generally represented as coordinate direction angles or magnitudes of
forces shown on the particle’s free-body diagram.

Procedure for Analysis

Three-dimensional force equilibrium problems for a particle can be
solved using the following procedure.

Free-Body Diagram.
e Establish the x, y, z axes in any suitable orientation.

e Label all the known and unknown force magnitudes and
directions on the diagram.

e The sense of a force having an unknown magnitude can be
assumed.

Equations of Equilibrium.

e Use the scalar equations of equilibrium, 3F, = 0, 3F, = 0,
3 F, = 0, in cases where it is easy to resolve each force into its
X, y, Z components.

e [If the three-dimensional geometry appears difficult, then first
express each force on the free-body diagram as a Cartesian
vector, substitute these vectors into 3F = 0, and then set the i, j,
k components equal to zero.

e [f the solution for a force yields a negative result, this indicates
that its sense is the reverse of that shown on the free-body diagram.
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T —

A 90-1b load is suspended from the hook shown in Fig. 3-10a. If the z
load is supported by two cables and a spring having a stiffness
k = 500 Ib/ft, determine the force in the cables and the stretch of the
spring for equilibrium. Cable AD lies in the x—y plane and cable AC
lies in the x—z plane.

SOLUTION

The stretch of the spring can be determined once the force in the spring
is determined.

Free-Body Diagram. The connection at A is chosen for the
equilibrium analysis since the cable forces are concurrent at this point.
The free-body diagram is shown in Fig. 3-105b. (a)

Equations of Equilibrium. By inspection, each force can easily be 2
resolved into its x, y, z components, and therefore the three scalar
equations of equilibrium can be used. Considering components
directed along each positive axis as “positive,” we have

SFE, = 0; Fpsin30° — (2) Fe =0 (1)
2F, = 0; —Fpcos30° + F =0 2)
SFE, =0; (2)Fec—901b=0 3)

Solving Eq. (3) for Fg, then Eq. (1) for Fj, and finally Eq. (2) for Fj,

yields v 01b
Fo=1501b Ans.
_ ‘ (®)
Fp =2401b Ans.
Fig. 3-10
Fp = 207.81b = 208 1b Ans.

The stretch of the spring is therefore

Fg = ksup
207.8 1b = (500 1b/ft)(s, )
syp = 0.416 ft Ans.

NOTE: Since the results for all the cable forces are positive, each
cable is in tension; that is, it pulls on point A as expected, Fig. 3-10b.
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The 10-kg lamp in Fig. 3-11a is suspended from the three equal-length
cords. Determine its smallest vertical distance s from the ceiling if the
force developed in any cord is not allowed to exceed 50 N.

z

600mm | B

%V )

10(9.81) N b4

(a) (b)
Fig. 3-11

SOLUTION

Free-Body Diagram. Due to symmetry, Fig. 3-11b, the distance
DA = DB = DC = 600 mm. It follows that from X>F, = 0 and
EFy = 0, the tension 7 in each cord will be the same. Also, the angle
between each cord and the z axis is y.

Equation of Equilibrium. Applying the equilibrium equation along
the z axis, with T = 50 N, we have

SF, = 0; 3[(50 N) cos y] — 10(9.81)N = 0

98.1
= cos ' T = 49.16°
Y COS 150

From the shaded triangle shown in Fig. 3-11b,

600 mm
s

tan 49.16° =

s = 519 mm Ans.
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EXAMIPLE | 3.7

Determine the force in each cable used to support the 40-lIb crate z
shown in Fig. 3-12a.

SOLUTION

Free-Body Diagram. Asshown in Fig. 3-12b, the free-body diagram
of point A is considered in order to “expose” the three unknown forces
in the cables.

Equations of Equilibrium. First we will express each force in
Cartesian vector form. Since the coordinates of points B and C are
B(—3 ft, —4 ft, 8 ft) and C(—3 ft, 4 ft, 8 ft), we have

FB=FB_ —3i — 4j + 8k }
LV(=3)2 + (-4 + 8
= —0.318Fzi — 0.424Fpj + 0.848F3zk
Fc—Fc_ —3i + 4j + 8k J
LV(=3) + @) + 8
= —0.318F¢i + 0.424F.j + 0.848F -k
Fp = Fpi
W = {—40k} Ib

Equilibrium requires

>F = 0; Fg +Fc+Fp+W=0
—0.318Fzi — 0.424Fzj + 0.848F3k
—0.318Fi + 0.424Fj + 0.848F -k + Fpi — 40k = 0

Equating the respective i, j, k components to zero yields

SF, = 0; —0.318F5 — 0.318F + Fp = 0 (1)
SF, =0 —0.424F; + 0.424F, = 0 2)
SF, =0, 0.848F; + 0.848F, — 40 = 0 3)

Equation (2) states that Fz = F,. Thus, solving Eq. (3) for Fy and F
and substituting the result into Eq. (1) to obtain Fj,, we have

Fg = F-=2361b Ans.
Fp=1501b Ans.
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z r”D
. 7
60°|1 200 m
o135 5
Im
y

120"(' \
=
)

" . ot '
" k=15kN/my
x - o

|
(a)

W=981N

(b)
Fig. 3-13

Determine the tension in each cord used to support the 100-kg crate
shown in Fig. 3-13a.

SOLUTION

Free-Body Diagram. The force in each of the cords can be
determined by investigating the equilibrium of point A. The free-body
diagram is shown in Fig. 3-13b. The weight of the crate is
W = 100(9.81) = 981 N.

Equations of Equilibrium. Each force on the free-body diagram is
first expressed in Cartesian vector form. Using Eq. 2-9 for F¢ and
noting point D(-1 m,2 m, 2 m) for Fp, we have

Fy = Fyi
Fo = Fgcos 120°% + F.cos 135°% + F.cos 60°k
= —0.5Fci — 0.707F¢j + 0.5Fck
FD=FD[ —1i + 2j + 2k }
V=172 + Q7 + 2
= —0.333Fpi + 0.667Fpj + 0.667Fpk
W= {981k} N

Equilibrium requires

Fyi — 0.5Fqi — 0.707F¢j + 0.5Fk
—0.333Fpi + 0.667F,j + 0.667F,k — 981k = 0

Equating the respective i, j, k components to zero,

SF, = 0; Fp — 0.5F- — 0.333F, = 0 (1)
SF, =0 —0.707F¢ + 0.667Fp = 0 2)
SF, = 0; 0.5F¢ + 0.667F, — 981 = 0 3)

Solving Eq. (2) for Fj in terms of F and substituting this into Eq. (3)
yields Fe. Fp, is then determined from Eq. (2). Finally, substituting the
results into Eq. (1) gives Fj. Hence,
Fo=8I3N Ans.
Fp = 862N Ans.
Fp = 694N Ans.
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. FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD.

F3-7. Determine the magnitude of forces Fy, F,, F5, so
that the particle is held in equilibrium.

* Y900 N

Prob. F3-7

F3-8. Determine the tension developed in cables AB, AC,
and AD.

x 900 N
Prob. F3-8

F3-9. Determine the tension developed in cables AB, AC,
and AD.

600 N
Prob. F3-9

F3-10. Determine the tension developed in cables AB,
AC,and AD.

X 300 Ib
Prob. F3-10

F3-11. The 150-1b crate is supported by cables AB, AC,
and AD. Determine the tension in these wires.

Prob. F3-11
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. PROBLEMS

All problem solutions must include an FBD.

3-43. The three cables are used to support the 40-kg
flowerpot. Determine the force developed in each cable for
equilibrium.

Prob. 3-43

*3-44. Determine the magnitudes of Fy, F,, and F; for
equilibrium of the particle.

Prob. 3-44

3-45. If the bucket and its contents have a total weight of
20 Ib, determine the force in the supporting cables DA, DB,
and DC.

Prob. 3-45

3-46. Determine the stretch in each of the two springs
required to hold the 20-kg crate in the equilibrium position
shown. Each spring has an unstretched length of 2 m and a
stiffness of k = 300 N/m.

Prob. 3-46



3-47. Determine the force in each cable needed to support
the 20-kg flowerpot.

Prob. 3-47

*3-48. Determine the tension in the cables in order to
support the 100-kg crate in the equilibrium position shown.

3-49. Determine the maximum mass of the crate so that
the tension developed in any cable does not exceeded 3 kN.

Probs. 3-48/49
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3-50. Determine the force in each cable if F= 500 lb.

3-51. Determine the greatest force F that can be applied
to the ring if each cable can support a maximum force
of 800 Ib.

Probs. 3-50/51

*3-52. Determine the tension developed in cables AB and
AC and the force developed along strut AD for equilibrium
of the 400-1b crate.

3-53. If the tension developed in each cable cannot exceed
300 1b, determine the largest weight of the crate that can be
supported. Also, what is the force developed along strut AD?

Z

2 ft/

Probs. 3-52/53
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3-54. Determine the tension developed in each cable for
equilibrium of the 300-1b crate.

3-55. Determine the maximum weight of the crate that can
be suspended from cables AB, AC, and AD so that the tension
developed in any one of the cables does not exceed 250 Ib.

Probs. 3-54/55

*3-56. The 25-kg flowerpot is supported at A by the three
cords. Determine the force acting in each cord for
equilibrium.

3-57. If each cord can sustain a maximum tension of 50 N
before it fails,determine the greatest weight of the flowerpot
the cords can support.

y

Probs. 3-56/57

3-58. Determine the tension developed in the three cables
required to support the traffic light, which has a mass of
15 kg. Take h =4 m.

C?]
6 m
D
A 3m
h B
4m
4 m
3m 4m 6 m
//
X 4m - 3m y
Prob. 3-58

3-59. Determine the tension developed in the three cables
required to support the traffic light, which has a mass of
20 kg. Take 4 =3.5 m.

CW/(
6m
D /J<
A 3m
h B
4m
4 m
3m 4m 6 m
//
X 4m - 3m y

Prob. 3-59
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#3-60. The 800-Ib cylinder is supported by three chains as 3-62. If the maximum force in each rod can not exceed
shown. Determine the force in each chain for equilibrium. 1500 N, determine the greatest mass of the crate that can be
Take d =1 ft. supported.

z z

Prob. 3-62
Prob. 3-60
3-63. The crate has a mass of 130 kg. Determine the
3-61. Determine the tension in each cable for equilibrium. tension developed in each cable for equilibrium.
z
800 N
__3A
/
D 5m /437
4 m \ Cﬁ
2m

4m‘7/B

=

Prob. 3-61 Prob. 3-63
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*3-64. If cable AD is tightened by a turnbuckle and
develops a tension of 1300 1b, determine the tension
developed in cables AB and AC and the force developed
along the antenna tower AE at point A.

Prob. 3-64

3-65. If the tension developed in either cable AB or AC
can not exceed 1000 1b, determine the maximum tension
that can be developed in cable AD when it is tightened by
the turnbuckle. Also, what is the force developed along the
antenna tower at point A?

Prob. 3-65

3-66. Determine the tension developed in cables AB, AC,
and AD required for equilibrium of the 300-1b crate.

Prob. 3—66

3-67. Determine the maximum weight of the crate so that
the tension developed in any cable does not exceed 450 Ib.

1ft%l

Prob. 3-67
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. CHAPTER REVIEW

Particle Equilibrium

When a particle is at rest or moves with
constant -Veloc1ty, it is in equ111br1um. Fr=3F=0
This requires that all the forces acting on F, F,
the particle form a zero resultant force.

In order to account for all the forces that
act on a particle, it is necessary to draw
its free-body diagram. This diagram is an
outlined shape of the particle that shows
all the forces listed with their known or
unknown magnitudes and directions.

F4 F3

Two Dimensions

If the problem involves a linearly elastic
spring, then the stretch or compression s F = ks
of the spring can be related to the force
applied to it.

The tensile force developed in a
continuous cable that passes over a
frictionless pulley must have a constant
magnitude throughout the cable to keep

the cable in equilibrium. -—
0

The two scalar equations of force

equilibrium can be applied with reference SF. =0

to an established x, y coordinate system. 2F, = r

Three Dimensions

If the three-dimensional geometry is SF=0
difficult to visualize, then the equilibrium

equation should be applied using a SF, =0
Cartesian vector analysis. This requires 2F, =0
first expressing each force on the free- 3F, =

body diagram as a Cartesian vector.
When the forces are summed and set
equal to zero, then the i, j, and k
components are also zero.
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. REVIEW PROBLEMS

All problem solutions must include an FBD. R3-3. Determine the maximum weight of the flowerpot

o . . that can be supported without exceeding a cable tension of
R3-1. The pipe is held in place by the vise. If the bolt 50 1b in either cable AB or AC.

exerts a force of 50 1b on the pipe in the direction shown,
determine the forces F,4 and Fp that the smooth contacts at
A and B exert on the pipe.

—
SR

Prob. R3-3
Prob. R3-1

R3-2. Determine the maximum weight of the engine that R3-4. When yis 810, the springs sus.tain a f(?rce of 60 Ib.
can be supported without exceeding a tension of 450 Ib in Determine the magnitude of the applied vertical forces F
chain AB and 480 Ib in chain AC. and —F required to pull point A away from point B a

distance of y = 2 ft. The ends of cords CAD and CBD are

attached to rings at C and D.

C

B 30° F
© £ :
A

4 =¢ww¢v=é
k = 40 Ib /it

Prob. R3-2 Prob. R3-4
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R3-5. The joint of a space frame is subjected to four R3-7. Determine the force in each cable needed to
member forces. Member OA lies in the x—y plane and support the 500-1b load.

member OB lies in the y-z plane. Determine the force

acting in each of the members required for equilibrium of

the joint.

Prob. R3-7

Prob. R3-5

R3-8. If cable AB is subjected to a tension of 700 N,
determine the tension in cables AC and AD and the
magnitude of the vertical force F.

R3-6. Determine the magnitudes of F;, F,, and F; for

equilibrium of the particle.

F
A
D 6 m %Zm
) C
3m
/ 1.5m
y
6m 0 21

3m—"p

Prob. R3-6 Prob. R3-8



Chapter 4

(© Rolf Adlercreutz/Alamy)

The force applied to this wrench will produce rotation or a tendency for
rotation. This effect is called a moment, and in this chapter we will study how
to determine the moment of a system of forces and calculate their resultants.



Force System
Resultants

CHAPTER OBJECTIVES

m To discuss the concept of the moment of a force and show how
to calculate it in two and three dimensions.

m To provide a method for finding the moment of a force about a
specified axis.

m To define the moment of a couple.

m To show how to find the resultant effect of a nonconcurrent
force system.

m To indicate how to reduce a simple distributed loading to a
resultant force acting at a specified location.

4.1 Moment of a Force—
Scalar Formulation

When a force is applied to a body it will produce a tendency for the body
to rotate about a point that is not on the line of action of the force. This
tendency to rotate is sometimes called a torque, but most often it is called
the moment of a force or simply the moment. For example, consider a
wrench used to unscrew the bolt in Fig. 4-1a. If a force is applied to
the handle of the wrench it will tend to turn the bolt about point O (or
the z axis). The magnitude of the moment is directly proportional to the
magnitude of F and the perpendicular distance or moment arm d. The
larger the force or the longer the moment arm, the greater the moment
or turning effect. Note that if the force F is applied at an angle 6 # 90°,
Fig. 4-1b, then it will be more difficult to turn the bolt since the moment
arm d’' = d sinf will be smaller than 4. If F is applied along the wrench,
Fig. 4-1c, its moment arm will be zero since the line of action of F will
intersect point O (the z axis). As a result, the moment of F about O is also
zero and no turning can occur.

Fig. 4-1
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Moment axis

(a) Sense of rotation

(b)
Fig. 4-2

Fig. 4-3

We can generalize the above discussion and consider the force F and
point O which lie in the shaded plane as shown in Fig. 4-2a4. The moment
M,, about point O, or about an axis passing through O and perpendicular
to the plane, is a vector quantity since it has a specified magnitude and
direction.

Magnitude. The magnitude of M, is

MO = Fd (4—1)

where d is the moment arm or perpendicular distance from the axis at
point O to the line of action of the force. Units of moment magnitude
consist of force times distance, e.g., N-m or 1b - ft.

Direction. The direction of My, is defined by its moment axis, which
is perpendicular to the plane that contains the force F and its moment
arm d. The right-hand rule is used to establish the sense of direction of
M,. According to this rule, the natural curl of the fingers of the right
hand, as they are drawn towards the palm, represent the rotation, or if no
movement is possible, there is a tendency for rotation caused by the
moment. As this action is performed, the thumb of the right hand will
give the directional sense of My, Fig. 4-2a. Notice that the moment vector
is represented three-dimensionally by a curl around an arrow. In two
dimensions this vector is represented only by the curl as in Fig. 4-2b.
Since in this case the moment will tend to cause a counterclockwise
rotation, the moment vector is actually directed out of the page.

Resultant Moment. For two-dimensional problems, where all the
forces lie within the x—y plane, Fig. 4-3, the resultant moment (M),
about point O (the z axis) can be determined by finding the algebraic sum
of the moments caused by all the forces in the system. As a convention,
we will generally consider positive moments as counterclockwise since
they are directed along the positive z axis (out of the page). Clockwise
moments will be negative. Doing this, the directional sense of each
moment can be represented by a plus or minus sign. Using this sign
convention, with a symbolic curl to define the positive direction, the
resultant moment in Fig. 4-3 is therefore

C+My), = 3Fd;  (Mp), = Fid, — Fydy + Fd;

If the numerical result of this sum is a positive scalar, (Mg), will be a
counterclockwise moment (out of the page); and if the result is negative,
(Mg), will be a clockwise moment (into the page).
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oxavpLe o

For each case illustrated in Fig. 44, determine the moment of the
force about point O.

SOLUTION (SCALAR ANALYSIS)

The line of action of each force is extended as a dashed line in order to
establish the moment arm d. Also illustrated is the tendency of
rotation of the member as caused by the force. Furthermore, the orbit
of the force about O is shown as a colored curl. Thus,

100 N
Fig. 4-4a Mo = (100 N)(2m) = 200 N*m D Ans.
Fig. 4-4b M, = (50N)(0.75m) = 37.5N-m)) Ans. \ l
Fig. 4-4c M, = (401b)(4 ft + 2 cos 30° ft) = 2291b - ft D Ans. @] 7—
Fig.4-4d My = (60 Ib)(1 sin 45° ft) = 42.41b - ft D Ans. | - ‘
Fig. 4-4e My=7kN)4m — 1m) =21.0kN'-m D Ans. (a)
A
2 ft
A (/l
0 Fr— 730°Y40 10
4 = |
| 41t | 1
50N 2 cos 30° ft
(c)
i
1m
«——7kN

| 3ft i

:

1 sin 45° ft

1

60 1b

45°

(e)
Fig. 4-4
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EXAMPLE | 4.2

Determine the resultant moment of the four forces acting on the rod
shown in Fig. 4-5 about point O.

SOLUTION
Assuming that positive moments act in the +k direction, i.e.,
counterclockwise, we have

C + (Mp), = 3Fd;
(Mg), = =50 N(2 m) + 60 N(0) + 20 N(3 sin 30° m)
—40 N4 m + 3 cos 30°m)
—334N-m = 334N-m) Ans.

(M),

Fig. 4-5 For this calculation, note how the moment-arm distances for the 20-N
and 40-N forces are established from the extended (dashed) lines of
action of each of these forces.

As illustrated by the example problems, the moment of a

force does not always cause a rotation. For example, the force The ability to remove the nail will require the
F tends to rotate the beam clockwise about its support at A moment of Fy about point O to be larger than the
with a moment M, = Fd,. The actual rotation would occur moment of the force Fy about O that is needed to

if the support at B were removed. (© Russell C. Hibbeler) pull the nail out. (© Russell C. Hibbeler)



4.2 Cross Product

The moment of a force will be formulated using Cartesian vectors in the
next section. Before doing this, however, it is first necessary to expand our
knowledge of vector algebra and introduce the cross-product method of
vector multiplication, first used by Willard Gibbs in lectures given in the
late 19th century.

The cross product of two vectors A and B yields the vector C, which is
written

C=AXB (4-2)

and is read “C equals A cross B.”

Magnitude. The magnitude of C is defined as the product of the
magnitudes of A and B and the sine of the angle 6 between their tails
(0° = 0 = 180°). Thus, C = AB sin 6.

Direction. Vector C has a direction that is perpendicular to the plane
containing A and B such that C is specified by the right-hand rule; i.e.,
curling the fingers of the right hand from vector A (cross) to vector B,
the thumb points in the direction of C, as shown in Fig. 4-6.

Knowing both the magnitude and direction of C, we can write

C=A X B = (ABsin 0)u, (4-3)

where the scalar A B sin defines the magnitude of C and the unit vector
u- defines the direction of C. The terms of Eq. 4-3 are illustrated
graphically in Fig. 4-6.

C=AXB

Fig. 4-6

4.2 CRrOSS PrRODUCT

125
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Fig. 4-7

Fig. 4-8

Laws of Operation.

e The commutative law is not valid;i.e., A X B # B X A. Rather,
AXB=-BXA

This is shown in Fig. 4-7 by using the right-hand rule. The cross
product B X A yields a vector that has the same magnitude but acts
in the opposite direction to C;i.e.,B X A = —C.

e If the cross product is multiplied by a scalar a, it obeys the associa-
tive law;

aA X B) = (@A) X B = A X (aB) = (A X B)a

This property is easily shown since the magnitude of the resultant
vector (|a|AB sin 6) and its direction are the same in each case.

e The vector cross product also obeys the distributive law of addition,
AXB+D)=(AXB)+ (AXD)

e The proof of this identity is left as an exercise (see Prob. 4-1). It is
important to note that proper order of the cross products must be
maintained, since they are not commutative.

Cartesian Vector Formulation. Equation 4-3 may be used
to find the cross product of any pair of Cartesian unit vectors. For
example, to find i X j, the magnitude of the resultant vector is
@ (H(sin 90°) = (1)(1)(1) = 1, and its direction is determined using the
right-hand rule. As shown in Fig. 4-8, the resultant vector points in the
+k direction. Thus,i X j = (1)k. In a similar manner,

ixXj=k ixk=—j ixi=0
jXk=i jXi=-k jxXj=0
kXi=j kXj=—-i kxk=0

These results should not be memorized; rather, it should be clearly
understood how each is obtained by using the right-hand rule and the
definition of the cross product. A simple scheme shown in Fig. 4-9 is
helpful for obtaining the same results when the need arises. If the circle
is constructed as shown, then “crossing” two unit vectors in a
counterclockwise fashion around the circle yields the positive third unit
vector; e.g., k X i = j. “Crossing” clockwise, a negative unit vector is
obtained;e.g.,i X k = —j.



Let us now consider the cross product of two general vectors A and B
which are expressed in Cartesian vector form. We have

AXB=@A,i+A,j+AKk X(@B,+ B,j+ Bk
= AB(i X i)+ AB@i X}j) +AB. (i XKk
+ AyB,(j Xi) + AB,(j X j) + A\B.(j X K)
+ AB.(k X i)+ ABykXj +AB/(kXKk)
Carrying out the cross-product operations and combining terms yields
AXB=(@AB,—AB)i—(AB,—AB)j+ A,B,—AB)k (4-4)

This equation may also be written in a more compact determinant
form as

i j k
AXB= A, A, A, (4-5)
B, B, B.

Thus, to find the cross product of any two Cartesian vectors A and B, it is
necessary to expand a determinant whose first row of elements consists
of the unit vectors i, j, and k and whose second and third rows represent
the x, y, z components of the two vectors A and B, respectively.*

*A determinant having three rows and three columns can be expanded using three
minors, each of which is multiplied by one of the three terms in the first row. There are
four elements in each minor, for example,

1 12
1

By definition, this determinant notation represents the terms (A ;A» — A,A,;), which is
simply the product of the two elements intersected by the arrow slanting downward to the
right (A,A5,) minus the product of the two elements intersected by the arrow slanting
downward to the left (A ,A,;). For a 3 X 3 determinant, such as Eq. 4-5, the three minors
can be generated in accordance with the following scheme:

; = i(Asz - Asz)
B Z

g Remember the
/ negative sign

—j(AB. — A.B,)

For element i:

For element j:

For element k: = k(AxBy - AyBx)

Adding the results and noting that the j element must include the minus sign yields the
expanded form of A X B given by Eq. 4-4.

4.2

CROSS PRODUCT
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Moment axis

(a)

Moment axis

Line of action

Fig. 4-11

4.3 Moment of a Force—Vector
Formulation

The moment of a force F about point O, or actually about the moment
axis passing through O and perpendicular to the plane containing O and
F, Fig. 4-10a, can be expressed using the vector cross product, namely,

MO =rXF (4—6)

Here r represents a position vector directed from O to any point on the
line of action of F. We will now show that indeed the moment M,,, when
determined by this cross product, has the proper magnitude and direction.

Magnitude. The magnitude of the cross product is defined from
Eq. 4-3 as M, = rFsin 0, where the angle 6 is measured between the
tails of r and F. To establish this angle, r must be treated as a sliding vector
so that 6 can be constructed properly, Fig. 4-10b. Since the moment arm
d = rsin6, then

Mo = rFsin@ = F(rsin 6) = Fd

which agrees with Eq. 4-1.

Direction. The direction and sense of M, in Eq. 4-6 are determined
by the right-hand rule as it applies to the cross product. Thus, sliding r to
the dashed position and curling the right-hand fingers from r toward F,
“r cross F,” the thumb is directed upward or perpendicular to the plane
containing r and F and this is in the same direction as M), the moment of
the force about point O, Fig. 4-10b. Note that the “curl” of the fingers,
like the curl around the moment vector, indicates the sense of rotation
caused by the force. Since the cross product does not obey the
commutative law, the order of r X F must be maintained to produce the
correct sense of direction for M,,.

Principle of Transmissibility. The cross product operation is
often used in three dimensions since the perpendicular distance or
moment arm from point O to the line of action of the force is not needed.
In other words, we can use any position vector r measured from point O
to any point on the line of action of the force F, Fig. 4-11. Thus,

M0=r1><F=l‘2><F=r3><F
Since F can be applied at any point along its line of action and still create

this same moment about point O, then F can be considered a sliding
vector. This property is called the principle of transmissibility of a force.
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Cartesian Vector Formulation. If we establish x, y, z coordinate  y\joment
axes, then the position vector r and force F can be expressed as Cartesian  axis \
vectors, Fig. 4-12a. Applying Eq. 4-5 we have

k
r, (4-7)
FZ

/

X
where

I Iy, I, represent the x, y, z components of the position
vector drawn from point O to any point on the
line of action of the force

F,, F,, F, represent the x, y, z components of the force vector

If the determinant is expanded, then like Eq. 4-4 we have

My = (WF, — nF)i — (nF, — r,F)j + (nF, — r,Fok (4-8)

MO\
Of

U

(a)

The physical meaning of these three moment components becomes
evident by studying Fig. 4-12b. For example, the i component of M, can
be determined from the moments of F,, F,, and F, about the x axis. The
component F, does not create a moment or tendency to cause turning
about the x axis since this force is parallel to the x axis. The line of
action of F, passes through point B, and so the magnitude of the
moment of F, about point A on the x axis is r.F). By the right-hand rule
this component acts in the negative i direction. Likewise, F, passes
through point C and so it contributes a moment component of r,F.i
about the x axis. Thus, (M), = (n,F, — r.F,) as shown in Eq. 4-8. As an
exercise, establish the j and k components of My, in this manner and
show that indeed the expanded form of the determinant, Eq. 4-8,
represents the moment of F about point O. Once M,, is determined,
realize that it will always be perpendicular to the shaded plane
containing vectors r and F, Fig. 4-12a. F,

Resultant Moment of a System of Forces. Ifabody is acted

about point O can be determined by vector addition of the moment of
each force. This resultant can be written symbolically as

upon by a system of forces, Fig. 4-13, the resultant moment of the forces /

(Mg), = 2(r X F) (4-9)

F;

r

(b)
Fig. 4-12

I3 T

F,

Mg),,

U
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Fig. 4-13
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(2)

(b)
Fig. 4-14

Determine the moment produced by the force F in Fig. 4-14a about
point O. Express the result as a Cartesian vector.

SOLUTION
As shown in Fig. 4-14b, either r, or rp can be used to determine the
moment about point O. These position vectors are

ry = {12k} m"and°rz; = {4i + 12j} m

Force F expressed as a Cartesian vector is

{4i + 12j — 12k} m
V@ m? + 12m) + (—12m)?

F = Fu,; = 2kN

= {0.4588i + 1.376j — 1.376k} kN

Thus
i i k
My,=1r,XxXF=| 0 0 12
0.4588 1.376 —1.376
= [0(—1.376) — 12(1.376)]i — [0(—1.376) — 12(0.4588)]j
+ [0(1.376) — 0(0.4588)]k
= [—16.5i + 5.51j} kKN-m Ans.
or
i i k
MO = I‘B X F = 4 12 0

0.4588 1376 —1.376

= [12(—1.376) — 0(1.376)]i — [4(—1.376) — 0(0.4588)]j
+ [4(1.376) — 12(0.4588)]k

= (—16.5i + 5.51j} KN-m Ans.

NOTE: As shown in Fig. 4-14b, M, acts perpendicular to the plane
that contains F, r,, and rz. Had this problem been worked using
M, = Fd, notice the difficulty that would arise in obtaining the
moment arm d.
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EXAMPLE | 4.4

Two forces act on the rod shown in Fig. 4-15a. Determine the resultant
moment they create about the flange at O. Express the result as a
Cartesian vector.

F, = {—60i + 40j + 20k} Ib

‘A
o —
2 ft
|
4ft/
5 A Y
A—S5ft——

F, = {80i + 40j — 30k} Ib

(a) (b)
SOLUTION
Position vectors are directed from point O to each force as shown in
Fig. 4-15b. These vectors are
(Mp), = {30i — 40j + 60k} Ib-ft
ry = {5j} ft (/)7 =39.8°
rz = {4i + 5j — 2k} ft

The resultant moment about O is therefore

M), = Z(r X F)
ZrAXF1+rB><F2

i j k i j K

0 5 o+ 1|4 5 =)
—60 40 20 80 40 —30
[5(20) — 0(40)]i — [0]j + [0(40) — (5)(—60)]k
+ [5(=30) = (=2)(@0)]i — [4(=30) — (=2)(80)]j + [4(40) — 5(80)]k
= {30i — 40j + 60k} Ib- ft Ans.

Fig. 4-15

NOTE: This result is shown in Fig. 4-15¢. The coordinate direction
angles were determined from the unit vector for (M), . Realize that
the two forces tend to cause the rod to rotate about the moment axis
in the manner shown by the curl indicated on the moment vector.
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F F,
F,
r
]
Fig. 4-16
F, F
| x =
F,
y
d M,

. 4

Fig. 4-17

The moment of the force about point O is
M, = Fd.Butitis easier to find this moment
using My = F(0) + Fyr = Fyr. (© Russell
C. Hibbeler)

4.4 Principle of Moments

A concept often used in mechanics is the principle of moments, which
is sometimes referred to as Varignon’s theorem since it was orginally
developed by the French mathematician Pierre Varignon (1654-1722).
It states that the moment of a force about a point is equal to the sum of
the moments of the components of the force about the point. This
theorem can be proven easily using the vector cross product since the
cross product obeys the distributive law. For example, consider the
moments of the force F and two of its components about point O,
Fig. 4-16. Since F = F, + F, we have

MOZrXFZrX(F1+F2)=rXF1+r><F2

For two-dimensional problems, Fig. 4-17, we can use the principle of
moments by resolving the force into its rectangular components and
then determine the moment using a scalar analysis. Thus,

Mo = Fyy — Fyx

This method is generally easier than finding the same moment using
M o= Fd.

Important Points

¢ The moment of a force creates the tendency of a body to turn
about an axis passing through a specific point O.

o Using the right-hand rule, the sense of rotation is indicated by the
curl of the fingers, and the thumb is directed along the moment
axis, or line of action of the moment.

¢ The magnitude of the moment is determined from M, = Fd,
where d is called the moment arm, which represents the
perpendicular or shortest distance from point O to the line of
action of the force.

o In three dimensions the vector cross product is used to determine
the moment, i.e., My = r X F. Remember that r is directed from
point O to any point on the line of action of F.
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exavipie Jas

Determine the moment of the force in Fig. 4-18a about point O.

y

—d, =3 cos 30°ma‘
F, = (5kN) cos 45°

d, =3sin30°m

Fy, = (5kN) sin 45°

X

(a) (®)
SOLUTION |
The moment arm d in Fig. 4-18a can be found from trigonometry.
d = (3m) sin 75° = 2.898 m
Thus,
M, = Fd = (5kN)(2.898 m) = 14.5kN -m ) Ans.

Since the force tends to rotate or orbit clockwise about point O, the
moment is directed into the page.

SOLUTION I

The x and y components of the force are indicated in Fig. 4-18b.

Considering counterclockwise moments as positive, and applying the

principle of moments, we have

g+ MO - _dey - Fydx

—(5 cos 45° kN)(3 sin 30° m) — (5 sin 45° kN)(3 cos 30° m)

—145kN*m = 145kN+-m D Ans. F, = (5kN) cos 75¢

SOLUTION III
The x and y axes can be set parallel and perpendicular to the rod’s
axis as shown in Fig. 4-18c. Here F, produces no moment about
point O since its line of action passes through this point. Therefore,
g + MO = _Fy dx
= —(5 sin 75° kN)(3 m) ©
= —145kN-m = 145kN -m) Ans. Fig. 4-18
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y
o)
T X
r 02m
r |
| ——>
_ 400 sin 30° N
——04m —
¥ 400 cos 30° N
(b)
y
0
T X
r l 02m
b
|

Force F acts at the end of the angle bracket in Fig. 4-19a. Determine
the moment of the force about point O.

SOLUTION | (SCALAR ANALYSIS)
The force is resolved into its x and y components, Fig. 4-19b, then
G+ M, = 400 sin 30° N(0.2 m) — 400 cos 30° N(0.4 m)
= —986N-'m = 98.6N-m )

or

M, = {—98.6k} N-m Ans.

SOLUTION II (VECTOR ANALYSIS)
Using a Cartesian vector approach, the force and position vectors,
Fig. 4-19c, are

r= {04i — 02§} m
F = {400 sin 30°i — 400 cos 30°j} N
= {200.0i — 346.4j} N

The moment is therefore

i i k
M,=rxF=|04 -02 0
2000 —3464 0

= 0i — 0j + [0.4(—346.4) — (—0.2)(200.0)]k

= {—98.6k} N-m Ans.

NOTE: It is seen that the scalar analysis (Solution I) provides a more
convenient method for analysis than Solution II since the direction of
the moment and the moment arm for each component force are easy
to establish. Hence, this method is generally recommended for solving
problems displayed in two dimensions, whereas a Cartesian vector
analysis is generally recommended only for solving three-dimensional
problems.
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. PRELIMINARY PROBLEMS

P4-1. In each case, determine the moment of the force P4-2. In each case, set up the determinant to find the
about point O. moment of the force about point P.

z

F = {—3i + 2j + 5k} kN

3m——>"
— — y
2m P
X
(a)
z
~<2m | 2m
[ Tim
X
F = {2i — 4j — 3k} kN
(b)
z
o F={-2i+3j+4 P
| = i+ 3j + 4k} kN
5 3 5m |
100N 3 m
/ém—%l
=
(e) 4m

Prob. P4-1 Prob. P4-2
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. FUNDAMENTAL PROBLEMS

F4-1. Determine the moment of the force about point O. F4-4. Determine the moment of the force about point O.
Neglect the thickness of the member.

100 N S0N

~—100 mma‘ 60°

‘ 45° 200 mm
O,

Prob. F4-1 LlOO mm-—

Prob. F4-4

F4-2. Determine the moment of the force about point O. . .
F4-5. Determine the moment of the force about point O.

600 Ib

0.5

=4

Prob. F4-2

F4-3. Determine the moment of the force about point O. Prob. F4-5

F4-6. Determine the moment of the force about point O.

500 N

45°

Prob. F4-6
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F4-7. Determine the resultant moment produced by the F4-10. Determine the moment of force F about point O.
forces about point O. Express the result as a Cartesian vector.

Prob. F4-10

F4-11. Determine the moment of force F about point O.
Express the result as a Cartesian vector.

Prob. F4-7

F4-8. Determine the resultant moment produced by the
forces about point O.

F=1201b

B
F; =500 N y \F
2 ft
0.125 m 5
‘ i 03m 3 T~y
60°
Prob. F4-11
F, = 600N F4-12. If the two forces F; = {100i — 120j + 75k} Ib and
F, = {—200i + 250j + 100k} Ib act at A, determine the
resultant moment produced by these forces about point O.
Prob. F4-8 Express the result as a Cartesian vector.

F4-9. Determine the resultant moment produced by the
forces about point O.

Fy= 20015 | ot /\

Prob. F4-9 Prob. F4-12
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“leromiews

4-1. If A, B, and D are given vectors, prove the
distributive law for the vector cross product, i.e.,
AX B +D) = (AXB)+ (AXD).

4-2. Prove the triple scalar
A-BXC =(AXB)-C

product  identity

4-3. Given the three nonzero vectors A, B, and C, show
that if A-(B X C) = 0, the three vectors must lie in the
same plane.

*4-4. Determine the moment about point A of each of the
three forces acting on the beam.

4-5. Determine the moment about point B of each of the
three forces acting on the beam.

F,=3751b F, = 5001b
5/ 4
A 3
B |
= 0.5 1t

30°
Fy=1601b

Probs. 4-4/5

4-6. The crowbar is subjected to a vertical force of P = 251b
at the grip, whereas it takes a force of F = 155 Ib at the claw to
pull the nail out. Find the moment of each force about point A
and determine if P is sufficient to pull out the nail. The crowbar
contacts the board at point A.

Prob. 4-6

4-7. Determine the moment of each of the three forces
about point A.

#*4-8. Determine the moment of each of the three forces
about point B.

F=250N 30"‘ F=30N
A o0°
2m | 3m
4m
B4 5
3
Fy=500N

Probs. 4-7/8
4-9. Determine the moment of each force about the bolt
located at A. Take Fy = 401b, F- = 50 Ib.

4-10. If Fz =301b and F. = 451b, determine the
resultant moment about the bolt located at A.

Probs. 4-9/10



4-11. The towline exerts a force of P = 6 kN at the end of
the 8-m-long crane boom. If 6 = 30°, determine the
placement x of the hook at B so that this force creates a
maximum moment about point O. What is this moment?

*4-12. The towline exerts a force of P = 6 kN at the end
of the 8-m-long crane boom. If x = 10 m, determine the
position 6 of the boom so that this force creates a maximum
moment about point O. What is this moment?

Probs. 4-11/12

4-13. The 20-N horizontal force acts on the handle of the
socket wrench. What is the moment of this force about point B.
Specify the coordinate direction angles «, 3, y of the moment
axis.

4-14. The 20-N horizontal force acts on the handle of the
socket wrench. Determine the moment of this force about
point O. Specify the coordinate direction angles «, 3, y of
the moment axis.

Probs. 4-13/14
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4-15. Two men exert forces of F = 801b and P = 50 1b on
the ropes. Determine the moment of each force about A.
Which way will the pole rotate, clockwise or counterclockwise?

*4-16. 1If the man at B exerts a force of P = 30 1b on his
rope, determine the magnitude of the force F the man at C
must exert to prevent the pole from rotating, i.e., so the
resultant moment about A of both forces is zero.

th
|

.

12 ft

hS

Probs. 4-15/16

4-17. The torque wrench ABC is used to measure the
moment or torque applied to a bolt when the bolt is located
at A and a force is applied to the handle at C. The mechanic
reads the torque on the scale at B. If an extension AO of
length d is used on the wrench, determine the required scale
reading if the desired torque on the bolt at O is to be M.

Prob. 4-17
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4-18. 'The tongs are used to grip the ends of the drilling pipe P.
Determine the torque (moment) Mp that the applied force
F = 150 Ib exerts on the pipe about point P as a function of 6.
Plot this moment Mp versus § for0 = 6 = 90°.

4-19. The tongs are used to grip the ends of the drilling
pipe P. If a torque (moment) of Mp = 800 Ib- ft is needed
at P to turn the pipe, determine the cable force F that must
be applied to the tongs. Set § = 30°.

43 in. i
Probs. 4-18/19

#4-20. The handle of the hammer is subjected to the force
of F = 20 Ib. Determine the moment of this force about the
point A.

4-21. In order to pull out the nail at B, the force F exerted
on the handle of the hammer must produce a clockwise
moment of 5001b-in. about point A. Determine the
required magnitude of force F.

Probs. 4-20/21

4-22. Old clocks were constructed using a fusee B to drive
the gears and watch hands. The purpose of the fusee is to
increase the leverage developed by the mainspring A as it
uncoils and thereby loses some of its tension. The
mainspring can develop a torque (moment) 7y = k6, where
k = 0.015 N-m/rad is the torsional stiffness and 6 is the
angle of twist of the spring in radians. If the torque T
developed by the fusee is to remain constant as the
mainspring winds down, and x = 10 mm when 6 = 4 rad,
determine the required radius of the fusee when 6 = 3 rad.

Prob. 4-22

4-23. The tower crane is used to hoist the 2-Mg load upward
at constant velocity. The 1.5-Mg jib BD, 0.5-Mg jib BC, and
6-Mg counterweight C have centers of mass at Gy, G,, and Gj,
respectively. Determine the resultant moment produced by
the load and the weights of the tower crane jibs about point A
and about point B.

*4-24. The tower crane is used to hoist a 2-Mg load upward
at constant velocity. The 1.5-Mg jib BD and 0.5-Mg jib BC
have centers of mass at G, and G,, respectively. Determine
the required mass of the counterweight C so that the resultant
moment produced by the load and the weight of the tower
crane jibs about point A is zero. The center of mass for the
counterweight is located at Gs.

F—m% 9.5m

G2 B D
c A

Gy =15m— 8 125m L]

=

Probs. 4-23/24



4-25. If the 1500-1b boom AB, the 200-1b cage BCD, and
the 175-1b man have centers of gravity located at points G,
G,, and Gj, respectively, determine the resultant moment
produced by each weight about point A.

4-26. If the 1500-Ib boom AB, the 200-1b cage BCD, and
the 175-1b man have centers of gravity located at points G,
G», and Gj, respectively, determine the resultant moment
produced by all the weights about point A.

Probs. 4-25/26

4-27. Determine the moment of the force F about point O.
Express the result as a Cartesian vector.

*4-28. Determine the moment of the force F about point P.
Express the result as a Cartesian vector.

F = |-6i+4j+ 8k} kN

A
e 4m-—
P
T |
6m 3m
\ 2 1m l Y
=

X

Probs. 4-27/28
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4-29. The force F = {400i — 100j — 700k} Ib acts at the
end of the beam. Determine the moment of this force about
point O.

4-30. The force F = {400i — 100j — 700k} 1b acts at the
end of the beam. Determine the moment of this force about
point A.

Probs. 4-29/30

4-31. Determine the moment of the force F about point P.
Express the result as a Cartesian vector.

TI
T
S
< y
3m o) /
3m
-
Aot
X
F = [2i + 4j — 6k} kN
Prob. 4-31
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#*4-32. The pipe assembly is subjected to the force of
F = {600i + 800j — 500k} N. Determine the moment of
this force about point A.

4-33. The pipe assembly is subjected to the force of
F = {600i + 800j — 500k} N. Determine the moment of
this force about point B.

Probs. 4-32/33

4-34. Determine the moment of the force of F = 600 N
about point A.

4-35. Determine the smallest force F that must be applied
along the rope in order to cause the curved rod, which has a
radius of 4 m, to fail at the support A. This requires a
moment of M = 1500 N - m to be developed at A.

Z

g
B 4527 | 4m
. 4m
\ *F
6m
\ c
O

Probs. 4-34/35

*4-36. Determine the coordinate direction angles «, 3, y
of force F, so that the moment of F about O is zero.

4-37. Determine the moment of force F about point O.
The force has a magnitude of 800 N and coordinate direction
angles of @ = 60°, B = 120°, y = 45°. Express the result as
a Cartesian vector.

Probs. 4-36/37

4-38. Determine the moment of the force F about the
door hinge at A. Express the result as a Cartesian vector.

4-39. Determine the moment of the force F about the
door hinge at B. Express the result as a Cartesian vector.

Probs. 4-38/39



#4-40. The curved rod has a radius of 5 ft. If a force of
60 1b acts at its end as shown, determine the moment of this
force about point C.

4-41. Determine the smallest force F that must be applied
along the rope in order to cause the curved rod, which has a
radius of 5 ft, to fail at the support C.This requires a moment
of M = 80 1b-ft to be developed at C.

o

5 ft \60; A
5ft

¢ y
60 1b /

6 fif
B /

7 ft o

Probs. 4-40/41

4-42. A 20-N horizontal force is applied perpendicular to
the handle of the socket wrench. Determine the magnitude
and the coordinate direction angles of the moment created
by this force about point O.

Prob. 4-42
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4-43. The pipe assembly is subjected to the 80-N force.
Determine the moment of this force about point A.

*4-44. The pipe assembly is subjected to the 80-N force.
Determine the moment of this force about point B.

Probs. 4-43/44

4-45. A force of F = {6i — 2j + 1k} kN produces a
moment of My = {4i + 5j — 14k} kN - m about the origin,
point O. If the force acts at a point having an x coordinate
of x = 1 m, determine the y and z coordinates. Note: The
figure shows F and My, in an arbitrary position.

4-46. The force F = {6i + 8j + 10k} N creates a moment
about point O of My = {—14i + 8 + 2k} N-m. If the
force passes through a point having an x coordinate of 1 m,
determine the y and z coordinates of the point. Also,
realizing that M, = Fd, determine the perpendicular
distance d from point O to the line of action of F. Note: The
figure shows F and My, in an arbitrary position.

-~
Z -
/F
P
7
-~
M, -7
\9 d <
) y
1m
y

Probs. 4-45/46
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4-47. A force F having a magnitude of F = 100N acts
along the diagonal of the parallelepiped. Determine the
moment of F about the point A, using My = rz X F and
M, =rc X F.

200 mm
by
400 mm
B Ip
% 600 mm —— A4
F X
Prob. 4-47

#*4-48. Force F acts perpendicular to the inclined plane.
Determine the moment produced by F about point A.
Express the result as a Cartesian vector.

4-49. Force F acts perpendicular to the inclined plane.
Determine the moment produced by F about point B.

Express the result as a Cartesian vector.

Probs. 4-48/49

4-50. Strut AB of the 1-m-diameter hatch door exerts a
force of 450 N on point B. Determine the moment of this
force about point O.

Prob. 4-50

4-51. Using a ring collar, the 75-N force can act in the
vertical plane at various angles 6. Determine the magnitude
of the moment it produces about point A, plot the result of M
(ordinate) versus 6 (abscissa) for 0° = # = 180°, and specify
the angles that give the maximum and minimum moment.

Prob. 4-51
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4.5 Moment of a Force about a
Specified Axis

Sometimes, the moment produced by a force about a specified axis must
be determined. For example, suppose the lug nut at O on the car tire in
Fig. 4-20a needs to be loosened. The force applied to the wrench will
create a tendency for the wrench and the nut to rotate about the moment
axis passing through O; however, the nut can only rotate about the y axis.
Therefore, to determine the turning effect, only the y component of the
moment is needed, and the total moment produced is not important. To
determine this component, we can use either a scalar or vector analysis.

Scalar Analysis.  To use a scalar analysis in the case of the lug nut in
Fig. 4-20a, the moment arm, or perpendicular distance from the axis to
the line of action of the force, is d, = d cos 6. Thus, the moment of F
about the y axis is M, = Fd, = F(d cos #). According to the right-hand
rule, M, is directed along the positive y axis as shown in the figure. In
general, for any axis a, the moment is

M, = Fd, (4-10)

(© Russell C. Hibbeler)

(a)
Fig. 4-20

Moment axis
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(b)
Fig. 4-20 (cont.)

Axis of projection

Fig. 4-21

Vector Analysis. To find the moment of force F in Fig. 4-20b about
the y axis using a vector analysis, we must first determine the moment of
the force about any point O on the y axis by applying Eq.4-7,M, = r X F.
The component M, along the y axis is the projection of M, onto the y axis.
It can be found using the dot product discussed in Chapter 2, so that
M, = j-My = j- (r X F), where j is the unit vector for the y axis.

We can generalize this approach by letting u, be the unit vector that
specifies the direction of the a axis shown in Fig. 4-21. Then the moment
of F about a point O on the axis is My = r X F, and the projection of
this moment onto the a axis is M, = u,- (r X F). This combination is
referred to as the scalar triple product. If the vectors are written in
Cartesian form, we have

i j k
M, = [u,ji + uayj +u Kl oo
F. F, F,

= u, (nF, — rZFy) - uay(erZ —rF) + uaz(ery - nFy)

This result can also be written in the form of a determinant, making it
easier to memorize.*

Uy — Ug U
M,=u, @cXF)=|r, r, (4-11)
r B F

where

Uy, Ug, U, TEpresent the x, y, z components of the unit vector
’ defining the direction of the a axis

e Iy, 1. represent the x, y, z components of the position
vector extended from any point O on the a axis

to any point A on the line of action of the force
F,, F,, F, represent the x, y, z components of the force vector.

When M, is evaluated from Eq.4-11,it will yield a positive or negative scalar.
The sign of this scalar indicates the sense of direction of M, along the a axis.
Ifitis positive, then M, will have the same sense as u,, whereas if it is negative,
then M, will act opposite to u,. Once the a axis is established, point your
right-hand thumb in the direction of M,, and the curl of your fingers will
indicate the sense of twist about the axis, Fig. 4-21.

*Take a minute to expand this determinant, to show that it will yield the above result.
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Provided M, is determined, we can then express M, as a Cartesian
vector, namely,

M, = M,u, (4-12)

The examples which follow illustrate numerical applications of the
above concepts.

Important Points

o The moment of a force about a specified axis can be determined
provided the perpendicular distance d, from the force line of
action to the axis can be determined. M, = Fd,,.

o If vector analysis is used, M, = u,- (r X F), where u, defines the
direction of the axis and r is extended from any point on the axis
to any point on the line of action of the force.

o If M, is calculated as a negative scalar, then the sense of direction
of M, is opposite to u,.

o The moment M, expressed as a Cartesian vector is determined
from M, = M u,.

147

EXAMPLE | 4.7

Determine the resultant moment of the three forces in Fig. 4-22 about
the x axis, the y axis, and the z axis.

SOLUTION

A force that is parallel to a coordinate axis or has a line of action that
passes through the axis does not produce any moment or tendency for
turning about that axis. Therefore, defining the positive direction of
the moment of a force according to the right-hand rule, as shown in
the figure, we have

M, = (601b)(2ft) + (501b)(2ft) + 0 =2201b-ft Ans.
M, =0 — (501b)(3 ft) — 40Ib)2 ft) = =2301b-ft  Ans
M,=0+0—-(401b)2ft) = —801Ib-ft Ans.

The negative signs indicate that M, and M. act in the —y and —z
directions, respectively.

F;=401b
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EXAMPLE | 4.8

z Determine the moment My produced by the force F in Fig. 4-23a,
which tends to rotate the rod about the AB axis.

SOLUTION
A vector analysis using M,z = ug* (r X F) will be considered for the
solution rather than trying to find the moment arm or perpendicular
distance from the line of action of F to the AB axis. Each of the terms
in the equation will now be identified.

Unit vector ug defines the direction of the AB axis of the rod,
Fig. 4-23b, where

ry  {04i +02j)m
5 \V(04m) + (0.2 m)?

u = = 0.8944i + 0.4472j

Vector r is directed from any point on the AB axis to any point on the
line of action of the force. For example, position vectors rc and 1y are
suitable, Fig. 4-23b. (Although not shown, rz¢ or rz;, can also be used.)
For simplicity, we choose rp, where

rp = {0.6i} m
The force is
F = {—300k} N
Substituting these vectors into the determinant form and expanding,
we have
0.8944  0.4472 0
MAB=llB'(rDXF)= 0.6 0 0

0 0 —300
= (.8944[0(—300) — 0(0)] — 0.4472[0.6(—300) — 0(0)]
+ 0[0.6(0) — 0(0)]

= 80.50 N-m

This positive result indicates that the sense of Myp is in the same
direction as ug.

Expressing M, in Fig. 4-23D as a Cartesian vector yields

M,; = Mygug = (80.50 N - m)(0.8944i + 0.4472j)
= {72.0i + 36.0j} N-m Ans.

NOTE: If axis AB is defined using a unit vector directed from B toward
A, then in the above formulation —uz would have to be used. This
would lead to M,z = —80.50 N - m. Consequently, My = M ,p(—up),
and the same result would be obtained.




4.5 MOMENT OF A FORCE ABOUT A SPECIFIED AXIS 149

EXAMPLE | 4.9

N

Determine the magnitude of the moment of force F about segment
OA of the pipe assembly in Fig. 4-24a.

SOLUTION

The moment of F about the OA axis is determined from

Mops = upy - (r X F), where r is a position vector extending from any

point on the OA axis to any point on the line of action of F. As

indicated in Fig. 4-24b, either rgp, roc, rap, Or ryc can be used;

however, ryp, will be considered since it will simplify the calculation.
The unit vector u,,, which specifies the direction of the OA axis, is

Toa {03i aly O4j} m . .
Upg — = = 0.61 + 0&]
roa V(03 m)? + (0.4m)
and the position vector ryp is
rop = {0.5i + 0.5k} m
The force F expressed as a Cartesian vector is
r
F= F(Q)
T'cp
{0.4i — 0.4j + 0.2k} m
= (300N)
V(0.4 m)® + (—0.4 m)? + (0.2 m)>
= {200i — 200j + 100k} N
(b)
Therefore, Fig. 4-24

Mops = upys - (rop X F)

0.6 0.8 0
0.5 0 0.5
200 —200 100

0.6[0(100) — (0.5)(—200)] — 0.8[0.5(100) — (0.5)(200)] + 0

100 N-m Ans.
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. PRELIMINARY PROBLEMS

P4-3. Ineach case, determine the resultant moment of the P4-4. In each case, set up the determinant needed to find
forces acting about the x, y, and z axes. the moment of the force about the a—a axes.

Z
F = {6i + 2j + 3k} kN

100N
a
om
v 4 3m— Mm y
4m
X
X a
(a) (a)
Z
Z
211'17/ a
e
50N 2m
a P
— y
y 3m

]

F = {2i — 4j + 3k} kN

(b)
(®)

F = {2i — 4j + 3k} kN

S0N . m/‘ 7

3
s y
4m
a 2
B a
X 2%
o
S
Im
()

Prob. P4-4
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. PEGIBLEWENTAL PROBLEMS

F4-13. Determine the magnitude of the moment of the F4-16. Determine the magnitude of the moment of the
force F = {300i — 200j + 150k} N about the x axis. force about the y axis.
F = {30i — 20j + 50k} N
F4-14. Determine the magnitude of the moment of the
force F = {300i — 200j + 150k} N about the OA axis. /‘/ z
A

2 m

3m
/A4m Y

X

Prob. F4-16
F4-17. Determine the moment of the force
F = {50i — 40j + 20k} Ib about the AB axis. Express the
result as a Cartesian vector.

Z

Probs. F4-13/14

F4-15. Determine the magnitude of the moment of the
200-N force about the x axis. Solve the problem using both a
scalar and a vector analysis.

Prob. F4-17
F4-18. Determine the moment of force F about the x, the
v, and the z axes. Solve the problem using both a scalar and
a vector analysis.

Prob. F4-15 Prob. F4-18
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. PEGIBUEWENTAL PROBLEMS

#4-52. 'The lug nut on the wheel of the automobile is to be
removed using the wrench and applying the vertical force of
F = 30N at A. Determine if this force is adequate, provided
14 N -m of torque about the x axis is initially required to
turn the nut. If the 30-N force can be applied at A in any
other direction, will it be possible to turn the nut?

4-53. Solve Prob. 4-52 if the cheater pipe AB is slipped
over the handle of the wrench and the 30-N force can be
applied at any point and in any direction on the assembly.

Z

Probs. 4-52/53

4-54. The A-frame is being hoisted into an upright
position by the vertical force of F = 80 Ib. Determine the
moment of this force about the y’ axis passing through
points A and B when the frame is in the position shown.

4-55. The A-frame is being hoisted into an upright
position by the vertical force of F = 80 Ib. Determine the
moment of this force about the x axis when the frame is in
the position shown.

Probs. 4-54/55

#4-56. Determine the magnitude of the moments of the
force F about the x, y, and z axes. Solve the problem (a) using
a Cartesian vector approach and (b) using a scalar approach.

4-57. Determine the moment of this force F about an axis
extending between A and C. Express the result as a Cartesian
vector.

F = {4i + 12j — 3k} Ib
Probs. 4-56/57

4-58. The board is used to hold the end of a four-way lug
wrench in the position shown when the man applies a force of
F = 100 N.Determine the magnitude of the moment produced
by this force about the x axis. Force F lies in a vertical plane.

4-59. The board is used to hold the end of a four-way lug
wrench in position. If a torque of 30 N - m about the x axis is
required to tighten the nut, determine the required magnitude
of the force F that the man’s foot must apply on the end of
the wrench in order to turn it. Force F lies in a vertical plane.

Probs. 4-58/59



*4-60. The A-frame is being hoisted into an upright
position by the vertical force of F = 80 Ib. Determine the
moment of this force about the y axis when the frame is in
the position shown.

Prob. 4-60

4-61. Determine the magnitude of the moment of the force
F = {50i — 20j — 80k} N about the base line AB of the tripod.

4-62. Determine the magnitude of the moment of the force
F = {50i — 20j — 80k} N about the base line BC of the tripod.

4-63. Determine the magnitude of the moment of the force
F = {50i — 20j — 80k} N about the base line CA of the tripod.

05m > g

Probs. 4-61/62/63
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*4-64. A horizontal force of F= {—50i} N is applied
perpendicular to the handle of the pipe wrench. Determine
the moment that this force exerts along the axis OA (z axis)
of the pipe assembly. Both the wrench and pipe assembly,
OABC , lie in the y-z plane. Suggestion: Use a scalar analysis.

4-65. Determine the magnitude of the horizontal force
F = —Fi acting on the handle of the wrench so that this
force produces a component of the moment along the
OA axis (z axis) of the pipe assembly of M, = {4k} N -m.
Both the wrench and the pipe assembly, OABC, lie in
the y-z plane. Suggestion: Use a scalar analysis.

Probs. 4-64/65

4-66. The force of F = 30 N acts on the bracket as shown.
Determine the moment of the force about the a—a axis of
the pipe if « = 60°, 8 = 60°,and y = 45°. Also, determine
the coordinate direction angles of F in order to produce the
maximum moment about the a—a axis. What is this moment?

Prob. 4-66
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[ /

Fig. 4-25

I'p s

o

Fig. 4-26

4.6 Moment of a Couple

A couple is defined as two parallel forces that have the same magnitude,
but opposite directions, and are separated by a perpendicular distance d,
Fig. 4-25. Since the resultant force is zero, the only effect of a couple is to
produce an actual rotation, or if no movement is possible, there is a
tendency of rotation in a specified direction. For example, imagine that
you are driving a car with both hands on the steering wheel and you are
making a turn. One hand will push up on the wheel while the other hand
pulls down, which causes the steering wheel to rotate.

The moment produced by a couple is called a couple moment. We can
determine its value by finding the sum of the moments of both couple
forces about any arbitrary point. For example, in Fig. 4-26, position vectors
r, and rp are directed from point O to points A and B lying on the line of
action of —F and F. The couple moment determined about O is therefore

M=r; XF+ry, X -F=(0 1) XF
Howeverrz = r4, + rorr = rz — ry,so that
M=rXF (4-13)

This result indicates that a couple moment is a free vector, i.e., it can
act at any point since M depends only upon the position vector r directed
between the forces and not the position vectors r, and rp, directed from
the arbitrary point O to the forces. This concept is unlike the moment of
a force, which requires a definite point (or axis) about which moments
are determined.

Scalar Formulation. The moment of a couple, M, Fig. 4-27, is
defined as having a magnitude of

M =Fd (4-14)

where F is the magnitude of one of the forces and d is the perpendicular
distance or moment arm between the forces. The direction and sense of
the couple moment are determined by the right-hand rule, where the
thumb indicates this direction when the fingers are curled with the sense
of rotation caused by the couple forces. In all cases, M will act
perpendicular to the plane containing these forces.

Vector Formulation. The moment of a couple can also be
expressed by the vector cross product using Eq. 4-13, i.e.,

M=rXF (4-15)

Application of this equation is easily remembered if one thinks of taking
the moments of both forces about a point lying on the line of action of
one of the forces. For example, if moments are taken about point A in
Fig. 4-26, the moment of —F is zero about this point, and the moment of
F is defined from Eq. 4-15. Therefore, in the formulation r is crossed with
the force F to which it is directed.



Fig. 4-28 (© Russell C. Hibbeler)

Equivalent Couples. If two couples produce a moment with the same
magnitude and direction, then these two couples are equivalent. For example,
the two couples shown in Fig. 4-28 are equivalent because each couple
moment has a magnitude of M = 30 N(0.4 m) = 40N(0.3m) = 12N-m,
and each is directed into the plane of the page. Notice that larger forces are
required in the second case to create the same turning effect because the
hands are placed closer together. Also, if the wheel was connected to the shaft
at a point other than at its center, then the wheel would still turn when each
couple is applied since the 12 N - m couple is a free vector.

Resultant Couple Moment. Since couple moments are vectors,
their resultant can be determined by vector addition. For example,
consider the couple moments M, and M, acting on the pipe in Fig. 4-29a.
Since each couple moment is a free vector, we can join their tails at any
arbitrary point and find the resultant couple moment, My = M; + M, as
shown in Fig. 4-29b.

If more than two couple moments act on the body, we may generalize
this concept and write the vector resultant as

M; = 3(r X F) (4-16)

These concepts are illustrated numerically in the examples that follow.
In general, problems projected in two dimensions should be solved using
a scalar analysis since the moment arms and force components are easy
to determine.

4.6 MOMENT OF A COUPLE
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M; |

(a)

(b)
Fig. 4-29
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Important Points

¢ A couple moment is produced by two noncollinear forces that
are equal in magnitude but opposite in direction. Its effect is to
produce pure rotation, or tendency for rotation in a specified
direction.

® A couple moment is a free vector, and as a result it causes the
same rotational effect on a body regardless of where the couple

Steering wheels on vehicles have been made moment is applied to the body.
smaller than on older vehicles because
power steering does not require the driver ¢ The moment of the two couple forces can be determined about

to apply a large couple moment to the rim

of the wheel. (© Russell C. Hibbeler) any point. For convenience, this point is often chosen on the line

of action of one of the forces in order to eliminate the moment of
this force about the point.

¢ In three dimensions the couple moment is often determined
using the vector formulation, M = r X F, where r is directed
from any point on the line of action of one of the forces to any
point on the line of action of the other force F.

¢ A resultant couple moment is simply the vector sum of all the
couple moments of the system.

EXAMPLE |4.10

Determine the resultant couple moment of the three couples acting

A F = 20016 on the plate in Fig. 4-30.
F;=3001b
£ 501 Al = SOLUTION - ‘
< i O = st As shown the perpendicular distances between §acb pair of couple forc;es
4y =3t I]D oo S are dy = 4ft, d, = 3 ft and d; = 5 ft. Considering counterclockwise
D o couple moments as positive, we have

B T
F,=4501b|] —==— #B
g‘l‘MR = EM, MR =S _Fldl + dez - F3d3

Fi=2001) £~ 3001 —(200 Ib)(4 ft) + (450 1b)(3 ft) — (300 Ib)(5 ft)

=950 1b-ft = 950 1b- ft D Ans.

Fig. 4-30

The negative sign indicates that My has a clockwise rotational sense.
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EXAMPLE |4.11

Determine the magnitude and direction of the couple moment acting
on the gear in Fig. 4-31a.

F=600N

600 sin 30° N
F=0600N

£
£

600 cos 30° N
30° 30°

F=600N F=600N 600 sin30°N
(@) (®)

SOLUTION

The easiest solution requires resolving each force into its components
as shown in Fig. 4-31b. The couple moment can be determined by
summing the moments of these force components about any point, for
example, the center O of the gear or point A. If we consider
counterclockwise moments as positive, we have

C+M =My, M = (600 cos 30° N)(0.2 m) — (600 sin 30° N)(0.2 m)
=439N-m> Ans.

or

C+M = 3M,; M = (600 cos 30° N)(0.2 m) — (600 sin 30° N)(0.2 m)
=439N-m) Ans.

This positive result indicates that M has a counterclockwise rotational
sense, so it is directed outward, perpendicular to the page.

NOTE: The same result can also be obtained using M = Fd, where d is
the perpendicular distance between the lines of action of the couple
forces, Fig. 4-31c. However, the computation for d is more involved.
Realize that the couple moment is a free vector and can act at any
point on the gear and produce the same turning effect about point O.

A 600 cos 30° N

F=600N
©

Fig. 4-31
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Determine the couple moment acting on the pipe shown in Fig. 4-32a.
Segment AB is directed 30° below the x—y plane.

251b

251b

SOLUTION | (VECTOR ANALYSIS)
The moment of the two couple forces can be found about any point. If
point O is considered, Fig. 4-32b, we have

M = r, X (—25K) + rz X (25K)
= (8j) X (—25K) + (6 cos 30°% + 8j — 6 sin 30°k) X (25k)

= —200i — 129.9§ + 200i

{—130j} Ib-in. Ans.

It is easier to take moments of the couple forces about a point lying on
the line of action of one of the forces, e.g., point A, Fig. 4-32¢. In this
case the moment of the force at A is zero, so that
M = 1,5 X (25k)
= (6 cos 30°i — 6 sin 30°k) X (25Kk)
= {—130j} Ib-in. Ans.

SOLUTION II (SCALAR ANALYSIS)
Although this problem is shown in three dimensions, the geometry is
simple enough to use the scalar equation M = Fd. The perpendicular

\ distance between the lines of action of the couple forces is

Yd = 6cos 30° = 5.196 i in., Fig. 4-32d. Hence, taking moments of the
forces about either point A or point B yields

S//Z/D M = Fd = 251b(5.196 in.) = 129.9 b~ in.
B Applying the right-hand rule, M acts in the —j direction. Thus,

= {—130j} Ib-in. Ans.
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Replace the two couples acting on the pipe column in Fig. 4-33a by a
resultant couple moment.

o
4

"

(a) (b)
Fig. 4-33

SOLUTION (VECTOR ANALYSIS)
The couple moment M, developed by the forces at A and B, can
easily be determined from a scalar formulation.

M; = Fd = 150 N(0.4 m) = 60 N-m
By the right-hand rule, M, acts in the +i direction, Fig. 4-33b. Hence,
M, = {60i} N-m
Vector analysis will be used to determine M,, caused by forces at C
and D. If moments are calculated about point D, Fig. 4-33a,

M2 = Ipc X Fc, then

M, = rpc X Fe = (0.30) X [125(2)j — 125(2)k]
= (0.3i) X [100j — 75k] = 30( X j) — 22.5( X k)
= {22.5j + 30k} N-m
Since M; and M, are free vectors, they may be moved to some

arbitrary point and added vectorially, Fig. 4-33c. The resultant couple
moment becomes

Mg =M, + M, = {60i + 22.5j + 30k} N-m Ans.
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. FUNDAMENTAL PROBLEMS

F4-22. Determine the couple moment acting on the beam.
10 kN

5/\a
3

F4-19. Determine the resultant couple moment acting on
the beam.

400 N 400 N
A
12 200N
— ‘ ]02' m
: 200N
3m 2 m—
| Y
300 N 300 N
Prob. F4-19

F4-20. Determine the resultant couple moment acting on
the triangular plate.
200 Ib 150 1b

200 1b 150 1b

4 ft

300 1b
Prob. F4-20

F4-21. Determine the magnitude of F so that the resultant
couple moment acting on the beam is 1.5 kN - m clockwise.

Prob. F4-21

3
4| /5
10 kN
Prob. F4-22

F4-23. Determine the resultant couple moment acting on
the pipe assembly.

Z
‘(MC)1 = 450 Ib-ft

™
(M), = 250 Ib-ft

Prob. F4-23

F4-24. Determine the couple moment acting on the pipe
assembly and express the result as a Cartesian vector.

Prob. F4-24
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4-67. A clockwise couple M = 5N-m is resisted by the 4-69. If the resultant couple of the three couples acting on
shaft of the electric motor. Determine the magnitude of the the triangular block is to be zero, determine the magnitude
reactive forces —R and R which act at supports A and B so of forces F and P.

that the resultant of the two couples is zero.

150 y

Prob. 4-67

4-70. Two couples act on the beam. If F = 1251b,

determine the resultant couple moment.
*4-68. A twist of 4 N-m is applied to the handle of the

screwdriver. Resolve this couple moment into a pair of couple 4-71. Two couples act on the beam. Determine the

forces F exerted on the handle and P exerted on the blade. magnitude of F so that the resultant couple moment is
450 Ib - ft, counterclockwise. Where on the beam does the

resultant couple moment act?

E—» 200 Ib
2 ft

Prob. 4-68 Probs. 4-70/71
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#*4-72. Determine the magnitude of the couple forces F so
that the resultant couple moment on the crank is zero.

Prob. 4-72

4-73. The ends of the triangular plate are subjected to
three couples. Determine the magnitude of the force F so
that the resultant couple moment is 400 N - m clockwise.

600 N F

Prob. 4-73

4-74. The man tries to open the valve by applying the
couple forces of F = 75N to the wheel. Determine the
couple moment produced.

4-75. 1If the valve can be opened with a couple moment of
25 N - m, determine the required magnitude of each couple
force which must be applied to the wheel.

Probs. 4-74/75

*4-76. Determine the magnitude of F so that the resultant
couple moment is 12 kN - m, counterclockwise. Where on
the beam does the resultant couple moment act?

8kN 0.3 m

Prob. 4-76



4-77. 'Two couples act on the beam as shown. If F = 150 1b,
determine the resultant couple moment.

4-78. Two couples act on the beam as shown. Determine
the magnitude of F so that the resultant couple moment is
300 Ib - ft counterclockwise. Where on the beam does the
resultant couple act?

-F
> A
4
T » 200 Ib
151t
< t 200 Ib
A

F 4
4 ft
Probs. 4-77/78

4-79. Two couples act on the frame. If the resultant couple
moment is to be zero, determine the distance d between the
80-1b couple forces.

*4-80. Two couples act on the frame. If d = 4 ft, determine
the resultant couple moment. Compute the result by
resolving each force into x and y components and (a) finding
the moment of each couple (Eq.4-13) and (b) summing the
moments of all the force components about point A.

4-81. Two couples act on the frame. If d = 4 ft, determine
the resultant couple moment. Compute the result by
resolving each force into x and y components and (a) finding
the moment of each couple (Eq. 4-13) and (b) summing the
moments of all the force components about point B.

1]
5
4 1
s0lb ||
s A
|| S
80lb Ay }
X
Probs. 4-79/80/81
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4-82. Express the moment of the couple acting on the
pipe assembly in Cartesian vector form. What is the
magnitude of the couple moment?

11t

Prob. 4-82

4-83. IfM,=1801b-ft, M, =90 Ib- ft, and M5 = 120 Ib- ft,
determine the magnitude and coordinate direction angles
of the resultant couple moment.

*4-84. Determine the magnitudes of couple moments M;,
M,, and M; so that the resultant couple moment is zero.

1501b - ft

Probs. 4-83/84
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4-85. The gears are subjected to the couple moments
shown. Determine the magnitude and coordinate direction
angles of the resultant couple moment.

M, =401b - ft z

M,=301b- ft

Prob. 4-85

4-86. Determine the required magnitude of the couple
moments M, and Mj so that the resultant couple moment
is zero.

4-87. Determine the resultant couple moment of the two
couples that act on the assembly. Specify its magnitude and
coordinate direction angles.

Z

60 1b

.
3in.
601

Prob. 4-87

*4-88. Express the moment of the couple acting on the
frame in Cartesian vector form. The forces are applied
perpendicular to the frame. What is the magnitude of the
couple moment? Take F = 50 N.

4-89. In order to turn over the frame, a couple moment is
applied as shown. If the component of this couple moment
along the x axis is M, = {—20i} N-m, determine the
magnitude F of the couple forces.

Probs. 4-88/89



4-90. Express the moment of the couple acting on the
pipe in Cartesian vector form. What is the magnitude of the
couple moment? Take F = 125 N.

4-91. If the couple moment acting on the pipe has a
magnitude of 300 N - m, determine the magnitude F of the
forces applied to the wrenches.

Probs. 4-90/91

#*4-92. If F= 80N, determine the magnitude and
coordinate direction angles of the couple moment. The pipe
assembly lies in the x—y plane.

4-93. If the magnitude of the couple moment acting on
the pipe assembly is 50 N - m, determine the magnitude of
the couple forces applied to each wrench. The pipe assembly
lies in the x—y plane.

Probs. 4-92/93
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4-94. Express the moment of the couple acting on the rod
in Cartesian vector form. What is the magnitude of the
couple moment?

F = (- 4i + 3j — 4k} kN

Prob. 4-94

4-95. If F, =100N, F,= 120N, and F; = 80N,
determine the magnitude and coordinate direction angles
of the resultant couple moment.

*4-96. Determine the required magnitude of F;, F,,
and F; so that the resultant couple moment is
M)z = [50i — 45j — 20k] N - m.

z 1—F4 = [-150 K] N

Probs. 4-95/96
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4.7 Simplification of a Force and Couple
System

Sometimes it is convenient to reduce a system of forces and couple moments
acting on a body to a simpler form by replacing it with an equivalent system,
consisting of a single resultant force acting at a specific point and a resultant
couple moment. A system is equivalent if the external effects it produces on
a body are the same as those caused by the original force and couple
moment system. In this context, the external effects of a system refer to the
translating and rotating motion of the body if the body is free to move, or it
refers to the reactive forces at the supports if the body is held fixed.

For example, consider holding the stick in Fig. 4-34a, which is subjected
to the force F at point A. If we attach a pair of equal but opposite forces
F and —F at point B, which is on the line of action of F, Fig. 4-34b, we
observe that —F at B and F at A will cancel each other, leaving only F
at B, Fig. 4-34c. Force F has now been moved from A to B without
modifying its external effects on the stick; i.e., the reaction at the grip
remains the same. This demonstrates the principle of transmissibility,
which states that a force acting on a body (stick) is a sliding vector since
it can be applied at any point along its line of action.

We can also use the above procedure to move a force to a point that is not
on the line of action of the force. If F is applied perpendicular to the stick, as
in Fig. 4-35a, then we can attach a pair of equal but opposite forces F and —F
to B, Fig.4-35b. Force F is now applied at B, and the other two forces, F at A
and —F at B, form a couple that produces the couple moment M = Fd,
Fig. 4-35c. Therefore, the force F can be moved from A to B provided a
couple moment M is added to maintain an equivalent system. This couple
moment is determined by taking the moment of F about B. Since M is
actually a free vector, it can act at any point on the stick. In both cases the
systems are equivalent, which causes a downward force F and clockwise
couple moment M = Fd to be felt at the grip.

(a)

(b) (©)

(b) (©)
Fig. 4-35 (© Russell C. Hibbeler)
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System of Forces and Couple Moments. Using the above
method, a system of several forces and couple moments acting on a body
can be reduced to an equivalent single resultant force acting at a point O
and a resultant couple moment. For example, in Fig. 4-36a, O is not on the
line of action of Fy, and so this force can be moved to point O provided a
couple moment (My); = r; X Fisadded to the body. Similarly, the couple
moment (My), = r, X F, should be added to the body when we move F,
to point O. Finally, since the couple moment M is a free vector, it can just
be moved to point O. By doing this, we obtain the equivalent system
shown in Fig. 4-36b, which produces the same external effects (support
reactions) on the body as that of the force and couple system shown in
Fig. 4-36a. If we sum the forces and couple moments, we obtain the
resultant force Fp = F; + F, and the resultant couple moment
Mgp)o = M + (Mp); + (Mp),, Fig. 4-36¢.

Notice that Fy is independent of the location of point O since it is
simply a summation of the forces. However, (Mg), depends upon this
location since the moments M; and M, are determined using the position
vectors r; and r,, which extend from O to each force. Also note that
(Mg)o is a free vector and can act at any point on the body, although
point O is generally chosen as its point of application.

We can generalize the above method of reducing a force and couple
system to an equivalent resultant force Fp acting at point O and a
resultant couple moment (M), by using the following two equations.

FRZEF

Mg)o = M, + M (4-17)

The first equation states that the resultant force of the system is
equivalent to the sum of all the forces; and the second equation states
that the resultant couple moment of the system is equivalent to the sum
of all the couple moments >M plus the moments of all the forces XM,
about point O. If the force system lies in the x—y plane and any couple
moments are perpendicular to this plane, then the above equations
reduce to the following three scalar equations.

(FR)x = EFX
(Fp), = 3F, (4-18)
(Mgp)o = My + M

Here the resultant force is determined from the vector sum of its two
components (Fg), and (Fg),.

(a)

(®)

(Mp); =1 X Fy

A Fr

Fig. 4-36
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(Mg) i

0/

The weights of these traffic lights can be
replaced by their equivalent resultant
force Wr = W, + W, and a couple
moment (Mg), = Wd, + W,d,atthe
support, O. In both cases the support
must provide the same resistance to
translation and rotation in order to
keep the member in the horizontal
position. (© Russell C. Hibbeler)

Important Points

o Force is a sliding vector, since it will create the same external
effects on a body when it is applied at any point P along its line of
action. This is called the principle of transmissibility.

° A couple moment is a free vector since it will create the same
external effects on a body when it is applied at any point P on
the body.

¢ When a force is moved to another point P that is not on its line of
action, it will create the same external effects on the body if a
couple moment is also applied to the body. The couple moment is
determined by taking the moment of the force about point P.

Procedure for Analysis

The following points should be kept in mind when simplifying a
force and couple moment system to an equivalent resultant force
and couple system.

¢ Establish the coordinate axes with the origin located at point O
and the axes having a selected orientation.

Force Summation.

¢ If the force system is coplanar, resolve each force into its x and
y components. If a component is directed along the positive x or
y axis, it represents a positive scalar; whereas if it is directed along
the negative x or y axis, it is a negative scalar.

¢ In three dimensions, represent each force as a Cartesian vector
before summing the forces.

Moment Summation.

¢ When determining the moments of a coplanar force system about
point O, it is generally advantageous to use the principle of
moments, i.e., determine the moments of the components of each
force, rather than the moment of the force itself.

¢ In three dimensions use the vector cross product to determine the
moment of each force about point O. Here the position vectors
extend from O to any point on the line of action of each force.
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Exaveie jama

Replace the force and couple system shown in Fig. 4-37a by an
equivalent resultant force and couple moment acting at point O.

y

¥ 3 kN (3 kN)sin 30°
300 k
T Al 3 Lo s T ﬁ% - (3 kN)COS 30°
0dIm|« o o 0dm [ o
. : | o
o . i . *
0lm| 0.1m A,'\%(SkN)
- 02m—f——03m— - 02m 03m
ANS
3 LGN
Y SkN /
4 kN 4 kN
(b)
(a)
SOLUTION

Force Summation. The 3 kN and 5 kN forces are resolved into
their x and y components as shown in Fig. 4-37b. We have

& (Fp), = SE,; (Fp)y = (3kN)cos 30° + (2)(5kN) = 5.598 kN —
+1(Fp)y, = 3Fy; (Fg)y = 3KkN)sin30° — (#)(SkN) — 4kN = —6.50 kN = 6.50 kN

Using the Pythagorean theorem, Fig. 4-37¢, the magnitude of Fy is
Fr = V(Fp.2 + (Fp),* = V/(5.598 kN)? + (6.50 kN)? = 8.58 kN  Ans.

Its direction 0 is

0= tan_1<§§z§i> = tan”(%) = 49.3° Ans.
Moment Summation. The moments of 3 kN and 5 kN about point O (Mg)o = 246 kN-m
will be determined using their x and y components. Referring to Fig. 4-37b, T
we have /'e(FR)X';#' 598 kNN
C+ Mp)o = XMy; ° Q)e
(Mg)o = (3 kN) sin 30°(0.2 m) — (3 kN) cos 30°(0.1 m) + (2)(5 kN) (0.1 m) A W Y-
— ($)(5KkN) (0.5 m) — (4 kN)(0.2 m) Y F

= —246kN-m = 246 kN -m) Ans. Uy =60
This clockwise moment is shown in Fig. 4-37c. ©
NOTE: Realize that the resultant force and couple moment in Fig. 4-37¢ Fig. 4-37

will produce the same external effects or reactions at the supports as
those produced by the force system, Fig. 4-37a.
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Replace the force and couple system acting on the member in Fig. 4-38a
by an equivalent resultant force and couple moment acting at point O.

500N y

(Mg)o = 37.5N-m
200 N 3 H

750 N

\
=k >
1

19 Im
Ll

o) ; 5[ 1m 1e{ /o |(Fr), = 300N
125 m—f-1.25 m~|

200 N
Fr
(a) (Fr)y =350N (b)

Fig. 4-38
SOLUTION

Force Summation. Since the couple forces of 200 N are equal but
opposite, they produce a zero resultant force, and so it is not necessary
to consider them in the force summation. The 500-N force is resolved
into its x and y components, thus,

5 (Fo)e = 2F: (Fe), = (2)(500N) = 300N —
+1(Fr)y, = SF; (Fp), = (S00N)(2) — 750N = —350N = 350 N|
From Fig. 4-15b, the magnitude of Fy is

Fr = V(Fp)? + (Fp))

= V(300 N)? + 350 N)? = 461 N Ans.
And the angle 6 is
(Fp)y
0 = tan”! iy tan™! M = 49.4° Ans.
(Fr), 300 N

Moment Summation. Since the couple moment is a free vector, it can
act at any point on the member. Referring to Fig. 4-38a, we have

C+ Mp)o=3My + M
(Mgp)o = (500N) (£)(2.5m) — (500 N) (2)(1 m)
— (750 N)(1.25 m) + 200 N-m
—375N'm =375N'm ) Ans.

This clockwise moment is shown in Fig. 4-38b.



4.7 SIMPLIFICATION OF A FORCE AND COUPLE SYSTEM 171

Exaveie jame

The structural member is subjected to a couple moment M and forces 3, _ sooN.m ©
F, and F, in Fig. 4-39a. Replace this system by an equivalent resultant
force and couple moment acting at its base, point O.

SOLUTION (VECTOR ANALYSIS)

The three-dimensional aspects of the problem can be simplified by using
a Cartesian vector analysis. Expressing the forces and couple moment as
Cartesian vectors, we have

F, = {—800k} N

-~
F2 = (300 N)uCB ‘r

<

= (300 N)<rCB) y

e ()
[ {—0.15i + 0.1j} m J . )
= 300N = {—249.6i + 166.4j} N
V(=0.15m)? + (0.1 m)>

M = =500 (2)j + 500(2)k = {—400j + 300k} N-m

Force Summation.

F,=3F,  F,=F, +F, = —800k — 249.6i + 166.4j
= {—250i + 166j — 800k} N Ans.

Moment Summation.

(My), = M + M,
(MR)0:M+erF1+rBXF2

i i Kk
(Mg), = (—400j + 300K) + (1K) X (—800K) + | —0.15 0.1 1
—249.6 1664 0

= (—400j + 300Kk) + (0) + (—166.4i — 249.6j)
= {—166i — 650j + 300k} N+m Ans.

The results are shown in Fig. 4-39b.
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. PRELIMINARY PROBLEM

P4-5. In each case, determine the x and y components of
the resultant force and the resultant couple moment at
point O.

500 N

500N 400 N

200 N

() (©)

500N

500N
300N

LO 4
)200N-m

(b) (d)

Prob. P4-5
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. PEGBUEWENTAL PROBLEMS

F4-25. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

100 1b

150 1b

Prob. F4-25

F4-26. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

40N
30N

Prob. F4-26

F4-27. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

900 N \30°

Prob. F4-27

F4-28. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

s 410010

1 fi

Prob. F4-28

F4-29. Replace the loading system by an equivalent
resultant force and couple moment acting at point O.

F, = {—300i + 150j + 200k} N

Prob. F4-29

F4-30. Replace the loading system by an equivalent
resultant force and couple moment acting at point O.

z

F, = 100N

Prob. F4-30
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. PREGIBUEWENTAL PROBLEMS

4-97. Replace the force system by an equivalent resultant
force and couple moment at point O.

4-98. Replace the force system by an equivalent resultant
force and couple moment at point P.

455N w%{{
13

2.5m 2m

X

0.75m l 0.75 m

TN & HmJﬂ

600 N

Probs. 4-97/98

4-99. Replace the force system acting on the beam by an
equivalent force and couple moment at point A.

*4-100. Replace the force system acting on the beam by
an equivalent force and couple moment at point B.

3kN

#Zm 4 m [ 2 m—

Probs. 4-99/100

4-101. Replace the loading system acting on the beam by
an equivalent resultant force and couple moment at point O.

y
450 N
30°
02m 200N -m
O T } X
‘ Yy
F—15m 2 m 1.5m—
200 N
Prob. 4-101

4-102. Replace the loading system acting on the post by an
equivalent resultant force and couple moment at point A.

4-103. Replace the loading system acting on the post by an
equivalent resultant force and couple moment at point B.

500 N

1500 N - m 60°
7 lA A B

2m—

I 3m ‘ Sm 1

Probs. 4-102/103
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#*4-104. Replace the force system acting on the post by a
resultant force and couple moment at point O.

Prob. 4-104

4-105. Replace the force system acting on the frame by an
equivalent resultant force and couple moment acting at
point A.

400 N

Prob. 4-105

4-106. The forces F; = {—4i + 2j — 3k} kN and F, =
{3i — 4j — 2k} kN act on the end of the beam. Replace
these forces by an equivalent force and couple moment
acting at point O.

Prob. 4-106

4-107. A biomechanical model of the lumbar region of
the human trunk is shown. The forces acting in the four
muscle groups consist of Fr = 35N for the rectus,
Fy, = 45N for the oblique, F;, = 23N for the lumbar
latissimus dorsi, and F = 32 N for the erector spinae. These
loadings are symmetric with respect to the y-z plane.
Replace this system of parallel forces by an equivalent force
and couple moment acting at the spine, point O. Express the
results in Cartesian vector form.

Prob. 4-107
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#*4-108. Replace the force system by an equivalent
resultant force and couple moment at point O. Take
F; = {—200i + 500j — 300k} N.

Prob. 4-108

4-109. Replace the loading by an equivalent resultant
force and couple moment at point O.

F,=[2i+5j-3k kN

| 0.8m
F = (8i-2k] kN

Prob. 4-109

4-110. Replace the force of F = 80 N acting on the pipe
assembly by an equivalent resultant force and couple
moment at point A.

y

Prob. 4-110

4-111. The belt passing over the pulley is subjected to
forces F; and F,, each having a magnitude of 40 N. F; acts in
the —k direction. Replace these forces by an equivalent force
and couple moment at point A. Express the result in Cartesian
vector form. Set # = 0° so that F; acts in the —j direction.

*4-112. 'The belt passing over the pulley is subjected to
two forces F; and F,, each having a magnitude of 40 N. F,
acts in the —k direction. Replace these forces by an
equivalent force and couple moment at point A. Express
the result in Cartesian vector form. Take 6 = 45°.

F,

Probs. 4-111/112
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4.8 Further Simplification of a Force and
Couple System

In the preceding section, we developed a way to reduce a force and couple
moment system acting on a rigid body into an equivalent resultant force
F acting at a specific point O and a resultant couple moment (My),,. The
force system can be further reduced to an equivalent single resultant force
provided the lines of action of Fr and (Mg), are perpendicular to each
other. Because of this condition, concurrent, coplanar, and parallel force
systems can be further simplified.

Concurrent Force System. Since a concurrent force system is
one in which the lines of action of all the forces intersect at a common
point O, Fig. 4-40a, then the force system produces no moment about
this point. As a result, the equivalent system can be represented by a
single resultant force F, = XF acting at O, Fig. 4-40b.

Coplanar Force System. In the case of a coplanar force system,
the lines of action of all the forces lie in the same plane,
Fig. 4-41a, and so the resultant force Fz = 3F of this system also lies
in this plane. Furthermore, the moment of each of the forces about
any point O is directed perpendicular to this plane. Thus, the resultant
moment (Mg), and resultant force Fp will be mutually perpendicular,
Fig. 4-41b. The resultant moment can be replaced by moving the
resultant force F; a perpendicular or moment arm distance d away
from point O such that F; produces the same moment (Mg), about
point O, Fig. 4-41c. This distance d can be determined from the scalar
equation (Mg)p = Frd = SMyord = (Mg)o/F-

(a) (b)
Fig. 4-41

Fy

(b)
Fig. 4-40

177

F,
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The four cable forces are all concurrent at
point O on this bridge tower. Consequently
they produce no resultant moment there, only
a resultant force Fg. Note that the designers
have positioned the cables so that Fy is
directed along the bridge tower directly to the
support, so that it does not cause any bending
of the tower. (© Russell C. Hibbeler)

Fig. 4-42

Parallel Force System. The parallel force system shown in
Fig. 4-42a consists of forces that are all parallel to the z axis. Thus, the
resultant force Fr = 3F at point O must also be parallel to this axis,
Fig. 4-42b. The moment produced by each force lies in the plane of the
plate, and so the resultant couple moment, (M), will also lie in this plane,
along the moment axis a since F; and (My), are mutually perpendicular.
As a result, the force system can be further reduced to an equivalent
single resultant force Fg, acting through point P located on the
perpendicular b axis, Fig. 4-42c¢. The distance d along this axis from point
O requires (Mg)p = Frd = SMyord = M,/ Fy.

The technique used to reduce a coplanar or parallel force system to
a single resultant force follows a similar procedure outlined in the
previous section.

e Establish the x, y, z, axes and locate the resultant force Fp an
arbitrary distance away from the origin of the coordinates.

Force Summation.

e The resultant force is equal to the sum of all the forces in the system.

e For a coplanar force system, resolve each force into its x and y
components. Positive components are directed along the positive
x and y axes, and negative components are directed along the
negative x and y axes.

Moment Summation.

e The moment of the resultant force about point O is equal to the
sum of all the couple moments in the system plus the moments of
all the forces in the system about O.

e This moment condition is used to find the location of the resultant
force from point O.
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' \ ,
Here the weights of the traffic lights are replaced by their resultant force W = W + W, /

which acts at a distance d = (W d; + W,d,)/ Wi from O. Both systems are equivalent.
(© Russell C. Hibbeler) (a)

Reduction to a Wrench. 1In general, a three-dimensional force and

couple moment system will have an equivalent resultant force Fy acting at I
point O and a resultant couple moment (My),, that are not perpendicular to
one another, as shown in Fig. 4-43a. Although a force system such as this
cannot be further reduced to an equivalent single resultant force, the
resultant couple moment (My), can be resolved into components parallel
and perpendicular to the line of action of Fg, Fig. 4-43a. If this appears
difficult to do in three dimensions, use the dot product to get My = (Mg) * ug,
and then M, = My — M;. The perpendicular component M can be
replaced if we move Fy to point P, a distance d from point O along the b axis,
Fig. 4-43b. As shown, this axis is perpendicular to both the a axis and the line
of action of Fg. The location of P can be determined from d = M | /Fj.
Finally, because M is a free vector, it can be moved to point P, Fig. 4-43c.
This combination of a resultant force Fy and collinear couple moment M
will tend to translate and rotate the body about its axis and is referred to as
a wrench or screw. A wrench is the simplest system that can represent any
general force and couple moment system acting on a body.

Fg
Important Point T

0 M I
® A concurrent, coplanar, or parallel force system can always be
reduced to a single resultant force acting at a specific point P. For a P
any other type of force system, the simplest reduction is a wrench, b
which consists of resultant force and collinear couple moment /
acting at a specific point P.
Fig. 4-43
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EXAMPLE

Replace the force and couple moment system acting on the beam in
Fig. 4-44a by an equivalent resultant force, and find where its line of
action intersects the beam, measured from point O.

(b)

Fig. 444

SOLUTION

Force Summation. Summing the force components,

B (Fy = SF: (Fp, = 8kN(3) = 480kN—
+1(Fp), = SF,;;  (Fp), = —4kN + 8kN(%) = 240kN

From Fig. 4-44b, the magnitude of Fy is

Fr = V(4.80 kKN)? + (2.40 kN)> = 537 kN Ans.
The angle 6 is
2.40 kKN
= ! = 26.6° Ans.
0 tan <4.80kN> 6.6 ns.

Moment Summation. We must equate the moment of Fy about
point O in Fig. 4-44b to the sum of the moments of the force and
couple moment system about point O in Fig. 4-44a. Since the line of
action of (Fg), acts through point O, only (Fg), produces a moment
about this point. Thus,

C+WMp)yp = SMy; 2.40kN(d) = —(4kN)(1.5m) — 15kN-m
—[8kN(2)]0.5m) + [8kN(%)]4.5m)

d=225m Ans.
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EXAMPLE |4.18

The jib crane shown in Fig. 4-45a is subjected to three coplanar forces. y
Replace this loading by an equivalent resultant force and specify | 31t St | 3ft
where the resultant’s line of action intersects the column AB and B |
boom BC. f ¢
\ o
6 ft \ 3
2501
175 Ib €——==d | 601b 0
SOLUTION S
Force Summation. Resolving the 250-1b force into x and y :
components and summing the force components yields = x
(2)

5 (Fp). = SF; (Fp), = —2501b(2) = 1751b = —3251b = 325 Ib

3
5
—2501b(%) —601b = =260 1b = 260 Ib}

+1(Fp), = 3F,;  (Fp),

As shown by the vector addition in Fig. 4-45b,

Fr = V(3251b)2 + (260 Ib)> = 416 1b Ans.
260 1b

=tan | = | = 38.7° > Ans.

6 = tan <3251b> 38 ns.

Moment Summation. Moments will be summed about point A.
Assuming the line of action of Fy intersects AB at a distance y from A,
Fig. 4-45b, we have

C + (Mp), = SM,;  3251b(y) + 260 1b (0) (®)

=1751b(5ft) — 601b (3 ft) + 250 1b(2) (11 ft) — 250 Ib(2)(8 f) Fig. 4-45

y =229 ft Ans.

By the principle of transmissibility, Fr can be placed at a distance x
where it intersects BC, Fig. 4-45b. In this case we have

C + Mg), = SM,;  3251b (11 fH) — 260 1b (x)
= 1751b(5ft) — 601b (3 ft) + 250 1b(2) (11 f) — 250 1b(2)(8 ft)

x = 109 ft Ans.
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exampLe jams

The slab in Fig. 4-46a is subjected to four parallel forces. Determine
the magnitude and direction of a resultant force equivalent to the

given force system, and locate its point of application on the slab.
Z

(b)

Fig. 4-46

SOLUTION (SCALAR ANALYSIS)
Force Summation. From Fig. 4-46q, the resultant force is
+1F, = 3F; Fr = —600N + 100N — 400 N — 500 N

= —1400 N = 1400 N Ans.
Moment Summation. We require the moment about the x axis of
the resultant force, Fig. 4-46b, to be equal to the sum of the moments
about the x axis of all the forces in the system, Fig. 4-46a4. The moment
arms are determined from the y coordinates, since these coordinates

represent the perpendicular distances from the x axis to the lines of
action of the forces. Using the right-hand rule, we have

(MR))C = EMX;
—(1400 N)y = 600 N(0) + 100 N(5 m) — 400 N(10 m) + 500 N(0)
—1400y = —3500 y = 250m Ans.

In a similar manner, a moment equation can be written about the
y axis using moment arms defined by the x coordinates of each force.

(MR)y = EMy;
(1400 N)x = 600 N(8 m) — 100 N(6 m) + 400 N(0) + 500 N(0)
1400x = 4200
x =3m Ans.

NOTE: A force of F, = 1400 N placed at point P(3.00 m, 2.50 m) on
the slab, Fig. 4-46b, is therefore equivalent to the parallel force system
acting on the slab in Fig. 4-46a.
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EXAMPLE

Replace the force system in Fig. 4-47a by an equivalent resultant 4

S - o F,=3001b
force and specify its point of application on the pedestal.

Fg = 5001b

SOLUTION
Force Summation. Here we will demonstrate a vector analysis.

Summing forces,
FR= EF,FRzFA +FB+FC
= {300k} Ib + {—500k} Ib + {100k} 1b
= {—700k} 1b Ans.

Location. Moments will be summed about point O. The resultant ()
force Fy is assumed to act through point P (x, y, 0), Fig. 4-47b. Thus
(Mg)o = ZMy;
rp X Fp = (ry X Fy) + (rp X Fp) + (re X Fp)
(xi + yj) X (=700k) = [(4i) X (—300K)]
+ [(—4i + 2j) X (=500K)] + [(—4j) X (100K)]
—700x(i X k) — 700y(j X k) = —1200( X k) + 20003 X k)
— 1000(j X k) — 400(j X k)
700xj — 700yi = 1200j — 2000j — 1000i — 400i

Equating the i and j components, (b)
—700y = —1400 1) Fig. 4-47
y = 2in. Ans.
700x = —800 )
x = —1.141in. Ans.

The negative sign indicates that the x coordinate of point P is
negative.

NOTE: It is also possible to establish Eq. 1 and 2 directly by summing
moments about the x and y axes. Using the right-hand rule, we have

Mp), = 2M,; —700y = —1001b(4 in.) — 500 Ib(2 in.)
Mg), = XM,; 700x = 300 1b(4 in.) — 500 Ib(4 in.)
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. PRELIMINARY PROBLEMS

P4-6. In each case, determine the x and y components of P4-7. In each case, determine the resultant force and
the resultant force and specify the distance where this force specify its coordinates x and y where it acts on the x—y plane.
acts from point O.

z 200N

260 N
200N

F—Zmﬂ‘——2m‘>‘——2mﬁ> (@)
(a)

200N

100 N

400 N

2 m 2 m

b
b) (®)

Prob. P4-6 Prob. P4-7
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. FUNDAMENTAL PROBLEMS

F4-31. Replace the loading system by an equivalent
resultant force and specify where the resultant’s line of
action intersects the beam measured from O.

500 1b 500 Ib
250 1b

3 ft 3 3ty 3ft4‘ Prob. F4-31

F4-32. Replace the loading system by an equivalent
resultant force and specify where the resultant’s line of
action intersects the member measured from A.

200 1b
T 50 1b
‘ 31t

3 ft— 3ftﬁ300
A

NS
3 3,100 1b

Prob. F4-32

F4-33. Replace the loading system by an equivalent
resultant force and specify where the resultant’s line of
action intersects the horizontal segment of the member
measured from A.

Prob. F4-33

F4-34. Replace the loading system by an equivalent
resultant force and specify where the resultant’s line of
action intersects the member AB measured from A.

y
0.5m
1.5 m—

m

0.5m B 5
e 4
8 kN 6 kN 3
5 kN
3m
A

Prob. F4-34

F4-35. Replace the loading shown by an equivalent single
resultant force and specify the x and y coordinates of its
line of action.

Prob. F4-35

F4-36. Replace the loading shown by an equivalent single
resultant force and specify the x and y coordinates of its
line of action.

200N

X Prob. F4-36
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“leromews

4-113. The weights of the various components of the truck
are shown. Replace this system of forces by an equivalent
resultant force and specity its location measured from B.

4-114. The weights of the various components of the truck
are shown. Replace this system of forces by an equivalent
resultant force and specify its location measured from
point A.

1750 1b

— 14 ft———+—6 ft— l

Probs. 4-113/114

4-115. Replace the three forces acting on the shaft by a
single resultant force. Specify where the force acts, measured
from end A.

*4-116. Replace the three forces acting on the shaft by a
single resultant force. Specify where the force acts,measured
from end B.

2001b 260 1b

Probs. 4-115/116

4-117. Replace the loading acting on the beam by a single
resultant force. Specify where the force acts, measured
from end A.

4-118. Replace the loading acting on the beam by a
single resultant force. Specify where the force acts,
measured from B.

700 N

450 N 300N 30°

[,

600\ l ‘

B .
hriir -

‘ 1500 N-m
3m |

‘<—2m 1 4m }

Probs. 4-117/118

4-119. Replace the loading on the frame by a single
resultant force. Specify where its line of action intersects a
vertical line along member A B, measured from A.

Prob. 4-119
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#*4-120. Replace the loading on the frame by a single
resultant force. Specify where its line of action intersects a
vertical line along member AB, measured from A.

4-121. Replace the loading on the frame by a single
resultant force. Specify where its line of action intersects a
horizontal line along member CB, measured from end C.

Probs. 4-120/121

4-122. Replace the force system acting on the post by a
resultant force, and specify where its line of action intersects
the post AB measured from point A.

4-123. Replace the force system acting on the post by a
resultant force, and specify where its line of action intersects
the post AB measured from point B.

Probs. 4-122/123

*4-124. Replace the parallel force system acting on the
plate by a resultant force and specify its location on the
x-z plane.

\5 kN

Prob. 4-124

4-125. Replace the force and couple system acting on the
frame by an equivalent resultant force and specify where
the resultant’s line of action intersects member AB,
measured from A.

4-126. Replace the force and couple system acting on the
frame by an equivalent resultant force and specify where
the resultant’s line of action intersects member BC,
measured from B.

Probs. 4-125/126
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4-127. If F4, = 7 kN and Fz = 5 kN, represent the force
system acting on the corbels by a resultant force, and specify
its location on the x—y plane.

#4-128. Determine the magnitudes of F, and Fp so that
the resultant force passes through point O of the column.

Probs. 4-127/128

4-129. The tube supports the four parallel forces. Determine
the magnitudes of forces F- and Fj acting at C and D so
that the equivalent resultant force of the force system acts
through the midpoint O of the tube.

Prob. 4-129

4-130. The building slab is subjected to four parallel
column loadings. Determine the equivalent resultant force
and specify its location (x, y) on the slab. Take F; = 8 kN
and F, = 9kN.

4-131. The building slab is subjected to four parallel
column loadings. Determine F; and F, if the resultant force
acts through point (12 m, 10 m).

Probs. 4-130/131

*4-132. If F, = 40kNand Fz = 35kN, determine the
magnitude of the resultant force and specify the location of
its point of application (x, y) on the slab.

4-133. If the resultant force is required to act at the center
of the slab, determine the magnitude of the column loadings
F, and Fj and the magnitude of the resultant force.

Probs. 4-132/133
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4-134. Replace the two wrenches and the force, acting
on the pipe assembly, by an equivalent resultant force and
couple moment at point O.

Prob. 4-134

4-135. Replace the force system by a wrench and specify
the magnitude of the force and couple moment of the wrench
and the point where the wrench intersects the x—z plane.

200N

Prob. 4-135

*4-136. Replace the five forces acting on the plate by a
wrench. Specify the magnitude of the force and couple
moment for the wrench and the point P(x, z) where the
wrench intersects the x—z plane.

300N

Prob. 4-136

4-137. Replace the three forces acting on the plate by a
wrench. Specify the magnitude of the force and couple
moment for the wrench and the point P(x, y) where the
wrench intersects the plate.

F, = {400i) N

Prob. 4-137
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w
| dF = dA
w = w(x)
0 - ="
x | ‘
L |
(b)
w

Fig. 4-48

4.9 Reduction of a Simple Distributed
Loading

Sometimes, a body may be subjected to a loading that is distributed over
its surface. For example, the pressure of the wind on the face of a sign, the
pressure of water within a tank, or the weight of sand on the floor of a
storage container, are all distributed loadings. The pressure exerted at
each point on the surface indicates the intensity of the loading. It is
measured using pascals Pa (or N/m?) in SI units or Ib/ft> in the
U.S. Customary system.

Loading Along a Single Axis. The most common type of
distributed loading encountered in engineering practice can be
represented along a single axis.* For example, consider the beam (or
plate) in Fig. 4-48a that has a constant width and is subjected to a
pressure loading that varies only along the x axis. This loading can be
described by the function p = p(x) N/m? It contains only one variable
x, and for this reason, we can also represent it as a coplanar distributed
load. To do so, we multiply the loading function by the width » m of
the beam, so that w(x) = p(x)b N/m, Fig. 4-48b. Using the methods of
Sec. 4.8, we can replace this coplanar parallel force system with a single
equivalent resultant force Fy acting at a specific location on the beam,
Fig. 4-48c.

Magnitude of Resultant Force. From Eq.4-17 (Fgx = 3F), the
magnitude of Fy is equivalent to the sum of all the forces in the system.
In this case integration must be used since there is an infinite number of
parallel forces dF acting on the beam, Fig. 4-48b. Since dF is acting on an
element of length dx, and w(x) is a force per unit length, then
dF = w(x) dx = dA. In other words, the magnitude of dF is determined
from the colored differential area dA under the loading curve. For the
entire length L,

+F, = 3F; Fg = / w(x) dx = / dA = A (4-19)
L A

Therefore, the magnitude of the resultant force is equal to the area A under
the loading diagram, Fig. 4-48c.

*The more general case of a surface loading acting on a body is considered in Sec. 9.5.
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Location of Resultant Force. Applying Eq.4-17 (Mg, = SM),
the location x of the line of action of Fy can be determined by equating
the moments of the force resultant and the parallel force distribution
about point O (the y axis). Since dF produces amoment of x dF = xw(x) dx
about O, Fig. 4-48b, then for the entire length, Fig. 4-48c,

C+ Mg)o = ZMy; —xFp = —/xw(x) dx
L

Solving for x, using Eq. 4-19, we have

/xw(x) dx /x dA
_ L A
x p— P
/w(x)alx /dA
L A

This coordinate x, locates the geometric center or centroid of the area
under the distributed loading. In other words, the resultant force has a line
of action which passes through the centroid C (geometric center) of the area
under the loading diagram, Fig. 4-48c. Detailed treatment of the integration
techniques for finding the location of the centroid for areas is given in
Chapter 9. In many cases, however, the distributed-loading diagram is in
the shape of a rectangle, triangle, or some other simple geometric form.
The centroid location for such common shapes does not have to be
determined from the above equation but can be obtained directly from the
tabulation given on the inside back cover.

Once X is determined, Fr by symmetry passes through point (x, 0) on the
surface of the beam, Fig. 4-48a. Therefore, in this case the resultant force has a
magnitude equal to the volume under the loading curve p = p(x) and a line of
action which passes through the centroid (geometric center) of this volume.

Important Points

o Coplanar distributed loadings are defined by using a loading
function w = w(x) that indicates the intensity of the loading
along the length of a member. This intensity is measured in N/m
or Ib/ft.

(4-20)

o The external effects caused by a coplanar distributed load acting
on a body can be represented by a single resultant force.

o This resultant force is equivalent to the area under the loading
diagram, and has a line of action that passes through the centroid
or geometric center of this area.

| dF = dA
w = w(x)
X
9] dx%‘ F —
x \ ‘
L
(b)
w
Fr
C A
o) —a x
[P .
L
(©)

Fig. 4-48 (Repeated)

The pile of brick creates an approximate
triangular distributed loading on the board.
(© Russell C. Hibbeler)
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EXAMPLE | 4.21

Determine the magnitude and location of the equivalent resultant
force acting on the shaft in Fig. 4-49a.

w
w 240 N
w = (60 x*’)N/m ON/m

Fr=160N

dA = wdx 5
/ﬂm ‘
I s . ¥ N

2 m

(a) , (v)
Fig. 4-49

SOLUTION
Since w = w(x) is given, this problem will be solved by integration.

The differential element has an area dA = w dx = 60x* dx. Applying
Eq.4-19,

2m 3 2m 3 3
2 0

/dA = / 60x2 dx = 60<x ) = 60( - )
. . 3 /|, 5 3

160 N Ans.

Fr

The location x of F;r measured from O, Fig. 4-49b, is determined from

Eq. 4-20.
2m 24 04
60( = — —
L O

2m .X4
/ xdA / x(60x%) dx 60<>
- A _ 0 _ 4
x p— p— p— pr—
/ A
A

160 N 160 N 160 N
=15m Ans.

NOTE: These results can be checked by using the table on the inside
back cover, where it is shown that the formula for an exparabolic area
of length a, height b, and shape shown in Fig. 4-49a, is

ab  2m(240 N/m)

s-3 _3 _
A—? f—160Nandx—4a—4(2m)—l.5m
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EXAMPLE |4.22

A distributed loading of p = (800x) Pa acts over the top surface of
the beam shown in Fig. 4-50a. Determine the magnitude and location
of the equivalent resultant force.

7000 Pa

(a)

SOLUTION
Since the loading intensity is uniform along the width of the beam w
(the y axis), the loading can be viewed in two dimensions as shown in

Fig. 4-50b. Here
w = (800x N/m2)(0.2 m) e

— (160x) N/m |

9m

w = 160x N/m 1440 N/m

X

At x = 9m, note that w = 1440 N/m. Although we may again apply
Egs. 4-19 and 4-20 as in the previous example, it is simpler to use the (b)
table on the inside back cover.
The magnitude of the resultant force is equivalent to the area of the
triangle.

Fg = 59 m)(1440 N/m) = 6480 N = 6.48 kN Ans.

The line of action of Fy passes through the centroid C of this triangle. Frp = 048N

Hence,

¥=9m—-39m) =6m Ans.
The results are shown in Fig. 4-50c.
NOTE: We may also view the resultant Fy, as acting through the centroid
of the volume of the loading diagram p = p(x) in Fig. 4-50a. Hence Fy

intersects the x—y plane at the point (6 m, 0). Furthermore, the
magnitude of Fy is equal to the volume under the loading diagram;i.e.,

Fr =V = 17200 N/m)© m)(0.2m) = 648 kN Ans Fig. 4-50

(©
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100 Ib /it

9 ft

50 Ib /ft
B

ji
50 Ib /ft |

()

F,

The granular material exerts the distributed loading on the beam as
shown in Fig. 4-51a. Determine the magnitude and location of the
equivalent resultant of this load.

SOLUTION

The area of the loading diagram is a trapezoid, and therefore the
solution can be obtained directly from the area and centroid formulas
for a trapezoid listed on the inside back cover. Since these formulas are
not easily remembered, instead we will solve this problem by using
“composite” areas. Here we will divide the trapezoidal loading into a
rectangular and triangular loading as shown in Fig. 4-51b. The
magnitude of the force represented by each of these loadings is equal
to its associated area,

F; = 39 (50 Ib/ft) = 225 1b
F, = (9 ft)(50 Ib/ft) = 450 Ib

The lines of action of these parallel forces act through the respective
centroids of their associated areas and therefore intersect the beam at

X =30f) =3ft

X, = 59 ft) = 451t
The two parallel forces F; and F, can be reduced to a single resultant
Fr. The magnitude of Fy is
+|Fy = 3F; Fr = 225 + 450 = 675 Ib Ans.

We can find the location of Fy with reference to point A, Figs. 4-51b
and 4-51c. We require

C+ Mp), = SMy;,  X(675) = 3(225) + 4.5(450)
x = 4ft Ans.

NOTE: The trapezoidal area in Fig. 4-51a can also be divided into two
triangular areas as shown in Fig. 4-51d. In this case

F3y = 39 f)(100 Ib/ft) = 450 1b
Fy = X9 f)(50 Ib/ft) = 225 Ib

and
X3 = 59 ft) = 3 ft
X, =9ft — 29ft) =61t

Using these results, show that again F, = 6751b and x = 4 ft.
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. PEGIBUEWENTAL PROBLEMS

F4-37. Determine the resultant force and specify where it F4-40. Determine the resultant force and specify where it
acts on the beam measured from A. acts on the beam measured from A.
9 kN/m 2001b/ft 500 1b
6 kKN/m

3 kN/m

, EEEE

LN
M

B
Ll.S m 3m 15 m—»’

Prob. F4-37

Prob. F4-40

F4-41. Determine the resultant force and specify where it

F4-38. Determine the resultant force and specify where it acts on the beam measured from A.

acts on the beam measured from A.

150 b /ft
3 kN/m
m A y y

A5
Aﬂ A =

R ‘ i
S

! 6 ft 8 ft

Prob. F4-38 Prob. F4-41
F4-39. Determine the resultant force and specify where it F4-42. Determine the resultant force and specify where it
acts on the beam measured from A. acts on the beam measured from A.

Prob. F4-39 Prob. F4-42



196 CHAPTER 4 FORCE SYSTEM RESULTANTS

. PENBLEWENTAL PROBLEMS

4-138. Replace the loading by an equivalent resultant
force and couple moment acting at point O.

50 Ib /ft

50 Ib /it

Prob. 4-138

4-139. Replace the distributed loading with an equivalent
resultant force, and specify its location on the beam
measured from point O.

3kN/m

3m 1.5m

Prob. 4-139

*4-140. Replace the loading by an equivalent resultant force
and specify its location on the beam, measured from point A.

5kN/m

Prob. 4-140

4-141. Currently eighty-five percent of all neck injuries
are caused by rear-end car collisions. To alleviate this
problem, an automobile seat restraint has been developed
that provides additional pressure contact with the cranium.
During dynamic tests the distribution of load on the
cranium has been plotted and shown to be parabolic.
Determine the equivalent resultant force and its location,
measured from point A.

w = 12(1 + 2x%) Ib/ft

Prob. 4-141

4-142. Replace the distributed loading by an equivalent
resultant force, and specify its location on the beam,
measured from the pin at A.

4kN/m

3m 3m ‘

Prob. 4-142



4-143. Replace this loading by an equivalent resultant
force and specify its location, measured from point O.

6 kN/m
4 kKN/m
4 ¥ \AA Y 'y Dw\
|
2m } 1.5m }
Prob. 4-143

*4-144. The distribution of soil loading on the bottom of
a building slab is shown. Replace this loading by an
equivalent resultant force and specify its location, measured
from point O.

o
N,
501b/tt 100 1b /ft
300 I /tt
12 ft { 9 ft
Prob. 4-144

4-145. Replace the loading by an equivalent resultant
force and couple moment acting at point O.

8 kN/m

Prob. 4-145
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4-146. Replace the distributed loading by an equivalent
resultant force and couple moment acting at point A.

6 kN/m 6 kN/m

3 kN/m

Prob. 4-146

4-147. Determine the length b of the triangular load and
its position a on the beam such that the equivalent resultant
force is zero and the resultant couple moment is 8 kN - m
clockwise.

4kN/m
-1
25 kN/m W
9m
Prob. 4-147
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*4-148. The form is used to cast a concrete wall having a
width of 5 m. Determine the equivalent resultant force the
wet concrete exerts on the form AB if the pressure
distribution due to the concrete can be approximated as
shown. Specify the location of the resultant force, measured
from point B.

Prob. 4-148

4-149. If the soil exerts a trapezoidal distribution of load
on the bottom of the footing, determine the intensities wy
and w, of this distribution needed to support the column
loadings.

Prob. 4-149

4-150. Replace the loading by an equivalent force and
couple moment acting at point O.

6 KN /m 15kN

1y
1\

| 7.5 m 4.5m ‘

Prob. 4-150

4-151. Replace the loading by a single resultant force, and
specify the location of the force measured from point O.

6 kN/m 15kN

M,
£\
|

| 7.5 m 4.5m

Prob. 4-151

*4-152. Replace the loading by an equivalent resultant
force and couple moment acting at point A.

4-153. Replace the loading by a single resultant force, and
specify its location on the beam measured from point A.

Probs. 4-152/153



4-154. Replace the distributed loading by an equivalent
resultant force and specify where its line of action intersects
a horizontal line along member A B, measured from A.

4-155. Replace the distributed loading by an equivalent
resultant force and specify where its line of action intersects
a vertical line along member BC, measured from C.

3 kN/m
Y B
A lE
} 3m l
2 kN/m
4 m /
cr
Probs. 4-154/155

#4-156. Determine the length b of the triangular load and
its position @ on the beam such that the equivalent resultant
force is zero and the resultant couple moment is 8 kN +m
clockwise.

6 kN/m

it

2kN/m

4m

Prob. 4-156
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4-157. Determine the equivalent resultant force and
couple moment at point O.

S

9 kN/m

w= (%x3) kN/m

Prob. 4-157

4-158. Determine the magnitude of the equivalent
resultant force and its location, measured from point O.

w
w=(4+2Vx) Ib/ft
8.90 b/t
41b/ft

] X

o ZO‘E |

- J©

6 ft
Prob. 4-158
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4-159. The distributed load acts on the shaft as shown.
Determine the magnitude of the equivalent resultant force
and specify its location, measured from the support, A.

28 Ib//ft

w = (2x* — 8x + 18) Ib/ft 18 Ib /ft
10 Ib /ft
X
4 K
Lo s

‘<—1 ft 2 ft ‘ 2 ft

Prob. 4-159

*4-160. Replace the distributed loading with an equivalent
resultant force, and specify its location on the beam
measured from point A.

370 Ib /ft

w = (x* + 3x + 100) Ib/ft

15 ft

Prob. 4-160

4-161. Replace the loading by an equivalent resultant
force and couple moment acting at point O.

w
w = wy cos (I X)
(=
\ I \
| |
Prob. 4-161

4-162. Wet concrete exerts a pressure distribution along
the wall of the form. Determine the resultant force of this
distribution and specify the height 4 where the bracing strut
should be placed so that it lies through the line of action of
the resultant force. The wall has a width of 5 m.

Prob. 4-162
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. CHAPTER REVIEW

Moment of Force —Scalar Definition

A force produces a turning effect or
moment about a point O that does not
lie on its line of action. In scalar form,
the moment magnitude is the product of
the force and the moment arm or
perpendicular distance from point O to
the line of action of the force.

The direction of the moment is defined
using the right-hand rule. M, always
acts along an axis perpendicular to the
plane containing F and d, and passes
through the point O.

Rather than finding d, it is normally
easier to resolve the force into its x and
y components, determine the moment of
each component about the point, and
then sum the results. This is called the
principle of moments.

MOZFd

My =Fd=Fy — Fx

Moment axis

/T\Mo
S
d
F O
F
F A
x -
F,
y
x

Moment of a Force — Vector Definition

Since three-dimensional geometry is
generally more difficult to visualize, the
vector cross product should be used
to determine the moment. Here
My, =r X F, where r is a position
vector that extends from point O to
any point A, B, or C on the line of action
of F.

If the position vector r and force F are
expressed as Cartesian vectors, then the
cross product results from the expansion
of a determinant.

Myp=ry XF=rz XF=rXF

My,=rxXF=

;.‘I N
\:1 i BN
R
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Moment about an Axis

If the moment of a force F is to be
determined about an arbitrary axis a,
then for a scalar solution the moment
arm, or shortest distance d, from the line
of action of the force to the axis must be
used. This distance is perpendicular to
both the axis and the force line of action.

Note that when the line of action of F
intersects the axis, then the moment of F
about the axis is zero. Also, when the
line of action of F is parallel to the axis,
the moment of F about the axis is zero.

In three dimensions, the scalar triple
product should be used. Here u, is the
unit vector that specifies the direction of
the axis, and r is a position vector that is
directed from any point on the axis to
any point on the line of action of the
force. If M, is calculated as a negative
scalar, then the sense of direction of M,
is opposite to u,,.

Couple Moment

A couple consists of two equal but
opposite forces that act a perpendicular
distance d apart. Couples tend to
produce a rotation without translation.

The magnitude of the couple moment is
M = Fd, and its direction is established
using the right-hand rule.

If the vector cross product is used to
determine the moment of a couple, then
r extends from any point on the line of
action of one of the forces to any point
on the line of action of the other force F
that is used in the cross product.

M,=u,(r XF)=|r,

M=rXF

A 5

lla1

U, Uy,
r\ rZ F
y F

2

Axis of projection




Simplification of a Force and
Couple System

Any system of forces and couples can be
reduced to a single resultant force and
resultant couple moment acting at a
point. The resultant force is the sum of
all the forces in the system, F; = XF,
and the resultant couple moment is
equal to the sum of all the moments of
the forces about the point and couple
moments. Mg, = XM, + ZM.

Further simplification to a single resultant
force is possible provided the force system
is concurrent, coplanar, or parallel. To
find the location of the resultant force
from a point, it is necessary to equate the
moment of the resultant force about the
point to the moment of the forces and
couples in the system about the same
point.

If the resultant force and couple moment
at a point are not perpendicular to one
another, then this system can be reduced
to a wrench, which consists of the resultant
force and collinear couple moment.

Coplanar Distributed Loading

A simple distributed loading can be
represented by its resultant force, which
is equivalent to the area under the
loading curve. This resultant has a line of
action that passes through the centroid
or geometric center of the area or
volume under the loading diagram.
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. REVIEW PROBLEMS

R4-1. The boom has a length of 30 ft, a weight of 800 b,
and mass center at G. If the maximum moment that can be
developed by a motor at A is M = 20(10%) Ib - ft, determine
the maximum load W, having a mass center at G', that can
be lifted.

Prob. R4-1

R4-2. Replace the force F having a magnitude of F = 50 Ib
and acting at point A by an equivalent force and couple
moment at point C.

30 ft

10 ft

s

X

151t
0 Ny,

Prob. R4-2

R4-3. The hood of the automobile is supported by the
strut AB, which exerts a force of F = 24 1b on the hood.
Determine the moment of this force about the hinged axis y.

Prob. R4-3

R4-4. Friction on the concrete surface creates a couple
moment of My, = 100 N-m on the blades of the trowel.
Determine the magnitude of the couple forces so that the
resultant couple moment on the trowel is zero. The forces
lie in the horizontal plane and act perpendicular to the
handle of the trowel.




R4-5. Replace the force and couple system by an
equivalent force and couple moment at point P.

y
le—3m—-
8 kN'm
O P ¥
\ le—3 m—
0 kN 4kN
4m
S5m
13112 60°
5 L AN (S S
+—da
NP
Prob. R4-5

R4-6. Replace the force system acting on the frame by a
resultant force, and specify where its line of action intersects
member AB, measured from point A.

2.5 ft %’-iz» ft ——
B

- = 7

\\
\N

300 1b
200 1b
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R4-7. The building slab is subjected to four parallel
column loadings. Determine the equivalent resultant force
and specify its location (x, y) on the slab. Take F; = 30 kN,
F, = 40 kN.

Prob. R4-7

R4-8. Replace the distributed loading by an equivalent
resultant force, and specify its location on the beam,
measured from the pin at C.

15 ft 15 ft

Prob. R4-8



(© YuryZap/Shutterstock)

It is important to be able to determine the forces in the cables used to support
this boom to ensure that it does not fail. In this chapter we will study how to
apply equilibrium methods to determine the forces acting on the supports

of a rigid body such as this.




Equilibrium of a
Rigid Body

CHAPTER OBJECTIVES

m To develop the equations of equilibrium for a rigid body.
m To introduce the concept of the free-body diagram for a rigid body.

m To show how to solve rigid-body equilibrium problems using the
equations of equilibrium.

5.1 Conditions for Rigid-Body Equilibrium

In this section, we will develop both the necessary and sufficient conditions
for the equilibrium of the rigid body in Fig. 5-1a. As shown, this body is
subjected to an external force and couple moment system that is the result
of the effects of gravitational, electrical, magnetic, or contact forces caused
by adjacent bodies. The internal forces caused by interactions between
particles within the body are not shown in this figure because these forces
occur in equal but opposite collinear pairs and hence will cancel out, a
consequence of Newton’s third law.

F, /
-—
F; / \
F,
M, (a)

Fig. 5-1
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©
Fig. 5-1 (cont.)
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Using the methods of the previous chapter, the force and couple
moment system acting on a body can be reduced to an equivalent
resultant force and resultant couple moment at any arbitrary point O on
or off the body, Fig. 5-1b. If this resultant force and couple moment are
both equal to zero, then the body is said to be in equilibrium.
Mathematically, the equilibrium of a body is expressed as

F, = SF =0
(5-1)
Mpg)o = ZM, = 0

The first of these equations states that the sum of the forces acting on the
body is equal to zero. The second equation states that the sum of the
moments of all the forces in the system about point O, added to all the
couple moments, is equal to zero. These two equations are not only
necessary for equilibrium, they are also sufficient. To show this, consider
summing moments about some other point, such as point A in Fig. 5-1c.
We require

EMA =r><FR+(MR)0:0

Since r # 0, this equation is satisfied if Eqs. 5-1 are satisfied, namely
F; = 0 and (My), = 0.

When applying the equations of equilibrium, we will assume that the
body remains rigid. In reality, however, all bodies deform when
subjected to loads. Although this is the case, most engineering materials
such as steel and concrete are very rigid and so their deformation is
usually very small. Therefore, when applying the equations of
equilibrium, we can generally assume that the body will remain rigid
and not deform under the applied load without introducing any
significant error. This way the direction of the applied forces and their
moment arms with respect to a fixed reference remain the same both
before and after the body is loaded.

EQUILIBRIUM IN TWO DIMENSIONS

In the first part of the chapter, we will consider the case where the force
system acting on a rigid body lies in or may be projected onto a single
plane and, furthermore, any couple moments acting on the body are
directed perpendicular to this plane. This type of force and couple system
is often referred to as a two-dimensional or coplanar force system. For
example, the airplane in Fig. 5-2 has a plane of symmetry through its
center axis, and so the loads acting on the airplane are symmetrical with
respect to this plane. Thus, each of the two wing tires will support the same
load T, which is represented on the side (two-dimensional) view of the
plane as 2T.



5.2 Free-Body Diagrams

Successful application of the equations of equilibrium requires a complete
specification of al/l the known and unknown external forces that act on
the body. The best way to account for these forces is to draw a free-body
diagram.This diagram is a sketch of the outlined shape of the body, which
represents it as being isolated or “free” from its surroundings, i.e., a “free
body.” On this sketch it is necessary to show all the forces and couple
moments that the surroundings exert on the body so that these effects can
be accounted for when the equations of equilibrium are applied. A
thorough understanding of how to draw a free-body diagram is of primary
importance for solving problems in mechanics.

Support Reactions. Before presenting a formal procedure as to
how to draw a free-body diagram, we will first consider the various types
of reactions that occur at supports and points of contact between bodies
subjected to coplanar force systems. As a general rule,

® A support prevents the translation of a body in a given direction by
exerting a force on the body in the opposite direction.

® A support prevents the rotation of a body in a given direction by
exerting a couple moment on the body in the opposite direction.

For example, let us consider three ways in which a horizontal member,
such as a beam, is supported at its end. One method consists of a roller or
cylinder, Fig. 5-3a. Since this support only prevents the beam from
translating in the vertical direction, the roller will only exert a force on
the beam in this direction, Fig. 5-3b.

The beam can be supported in a more restrictive manner by using a pin,
Fig. 5-3c. The pin passes through a hole in the beam and two leaves which
are fixed to the ground. Here the pin can prevent translation of the beam
in any direction ¢, Fig. 5-3d, and so the pin must exert a force F on the
beam in the opposite direction. For purposes of analysis, it is generally
easier to represent this resultant force F by its two rectangular components
F, and F,, Fig. 5-3e.If F, and F, are known, then F'and ¢ can be calculated.

The most restrictive way to support the beam would be to use a fixed
support as shown in Fig. 5-3f. This support will prevent both translation
and rotation of the beam. To do this a force and couple moment must be
developed on the beam at its point of connection, Fig. 5-3g. As in the
case of the pin, the force is usually represented by its rectangular
components F, and F,.

Table 5-1 lists other common types of supports for bodies subjected to
coplanar force systems. (In all cases the angle 6 is assumed to be known.)
Carefully study each of the symbols used to represent these supports and
the types of reactions they exert on their contacting members.

fixed support
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— —

e |
F
(a) (b)
T member

= pin

leaves
g e

pin

(©)

(8
Fig. 5-3
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Types of Connection Reaction Number of Unknowns

One unknown. The reaction is a tension force which acts
away from the member in the direction of the cable.

One unknown. The reaction is a force which acts along
the axis of the link.

weightless link

9\
’ F
7 \:
0 or 0
F F
3
/ One unknown. The reaction is a force which acts
/4
F
; 0
F

_"-' perpendicular to the surface at the point of contact.
o

roller

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

4) ﬁ
=

rocker
©)
One unknown. The reaction is a force which acts
0 of perpendicular to the surface at the point of contact.
smooth contacting F
surface

(6)
ﬁ % or ‘W One unknown. The reaction is a force which acts
g F F perpendicular to the slot.

roller or pin in
confined smooth slot

@)
or
One unknown. The reaction is a force which acts
0 0 0 perpendicular to the rod.
F

member pin connected
to collar on smooth rod

continued
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Types of Connection Reaction Number of Unknowns
®) E,
Two unknowns. The reactions are two components of
J 9 or force, or the magnitude and direction ¢ of the resultant
F force. Note that ¢ and ¢ are not necessarily equal [usually
* not, unless the rod shown is a link as in (2)].
smooth pin or hinge
©)
( Two unknowns. The reactions are the couple moment
M and the force which acts perpendicular to the rod.
F
member fixed connected
to collar on smooth rod
(10)
Fy F
A F Three unknowns. The reactions are the couple moment
— > ¢ d the two f ts, or th 1 tand
— ] 5 | or and the two force components, or the couple moment an
| M M the magnitude and direction ¢ of the resultant force.
fixed support

Typical examples of actual supports are shown in the following sequence of photos. The numbers refer to the
connection types in Table 5-1.

This concrete girder
rests on the ledge that
is assumed to act as
a smooth contacting
surface. (5) (© Russell
C. Hibbeler)

o

(© Russell C. Hibbeler)

The cable exerts a force on the bracket The rocker support for this
in the direction of the cable. (1) bridge girder allows horizontal
movement so the bridge is free
to expand and contract due to
a change in temperature. (4)
(© Russell C. Hibbeler)

The floor beams of this
building are welded
together and thus form
Typical pin support for a beam. (8) fixed connections. (10)
(© Russell C. Hibbeler) (© Russell C. Hibbeler)
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Internal Forces. As stated in Sec. 5.1, the internal forces that act
between adjacent particles in a body always occur in collinear pairs such
that they have the same magnitude and act in opposite directions (Newton’s
third law). Since these forces cancel each other, they will not create an
external effect on the body. It is for this reason that the internal forces should
not be included on the free-body diagram if the entire body is to be
considered. For example, the engine shown in Fig. 5-4a has a free-body
diagram shown in Fig. 5-4b. The internal forces between all its connected
parts, such as the screws and bolts, will cancel out because they form equal
and opposite collinear pairs. Only the external forces T, and T,, exerted by
the chains and the engine weight W, are shown on the free-body diagram.

(@) (b)
Fig. 54

Weight and the Center of Gravity. When a body is within a
gravitational field, then each of its particles has a specified weight. It was
shown in Sec. 4.8 that such a system of forces can be reduced to a single
resultant force acting through a specified point. We refer to this force
resultant as the weight W of the body and to the location of its point of
application as the center of gravity. The methods used for its determination
will be developed in Chapter 9.

In the examples and problems that follow, if the weight of the body is
important for the analysis, this force will be reported in the problem
statement. Also, when the body is uniform or made from the same
material, the center of gravity will be located at the body’s geometric
center or centroid; however, if the body consists of a nonuniform
distribution of material, or has an unusual shape, then the location of its
center of gravity G will be given.

Idealized Models.  When an engineer performs a force analysis of
any object, he or she considers a corresponding analytical or idealized
model that gives results that approximate as closely as possible the
actual situation. To do this, careful choices have to be made so that
selection of the type of supports, the material behavior, and the object’s
dimensions can be justified. This way one can feel confident that any
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design or analysis will yield results which can be trusted. In complex
cases this process may require developing several different models of the
object that must be analyzed. In any case, this selection process requires
both skill and experience.

The following two cases illustrate what is required to develop a proper
model. In Fig. 5-5a, the steel beam is to be used to support the three roof
joists of a building. For a force analysis it is reasonable to assume the (@)
material (steel) is rigid since only very small deflections will occur when
the beam is loaded. A bolted connection at A will allow for any slight F F F
rotation that occurs here when the load is applied, and so a pin can be
considered for this support. At B a roller can be considered since this

support offers no resistance to horizontal movement. Building code is B
used to specify the roof loading A so that the joist loads F can be ‘H u ! b ! ‘ ! d—
calculated. These forces will be larger than any actual loading on the

beam since they account for extreme loading cases and for dynamic or (b)

vibrational effects. Finally, the weight of the beam is generally neglected Fig. 5-5 (© Russell C. Hibbeler)

when it is small compared to the load the beam supports. The idealized
model of the beam is therefore shown with average dimensions a, b, c,
and d in Fig. 5-5b.

As a second case, consider the lift boom in Fig. 5-6a. By inspection, it is
supported by a pin at A and by the hydraulic cylinder BC, which can be
approximated as a weightless link. The material can be assumed rigid,
and with its density known, the weight of the boom and the location of its
center of gravity G are determined. When a design loading P is specified,
the idealized model shown in Fig. 5-6b can be used for a force analysis.
Average dimensions (not shown) are used to specify the location of the
loads and the supports.

Idealized models of specific objects will be given in some of the
examples throughout the text. It should be realized, however, that each
case represents the reduction of a practical situation using simplifying
assumptions like the ones illustrated here.

s

(a) (b)
Fig. 5-6 (© Russell C. Hibbeler)
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Important Points

¢ No equilibrium problem should be solved without first drawing
the free-body diagram, so as to account for all the forces and
couple moments that act on the body.

¢ If asupport prevents translation of a body in a particular direction,
then the support, when it is removed, exerts a force on the body
in that direction.

¢ If rotation is prevented, then the support, when it is removed,
exerts a couple moment on the body.

¢ Study Table 5-1.

¢ Internal forces are never shown on the free-body diagram since they
occur in equal but opposite collinear pairs and therefore cancel out.

¢ The weight of a body is an external force, and its effect is
represented by a single resultant force acting through the body’s
center of gravity G.

¢ Couple moments can be placed anywhere on the free-body
diagram since they are free vectors. Forces can act at any point
along their lines of action since they are sliding vectors.

Procedure for Analysis

To construct a free-body diagram for a rigid body or any group of bodies
considered as a single system, the following steps should be performed:

Draw Outlined Shape.

Imagine the body to be isolated or cut “free” from its constraints and
connections and draw (sketch) its outlined shape. Be sure to
remove all the supports from the body.

Show All Forces and Couple Moments.

Identify all the known and unknown external forces and couple
moments that act on the body. Those generally encountered are due to
(1) applied loadings, (2) reactions occurring at the supports or at points
of contact with other bodies (see Table 5-1), and (3) the weight of the
body. To account for all these effects, it may help to trace over the
boundary, carefully noting each force or couple moment acting on it.

Identify Each Loading and Give Dimensions.

The forces and couple moments that are known should be labeled with
their proper magnitudes and directions. Letters are used to represent
the magnitudes and direction angles of forces and couple moments that
are unknown. Establish an x, y coordinate system so that these
unknowns, A, A, etc.,can be identified. Finally, indicate the dimensions
of the body necessary for calculating the moments of forces.
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EXAMPLE | 5.1

Draw the free-body diagram of the uniform beam shown in Fig. 5-7a.
The beam has a mass of 100 kg.

SOLUTION

The free-body diagram of the beam is shown in Fig. 5-7b. Since the
support at A is fixed, the wall exerts three reactions on the beam,
denoted as A,, A,, and My. The magnitudes of these reactions are
unknown, and their sense has been assumed. The weight of the beam,
W = 100(9.81) N = 981 N, acts through the beam’s center of gravity G,
which is 3 m from A since the beam is uniform.

y 1200 N

L
x Ay A Effect of applied

v force acting on beam

] A, — - (s |
Effect of fixed A ;

support acting
on beam M. 3m ‘N
981N

Effect of gravity (weight)
acting on beam

(b)
Fig. 5-7
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Fig. 5-8 (© Russell C. Hibbeler)
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Draw the free-body diagram of the foot lever shown in Fig. 5-8a.
The operator applies a vertical force to the pedal so that the spring is
stretched 1.5 in. and the force on the link at B is 20 1b.

[@ —r
B 1.5 in.
}
3
1 1+1n.

d
\_‘—AQ\Q/ k =20 1b/in.

<

5in.
(b)
F 20 1b
O > T
B .
39 b 1.5l in.
= .
C‘X‘ 1*1n.
‘—i A AQ A,
5in
A

SOLUTION

By inspection of the photo the lever is loosely bolted to the frame at A
and so this bolt acts as a pin. (See (8) in Table 5-1.) Although not
shown here the link at B is pinned at both ends and so it is like (2) in
Table 5-1. After making the proper measurements, the idealized
model of the lever is shown in Fig. 5-8b. From this, the free-body
diagram is shown in Fig. 5-8c. Since the pin at A is removed, it exerts
force components A, and A, on the lever. The link exerts a force of
20 b, acting in the direction of the link. In addition the spring also
exerts a horizontal force on the lever. If the stiffness is measured and
found to be k = 201b/in., then since the stretch s = 1.5in., using
Eq. 3-2, F;, = ks = 201b/in. (1.5 in.) = 30 1b. Finally, the operator’s
shoe applies a vertical force of F on the pedal. The dimensions of the
lever are also shown on the free-body diagram, since this information
will be useful when calculating the moments of the forces. As usual,
the senses of the unknown forces at A have been assumed. The correct
senses will become apparent after solving the equilibrium equations.
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Two smooth pipes, each having a mass of 300 kg, are supported by the
forked tines of the tractor in Fig. 5-9a. Draw the free-body diagrams
for each pipe and both pipes together.

Effect of B acting on A

blade acting on A

Effect of sloped
F fork acting on A

Effect of gravity
(weight) acting on A

(©

(© Russell C. Hibbeler)

SOLUTION

The idealized model from which we must draw the free-body
diagrams is shown in Fig. 5-9b. Here the pipes are identified, the
dimensions have been added, and the physical situation reduced to its
simplest form.

Removing the surfaces of contact, the free-body diagram for pipe A is
shown in Fig. 5-9c. Its weight is W = 300(9.81) N = 2943 N. Assuming
all contacting surfaces are smooth, the reactive forces T, F, R act in a
direction normal to the tangent at their surfaces of contact.

The free-body diagram of the isolated pipe B is shown in Fig. 5-9d.
Can you identify each of the three forces acting on this pipe? In
particular, note that R, representing the force of A on B, Fig. 5-9d, is
equal and opposite to R representing the force of B on A, Fig. 5-9c.
This is a consequence of Newton’s third law of motion.

The free-body diagram of both pipes combined (“system”) is shown
in Fig. 5-9e¢. Here the contact force R, which acts between A and B, is
considered as an infernal force and hence is not shown on the
free-body diagram. That is, it represents a pair of equal but opposite
collinear forces which cancel each other.
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0.8
(b)
T
709
f
G, 1m
A —» A
A
~1.40 m—~|
A, 0.8 m
1962 N

Draw the free-body diagram of the unloaded platform that is
suspended off the edge of the oil rig shown in Fig. 5-10a. The platform
has a mass of 200 kg.

=
F |
i
-l‘
5 ']
i
[

Fig. 5-10 (© Russell C. Hibbeler)

SOLUTION

The idealized model of the platform will be considered in two
dimensions because by observation the loading and the dimensions
are all symmetrical about a vertical plane passing through its center,
Fig. 5-10b. The connection at A is considered to be a pin, and the cable
supports the platform at B. The direction of the cable and average
dimensions of the platform are listed, and the center of gravity G has
been determined. It is from this model that we have drawn the
free-body diagram shown in Fig. 5-10c. The platform’s weight is
200(9.81) = 1962 N. The supports have been removed, and the force
components A, and A, along with the cable force T represent the
reactions that both pins and both cables exert on the platform,
Fig. 5-10a. As a result, half their magnitudes are developed on each
side of the platform.



5-1. Draw the free-body diagram for the following
problems.

a) The cantilevered beam in Prob. 5-10.
b) The beam in Prob. 5-11.
¢) The beam in Prob. 5-12.
d) The beam in Prob. 5-14.

5-2. Draw the free-body diagram for the following
problems.

a) The truss in Prob. 5-15.

b) The beam in Prob. 5-16.

¢) The man and load in Prob. 5-17.
d) The beam in Prob. 5-18.

5-3. Draw the free-body diagram for the following
problems.

a) The man and beam in Prob. 5-19.
b) The rod in Prob. 5-20.

¢) The rod in Prob. 5-21.

d) The beam in Prob. 5-22.

*5-4. Draw the free-body diagram for the following
problems.

a) The beam in Prob. 5-25.

b) The crane and boom in Prob. 5-26.
¢) The bar in Prob. 5-27.

d) The rod in Prob. 5-28.

5-5. Draw the free-body diagram for the following
problems.

a) The boom in Prob. 5-32.

b) The jib crane in Prob. 5-33.

¢) The smooth pipe in Prob. 5-35.
d) The beam in Prob. 5-36.
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5-6. Draw the free-body diagram for the following
problems.

a) The jib crane in Prob. 5-37
b) The bar in Prob. 5-39.

c¢) The bulkhead in Prob. 5-41.
d) The boom in Prob. 5-42.

5-7. Draw the free-body diagram for the following
problems.

a) The rod in Prob. 5-44.

b) The hand truck and load when it is lifted in Prob. 5-45.
¢) The beam in Prob. 5-47.

d) The cantilever footing in Prob. 5-51.

*5-8. Draw the free-body diagram for the following
problems.

a) The beam in Prob. 5-52.

b) The boy and diving board in Prob. 5-53.
¢) The rod in Prob. 5-54.

d) The rod in Prob. 5-56.

5-9. Draw the free-body diagram for the following
problems.

a) The beam in Prob. 5-57.
b) The rod in Prob. 5-59.
c¢) The bar in Prob. 5-60.
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(b)

()
Fig. 5-11
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5.3 Equations of Equilibrium

In Sec. 5.1 we developed the two equations which are both necessary and
sufficient for the equilibrium of a rigid body, namely, XF = 0 and
2M, = 0. When the body is subjected to a system of forces, which all lie
in the x—y plane, then the forces can be resolved into their x and y
components. Consequently, the conditions for equilibrium in two
dimensions are

SF, =0
SF, =0 (5-2)
EMO =0

Here X F, and X F) represent, respectively, the algebraic sums of the x and y
components of all the forces acting on the body, and XM, represents
the algebraic sum of the couple moments and the moments of all the
force components about the z axis, which is perpendicular to the x—y
plane and passes through the arbitrary point O.

Alternative Sets of Equilibrium Equations. Although
Eqgs. 5-2 are most often used for solving coplanar equilibrium problems,
two alternative sets of three independent equilibrium equations may also
be used. One such set is

SF,=0
SM, = 0 (5-3)
EMB =0

When using these equations it is required that a line passing through
points A and B is not parallel to the y axis. To prove that Egs. 5-3 provide
the conditions for equilibrium, consider the free-body diagram of the
plate shown in Fig. 5-11a. Using the methods of Sec. 4.7 all the forces
on the free-body diagram may be replaced by an equivalent resultant
force Frx = XF, acting at point A, and a resultant couple moment
(MR) A = 2M,, Fig. 5-11b. If M, = 0 is satisfied, it is necessary that
(MR ) 4 = 0. Furthermore, in order that Fy, satisfy 3F, = 0, it must have
no component along the x axis, and therefore Fr must be parallel to the
y axis, Fig. 5-11c. Finally, if it is required that XM = 0, where B does not
lie on the line of action of Fg, then F, = 0. Since Eqgs. 5-3 show that both
of these resultants are zero, indeed the body in Fig. 5-11a must be in
equilibrium.



A second alternative set of equilibrium equations is
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EMA =0
SMg =0 (5-4)
EMC =0

Here it is necessary that points A, B, and C do not lie on the same line. To
prove that these equations, when satisfied, ensure equilibrium, consider
again the free-body diagram in Fig. 5-11b.1f M, = 0is to be satisfied, then
(M R ) 4 = 0.2M - = 0is satisfied if the line of action of Fy passes through
point C as shown in Fig. 5-11c. Finally, if we require XMz = 0, it is necessary
that F = 0, and so the plate in Fig. 5-11a must then be in equilibrium.

Coplanar force equilibrium problems for a rigid body can be solved
using the following procedure.

Free-Body Diagram.

Establish the x, y coordinate axes in any suitable orientation.
Remove all supports and draw an outlined shape of the body.
Show all the forces and couple moments acting on the body.

Label all the loadings and specify their directions relative to the x
or y axis. The sense of a force or couple moment having an
unknown magnitude but known line of action can be assumed.

Indicate the dimensions of the body necessary for computing the
moments of forces.

Equations of Equilibrium.

Apply the moment equation of equilibrium, XM, = 0, about a
point (O) that lies at the intersection of the lines of action of two
unknown forces. In this way, the moments of these unknowns are
zero about O, and a direct solution for the third unknown can be
determined.

When applying the force equilibrium equations, XF, = 0 and
2F, = 0, orient the x and y axes along lines that will provide the
simplest resolution of the forces into their x and y components.

If the solution of the equilibrium equations yields a negative
scalar for a force or couple moment magnitude, this indicates that
the sense is opposite to that which was assumed on the free-body
diagram.

221
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~—2m 3m

100 N
(a)
rw N 319N
A
T319 N T
319N

(©)

Determine the horizontal and vertical components of reaction on the
beam caused by the pin at B and the rocker at A as shown in Fig. 5-12a.
Neglect the weight of the beam.

200 N 600 sin 45° N

200N
600 cos 45° N w02¢m v
~— =

= T

Fig. 5-12

X

SOLUTION

Free-Body Diagram. The supports are removed, and the free-body
diagram of the beam is shown in Fig. 5-12b. (See Example 5.1.) For
simplicity, the 600-N force is represented by its x and y components as
shown in Fig. 5-12b.

Equations of Equilibrium. Summing forces in the x direction yields

E3SF =0; 600 cos 45°N — B, =0
B, = 424 N Ans.

A direct solution for A, can be obtained by applying the moment
equation XMz = 0 about point B.
C+3IMp = 0; 100 N(2 m) + (600 sin 45° N)(5 m)

— (600 cos 45° N)(0.2m) — Ay(7m) = 0

Ay, = 319N Ans.
Summing forces in the y direction, using this result, gives

+13F, =0; 319N - 600sin45°N — 100N — 200N + B, =0
B, = 405N Ans.

NOTE: Remember, the support forces in Fig. 5-12b are the result of
pins that act on the beam. The opposite forces act on the pins. For
example, Fig. 5-12¢ shows the equilibrium of the pin at A and the
rocker.
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N

The cord shown in Fig. 5-13a supports a force of 100 Ib and wraps
over the frictionless pulley. Determine the tension in the cord at C and
the horizontal and vertical components of reaction at pin A.

100 1b

(a)
Fig. 5-13

SOLUTION

Free-Body Diagrams. The free-body diagrams of the cord and
pulley are shown in Fig. 5-13b. Note that the principle of action, equal
but opposite reaction must be carefully observed when drawing each
of these diagrams: the cord exerts an unknown load distribution p on
the pulley at the contact surface, whereas the pulley exerts an equal but
opposite effect on the cord. For the solution, however, it is simpler to
combine the free-body diagrams of the pulley and this portion of the
cord, so that the distributed load becomes internal to this “system” and
is therefore eliminated from the analysis, Fig. 5-13c.

Equations of Equilibrium. Summing moments about point A to
eliminate A, and A,, Fig. 5-13c, we have

C+IM, = 0; 1001b (0.5ft) — T(0.5f) =0

T = 1001b Ans.
Using this result,
£E3SF =0, —A,+ 100sin30°1b = 0

A, = 50.01Ib Ans.

+13F,=0; A, —1001b — 100 cos 30°Ib = 0 1001b T
A, = 1871b Ans. (©
NOTE: From the moment equation, it is seen that the tension remains

constant as the cord passes over the pulley. (This of course is true for any
angle 6 at which the cord is directed and for any radius r of the pulley.)
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EXAMPLE |5.7

The member shown in Fig. 5-14a is pin connected at A and rests
against a smooth support at B. Determine the horizontal and vertical
components of reaction at the pin A.

SOLUTION

Free-Body Diagram. As shown in Fig. 5-14b, the supports are
removed and the reaction Ny is perpendicular to the member at B. Also,
horizontal and vertical components of reaction are represented at A. The
resultant of the distributed loading is %(1.5 m)(80 N/m) = 60 N. It acts
through the centroid of the triangle, 1 m from A as shown.

Equations of Equilibrium. Summing moments about A, we obtain
a direct solution for Ny,

C+3M, =0; —90N-m — 60 N(I m) + Ng(0.75 m) = 0

Np = 200N
Using this result,
£ 3F, =0 A, —2005sin30°N = 0

A, = 100N Ans.
+13F, = 0; A, —200cos30°N — 60N = 0

Ay, = 233N Ans.
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The box wrench in Fig. 5-15a is used to tighten the bolt at A. If the
wrench does not turn when the load is applied to the handle, determine
the torque or moment applied to the bolt and the force of the wrench
on the bolt.

SOLUTION

Free-Body Diagram. The free-body diagram for the wrench is
shown in Fig. 5-15b. Since the bolt acts as a “fixed support,” when it is
removed, it exerts force components A, and A, and a moment M, on
the wrench at A.

52N Lx 30N

Equations of Equilibrium. (b)
Fig. 5-15
E3F =0, A, —52(5)N + 30cos 60°N = 0 ®
A, =500N Ans.
+12E = 0; A, = 52(3) N = 30sin 60°N = 0
Ay, = 740N Ans.

C+3IM, =0; My — [52($)N] (0.3 m) — (30 sin 60° N)(0.7 m) = 0
M, =326 N-m Ans.

Note that My must be included in this moment summation. This couple
moment is a free vector and represents the twisting resistance of the
bolt on the wrench. By Newton’s third law, the wrench exerts an equal
but opposite moment or torque on the bolt. Furthermore, the resultant
force on the wrench is

F, = V(5.00) + (74.0> = 74.1 N Ans.

NOTE: Although only three independent equilibrium equations can be
written for a rigid body, it is a good practice to check the calculations
using a fourth equilibrium equation. For example, the above
computations may be verified in part by summing moments about
point C:

C+3Mc=0; [52()N](04m)+ 32.6N-m — 74.0N(0.7m) = 0

192Nm + 32.6N*m — 51.8N-m = 0
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Determine the horizontal and vertical components of reaction on the
member at the pin A, and the normal reaction at the roller B in Fig. 5-16a.

SOLUTION

Free-Body Diagram. All the supports are removed and so the
free-body diagram is shown in Fig. 5-16b. The pin at A exerts two
components of reaction on the member, A, and A,.

750 1b

286 1b

support
on pin
268 1b
—_——
268 1b >
member
on pin

286 1b
(©

i 3t ¢ 3 ft ‘

(b N

Fig. 5-16

Equations of Equilibrium. The reaction N can be obtained directly
by summing moments about point A, since A, and A, produce no
moment about A.
C+3IM A= 0;
[N cos 30°1(6 ft) — [N sin 30°](2 ft) — 750 Ib(3 ft) = 0
Ng = 536.21b = 5361b Ans.

Using this result,
ESF =0, A, —(536.21b)sin30° = 0

A, = 2681b Ans.

+13F, =0; A, +(536.21b) cos 30° — 7501b = 0

A, =2861Ib Ans.

Details of the equilibrium of the pin at A are shown in Fig. 5-16c.
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The uniform smooth rod shown in Fig. 5-17a is subjected to a force
and couple moment. If the rod is supported at A by a smooth wall and
at B and C either at the top or bottom by rollers, determine the
reactions at these supports. Neglect the weight of the rod.

/Zm

C 7\4m

N?)OON m><2m
[l
Zm\ 30°

B
300 N E“

(a)
SOLUTION
Free-Body Diagram. Removing the supports as shown in Fig. 5-17b,
all the reactions act normal to the surfaces of contact since these surfaces
are smooth. The reactions at B and C are shown acting in the positive y’
direction. This assumes that only the rollers located on the bottom of the
rod are used for support.

Equations of Equilibrium. Using the x, y coordinate system in
Fig. 5-17b, we have

LSF,=0;  Cpsin30° + B, sin30° — A, = 0 (1)
+13F, = 0; —300N + C, cos 30° + B, cos 30° = 0 (2)
C+3M, =0 —B,(2m) + 4000 N-m — C/(6 m)

+ (300 cos 30°N)(8 m) = 0 3)

When writing the moment equation, it should be noted that the line of

action of the force component 300 sin 30° N passes through point A,

and therefore this force is not included in the moment equation.
Solving Egs. 2 and 3 simultaneously, we obtain

By = —1000.0N = —1 kN Ans.

C, = 13464 N = 1.35kN Ans.

Since B, is a negative scalar, the sense of B, is opposite to that shown on
the free-body diagram in Fig. 5-17b. Therefore, the top roller at B serves
as the support rather than the bottom one. Retaining the negative sign
for By, (Why?) and substituting the results into Eq. 1, we obtain

1346.4 sin 30° N + (—1000.0sin 30°N) — A, =0

A, =173N Ans.
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EEE

The uniform truck ramp shown in Fig. 5-18a has a weight of 400 1b
and is pinned to the body of the truck at each side and held in the
position shown by the two side cables. Determine the tension in the
cables.

SOLUTION

The idealized model of the ramp, which indicates all necessary
dimensions and supports, is shown in Fig. 5-18b. Here the center of
(© Russell C. Hibbeler) gravity is located at the midpoint since the ramp is considered to be
uniform.

Free-Body Diagram. Removing the supports from the idealized
model, the ramp’s free-body diagram is shown in Fig. 5-18c.

Equations of Equilibrium. Summing moments about point A will
yield a direct solution for the cable tension. Using the principle of
moments, there are several ways of determining the moment of T
about A. If we use x and y components, with T applied at B, we have

C+IM, =0 —T cos 20°(7 sin 30° ft) + T sin 20°(7 cos 30° ft)
(b)
+ 400 1b (5 cos 30° ft) = 0

T =14251b

We can also determine the moment of T about A by resolving it into
components along and perpendicular to the ramp at B. Then the
moment of the component along the ramp will be zero about A, so that

C+3M, =0;  —Tsin 10°(7 ft) + 400 1Ib (5 cos 30° ft) = 0
T = 14251b

Since there are two cables supporting the ramp,

T = g =T7121b Ans.

Fig. 5-18 NOTE: As an exercise, show that A, = 13391band A, = 887 Ib.
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exavpie sz

Determine the support reactions on the member in Fig. 5-19a. The
collar at A is fixed to the member and can slide vertically along the
vertical shaft.

900 N

900 N |

‘ 15m 1.5m |
|
1.5m ‘ /\ l ‘ /\ 1m
My 500 N m 457
500N - m

L .

Np
(a)
Fig. 5-19

SOLUTION

Free-Body Diagram. Removing the supports, the free-body diagram
of the member is shown in Fig. 5-19b. The collar exerts a horizontal
force A, and moment M, on the member. The reaction Ny of the roller
on the member is vertical.

Equations of Equilibrium. The forces A, and N can be determined
directly from the force equations of equilibrium.

i)EFx =0; A, =0 Ans.
+13F, = 0; N — 900N = 0
Ng = 900 N Ans.

The moment M, can be determined by summing moments either
about point A or point B.

C+IM, = 0;
4 — 900N(1.5m) — S00N-m + 900 N [3m + (1 m)cos45°] = 0
M, = —1486 N-m = 1.49kN-m) Ans.
or
C+2My=0; M, +900N[1.5m + (1 m)cos45°] — 500N-m = 0
My = —1486 N*m = 1.49kN-m) Ans.

The negative sign indicates that M, has the opposite sense of rotation
to that shown on the free-body diagram.
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The hydraulic cylinder AB is a typical
example of a two-force member since
it is pin connected at its ends and,
provided its weight is neglected, only
the pin forces act on this member.
(© Russell C. Hibbeler)

The link used for this railroad car brake
is a three-force member. Since the force
Fp in the tie rod at B and F. from the
link at C are parallel, then for equilibrium
the resultant force F, at the pin A must
also be parallel with these two forces.
(© Russell C. Hibbeler)

The boom and bucket on this lift is a
three-force member, provided its weight
is neglected. Here the lines of action of
the weight of the worker, W, and the force
of the two-force member (hydraulic
cylinder) at B, Fp, intersect at O. For
moment equilibrium, the resultant force
at the pin A, F,, must also be directed
towards O. (© Russell C. Hibbeler)

EQuiLIBRIUM OF A RIGID BoDY

5.4 Two- and Three-Force Members

The solutions to some equilibrium problems can be simplified by
recognizing members that are subjected to only two or three forces.

Two-Force Members. As the name implies, a two-force member
has forces applied at only two points on the member. An example of a
two-force member is shown in Fig. 5-20a. To satisfy force equilibrium,
F, and F must be equal in magnitude, F, = Fz = F, but opposite in
direction (XF = 0), Fig. 5-20b. Furthermore, moment equilibrium requires
that F, and Fp share the same line of action, which can only happen if they
are directed along the line joining points A and B (3M, = 0 or XM = 0),
Fig. 5-20c. Therefore, for any two-force member to be in equilibrium, the
two forces acting on the member must have the same magnitude, act in
opposite directions, and have the same line of action, directed along the line
joining the two points where these forces act.

Fy=F
A F, A A
B B
Fy Fg=F
(a) (b) (©
Two-force member
Fig. 5-20

Three-Force Members. If a member is subjected to only three
forces, it is called a three-force member. Moment equilibrium can be
satisfied only if the three forces form a concurrent or parallel force
system. To illustrate, consider the member subjected to the three forces
F,, F,, and F;, shown in Fig. 5-21a. If the lines of action of F, and F,
intersect at point O, then the line of action of F; must also pass through
point O so that the forces satisfy XM, = 0. As a special case, if the three
forces are all parallel, Fig. 5-21b, the location of the point of intersection,
O, will approach infinity.
§

> T

(a) (b)

Three-force member

F;

Fig. 5-21
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EXAMPLE |5.13

The lever ABC is pin supported at A and connected to a short link BD C
as shown in Fig. 5-22a. If the weight of the members is negligible,
determine the force of the pin on the lever at A.

SOLUTION

Free-Body Diagrams. As shown in Fig. 5-22b, the short link BD is
a two-force member, so the resultant forces from the pins D and B must
be equal, opposite, and collinear. Although the magnitude of the force
is unknown, the line of action is known since it passes through B and D.

Lever ABC is a three-force member, and therefore, in order to
satisfy moment equilibrium, the three nonparallel forces acting on it
must be concurrent at O, Fig. 5-22¢. In particular, note that the force F
on the lever at B is equal but opposite to the force F acting at B on the
link. Why? The distance CO must be 0.5 m since the lines of action of
F and the 400-N force are known.

Equations of Equilibrium. By requiring the force system to be
concurrent at O, since XM, = 0, the angle # which defines the line of
action of F, can be determined from trigonometry,

0.7
0= tan_1<04) = 60.3°

Using the x, y axes and applying the force equilibrium equations,

BSF. =0, F,cos60.3° — Fcos45° + 400N = 0

+13F, = 0; F, sin 60.3° — Fsin45° = 0

Solving, we get

Fy = 1.07kN Ans.
F=132kN

NOTE: We can also solve this problem by representing the force at A
by its two components A, and A, and applying 2M, = 0, 3F, = 0,
2F, = 0 to the lever. Once A, and A, are determined, we can get F,
and 6.
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. PRELIMINARY PROBLEMS

P5-1. Draw the free-body diagram of each object.

CHAPTER 5 EQUILIBRIUM OF A RIGID BoDY

400 N/m

Prob. P5-1

(d)
200 N/m
A B
2m i 2 m }

(e)

30°
400 N
A
! 2m ' im |
()
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. FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD. F5-4. Determine the components of reaction at the fixed

) ) ) support A. Neglect the thickness of the beam.
F5-1. Determine the horizontal and vertical components

gf reaction at the supports. Neglect the thickness of the 200N 200N 200N
eam.

4\ 600 Ib - ft

30°

Fl mJ&l m#l mJ 400 N

Prob. F5-1

F5-2. Determine the horizontal and vertical components A
of reaction at the pin A and the reaction on the beam at C.

Prob. F5-4
4 kNl F5-5. The 25-kg bar has a center of mass at G. If it is
i 1.5m ‘ 1.5m + supported by a smooth peg at C, a roller at A, and cord AB,

B determine the reactions at these supports.

Prob. F5-2

F5-3. The truss is supported by a pin at A and a roller at B. Prob. F5-5
Determine the support reactions. rob. ko=

F5-6. Determine the reactions at the smooth contact
points A, B, and C on the bar.

Prob. F5-3 Prob. F5-6
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| PROBLEMS

All problem solutions must include an FBD. 5-13. Determine the reactions at the supports.
5-10. Determine the components of the support reactions

at the fixed support A on the cantilevered beam. 900 N/m

600 N/m

6 kN

A ﬂ
30° =

30 \

3m 3m ‘
[ \
A L ‘\/1-5 m 4kN
Lfl.S m——1.5 m—

Prob. 5-13

Prob. 5-10
5-14. Determine the reactions at the supports.

5-11. Determine the reactions at the supports.

B 800 N/m
400 N/m
5 M lM im 4
3
%Q—LB
| | G
‘ 3m 3m | 1m im }
Prob. 5-11
Prob. 5-14
#5-12. Determine the horizontal and vertical components 5-15. Determine the reactions at the supports.
of reaction at the pin A and the reaction of the rocker B on
the beam.
SkN

4 kN

Prob. 5-12 Prob. 5-15



#5-16. Determine the tension in the cable and the
horizontal and vertical components of reaction of the pin A.
The pulley at D is frictionless and the cylinder weighs 80 1b.

Prob. 5-16

5-17. The man attempts to support the load of boards
having a weight W and a center of gravity at G. If he is
standing on a smooth floor, determine the smallest angle 6
at which he can hold them up in the position shown. Neglect
his weight.

Prob. 5-17

5-18. Determine the components of reaction at the
supports A and B on the rod.

P
\ L L |
2 2

[O1O1010101010)

i
EA -1

Prob. 5-18
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5-19. The man has a weight W and stands at the center of
the plank. If the planes at A and B are smooth, determine
the tension in the cord in terms of W and 6.

Prob. 5-19

*#5-20. A uniform glass rod having a length L is placed in
the smooth hemispherical bowl having a radius r. Determine
the angle of inclination 6 for equilibrium.

—”

Prob. 5-20

5-21. The uniform rod AB has a mass of 40 kg. Determine
the force in the cable when the rod is in the position shown.
There is a smooth collar at A.

Prob. 5-21
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5-22. If the intensity of the distributed load acting on the
beam is w =3 kN /m, determine the reactions at the roller A
and pin B.

5-23. [If the roller at A and the pin at B can support a load
up to 4 kN and 8 kN, respectively, determine the maximum
intensity of the distributed load w, measured in kN/m, so
that failure of the supports does not occur.

A

4 30° A ¥ Y ¥ Y Y
iaB

3m\/

\ 4m |

Probs. 5-22/23

#5-24. 'The relay regulates voltage and current. Determine
the force in the spring CD, which has a stiffness of k=120 N /m,
so that it will allow the armature to make contact at A
in figure (a) with a vertical force of 0.4 N. Also, determine the
force in the spring when the coil is energized and attracts
the armature to E, figure (b), thereby breaking contact at A.

30 mm

10°f

a

AAAAAAAA
gUvvvvvvvvvy
=

o

VVVVVVV)

o N W WY o WY WY o WY ¥
VVVVVVV)

(a) (b)
Prob. 5-24
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5-25. Determine the reactions on the bent rod which is
supported by a smooth surface at B and by a collar at A,
which is fixed to the rod and is free to slide over the fixed
inclined rod.

1001b
|
3t 2001b - fit
Y /-E
21t
13
Prob. 5-25

5-26. The mobile crane is symmetrically supported by two
outriggers at A and two at B in order to relieve the
suspension of the truck upon which it rests and to provide
greater stability. If the crane boom and truck have a mass of
18 Mg and center of mass at Gy, and the boom has a mass
of 1.8 Mg and a center of mass at G,, determine the vertical
reactions at each of the four outriggers as a function of the
boom angle 6§ when the boom is supporting a load having a
mass of 1.2 Mg. Plot the results measured from 6 = 0° to the
critical angle where tipping starts to occur.

Prob. 5-26



5-27. Determine the reactions acting on the smooth
uniform bar, which has a mass of 20 kg.

4m

A \ 3 00 600

Prob. 5-27

*5-28. A linear torsional spring deforms such that an
applied couple moment M is related to the spring’s rotation
in radians by the equation M = (20 6) N - m. If such a spring
is attached to the end of a pin-connected uniform 10-kg rod,
determine the angle 6 for equilibrium. The spring is
undeformed when 6 = 0°.

M=(200)N-m

Prob. 5-28
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5-29. Determine the force P needed to pull the 50-kg
roller over the smooth step. Take 6 =30°.

5-30. Determine the magnitude and direction 6 of the
minimum force P needed to pull the 50-kg roller over the
smooth step.

Probs. 5-29/30

5-31. The operation of the fuel pump for an automobile
depends on the reciprocating action of the rocker arm ABC,
which is pinned at B and is spring loaded at A and D. When
the smooth cam C is in the position shown, determine the
horizontal and vertical components of force at the pin and
the force along the spring DF for equilibrium. The vertical
force acting on the rocker arm at A is F4 =60 N, and at C it
is Fc=125N.

Prob. 5-31
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*#5-32. Determine the magnitude of force at the pin A and
in the cable BC needed to support the 500-1b load. Neglect
the weight of the boom AB.

Prob. 5-32

5-33. The dimensions of a jib crane, which is manufactured
by the Basick Co., are given in the figure. If the crane has a
mass of 800 kg and a center of mass at G, and the maximum
rated force at its end is F = 15 kN, determine the reactions
at its bearings. The bearing at A is a journal bearing and
supports only a horizontal force, whereas the bearing at B is
a thrust bearing that supports both horizontal and vertical
components.

5-34. The dimensions of a jib crane, which is manufactured
by the Basick Co., are given in the figure. The crane has a
mass of 800 kg and a center of mass at G. The bearing at A
is a journal bearing and can support a horizontal force,
whereas the bearing at B is a thrust bearing that supports
both horizontal and vertical components. Determine the
maximum load F that can be suspended from its end if the
selected bearings at A and B can sustain a maximum
resultant load of 24 kN and 34 kN, respectively.

Probs. 5-33/34

EQuiLIBRIUM OF A RIGID BoDY

ky=1kN/m

5-35. The smooth pipe rests against the opening at the
points of contact A, B, and C. Determine the reactions at
these points needed to support the force of 300 N. Neglect
the pipe’s thickness in the calculation.

s et S |
|

‘ 0.5m 1 0.5 m \‘—
0

30°
300 N

Prob. 5-35

*5-36. The beam of negligible weight is supported
horizontally by two springs. If the beam is horizontal and
the springs are unstretched when the load is removed,
determine the angle of tilt of the beam when the load is
applied.

600 N/m
kp=1.5kN/m

Prob. 5-36



5-37. The cantilevered jib crane is used to support the
load of 780 Ib. If x = 5 ft, determine the reactions at
the supports. Note that the supports are collars that allow
the crane to rotate freely about the vertical axis. The collar
at B supports a force in the vertical direction, whereas the
one at A does not.

5-38. The cantilevered jib crane is used to support the
load of 780 Ib. If the trolley 7 can be placed anywhere
between 1.5ft = x = 7.5ft, determine the maximum
magnitude of reaction at the supports A and B. Note that
the supports are collars that allow the crane to rotate freely
about the vertical axis. The collar at B supports a force in
the vertical direction, whereas the one at A does not.

8 ft |

780 Ib

Probs. 5-37/38

5-39. The bar of negligible weight is supported by two
springs, each having a stiffness k = 100 N /m. If the springs
are originally unstretched, and the force is vertical as shown,
determine the angle 6 the bar makes with the horizontal,
when the 30-N force is applied to the bar.

*5-40. Determine the stiffness k of each spring so that
the 30-N force causes the bar to tip § = 15° when the force is
applied. Originally the bar is horizontal and the springs are
unstretched. Neglect the weight of the bar.

Probs. 5-39/40
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5-41. The bulk head AD is subjected to both water and
soil-backfill pressures. Assuming AD is “pinned” to the ground
at A, determine the horizontal and vertical reactions there and
also the required tension in the ground anchor BC necessary
for equilibrium. The bulk head has a mass of 800 kg.

D
r 0.5 m
B | —
3 F
>, 6 m
4m
118kN/m 4 310 kN/m

Prob. 5-41

5-42. The boom supports the two vertical loads. Neglect
the size of the collars at D and B and the thickness of the
boom, and compute the horizontal and vertical components
of force at the pin A and the force in cable CB. Set
F; = 800 N and F, = 350 N.

5-43. The boom is intended to support two vertical loads,
F, and F,. If the cable CB can sustain a maximum load of
1500 N before it fails, determine the critical loads if
F; = 2F,. Also, what is the magnitude of the maximum
reaction at pin A?

Probs. 5-42/43
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*5-44. The 10-kg uniform rod is pinned at end A. If it is
also subjected to a couple moment of 50 N - m, determine
the smallest angle 6 for equilibrium. The spring is
unstretched when 6 = 0, and has a stiffness of k=60 N/m.

@50N~m

Prob. 5-44

5-45. The man uses the hand truck to move material up the
step. If the truck and its contents have a mass of 50 kg with
center of gravity at G, determine the normal reaction on both
wheels and the magnitude and direction of the minimum
force required at the grip B needed to lift the load.

Prob. 5-45

5-46. Three uniform books, each having a weight W and
length a, are stacked as shown. Determine the maximum
distance d that the top book can extend out from the bottom
one so the stack does not topple over.

Prob. 5-46

EQuiLIBRIUM OF A RIGID BoDY

5-47. Determine the reactions at the pin A and the tension
in cord BC. Set FF'=40 kN. Neglect the thickness of the beam.

*5-48. If rope BC will fail when the tension becomes 50 kN,
determine the greatest vertical load F that can be applied to
the beam at B. What is the magnitude of the reaction at A
for this loading? Neglect the thickness of the beam.

0~

~—2m

Probs. 5-47/48

5-49. The rigid metal strip of negligible weight is used as
part of an electromagnetic switch. If the stiffness of the
springs at A and B is k =5 N/m and the strip is originally
horizontal when the springs are unstretched, determine the
smallest force F needed to close the contact gap at C.

50 mm ‘ 50 mm

A
k 10 mm
PR o —

Prob. 5-49




5-50. The rigid metal strip of negligible weight is used as
part of an electromagnetic switch. Determine the maximum
stiffness k of the springs at A and B so that the contact at C
closes when the vertical force developed there is F = 0.5 N.
Originally the strip is horizontal as shown.

50 mm

50 mm

Prob. 5-50

5-51. The cantilever footing is used to support a wall near
its edge A so that it causes a uniform soil pressure under the
footing. Determine the uniform distribution loads, w, and
wp, measured in 1b/ft at pads A and B, necessary to support
the wall forces of 8000 Ib and 20 000 Ib.

20 000 Ib
o005 £t 8000 1b
B ’ Y 151t
Wa Wp
<2 ft— 8 ft ‘ 3ft—>‘

Prob. 5-51
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*5-52. The uniform beam has a weight W and length /
and is supported by a pin at A and a cable BC. Determine
the horizontal and vertical components of reaction at A
and the tension in the cable necessary to hold the beam in
the position shown.

Prob. 5-52

5-53. A boy stands out at the end of the diving board, which
is supported by two springs A and B, each having a stiffness
of k=15kN/m.In the position shown the board is horizontal.
If the boy has a mass of 40 kg, determine the angle of tilt
which the board makes with the horizontal after he jumps off.
Neglect the weight of the board and assume it is rigid.

‘Hlm i 3m m

Prob. 5-53
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5-54. The 30-N uniform rod has a length of / = 1 m.
If s = 1.5 m, determine the distance /4 of placement at the
end A along the smooth wall for equilibrium.

Prob. 5-54

5-55. The uniform rod has a length / and weight W. It is
supported at one end A by a smooth wall and the other end
by a cord of length s which is attached to the wall as shown.
Determine the placement 4 for equilibrium.

Prob. 5-55

#5-56. The uniform rod of length L and weight W is
supported on the smooth planes. Determine its position 6
for equilibrium. Neglect the thickness of the rod.

Prob. 5-56

5-57. The beam is subjected to the two concentrated loads.
Assuming that the foundation exerts a linearly varying load
distribution on its bottom, determine the load intensities
wy and w, for equilibrium if P =5001b and L =12 ft.

P 2P
\ L L L |
| 3y 3y 3 \
w1 M\M
wo
Prob. 5-57



5-58. The beam is subjected to the two concentrated
loads. Assuming that the foundation exerts a linearly
varying load distribution on its bottom, determine the load
intensities w; and w, for equilibrium in terms of the
parameters shown.

Prob. 5-58

5-59. The rod supports a weight of 200 Ib and is pinned at its
end A. If it is also subjected to a couple moment of
1001b - ft, determine the angle 6 for equilibrium. The spring
has an unstretched length of 2 ft and a stiffness of k=50 1b/ft.

10
k = 50 Ib/ft

Prob. 5-59
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*5-60. Determine the distance d for placement of the load P
for equilibrium of the smooth bar in the position 6 as shown.
Neglect the weight of the bar.

Prob. 5-60

5-61. If d =1 m, and 6 = 30°, determine the normal
reaction at the smooth supports and the required distance a
for the placement of the roller if P = 600 N. Neglect the
weight of the bar.

Prob. 5-61
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. CONCEPTUAL PROBLEMS

C5-1. The tie rod is used to support this overhang at the
entrance of a building. If it is pin connected to the building
wall at A and to the center of the overhang B, determine if
the force in the rod will increase, decrease, or remain the
same if (a) the support at A is moved to a lower position D,
and (b) the support at B is moved to the outer position C.
Explain your answer with an equilibrium analysis, using
dimensions and loads. Assume the overhang is pin supported
from the building wall.

Prob. C5-1 (© Russell C. Hibbeler)

C5-2. The man attempts to pull the four wheeler up the
incline and onto the trailer. From the position shown, is it
more effective to pull on the rope at A, or would it be better
to pull on the rope at B? Draw a free-body diagram for each
case, and do an equilibrium analysis to explain your answer.
Use appropriate numerical values to do your calculations.

Prob. C5-2 (© Russell C. Hibbeler)

C5-3. Like all aircraft, this jet plane rests on three wheels.
Why not use an additional wheel at the tail for better
support? (Can you think of any other reason for not
including this wheel?) If there was a fourth tail wheel, draw
a free-body diagram of the plane from a side (2 D) view, and
show why one would not be able to determine all the wheel
reactions using the equations of equilibrium.

Prob. C5-3 (© Russell C. Hibbeler)

C5-4. Where is the best place to arrange most of the logs
in the wheelbarrow so that it minimizes the amount of force
on the backbone of the person transporting the load? Do an
equilibrium analysis to explain your answer.

Prob. C5-4 (© Russell C. Hibbeler)



EQUILIBRIUM IN THREE DIMENSIONS

5.5 Free-Body Diagrams

The first step in solving three-dimensional equilibrium problems, as in the
case of two dimensions, is to draw a free-body diagram. Before we can do
this, however, it is first necessary to discuss the types of reactions that can
occur at the supports.

Support Reactions. The reactive forces and couple moments
acting at various types of supports and connections, when the members
are viewed in three dimensions, are listed in Table 5-2. It is important to
recognize the symbols used to represent each of these supports and to
understand clearly how the forces and couple moments are developed.
As in the two-dimensional case:

e A force is developed by a support that restricts the translation of its
attached member.

e A couple moment is developed when rotation of the attached
member is prevented.

For example, in Table 5-2, item (4), the ball-and-socket joint prevents
any translation of the connecting member; therefore, a force must act on
the member at the point of connection. This force has three components
having unknown magnitudes, F,, F,, F.. Provided these components
are known, one can obtain the magnitude of force, F = V' F; + F; + FZ,
and the force’s orientation defined by its coordinate direction angles
a, B3, v, Egs.2-5.% Since the connecting member is allowed to rotate freely
about any axis, no couple moment is resisted by a ball-and-socket joint.

It should be noted that the single bearing supports in items (5) and (7),
the single pin (8), and the single hinge (9) are shown to resist both force
and couple-moment components. If, however, these supports are used in
conjunction with other bearings, pins, or hinges to hold a rigid body in
equilibrium and the supports are properly aligned when connected to the
body, then the force reactions at these supports alone are adequate for
supporting the body. In other words, the couple moments become
redundant and are not shown on the free-body diagram. The reason for
this should become clear after studying the examples which follow.

* The three unknowns may also be represented as an unknown force magnitude F and
two unknown coordinate direction angles. The third direction angle is obtained using the
identity cos? a + cos’ 8 + cos’y = 1, Eq.2-8

5.5 FRree-Boby DIAGRAMS

245
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Types of Connection Reaction Number of Unknowns

(1) -

One unknown. The reaction is a force which acts away
from the member in the known direction of the cable.

cable

)

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

smooth surface support

@F'
' F
One unknown. The reaction is a force which acts
4 perpendicular to the surface at the point of contact.
F
ﬁ
F
F¢ Y

roller
4)
Three unknowns. The reactions are three rectangular
force components.
ball and socket

(5

)
Mz/f\ Four unknowns. The reactions are two force and two
- ~> couple-moment components which act perpendicular to
F, the shaft. Note: The couple moments are generally not

applied if the body is supported elsewhere. See the
Mx)/:ﬁ F, examples.

single journal bearing

continued
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Types of Connection

Reaction

Number of Unknowns

(6)

single journal bearing
with square shaft

Five unknowns. The reactions are two force and three
couple-moment components. Note: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.

™)
-

single thrust bearing

Five unknowns. The reactions are three force and two
couple-moment components. Note: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.

®)
;L

single smooth pin

Five unknowns. The reactions are three force and two
couple-moment components. Note: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.

(

9)

single hinge

Five unknowns. The reactions are three force and two
couple-moment components. Note: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.

(10)

L.

fixed support

Six unknowns. The reactions are three force and three
couple-moment components.
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Typical examples of actual supports that are referenced to Table 5-2 are
shown in the following sequence of photos.

The journal bearings support the ends of
the shaft. (5) (© Russell C. Hibbeler)

This ball-and-socket joint provides a
connection for the housing of an earth
grader to its frame. (4) (© Russell C.
Hibbeler)

This thrust bearing is used to support the This pin is used to support the end of the
drive shaft on a machine. (7) (© Russell strut used on a tractor. (8) (© Russell
C. Hibbeler) C. Hibbeler)

Free-Body Diagrams. The general procedure for establishing the
free-body diagram of a rigid body has been outlined in Sec. 5.2. Essentially
it requires first “isolating” the body by drawing its outlined shape. This is
followed by a careful labeling of all the forces and couple moments with
reference to an established x, y, z coordinate system. As a general rule, it
is suggested to show the unknown components of reaction as acting on
the free-body diagram in the positive sense. In this way, if any negative
values are obtained, they will indicate that the components act in the
negative coordinate directions.
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Consider the two rods and plate, along with their associated free-body
diagrams, shown in Fig. 5-23. The x, y, z axes are established on the
diagram and the unknown reaction components are indicated in the z
positive sense. The weight is neglected.

SOLUTION

< 500N

Properly aligned journal
bearings at A, B, C.

The force reactions developed by
the bearings are sufficient for
equilibrium since they prevent the
shaft from rotating about each of the
coordinate axes. No couple moments
at each bearing are developed.

z

|
s

2001b - ft
Vil

300 1b B

. 300 Ib B
Pin at A and cable BC.

Moment components are developed
by the pin on the rod to prevent
rotation about the x and z axes.

400 1b

B

Only force reactions are developed by
the bearing and hinge on the plate to

Properly aligned journal bearing
at A and hinge at C. Roller at B.

prevent rotation about each coordinate axis.
No moments are developed at the hinge.

Fig. 5-23



250

CHAPTER 5

EQuiLIBRIUM OF A RIGID BoDY

5.6 Equations of Equilibrium

As stated in Sec. 5.1, the conditions for equilibrium of a rigid body
subjected to a three-dimensional force system require that both the
resultant force and resultant couple moment acting on the body be equal
to zero.

Vector Equations of Equilibrium. The two conditions for
equilibrium of a rigid body may be expressed mathematically in vector
form as

SF=0

S — (5-5)

where 3F is the vector sum of all the external forces acting on the body
and XMy is the sum of the couple moments and the moments of all the
forces about any point O located either on or off the body.

Scalar Equations of Equilibrium. If all the external forces and
couple moments are expressed in Cartesian vector form and substituted
into Egs. 5-5, we have

3F=3Fi+ 3Fj+32Fk=0
3My = 3M,i+ 3Mj+ IMk=0

Since the i, j, and k components are independent from one another, the
above equations are satisfied provided

SF, =
3F, = (5-6a)
SF, =

and
SM, =0
M, =0 (5-6b)
SM, =0

%

These six scalar equilibrium equations may be used to solve for at most
six unknowns shown on the free-body diagram. Equations 5-6a require
the sum of the external force components acting in the x, y, and z
directions to be zero, and Eqs. 5-6b require the sum of the moment
components about the x, y, and z axes to be zero.
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5.7 Constraints and Statical Determinacy

To ensure the equilibrium of a rigid body, it is not only necessary to satisfy
the equations of equilibrium, but the body must also be properly held or
constrained by its supports. Some bodies may have more supports than
are necessary for equilibrium, whereas others may not have enough or the
supports may be arranged in a particular manner that could cause the
body to move. Each of these cases will now be discussed.

Redundant Constraints. When a body has redundant supports,
that is, more supports than are necessary to hold it in equilibrium, it
becomes statically indeterminate. Statically indeterminate means that
there will be more unknown loadings on the body than equations of
equilibrium available for their solution. For example, the beam in Fig. 5-24a
and the pipe assembly in Fig. 5-24b, shown together with their free-body
diagrams, are both statically indeterminate because of additional
(or redundant) support reactions. For the beam there are five unknowns,
My, Ay, Ay, By, and C,, for which only three equilibrium equations can be
written (2 F, = 0, XF, = 0, and XM, = 0, Eq. 5-2). The pipe assembly
has eight unknowns, for which only six equilibrium equations can be
written, Eqs. 5-6.

The additional equations needed to solve statically indeterminate
problems of the type shown in Fig. 5-24 are generally obtained from the
deformation conditions at the points of support. These equations involve
the physical properties of the body which are studied in subjects dealing
with the mechanics of deformation, such as “mechanics of materials.”*

400N

200 N

(b)

* See R. C. Hibbeler, Mechanics of Materials, 8th edition, Pearson Education/Prentice
Hall, Inc.

500 N
2KkN-m l
A N |
)4 0O =0
B C
y
A, X 500 N
A
\‘2 kKN -m
- |
l X
M,
TB,V Tcy
(a)
Fig. 5-24



252

CHAPTER 5

EQuiLIBRIUM OF A RIGID BoDY

Improper Constraints. Having the same number of unknown
reactive forces as available equations of equilibrium does not always
guarantee that a body will be stable when subjected to a particular
loading. For example, the pin support at A and the roller support at B for
the beam in Fig. 5-25a are placed in such a way that the lines of action of
the reactive forces are concurrent at point A. Consequently, the applied
loading P will cause the beam to rotate slightly about A, and so the beam
is improperly constrained, XM, # 0.

In three dimensions, a body will be improperly constrained if the lines of
action of all the reactive forces intersect a common axis. For example, the
reactive forces at the ball-and-socket supports at A and B in Fig. 5-25b
all intersect the axis passing through A and B. Since the moments of these
forces about A and B are all zero, then the loading P will rotate the
member about the AB axis, XM,z # O.

(b)
Fig. 5-25
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(@)

100 N /

llOO N llOO N

Fig. 5-27

Another way in which improper constraining leads to instability occurs
when the reactive forces are all parallel. Two- and three-dimensional
examples of this are shown in Fig. 5-26. In both cases, the summation of
forces along the x axis will not equal zero.

In some cases, a body may have fewer reactive forces than equations of
equilibrium that must be satisfied. The body then becomes only partially
constrained. For example, consider member AB in Fig. 5-27a with its
corresponding free-body diagram in Fig. 5-27b. Here 3 F, = 0 will not
be satisfied for the loading conditions and therefore equilibrium will not
be maintained.

To summarize these points,a body is considered improperly constrained
if all the reactive forces intersect at a common point or pass through a
common axis, or if all the reactive forces are parallel. In engineering

Stability is always an important concern
X . X ) . . . when operating a crane, not only when
practice, these situations should be avoided at all times since they will Jifting a load, but also when moving it about.

cause an unstable condition. (© Russell C. Hibbeler)
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Important Points

o Always draw the free-body diagram first when solving any
equilibrium problem.

o If a support prevents translation of a body in a specific direction,
then the support exerts a force on the body in that direction.

o If a support prevents rotation about an axis, then the support
exerts a couple moment on the body about the axis.

o If a body is subjected to more unknown reactions than available
equations of equilibrium, then the problem is statically indeterminate.

o A stable body requires that the lines of action of the reactive forces
do not intersect a common axis and are not parallel to one another.

Procedure for Analysis

Three-dimensional equilibrium problems for a rigid body can be
solved using the following procedure.

Free-Body Diagram.

e Draw an outlined shape of the body.

e Show all the forces and couple moments acting on the body.

e FEstablish the origin of the x, y, z axes at a convenient point and
orient the axes so that they are parallel to as many of the external
forces and moments as possible.

e Label all the loadings and specify their directions. In general,
show all the unknown components having a positive sense along
the x, y, z axes.

e Indicate the dimensions of the body necessary for computing the
moments of forces.

Equations of Equilibrium.

e If the x, y, z force and moment components seem easy to
determine, then apply the six scalar equations of equilibrium;
otherwise use the vector equations.

e Itis not necessary that the set of axes chosen for force summation
coincide with the set of axes chosen for moment summation.
Actually, an axis in any arbitrary direction may be chosen for
summing forces and moments.

e Choose the direction of an axis for moment summation such that
it intersects the lines of action of as many unknown forces as
possible. Realize that the moments of forces passing through
points on this axis and the moments of forces which are parallel
to the axis will then be zero.

e If the solution of the equilibrium equations yields a negative
scalar for a force or couple moment magnitude, it indicates that
the sense is opposite to that assumed on the free-body diagram.
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The homogeneous plate shown in Fig. 5-28a has a mass of 100 kg and is

subjected to a force and couple moment along its edges. If it is supported S . )
in the horizontal plane by a roller at A, a ball-and-socket joint at B, and AL N_'\m
a cord at C, determine the components of reaction at these supports. s ke I f/\) .

SOLUTION (SCALAR ANALYSIS)

Free-Body Diagram. There are five unknown reactions acting on ‘
the plate, as shown in Fig. 5-28b. Each of these reactions is assumed to B
act in a positive coordinate direction. (a)

Equations of Equilibrium. Since the three-dimensional geometry

is rather simple, a scalar analysis provides a direct solution to this T
problem. A force summation along each axis yields !
N
SF, = 0; B, =0 Ans.
2F, = 0; B, =0 Ans. y
SF, =0 A, +B,+T¢c—300N—-981IN=0 1)

Recall that the moment of a force about an axis is equal to the product
of the force magnitude and the perpendicular distance (moment arm) Fig. 5-28
from the line of action of the force to the axis. Also, forces that are
parallel to an axis or pass through it create no moment about the axis.

Hence, summing moments about the positive x and y axes, we have

SM,=0; Tc(m)—98IN(Im)+ B.2m) =0 )
M, = 0; 300N(1.5m) + 98I N(1.5m) — B,3m) — A,(3m)
—200N'm =20 3)

The components of the force at B can be eliminated if moments are
summed about the x" and y" axes. We obtain

M, = 0; 98I N(I1m) + 300N2m) —A,2m) =0 4)
EMyr =0; —300 N(1.5 m) — 981 N(1.5m) — 200 N - m

Solving Eqs. 1 through 3 or the more convenient Egs. 1,4, and 5 yields
A, =790N B,= 217N T, = 707N Ans.

The negative sign indicates that B, acts downward.

NOTE: The solution of this problem does not require a summation of
moments about the z axis. The plate is partially constrained since the
supports cannot prevent it from turning about the z axis if a force is
applied to it in the x—y plane.
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EXAMPLE | 5.16

Determine the components of reaction that the ball-and-socket joint
at A, the smooth journal bearing at B, and the roller support at C
exert on the rod assembly in Fig. 5-29a.

Fig. 5-29
SOLUTION (SCALAR ANALYSIS)

Free-Body Diagram. As shown on the free-body diagram, Fig. 5295,
the reactive forces of the supports will prevent the assembly from
rotating about each coordinate axis, and so the journal bearing at B only
exerts reactive forces on the member. No couple moments are required.

Equations of Equilibrium. Because all the forces are either horizontal
or vertical, it is convenient to use a scalar analysis. A direct solution for
A can be obtained by summing forces along the y axis.

3F, =0; A, =0 Ans.
The force F can be determined directly by summing moments about
the y axis.
M, = 0; Fe(0.6 m) — 900 N(0.4m) = 0

Fr = 600N Ans.
Using this result, B, can be determined by summing moments about
the x axis.
M, = 0; B.(0.8 m) + 600 N(1.2 m) — 900 N(0.4m) = 0

B, = —450N Ans.

The negative sign indicates that B, acts downward. The force B, can
be found by summing moments about the z axis.

SM, = 0; —B,(08m)=0 B, =0 Ans.
Thus,
SF, = 0; A, +0=0 A, =0 Ans.

Finally, using the results of B, and F_.

SF. = 0; A, + (—450N) + 600N — 900N =0
A, =750N Ans.




5.7 CONSTRAINTS AND STATICAL DETERMINACY 257

EXAMPLE |3.47

The boom is used to support the 75-Ib flowerpot in Fig. 5-30a.
Determine the tension developed in wires AB and AC.

SOLUTION (VECTOR ANALYSIS)
Free-Body Diagram. The free-body diagram of the boom is shown
in Fig. 5-300.

Equations of Equilibrium. Here the cable forces are directed at
angles with the coordinate axes, so we will use a vector analysis.

I {2i — 6j + 3k} ft
Fip = FAB<£> = FAB( )

TAB V@ f)? + (=6 f0)? + (3 fr)?
= FFupi — $Fapj + 3Fypk

P <rAC> - ( {—2i — 6j + 3k} ft >
=Fy _ = . =
e e NNV 22 + (ot + G e 530

2.+ 654 s, 3
= —T7Fxcl — 7Fc) t 7Fack

We can eliminate the force reaction at O by writing the moment
equation of equilibrium about point O.

M, = 0; X (Frp + Foe + W) =0

(6j) X K% Fypi — § Fypj + %FABk) + (‘% Fycd — §Fycj + %FACk> + (_75k)] =0

<17_8FAB + 17_8FAC - 450>i + <_17_2FAB + 17_2FAC>k - 0
/2ft/|c
P
SM, = 0; Brg+ 2Fc—450=0 1) szt
B
SM, = 0; 0=0

SM. = 0; —2Fp+ BFc=0

Solving Egs. (1) and (2) simultaneously,

FAB - FAC = 87.51b Ans. (b)
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Rod AB shown in Fig. 5-31a is subjected to the 200-N force. Determine
the reactions at the ball-and-socket joint A and the tension in the
cables BD and BE.The collar at C is fixed to the rod.

SOLUTION (VECTOR ANALYSIS)
Free-Body Diagram. Fig. 5-31b.

Equations of Equilibrium. Representing each force on the free-body
diagram in Cartesian vector form, we have

F, =Ai+Aj+Ak
Tp = Tpj
F = {—200k} N

Applying the force equation of equilibrium.

2F=0; Fy + Tg+Tp + F=0
A+ Tpi + (A, + Tplj + (A, — 200)k = 0
SF, = 0; A, +Tg=0 (1)
2F, = 0; A, +Tp=0 ()
2F. = 0; A, —200=0 3)
Summing moments about point A yields
M, = 0, rce XF+r X (T +Tp) =0

Since rp = %rB, then

(0.5 + 1j — 1k) X (—200K) + (1i + 2j — 2K) X (T4 + Tpj) = 0
Expanding and rearranging terms gives

QTp — 200)i + (—2Tg + 100)j + (Tp — 2Tpk = 0

SM, = 0; 2T, — 200 =0 4)
M, = 0; —2T; + 100 = 0 (5)
M, = 0; Tp — 2T =0 (6)
Solving Egs. 1 through 5, we get
Tp = 100N Ans.
Ty = 50N Ans.
A, = —50N Ans.
A, = —100N Ans.
A, = 200N Ans.

NOTE: The negative sign indicates that A, and A, have a sense which
is opposite to that shown on the free-body diagram, Fig. 5-31b. Also,
notice that Egs. 1-6 can be set up directly using a scalar analysis.
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oxawpielsay

The bent rod in Fig. 5-32a is supported at A by a journal bearing, at D
by a ball-and-socket joint, and at B by means of cable BC. Using only
one equilibrium equation, obtain a direct solution for the tension in
cable BC. The bearing at A is capable of exerting force components
only in the z and y directions since it is properly aligned on the shaft.
In other words, no couple moments are required at this support.

SOLUTION (VECTOR ANALYSIS)

Free-Body Diagram. Asshown in Fig. 5-32b, there are six unknowns.

Equations of Equilibrium. The cable tension Tz may be obtained
directly by summing moments about an axis that passes through points
D and A. Why? The direction of this axis is defined by the unit vector
u, where

— rDiA = —Li _ LJ (a)
o V2 V2
= —0.7071i — 0.7071j
Hence, the sum of the moments about this axis is zero provided

EMDA ZU'E(I‘XF)ZO

Here r represents a position vector drawn from any point on the axis
DA to any point on the line of action of force F (see Eq. 4-11). With B
reference to Fig. 5-32b, we can therefore write

u- (g X Ty + 15 X W) =0 0.5m~W =981 N 20
(—0.7071i — 0.7071j) - [ (= 1j) X (Tk) 05m Do |p.
+ (—0.5)) X (—981k)] = 0 ' ’
(—0.7071i — 0.7071j) - [(~Tj + 490.5)i] = 0 (b)
~0.7071(~Tp + 490.5) + 0 + 0 =0 Fig. 5-32
Tg = 490.5 N Ans.

NOTE: Since the moment arms from the axis to Tz and W are easy to
obtain, we can also determine this result using a scalar analysis. As
shown in Fig. 5-32b,
SMp, = 0; Tgz(l msind5°) — 981 N(0.5msin45°) = 0
Tg = 490.5N Ans.
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. PRELIMINARY PROBLEMS

P5-2. Draw the free-body diagram of each object. P5-3. In each case, write the moment equations about the
x,y,and z axes.

(0 (©
Prob. P5-2 Prob. P5-3
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. FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD. F5-10. Determine the support reactions at the smooth

) ) ) journal bearings A, B, and C of the pipe assembly.
F5-7. The uniform plate has a weight of 500 Ib. Determine

the tension in each of the supporting cables.

Prob. F5-10

F5-11. Determine the force developed in the short
link BD, and the tension in the cords CE and CF, and the

Prob. F5-7 reactions of the ball-and-socket joint A on the block.

F5-8. Determine the reactions at the roller support A, the
ball-and-socket joint D, and the tension in cable BC for
the plate.

Prob. F5-8 Prob. F5-11
F5-9. The rod is supported by smooth journal bearings at F5-12. Determine the components of reaction that the
A, B, and C and is subjected to the two forces. Determine thrust bearing A and cable BC exert on the bar.

the reactions at these supports.

Z

Prob. F5-9 Prob. F5-12
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“leromiews

All problem solutions must include an FBD. *5-64. Determine the components of reaction at the fixed
support A. The 400 N, 500 N, and 600 N forces are parallel to

5-62. The uniform load has a mass of 600 kg and is lifted the x, y, and z axes, respectively.

using a uniform 30-kg strongback beam BAC and four ropes
as shown. Determine the tension in each rope and the force
that must be applied at A.

Prob. 5-64
Prob. 5-62
5-63. Due to an unequal distribution of fuel in the wing 5-65. The 50-1b mulching machine has a center of gravity
tanks, the centers of gravity for the airplane fuselage A and at G. Determine the vertical reactions at the wheels C
wings B and C are located as shown. If these components and B and the smooth contact point A.

have weights W, =450001b, Wjy = 80001b, and
We = 60001b, determine the normal reactions of the
wheels D, E, and F on the ground.

Prob. 5-63 Prob. 5-65
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5-66. The smooth uniform rod AB is supported by a ball- *5-68. The 100-1b door has its center of gravity at G.
and-socket joint at A, the wall at B,and cable BC. Determine Determine the components of reaction at hinges A and B if
the components of reaction at A, the tension in the cable, hinge B resists only forces in the x and y directions and
and the normal reaction at B if the rod has a mass of 20 kg. A resists forces in the x, y, z directions.

Prob. 5-68

Prob. 5-66

5-69. Determine the tension in each cable and the
components of reaction at D needed to support the load.

5-67. The uniform concrete slab has a mass of 2400 kg.
Determine the tension in each of the three parallel N z
supporting cables when the slab is held in the horizontal B

plane as shown. &

/6m\\ \?
Z \‘Zm
D
T 1a
y
30°
400 N

Prob. 5-67 Prob. 5-69
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5-70. The stiff-leg derrick used on ships is supported by a *5-72. Determine the components of reaction at the ball-
ball-and-socket joint at D and two cables BA and BC. The and-socket joint A and the tension in the supporting cables
cables are attached to a smooth collar ring at B, which allows DB and DC.

rotation of the derrick about z axis. If the derrick supports a

crate having a mass of 200 kg, determine the tension in the

cables and the x, y, z components of reaction at D.

800 N/m ¢ 3m
: J/J
(1 5m 1 m
. —3m
y
¥ Prob. 5-72

Prob. 5-70

5-73. The bent rod is supported at A, B, and C by smooth
journal bearings. Determine the components of reaction at
the bearings if the rod is subjected to the force F = 800 N.

5-71. Determine the components of reaction at the ball- The bearings are in proper a]ignment and exert Only force
and-socket joint A and the tension in each cable necessary reactions on the rod.

for equilibrium of the rod.

2 m

60°

F

Prob. 5-71 Prob. 5-73
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5-74. The bent rod is supported at A, B, and C by smooth *5-76. The member is supported by a pin at A and
journal bearings. Determine the magnitude of F which will cable BC. Determine the components of reaction at these
cause the positive x component of reaction at the bearing C supports if the cylinder has a mass of 40 kg.

to be C, = 50 N. The bearings are in proper alignment and
exert only force reactions on the rod.

A
2m
X 30°
60°
F
Prob. 5-74

Prob. 5-76

5-75. Member AB is supported by a cable BC and at A by
a square rod which fits loosely through the square hole in
the collar fixed to the member as shown. Determine the
components of reaction at A and the tension in the cable
needed to hold the rod in equilibrium.

5-77. The member is supported by a square rod which
fits loosely through the smooth square hole of the attached
collar at A and by a roller at B. Determine the components
of reaction at these supports when the member is subjected
to the loading shown.

Prob. 5-75 Prob. 5-77



266 CHAPTER 5

5-78. The bent rod is supported at A, B, and C by smooth
journal bearings. Compute the x, y, z components of
reaction at the bearings if the rod is subjected to forces
F; = 3001b and F, = 250 1b. Fy lies in the y—z plane. The
bearings are in proper alignment and exert only force
reactions on the rod.

Sft

30° y
d5°

F,

Prob. 5-78

5-79. The bent rod is supported at A, B, and C by smooth
journal bearings. Determine the magnitude of F, which will
cause the reaction C, at the bearing C to be equal to zero.
The bearings are in proper alignment and exert only force
reactions on the rod. Set F; = 300 Ib.

51t

30° y
d5°

F,

Prob. 5-79

EQuiLIBRIUM OF A RIGID BoDY

*5-80. The bar AB is supported by two smooth collars.
At A the connection is with a ball-and-socket joint and at B
it is a rigid attachment. If a 50-1b load is applied to the bar,
determine the x, y, z components of reaction at A and B.

X

Prob. 5-80

5-81. The rod has a weight of 6 Ib/ft. If it is supported by
a ball-and-socket joint at C and a journal bearing at D,
determine the x, y, z components of reaction at these
supports and the moment M that must be applied along the
axis of the rod to hold it in the position shown.

Prob. 5-81



5-82. The sign has a mass of 100 kg with center of mass
at G. Determine the x, y, z components of reaction at the
ball-and-socket joint A and the tension in wires BC and BD.

N

Prob. 5-82

5-83. Both pulleys are fixed to the shaft and as the shaft
turns with constant angular velocity, the power of pulley A
is transmitted to pulley B. Determine the horizontal tension
T in the belt on pulley B and the x, y, z components of
reaction at the journal bearing C and thrust bearing D if
0 = 0°.The bearings are in proper alignment and exert only
force reactions on the shaft.

S0N

65Nl

80N

Prob. 5-83
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*5-84. Both pulleys are fixed to the shaft and as the shaft
turns with constant angular velocity, the power of pulley A
is transmitted to pulley B. Determine the horizontal tension
T in the belt on pulley B and the x, y, z components of
reaction at the journal bearing C and thrust bearing D if
0 = 45°. The bearings are in proper alignment and exert
only force reactions on the shaft.

S0N

300 mim

ele

80N

Prob. 5-84

5-85. Member AB is supported by a cable BC and at A by
a square rod which fits loosely through the square hole at
the end joint of the member as shown. Determine the
components of reaction at A and the tension in the cable
needed to hold the 800-1b cylinder in equilibrium.

Prob. 5-85
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. EUNPTEREREMIE\WWROBLEMS

Equilibrium

A body in equilibrium is at rest or can translate
with constant velocity.

SF=0
M=0

F;

Two Dimensions

Before analyzing the equilibrium of a body, it is
first necessary to draw its free-body diagram.
This is an outlined shape of the body, which
shows all the forces and couple moments that
act on it.

Couple moments can be placed anywhere on a
free-body diagram since they are free vectors.
Forces can act at any point along their line of
action since they are sliding vectors.

Angles used to resolve forces, and dimensions
used to take moments of the forces, should also
be shown on the free-body diagram.

Some common types of supports and their
reactions are shown below in two dimensions.

Remember that a support will exert a force on
the body in a particular direction if it prevents
translation of the body in that direction, and it
will exert a couple moment on the body if it
prevents rotation.

e&" ()

roller

The three scalar equations of equilibrium can be
applied when solving problems in two
dimensions, since the geometry is easy to
visualize.

| 2m | 500 N-m
A, < ’W Fpc

F
F y
’ A
F,
? ——
F, M

smooth pin or hinge fixed support

SF, =0
SF, =0
EMOZO




For the most direct solution, try to sum forces along
an axis that will eliminate as many unknown forces
as possible. Sum moments about a point A that
passes through the line of action of as many
unknown forces as possible.

Three Dimensions

Some common types of supports and their
reactions are shown here in three dimensions.

roller ball and socket

In three dimensions, it is often advantageous to use a
Cartesian vector analysis when applying the
equations of equilibrium. To do this, first express
each known and unknown force and couple moment
shown on the free-body diagram as a Cartesian
vector. Then set the force summation equal to zero.
Take moments about a point O that lies on the line
of action of as many unknown force components as
possible. From point O direct position vectors to
each force, and then use the cross product to
determine the moment of each force.

The six scalar equations of equilibrium are
established by setting the respective i, j, and k
components of these force and moment summations
equal to zero.

Determinacy and Stability

If a body is supported by a minimum number of
constraints to ensure equilibrium, then it is
statically determinate. If it has more constraints
than required, then it is statically indeterminate.

To properly constrain the body, the reactions must
not all be parallel to one another or concurrent.

CHAPTER REVIEW 269

SF, =0 lPl
AX - P2 = 0 Ax = P2
ki P
= () d 4—; 2
EMA O, Ax :A il dz
Pyd, + B,dg — Pidy =0 4
’ B
Pidy, — Pyd, Ay T
By = ———— B,
dg

ll

fixed support

SF=0
SM, =0
SF,=0 SM, =0
SF, =0 SM, =0
SF, =0 SM, =0
500 N 600 N 200 N
\ZkN'm l

Statically indeterminate,
five reactions, three
equilibrium equations

100 N
Proper constraint, statically determinate
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| REVIEW PROBLEMS

All problem solutions must include an FBD. R5-3. Determine the normal reaction at the roller A and
horizontal and vertical components at pin B for equilibrium

R5-1. If the roller at B can sustain a maximum load of
of the member.

3 kN, determine the largest magnitude of each of the three
forces F that can be supported by the truss.

Prob. R5-1
Prob. R5-3
R5—.2.- Determine the reactions at the supports A and B for R5-4. Determine the horizontal and vertical components
equilibrium of the beam. of reaction at the pin at A and the reaction of the roller at B

on the lever.

400 N/m

Prob. R5-2 Prob. R5-4



R5-5. Determine the x, y, z components of reaction at the
fixed wall A.The 150-N force is parallel to the z axis and the

200-N force is parallel to the y axis.

150 N

Prob. R5-5

R5-6. A vertical force of 80 Ib acts on the crankshaft.

Determine the horizontal equilibrium force P that must be
applied to the handle and the x, y, z components of reaction
at the journal bearing A and thrust bearing B. The bearings

are properly aligned and exert only force reactions on
the shaft.

Prob. R5-6
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R5-7. Determine the x, y, z components of reaction at the
ball supports B and C and the ball-and-socket A (not
shown) for the uniformly loaded plate.

2 1b /i
/ : ‘ y
4t
21
16t o
21t

Prob. R5-7

R5-8. Determine the x and z components of reaction at
the journal bearing A and the tension in cords BC and BD
necessary for equilibrium of the rod.

F, = {800k} N
Prob. R5-8



Chapter 6

(© Tim Scrivener/Alamy)

In order to design the many parts of this boom assembly it is required that we
know the forces that they must support. In this chapter we will show how to
analyze such structures using the equations of equilibrium.



Structural Analysis

CHAPTER OBJECTIVES

m To show how to determine the forces in the members of a truss
using the method of joints and the method of sections.

m To analyze the forces acting on the members of frames and
machines composed of pin-connected members.

6.1 Simple Trusses

A truss is a structure composed of slender members joined together at
their end points. The members commonly used in construction consist
of wooden struts or metal bars. In particular, planar trusses lie in a
single plane and are often used to support roofs and bridges. The truss
shown in Fig. 6-1a is an example of a typical roof-supporting truss. In
this figure, the roof load is transmitted to the truss at the joints by
means of a series of purlins. Since this loading acts in the same plane
as the truss, Fig. 6-1b, the analysis of the forces developed in the truss
members will be two-dimensional.

— /Purlin

Fig. 6-1

Roof truss

(®)
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Gusset ‘\i\\‘__
-

plate |

e

(a)

/

(b)
Fig. 6-3

¥ _J/

£
—

Floor beam

(@)

Stringer

Deck

\j y

Bridge truss
(b)
Fig. 6-2

In the case of a bridge, such as shown in Fig. 6-2a, the load on the deck
is first transmitted to stringers, then to floor beams, and finally to the
joints of the two supporting side trusses. Like the roof truss, the bridge
truss loading is also coplanar, Fig. 6-2b.

When bridge or roof trusses extend over large distances, a rocker or roller
is commonly used for supporting one end, for example, joint A in Figs. 6-1a
and 6-2a. This type of support allows freedom for expansion or contraction
of the members due to a change in temperature or application of loads.

Assumptions for Design. To design both the members and the
connections of a truss, it is necessary first to determine the force
developed in each member when the truss is subjected to a given loading.
To do this we will make two important assumptions:

e All loadings are applied at the joints. In most situations, such as
for bridge and roof trusses, this assumption is true. Frequently the
weight of the members is neglected because the force supported by
each member is usually much larger than its weight. However, if the
weight is to be included in the analysis, it is generally satisfactory to
apply it as a vertical force, with half of its magnitude applied at each
end of the member.

e The members are joined together by smooth pins. The joint connections
are usually formed by bolting or welding the ends of the members to a
common plate, called a gusset plate, as shown in Fig. 6-3a, or by simply
passing a large bolt or pin through each of the members, Fig. 6-3b. We
can assume these connections act as pins provided the center lines of
the joining members are concurrent, as in Fig. 6-3.
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AT C
Y
A
Y71 C
Tension Compression
(a) (b)
Fig. 64

Because of these two assumptions, each truss member will act as a two-
force member, and therefore the force acting at each end of the member
will be directed along the axis of the member. If the force tends to elongate
the member, it is a tensile force (T), Fig. 6-4a; whereas if it tends to shorten
the member, it is a compressive force (C), Fig. 6-4b. In the actual design of
a truss it is important to state whether the nature of the force is tensile or
compressive. Often, compression members must be made thicker than
tension members because of the buckling or column effect that occurs
when a member is in compression.

Simple Truss. If three members are pin connected at their ends,
they form a triangular truss that will be rigid, Fig. 6-5. Attaching two
more members and connecting these members to a new joint D forms a
larger truss, Fig. 6-6. This procedure can be repeated as many times as

> The use of metal gusset plates in the
desired to form an even larger truss. If a truss can be constructed by  .onstruction of these Warren trusses is

expanding the basic triangular truss in this way, it is called a simple truss. clearly evident. (© Russell C. Hibbeler)

Fig. 6-5 Fig. 6-6
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B
» 500 N
2m
RN
45°
_ A &) == /o; C
.
(a)
B
500 N

Fj,(tension) Fpc (compression)

(®)

Fp4(tension)

Fig. 6-7

The forces in the members of this simple
roof truss can be determined using the
method of joints. (© Russell C. Hibbeler)

6.2 The Method of Joints

In order to analyze or design a truss, it is necessary to determine the force
in each of its members. One way to do this is to use the method of joints.
This method is based on the fact that if the entire truss is in equilibrium,
then each of its joints is also in equilibrium. Therefore, if the free-body
diagram of each joint is drawn, the force equilibrium equations can then be
used to obtain the member forces acting on each joint. Since the members
of a plane truss are straight two-force members lying in a single plane, each
joint is subjected to a force system that is coplanar and concurrent. As a
result, only 2XF, = 0 and XF, = 0 need to be satisfied for equilibrium.

For example, consider the pin at joint B of the truss in Fig. 6-7a.
Three forces act on the pin, namely, the 500-N force and the forces exerted
by members BA and BC. The free-body diagram of the pin is shown in
Fig. 6-7b. Here, Fy, is “pulling” on the pin, which means that member BA
is in tension;, whereas Fp. is “pushing” on the pin, and consequently
member BC is in compression. These effects are clearly demonstrated by
isolating the joint with small segments of the member connected to the
pin, Fig. 6-7¢. The pushing or pulling on these small segments indicates the
effect of the member being either in compression or tension.

When using the method of joints, always start at a joint having at least
one known force and at most two unknown forces, as in Fig. 6-7b. In this
way, application of XF, = 0 and X F, = 0 yields two algebraic equations
which can be solved for the two unknowns. When applying these
equations, the correct sense of an unknown member force can be
determined using one of two possible methods.

e  The correct sense of direction of an unknown member force can, in
many cases, be determined “by inspection.” For example, Fpc in
Fig. 6-7b must push on the pin (compression) since its horizontal
component, Fge sin 45°, must balance the 500-N force (3F, = 0).
Likewise, Fz, is a tensile force since it balances the vertical
component, Fg cos 45° (EFy = 0). In more complicated cases, the
sense of an unknown member force can be assumed; then, after
applying the equilibrium equations, the assumed sense can be
verified from the numerical results. A positive answer indicates
that the sense is correct, whereas a negative answer indicates that
the sense shown on the free-body diagram must be reversed.

e Always assume the unknown member forces acting on the joint’s
free-body diagram to be in fension; i.e., the forces “pull” on the pin.
If this is done, then numerical solution of the equilibrium equations
will yield positive scalars for members in tension and negative scalars
for members in compression. Once an unknown member force is
found, use its correct magnitude and sense (T or C) on subsequent
joint free-body diagrams.



Important Points

¢ Simple trusses are composed of triangular elements. The members
are assumed to be pin connected at their ends and loads applied
at the joints.

¢ If a truss is in equilibrium, then each of its joints is in equilibrium.
The internal forces in the members become external forces when
the free-body diagram of each joint of the truss is drawn. A force
pulling on a joint is caused by tension in a member, and a force
pushing on a joint is caused by compression.

Procedure for Analysis

The following procedure provides a means for analyzing a truss
using the method of joints.

e Draw the free-body diagram of a joint having at least one known
force and at most two unknown forces. (If this joint is at one of
the supports, then it may be necessary first to calculate the
external reactions at the support.)

e Use one of the two methods described above for establishing the
sense of an unknown force.

e Orient the x and y axes such that the forces on the free-body
diagram can be easily resolved into their x and y components and
then apply the two force equilibrium equations %F, = 0 and
2F, = 0. Solve for the two unknown member forces and verify
their correct sense.

e Using the calculated results, continue to analyze each of the other
joints. Remember that a member in compression “pushes” on the
joint and a member in tension “pulls” on the joint. Also, be sure to
choose a joint having at most two unknowns and at least one
known force.

6.2 THE METHOD OF JOINTS
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EXAMPLE | 6.1

Determine the force in each member of the truss shown in Fig. 6-8a
and indicate whether the members are in tension or compression.

500 N

SOLUTION

Since we should have no more than two unknown forces at the joint
and at least one known force acting there, we will begin our analysis at
‘ joint B.

2 m

5 Joint B. The free-body diagram of the joint at B is shown in Fig. 6-8b.
500N Applying the equations of equilibrium, we have

™
45°

Fpu £ 3F, =0, S00N — Fgesind5® =0 Fze = 707.1N(C) Ans.
(b) +13F, = 0; Fgccos45° — Fgy =0 Fgy = 500N (T) Ans.
45° Gk Since the force in member BC has been calculated, we can proceed to
F o 9 analyze joint C to determine the force in member CA and the support
reaction at the rocker.
Cy
© Joint C.  From the free-body diagram of joint C, Fig. 6-8c, we have

HKESF =0; —Fcy + 707.1cos45°N =0 Fpy = 500N (T) Ans
+13F,=0; C,—707.1sin45°N=0 C, =500N Ans.

Joint A. Although it is not necessary, we can determine the
components of the support reactions at joint A using the results of F4
and Fj,. From the free-body diagram, Fig. 6-8d, we have

HSF,=0; S00N—-A, =0 A, =500N
+1%F,=0; S500N—-A,=0 A, =500N

NOTE: The results of the analysis are summarized in Fig. 6-8e. Note

that the free-body diagram of each joint (or pin) shows the effects of

all the connected members and external forces applied to the joint,

whereas the free-body diagram of each member shows only the effects
7071 N of the end joints on the member.

A Tension 45°
<-$—> @.ﬂi@ c
500 N 500 N S00N + S00N

500N

(e)
Fig. 6-8
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EXAMPLE | 6.2

Determine the forces acting in all the members of the truss shown in
Fig. 6-9a.

SOLUTION

By inspection, there are more than two unknowns at each joint.
Consequently, the support reactions on the truss must first be determined.
Show that they have been correctly calculated on the free-body diagram
in Fig. 6-9b. We can now begin the analysis at joint C. Why?

Joint C.  From the free-body diagram, Fig. 6-9c,

£ SF, =0;
+13F, = 0;

—F¢pcos30° + Fepsind5® =0
1.5KN + Fgpsin 30° — Fgp cos 45° = 0

These two equations must be solved simultaneously for each of the
two unknowns. Note, however, that a direct solution for one of the
unknown forces may be obtained by applying a force summation
along an axis that is perpendicular to the direction of the other
unknown force. For example, summing forces along the y" axis, which
is perpendicular to the direction of F¢p, Fig. 6-9d, yields a direct
solution for Fp.

+/3F, = 0; 1.5 cos 30° kKN — Fgp sin 15° = 0

Feg = 5.019kN = 5.02kN (C) Ans.
Then,
+NIF = 0;

—F¢p + 5.019 cos 15° — 1.5sin 30° = 0; Fep = 4.10kN (T) Ans.

Joint D. We can now proceed to analyze joint D. The free-body
diagram is shown in Fig. 6-9e.

L 3F, =0; —Fp, cos 30° + 4.10 cos 30° kN = 0

FDA = 410kN (T) A}’lS.
+13F, = 0; Fpp — 2(4.10 sin 30° kN) = 0

FDB = 410kN (T) A}’lS.

NOTE: The force in the last member, BA, can be obtained from joint B
or joint A. As an exercise, draw the free-body diagram of joint B, sum
the forcesin the horizontal direction,andshowthat Fz, = 0.776 kN (C).

<«
3 kN

1.5 kN

X
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Determine the force in each member of the truss shown in Fig. 6-10a.
Indicate whether the members are in tension or compression.

400 N 400 N C,
l - 3m—
C &
B 3 ’ Y Ye ¢
4m 4m
A /X D_> L B AC - >
600 N A ‘ 600 N
~——3m 3m ‘ A,
() (b)
Fig. 6-10
SOLUTION

Support Reactions. No joint can be analyzed until the support
reactions are determined, because each joint has at least three
unknown forces acting on it. A free-body diagram of the entire truss is
given in Fig. 6-10b. Applying the equations of equilibrium, we have

5 3F, = 0; 600N — C, =0 C, = 600N
C+3IMc = 0; —A, (6 m) + 400 N(3m) + 600 N(4 m) = 0
A, = 600N
+13F, = 0; 600N — 400N — C, = 0 C, = 200N

The analysis can now start at either joint A or C.The choice is arbitrary
since there are one known and two unknown member forces acting on
the pin at each of these joints.

Joint A. (Fig. 6-10c). As shown on the free-body diagram, F,p is
x assumed to be compressive and F, , is tensile. Applying the equations
of equilibrium, we have

+13F, = 0; 600N —2F,; =0  Fy =750N (C)  Ans
(©) HKSF, =0, Fip—3750N)=0  Fyp=450N (T) Ans.



Joint D.  (Fig. 6-10d). Using the result for F,; and summing forces in
the horizontal direction, Fig. 6-10d, we have

E3F, =0; —450N + 2Fps + 600N =0 Fpy = —250N
The negative sign indicates that Fpp acts in the opposite sense to that
shown in Fig. 6-10d.* Hence,

Fpp = 250 N (T) Ans.
To determine Fp¢, we can either correct the sense of Fp on the free-

body diagram, and then apply %F, = 0, or apply this equation and
retain the negative sign for Fpp, i.c.,

+13F, =0,  —Fpc—3(-250N) =0  Fpc = 200N (C) Ans
Joint C. (Fig. 6-10e).

B 3SF, =0; Fep — 600N =0 Fep = 600N (C)  Ans.
+13F, = 0; 200N — 200N = 0 (check)

NOTE: The analysis is summarized in Fig. 6-10f, which shows the free-
body diagram for each joint and member.

400 N 200 N
600 N Compression 600 N
B

'« >1<«—600N
/'\ A
250 N 200 N

%
2.
0,
@

uorssardwo))

250 N 200 N
Tension

> —» 600 N
450 N D

()
Fig. 6-10 (cont.)

*The proper sense could have been determined by inspection, prior to applying % F, = 0.

THE METHOD OF JOINTS

- >
450N D 600N
(d)

200N

- — <

Fey C

-

200 N

— —

(e)

Y 600N

X
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CHAPTER 6

STRUCTURAL ANALYSIS

6.3 Zero-Force Members

Truss analysis using the method of joints is greatly simplified if we can first
identify those members which support no loading. These zero-force
members are used to increase the stability of the truss during construction
and to provide added support if the loading is changed.

The zero-force members of a truss can generally be found by inspection of
each of the joints. For example, consider the truss shown in Fig. 6-11a. If a
free-body diagram of the pin at joint A is drawn, Fig. 6-11b, it is seen that
members AB and AF are zero-force members. (We could not have come to
this conclusion if we had considered the free-body diagrams of joints F or B
simply because there are five unknowns at each of these joints.) In a similar
manner, consider the free-body diagram of joint D, Fig. 6-11c. Here again it
is seen that DC and DE are zero-force members. From these observations,
we can conclude that if only two non-collinear members form a truss joint
and no external load or support reaction is applied to the joint, the two
members must be zero-force members. The load on the truss in Fig. 6-11a is
therefore supported by only five members as shown in Fig. 6-11d.

+\3F, = 0; Fpesinf =0; Fpc=0sincesin§ # 0 \ ]
TCIF, =0 Fpp+0=0; Fpp=0 P

(c) (d)
Fig. 6-11



6.3  ZERO-FORCE MEMBERS

Now consider the truss shown in Fig. 6-12a. The free-body diagram of
the pin at joint D is shown in Fig. 6-12b. By orienting the y axis along
members DC and DE and the x axis along member DA, it is seen that
DA is a zero-force member. Note that this is also the case for member
CA, Fig. 6-12c. In general then, if three members form a truss joint for
which two of the members are collinear, the third member is a zero-force
member provided no external force or support reaction has a component
that acts along this member. The truss shown in Fig. 6-12d is therefore
suitable for supporting the load P.

P
Fpr
D
Fpc
/ Fpa \
X y
T IF, =0; Fpya=0
N EFy =0; Fpc=Fpk
(a) (b)
l: E
Fcp
)N
Fci
Fcp
AN -
X y A
+v 3F, =0; Fcysin0=0; Fgy = 0sincesinf # 0; B

TNIF, =0; Fep=Fcp
(©) (d)
Fig. 6-12

Important Point

¢ Zero-force members support no load; however, they are necessary
for stability, and are available when additional loadings are
applied to the joints of the truss. These members can usually be
identified by inspection. They occur at joints where only two
members are connected and no external load acts along either
member. Also, at joints having two collinear members, a third
member will be a zero-force member if no external force
components act along this member.

283



284 CHAPTER 6 STRUCTURAL ANALYSIS

y
|
TFGC

-« — X
Fou G  Fgr

(®)

2kN

N\

(e)

2 kN

- —Pp —X
Fpya Fuc

®

Using the method of joints, determine all the zero-force members of
the Fink roof truss shown in Fig. 6-13a. Assume all joints are pin
connected.

S kN

(a)
Fig. 6-13
SOLUTION

Look for joint geometries that have three members for which two are
collinear. We have

Joint G. (Fig.6-13b).

+13F, = 0; Foe =0 Ans.
Realize that we could not conclude that GC is a zero-force member by
considering joint C, where there are five unknowns. The fact that GC

is a zero-force member means that the 5-kN load at C must be
supported by members CB, CH, CF, and CD.

Joint D. (Fig. 6-13c).

+/3F, = 0; Fprp=0 Ans.
Joint F.  (Fig. 6-13d).

+13F, =0;  Frecos6 =0 Sincef # 90°, Fpc =0 Ans.
NOTE: If joint B is analyzed, Fig. 6-13e,

+\3IF, = 0; 2kN — Fgy =0 Fpy = 2kN (C)

Also, Fyc must satisfy 2 F, = 0, Fig. 6-13f, and therefore HC is not a
zero-force member.
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. PRELIMINARY PROBLEMS

P6-1. In each case, calculate the support reactions and P6-2.
then draw the free-body diagrams of joints A, B, and C of
the truss.

Identify the zero-force members in each truss.

800 N
30°

700 N

(b) (b)
Prob. P6-1 Prob. P6-2
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All problem solutions must include FBDs.

F6-1. Determine the force in each member of the truss.

State if the members are in tension or compression.

41t | 41t |

Prob. F6-1

F6-2. Determine the force in each member of the truss.

State if the members are in tension or compression.

300 1b

Prob. F6-2

F6-3. Determine the force in each member of the truss.
State if the members are in tension or compression.

800 1b

Prob. F6-3

F6-4. Determine the greatest load P that can be applied
to the truss so that none of the members are subjected to a
force exceeding either 2 kN in tension or 1.5 kN in
compression.

Prob. F6—4

F6-5. Identify the zero-force members in the truss.

3kN
‘ 2m 2m ‘
E y D
N o o)c
1.5m
BRI A Z
Prob. F6-5

F6-6. Determine the force in each member of the truss.
State if the members are in tension or compression.

4501h YE
—

o\
%— ‘B
31t i 3ft

Prob. F6—6



All problem solutions must include FBDs.

6-1. Determine the force in each member of the truss and
state if the members are in tension or compression. Set
P;=20kN, P,=10 kN.

6-2. Determine the force in each member of the truss and
state if the members are in tension or compression. Set
P =45kN, P, =30kN.

P,
cVY BL]**
1.5m
P, D Cj]
2m lA
Probs. 6-1/2

6-3. Determine the force in each member of the truss.
State if the members are in tension or compression.

6.3 ZERO-FORCE MEMBERS 287

*6—4. Determine the force in each member of the truss
and state if the members are in tension or compression.

3kip

i

10 ft —r—10 ft — 10ft*"

AL
LlOft

Prob. 64

6-5. Determine the force in each member of the truss, and
state if the members are in tension or compression. Set = 0°.

6-6. Determine the force in each member of the truss, and
state if the members are in tension or compression. Set § = 30°.

D
’ o3 3 kKN
1.5m
4 ¢
S N B
2 m 2 m }
YikN
Probs. 6-5/6

6-7. Determine the force in each member of the truss and
state if the members are in tension or compression.

4 kN

Prob. 6-7
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*6-8. Determine the force in each member of the truss
and state if the members are in tension or compression.

D 600 N
4 m
E 900 N

C

4m
A B

[°X L
| 6m |
Prob. 6-8

6-9. Determine the force in each member of the truss and
state if the members are in tension or compression. Set
P;=3kN, P,=6kN.

6-10. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
Pl :6kN,P2:9kN

L

\ CT 4.—=‘ﬁ0gﬂ

6

~
2
-

Probs. 6-9/10

6-11. Determine the force in each member of the Pratt
truss,and state if the members are in tension or compression.

A

¥ Q
2 m

|
R
2m
%L
2 mA
J— o\ S 2 G

0 B C D E F
2 m—~{«2 m»‘ '«2 m~|<2 m»‘ 72 m»L»Z m»‘
10 kN
10 kN 20 kN
Prob. 6-11

*6-12. Determine the force in each member of the truss
and state if the members are in tension or compression.

5001b 500 1b

Prob. 6-12



6-13. Determine the force in each member of the truss in
terms of the load P and state if the members are in tension
or compression.

6-14. Members AB and BC can each support a maximum
compressive force of 800 1b, and members AD, DC,and BD
can support a maximum tensile force of 1500 Ib. If a = 10 ft,
determine the greatest load P the truss can support.

6-15. Members AB and BC can each support a maximum
compressive force of 800 1b, and members AD, DC,and BD
can support a maximum tensile force of 2000 Ib. If a = 6 ft,
determine the greatest load P the truss can support.

Probs. 6-13/14/15

*6-16. Determine the force in each member of the truss.
State whether the members are in tension or compression.
Set P=8 kN.

6-17. If the maximum force that any member can support
is 8 kN in tension and 6 kN in compression, determine the
maximum force P that can be supported at joint D.

ot

Probs. 6-16/17

6.3 ZERO-FORCE MEMBERS 289

6-18. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
P1=10kN,P2=8kN

6-19. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
P;=8kN, P,=12kN.

2m ‘
Yp, P,

Probs. 6-18/19

*6-20. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
P1:9kN,P2:15kN

6-21. Determine the force in each member of the truss
and state if the members are in tension or compression. Set
P;=30kN, P, =15 kN.

YP,

Probs. 6-20/21
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6-22. Determine the force in each member of the double
scissors truss in terms of the load P and state if the members
are in tension or compression.

Prob. 6-22

6-23. Determine the force in each member of the truss in
terms of the load P and state if the members are in tension
or compression.

B

Prob. 6-23

#*6—24. The maximum allowable tensile force in the
members of the truss is (F})n.x = 5 kN, and the maximum
allowable compressive force is (F,)n.x = 3 kN. Determine
the maximum magnitude of load P that can be applied to
the truss. Take d = 2 m.

B

Prob. 6-24

6-25. Determine the force in each member of the truss in
terms of the external loading and state if the members are
in tension or compression. Take P =2 kN.

6-26. The maximum allowable tensile force in the
members of the truss is (F)),.« = 5 kN, and the maximum
allowable compressive force is (F,)n.x = 3 kN. Determine
the maximum magnitude P of the two loads that can be
applied to the truss.

P P
Y 2m Y ¢
30°
2m
2m
A B
= 2m

Probs. 6-25/26
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6.4 The Method of Sections

When we need to find the force in only a few members of a truss, we can
analyze the truss using the method of sections. 1t is based on the principle
that if the truss is in equilibrium then any segment of the truss is also in
equilibrium. For example, consider the two truss members shown on the left
in Fig. 6-14. If the forces within the members are to be determined, then an
imaginary section, indicated by the blue line, can be used to cut each member
into two parts and thereby “expose” each internal force as “external” to the
free-body diagrams shown on the right. Clearly, it can be seen that equilibrium
requires that the member in tension (T) be subjected to a “pull,” whereas
the member in compression (C) is subjected to a “push.”

The method of sections can also be used to “cut” or section the members
of an entire truss. If the section passes through the truss and the free-body
diagram of either of its two parts is drawn, we can then apply the equations
of equilibrium to that part to determine the member forces at the “cut
section.” Since only three independent equilibrium equations (2F, = 0,
2F, =0, ZM, = 0) can be applied to the free-body diagram of any
segment, then we should try to select a section that, in general, passes
through not more than three members in which the forces are unknown.
For example, consider the truss in Fig. 6-15a. If the forces in members BC,
GC, and GF are to be determined, then section aa would be appropriate.
The free-body diagrams of the two segments are shown in Figs. 6-15b and
6—15¢. Note that the line of action of each member force is specified from
the geometry of the truss, since the force in a member is along its axis. Also,
the member forces acting on one part of the truss are equal but opposite to
those acting on the other part—Newton’s third law. Members BC and GC
are assumed to be in fension since they are subjected to a “pull,” whereas
GF in compression since it is subjected to a “push.”

The three unknown member forces Fg(, Fg;¢, and F; can be obtained by
applying the three equilibrium equations to the free-body diagram in
Fig. 6-15b. If, however, the free-body diagram in Fig. 6-15¢ is considered,
the three support reactions D,, D, and E, will have to be known, because
only three equations of equilibrium are available. (This, of course, is done in
the usual manner by considering a free-body diagram of the entire truss.)

B e D
| (@ T
2m
) , 1
G . F E
2m ‘F 2 m 7‘ 2m l
Yi000N

T

.

Internal
tensile
forces

T

Tension

~
T oe— ) \]Aq::-L

-

Internal
compressive y ¢
forces

C

Compression

Fig. 6-14
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The forces in selected members of

this Pratt truss can readily be deter-
mined using the method of sections.
(© Russell C. Hibbeler)

When applying the equilibrium equations, we should carefully consider
ways of writing the equations so as to yield a direct solution for each of
the unknowns, rather than having to solve simultaneous equations. For
example, using the truss segment in Fig. 6-15b and summing moments
about C would yield a direct solution for Fg since Fp- and Fgc create
zero moment about C. Likewise, Fz can be directly obtained by summing
moments about G. Finally, F;- can be found directly from a force
summation in the vertical direction since Fg; and Fy- have no vertical
components. This ability to determine directly the force in a particular
truss member is one of the main advantages of using the method of
sections.™®

As in the method of joints, there are two ways in which we can
determine the correct sense of an unknown member force:

e  The correct sense of an unknown member force can in many cases
be determined “by inspection.” For example, Fp is a tensile force as
represented in Fig. 6-15b since moment equilibrium about G
requires that Fp create a moment opposite to that of the 1000-N
force. Also, Fgc is tensile since its vertical component must balance
the 1000-N force which acts downward. In more complicated cases,
the sense of an unknown member force may be assumed. If the
solution yields a negative scalar, it indicates that the force’s sense is
opposite to that shown on the free-body diagram.

e Always assume that the unknown member forces at the cut section
are tensile forces, i.e., “pulling” on the member. By doing this, the
numerical solution of the equilibrium equations will yield positive
scalars for members in tension and negative scalars for members in
compression.

*Notice that if the method of joints were used to determine, say, the force in member
GC, it would be necessary to analyze joints A, B, and G in sequence.

C AD
" e y
‘ /
F f—2m—=
2 m Foc Bg | C(‘O >
‘ 45° N\ D,
% 2m
Fer Fee
G -—/—>/l © < E,
FGF

(©)

Fig. 6-15 (cont.)
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Important Point

¢ If a truss is in equilibrium, then each of its segments is in
equilibrium. The internal forces in the members become external
forces when the free-body diagram of a segment of the truss is
drawn. A force pulling on a member causes tension in the
member, and a force pushing on a member causes compression.

Simple trusses are often used
in the construction of large
cranes in order to reduce the
weight of the boom and tower.
(© Russell C. Hibbeler)

Procedure for Analysis

The forces in the members of a truss may be determined by the
method of sections using the following procedure.

Free-Body Diagram.

e Make a decision on how to “cut” or section the truss through the
members where forces are to be determined.

e Before isolating the appropriate section, it may first be necessary
to determine the truss’s support reactions. If this is done then the
three equilibrium equations will be available to solve for member
forces at the section.

e Draw the free-body diagram of that segment of the sectioned
truss which has the least number of forces acting on it.

e Use one of the two methods described above for establishing the
sense of the unknown member forces.

Equations of Equilibrium.

e Moments should be summed about a point that lies at the
intersection of the lines of action of two unknown forces, so that
the third unknown force can be determined directly from the
moment equation.

e [f two of the unknown forces are parallel, forces may be summed
perpendicular to the direction of these unknowns to determine
directly the third unknown force.
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a E
] - -I—>400N
3m :
1 ag . C iy D
3
a a e
‘<—4m—><—4m—><—4m—»‘
1200 N
(a)
17 < » 400 N
3m
:lA“ € oD
A, A
A, 8m ¥ 4 m— )
1200 N

Determine the force in members GE, GC, and BC of the truss shown
in Fig. 6-16a. Indicate whether the members are in tension or
compression.

SOLUTION

Section aa in Fig. 6-16a has been chosen since it cuts through the three
members whose forces are to be determined. In order to use the
method of sections, however, it is first necessary to determine
the external reactions at A or D. Why? A free-body diagram of
the entire truss is shown in Fig. 6-16b. Applying the equations of
equilibrium, we have

£ 3F, = 0; 400N —A, =0 A, = 400N
C+3IM, = 0; —1200 N8 m) — 400 N3 m) + D,(12m) = 0
D, = 900N
+13F, = 0; A, — 1200N + 900N = 0 A, = 300N

Free-Body Diagram. For the analysis the free-body diagram of the
left portion of the sectioned truss will be used, since it involves the least
number of forces, Fig. 6-16c.

Equations of Equilibrium. Summing moments about point G
eliminates Fg;; and Fg and yields a direct solution for Fy.

C+3M;=0; —300N@4m) — 400NG3 m) + Fze(3m) = 0
Fze = 800N (T) Ans.

In the same manner, by summing moments about point C we obtain
a direct solution for Fgp.

C+IMe=0; —300N@Bm) + Fgz3m) =0
For = 800N (C) Ans.

Since Fpc and Fg; have no vertical components, summing forces in
the y direction directly yields Fg, i.e.,

300N — 2F5c =0
Fge = 500N (T) Ans.

+13F, = 0;

NOTE: Here it is possible to tell, by inspection, the proper direction for
each unknown member force. For example, XM = 0 requires Fg; to
be compressive because it must balance the moment of the 300-N
force about C.



each member is pin connected.

6.4 THE METHOD OF SECTIONS

N

Determine the force in member CF of the truss shown in Fig. 6-17a.
Indicate whether the member is in tension or compression. Assume

3.25kN

SOLUTION

SkN 3kN

Free-Body Diagram. Section aa in Fig. 6-17a will be used since this
section will “expose” the internal force in member CF as “external” on
the free-body diagram of either the right or left portion of the truss. It
is first necessary, however, to determine the support reactions on either
the left or right side. Verify the results shown on the free-body diagram

in Fig. 6-17b.

The free-body diagram of the right portion of the truss, which is the
easiest to analyze, is shown in Fig. 6-17¢. There are three unknowns,

b, Fep, and Fep.

Equations of Equilibrium. We will apply the moment equation
about point O in order to eliminate the two unknowns Fr; and Fp,.
The location of point O measured from E can be determined from
proportional triangles, i.e., 4/(4 + x) = 6/(8 + x), x = 4m. Or,
stated in another manner, the slope of member GF has a drop of 2m
to a horizontal distance of 4 m. Since FD is 4 m, Fig. 6~17¢, then from
D to O the distance must be 8 m.

An easy way to determine the moment of F about point O is to
use the principle of transmissibility and slide Fr to point C, and
then resolve F¢y into its two rectangular components. We have

—Fcpsin45°(12m) + (3kN)(8 m) — (4.75kN)(4m) =0

295

4.75 kN

Frc

f
2m
4

6 m FCF

_______7Q

Fcrcos 45°C1

~

~o 4m
~
\\
___:_\,0[

4

\ E

45° Fep
_b—4m
Fopsin45° Y
3kN

(©

Fep = 0.589kN  (C) Ans.

475 kN

|

x ‘
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Determine the force in member EB of the roof truss shown in Fig. 6-18a.
Indicate whether the member is in tension or compression.

SOLUTION

Free-Body Diagrams. By the method of sections, any imaginary
section that cuts through EB, Fig. 6-18a, will also have to cut through
three other members for which the forces are unknown. For example,
section aa cuts through ED, EB, FB,and AB. If a free-body diagram of
the left side of this section is considered, Fig. 6-18b, it is possible to
obtain Frp by summing moments about B to eliminate the other three
unknowns; however, Fgp cannot be determined from the remaining two
equilibrium equations. One possible way of obtaining Fgp is first to
determine Fgp from section aa, then use this result on section bb,
Fig. 6-18a, which is shown in Fig. 6-18c. Here the force system is
concurrent and our sectioned free-body diagram is the same as the
free-body diagram for the joint at E.

Fgp = 3000 N

(®)

Frp sin 30 Frp

(©)
Fig. 6-18
Equations of Equilibrium. In order to determine the moment of
Fgp about point B, Fig. 6-18b, we will use the principle of transmissibility

and slide the force to point C and then resolve it into its rectangular
components as shown. Therefore,

C+3IMp = 0; 1000 N(4 m) + 3000 N(2 m) — 4000 N(4 m)
+ Fgpsin 30°(4m) = 0
Frgp = 3000N (C)
Considering now the free-body diagram of section bb, Fig. 6-18c, we have

B IF, =0; Fercos 30° — 3000 cos 30°N = 0
Frp = 3000N (C)
+13F, = 0; 2(3000sin30°N) — 1000N — Fgz = 0

Feg = 2000N  (T) Ans.
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All problem solutions must include FBDs.

F6-7. Determine the force in members BC, CF, and FE.

State if the members are in tension or compression.

I[>§ F E
@ —(
4 ft
TA T5 115)
a4t v 4t
600 1b 600 1b
800 Ib
Prob. F6-7

F6-8. Determine the force in members LK, KC, and CD

of the Pratt truss. State if the members are in tension or
compression.

Prob. F6-8

F6-9. Determine the force in members KJ, KD, and CD

of the Pratt truss. State if the members are in tension or
compression.

Prob. F6-9

F6-10. Determine the force in members EF, CF, and BC

of the truss. State if the members are in tension or
compression.

L*6ft

300 1b 300 1b

Prob. F6-10

F6-11. Determine the force in members GF, GD,and CD

of the truss. State if the members are in tension or
compression.

1m|

Prob. F6-11

F6-12. Determine the force in members DC, HI, and J1I of
the truss. State if the members are in tension or compression.
Suggestion: Use the sections shown.

R 1600 1b
6 1t

6 ftp6 ft
Prob. F6-12



298 CHAPTER 6 STRUCTURAL ANALYSIS

“leromiews

All problem solutions must include FBDs.

0-27. Determine the force in members DC, HC, and HI of
the truss, and state if the members are in tension or
compression.

*6—28. Determine the force in members £ED, EH,and GH
of the truss, and state if the members are in tension or
compression.

Probs. 6-27/28

6-29. Determine the force in members HG, HE and DE
of the truss, and state if the members are in tension or
compression.

6-30. Determine the force in members CD, HI, and CH of
the truss, and state if the members are in tension or
compression.

15001b 15001b 15001b 15001b 1500 Ib

Probs. 6-29/30

6-31. Determine the force in members CD, CJ, KJ, and
DJ of the truss which serves to support the deck of a bridge.
State if these members are in tension or compression.

*6-32. Determine the force in members E/ and JI of the
truss which serves to support the deck of a bridge. State if
these members are in tension or compression.

4000 Ib

9 ft»£9 ft%LIE9 ft 9¥9 ft 9&9 ft%ﬁl9 ft—

Probs. 6-31/32

6-33. The Howe truss is subjected to the loading shown.
Determine the force in members GF, CD, and GC, and
state if the members are in tension or compression.

6-34. The Howe truss is subjected to the loading shown.
Determine the force in members GH, BC, and BG of the
truss and state if the members are in tension or compression.

SkN

Probs. 6-33/34



6-35. Determine the force in members EF, CF, and BC,
and state if the members are in tension or compression.

*6-36. Determine the force in members AF, BF, and BC,
and state if the members are in tension or compression.

kN B[P

8 kN

Probs. 6-35/36

6-37. Determine the force in members EF, BE, BC and
BF of the truss and state if these members are in tension or
compression. Set P; =9 kN, P, =12 kN, and P; =6 kN.

6-38. Determine the force in members BC, BE, and EF
of the truss and state if these members are in tension
or compression. Set P; =6 kN, P, =9 kN, and P; =12 kN.

< 3m

\¢
- ZORS
‘D
(%)
B

Afe
e
+ 3m
P, P,

Probs. 6-37/38
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6-39. Determine the force in members BC, HC, and HG.
After the truss is sectioned use a single equation of
equilibrium for the calculation of each force. State if these
members are in tension or compression.

#*6—40. Determine the force in members CD, CF, and CG
and state if these members are in tension or compression.

4 kN 4 kN
2 kN l
l B C D
AX Y y (V E
|

~—5m Sm 5Sm 5 m—|

Probs. 6-39/40

6-41. Determine the force developed in members FE, EB,
and BC of the truss and state if these members are in
tension or compression.

2 m 1.5m 2 m
F E
‘ Q
2m

A )] )] b
Bl C _'Q'_
11 kN

22 kN
Prob. 6—41
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6-42. Determine the force in members BC, HC, and HG.
State if these members are in tension or compression.

6-43. Determine the force in members CD, CJ, GJ, and
CG and state if these members are in tension or compression.

12 kN

4 kN

)

1.5m 1 15m

Probs. 6-42/43

*6—44. Determine the force in members BE, EF, and CB,
and state if the members are in tension or compression.

6-45. Determine the force in members BF, BG, and AB,
and state if the members are in tension or compression.

~D
SkN
C
4 E
10 kN
4 m
B
_r gF
10 kN
4m

4w

Probs. 6-44/45

0-46. Determine the force in members BC, CH, GH, and
CG of the truss and state if the members are in tension or
compression.

G
H F Z:m
8 & —r
3m
E |
A (5} > Q Q 70
B C D
— 4m 4m 4m 4m —|
Y \
4kN \J SKN
8 kN
Prob. 6-46

6-47. Determine the force in members CD, CJ, and KJ
and state if these members are in tension or compression.

6 kN

12m,6@2m

Prob. 6-47

#*6—48. Determine the force in members JK, CJ, and CD of
the truss,and state if the members are in tension or compression.

6-49. Determine the force in members HI, FI, and EF of the
truss, and state if the members are in tension or compression.

K J 1
> 5 B
H
G
C A
C D E F
<2m—-~2m 2m-f-2m-—
/  /
4kN 51N 6 KN

8 kN

Probs. 6-48/49



*6.5 Space Trusses

A space truss consists of members joined together at their ends to form a
stable three-dimensional structure. The simplest form of a space truss is a
tetrahedron, formed by connecting six members together, as shown in
Fig. 6-19. Any additional members added to this basic element would be
redundant in supporting the force P. A simple space truss can be built from
this basic tetrahedral element by adding three additional members and a
joint, and continuing in this manner to form a system of multiconnected
tetrahedrons.

Assumptions for Design. The members of a space truss may be
treated as two-force members provided the external loading is applied at
the joints and the joints consist of ball-and-socket connections. These
assumptions are justified if the welded or bolted connections of the
joined members intersect at a common point and the weight of the
members can be neglected. In cases where the weight of a member is to
be included in the analysis, it is generally satisfactory to apply it as a

vertical force, half of its magnitude applied at each end of the member.

Procedure for Analysis

Either the method of joints or the method of sections can be used to
determine the forces developed in the members of a simple space truss.

Method of Joints.

If the forces in all the members of the truss are to be determined,
then the method of joints is most suitable for the analysis. Here it is
necessary to apply the three equilibrium equations XF, = 0,
2F, = 0, XF, = 0 to the forces acting at each joint. Remember that
the solution of many simultaneous equations can be avoided if the
force analysis begins at a joint having at least one known force and at
most three unknown forces. Also, if the three-dimensional geometry
of the force system at the joint is hard to visualize, it is recommended
that a Cartesian vector analysis be used for the solution.

Method of Sections.

If only a few member forces are to be determined, the method of
sections can be used. When an imaginary section is passed through a
truss and the truss is separated into two parts, the force system acting
on one of the segments must satisfy the six equilibrium equations:
2F, =0, 3F,=0, XF, =0, XM, =0, M, =0, XM, =0
(Egs. 5-6). By proper choice of the section and axes for summing
forces and moments, many of the unknown member forces in a space
truss can be computed directly, using a single equilibrium equation.
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Fig. 6-19

Typical roof-supporting space
truss. Notice the use of ball-and-
socket joints for the connections.
(© Russell C. Hibbeler)

For economic reasons, large -electrical
transmission towers are often constructed
using space trusses. (© Russell C. Hibbeler)
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- y
F
A AB
X
P = 4kN
FAE
Fic

Determine the forces acting in the members of the space truss shown
in Fig. 6-20a. Indicate whether the members are in tension or
compression.

SOLUTION
Since there are one known force and three unknown forces acting at
joint A, the force analysis of the truss will begin at this joint.

Joint A. (Fig. 6-20b). Expressing each force acting on the free-body
diagram of joint A as a Cartesian vector, we have

P = {—4j} kN, Fap = Fad, Fac = —Fuck,
_ TAE\ _ . .
Fir = FAE<r> = F,;5(0.577i + 0.577j — 0.577Kk)
AE

For equilibrium,

SF = 0; P+Fy +F+F;=0
—4j + Fapj — Fack + 0.577F,pi + 0.577F,j — 0.577F, ek = 0
SF. = 0; 0.57TF = 0
2F, =0; —4 + Fyp + 0577F = 0
SF, =0, —Fyc — 0577TF, = 0
Fre =Fue =0 Ans.
Fyp = 4kN (T) Ans.

Since F,p is known, joint B can be analyzed next.

Joint B.  (Fig. 6-20c).

SF, = 0; FBEL =0
V2
SF, = 0; —4+FCBL=0
Y ' V2
SF, = 0; —2+FBD—F3E%+FCB%:O
Fprp = 0, Feg = 5.65kN (C) Fgp = 2kN(T)  Ans

The scalar equations of equilibrium can now be applied to the forces
acting on the free-body diagrams of joints D and C. Show that

FDE - FDC - FCE =0 Ans.
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All problem solutions must include FBDs. #6-52. Determine the force in each member of the space truss
and state if the members are in tension or compression. The

6-50. Determine the force developed in each member of truss is supported by ball-and-socket joints at A, B, C,and D.

the space truss and state if the members are in tension or
compression. The crate has a weight of 150 Ib.

Prob. 6-50
Prob. 6-52
6-51. Determine the force in each member of the space truss
and state if the members are in tension or compression. Hint: 6-53. The space truss supports a force
The support reaction at E acts along member EB. Why? F = {=500i + 600j + 400k} Ib. Determine the force in each
member, and state if the members are in tension or

b4 compression.

6-54. The space truss supports a force
F = {600i + 450j — 750k} 1b. Determine the force in each
member, and state if the members are in tension or
compression.

Prob. 6-51 Probs. 6-53/54
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6-55. Determine the force in members EF, AF,and DF of
the space truss and state if the members are in tension or
compression. The truss is supported by short links at A, B, D,
and E.

Prob. 6-55

*6-56. The space truss is used to support the forces at
joints B and D. Determine the force in each member and
state if the members are in tension or compression.

Prob. 6-56

6-57. The space truss is supported by a ball-and-socket
joint at D and short links at C and E. Determine the force in
each member and state if the members are in tension or
compression. Take F; = {—500k} b and F, = {400j} Ib.

6-58. The space truss is supported by a ball-and-socket joint
at D and short links at C and E. Determine the force in each
member and state if the members are in tension or compression.
Take F; = {200i + 300j — 500k} Ib and F, = {400j} Ib.

Probs. 6-57/58
6-59. Determine the force in each member of the space
truss and state if the members are in tension or compression.
The truss is supported by ball-and-socket joints at A, B,and E.
Set F = {800j} N. Hint: The support reaction at E acts along
member EC. Why?

*6—60. Determine the force in each member of the space
truss and state if the members are in tension or compression.
The truss is supported by ball-and-socket joints at A, B,and E.
Set F = {-200i + 400j} N. Hint: The support reaction at E
acts along member EC. Why?

Probs. 6-59/60



6.6 Frames and Machines

Frames and machines are two types of structures which are often
composed of pin-connected multiforce members, i.e., members that are
subjected to more than two forces. Frames are used to support loads,
whereas machines contain moving parts and are designed to transmit and
alter the effect of forces. Provided a frame or machine contains no more
supports or members than are necessary to prevent its collapse, the forces
acting at the joints and supports can be determined by applying the
equations of equilibrium to each of its members. Once these forces are
obtained, it is then possible to design the size of the members, connections,
and supports using the theory of mechanics of materials and an appropriate
engineering design code.

Free-Body Diagrams. In order to determine the forces acting at
the joints and supports of a frame or machine, the structure must be
disassembled and the free-body diagrams of its parts must be drawn. The
following important points must be observed:

e Isolate each part by drawing its outlined shape. Then show all the
forces and/or couple moments that act on the part. Make sure to
label or identify each known and unknown force and couple moment
with reference to an established x, y coordinate system. Also,
indicate any dimensions used for taking moments. Most often the
equations of equilibrium are easier to apply if the forces are
represented by their rectangular components. As usual, the sense of
an unknown force or couple moment can be assumed.

e Identify all the two-force members in the structure and represent
their free-body diagrams as having two equal but opposite collinear
forces acting at their points of application. (See Sec. 5.4.) By
recognizing the two-force members, we can avoid solving an
unnecessary number of equilibrium equations.

e Forces common to any two contacting members act with equal
magnitudes but opposite sense on the respective members. If the
two members are treated as a “system” of connected members, then
these forces are “internal” and are not shown on the free-body
diagram of the system; however, if the free-body diagram of each
member is drawn, the forces are “external” and must be shown as
equal in magnitude and opposite in direction on each of the two
free-body diagrams.

The following examples graphically illustrate how to draw the free-
body diagrams of a dismembered frame or machine. In all cases, the
weight of the members is neglected.
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This crane is a typical example of a
framework. (© Russell C. Hibbeler)

Common tools such as these pliers act as
simple machines. Here the applied force on
the handles creates a much larger force at
the jaws. (© Russell C. Hibbeler)
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EXAMPLE [ 6.9

(a)

A Effect of
ﬂember AB
on pin

Fig. 6-21

For the frame shown in Fig. 6-21a, draw the free-body diagram of
(a) each member, (b) the pins at B and A, and (c) the two members
connected together.

B Effect of
member BC
on the pin
B,
Effect of L B,
member AB
on the pin

C;

(b) (©)

SOLUTION

Part (a). By inspection, members BA and BC are not two-force
members. Instead, as shown on the free-body diagrams, Fig. 6-21b, BC
is subjected to a force from each of the pins at B and C and the external
force P. Likewise, AB is subjected to a force from each of the pins at
A and B and the external couple moment M. The pin forces are
represented by their x and y components.

Part (b). The pin at B is subjected to only two forces, i.e., the force of
member BC and the force of member A B. For equilibrium these forces
(or their respective components) must be equal but opposite, Fig. 6-21c.
Realize that Newton’s third law is applied between the pin and its
connected members, i.e., the effect of the pin on the two members,
Fig. 6-21b, and the equal but opposite effect of the two members on
the pin, Fig. 6-21c. In the same manner, there are three forces on pin A,
Fig. 6-21d, caused by the force components of member AB and each
of the two pin leafs.

Part (c). The free-body diagram of both members connected
together, yet removed from the supporting pins at A and C, is shown
in Fig. 6-21e. The force components B, and B, are not shown on this
diagram since they are internal forces (Fig. 6-21b) and therefore cancel
out. Also, to be consistent when later applying the equilibrium
equations, the unknown force components at A and C must act in the
same sense as those shown in Fig. 6-21b.
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EXAMPLE | 6.10

A constant tension in the conveyor belt is maintained by using the
device shown in Fig. 6-22a. Draw the free-body diagrams of the frame
and the cylinder (or pulley) that the belt surrounds. The suspended
block has a weight of W.

(®)

(a)
Fig. 6-22 (© Russell C. Hibbeler)

SOLUTION

The idealized model of the device is shown in Fig. 6-22b. Here the
angle 6 is assumed to be known. From this model, the free-body
diagrams of the pulley and frame are shown in Figs. 6-22¢ and 6-22d, (d)
respectively. Note that the force components B, and B, that the pin at

B exerts on the pulley must be equal but opposite to the ones acting

on the frame. See Fig. 6-21¢ of Example 6.9.
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EXAMPLE [ 6.11

For the frame shown in Fig. 6-23a, draw the free-body diagrams of
(a) the entire frame including the pulleys and cords, (b) the frame
without the pulleys and cords, and (c) each of the pulleys.

D

SOLUTION

Part (a). When the entire frame including the pulleys and cords is
considered, the interactions at the points where the pulleys and cords are
connected to the frame become pairs of internal forces which cancel each
other and therefore are not shown on the free-body diagram, Fig. 6-23b.

Part (b). When the cords and pulleys are removed, their effect on the
frame must be shown, Fig. 6-23c.

Part (c). The force components B,, By, C,, C, of the pins on the
pulleys, Fig. 6-23d, are equal but opposite to the force components
exerted by the pins on the frame, Fig. 6-23c. See Example 6.9.
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EXAMPLE | 6.12

Draw the free-body diagrams of the members of the backhoe, shown
in the photo, Fig. 6-24a. The bucket and its contents have a weight W.

SOLUTION

The idealized model of the assembly is shown in Fig. 6-24b. By
inspection, members AB, BC, BE, and HI are all two-force members
since they are pin connected at their end points and no other forces
act on them. The free-body diagrams of the bucket and the stick are
shown in Fig. 6-24c. Note that pin C is subjected to only two forces,
whereas the pin at B is subjected to three forces, Fig. 6-24d. The free-
body diagram of the entire assembly is shown in Fig. 6-24e.

(@)

Fig. 6-24 (© Russell C. Hibbeler)

Fpe
Fpc

Fze
Fp,
C

Fac (d) ©
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EXAMPLE |6.13

Draw the free-body diagram of each part of the smooth piston and
link mechanism used to crush recycled cans, Fig. 6-25a.

(a)

Fig. 6-25

SOLUTION

By inspection, member AB is a two-force member. The free-body
diagrams of the three parts are shown in Fig. 6-25b. Since the pins at B
and D connect only two parts together, the forces there are shown as
equal but opposite on the separate free-body diagrams of their
connected members. In particular, four components of force act on
the piston: D, and D, represent the effect of the pin (or lever EBD),
N, is the resultant force of the wall support, and P is the resultant
compressive force caused by the can C. The directional sense of each
of the unknown forces is assumed, and the correct sense will be
established after the equations of equilibrium are applied.

NOTE: A free-body diagram of the entire assembly is shown in Fig. 6-25c.
Here the forces between the components are internal and are not shown
(c) on the free-body diagram.

Before proceeding, it is highly recommended that you cover the solutions
of these examples and attempt to draw the requested free-body diagrams.
When doing so, make sure the work is neat and that all the forces and
couple moments are properly labeled.



The joint reactions on frames or machines (structures) composed of
multiforce members can be determined using the following
procedure.

Free-Body Diagram.

e Draw the free-body diagram of the entire frame or machine, a
portion of it, or each of its members. The choice should be made
so that it leads to the most direct solution of the problem.

e Identify the two-force members. Remember that regardless of
their shape, they have equal but opposite collinear forces acting
at their ends.

e When the free-body diagram of a group of members of a frame or
machine is drawn, the forces between the connected parts of this
group are internal forces and are not shown on the free-body
diagram of the group.

e Forces common to two members which are in contact act with
equal magnitude but opposite sense on the respective free-body
diagrams of the members.

e In many cases it is possible to tell by inspection the proper sense
of the unknown forces acting on a member; however, if this seems
difficult, the sense can be assumed.

e Remember that once the free-body diagram is drawn, a couple
moment is a free vector and can act at any point on the diagram.
Also, a force is a sliding vector and can act at any point along its
line of action.

Equations of Equilibrium.

e Count the number of unknowns and compare it to the total
number of equilibrium equations that are available. In two
dimensions, there are three equilibrium equations that can be
written for each member.

e Sum moments about a point that lies at the intersection of the
lines of action of as many of the unknown forces as possible.

e [f the solution of a force or couple moment magnitude is found to
be negative, it means the sense of the force is the reverse of that
shown on the free-body diagram.

6.6 FRAMES AND MACHINES
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EXAMPLE | 6.14

Determine the tension in the cables and also the force P required to
support the 600-N force using the frictionless pulley system shown in

Fig. 6-26a.
"'l'_'q R
- c
el C
NS T
g P 14
i T
B
P rﬂ ﬁlg
pY Vp
5 A
‘5 P P P
A
¢6OON
600 N
(a) (b)
Fig. 6-26
SOLUTION

Free-Body Diagram. A free-body diagram of each pulley including
its pin and a portion of the contacting cable is shown in Fig. 6-26b.
Since the cable is continuous, it has a constant tension P acting
throughout its length. The link connection between pulleys B and C is
a two-force member, and therefore it has an unknown tension 7 acting
on it. Notice that the principle of action, equal but opposite reaction
must be carefully observed for forces P and T when the separate free-
body diagrams are drawn.

Equations of Equilibrium. The three unknowns are obtained as
follows:

Pulley A
+13F, = 0; 3P — 600N = 0 P=200N  Ans
Pulley B
+13F, = 0; T-2P=0 T =400N  Ans
Pulley C

+13F, = 0; R—-2P-T=0 R =800N  Ans
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EXAMPLE | 6.15

A 500-kg elevator car in Fig. 6-27a is being hoisted by motor A using
the pulley system shown. If the car is traveling with a constant speed,
determine the force developed in the two cables. Neglect the mass of
the cable and pulleys. -

T, T,

500 (9.81) N
(b) (a)
Fig. 6-27

SOLUTION

Free-Body Diagram. We can solve this problem using the free-body
diagrams of the elevator car and pulley C, Fig. 6-27b. The tensile forces
developed in the cables are denoted as 7 and 7.

Equations of Equilibrium. For pulley C,

+13F, = 0; T,—2T;=0 or T,=2T, (1)
For the elevator car,
+T2Fy = 0; 3T, + 2T, — 50009.81)N = 0 ()
Substituting Eq. (1) into Eq. (2) yields
3T, + 2(2T)) — 500(9.81) N = 0
T, = 700.71N = 701 N Ans.

Substituting this result into Eq. (1),
T, = 2(700.71) N = 1401 N = 1.40kN Ans.
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EXAMPLE | 6.16

2000 N Determine the horizontal and vertical components of force which the
pin at C exerts on member BC of the frame in Fig. 6-28a.
SOLUTION |

Free-Body Diagrams. By inspection it can be seen that AB is a two-
force member. The free-body diagrams are shown in Fig. 6-28b.
Equations of Equilibrium. The three unknowns can be determined
by applying the three equations of equilibrium to member BC.

C+3Ms=0; 2000NQ2m) — (Fypsin 6024 m) = 0 F,z = 1154.7N

B 3F, =0; 1154.7¢cos60°N — C, =0 C, =57IN Ans.
2000 N .

+13F, = 0; 1154.7 sin 60°N — 2000N + C, = 0

i. . C, = 1000N Ans.
o
/s‘ L T SOLUTION 1l

: T 2m2me C, Free-Body Diagrams. If one does not recognize that AB is a two-
Fas force member, then more work is involved in solving this problem. The

free-body diagrams are shown in Fig. 6-28c.

Equations of Equilibrium. The six unknowns are determined by
applying the three equations of equilibrium to each member.

Member AB
C+2M, =0; B,(3sin60°m) — B,(3 cos 60°m) = 0 (1)
5 53F, =0, A,— B, =0 (2)
+13F,=0; A, —B,=0 (3)
Member BC
C+3Mc=0; 2000NQ2m) — By(4m) =0 (4)
£3F. =0, B,—C, =0 5)
+1%F, =0; B, —2000N + C, =0 (6)

The results for C, and C, can be determined by solving these equations
in the following sequence: 4, 1, 5, then 6. The results are

B, = 1000 N
B, = 577N
C, = 577N Ans.
C, = 1000 N Ans.

By comparison, Solution I is simpler since the requirement that F3 in
Fig. 6-28b be equal, opposite, and collinear at the ends of member AB
automatically satisfies Egs. 1,2, and 3 above and therefore eliminates the
need to write these equations. As a result, save yourself some time and effort
by always identifying the two-force members before starting the analysis!
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EXAMPLE | 6.17

weight and thickness.

The compound beam shown in Fig. 6-29a is pin connected at B.
Determine the components of reaction at its supports. Neglect its

8 kN

Free-Body Diagrams.

as shown in Fig. 6-29b.

follows:
Segment BC
ESF, =0;
C+3IMpz = 0;
+13F, = 0;
Segment AB
£ SF, =0;
C+3IM, = 0;
+13F, = 0;

By inspection, if we consider a free-body

diagram of the entire beam ABC, there will be three unknown reactions
at A and one at C. These four unknowns cannot all be obtained from
the three available equations of equilibrium, and so for the solution it
will become necessary to dismember the beam into its two segments,

Equations of Equilibrium. The six unknowns are determined as

B,=0
—8kN(I m) + C,2m) = 0

B, —8kN + C, =0

A, — (10kN)(2) + B, =0
M, — (10kN)(2)2m) — B,(4m) =0
A, — (10kN)(2) = B, =0

Solving each of these equations successively, using previously
calculated results, we obtain

A, = 6kN A, = 12kN M, = 32kN-m Ans.
B, =0 B, = 4kN
C, = 4kN Ans.

10 kN
A 4
10 kN v
. o v,
592 4 4kN -
0‘1%;- 3 /m Ax
Bk | J
o — D 7o\ C 2m
Lo R )
AT O m
";‘;3_7;7— 2m i 2m 2m ——‘ l
(@) (b)
Fig. 6-29
SOLUTION
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EXAMPLE | 6.18

The two planks in Fig. 6-30a are connected together by cable BC and
a smooth spacer DE. Determine the reactions at the smooth supports
A and F, and also find the force developed in the cable and spacer.

100 1b

100 Ib Fye |Fpg 1200 Ib

D c
N, 2ft#2ft$2ft41 «2ftJ—2ft4<—2ft«T
FBC FDE

Np

F

(b)

Fig. 6-30
SOLUTION

Free-Body Diagrams. The free-body diagram of each plank is shown
in Fig. 6-30b. It is important to apply Newton’s third law to the
interaction forces Fy. and Fj as shown.

Equations of Equilibrium. For plank AD,

C+3IM, = 0; Fpp(6ft) — Fpe(4ft) — 1001b (2 ft) = 0
For plank CF,
C+3IM, = 0; Fpp(4 ft) — Fpe(6ft) + 2001b (2 ft) = 0
Solving simultaneously,

Fpr = 1401b  Fge = 1601b Ans.
Using these results, for plank AD,
+13F, = 0; N, + 1401b — 1601b — 1001b = 0

Ny, = 1201b Ans.
And for plank CF,
+13F, = 0; Np+1601b — 1401b — 2001b = 0

Np = 1801b Ans.

NOTE: Draw the free-body diagram of the system of both planks and
apply 2M, = 0 to determine N,. Then use the free-body diagram of
CEF to determine Fp; and Fp.
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EXAMPLE | 6.19

The 75-kg man in Fig. 6-31a attempts to lift the 40-kg uniform beam
off the roller support at B. Determine the tension developed in the
cable attached to B and the normal reaction of the man on the beam
when this is about to occur.

SOLUTION

Free-Body Diagrams. The tensile force in the cable will be denoted
as 7. The free-body diagrams of the pulley E, the man, and the beam
are shown in Fig. 6-31b. Since the man must lift the beam off the roller
B then Nz = 0. When drawing each of these diagrams, it is very
important to apply Newton’s third law.

: _ . . L=2h M
Equations of Equilibrium. Using the free-body diagram of pulley E,

+13F, =0, 2T, —T,=0 or T,=2T, (1) %

Referring to the free-body diagram of the man using this result,
+13F,=0 N, +2T; — 759.81)N = 0 2)

Summing moments about point A on the beam,

C+3M, = 0; T,(3m) — N,,(0.8 m) — [40(9.81)N](1.5m) =0 (3)

Solving Egs. 2 and 3 simultaneously for 7| and N,,, then using Eq. (1)

for T,, we obtain 40 (9.81) N
b
T, =25N N, =224N T,=S5I2N Ans. &
SOLUTION I

A direct solution for 7| can be obtained by considering the beam, the
man, and pulley E as a single system. The free-body diagram is shown
in Fig. 6-31c. Thus, l 75 (9.81) N

T

C+IM, =0;  27,(0.8m) — [75(9.81) N](0.8 m)
— [40(9.81) N](1.5m) + T;(3m) = 0
T, = 256N Ans. 0. 1'5mHTNB =0

With this result Egs. 1 and 2 can then be used to find N,, and 7. 40 (9.81) N

(c)
Fig. 6-31
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EXAMPLE | 6.20

3 ft

201b

201b

(®)

Fig. 6-32

The smooth disk shown in Fig. 6-32a is pinned at D and has a weight
of 20 Ib. Neglecting the weights of the other members, determine the
horizontal and vertical components of reaction at pins B and D.

b

(a)

SOLUTION

Free-Body Diagrams. The free-body diagrams of the entire frame
and each of its members are shown in Fig. 6-32b.

Equations of Equilibrium. The eight unknowns can of course be
obtained by applying the eight equilibrium equations to each
member —three to member AB, three to member BCD, and two to
the disk. (Moment equilibrium is automatically satisfied for the disk.)
If this is done, however, all the results can be obtained only from a
simultaneous solution of some of the equations. (Try it and find out.)
To avoid this situation, it is best first to determine the three support
reactions on the entire frame; then, using these results, the remaining
five equilibrium equations can be applied to two other parts in order
to solve successively for the other unknowns.

Entire Frame
C+IM, =0; —201b(3ft) + C,(3.5ft) =0 C,=17.11b

HSF =0; A, —17.11b = 0 A, =17.11b
+13F, = 0; A, —201b =0 A, =20b
Member AB
L3F =0, 17.11b — B, = 0 B, =1711b Ans
C+3My=0; —20Ib(6ft) + Ny3f) =0  Np=401b
+13F, = 0; 201b — 401b + B, = 0 B,=201b Ans
Disk
K3k =0, =0 Ans.
+13F, = 0; 401b —201b — D, =0 D, =20lb Ans
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EXAMPLE | 6.21

The frame in Fig. 6-33a supports the 50-kg cylinder. Determine the
horizontal and vertical components of reaction at A and the force at C.

. D,=4905N
< D, = 490.5N

0.3m T

1

0.6‘ m 0.9 m

008N, | 120m
Y
(a) (b)
Fig. 6-33
SOLUTION

Free-Body Diagrams. The free-body diagram of pulley D, along
with the cylinder and a portion of the cord (a system), is shown in
Fig. 6-33b. Member BC is a two-force member as indicated by its free-
body diagram. The free-body diagram of member ABD is also shown.

Equations of Equilibrium.  We will begin by analyzing the equilibrium
of the pulley. The moment equation of equilibrium is automatically
satisfied with 7 = 50(9.81) N, and so

+ SF, = 0; D, — 509.81)N =0 D, =490.5N

+13F, = 0; D, — 5009.8)N =0 D, =4905N Ans.

Using these results, Fgc can be determined by summing moments

about point A on member ABD.

C+3IM, = 0; Fpe (0.6 m) + 490.5 N(0.9 m) — 490.5N(1.20m) = 0
Fpe = 24525 N Ans.

Now A, and A, can be determined by summing forces.

i>2Fx =0; A, —24525N —4905N =0 A, = 736N Ans.

+13F, = 0; A, —4905N =0 A, =4905N  Ans
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EXAMPLE | 6.22

Determine the force the pins at A and B exert on the two-member
frame shown in Fig. 6-34a.

SOLUTION | 00N
FBA FBA
—ET T e—
800 N
800 N
800N
FBC
[ 800N
(a) (b)
Fpe

Free-Body Diagrams. By inspection AB and BC are two-force

800 N members. Their free-body diagrams, along with that of the pulley, are
800 N Fpa shown in Fig. 6-34b. In order to solve this problem we must also include
a a2 @ the free-body diagram of the pin at B because this pin connects all three
2 members together, Fig. 6-34c.
B 4

Fpe Equations of Equilibrium:  Apply the equations of force equilibrium

Pin B Pin A to pin B.
© (d) BSF, =0,  Fg — 800N = 0; Fgs = 800N Ans.
+13F, =0; Fpc— 800N = 0; Fyc = 800N Ans.

NOTE: The free-body diagram of the pin at A, Fig. 6-34d, indicates
how the force F4p is balanced by the force (F43/2) exerted on the pin
by each of the two pin leaves.

800N SOLUTION Il

Free-Body Diagram. If we realize that AB and BC are two-force
Fpe members, then the free-body diagram of the entire frame produces an
easier solution, Fig. 6-34e. The force equations of equilibrium are the
same as those above. Note that moment equilibrium will be satisfied,

(e)
Fig. 6-34 regardless of the radius of the pulley.
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. PRELIMINARY PROBLEMS

P6-3. In each case, identify any two-force members, and

then draw the free-body diagrams of each member of the
frame.

60 N - m

800 N

200 N/m

(2) (d)

400 N/m

B
025 m ~15m

200N
(b) (©)

() (f)
Prob. P6-3
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. FUNDAMENTAL PROBLEMS

All problem solutions must include FBDs.

F6-13. Determine the force P needed to hold the 60-1b

weight in equilibrium.

Prob. F6-13

F6-14. Determine the horizontal and vertical components

of reaction at pin C.

500 Ib
400 1b

<3t 3ft— 31t 3 ft—
Prob. Fo-14

F6-15. If a 100-N force is applied to the handles of the
pliers, determine the clamping force exerted on the smooth
pipe B and the magnitude of the resultant force that one of
the members exerts on pin A.

100 N

100 N

Prob. F6-15

F6-16. Determine the horizontal and vertical components
of reaction at pin C.

i
e~

Prob. F6-16




F6-17. Determine the normal force that the 100-Ib plate A
exerts on the 30-1b plate B.

| A u
| ’ |
<1 ft> 41t <1 ft~
Prob. F6-17

F6-18. Determine the force P needed to lift the load. Also,
determine the proper placement x of the hook for
equilibrium. Neglect the weight of the beam.

i 0.9m i

6 kN
Prob. F6-18

6.6 FRAMES AND MACHINES 323

F6-19. Determine the components of reaction at A and B.

Prob. F6-19

F6-20. Determine the reactions at D.

15 kN
10 kN

l

3 m—-

}-—3m

Prob. F6-20
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F6-21. Determine the components of reaction at A and C.

400 N/m
600 N > A @
B
3m
A s\ C
L L
} 1.5m 1.5 m l
Prob. F6-21

F6-22. Determine the components of reaction at C.

—1.5 m—

F—1.5m—

Prob. F6-22

F6-23. Determine the components of reaction at E.

4 kN/m
M M B
o) o) ——
B
2m
b
©) © I
1.5m 1.5m
| v
5 kN
Prob. F6-23

F6-24. Determine the components of reaction at D and the
components of reaction the pin at A exerts on member BA.

6 kN

Prob. F6-24
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“lrrosiems

All problem solutions must include FBDs. 6-63. Determine the force P required to hold the 50-kg

) ) mass in equilibrium.
6-61. Determine the force P required to hold the 100-1b

weight in equilibrium.

Prob. 6-63

Prob. 6-61

*6—64. Determine the force P required to hold the 150-kg

6-62. In each case, determine the force P required to crate in equilibrium.
maintain equilibrium. The block weighs 100 Ib.

(b)
Prob. 6-62 Prob. 6-64
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6-65. Determine the horizontal and vertical components
of force that pins A and B exert on the frame.

C 2kN/m

Prob. 6-65

6-66. Determine the horizontal and vertical components
of force at pins A and D.

0.3 m

1.5 m——

12 kN
Prob. 6-66

6-67. Determine the force that the smooth roller C exerts
on member AB. Also, what are the horizontal and vertical
components of reaction at pin A? Neglect the weight of the

frame and roller.

60 Ib-ft Q7\; Dy

A \l sn 0.5: fit

()

N B
|

4 ft

3ft
Prob. 6-67

*6—68. The bridge frame consists of three segments which
can be considered pinned at A, D, and E, rocker supported
at C and F, and roller supported at B. Determine the
horizontal and vertical components of reaction at all these
supports due to the loading shown.

2 kip/ft
NINIINnmnmn
- A . )
} *15ft)§ 30 ft D L5 15 ft—
20 ft
- &C
St ft
Prob. 6-68
6-609. Determine the reactions at supports A and B.
700 Ib/ft

500 Ib/ft

A c
- 6ft—6 ftHLS ft—

Prob. 6—69

6-70. Determine the horizontal and vertical components
of force at pins B and C. The suspended cylinder has a mass

of 75 kg.

o 0.3m
N | = ?
C B N
1.5m
B A
A )
3
2 m
0.5m
Prob. 6-70



6-71. Determine the reactions at the supports A, C,and E
of the compound beam.

12 kN
3kN/m
l l l I 1 1 Y
(e f (e O\
A B S.c b SEr
~3m-— 4m i 6m ! 3m
2m
Prob. 6-71

*6-72. Determine the resultant force at pins A, B, and C
on the three-member frame.

800 N

Al

Prob. 6-72

6-73. Determine the reactions at the supports at A, £, and
B of the compound beam.

900 N /m 900 N /m
B
(3 @ 7o)
A C p B F g
~—3m —~3m—f—4m—3m><3m-|

Prob. 6-73
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6-74. The wall crane supports a load of 700 1b. Determine
the horizontal and vertical components of reaction at the
pins A and D. Also, what is the force in the cable at the
winch W?

6-75. The wall crane supports a load of 700 1b. Determine
the horizontal and vertical components of reaction at the pins
A and D. Also, what is the force in the cable at the winch W?
The jib ABC has a weight of 100 Ib and member BD has a
weight of 40 1b. Each member is uniform and has a center of
gravity at its center.

T o
4 ft

1]

D

700 1b
Probs. 6-74/75

*6-76. Determine the horizontal and vertical components
of force which the pins at A and B exert on the frame.

| 2m |
400N/m | |
8 S —
T D c
1.5m
@E
3m
3m
F@J—f
1.5m
a4 Bl +
.rﬂA&..

Prob. 6-76
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6-77. The two-member structure is connected at C by a
pin, which is fixed to BDE and passes through the smooth
slot in member AC. Determine the horizontal and vertical
components of reaction at the supports.

500 1b
B\E
2D i
3ft 2 ft—

Prob. 6-77

6-78. The compound beam is pin supported at B and
supported by rockers at A and C.There is a hinge (pin) at D.
Determine the reactions at the supports.

2kN/m
AP 2\ © C
— B D
Prob. 6-78

6-79. When a force of 2 1b is applied to the handles of the
brad squeezer, it pulls in the smooth rod AB. Determine the
force P exerted on each of the smooth brads at C and D.

21b

21b

Prob. 6-79

*6-80. The toggle clamp is subjected to a force F at the
handle. Determine the vertical clamping force acting at E.

|
‘F
/l’\

Prob. 6-80

6-81. The hoist supports the 125-kg engine. Determine the
force the load creates in member DB and in member FB,
which contains the hydraulic cylinder H.

i 2m

E

\ 2m \
Prob. 6-81

6-82. A 5-lbforce is applied to the handles of the vise grip.
Determine the compressive force developed on the smooth
bolt shank A at the jaws.

51b

Prob. 6-82



6-83. Determine the force in members FD and DB of the
frame. Also, find the horizontal and vertical components
of reaction the pin at C exerts on member ABC and
member EDC.

Gy 0\ g E__
l F
6 kN 2m
olD—
B / Im
A
(B —
| 2m ‘r 1 m%‘
Prob. 6-83

*6-84. Determine the force that the smooth 20-kg cylinder
exerts on members AB and CDB. Also, what are the
horizontal and vertical components of reaction at pin A?

0

0 -
A i

>\
L ‘E B‘ﬂ

C¢

Prob. 6-84

6-85. The three power lines exert the forces shown on the
pin-connected members at joints B, C,and D, which in turn are
pin connected to the poles AH and EG. Determine the force
in the guy cable A and the pin reaction at the support H.

20 ft 20 ft
S e
.
: : 20t

B C D
<40 ft—|—40 ft—

s001b \

<

y
300 1b 800 1b

125 ft

1 H G F

i V7Y AN PN Y78 Y 72T Y S P Y 72 Y YT VAN Y78 17 S YT P PAY Y7 2 Y VS YIVARYI PAYIY/7 )

50 ft—=-30 ft4«30 ft#3o ft#ao ft~}—350 ft——‘

Prob. 6-85
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6-86. The pumping unit is used to recover oil. When the
walking beam ABC is horizontal, the force acting in the
wireline at the well head is 250 lb. Determine the torque M
which must be exerted by the motor in order to overcome this
load. The horse-head C weighs 60 1b and has a center of gravity
at G¢. The walking beam ABC has a weight of 130 Ib and a
center of gravity at G, and the counterweight has a weight of
200 Ib and a center of gravity at Gy. The pitman, AD, is pin
connected at its ends and has negligible weight.

Prob. 6-86

6-87. Determine the force that the jaws J of the metal
cutters exert on the smooth cable C if 100-N forces are
applied to the handles. The jaws are pinned at £ and A,
and D and B.There is also a pin at F.

cef—
N 5°
ML S
30 mmj>80 m 20 mm

400 mm

Prob. 6-87
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*6-88. The machine shown is used for forming metal plates.
It consists of two toggles ABC and D EF, which are operated
by the hydraulic cylinder H.The toggles push the movable bar
G forward, pressing the plate p into the cavity. If the force
which the plate exerts on the head is P = 12 kN, determine the
force Fin the hydraulic cylinder when 6§ = 30°.

=
o v
~—L -
=

Prob. 6-88

6-89. Determine the horizontal and vertical components
of force which pin C exerts on member ABC. The 600-N
load is applied to the pin.

«— 2 m —

2m —

l i y 600 N

F~ 300N

Prob. 6-89

6-90. The pipe cutter is clamped around the pipe P. If the
wheel at A exerts a normal force of F, = 80 N on the pipe,
determine the normal forces of wheels B and C on the pipe.
Also compute the pin reaction on the wheel at C.The three
wheels each have a radius of 7 mm and the pipe has an outer
radius of 10 mm.

i
) ’..A.A‘A‘A‘@m
il =

bl
WIS

LERRSE)

10 mm

¥
10 mm

Prob. 6-90

6-91. Determine the force created in the hydraulic
cylinders EF and AD in order to hold the shovel in
equilibrium. The shovel load has a mass of 1.25 Mg and a
center of gravity at G. All joints are pin connected.

Prob. 6-91



*6-92. Determine the horizontal and vertical components
of force at pin B and the normal force the pin at C exerts on
the smooth slot. Also, determine the moment and horizontal
and vertical reactions of force at A. There is a pulley at E.

—3ft——3ft—

Prob. 6-92

6-93. The constant moment of 50 N-m is applied to the
crank shaft. Determine the compressive force P that is exerted
on the piston for equilibrium as a function of 6. Plot the results
of P (vertical axis) versus 6 (horizontal axis) for 0° < 6 =< 90°.

Prob. 6-93
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6-94. Five coins are stacked in the smooth plastic
container shown. If each coin weighs 0.0235 1b, determine
the normal reactions of the bottom coin on the container at
points A and B.

o

@ff

@
/. \

Prob. 6-94

6-95. The nail cutter consists of the handle and the two
cutting blades. Assuming the blades are pin connected at B
and the surface at D is smooth, determine the normal force
on the fingernail when a force of 1 b is applied to the
handles as shown. The pin AC slides through a smooth hole
at A and is attached to the bottom member at C.

11b
0.25 in. 0.25 in. |
AOVA 1.5in. +
A
B
D
C T
11b
Prob. 6-95
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*6-96. A man having a weight of 175 Ib attempts to hold
himself using one of the two methods shown. Determine
the total force he must exert on bar AB in each case and the
normal reaction he exerts on the platform at C. Neglect the
weight of the platform.

A .
z &
S

(a) (b)
Prob. 6-96

l

.

— i

ﬁlﬂ"

6-97. A man having a weight of 175 Ib attempts to hold
himself using one of the two methods shown. Determine
the total force he must exert on bar AB in each case and the
normal reaction he exerts on the platform at C.The platform
has a weight of 30 Ib.

l

4

B

A
"

Jﬁ.
ﬁlﬂ'ﬂ

—
(a) (b)
Prob. 6-97

6-98. The two-member frame is pin connected at E. The
cable is attached to D, passes over the smooth peg at C, and
supports the 500-N load. Determine the horizontal and
vertical reactions at each pin.

y S00N

Prob. 6-98

6-99. If the 300-kg drum has a center of mass at point G,
determine the horizontal and vertical components of force
acting at pin A and the reactions on the smooth pads C and D.
The grip at B on member DAB resists both horizontal and
vertical components of force at the rim of the drum.

°G

Prob. 6-99



*6-100. Operation of exhaust and intake valves in an
automobile engine consists of the cam C, push rod DE,
rocker arm EFG which is pinned at F, and a spring and
valve, V. If the compression in the spring is 20 mm when the
valve is open as shown, determine the normal force acting
on the cam lobe at C. Assume the cam and bearings at H, I,
and J are smooth. The spring has a stiffness of 300 N/m.

25 mm

Prob. 6-100

6-101. If a clamping force of 300 N is required at A,
determine the amount of force F that must be applied to the
handle of the toggle clamp.

F
70 mm \ "
235 mm
30 mm
oC 30% 275 mm
OB
O
30 mm £
o 30

Prob. 6-101
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6-102. If a force of F=350 N is applied to the handle of the
toggle clamp, determine the resulting clamping force at A.

F
70 mm \ \
235 mm
30
i OC— 30° 275 mm
OB
30 mm £
= 30
Prob. 6-102

6-103. Determine the horizontal and vertical components
of force that the pins at A and B exert on the frame.

4 kN
2 kN

—2m 2 m 2m —»

3m
3 kN _
1m
l A
@ ©) (@
D E
‘ 3m l 3m ‘
Prob. 6-103
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*6-104. The hydraulic crane is used to lift the 1400-1b load.
Determine the force in the hydraulic cylinder AB and the
force in links AC and AD when the load is held in the
position shown.

1ft

Prob. 6-104

6-105. Determine force P on the cable if the spring is
compressed 0.025 m when the mechanism is in the position
shown. The spring has a stiffness of k =6 kN/m.

E
!
> P
150 mm D
—. ) O
f 30%~ f
200 mm
o ;
200 mm lé
A
1 5
\200 i 800 mm
mm

Prob. 6-105

6-106. If d = 0.75 ft and the spring has an unstretched
length of 1 ft,determine the force Frequired for equilibrium.

Prob. 6-106

6-107. 1If a force of F =50 Ib is applied to the pads at A
and C, determine the smallest dimension d required for
equilibrium if the spring has an unstretched length of 1 ft.

Prob. 6-107

*6-108. The skid-steer loader has a mass of 1.18 Mg, and in
the position shown the center of mass is at Gy. If there is a
300-kg stone in the bucket, with center of mass at Gy,
determine the reactions of each pair of wheels A and B on
the ground and the force in the hydraulic cylinder CD and at
the pin E.There is a similar linkage on each side of the loader.

1.25m —

-
INENEENEEEEN
A N T

1.5m 0.75 m —|

Prob. 6-108



6-109. Determine the force P on the cable if the spring is
compressed 0.5 in. when the mechanism is in the position
shown. The spring has a stiffness of k =800 Ib/ft.

b [ 6in.—6in.—{ 4 in. —
6in. [A
B D
<
. 30°
< 4
b C
YpP
24'in.,
Sl =
E
Prob. 6-109

6-110. The spring has an unstretched length of 0.3 m.
Determine the angle 6 for equilibrium if the uniform bars
each have a mass of 20 kg.

6-111. The spring has an unstretched length of 0.3 m.
Determine the mass m of each uniform bar if each angle
6 = 30° for equilibrium.

Probs. 6-110/111
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*6-112. The piston C moves vertically between the two
smooth walls. If the spring has a stiffness of k = 15 Ib/in.,
and is unstretched when 6 = 0°, determine the couple M
that must be applied to AB to hold the mechanism in
equilibrium when 6 = 30°.

k = 15 Ib/in.

MY €

Prob. 6-112

6-113. The platform scale consists of a combination of third
and first class levers so that the load on one lever becomes the
effort that moves the next lever. Through this arrangement, a
small weight can balance a massive object. If x = 450 mm,
determine the required mass of the counterweight S required
to balance a 90-kg load, L.

6-114. The platform scale consists of a combination of third
and first class levers so that the load on one lever becomes the
effort that moves the next lever. Through this arrangement, a
small weight can balance a massive object. If x =450 mm, and
the mass of the counterweight S is 2 kg, determine the mass of
the load L required to maintain the balance.

100 mm250 mml‘SO mm

Wiii

E F
G o 9 G

C||D

150 mm
<—>‘e350 mm —

gsl

x

B

Probs. 6-113/114
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6-115. The four-member “A” frame is supported at A
and E by smooth collars and at G by a pin. All the other
joints are ball-and-sockets. If the pin at G will fail when the
resultant force there is 800 N, determine the largest vertical
force P that can be supported by the frame. Also, what are
the x, y, z force components which member BD exerts on
members EDC and ABC? The collars at A and E and the
pin at G only exert force components on the frame.

Prob. 6-115

*6-116. The structure is subjected to the loadings shown.
Member AB is supported by a ball-and-socket at A and
smooth collar at B. Member CD is supported by a pin at C.
Determine the x, y, z components of reaction at A and C.

Prob. 6-116

6-117. The structure is subjected to the loading shown.
Member AD is supported by a cable AB and roller at C and
fits through a smooth circular hole at D. Member ED is
supported by a roller at D and a pole that fits in a smooth
snug circular hole at E. Determine the x, y, z components of
reaction at E and the tension in cable AB.

Prob. 6-117

6-118. The three pin-connected members shown in the
top view support a downward force of 60 1b at G. If only
vertical forces are supported at the connections B, C, E and
pad supports A, D, F, determine the reactions at each pad.

Prob. 6-118
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Simple Truss

A simple truss consists of triangular
elements connected together by pinned
joints. The forces within its members can
be determined by assuming the members
are all two-force members, connected
concurrently at each joint. The members
are either in tension or compression, or
carry no force.

24

Roof truss

Method of Joints

The method of joints states that if a
truss is in equilibrium, then each of its
joints is also in equilibrium. For a plane
truss, the concurrent force system at
each joint must satisfy force equilibrium.

To obtain a numerical solution for the
forces in the members, select a joint
that has a free-body diagram with at
most two unknown forces and one
known force. (This may require first
finding the reactions at the supports.)

Once a member force is determined, use
its value and apply it to an adjacent joint.

Remember that forces that are found to
pull on the joint are tensile forces, and
those that push on the joint are
compressive forces.

To avoid a simultaneous solution of two
equations, set one of the coordinate axes
along the line of action of one of the
unknown forces and sum forces
perpendicular to this axis. This will allow
a direct solution for the other unknown.

The analysis can also be simplified by
first identifying all the zero-force
members.

SF,
SF,

» 500 N

45°

Fp, (tension)

(<

500 N

Fpc (compression)
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Method of Sections

The method of sections states that if a
truss is in equilibrium, then each segment
of the truss is also in equilibrium. Pass a
section through the truss and the
member whose force is to be determined.
Then draw the free-body diagram of the
sectioned part having the least number
of forces on it.

Sectioned members subjected to pulling
are in tension, and those that are
subjected to pushing are in compression.

Three equations of equilibrium are
available to determine the unknowns.

If possible, sum forces in a direction that
is perpendicular to two of the three
unknown forces. This will yield a direct
solution for the third force.

Sum moments about the point where the
lines of action of two of the three
unknown forces intersect, so that the
third unknown force can be determined
directly.

B | C D

T {o T

2 m

/, 1
e i
2 m i 2m ‘ 2m—>‘

2m

2F, =0
2F, =0
EMOZO
+13F, =0

—1000 N + Fgesin45° = 0
Foe = 141 KN (T)

g‘i‘ch =0
1000 N(4 m) — Fep (2m) = 0
For = 2kN (C)
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Space Truss

A space truss is a three-dimensional truss
built from tetrahedral elements, and is
analyzed using the same methods as for
plane trusses. The joints are assumed to
be ball-and-socket connections.

Frames and Machines

Frames and machines are structures that
contain one or more multiforce members,
that is, members with three or more
forces or couples acting on them. Frames
are designed to support loads, and
machines transmit and alter the effect of
forces.

The forces acting at the joints of a frame
or machine can be determined by
drawing the free-body diagrams of each
of its members or parts. The principle of
action-reaction should be carefully
observed when indicating these forces
on the free-body diagram of each
adjacent member or pin. For a coplanar
force system, there are three equilibrium
equations available for each member.

To simplify the analysis, be sure to
recognize all two-force members. They
have equal but opposite collinear forces
at their ends.

2000 N

Multi-force

member
Two-force

member

2000 N

A

B \\A@m
— O

a

\

Action-reaction

FAB
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. REVIEW PROBLEMS

All problem solutions must include FBDs.

R6-1. Determine the force in each member of the truss
and state if the members are in tension or compression.

S kN 10 kN

Prob. R6-1

R6-2. Determine the force in each member of the truss
and state if the members are in tension or compression.

1000 Ib

Prob. R6-2

R6-3. Determine the force in member GJ and GC of the
truss and state if the members are in tension or compression.

1000 1b

1000 1b G

1000 1b

Prob. R6-3

R6-4. Determine the force in members GF, FB, and BC
of the Fink truss and state if the members are in tension or
compression.

Prob. R6—4



R6-5. Determine the force in members AB, AD, and AC
of the space truss and state if the members are in tension or

compression.

F = {—600k} Ib

Prob. R6-5

R6-6. Determine the horizontal and vertical components of
force that the pins A and B exert on the two-member frame.

Im

Prob. R6-6
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R6-7. Determine the horizontal and vertical components
of force at pins A and C of the two-member frame.

500 N/m

A/v/i/l/ B

_ & I:
3m

—

—>\
3m

—

C
T | S
600 N/m
400 N/m
Prob. R6-7

R6-8. Determine the resultant forces at pins B and C on
member ABC of the four-member frame.

S ft 2 ft —

150 1b /ft
) 2) Q) ——

A B C
4 ft

F E D
9 (T4 o) ——

}-— 2 ft ‘ 51t }

Prob. R6-8
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When external loads are placed upon these beams and columns, the loads within
them must be determined if they are to be properly designed. In this chapter we
will study how to determine these internal loadings.



Internal Forces

CHAPTER OBJECTIVES

m To use the method of sections to determine the internal loadings
in a member at a specific point.

®m To show how to obtain the internal shear and moment throughout
a member and express the result graphically in the form of shear
and moment diagrams.

m To analyze the forces and the shape of cables supporting various
types of loadings.

7.1 Internal Loadings Developed in
Structural Members

To design a structural or mechanical member it is necessary to know the
loading acting within the member in order to be sure the material can
resist this loading. Internal loadings can be determined by using the
method of sections.To illustrate this method, consider the cantilever beam
in Fig. 7-1a. If the internal loadings acting on the cross section at point B
are to be determined, we must pass an imaginary section a—a perpendicular
to the axis of the beam through point B and then separate the beam into
two segments. The internal loadings acting at B will then be exposed and
become external on the free-body diagram of each segment, Fig. 7-1b.

| 1

(a)
Fig. 7-1
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In each case, the link on the backhoe is
a two-force member. In the top photo
it is subjected to both bending and an
axial load at its center. It is more
efficient to make the member straight,
as in the bottom photo; then only an
axial force acts within the member.
(© Russell C. Hibbeler)

C€

Shear force —y

(a)

e

Normal force

)M\

- N

c J
/v,
. w, X
Bending moment Y Shear force components

2
A, My Mpg /
ol 7
As \ Ny Np
M, Vi Vi
(b)
Fig. 7-1 (Repeated)

The force component Ny that acts perpendicular to the cross section is
termed the normal force. The force component V; that is tangent to the
cross section is called the shear force, and the couple moment My is
referred to as the bending moment. The force components prevent the
relative translation between the two segments, and the couple moment
prevents the relative rotation. According to Newton’s third law, these
loadings must act in opposite directions on each segment, as shown in
Fig. 7-1b.They can be determined by applying the equations of equilibrium
to the free-body diagram of either segment. In this case, however, the right
segment is the better choice since it does not involve the unknown support
reactions at A. A direct solution for Ny is obtained by applying % F, = 0,
Vp is obtained from XF, = 0, and M, can be obtained by applying
My = 0,since the moments of N and V about B are zero.

In two dimensions, we have shown that three internal loading resultants
exist, Fig. 7-2a; however in three dimensions, a general resultant internal
force and couple moment resultant will act at the section. The x, y, z
components of these loadings are shown in Fig. 7-2b. Here N, is the normal
force,and V, and V_ are shear force components. M, is a torsional or twisting
moment, and M, and M, are bending moment components. For most
applications, these resultant loadings will act at the geometric center or
centroid (C) of the section’s cross-sectional area. Although the magnitude
for each loading generally will be different at various points along the axis
of the member, the method of sections can always be used to determine
their values.

z
Bending moment |
components T

=

—

S ) Normal force
1
y / Ve Torsional moment

J

-

n
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Sign Convention. For problems in two dimensions engineers N

generally use a sign convention to report the three internal loadings N
N, V, and M. Although this sign convention can be arbitrarily assigned, the

one that is widely accepted will be used here, Fig. 7-3. The normal force is -_> N<_.
said to be positive if it creates fension, a positive shear force will cause the N

beam segment on which it acts to rotate clockwise, and a positive bending

moment will tend to bend the segment on which it acts in a concave upward
manner. Loadings that are opposite to these are considered negative.

Positive normal force

Important Point -lv VT.

¢ There can be four types of resultant internal loads in a member. v
They are the normal and shear forces and the bending and torsional T - l
moments. These loadings generally vary from point to point. They v
can be determined using the method of sections. Positive shear

Procedure for Analysis - w“i ?r -

The method of sections can be used to determine the internal loadings

. . . M M
on the cross section of a member using the following procedure. ( " V>
Support Reactions.

e Before the member is sectioned, it may first be necessary to Positive moment
determine its support reactions.

Fig. 7-3

Free-Body Diagram.

e |t is important to keep all distributed loadings, couple moments,
and forces acting on the member in their exact locations, then pass
an imaginary section through the member, perpendicular to its axis
at the point where the internal loadings are to be determined.

e After the section is made, draw a free-body diagram of the
segment that has the least number of loads on it, and indicate
the components of the internal force and couple moment
resultants at the cross section acting in their positive directions in
accordance with the established sign convention.

Equations of Equilibrium.

e Moments should be summed at the section. This way the normal
and shear forces at the section are eliminated, and we can obtain

a direct solution for the moment. The designer of this shop crane
realized the need for additional

. el e . . g reinforcement around the joint at A
o If the solution of the equilibrium equations yields a negative in order to prevent severe internal

scalar, the sense of the quantity is opposite to that shown on the bending of the joint when a large load

free-body diagram. is suspended from the chain hoist.
(© Russell C. Hibbeler)
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6 kKN
l 9kN'm
D
Al o >
~—3 m } 6m *
AY Dy
(b)
B
A - N
3 m—J v
5kN B
(©)
6 kKN
Mc
Alo o -l— - N¢
-—3 m% Ve
S5kN
(d)
Fig. 7-4

Determine the normal force, shear force, and bending moment acting
just to the left, point B, and just to the right, point C, of the 6-kN force
on the beam in Fig. 7-4a.

6 kN
9 kN-m
Y
A ﬁ
. 7 T
B | C ‘
~—3m 6m |
(a)

SOLUTION

Support Reactions. The free-body diagram of the beam is shown in
Fig. 7-4b. When determining the external reactions, realize that the
9-kN - m couple moment is a free vector and therefore it can be placed
anywhere on the free-body diagram of the entire beam. Here we will
only determine A,, since the left segments will be used for the analysis.

C+3Mp=0; 9KN-m + (6kN)(6m) — A,(9m) = 0
A, =5kN

Free-Body Diagrams. The free-body diagrams of the left segments
AB and AC of the beam are shown in Figs. 7-4¢ and 7-4d. In this case
the 9-kN - m couple moment is not included on these diagrams since it
must be kept in its original position until after the section is made and
the appropriate segment is isolated.

Equations of Equilibrium.

Segment AB
B 3F, = 0; Ng =0 Ans.
+13F, = 0; SKkN—Vz=0 Vz=5kN Ans.

C+IMp=0; —(5kN)Y3m)+ Mz =0 Myz=15kN-m Ans.

Segment AC
K 3F, =0; Ne=0 Ans.
+13F,=0; 5kN—-6kN—-V,=0 Vc=—-1kN Ans.

C+IM-=0; —(5kN)3m)+ M-=0 M= 15kN-m Ans.

NOTE: The negative sign indicates that V¢ acts in the opposite sense
to that shown on the free-body diagram. Also, the moment arm for the
5-kN force in both cases is approximately 3 m since B and C are
“almost” coincident.
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Determine the normal force, shear force, and bending moment at C of
the beam in Fig. 7-5a.

1200 N/m
1200 N/m e {
B | 1.5m
A C ‘
3m
! 1.5m ‘ 1.5m ]
(a) (b)
Fig. 7-5
SOLUTION

Free-Body Diagram. Itis not necessary to find the support reactions
at A since segment BC of the beam can be used to determine the
internal loadings at C. The intensity of the triangular distributed load
at Cis determined using similar triangles from the geometry shown in
Fig.7-5b,i.e.,

15
we = (1200 N/m) <3—n11n) = 600 N/m

The distributed load acting on segment BC can now be replaced by its
resultant force, and its location is indicated on the free-body diagram,
Fig. 7-5c.

Equations of Equilibrium.

K SF, =0; Ne=0 Ans.
+13F, =0; V¢ — %600N/m)(1.5m) = 0
Ve =450N Ans.
C+3Mc=0; —Mc — %600 N/m)(1.5 m)(0.5 m) = 0
Mq= —225N Ans.

The negative sign indicates that M acts in the opposite sense to that
shown on the free-body diagram.

%(600 N/m)(L.5 m)

600 N/m T
th:
Ne
05m

(©)

347
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Determine the normal force, shear force, and bending moment acting
at point B of the two-member frame shown in Fig. 7-6a.

i
T sownon

Support Reactions. A free-body diagram of each member is shown
in Fig. 7-6b. Since CD is a two-force member, the equations of
equilibrium need to be applied only to member AC.

|
SOIb/:l.HHH

C+3IM, =0; —4001b(@&ft) + (2) Fpe(8f) =0  Fpe = 333.31b
£3F, =0, —A, + (2)(33331b) =0 A, = 266.71b
+13F, =0; A, —4001b + (2)(33331b) =0 A, =2001b

001 2001b 2001b
2 2 £ 2 ft»tz ft—

Vs 333310 ¢

(©)

Free-Body Diagrams. Passing an imaginary section perpendicular to
the axis of member AC through point B yields the free-body diagrams
of segments AB and BC shown in Fig. 7-6c. When constructing these
diagrams it is important to keep the distributed loading where it is until
after the section is made. Only then can it be replaced by a single

Fpc
(b) resultant force.
Fig. 7-6 Equations of Equilibrium. Applying the equations of equilibrium
to segment AB, we have

E3F, =0; Np —26671b =0 Ny =2671b  Ans
+13F, =0; 2001b —200lb —V; =0 Vyz=0 Ans.

C+3Mp =0; Mgy — 2001b(4ft) + 2001b (2 ft) = 0
Mpg = 400 Ib - ft Ans.

NOTE: As an exercise, try to obtain these same results using segment BC.
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Determine the normal force, shear force, and bending moment acting
at point E of the frame loaded as shown in Fig. 7-7a.

600 N
(a) (b)
SOLUTION
Support Reactions. By inspection, members AC and CD are two-
force members, Fig. 7-7b. In order to determine the internal loadings at
E,we must first determine the force R acting at the end of member AC.
To obtain it, we will analyze the equilibrium of the pin at C.
Summing forces in the vertical direction on the pin, Fig. 7-7b,

we have

+13F, = 0; Rsin45° — 600N =0 R = 8485N

N
Free-Body Diagram. The free-body diagram of segment CE is +E
shown in Fig. 7-7c. PR
Equations of Equilibrium. 05m
L 3F, =0 848.5c0845°N — Vp =0 Vy=600N  Ans c K750
+13F, = 0; —848.5sin45°N + Ny =0  Np=600N  Ans 848.5 N
C+3IMg = 0; 848.5cos 45° N(0.5m) — My =0 ©
Mg =300 N-m Ans. Fig. 7-7

NOTE: These results indicate a poor design. Member AC should be
straight (from A to C) so that bending within the member is eliminated.
If AC were straight then the internal force would only create tension
in the member.

349
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(b)

Z

-—3m—»‘

B A
7
135kN/ Y6376 kN

525m

T
L N
A

(c)
Fig. 7-8

(© Russell C. Hibbeler)

The uniform sign shown in Fig. 7-8a has a mass of 650 kg and is
supported on the fixed column. Design codes indicate that the
expected maximum uniform wind loading that will occur in the area
where it is located is 900 Pa. Determine the internal loadings at A.

SOLUTION

The idealized model for the sign is shown in Fig. 7-8b. Here the
necessary dimensions are indicated. We can consider the free-body
diagram of a section above point A since it does not involve the
support reactions.

Free-Body Diagram. The sign has a weight of W = 650(9.81) N =
6.376 kN, and the wind creates a resultant force of
F,, = 900 N/m?(6 m)(2.5 m) = 13.5 kN, which acts perpendicular to
the face of the sign. These loadings are shown on the free-body diagram,
Fig. 7-8c.

Equations of Equilibrium. Since the problem is three dimensional,
a vector analysis will be used.

3F = 0; F, — 13.5i — 6.376k = 0
F, = {13.5i + 6.38k} kN Ans.
M, = 0; M, +rX F,+W) =0
i j k
M, +| 0 3 525 | =0

—135 0 —6.376

M, = {19.1i + 70.9j — 40.5k} kN +m Ans.

NOTE: Here F, = {6.38k} kN represents the normal force, whereas
F, = {13.5i} kN is the shear force. Also, the torsional moment is
M, = {—40.5k} kN -m, and the bending moment is determined from
its components M, = {19.li}kN-m and M, = {70.9j} kN-m;

e, Mpy = V(My; + (My); = 734kN-m.
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. PRELIMINARY PROBLEMS

P7-1. In each case, calculate the reaction at A and then
draw the free-body diagram of segment AB of the beam in
order to determine the internal loading at B.

200 N/m
200N - m
A ) D
? 7 C M B c .
‘“““*‘““"*Fzmg’ k—2m ! 2m ! 4m ! 4m |
(a) (d)
400 N/m
200 N/m
200 N/m
A
B
} 3m ‘ 3m |
(b) (e)
800 N - m
D C
\ 1
300 N/m ‘ 2m i 2m an
A D 1¢m
B ‘C e
‘sz } 2m 3m }
(c) ()

Prob. P7-1
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. FUNDAMENTAL PROBLEMS

All problem solutions must include FBDs. F7-4. Determine the normal force, shear force, and
moment at point C.

F7-1. Determine the normal force, shear force, and

moment at point C.

10 kN 15 kN lleN l l l9kN/m

iy
b=
m LLS m»Ll.S m»Ll.S m»Ll.S m»‘

‘91.5 m 1.5m 1.5m 1.5m 4‘ Prob. F7-4

Prob. F7-1

F7-5. Determine the normal force, shear force, and

F7-2. Determine the normal force, shear force, and moment at point C.

moment at point C.

10 kN 9 kN/m
30kN - m l
A
\ Iz ¢
l 3m I 3m |
«15m»L15m» 15m4«15m»

Prob. F7-5

Prob. F7-2

F7-6. Determine the normal force, shear force, and

F7-3. Determine the normal force, shear force, and moment at point C. Assume A is pinned and B is a roller.

moment at point C.

6 kN/m
T L
Y
B A C B
A5 C
6 ft 4.5 ft —=~—4.5 ft~>\ a 3m 3m

Prob. F7-3 Prob. F7-6
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“leromews

All problem solutions must include FBDs.

7-1. Determine the shear force and moment at points C
and D.

500 1b 2001b 300 Ib

C ] : I D
L |
6 ft———4ft 4ft———6 ft—wz—ft'
Prob. 7-1

7-2. Determine the internal normal force and shear force,
and the bending moment in the beam at points C and D.
Assume the support at B is a roller. Point C is located just to
the right of the 8-kip load.

8 kip

40 kip-ft

Prob. 7-2

7-3. Two beams are attached to the column such that
structural connections transmit the loads shown. Determine
the internal normal force, shear force, and moment acting in

the column at a section passing horizontally through point A.

30 mm 40 mm
H% 250 mm

125 mm

Prob. 7-3

*7-4. The beam weighs 280 1b/ft. Determine the internal
normal force, shear force, and moment at point C.

Prob. 7-4

7-5. 'The pliers are used to grip the tube at B. If a force of
20 Ib is applied to the handles, determine the internal shear
force and moment a point C. Assume the jaws of the pliers
exert only normal forces on the tube.

Prob. 7-5
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7-6. Determine the distance a as a fraction of the beam’s
length L for locating the roller support so that the moment
in the beam at B is zero.

5 C
i — A..
a A B}.;Lﬁ;»

Prob. 7-6

7-7. Determine the internal shear force and moment
acting at point C in the beam.

4 Kip /it

et

ARS = 2

1 6 ft 6 ft !

Prob. 7-7

#7-8. Determine the internal shear force and moment
acting at point C in the beam.

00 1b/ft

<L Ll EETIEATE L.

Prob. 7-8

7-9. Determine the normal force, shear force, and moment
at a section passing through point C. Take P =8 kN.

%)
Wl ]
0-Lm 0.5m

| ¢ A

: D @

§—o07sm e 075m—075m—
y
P

Prob. 7-9

7-10. The cable will fail when subjected to a tension of
2 kN. Determine the largest vertical load P the frame will
support and calculate the internal normal force, shear
force, and moment at a section passing through point C for
this loading.

A
/
0.1'm 05m
c A
: if D @
§07sm e 075m—f075m—
y
P
Prob. 7-10

7-11. Determine the internal normal force, shear force,
and moment at points C and D of the beam.

60 1b /ft 690 Ib
40 Ib/ft
13/112
LT 5
Azo\_ . . 74
T C| =%=-B |D
12 ft 5 ft—
15 ft ‘ 10 ft
Prob. 7-11



7.1 INTERNAL LOADINGS DEVELOPED IN STRUCTURAL MEMBERS 355

*7-12. Determine the distance a between the bearings in
terms of the shaft’s length L so that the moment in the
symmetric shaft is zero at its center.

Prob. 7-12

7-13. Determine the internal normal force, shear force, and
moment in the beam at sections passing through points D
and E. Point D is located just to the left of the 5-kip load.

5 kip
1.5 kip/ft
6 kip - ft P/
f \ 4 Y VYV Y Y Y Y Y
| : @ ?
_A—;.—l_ D B E C
A
L6 ft 6 ft T 4ft ‘ 4 ft—
Prob. 7-13

7-14. The shaft is supported by a journal bearing at A and
a thrust bearing at B. Determine the normal force, shear
force, and moment at a section passing through (a) point C,
which is just to the right of the bearing at A, and (b) point D,
which is just to the left of the 3000-1b force.

2500 1b 30001b

75 1b /ft

el by

I gnitiol,y

6t 12 ft

2 ft

Prob. 7-14

7-15. Determine the internal normal force, shear force,
and moment at point C.

6 kN/m

T
Prob. 7-15

#*7-16. Determine the internal normal force, shear force,
and moment at point C of the beam.

400 N/m

Af .c _41?_
|
I

3m 3m

Prob. 7-16

7-17. The cantilevered rack is used to support each end of
a smooth pipe that has a total weight of 300 1b. Determine
the normal force, shear force, and moment that act in the
arm at its fixed support A along a vertical section.

000000000
0000 00O

Prob. 7-17
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7-18. Determine the internal normal force, shear force,
and the moment at points C and D.

6m
e—— 3 m —

Prob. 7-18

7-19. Determine the internal normal force, shear force,
and moment at point C.

B 0.5 ft
&)
3 ft — 2 ‘ft
Af 3 ¥
Al [ 1a C
150 Ib /ft

Y Y Y Y Y Y y

‘ 8 ft 1 41t

Prob. 7-19

#7-20. Rod AB is fixed to a smooth collar D, which slides
freely along the vertical guide. Determine the internal
normal force, shear force, and moment at point C, which is
located just to the left of the 60-1b concentrated load.

60 1b
—15 1b/ft
A
D | : Ry, 30
C
| 31t 1.5 ft—]
Prob. 7-20

7-21. Determine the internal normal force, shear force,
and moment at points £ and F of the compound beam.
Point E is located just to the left of 800 N force.

Prob. 7-21

7-22. Determine the internal normal force, shear force,
and moment at points D and E in the overhang beam.
Point D is located just to the left of the roller support at B,
where the couple moment acts.

6 kN - m

D B E
3 mg-‘*l.S m-~1.5m

Prob. 7-22

2 kN/m

7-23. Determine the internal normal force, shear force,
and moment at point C.

0.2m 400N
1m
Afo) ° _ L )B
C =0
~——1.5m—
‘ 3m i 2m |

Prob. 7-23
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*7-24. Determine the ratio of a/b for which the shear
force will be zero at the midpoint C of the beam.

m y
[ o\ .
AL C B .
a ‘ b2 b2 a
Prob. 7-24

7-25. Determine the normal force, shear force, and
moment in the beam at sections passing through points D
and E. Point E is just to the right of the 3-kip load.

3 kip
1.5 kip/ft

M

A b ﬂ %

|
=0 D B

A

6 ft ‘ 4 ft ‘
Prob. 7-25

7-26. Determine the internal normal force, shear force,
and bending moment at point C.

40 kN
8 kN/m
60°
0 1y v
B
~—— 3m ‘ 3m 3m —— |
0.3 m

Prob. 7-26

357

7-27. Determine the internal normal force, shear force,
and moment at point C.

200 N
1m
¢ J
Qf . 1O
A D ‘
~—1Im——1m— 2m 800N - m
Prob. 7-27

*7-28. Determine the internal normal force, shear force,
and moment at points C and D in the simply supported
beam. Point D is located just to the left of the 10-kN
concentrated load.

10 kN

C

‘&1.5 mJ&l.S mJel.S m—-~1.5m—

Prob. 7-28
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7-29. Determine the normal force, shear force, and
moment acting at a section passing through point C.

7-30. Determine the normal force, shear force, and
moment acting at a section passing through point D.

700 1b

Probs. 7-29/30

7-31. Determine the internal normal force, shear force,

and moment acting at points D and E of the frame.

P) ° 3 B

[
1.5m Zm

\ D
AN s 5

C

} 4m 900 N-m

Y
600 N
Prob. 7-31

#7-32. Determine the internal normal force, shear force,
and moment at point D.

a A

-

Prob. 7-32

7-33. Determine the internal normal force, shear force,
and moment at point D of the two-member frame.

7-34. Determine the internal normal force, shear force,
and moment at point E.

1.5m 1.5m

#

1.5 kN/m

1.5m <

oy

1.5m

S
a

2 kN/m

S

Probs. 7-33/34
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7-35. The strongback or lifting beam is used for materials
handling. If the suspended load has a weight of 2 kN and a
center of gravity of G, determine the placement d of the
padeyes on the top of the beam so that there is no moment
developed within the length AB of the beam. The lifting
bridle has two legs that are positioned at 45°, as shown.

02ml ¢ 4 = )
02mi | '

Prob. 7-35

*7-36. Determine the internal normal force, shear force,
and moment acting at points B and C on the curved rod.

200N

Prob. 7-36

7-37. Determine the internal normal force, shear force,
and moment at point D of the two-member frame.

7-38. Determine the internal normal force, shear force,
and moment at point £ of the two-member frame.

250 N/m
R REER AR RN R RN
l‘A . ‘D

l ,,O)C .E 300 N/m
*1 4m |

Probs. 7-37/38

7-39. The distributed loading w = wy sin 6, measured per
unit length, acts on the curved rod. Determine the internal
normal force, shear force, and moment in the rod at 6 = 45°.

#7-40. Solve Prob. 7-39 for 6 = 120°.

w = W sin 6

Probs. 7-39/40
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7-41. Determine the x, y, z components of force and
moment at point C in the pipe assembly. Neglect the weight
of the pipe. Take F, = {350i — 400j} b and
F, = {-300j + 150k} Ib.

Prob. 7-41

7-42. Determine the x, y, z components of force and
moment at point C in the pipe assembly. Neglect the weight
of the pipe. The load acting at (0, 3.5 ft, 3 ft) is
F, = {—24i — 10k} Ib and M = {30k} Ib- ft and at
point (0, 3.5 ft,0) F, = {—380i} Ib.

M
b
F, -

: \B

™

2 ft

Prob. 7-42

7-43. Determine the x, y, z components of internal loading at
a section passing through point B in the pipe assembly. Neglect
the weight of the pipe. Take F; = {200i — 100j — 400k } N
and F, = {300i — 500k } N.

Prob. 7-43

*7-44. Determine the x, y, z components of internal
loading at a section passing through point B in the pipe
assembly. Neglect the weight of the pipe. Take
F, = {100i — 200j — 300k } N and F, = {100i + 500j } N.

Prob. 7-44
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*7.2 Shear and Moment Equations and
Diagrams

Beams are structural members designed to support loadings applied
perpendicular to their axes. In general, they are long and straight and have
a constant cross-sectional area. They are often classified as to how they are
supported. For example, a simply supported beam is pinned at one end and
roller supported at the other, as in Fig. 7-9a, whereas a cantilevered beam
is fixed at one end and free at the other. The actual design of a beam requires
a detailed knowledge of the variation of the internal shear force V
and bending moment M acting at each point along the axis of the beam.*

These variations of V and M along the beam’s axis can be obtained by
using the method of sections discussed in Sec. 7.1. In this case, however, it
is necessary to section the beam at an arbitrary distance x from one end
and then apply the equations of equilibrium to the segment having the
length x. Doing this we can then obtain V and M as functions of x.

In general, the internal shear and bending-moment functions will be
discontinuous, or their slopes will be discontinuous, at points where a
distributed load changes or where concentrated forces or couple
moments are applied. Because of this, these functions must be determined
for each segment of the beam located between any two discontinuities of
loading. For example, segments having lengths x,, x,, and x; will have to
be used to describe the variation of V' and M along the length of the
beam in Fig. 7-9a. These functions will be valid only within regions
from O to a for x;, from a to b for x,, and from b to L for x;. If the
resulting functions of x are plotted, the graphs are termed the
shear diagram and bending-moment diagram, Fig. 7-9b and Fig. 7-9c,
respectively.

(a) (b)
Fig. 7-9

*The internal normal force is not considered for two reasons. In most cases, the loads
applied to a beam act perpendicular to the beam’s axis and hence produce only an internal
shear force and bending moment. And for design purposes, the beam’s resistance to shear,
and particularly to bending, is more important than its ability to resist a normal force.

To save on material and thereby produce an
efficient design, these beams, also called girders,
have been tapered, since the internal moment
in the beam will be larger at the supports,
or piers, than at the center of the span.
(© Russell C. Hibbeler)

(©)
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;..

v ¢ Shear and moment diagrams for a beam provide graphical
A% descriptions of how the internal shear and moment vary

Positive shear throughout the beam’s length.
¢ To obtain these diagrams, the method of sections is used to
determine V and M as functions of x. These results are then

plotted. If the load on the beam suddenly changes, then regions

M M
- ‘> ( - between each load must be selected to obtain each function of x.

Positive moment

M M
)
/ Procedure for Analysis

Beam sign convention

The shear and bending-moment diagrams for a beam can be
Fig. 7-10 constructed using the following procedure.

Support Reactions.

e Determine all the reactive forces and couple moments acting on
the beam and resolve all the forces into components acting
perpendicular and parallel to the beam’s axis.

Shear and Moment Functions.

e Specify separate coordinates x having an origin at the beam’s left
end and extending to regions of the beam between concentrated
forces and/or couple moments, or where the distributed loading is
continuous.

e Section the beam at each distance x and draw the free-body
diagram of one of the segments. Be sure V and M are shown acting
in their positive sense, in accordance with the sign convention given
in Fig. 7-10.

e The shear V is obtained by summing forces perpendicular to the
beam’s axis, and the moment M is obtained by summing moments
about the sectioned end of the segment.

Shear and Moment Diagrams.

e Plot the shear diagram (V versus x) and the moment diagram
(M versus x). If computed values of the functions describing V'
and M are positive, the values are plotted above the x axis,

The shelving arms must be designed to resist whereas negative values are plotted below the x axis.
the internal loading in the arms caused by
the lumber. (© Russell C. Hibbeler)
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Draw the shear and moment diagrams for the shaft shown in Fig. 7-11a.
The support at A is a thrust bearing and the support at C is a journal
bearing.

SOLUTION

Support Reactions. The support reactions are shown on the shaft’s
free-body diagram, Fig. 7-11d.

Shear and Moment Functions. The shaft is sectioned at an arbitrary
distance x from point A, extending within the region AB, and the free-
body diagram of the left segment is shown in Fig. 7-11b. The unknowns
V and M are assumed to act in the positive sense on the right-hand face
of the segment according to the established sign convention. Applying
the equilibrium equations yields

V =25kN
M = 2.5x kKN -m

1)
()
A free-body diagram for a left segment of the shaft extending from A

a distance x, within the region BC is shown in Fig. 7-11c. As always,
V and M are shown acting in the positive sense. Hence,

+13F, = 0;
C+IM = 0;

+13F, = 0; 25kN = 5kN -V =0
V = -25kN 3)
C+EM =0; M+ 5kNx —2m) — 25kN@x) =0
M = (10 — 2.5x)kN-m (4)

Shear and Moment Diagrams. When Eqgs. 1 through 4 are plotted
within the regions in which they are valid, the shear and moment
diagrams shown in Fig. 7-11d are obtained. The shear diagram indicates
that the internal shear force is always 2.5 kN (positive) within segment
AB. Just to the right of point B, the shear force changes sign and
remains at a constant value of —2.5 kN for segment BC. The moment
diagram starts at zero, increases linearly to point B at x = 2 m, where
M .x = 2.5kN(Q2 m) = 5 kN - m, and thereafter decreases back to zero.

NOTE: Itis seen in Fig. 7-11d that the graphs of the shear and moment
diagrams “jump” or changes abruptly where the concentrated force
acts, i.e., at points A, B, and C. For this reason, as stated earlier, it is
necessary to express both the shear and moment functions separately
for regions between concentrated loads. It should be realized, however,
that all loading discontinuities are mathematical, arising from the
idealization of a concentrated force and couple moment. Physically,
loads are always applied over a finite area, and if the actual load
variation could be accounted for, the shear and moment diagrams
would then be continuous over the shaft’s entire length.

363

2.5kN
0=x<2m
(b)
5 kN
Ix —2m
2 m v
Al ] 1 V)M
B
X
2.5kN
2m<x=4m
(©)
5 kN
Al ] Tl C
2.5kN 2.5kN
V (kN)
V=25
2 4 x (m)
M (kN - m) V=-25
M=25c | Mnax =5
= (10 — 2.5x)
2 4 x (m)
(d)
Fig. 7-11
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1 >
5z x° kN
3% /%ka/m
ok T
i |
=Y

6 kN/m
= |
T \
9kN
V (kN) 2
g =9-% 18 kN
)
—520m—
M (kN - m) E 18
M = 9x — ?
M, =312
520 g *(m)

(©)

Fig. 7-12

Draw the shear and moment diagrams for the beam shown in
Fig. 7-12a.

SOLUTION

Support Reactions. The support reactions are shown on the beam’s
free-body diagram, Fig. 7-12c.

Shear and Moment Functions. A free-body diagram for a left
segment of the beam having a length x is shown in Fig. 7-12b. Due to
proportional triangles, the distributed loading acting at the end of this
segment has an intensity of w/x = 6/9 orw = (2/3)x.1tis replaced by
a resultant force after the segment is isolated as a free-body diagram.
The magnitude of the resultant force is equal to %(x)(%x) 1x2. This
force acts through the centroid of the distributed loading area, a
distance {x from the right end. Applying the two equations of
equilibrium yields

+13F, = 0; 9—§x2—V=0
x2
—< —g)kN (1)
1 X
C+3IM = 0; M + §x2(§> -9 =0
x3
M:<9x—9>kN-m 2)

Shear and Moment Diagrams. The shear and moment diagrams
shown in Fig. 7-12¢ are obtained by plotting Egs. 1 and 2.
The point of zero shear can be found using Eq. 1:

Vv

9_

E L")|><N

5.20

X

NOTE: It will be shown in Sec. 7.3 that this value of x happens to
represent the point on the beam where the maximum moment occurs.
Using Eq. 2, we have

( (5.20)3)
My = | 9(5.20) — . kN +m

= 31.2kN-m
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. FUNDAMENTAL PROBLEMS

F7-7. Determine the shear and moment as a function of x,
and then draw the shear and moment diagrams.

—

X

3m |

Prob. F7-7

F7-8. Determine the shear and moment as a function of x,
and then draw the shear and moment diagrams.

2kN/m
15 kN'm
( Y Y
‘ A
VS
3 m |
Prob. F7-8

F7-9. Determine the shear and moment as a function of x,
and then draw the shear and moment diagrams.

6 kN/m

Prob. F7-9

F7-10. Determine the shear and moment as a function of
x, and then draw the shear and moment diagrams.

\ 6m \

Prob. F7-10

F7-11. Determine the shear and moment as a function of
x,where 0 = x < 3mand 3m < x = 6 m, and then draw
the shear and moment diagrams.

30kN - m
~N
AE!!lllllllll.!'llllllll!!!B
C P
. |
‘ 3m ‘ 3m ‘
Prob. F7-11

F7-12. Determine the shear and moment as a function of
x,where 0 = x < 3mand3m < x = 6m, and then draw
the shear and moment diagrams.

7 |

I 3m 3m |

Prob. F7-12
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“leromiews

7-45. Draw the shear and moment diagrams for the shaft
(a) in terms of the parameters shown; (b) set P = 9 kN,
a=2m, L = 6m. There is a thrust bearing at A and a

journal bearing at B.

Prob. 7-45

7-46. Draw the shear and moment diagrams for the beam
(a) in terms of the parameters shown; (b) set P = 800 Ib,

a= 51t L =121t

a

Prob. 7-46

7-47. Draw the shear and moment diagrams for the beam
(a) in terms of the parameters shown; (b) set P = 600 Ib,

a=51t,b=T71t

*7-48. Draw the shear and moment diagrams for the

cantilevered beam.

100 1b
800 Ib-ft
™~
C
B F ‘
5 ft ‘ 5ft ‘
Prob. 7-48

7-49. Draw the shear and moment diagrams of the beam

(a) in terms of the parameters shown;
L=8m.

(b) set My=500N - m,

7-50. If L = 9 m, the beam will fail when the maximum
shear force is V., = SkN or the maximum bending
moment is M,,, = 2kN-m. Determine the magnitude M,

of the largest couple moments it will

support.

My M,

~N 7 L

} L/3 | L3 |

L

Probs. 7-49/50

7-51. Draw the shear and moment diagrams for the beam.

Prob. 7-51
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*7-52. Draw the shear and moment diagrams for the beam.

A (n\ = |C

Nl

L
Prob. 7-52

7-53. Draw the shear and bending-moment diagrams for
the beam.

50 1b /ft
200 1b-ft
AR |)
0. B C
20 ft 10 ft —
Prob. 7-53

7-54. The shaft is supported by a smooth thrust bearing at
A and a smooth journal bearing at B. Draw the shear and
moment diagrams for the shaft (a) in terms of the
parameters shown; (b) set w = 500 Ib/ft, L = 10 ft.

ﬁmmmuum%
» T

7-55. Draw the shear and moment diagrams for the beam.

20 kN

RRRRRTY ll>
B_é‘_:sm:_‘lSO kN-m

Prob. 7-55
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*7-56. Draw the shear and moment diagrams for the beam.

1.5kN/m

Prob. 7-56

7-57. Draw the shear and moment diagrams for the
compound beam. The beam is pin connected at £ and F.

Prob. 7-57

7-58. Draw the shear and bending-moment diagrams for
each of the two segments of the compound beam.

150 Ib /ft

;LHHlHHH
=N

4ftJ

|
Co—

10 ft ‘
21t 121t

Prob. 7-58

7-59. Draw the shear and moment diagrams for the beam.

30 Ib/ft

il ,
A )

9 ft 1
Prob. 7-59

180 1b - ft

4.5 ft—
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*7-60. The shaft is supported by a smooth thrust bearing
at A and a smooth journal bearing at B. Draw the shear and
moment diagrams for the shaft.

300 1b /ft
M =N
~ ]
Prob. 7-60

7-61. Draw the shear and moment diagrams for the beam.

20 kip 20 kip
4 kip/ft

[ 5 |
A —0 B priivy
Lls ft 30 ft 15 ft—»‘
Prob. 7-61

7-62. The beam will fail when the maximum internal
moment is M, Determine the position x of the
concentrated force P and its smallest magnitude that will
cause failure.

P

]
Zo': )
—_—
| L 1
Prob. 7-62

7-63. Draw the shear and moment diagrams for the beam.

4 Kip /ft

12 ft 12 ft !

Prob. 7-63
*#7-64. Draw the shear and moment diagrams for the beam.

3 kip/ft

2 kip/ft
T

—

1 6 ft 3 it

hN

Prob. 7-64

7-65. Draw the shear and moment diagrams for the beam.

Prob. 7-65
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7-66. Draw the shear and moment diagrams for the beam.

w
w
2
AZ °© ‘, B
L
Prob. 7-66

7-67. Determine the internal normal force, shear force,
and moment in the curved rod as a function of 6. The force
P acts at the constant angle ¢.

’ R
AL

Prob. 7-67

SHEAR AND MOMENT EQUATIONS AND DIAGRAMS 369

*7-68. The quarter circular rod lies in the horizontal plane and
supports a vertical force P at its end. Determine the magnitudes
of the components of the internal shear force, moment, and
torque acting in the rod as a function of the angle 6.

P
Prob. 7-68

7-69. Express the internal shear and moment components
acting in the rod as a function of y, where 0 = y = 4 ft.

41b/ft

Prob. 7-69
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In order to design the beam used to
support these power lines, it is
important to first draw the shear and
moment diagrams for the beam.

CHAPTER 7 INTERNAL FORCES

(© Russell C. Hibbeler)

oC \ D
M(‘) 0
}7)6 ~——Ax
(a)
AF = w(x) Ax

*7.3 Relations between Distributed
Load, Shear, and Moment

If a beam is subjected to several concentrated forces, couple moments,
and distributed loads, the method of constructing the shear and bending-
moment diagrams discussed in Sec. 7.2 may become quite tedious. In
this section a simpler method for constructing these diagrams is
discussed—a method based on differential relations that exist between
the load, shear, and bending moment.

Distributed Load. Consider the beam AD shown in Fig. 7-13a,
which is subjected to an arbitrary load w = w(x) and a series of
concentrated forces and couple moments. In the following discussion, the
distributed load will be considered positive when the loading acts upward
as shown. A free-body diagram for a small segment of the beam having a
length Ax is chosen at a point x along the beam which is not subjected to
a concentrated force or couple moment, Fig. 7-13b. Hence any results
obtained will not apply at these points of concentrated loading. The
internal shear force and bending moment shown on the free-body
diagram are assumed to act in the positive sense according to the
established sign convention. Note that both the shear force and moment
acting on the right-hand face must be increased by a small, finite amount
in order to keep the segment in equilibrium. The distributed loading has
been replaced by a resultant force AF = w(x) Ax that acts at a fractional
distance k(Ax) from the right end, where 0 < k < 1 [for example, if w(x)
is uniform, k = 1.

Relation between the Distributed Load and Shear. Ifwe
apply the force equation of equilibrium to the segment, then

+13F, = 0; V+ wx)Ax —(V+ AV) =0
AV = w(x)Ax

Dividing by Ax, and letting Ax — 0, we get

o=
dx (7-1)

Slope of _ Distributed load

shear diagram intensity
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If we rewrite the above equation in the form dV = w(x)dx and perform
an integration between any two points B and C on the beam, we see that

AV = /w(x) dx

Changein _  Area under
shear loading curve

(7-2)

Relation between the Shear and Moment. If we apply the
moment equation of equilibrium about point O on the free-body diagram
in Fig. 7-13b, we get

C+IMy,=0; M + AM) — [wx)Ax]kAx —VAx—M = 0
AM = VAx + kwx)Ax?

Dividing both sides of this equation by Ax, and letting Ax — 0, yields
am _
dx
Slope of
moment diagram

\%
(7-3)
= Shear

In particular, notice that a maximum bending moment |M]|,,,, will
occur at the point where the slope dM/dx = 0, since this is where the
shear is equal to zero.

If Eq. 7-3 is rewritten in the form dM = f V dx and integrated between
any two points B and C on the beam, we have

AMZ/de

Changein _ Areaunder

moment shear diagram

(7-4)

As stated previously, the above equations do not apply at points where
a concentrated force or couple moment acts. These two special cases
create discontinuities in the shear and moment diagrams, and as a result,
each deserves separate treatment.

Force. A free-body diagram of a small segment of the beam in
Fig. 7-13a, taken from under one of the forces, is shown in Fig. 7-14a.
Here force equilibrium requires

+13F, = 0; AV=F (7-5)

Since the change in shear is positive, the shear diagram will “jump”
upward when F acts upward on the beam. Likewise, the jump in shear
(AV) is downward when F acts downward.

Y

V+AV

Ax
(a)

Fig. 7-14

371
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M,

oy

V+ AV

“Ax]
(b)
Fig. 7-14 (cont.)

This concrete beam is used to support the
deck. Its size and the placement of steel
reinforcement within it can be determined
once the shear and moment diagrams have
been established. (© Russell C. Hibbeler)

Couple Moment. If we remove a segment of the beam in Fig. 7-13a
that is located at the couple moment M,, the free-body diagram shown in
Fig. 7-14b results. In this case letting Ax — 0, moment equilibrium requires

Thus, the change in moment is positive, or the moment diagram will
“jump” upward if My is clockwise. Likewise, the jump AM is downward
when M, is counterclockwise.

The examples which follow illustrate application of the above equations
when used to construct the shear and moment diagrams. After working
through these examples, it is recommended that you also go back and
solve Examples 7.6 and 7.7 using this method.

Important Points

¢ The slope of the shear diagram at a point is equal to the intensity
of the distributed loading, where positive distributed loading is
upward, i.e., dV/dx = w(x).

o The change in the shear AV between two points is equal to the
area under the distributed-loading curve between the points.

o If a concentrated force acts upward on the beam, the shear will
jump upward by the same amount.

¢ The slope of the moment diagram at a point is equal to the shear,
ie.,dM/dx = V.

o The change in the moment AM between two points is equal to
the area under the shear diagram between the two points.

o Ifa clockwise couple moment acts on the beam, the shear will not
be affected; however, the moment diagram will jump upward by
the amount of the moment.

o Points of zero shear represent points of maximum or minimum
moment since dM /dx = 0.

¢ Because two integrations of w = w(x) are involved to first
determine the change in shear, AV = f w (x) dx, then to
determine the change in moment, AM = f Vdx, then if the
loading curve w = w(x) is a polynomial of degree n, V = V(x) will
be a curve of degree n + 1, and M = M(x) will be a curve of
degree n + 2.
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EXAMPLE

Draw the shear and moment diagrams for the cantilever
beam in Fig. 7-15a.

1.5kN/m

Fig. 7-15

SOLUTION
The support reactions at the fixed support B are shown in
Fig. 7-15b.

Shear Diagram. The shear at end A is —2 kN. This value is
plotted at x = 0, Fig. 7-15¢. Notice how the shear diagram is
constructed by following the slopes defined by the loading w.
The shear at x =4 m is —5 kN, the reaction on the beam. This
value can be verified by finding the area under the
distributed loading; i.e.,

V] iam = V]mam + AV = —2kN — (L5 kN/m)2m) = —5 kN

Moment Diagram. The moment of zero at x =0 is plotted
in Fig. 7-15d. Construction of the moment diagram is based
on knowing that its slope is equal to the shear at each point.
The change of moment from x =0 to x =2 m is determined
from the area under the shear diagram. Hence, the moment
atx=2mis

M|, —sm=M|,_g+ AM =0+ [-2kN2m)] = —4kN-m

This same value can be determined from the method of
sections, Fig. 7-15e.

e

2m /
w=0 (b)
V'slope =0

w = negative constant
V slope = negative constant

V (kN)

V' = negative constant
M slope = negative constant

V = negative increasing
M slope = negative increasing

M (kKN-m)
2 4
0 | | X (m)
—4
—11
(d)
2 kN
V =2kN
] ) ¥ - 4
1 2m !

(e)
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EXAMPLE | 7.9

4 kN/m

w=0 w = negative constant
Vslope =0 V slope = negative constant

V (kN)

V = positive decreasing

M slope = positive decreasing
V = negative constant

M slope = negative constant

M (kN-m)

4% + x (m)
2

-8
(d)

Draw the shear and moment diagrams for the overhang
beam in Fig. 7-16a.

ﬂ :

B

SOLUTION
The support reactions are shown in Fig. 7-16b.

Shear Diagram. The shear of =2 kN at end A of the beam
is plotted at x = 0, Fig. 7-16c¢. The slopes are determined
from the loading and from this the shear diagram is
constructed, as indicated in the figure. In particular, notice
the positive jump of 10 kN at x =4 m due to the force B,, as
indicated in the figure.

Moment Diagram. The moment of zero at x =0 is plotted,
Fig. 7-16d, then following the behavior of the slope found
from the shear diagram, the moment diagram is constructed.
The moment at x = 4 m is found from the area under the
shear diagram.

M| —ym =M|,—g+ AM =0 + [-2kN@m)] = —8kN-m

We can also obtain this value by using the method of
sections, as shown in Fig. 7-16e.

V =2kN

A }M=8kN~m

l 4m \

2 kN

(e)
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EXAMPLE

The shaft in Fig. 7-17a is supported by a thrust bearing at A
and a journal bearing at B. Draw the shear and moment
diagrams.

120 Ib/ft

! 12 ft !
(a)
Fig. 7-17

SOLUTION
The support reactions are shown in Fig. 7-17b.

Shear Diagram.  Asshown in Fig. 7-17¢, the shear at x =0 is +240.
Following the slope defined by the loading, the shear diagram is
constructed, where at B its value is —480 Ib. Since the shear changes
sign, the point where V = 0 must be located. To do this we will use
the method of sections. The free-body diagram of the left segment
of the shaft, sectioned at an arbitrary position x within the region
0 = x < 12 ft,isshown in Fig. 7-17e. Notice that the intensity of the
distributed load at x is w =10x, which has been found by proportional
triangles,i.e., 120/12 = w/x.
Thus, for V=0,

240 1b —5(10x)x = 0
x = 6.93 ft

+13F, = 0;

Moment Diagram. The moment diagram starts at 0 since
there is no moment at A, then it is constructed based on the
slope as determined from the shear diagram. The maximum
moment occurs at x = 6.93 ft, where the shear is equal to zero,
since dM /dx =V =0, Fig. 7-17e,

C+3IM = 0;
Moo + 5 1(10)(6.93)]1 6.93 (5 (6.93)) — 240(6.93) = 0
M, = 11091b-ft
Finally, notice how integration, first of the loading w which is

linear, produces a shear diagram which is parabolic, and then a
moment diagram which is cubic.

120 Ib/it

linear —

Al [ |B

A {// A
12 ft
A, =2401b \v (b)

w = negative increasing
V slope = negative increasing

parabolic
(55

B, =4801b

V (Ib)

240

— 480

V =positive decreasing
M slope = positive decreasing

V = negative increasing

M slope = negative increasing
M (lb-ft)

(C))
%[le]x
e X
3
10 x
v
\ ] ‘
A
A l M
X

A, =2401b

(e)
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. FUNDAMENTAL PROBLEMS

F7-13. Draw the shear and moment diagrams for the beam. F7-16. Draw the shear and moment diagrams for the beam.

4 kN 6 kN 6 kN /m 6 kN/m

A A A A

R A BJ

~1.5m— 3m ! 1.5m

R
1m i 1m i 1m—
Prob. F7-16
Prob. F7-13
F7-14. Draw the shear and moment diagrams for the beam. F7-17. Draw the shear and moment diagrams for the beam.
6 kN
8 kN/m 6 kN/m 6 kN/m
‘ ‘ m\ m
Z B e s —
-
1.5m 1.5m ‘ | ‘ ‘
[ 3m T 3m |
Prob. F7-14
Prob. F7-17

F7-15. Draw the shear and moment diagrams for the beam.

F7-18. Draw the shear and moment diagrams for the beam.

12 kN

9 kN/m

Nt
|

I 2m | 2 m 2m ! { 3m | 3m }

Prob. F7-15 Prob. F7-18
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“leromiews

7-70. Draw the shear and moment diagrams for the beam.

800 N

e —

i

.

Prob. 7-70

7-71. Draw the shear and moment diagrams for the beam.

“711'11 | 2m |

Prob. 7-71

*7-72. Draw the shear and moment diagrams for the
beam. The support at A offers no resistance to vertical load.

| .

Prob. 7-72

7-73. Draw the shear and moment diagrams for the
simply-supported beam.

2W0

Wo

| L2 L2 |
Prob. 7-73
7-74. Draw the shear and moment diagrams for the beam.

The supports at A and B are a thrust bearing and journal
bearing, respectively.

600 N
300 N 1200 N/m
A B
~0.5m ‘ 1m ‘ 0.5 m—|
Prob. 7-74

7-75. Draw the shear and moment diagrams for the beam.

250 N/m
| TRRRREY :
A B &
2m 2m
A
S00 N
Prob. 7-75
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*7-76. Draw the shear and moment diagrams for the beam.

15 kN

10 kN/m
20kN - m

\ v

A
E o | |B
}-—2 m—»Ll ma‘—{l ma‘-—2 mf

Prob. 7-76

7-77. Draw the shear and moment diagrams for the beam.

2 kip/ft
50 kip - ft 50 kip - ft
A
| __
J — — B “al s
LIO ft 20 ft 10 ft *»‘
Prob. 7-77

7-78. Draw the shear and moment diagrams for the beam.

8 kN
l 15kN/m

20 kN-m
\

T/' =2 B

A om lime2m e 3m

Prob. 7-78

7-79. Draw the shear and moment diagrams for the shaft. The
support at A is a journal bearing and at B it is a thrust bearing.

200 1b 100 1b /£t

l A Bl 300 1b-i>
[ ]

~— 1ft 1 4 ft l 1ft»‘

Prob. 7-79

*7-80. Draw the shear and moment diagrams for the beam.

RERARYY
- e ji'c
4ft ! 21t ! 3 £ 1

Prob. 7-80

7-81. The beam consists of three segments pin connected at
B and E. Draw the shear and moment diagrams for the beam.

9kN/m

e IR TR IR TR NENY

A lF

A b = o g e E4
C D

Lf4.5m—> 2 m>2 m>~2 m-| 4 m—-

Prob. 7-81
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7-82. Draw the shear and moment diagrams for the beam.
The supports at A and B are a thrust and journal bearing,
respectively.

200 N/m

FRRRNRENNNY!
S, ab:

‘ 600 N - m

Prob. 7-82

7-83. Draw the shear and moment diagrams for the beam.

9kN/m 9kN/m
1 3m | 3m
Prob. 7-83

*7-84. Draw the shear and moment diagrams for the beam.

6 kN/m
3kN/m
RENNEN C
_ B =0
3m | 3m
Prob. 7-84

7-85. Draw the shear and moment diagrams for the beam.

600 Ib /1t
B A
31t 6 ft 31t J
Prob. 7-85

7-86. Draw the shear and moment diagrams for the beam.

3kN/m

Prob. 7-86

7-87. Draw the shear and moment diagrams for the beam.

4kN/m
liiﬁkT/Tiil, ne

Prob. 7-87



380 CHAPTER 7 INTERNAL FORCES

*7-88. Draw the shear and moment diagrams for the beam.

6 kN/m

Prob. 7-88

7-89. Draw the shear and moment diagrams for the beam.

1500 Ib

400 Ib/ft 400 Ib/fit

6 ft : 6 ft :

Prob. 7-89

7-90. Draw the shear and moment diagrams for the beam.

9kN/m

6 kN - m
A
| 3m }B

Prob. 7-90

7-91. Draw the shear and moment diagrams for the beam.

12 kN/m 6 iN

m
|

6m i 3m |

Prob. 7-91

*7-92. Draw the shear and moment diagrams for the beam.

6 kN/m 6 kN/m
A B ¢

1.5m

1.5m

Prob. 7-92

7-93. Draw the shear and moment diagrams for the beam.

2 kip /tt
m Y Y
|
. Y
1 kip /tt
15 ft r
Prob. 7-93



*7.4 Cables

Flexible cables and chains combine strength with lightness and often are
used in structures for support and to transmit loads from one member to
another. When used to support suspension bridges and trolley wheels,
cables form the main load-carrying element of the structure. In the force
analysis of such systems, the weight of the cable itself may be neglected
because it is often small compared to the load it carries. On the other
hand, when cables are used as transmission lines and guys for radio
antennas and derricks, the cable weight may become important and must
be included in the structural analysis.

Three cases will be considered in the analysis that follows. In each case
we will make the assumption that the cable is perfectly flexible and
inextensible. Due to its flexibility, the cable offers no resistance to bending,
and therefore, the tensile force acting in the cable is always tangent to the
cable at points along its length. Being inextensible, the cable has a constant
length both before and after the load is applied. As a result, once the load
is applied, the geometry of the cable remains unchanged, and the cable or
a segment of it can be treated as a rigid body.

Cable Subjected to Concentrated Loads. When a cable
of negligible weight supports several concentrated loads, the cable
takes the form of several straight-line segments, each of which is
subjected to a constant tensile force. Consider, for example, the cable
shown in Fig. 7-18, where the distances 4, L, L,, and L; and the loads P,
and P, are known. The problem here is to determine the nine unknowns
consisting of the tension in each of the three segments, the four
components of reaction at A and B, and the fwo sags y. and y, at
points C and D. For the solution we can write two equations of force
equilibrium at each of points A, B, C, and D. This results in a total of
eight equations.* To complete the solution, we need to know something
about the geometry of the cable in order to obtain the necessary ninth
equation. For example, if the cable’s total length L is specified, then the
Pythagorean theorem can be used to relate each of the three segmental
lengths, written in terms of 4, y¢, yp, Ly, Lo, and L, to the total length L.
Unfortunately, this type of problem cannot be solved easily by hand.
Another possibility, however, is to specify one of the sags, either y. or
vp, instead of the cable length. By doing this, the equilibrium equations
are then sufficient for obtaining the unknown forces and the remaining
sag. Once the sag at each point of loading is obtained, the length of the
cable can then be determined by trigonometry. The following example
illustrates a procedure for performing the equilibrium analysis for a
problem of this type.

*As will be shown in the following example, the eight equilibrium equations also can be
written for the entire cable, or any part thereof. But no more than eight independent
equations are available.
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Each of the cable segments remains
approximately straight as they sup-
port the weight of these traffic lights.
(© Russell C. Hibbeler)
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EXAMPLE | 7.11

Determine the tension in each segment of the cable shown in Fig. 7-19a.

AX EX

SOLUTION

By inspection, there are four unknown external reactions (A,, A, E,
and E,) and four unknown cable tensions, one in each cable segment.
3 KN These eight unknowns along with the two unknown sags yz and y, can

4KN be determined from fen available equilibrium equations. One method
is to apply the force equations of equilibrium (2F, = 0, XF, = 0) to
| each of the five points A through E. Here, however, we will take a
s h of the five points A through E. Here, h ill tak
3m’ ! 2 m more direct approach.
(b) Consider the free-body diagram for the entire cable, Fig. 7-19b. Thus,
E3F, =0 —A,+E =0
12kN —A,(18m) + 4kN (15m) + 15kN (10m) + 3kN(2m) = 0
A A, = 12kN
+13F, = 0; 12kN — 4kN — 15kN — 3kN + E, = 0
12m E, = 10kN
\ Since the sag yc = 12 m is known, we will now consider the leftmost
. Opc section, which cuts cable BC, Fig. 7-19c¢.
Tpe c
4kN C+IM-=0;A,(12m) — 12kN(8m) + 4kN(5m) = 0
L A, = E, = 633kN
am | O™ H3F =0, Tpe cos Ozc — 6.33kN = 0
(c) +13F, =0; 12KN — 4kN — Tpesinfzc = 0
Fig. 7-19 Thus,
OBC = 51.6°

Tpe = 10.2 kN Ans.
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12 kN 10 kN

6.33 kKN A \ = 6.33 kN
045 Oep
Taz 15 kN Tep

(d) (e) (®
Fig. 7-19 (cont.)

Proceeding now to analyze the equilibrium of points A, C, and E in
sequence, we have

Point A.  (Fig. 7-19d).

H3F, =0; Ty5c0s 0,3 — 6.33kN = 0
+13F, = 0; —Tupsin@,z + 12kN = 0
045 = 62.2°
T,z = 13.6 kKN Ans.

Point C. (Fig.7-19e).

L5 3F, =0; Tep cos Ocp — 10.2 cos 51.6°kN = 0
+13F, = 0; Tcpsinbcp + 102sin51.6°kN — 15kN = 0

Ocp = 47.9°

Tcp = 9.44 kN Ans.

Point E. (Fig. 7-19f).

S5 3F, =0; 6.33kN — Ty cos Ozp = 0
+T2Fy:O, IOKN—TEDSinf)EDZO
OED = 57.7°
Tgp = 11.8 kN Ans.

NOTE: By comparison, the maximum cable tension is in segment AB
since this segment has the greatest slope (0) and it is required that for
any cable segment the horizontal component Tcosf = A, = E,
(a constant). Also, since the slope angles that the cable segments make
with the horizontal have now been determined, it is possible to
determine the sags yz and yp, Fig. 7-19a, using trigonometry.
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The cable and suspenders are used to
support the uniform load of a gas pipe
which crosses the river. (© Russell C.
Hibbeler)

Fig. 7-20

Cable Subjected to a Distributed Load. Let us now consider
the weightless cable shown in Fig. 7-20a, which is subjected to a distributed
loading w = w(x) that is measured in the x direction. The free-body
diagram of a small segment of the cable having a length As is shown in
Fig. 7-20b. Since the tensile force changes in both magnitude and direction
along the cable’s length, we will denote this change on the free-body
diagram by AT. Finally, the distributed load is represented by its resultant
force w(x)(Ax), which acts at a fractional distance k(Ax) from point O,
where 0 < k < 1. Applying the equations of equilibrium, we have

L 3F, =0; —Tcosf + (T + AT)cos(§ + AB) = 0
+T2Fy =0 —Tsinf — wx)(Ax) + (T + AT)sin(@ + AG) = 0
C+2IM, = 0; w(x)(Ax)k(Ax) — Tcos @ Ay + Tsinf Ax = 0

Dividing each of these equations by Ax and taking the limit as Ax — 0,
and therefore Ay — 0, A6 — 0, and AT — 0, we obtain

d(T cos 0) 0 (7-7)
dx
d(T sin 6) W) = 0 (7-8)
dx
o = tan 6 (7-9)

dx



T+ AT

0+A6

—— A

(b)
Fig. 7-20 (cont.)

Integrating Eq. 7-7, we have

T cos = constant = Fy (7-10)

where Fy represents the horizontal component of tensile force at any
point along the cable.
Integrating Eq. 7-8 gives

Tsinf = /w(x) dx (7-11)

Dividing Eq. 7-11 by Eq. 7-10 eliminates 7. Then, using Eq. 7-9, we
can obtain the slope of the cable.

t0—@—1.(M
ng =2 -1
a i P, w(x) dx

Performing a second integration yields

y :FLH (/w(x)dx)dx

This equation is used to determine the curve for the cable,y = f(x). The
horizontal force component Fy and the additional two constants, say
C, and C,, resulting from the integration are determined by applying the
boundary conditions for the curve.

(7-12)

385

7.4 CAaBLES

The cables of the suspension bridge exert
very large forces on the tower and the
foundation block which have to be accounted
for in their design. (© Russell C. Hibbeler)
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EXAMPLE |7.12

The cable of a suspension bridge supports half of the uniform road
surface between the two towers at A and B, Fig. 7-21a. If this
distributed loading is wy, determine the maximum force developed in
the cable and the cable’s required length. The span length L and sag &
are known.

Fig. 7-21

SOLUTION

We can determine the unknowns in the problem by first finding the
equation of the curve that defines the shape of the cable using Eq. 7-12.
For reasons of symmetry, the origin of coordinates has been placed at
the cable’s center. Noting that w(x) = w,, we have

1
yZFH </w0dx>dx

Performing the two integrations gives

1 [ wox?

The constants of integration may be determined using the boundary
conditions y = 0 at x = 0 and dy/dx = 0 at x = 0. Substituting into
Eq. 1 and its derivative yields C; = C, = 0. The equation of the curve
then becomes

Wo
y =

=3 Fsz (@)
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This is the equation of a parabola. The constant F; may be obtained
using the boundary condition y = h at x = L/2. Thus,

W0L2
Fy = 3
" =g 3)
Therefore, Eq. 2 becomes
4h ,
y =% )

Since Fy is known, the tension in the cable may now be determined
using Eq. 7-10, written as 7 = Fy/cosf. For 0 = 6 < 7/2, the
maximum tension will occur when 6 is maximum, i.e., at point B,
Fig. 7-21a. From Eq. 2, the slope at this point is

dy Wo
— =tan O, = — X
dx|,=pp Fr li=1p
or
_ W()L
Omax = tan l<2F) (5)
H
Therefore,
Fy
Thox = ———— 6
max COS(OmaX) ( )

Using the triangular relationship shown in Fig. 7-21b, which is based
on Eq. 5, Eq. 6 may be written as

VA4F, + wiL?

Tmax = 2
Substituting Eq. 3 into the above equation yields
woL L\’
Thax = T 1+ <4h> Ans.

For a differential segment of cable length ds, we can write

2
ds = V(dx)* + (dy)? = |1 + <jy) dx
X

Hence, the total length of the cable can be determined by integration.
Using Eq. 4, we have

.§£=/ds=2/0L/2w/1+<i}21x)2dx (7)

Integrating yields

L 4h\* L 4h
Z = [ 1+ () + sinh_l<>} Ans.
2 L 4h IL,

Fig. 7-21 (cont.)
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Cable Subjected to Its Own Weight. When the weight of a
cable becomes important in the force analysis, the loading function along
the cable will be a function of the arc length s rather than the projected
length x. To analyze this problem, we will consider a generalized loading
function w = w(s) acting along the cable, as shown in Fig. 7-22a. The free-
body diagram for a small segment As of the cable is shown in Fig. 7-22b.
Applying the equilibrium equations to the force system on this diagram,
one obtains relationships identical to those given by Egs. 7-7 through 7-9,
but with s replacing x in Egs. 7-7 and 7-8. Therefore, we can show that

TcosO = Fy

Tsinf = /w(s) ds (7-13)
dy 1 [
o F, w(s) ds (7-14)

To perform a direct integration of Eq. 7-14, it is necessary to replace
dy /dx by ds/dx. Since

ds = Vdx* + dy’

o JE
dx dx

then



w(s)(As)

T+ AT

(b)
Fig. 7-22 (cont.)

d 1 271/2
ﬁz {1 +F§</w(s)ds> }

Separating the variables and integrating we obtain

Therefore,

o / ds
D

H

The two constants of integration, say C; and C,, are found using the
boundary conditions for the curve.
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Electrical transmission towers must be designed
to support the weights of the suspended power
lines. The weight and length of the cables can
be determined since they each form a
catenary curve. (© Russell C. Hibbeler)
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EXAMPLE | 7.13

Determine the deflection curve, the length, and the maximum tension
in the uniform cable shown in Fig. 7-23. The cable has a weight per
unit length of wy = 5N/m.

SOLUTION

For reasons of symmetry, the origin of coordinates is located at the
center of the cable. The deflection curve is expressed as y = f(x). We
can determine it by first applying Eq. 7-15, where w(s) = w.

B ds
e T

Integrating the term under the integral sign in the denominator, we have

ds
x =
/ [1 + (1/F@)wos + C1'?
Substituting u = (1/Fy)(wes + C)) so that du = (w(/Fp) ds, a second
integration yields
F
x = fH(sinh_1 u+ Gy
Wo
or

F 1
7 = vg{sinh_l[ﬂi(wos + cl)} + cz} (1)

To evaluate the constants note that, from Eq. 7-14,

dy 1 dy 1
dx:FH/WOds or azFfH(wos-i—Cl)
Since dy/dx = 0 at s = 0, then C; = 0. Thus,

o _ S

dx Fy

@)

The constant C, may be evaluated by using the condition s = 0 at
x = 0in Eq. 1, in which case C, = 0. To obtain the deflection curve,
solve for s in Eq. 1, which yields

F
§ = Hsinh<wox> 3)
wo FH

Now substitute into Eq. 2, in which case

dy . (Wo )
— = gsinh{ —x
dx Fy
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Hence,
F w
y = Hcosh<0x> + G5
) FH

If the boundary condition y = 0 at x = 0 is applied, the constant
C; = —Fy/w,, and therefore the deflection curve becomes

)]

This equation defines the shape of a catenary curve. The constant Fy
is obtained by using the boundary condition that y = hatx = L/2,in

which case
FH WOL> :|
= — h{ — ) — 1
h " {cos <2FH 5)
Since wy = 5N/m, h = 6 m, and L = 20 m, Egs. 4 and 5 become
F 5N/m
y = —= [cosh( / x> = 1] (6)
5N/m Fy
F 50N
6m=—10 {cosh( ) = 1] (7)
5N/m Fy

Equation 7 can be solved for Fy by using a trial-and-error procedure.
The result is

Fy = 459N
and therefore the deflection curve, Eq. 6, becomes
y = 9.19[cosh(0.109x) — 1] m Ans.
Using Eq. 3, with x = 10 m, the half-length of the cable is
% = :51\19/2 sinh[ 251\'19/;1(10 m)] = 12.1m

Hence,
¥ =242m Ans.

Since T = Fy/cos 6, the maximum tension occurs when 6 is
maximum, i.e.,ats = ¥£/2 = 12.1 m. Using Eq. 2 yields

dy 5N/m(12.1 m)
—= =tanf, = ———— = 1.32
Al e 459N
O = 52.8°
And so,
F 459N
Ty = ——2— = = 759N Ans.

€08 Ox €08 52.8°
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“leromews

7-94. The cable supports the three loads shown.
Determine the sags yg and yp of B and D.Take P; =800 N,
P, =500 N.

7-95. The cable supports the three loads shown.
Determine the magnitude of P, if P, =600 N and yz=3 m.
Also find sag yp,.

=3m i 6m i 6m 3m-—

Probs. 7-94/95

7
. *7-96. Determine the tension in each segment of the

cable and the cable’s total length.

Prob. 7-96

7-97. The cable supports the loading shown. Determine
the distance xp the force at B acts from A. Set P =800 N.

7-98. The cable supports the loading shown. Determine
the magnitude of the horizontal force P so thatxz = 5m.

Probs. 7-97/98

7-99. The cable supports the three loads shown.
Determine the sags yz and yp of points B and D. Take
P, =14001b, P, =250 Ib.

*7-100. The cable supports the three loads shown.
Determine the magnitude of Py if P, =300 1b and yz =8 ft.
Also find the sag yp.

~— 12 ft 20 ft 15 ft ’ 12 ft -

Probs. 7-99/100



7-101. Determine the force P needed to hold the cable
in the position shown, ie., so segment BC remains
horizontal. Also, compute the sag yz and the maximum
tension in the cable.

4 kN

6 m —3m—2 m~

Prob. 7-101

7-102. Determine the maximum uniform loading w,
measured in 1b/ft, that the cable can support if it is capable
of sustaining a maximum tension of 3000 Ib before it will
break.

7-103. The cable is subjected to a uniform loading of
w = 2501b/ft. Determine the maximum and minimum
tension in the cable.

‘ 50 ft | /@‘ q

6 ft

Probs. 7-102/103
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*7-104. The cable AB is subjected to a uniform loading of
200 N/m. If the weight of the cable is neglected and the
slope angles at points A and B are 30° and 60°, respectively,
determine the curve that defines the cable shape and the
maximum tension developed in the cable.

B
i
60°
y //
A 30°
X
200 N/m
} 15m }
Prob. 7-104

7-105. If x =2 ft and the crate weighs 300 1b, which cable
segment AB, BC, or CD has the greatest tension? What is
this force and what is the sag yg?

7-106. If yg = 1.5 ft, determine the largest weight of the
crate and its placement x so that neither cable segment AB,
BC,or CD is subjected to a tension that exceeds 200 Ib.

%2& 3ft —

\a

i

Probs. 7-105/106
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7-107. The cable supports a girder which weighs 850 Ib /ft.
Determine the tension in the cable at points A, B, and C.

; 100 ft

40 ft jjm
| o j

Prob. 7-107

*7-108. The cable is subjected to a uniform loading of
w = 200 Ib/ft. Determine the maximum and minimum
tension in the cable.

i 100 ft |

A ¥ B

20 fit /r
T X

200 Ib/ft

Prob. 7-108

7-109. If the pipe has a mass per unit length of 1500 kg /m,
determine the maximum tension developed in the cable.

7-110. If the pipe has a mass per unit length of 1500 kg /m,
determine the minimum tension developed in the cable.

i 30m |

Probs. 7-109/110

7-111. Determine the maximum tension developed in the
cable if it is subjected to the triangular distributed load.

y }:1

20 ft

//
S o I R .
[A

300 Ib/ft

| 20 ft |

Prob. 7-111

#*7-112. The cable will break when the maximum tension
reaches Ty, = 10 kN. Determine the minimum sag # if it
supports the uniform distributed load of w =600 N /m.

i 25m i

A4 i /F;

il

y
600 N/m

Prob. 7-112

7-113. The cable is subjected to the parabolic loading

w = 150(1 — (x/50)?) Ib/ft, where x is in ft. Determine the

equation y = f(x) which defines the cable shape AB and the
maximum tension in the cable.

‘ 100 ft

| y

A i B

20 ft

e

=150 Ib/ft

Prob. 7-113



7-114. The power transmission cable weighs 10 1b/ft. If
the resultant horizontal force on tower BD is required to be
zero, determine the sag /4 of cable BC.

7-115. The power transmission cable weighs 10 1b/ft. If
h = 10 ft, determine the resultant horizontal and vertical
forces the cables exert on tower BD.

Probs. 7-114/115

*7-116. The man picks up the 52-ft chain and holds it just
high enough so it is completely off the ground. The chain
has points of attachment A and B that are 50 ft apart. If the
chain has a weight of 3 Ib/ft, and the man weighs 150 b,
determine the force he exerts on the ground. Also, how
high /& must he lift the chain? Hint: The slopes at A and B
are zero.

=
*’%@@Q%ﬁ

‘ 25 ft 1 25 ft 1
Prob. 7-116

7-117. The cable has a mass of 0.5 kg/m and is 25 m long.
Determine the vertical and horizontal components of force
it exerts on the top of the tower.

A

X

XX

.

0\v

vavz
XX

X2

XOO

X0

£

V5

v

1 15 m 1

Prob. 7-117

7.4 CABLES 395

7-118. A 50-ft cable is suspended between two points a
distance of 15 ft apart and at the same elevation. If the
minimum tension in the cable is 200 1b, determine the total
weight of the cable and the maximum tension developed in
the cable.

7-119. Show that the deflection curve of the cable
discussed in Example 7.13 reduces to Eq. 4 in Example 7.12
when the hyperbolic cosine function is expanded in terms of
a series and only the first two terms are retained. (The
answer indicates that the catenary may be replaced by a
parabola in the analysis of problems in which the sag is
small. In this case, the cable weight is assumed to be
uniformly distributed along the horizontal.)

#7-120. A telephone line (cable) stretches between two
points which are 150 ft apart and at the same elevation. The
line sags 5 ft and the cable has a weight of 0.3 1b/ft.
Determine the length of the cable and the maximum
tension in the cable.

7-121. A cable has a weight of 2 Ib/ft. If it can span 100 ft
and has a sag of 12 ft, determine the length of the cable. The
ends of the cable are supported from the same elevation.

7-122. A cable has a weight of 3 1b/ft and is supported at
points that are 500 ft apart and at the same elevation. If it
has a length of 600 ft, determine the sag.

7-123. A cable has a weight of 5 Ib/ft. If it can span 300 ft
and has a sag of 15 ft, determine the length of the cable. The
ends of the cable are supported at the same elevation.

#*7-124. The 10 kg/m cable is suspended between the
supports A and B. If the cable can sustain a maximum
tension of 1.5 kN and the maximum sag is 3 m, determine
the maximum distance L between the supports.

3m B

Prob. 7-124



396 CHAPTER 7 INTERNAL FORCES

. CHAPTER REVIEW

Internal Loadings

If a coplanar force system acts on a
member, then in general a resultant
internal normal force N, shear force V,
and bending moment M will act at any
cross section along the member. For
two-dimensional problems the positive
directions of these loadings are shown
in the figure.

The resultant internal normal force,
shear force, and bending moment are
determined wusing the method of
sections. To find them, the member is
sectioned at the point C where the
internal loadings are to be determined.
A free-body diagram of one of the
sectioned parts is then drawn and the
internal loadings are shown in their
positive directions.

The resultant normal force is determined
by summing forces normal to the cross
section. The resultant shear force is
found by summing forces tangent to the
cross section, and the resultant bending
moment is found by summing moments
about the geometric center or centroid
of the cross-sectional area.

If the member is subjected to a three-
dimensional loading, then, in general, a
torsional moment will also act on the
cross section. It can be determined by
summing moments about an axis that is
perpendicular to the cross section and
passes through its centroid.

SF, =0
SF, =0
EMC=0

Normal force

- N

M

Shear force
W Bending moment

Fl FZ

A
F,
M
A, e
A C Nc
Vv
A, ¢
Vc FZ
Mc¢
N (
¢ C
z
Bending moment |
components M,
gl B
/ Normal force
1
‘\’z / - Torsional moment

N}_{_)I\;Iy_ y

J Vx&
"X Shear force components
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Shear and Moment Diagrams

To construct the shear and moment
diagrams for a member, it is necessary to
section the member at an arbitrary point,
located a distance x from the left end.

If the external loading consists of
changes in the distributed load, or a
series of concentrated forces and couple
moments act on the member, then
different expressions for V and M must
be determined within regions between
any load discontinuities.

The unknown shear and moment are
indicated on the cross section in the
positive direction according to the
established sign convention, and then
the internal shear and moment are
determined as functions of x.

Each of the functions of the shear
and moment is then plotted to create
the shear and moment diagrams.

X

14

‘ L x
a b

M
a b L *
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Relations between Shear and Moment

It is possible to plot the shear and
moment diagrams quickly by using
differential relationships that exist
between the distributed loading w, V
and M.

The slope of the shear diagram is equal
to the distributed loading at any point. =y
The slope is positive if the distributed
load acts upward, and vice-versa.

The slope of the moment diagram is
equal to the shear at any point. The slope — =V
is positive if the shear is positive, or vice-
versa.

The change in shear between any two AV = d
points is equal to the area under the I
distributed loading between the points.

The change in the moment is equal to the AM = / V dx
area under the shear diagram between
the points.

Cables

When a flexible and inextensible cable is
subjected to a series of concentrated
forces, then the analysis of the cable can
be performed by using the equations of
equilibrium applied to free-body
diagrams of either segments or points of
application of the loading.

If external distributed loads or the weight

of the cable are to be considered, then the

shape of the cable must be determined by

first analyzing the forces on a differential

segment of the cable and then integrating 1

this result. The two constants, say C; and YT F, ( / w(x) dx) dx
C,, resulting from the integration are

determined by applying the boundary Distributed load

conditions for the cable. 4
s
r= / 1 271/2
{1 + Ffi{(/w(s)ds) }

Cable weight
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. REOEMEMROBLEMS

All problem solutions must include FBDs. R7-3. Draw the shear and moment diagrams for the beam.

R7-1. Determine the internal normal force, shear force,

and moment at points D and E of the frame.
8 kip /ft 8 kip//ft

L,

9Oft 9t 91t 1 91t

Prob. R7-3

R7-4. Draw the shear and moment diagrams for the beam.

Prob. R7-1 | 2 kN/m |
b
A
5m I B
Prob. R7-4

R7-2. Determine the normal force, shear force, and
moment at points B and C of the beam.

R7-5. Draw the shear and moment diagrams for the beam.

75kN LN
2 kN/m . 6 kN l l l l l l l S0
1kN/m| MC
B =9
| Sm i Sm ‘

Prob. R7-5

R7-6. A chain is suspended between points at the same
elevation and spaced a distance of 60 ft apart. If it has a
weight per unit length of 0.5 Ib/ft and the sag is 3 ft,
Prob. R7-2 determine the maximum tension in the chain.




Chapter 8

(© Pavel Polkovnikov/Shutterstock)

The effective design of this brake requires that it resist the frictional forces
developed between it and the wheel. In this chapter we will study dry friction,
and show how to analyze friction forces for various engineering applications.



Friction

CHAPTER OBJECTIVES

m To introduce the concept of dry friction and show how to analyze
the equilibrium of rigid bodies subjected to this force.

m To present specific applications of frictional force analysis on
wedges, screws, belts, and bearings.

m To investigate the concept of rolling resistance.

8.1 Characteristics of Dry Friction

Friction is a force that resists the movement of two contacting surfaces
that slide relative to one another. This force always acts tangent to the
surface at the points of contact and is directed so as to oppose the possible
or existing motion between the surfaces.

In this chapter, we will study the effects of dry friction, which is
sometimes called Coulomb friction since its characteristics were studied
extensively by the French physicist Charles-Augustin de Coulomb
in 1781. Dry friction occurs between the contacting surfaces of bodies
when there is no lubricating fluid.*

The heat generated by the abrasive
action of friction can be noticed
when using this grinder to sharpen a
metal blade. (© Russell C. Hibbeler)

*Another type of friction, called fluid friction, is studied in fluid mechanics.
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(b) (© and frictional forces

Regardless of the weight of the rake or
shovel that is suspended, the device has
been designed so that the small roller
holds the handle in equilibrium due to
frictional forces that develop at the points
of contact, A, B, C.(© Russell C. Hibbeler)

(d)
Fig. 8-1

Theory of Dry Friction. The theory of dry friction can be
explained by considering the effects caused by pulling horizontally on a
block of uniform weight W which is resting on a rough horizontal surface
that is nonrigid or deformable, Fig. 8-1a. The upper portion of the block,
however, can be considered rigid. As shown on the free-body diagram of
the block, Fig. 8-1b, the floor exerts an uneven distribution of both
normal force AN, and frictional force AF, along the contacting surface.
For equilibrium, the normal forces must act upward to balance the
block’s weight W, and the frictional forces act to the left to prevent the
applied force P from moving the block to the right. Close examination of
the contacting surfaces between the floor and block reveals how these
frictional and normal forces develop, Fig. 8-1c. It can be seen that many
microscopic irregularities exist between the two surfaces and, as a result,
reactive forces AR, are developed at each point of contact.* As shown,
each reactive force contributes both a frictional component AF, and a
normal component AN,

Equilibrium. The effect of the distributed normal and frictional
loadings is indicated by their resultants N and F on the free-body diagram,
Fig. 8-1d. Notice that N acts a distance x to the right of the line of action
of W, Fig. 8-1d. This location, which coincides with the centroid or
geometric center of the normal force distribution in Fig. 8-1b, is necessary
in order to balance the “tipping effect” caused by P. For example, if P is
applied at a height / from the surface, Fig. 8-1d, then moment equilibrium
about point O is satisfied if Wx = Phorx = Ph/W.

*Besides mechanical interactions as explained here, which is referred to as a classical
approach, a detailed treatment of the nature of frictional forces must also include the
effects of temperature, density, cleanliness, and atomic or molecular attraction between the
contacting surfaces. See J. Krim, Scientific American, October, 1996.
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w
___ Impending
motion
A _
h
F,
K3
N
Equilibrium y
(e)

Fig. 8-1 (cont.)

Impending Motion. In cases where the surfaces of contact are
rather “slippery,” the frictional force F may not be great enough to
balance P, and consequently the block will tend to slip. In other words, as
P is slowly increased, F correspondingly increases until it attains a certain
maximum value F,, called the limiting static frictional force, Fig. 8-1e.
When this value is reached, the block is in unstable equilibrium since any

Some objects, such as this barrel, may not be
; . . - : on the verge of slipping, and therefore the
further increase in P will cause the block to move. Experimentally, it has  friction force F must be determined

been determined that this limiting static frictional force Fj is directly strictly from the equations of equilibrium.
proportional to the resultant normal force N. Expressed mathematically, (© Russell C. Hibbeler)

Fs = /"L'SN (8_1)

where the constant of proportionality, u, (mu “sub” s), is called the
coefficient of static friction.

Thus, when the block is on the verge of sliding, the normal force N and
frictional force F,; combine to create a resultant R, Fig. 8—1e.The angle ¢,
(phi “sub” s) that R; makes with N is called the angle of static friction.
From the figure,

b, = tan1<i;) = tan1<M‘;\;v) = tan ! Table 8-1 Typical Values for u,

Contact Coefficient of
. . . Materials Static Friction (w,)

Typical values for u, are given in Table 8-1. Note that these values can

vary since experimental testing was done under variable conditions of =~ Metal on ice 0.03-0.05
roughness .ar?d 'cleanhness of the contagtlng surfaces. For apphcatlpns, Wood on wood 0.30-0.70
therefore, it is important that both caution and judgment be exercised

when selecting a coefficient of friction for a given set of conditions. _ Leather on wood 0.20-0.50
When a more accurate calculation of F; is required, the coefficient of = Leather on metal 0.30-0.60

friction should be determined directly by an experiment that involves

. Copper on copper 0.74-1.21
the two materials to be used.
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Motion
y ;

—

Fig. 8-2

Motion. If the magnitude of P acting on the block is increased so that
it becomes slightly greater than Fj, the frictional force at the contacting
surface will drop to a smaller value Fy, called the kinetic frictional force.
The block will begin to slide with increasing speed, Fig. 8-2a. As this
occurs, the block will “ride” on top of these peaks at the points of contact,
as shown in Fig. 8-2b. The continued breakdown of the surface is the
dominant mechanism creating kinetic friction.

Experiments with sliding blocks indicate that the magnitude of the
kinetic friction force is directly proportional to the magnitude of the
resultant normal force, expressed mathematically as

Fk = Mg N (8_2)

Here the constant of proportionality, w,, is called the coefficient of
kinetic friction. Typical values for w, are approximately 25 percent
smaller than those listed in Table 8-1 for .

As shown in Fig. 8-2a, in this case, the resultant force at the surface of
contact, Ry, has a line of action defined by ¢;. This angle is referred to as
the angle of kinetic friction, where

F, N
b = tan1<]\;) = tan1<M]kV> = tan"' u;

By comparison, ¢, = ¢;.
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The above effects regarding friction can be summarized by referring to
the graph in Fig. 8-3, which shows the variation of the frictional force F
versus the applied load P. Here the frictional force is categorized in three
different ways:

® [is a static frictional force if equilibrium is maintained.

® Fis a limiting static frictional force F, when it reaches a maximum
value needed to maintain equilibrium.

® [is a kinetic frictional force F, when sliding occurs at the contacting
surface.

Notice also from the graph that for very large values of P or for high
speeds, aerodynamic effects will cause Fj, and likewise w; to begin to
decrease.

Characteristics of Dry Friction.  As aresult of experiments that
pertain to the foregoing discussion, we can state the following rules
which apply to bodies subjected to dry friction.

® The frictional force acts tangent to the contacting surfaces in a
direction opposed to the motion or tendency for motion of one
surface relative to another.

® The maximum static frictional force F; that can be developed is
independent of the area of contact, provided the normal pressure is
not very low nor great enough to severely deform or crush the
contacting surfaces of the bodies.

® The maximum static frictional force is generally greater than the
kinetic frictional force for any two surfaces of contact. However, if
one of the bodies is moving with a very low velocity over the surface
of another, F;, becomes approximately equal to Fj, i.e., u, = .

® When slipping at the surface of contact is about to occur, the
maximum static frictional force is proportional to the normal force,
such that F; = u,N.

® When slipping at the surface of contact is occurring, the kinetic
frictional force is proportional to the normal force, such that
Fie = uyN.

405
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Fig. 8-3
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(b)
Fig. 84
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Fig. 8-5

8.2 Problems Involving Dry Friction

If a rigid body is in equilibrium when it is subjected to a system of
forces that includes the effect of friction, the force system must satisfy not
only the equations of equilibrium but also the laws that govern the
frictional forces.

Types of Friction Problems. In general, there are three types of
static problems involving dry friction. They can easily be classified once
free-body diagrams are drawn and the total number of unknowns are
identified and compared with the total number of available equilibrium
equations.

No Apparent Impending Motion. Problems in this category are
strictly equilibrium problems, which require the number of unknowns to
be equal to the number of available equilibrium equations. Once the
frictional forces are determined from the solution, however, their
numerical values must be checked to be sure they satisfy the inequality
F = u,N; otherwise, slipping will occur and the body will not remain in
equilibrium. A problem of this type is shown in Fig. 84a. Here we must
determine the frictional forces at A and C to check if the equilibrium
position of the two-member frame can be maintained. If the bars are
uniform and have known weights of 100 N each, then the free-body
diagrams are as shown in Fig. 8-4b. There are six unknown force
components which can be determined strictly from the six equilibrium
equations (three for each member). Once F,, N4, Fo, and N, are
determined, then the bars will remain in equilibrium provided F, = 0.3N,
and F- = 0.5N are satisfied.

Impending Motion at All Points of Contact. In this case the total
number of unknowns will equal the total number of available equilibrium
equations plus the total number of available frictional equations, FF = uN.
When motion is impending at the points of contact, then F; = u,N;
whereas if the body is slipping, then F, = u, N. For example, consider the
problem of finding the smallest angle 6 at which the 100-N bar in Fig. 8-5a
can be placed against the wall without slipping. The free-body diagram is
shown in Fig. 8-5b. Here the five unknowns are determined from the three
equilibrium equations and two static frictional equations which apply at
both points of contact, so that F, = 0.3N, and F = 0.4Np.
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Impending Motion at Some Points of Contact. Here the
number of unknowns will be /ess than the number of available equilibrium
equations plus the number of available frictional equations or conditional
equations for tipping. As a result, several possibilities for motion or
impending motion will exist and the problem will involve a determination
of the kind of motion which actually occurs. For example, consider the
two-member frame in Fig. 8—6a. In this problem we wish to determine the
horizontal force P needed to cause movement. If each member has a
weight of 100 N, then the free-body diagrams are as shown in Fig. 8-6b.
There are seven unknowns. For a unique solution we must satisfy the six
equilibrium equations (three for each member) and only one of two
possible static frictional equations. This means that as P increases it will
either cause slipping at A and no slipping at C, so that F, = 0.3N, and
Fe = 0.5N; or slipping occurs at C and no slipping at A, in which case
Fe = 05N and F, = 0.3N,4. The actual situation can be determined by
calculating P for each case and then choosing the case for which P is
smaller. If in both cases the same value for P is calculated, which would be
highly improbable, then slipping at both points occurs simultaneously;
i.e., the seven unknowns would satisfy eight equations.

Equilibrium Versus Frictional Equations. Whenever we
solve a problem such as the one in Fig. 8-4, where the friction force F
is to be an “equilibrium force” and satisfies the inequality F < u N,
then we can assume the sense of direction of F on the free-body
diagram. The correct sense is made known after solving the equations
of equilibrium for F. If F is a negative scalar the sense of F is the
reverse of that which was assumed. This convenience of assuming the
sense of F is possible because the equilibrium equations equate to
zero the components of vectors acting in the same direction. However,
in cases where the frictional equation F = uN is used in the solution
of a problem, as in the case shown in Fig. 8-5, then the convenience of
assuming the sense of F is lost, since the frictional equation relates
only the magnitudes of two perpendicular vectors. Consequently, F
must always be shown acting with its correct sense on the free-body
diagram, whenever the frictional equation is used for the solution of
a problem.

Ny

Mg = 0.3

B)’

100N
Fy

(b)
Fig. 8-6

407
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Depending upon where the man pushes
on the crate, it will either tip or slip.
(© Russell C. Hibbeler)

Important Points

¢ Friction is a tangential force that resists the movement of one
surface relative to another.

¢ If no sliding occurs, the maximum value for the friction force is
equal to the product of the coefficient of static friction and the
normal force at the surface.

¢ If sliding occurs at a slow speed, then the friction force is the
product of the coefficient of kinetic friction and the normal force
at the surface.

¢ There are three types of static friction problems. Each of these
problems is analyzed by first drawing the necessary free-body
diagrams, and then applying the equations of equilibrium,
while satisfying the conditions of friction or the possibility of

tipping.
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Equilibrium problems involving dry friction can be solved using the
following procedure.

Free-Body Diagrams.

® Draw the necessary free-body diagrams, and unless it is stated in
the problem that impending motion or slipping occurs, always
show the frictional forces as unknowns (i.e., do not assume
F = uN).

® Determine the number of unknowns and compare this with the
number of available equilibrium equations.

® [f there are more unknowns than equations of equilibrium, it will
be necessary to apply the frictional equation at some, if not all,
points of contact to obtain the extra equations needed for a
complete solution.

® [f the equation F = uN is to be used, it will be necessary to show
F acting in the correct sense of direction on the free-body
diagram.

Equations of Equilibrium and Friction.

® Apply the equations of equilibrium and the necessary frictional
equations (or conditional equations if tipping is possible) and
solve for the unknowns.

® If the problem involves a three-dimensional force system such
that it becomes difficult to obtain the force components or the
necessary moment arms, apply the equations of equilibrium using
Cartesian vectors.
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The uniform crate shown in Fig. 87a has a mass of 20 kg. If a force
P = 80 Nis applied to the crate, determine if it remains in equilibrium.
The coefficient of static friction is u, = 0.3.

=<l

1962 N SOLUTION
P =8N b —04m—f—04m— Free-Body Diagram. As shown in Fig. 8-7b, the resultant normal
i . force N¢ must act a distance x from the crate’s center line in order to
30° V counteract the tipping effect caused by P. There are three unknowns,
T 1 F.Nc and x, which can be determined strictly from the three equations
0.2m of equilibrium.
[ = o F|
] Equations of Equilibrium.
S 3F, =0; 80cos 30°N — F =0
Ne
+13F, = 0; —80sin30°N + No — 196.2N = 0
®) C+3M, = 0; 80 sin 30° N(0.4 m) — 80 cos 30° N(0.2 m) + Ne(x) = 0
Solving,
F= 693N
N¢e = 236.2N

x = —0.00908 m = —9.08 mm

Since x is negative it indicates the resultant normal force acts (slightly)
to the left of the crate’s center line. No tipping will occur since
x < 0.4 m. Also, the maximum frictional force which can be developed
at the surface of contact is F,,, = u,No = 0.3(236.2 N) = 70.9 N.
Since F = 69.3 N < 70.9 N, the crate will not slip, although it is very
close to doing so.
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It is observed that when the bed of the dump truck is raised to an
angle of § = 25° the vending machines will begin to slide off the bed,
Fig. 8-8a. Determine the static coefficient of friction between a
vending machine and the surface of the truckbed.

SOLUTION

An idealized model of a vending machine resting on the truckbed is
shown in Fig. 8-8b. The dimensions have been measured and the
center of gravity has been located. We will assume that the vending
machine weighs W.

Free-Body Diagram. As shown in Fig. 8-8¢, the dimension x is used
to locate the position of the resultant normal force N. There are four
unknowns, N, F, u,, and x.

Equations of Equilibrium.

+N\IF, = 0; Wsin25° — F =0 1)
+/2F, = 0; N — Wcos25° =0 2)
C+IM, =0; —Wsin25°2.5ft) + W cos 25°(x) = 0 3)

Since slipping impends at § = 25°, using Egs. 1 and 2, we have

F, = u,N; W sin 25° = uy(W cos 25°)
My = tan 25° = 0.466 Ans.

The angle of 6 = 25° is referred to as the angle of repose, and by
comparison, it is equal to the angle of static friction, # = ¢,. Notice
from the calculation that 6 is independent of the weight of the vending
machine, and so knowing 6 provides a convenient method for
determining the coefficient of static friction.

NOTE: From Eq. 3, we find x = 1.17 ft. Since 1.17 ft < 1.5 ft, indeed
the vending machine will slip before it can tip as observed in Fig. 8-8a. Fig. 8-8
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(4m) sin 6

(2m) cos 0 ‘(2 m) cos 6

(b)

The uniform 10-kg ladder in Fig. 8-9a rests against the smooth wall
at B, and the end A rests on the rough horizontal plane for which the
coefficient of static friction is u, = 0.3. Determine the angle of
inclination 6 of the ladder and the normal reaction at B if the ladder is
on the verge of slipping.

(@)

Fig. 8-9

SOLUTION

Free-Body Diagram. As shown on the free-body diagram, Fig. 8-9b,
the frictional force F, must act to the right since impending motion at A
is to the left.

Equations of Equilibrium and Friction. Since the ladder is on the
verge of slipping, then F, = uN, = 0.3N,4. By inspection, N, can be
obtained directly.

+13F, = 0; N, — 10(9.81)N = 0 N, = 98.1N
Using this result, F, = 0.3(98.1 N) = 29.43 N. Now N can be found.
£ 3F, = 0; 2943N — Nz =0

N = 2943 N = 294N Ans.

Finally, the angle 6 can be determined by summing moments about
point A.

C +3M, = 0; (2943 N)(4 m)sinf — [10(9.81) N](2m) cos 6§ = 0O
SN0 6 = 1.6667
cos 0

0 = 59.04° = 59.0° Ans.
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Beam AB is subjected to a uniform load of 200 N/m and is supported
at B by post BC, Fig. 8-10a. If the coefficients of static friction at B

and C are up = 0.2 and pe = 0.5, determine the force P needed to 200 N/m
pull the post out from under the beam. Neglect the weight of the A me

members and the thickness of the beam. - <= N B

SOLUTION @

Free-Body Diagrams. The free-body diagram of the beam is shown
in Fig. 8-10b. Applying 2M, = 0, we obtain Nz = 400 N. This result
is shown on the free-body diagram of the post, Fig. 8-10c. Referring to
this member, the four unknowns Fy, P, F¢, and N are determined from
the three equations of equilibrium and orne frictional equation applied
either at B or C.

Equations of Equilibrium and Friction.

K 3F, =0 P—F3—Fc=0 (1)
+13F, = 0; Ne — 400N = 0 )
C+3IMq = 0; —P(0.25m) + Fp(1m) =0 (3)

(Post Slips at B and Rotates about C.) This requires Fr = ueNeand

FB == I.LBNB; FB = 02(400 N) =8N i§09y777
|
Using this result and solving Egs. 1 through 3, we obtain A < 11 =
A —> Fp
P=320N - 2m—f—2m—
Fo = 240N Ay Nj = 400N
Ne = 400 N (b)
Since Fr = 240N > ucNe = 0.5400N) = 200N, slipping at C
occurs. Thus the other case of movement must be investigated.
(Post Slips at C and Rotates about B.) Here Fz = upNp and l
400 N
B
Fc = ucNe; Fe = 0.5N¢ 4) Fp €
] ] 0.75m
Solving Egs. 1 through 4 yields I p
P=267N Ans. F < C¢°~25m
Ne = 400N TNC
Fe = 200N
Fy = 66.7N ©

Obviously, this case occurs first since it requires a smaller value for P. Fig. 8-10
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Fig. 8-11

Blocks A and B have a mass of 3 kg and 9 kg, respectively, and are
connected to the weightless links shown in Fig. 8-11a. Determine the
largest vertical force P that can be applied at the pin C without causing
any movement. The coefficient of static friction between the blocks
and the contacting surfaces is u, = 0.3.

SOLUTION

Free-Body Diagram. The links are two-force members and so the
free-body diagrams of pin C and blocks A and B are shown in Fig. 8-11b.
Since the horizontal component of F, - tends to move block A to the
left, F4, must act to the right. Similarly, Fz must act to the left to oppose
the tendency of motion of block B to the right, caused by Fp.. There
are seven unknowns and six available force equilibrium equations, two
for the pin and two for each block, so that only one frictional
equation is needed.

Equations of Equilibrium and Friction. The force in links AC and
BC can be related to P by considering the equilibrium of pin C.

+13F, = 0; Fyccos30°— P = 0; Fic = 1.155P
£ 3F, = 0; 1.155P sin 30° — Fge = 0; Fpe = 0.5774P
Using the result for F, ., for block A,
H3F, =0, Fy—1.155Psin30° =0; F, = 0.5774P (1)
+13F, =0; N, — 1.155Pcos 30° — 3(9.81 N) = 0;

Ny, = P+2943N (2)
Using the result for Fp, for block B,
£ 3F, = 0; (0.5774P) — Fy = 0; Fy = 0.5774P (3)
+13F, = 0; N — 9(9.81)N = 0; Ny = 8829 N

Movement of the system may be caused by the initial slipping of either
block A or block B. If we assume that block A slips first, then

Fy = pusNy = 03N, 4)
Substituting Egs. 1 and 2 into Eq. 4,
0.5774P = 0.3(P + 29.43)
P =318N Ans.

Substituting this result into Eq. 3, we obtain Fz = 18.4 N. Since the
maximum static frictional force at B iS (Fp)max — MsNp =
0.3(88.29 N) = 26.5 N > Fp, block B will not slip. Thus, the above
assumption is correct. Notice that if the inequality were not satisfied,
we would have to assume slipping of block B and then solve for P.
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. PRELIMINARY PROBLEMS

P8-1. Determine the friction force at the surface of contact. P8-3. Determine the force P to move block B.

M = 0.2

(2)

100 N

1 Prob. P8-3

W=40N

ps =09 P8-4. Determine the force P needed to cause impending
(b) =06 motion of the block.
Prob. P8-1
P

P8-2. Determine M to cause impending motion of
the cylinder. W =200 N

‘&lm%‘ ms = 0.3

(2)

P

: T

Smooth Im

|

W=100N

‘ 1m ‘p.s=0.4

A
my = 0.1 (b)

Prob. P8-2 Prob. P§-4
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All problem solutions must include FBDs.

F8-1. Determine the friction developed between the 50-kg
crate and the ground if a) P = 200 N,and b) P = 400 N. The
coefficients of static and kinetic friction between the crate
and the ground are u; = 0.3 and p; = 0.2.

Prob. F8-1

F8-2. Determine the minimum force P to prevent the
30-kg rod AB from sliding. The contact surface at B is
smooth, whereas the coefficient of static friction between
the rod and the wall at A is u, = 0.2.

Prob. F8-2

F8-3. Determine the maximum force P that can be applied
without causing the two 50-kg crates to move. The coefficient
of static friction between each crate and the ground is
g = 0.25.

Prob. F8-3

F8-4. If the coefficient of static friction at contact points A
and B is u; = 0.3, determine the maximum force P that can
be applied without causing the 100-kg spool to move.

0.9 m

Prob. F8—4

F8-5. Determine the maximum force P that can be
applied without causing movement of the 250-1b crate that
has a center of gravity at G. The coefficient of static friction
at the floor is u, = 0.4.

|
4.5ft T

Prob. F8-5



F8-6. Determine the minimum coefficient of static friction
between the uniform 50-kg spool and the wall so that the
spool does not slip.

Prob. F8-6

F8-7. Blocks A, B, and C have weights of 50 N, 25 N, and
15 N, respectively. Determine the smallest horizontal force P
that will cause impending motion. The coefficient of static
friction between A and B is u, = 0.3, between B and C,
ms = 0.4, and between block C and the ground, uy’ = 0.35.

Y

C

D

Prob. F8-7
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F8-8. 1If the coefficient of static friction at all contacting
surfaces is u,, determine the inclination 6 at which the
identical blocks, each of weight W, begin to slide.

Prob. F8-8

F8-9. Blocks A and B have a mass of 7 kg and 10 kg,
respectively. Using the coefficients of static friction
indicated, determine the largest force P which can be
applied to the cord without causing motion. There are
pulleys at C and D.

Maq = 0.1

Prob. F8-9
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“leromews

All problem solutions must include FBDs.

8-1. Determine the maximum force P the connection can
support so that no slipping occurs between the plates. There
are four bolts used for the connection and each is tightened
so that it is subjected to a tension of 4 kN. The coefficient of
static friction between the plates is s = 0.4.

ST IS

Prob. 8-1

8-2. The tractor exerts a towing force 7 = 400 Ib.
Determine the normal reactions at each of the two front
and two rear tires and the tractive frictional force F on each
rear tire needed to pull the load forward at constant velocity.
The tractor has a weight of 7500 1b and a center of gravity
located at G . An additinal weight of 600 Ib is added to its
front having a center of gravity at G,. Take wu, = 0.4.
The front wheels are free to roll.

8-3. The mine car and its contents have a total mass of
6 Mg and a center of gravity at G. If the coefficient of static
friction between the wheels and the tracks is u;, = 0.4 when
the wheels are locked, find the normal force acting on the
front wheels at B and the rear wheels at A when the brakes
at both A and B are locked. Does the car move?

*8-4. The winch on the truck is used to hoist the garbage
bin onto the bed of the truck. If the loaded bin has a weight
of 8500 Ib and center of gravity at G, determine the force in
the cable needed to begin the lift. The coefficients of static
friction at A and B are uy, = 0.3 and pup = 0.2, respectively.
Neglect the height of the support at A.

Prob. 8-2

AL 10ft - 12ft\B
Prob. 8—4



8-5. The automobile has a mass of 2 Mg and center of
mass at G. Determine the towing force F required to move
the car if the back brakes are locked, and the front wheels
are free to roll. Take p, = 0.3.

8-6. The automobile has a mass of 2 Mg and center of
mass at G. Determine the towing force F required to move
the car. Both the front and rear brakes are locked.
Take u, = 0.3.

B
~—1m 1.50 m—

Probs. 8-5/6

8-7. The block brake consists of a pin-connected lever and
friction block at B. The coefficient of static friction between
the wheel and the lever is u; = 0.3, and a torque of 5 N+-m
is applied to the wheel. Determine if the brake can hold the
wheel stationary when the force applied to the lever is
(a) P =30N,(b) P = 70N.

400 mm

Prob. 8-7
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*8-8. The block brake consists of a pin-connected lever
and friction block at B. The coefficient of static friction
between the wheel and the lever is w, = 0.3, and a torque of
5 N-m is applied to the wheel. Determine if the brake can
hold the wheel stationary when the force applied to the
leveris (a) P = 30N, (b) P = 70 N.

‘\SN-m

400 mm

Prob. 8-8

8-9. The pipe of weight W is to be pulled up the inclined
plane of slope « using a force P. If P acts at an angle ¢, show
that for slipping P = W sin(a + 6)/cos(¢ — 6), where 6 is
the angle of static friction; 8 = tan™! .

8-10. Determine the angle ¢ at which the applied force P
should act on the pipe so that the magnitude of P is as small
as possible for pulling the pipe up the incline. What is the
corresponding value of P? The pipe weighs W and the slope
« is known. Express the answer in terms of the angle of
kinetic friction, § = tan ! w;.

Probs. 8-9/10
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8-11. Determine the maximum weight W the man can lift
with constant velocity using the pulley system, without and
then with the “leading block” or pulley at A. The man has a
weight of 200 Ib and the coefficient of static friction between
his feet and the ground is u, = 0.6.

(a) (b)
Prob. 8-11

*8-12. The block brake is used to stop the wheel from
rotating when the wheel is subjected to a couple moment M,
If the coefficient of static friction between the wheel and the
block is u,, determine the smallest force P that should
be applied.

Prob. 8-12

8-13. If a torque of M =300 N-m is applied to the
flywheel, determine the force that must be developed in the
hydraulic cylinder CD to prevent the flywheel from rotating.
The coefficient of static friction between the friction pad
at B and the flywheel is u, = 0.4.

60mm A
03m M =300 N-m

Prob. 8-13

8-14. The car has a mass of 1.6 Mg and center of mass at G.
If the coefficient of static friction between the shoulder of the
road and the tires is u;, = 0.4, determine the greatest slope 6
the shoulder can have without causing the car to slip or tip
over if the car travels along the shoulder at constant velocity.

Prob. 8-14



8-15. The log has a coefficient of state friction of u, = 0.3
with the ground and a weight of 40 1b/ft. If a man can pull
on the rope with a maximum force of 80 Ib, determine the
greatest length / of log he can drag.

Prob. 8-15

#8-16. The 180-1b man climbs up the ladder and stops at the
position shown after he senses that the ladder is on the verge
of slipping. Determine the inclination 6 of the ladder if the
coefficient of static friction between the friction pad A and the
ground is w, = 0.4. Assume the wall at B is smooth. The center
of gravity for the man is at G. Neglect the weight of the ladder.

8-17. The 180-Ib man climbs up the ladder and stops at the
position shown after he senses that the ladder is on the verge
of slipping. Determine the coefficient of static friction
between the friction pad at A and ground if the inclination of
the ladder is # = 60° and the wall at B is smooth. The center
of gravity for the man is at G. Neglect the weight of the ladder.

e
~—3ft

Probs. 8-16/17
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8-18. The spool of wire having a weight of 300 Ib rests on
the ground at B and against the wall at A. Determine the
force P required to begin pulling the wire horizontally off
the spool. The coefficient of static friction between the
spool and its points of contact is u, = 0.25.

8-19. The spool of wire having a weight of 300 Ib rests on
the ground at B and against the wall at A. Determine the
normal force acting on the spool at A if P = 300 Ib.
The coefficient of static friction between the spool and the
ground at B is u; = 0.35. The wall at A is smooth.

Probs. 8-18/19

*8-20. The ring has a mass of 0.5 kg and is resting on the
surface of the table. In an effort to move the ring a normal
force P from the finger is exerted on it. If this force is directed
towards the ring’s center O as shown, determine its magnitude
when the ring is on the verge of slipping at A. The coefficient
of static friction at A is uy, = 0.2 and at B, ug = 0.3.

Prob. 8-20
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8-21. A man attempts to support a stack of books
horizontally by applying a compressive force of F = 120 N
to the ends of the stack with his hands. If each book has a
mass of 0.95 kg, determine the greatest number of books
that can be supported in the stack. The coefficient of static
friction between his hands and a book is (u,), = 0.6 and
between any two books (u,), = 0.4.

F=120N

Prob. 8-21

8-22. The tongs are used to lift the 150-kg crate, whose
center of mass is at G. Determine the least coefficient of
static friction at the pivot blocks so that the crate can be lifted.

300 mm

Prob. 8-22

8-23. The beam is supported by a pin at A and a roller at B
which has negligible weight and a radius of 15 mm. If the
coefficient of static friction is uz = uc = 0.3, determine
the largest angle 6 of the incline so that the roller does not
slip for any force P applied to the beam.

Prob. 8-23

*8-24. The uniform thin pole has a weight of 30 Ib and a
length of 26 ft. If it is placed against the smooth wall and on
the rough floor in the position d = 10 ft, will it remain in
this position when it is released? The coefficient of static
friction is u, = 0.3.

8-25. The uniform pole has a weight of 30 Ib and a length
of 26 ft. Determine the maximum distance d it can be placed
from the smooth wall and not slip. The coefficient of static
friction between the floor and the pole is u, = 0.3.

e d ——~

Probs. 8-24/25



8-26. The block brake is used to stop the wheel from
rotating when the wheel is subjected to a couple moment
M, = 360 N - m. If the coefficient of static friction between
the wheel and the block is u, = 0.6, determine the smallest
force P that should be applied.

8-27. Solve Prob. 8-26 if the couple moment M, is applied
counterclockwise.

‘ 0.4 m

Probs. 8-26/27

*8-28. A worker walks up the sloped roof that is defined
by the curve y = (5¢%01) ft, where x is in feet. Determine
how high 4 he can go without slipping. The coefficient of
static friction is u, = 0.6.

Prob. 8-28

W
=
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8-29. The friction pawl is pinned at A and rests against the
wheel at B. It allows freedom of movement when the wheel
is rotating counterclockwise about C. Clockwise rotation is
prevented due to friction of the pawl which tends to bind
the wheel. If (u,); = 0.6, determine the design angle 6
which will prevent clockwise motion for any value of
applied moment M. Hint: Neglect the weight of the pawl so
that it becomes a two-force member.

Prob. 8-29

8-30. Two blocks A and B have a weight of 10 Ib and 6 1b,
respectively. They are resting on the incline for which the
coefficients of static friction are u, = 0.15 and ugz = 0.25.
Determine the incline angle 6 for which both blocks begin
to slide. Also find the required stretch or compression in the
connecting spring for this to occur. The spring has a stiffness
of k = 21b/ft.

8-31. Two blocks A and B have a weight of 10 Ib and 6 1b,
respectively. They are resting on the incline for which the
coefficients of static friction are u, = 0.15 and ugz = 0.25.
Determine the angle 6 which will cause motion of one of
the blocks. What is the friction force under each of the
blocks when this occurs? The spring has a stiffness of
k = 2 1b/ft and is originally unstretched.

Probs. 8-30/31
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#8-32. Determine the smallest force P that must be
applied in order to cause the 150-1b uniform crate to move.
The coefficent of static friction between the crate and the
floor is u, = 0.5.

8-33. The man having a weight of 200 1b pushes
horizontally on the crate. If the coefficient of static friction
between the 450-1b crate and the floor is u;, = 0.3 and
between his shoes and the floor is ', = 0.6, determine if he
can move the crate.

Probs. 8-32/33

8-34. The uniform hoop of weight W is subjected to the
horizontal force P. Determine the coefficient of static
friction between the hoop and the surface of A and B if the
hoop is on the verge of rotating.

8-35. Determine the maximum horizontal force P that
can be applied to the 30-1b hoop without causing it to rotate.
The coefficient of static friction between the hoop and the
surfaces A and B is u, = 0.2. Take r = 300 mm.

A

Probs. 8-34/35

*8-36. Determine the minimum force P needed to push
the tube E up the incline. The force acts parallel to the
plane, and the coefficients of static friction at the contacting
surfaces are uy = 0.2, uz = 0.3, and e = 0.4. The 100-kg
roller and 40-kg tube each have a radius of 150 mm.

Prob. 8-36

8-37. The coefficients of static and kinetic friction between
the drum and brake bar are u, = 04 and w; = 0.3,
respectively. If M = 50 N-m and P = 85 N, determine the
horizontal and vertical components of reaction at the pin O.
Neglect the weight and thickness of the brake. The drum has
a mass of 25 kg.

8-38. The coefficient of static friction between the drum
and brake bar is u, = 0.4. If the moment M = 35 N-m,
determine the smallest force P that needs to be applied to
the brake bar in order to prevent the drum from rotating.
Also determine the corresponding horizontal and vertical
components of reaction at pin O. Neglect the weight and
thickness of the brake bar. The drum has a mass of 25 kg.

300 mm

700 mm i

| I
ﬁ”l B
10) 125 mm
M

P

Probs. 8-37/38
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8-39. Determine the smallest coefficient of static friction 8-41. If the coefficient of static friction at A and B is
at both A and B needed to hold the uniform 100-1b bar n, = 0.6, determine the maximum angle 0 so that the frame
in equilibrium. Neglect the thickness of the bar. remains in equilbrium, regardless of the mass of the cylinder.
Take wy = pup = p. Neglect the mass of the rods.

/
B
13 ft
St Prob. 8-41
8-42. The 100-kg disk rests on a surface for which uz = 0.2.
Determine the smallest vertical force P that can be applied
tangentially to the disk which will cause motion to impend.
A P
Prob. 8-39
A
/
0.5m
*8-40. If 6 = 30°, determine the minimum coefficient of B
static friction at A and B so that equilibrium of the
supporting frame is maintained regardless of the mass of Prob. §-42
the cylinder. Neglect the mass of the rods. 8-43. Investigate whether the equilibrium can be

maintained. The uniform block has a mass of 500 kg, and
the coefficient of static friction is u, = 0.3.

Prob. 8-40 Prob. 8-43
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*8-44. The homogenous semicylinder has a mass of 20 kg
and mass center at G. If force P is applied at the edge, and
r = 300 mm, determine the angle 6 at which the semicylinder
is on the verge of slipping. The coefficient of static friction
between the plane and the cylinder is u; = 0.3. Also, what is
the corresponding force P for this case?

Prob. 8-44

8-45. The beam AB has a negligible mass and thickness
and is subjected to a triangular distributed loading. It is
supported at one end by a pin and at the other end by a post
having a mass of 50 kg and negligible thickness. Determine
the minimum force P needed to move the post. The
coefficients of static friction at B and C are uz = 0.4 and
e = 0.2, respectively.

/I/|8OO N/m
KAM B
2m [ | | 5
400 mm T 3
300 mm

[

Prob. 8-45

8-46. The beam AB has a negligible mass and thickness
and is subjected to a triangular distributed loading. It is
supported at one end by a pin and at the other end by a post
having a mass of 50 kg and negligible thickness. Determine
the two coefficients of static friction at B and at C so that
when the magnitude of the applied force is increased to
P = 150 N, the post slips at both B and C simultaneously.

Prob. 8-46

8-47. Crates A and B weigh 200 Ib and 150 1b, respectively.
They are connected together with a cable and placed on the
inclined plane. If the angle 6 is gradually increased,
determine 6 when the crates begin to slide. The coefficients
of static friction between the crates and the plane are
ma = 0.25and up = 0.35.

Prob. 8-47



*8-48. Two blocks A and B, each having a mass of 5 kg,
are connected by the linkage shown. If the coefficient of
static friction at the contacting surfaces is u, = 0.5,
determine the largest force P that can be applied to pin C of
the linkage without causing the blocks to move. Neglect the
weight of the links.

Prob. 8-48

8-49. The uniform crate has a mass of 150 kg. If the
coefficient of static friction between the crate and the floor
is uy = 0.2, determine whether the 85-kg man can move the
crate. The coefficient of static friction between his shoes and
the floor is 'y = 0.4. Assume the man only exerts a
horizontal force on the crate.

8-50. 'The uniform crate has a mass of 150 kg. If the coefficient
of static friction between the crate and the floor is u; = 0.2,
determine the smallest mass of the man so he can move the
crate. The coefficient of static friction between his shoes and
the floor is w' = 0.45. Assume the man exerts only a
horizontal force on the crate.

‘<—1.2 m%‘

Probs. 8-49/50
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8§-51. Beam AB has a negligible mass and thickness, and
supports the 200-kg uniform block. It is pinned at A and
rests on the top of a post, having a mass of 20 kg and
negligible thickness. Determine the minimum force P
needed to move the post. The coefficients of static friction
at B and C are ug = 0.4 and uc = 0.2, respectively.

*8-52. Beam AB has a negligible mass and thickness, and
supports the 200-kg uniform block. It is pinned at A and
rests on the top of a post, having a mass of 20 kg and
negligible thickness. Determine the two coefficients of static
friction at B and at C so that when the magnitude of the
applied force is increased to P = 300 N, the post slips at
both B and C simultaneously.

A P
o
L—].S m‘J«LS m% 3
Im

0.7l5 m

Probs. 8-51/52

8-53. Determine the smallest couple moment that can be
applied to the 150-1b wheel that will cause impending
motion. The uniform concrete block has a weight of 300 1b.
The coefficients of static friction are u, = 0.2, ug = 0.3,
and between the concrete block and the floor, u = 0.4.

~—1ft—

Prob. 8-53
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8-54. Determine the greatest angle 0 so that the ladder
does not slip when it supports the 75-kg man in the position
shown. The surface is rather slippery, where the coefficient
of static friction at A and Bis u, = 0.3.

2.5m

Prob. 8-54

8-55. The wheel weighs 20 Ib and rests on a surface for
which up = 0.2. A cord wrapped around it is attached to
the top of the 30-1b homogeneous block. If the coefficient of
static friction at D is up = 0.3, determine the smallest
vertical force that can be applied tangentially to the wheel
which will cause motion to impend.

P
1.5 ft—~
A
@ 3ft
1.5 ft
B D

Prob. 8-55

*8-56. The disk has a weight W and lies on a plane that
has a coefficient of static friction u. Determine the
maximum height /4 to which the plane can be lifted without
causing the disk to slip.

Prob. 8-56

8-57. The man has a weight of 200 1b, and the coefficient
of static friction between his shoes and the floor is u, = 0.5.
Determine where he should position his center of gravity G
at d in order to exert the maximum horizontal force on the
door. What is this force?

—d -

Prob. 8-57
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| CONCEPTUAL PROBLEMS

C8-1. Draw the free-body diagrams of each of the two C8-3. The rope is used to tow the refrigerator. Is it best to

members of this friction tong used to lift the 100-kg block. pull slightly up on the rope as shown, pull horizontally, or
pull somewhat downwards? Also, is it best to attach the
rope at a high position as shown, or at a lower position? Do
an equilibrium analysis to explain your answer.

C8-4. The rope is used to tow the refrigerator. In order to
prevent yourself from slipping while towing, is it best to pull
up as shown, pull horizontally, or pull downwards on the
rope? Do an equilibrium analysis to explain your answer.

C8-1 (© Russell C. Hibbeler)

C8-2. Show how to find the force needed to move the top

block. Use reasonable data and use an equilibrium analysis

to explain your answer. C8-5. Explain how to find the maximum force this man
can exert on the vehicle. Use reasonable data and use an
equilibrium analysis to explain your answer.

C8-3/4 (© Russell C. Hibbeler)

C8-2 (© Russell C. Hibbeler) C8-5 (© Russell C. Hibbeler)
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Wedges are often used to adjust the
elevation of structural or mechanical parts.
Also, they provide stability for objects
such as this pipe. (© Russell C. Hibbeler)

8.3 Wedges

A wedge is a simple machine that is often used to transform an applied
force into much larger forces, directed at approximately right angles to
the applied force. Wedges also can be used to slightly move or adjust
heavy loads.

Consider, for example, the wedge shown in Fig. 8-12a, which is used to
lift the block by applying a force to the wedge. Free-body diagrams of the
block and wedge are shown in Fig. 8-12b. Here we have excluded the
weight of the wedge since it is usually small compared to the weight W of
the block. Also, note that the frictional forces F; and F, must oppose the
motion of the wedge. Likewise, the frictional force F; of the wall on the
block must act downward so as to oppose the block’s upward motion.
The locations of the resultant normal forces are not important in the
force analysis since neither the block nor wedge will “tip.” Hence the
moment equilibrium equations will not be considered. There are seven
unknowns, consisting of the applied force P, needed to cause motion of
the wedge, and six normal and frictional forces. The seven available
equations consist of four force equilibrium equations, 2 F, = 0, XF, = 0
applied to the wedge and block, and three frictional equations, F = uN,
applied at each surface of contact.

If the block is to be lowered, then the frictional forces will all act in a
sense opposite to that shown in Fig. 8-12b. Provided the coefficient of
friction is very small or the wedge angle 6 is large, then the applied
force P must act to the right to hold the block. Otherwise, P may have a
reverse sense of direction in order to pull on the wedge to remove it. If P
is not applied and friction forces hold the block in place, then the wedge is
referred to as self-locking.

w
N,
F, 0
P
0 P F, —
1 —p— =~
. Fy
Impending
o N,
motion

(a)

(b)
Fig. 8-12
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The uniform stone in Fig. 8~13a has a mass of 500 kg and is held in the
horizontal position using a wedge at B. If the coefficient of static
friction is u, = 0.3 at the surfaces of contact, determine the minimum
force P needed to remove the wedge. Assume that the stone does not

slip at A.
4905 N
i 'm i I«O.S m—|~—0.5 m*‘ Nj 7°|\ 70
0.3N, - ;
b 03N, 4= Impending
<—JA— p motion
03Ne
Np Nc¢

(b)

SOLUTION

The minimum force P requires F = u N at the surfaces of contact with
the wedge. The free-body diagrams of the stone and wedge are shown
in Fig. 8-13b. On the wedge the friction force opposes the impending
motion, and on the stone at A, F, = u,N,, since slipping does not occur
there. There are five unknowns. Three equilibrium equations for the
stone and two for the wedge are available for solution. From the
free-body diagram of the stone,

C+3IM, = 0; —4905N(0.5m) + (Ngcos 7° N)(1 m)
+ (0.3Ngsin 7°N)(1 m) = 0
Ny = 2383.1N
Using this result for the wedge, we have

+13F, =0;  Nc— 2383.1cos 7°N — 0.3(2383.1 sin 7°N) = 0
Ne = 2452.5N

HSF =0; 2383.1sin7°N — 0.3(2383.1 cos 7° N) +

P — 0.3(2452.5N) = 0
P=11549N = L.ISkN Ans.

NOTE: Since P is positive, indeed the wedge must be pulled out. If P
were zero, the wedge would remain in place (self-locking) and the
frictional forces developed at B and C would satisfy Fyz < uNp and

Fe < pNc.
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Square-threaded screws find
applications on valves, jacks,
and vises, where particularly
large forcesmustbe developed
along the axis of the screw.
(© Russell C. Hibbeler)

8.4 Frictional Forces on Screws

In most cases, screws are used as fasteners; however, in many types of
machines they are incorporated to transmit power or motion from one
part of the machine to another. A square-threaded screw is commonly
used for the latter purpose, especially when large forces are applied along
its axis. In this section, we will analyze the forces acting on square-threaded
screws. The analysis of other types of screws, such as the V-thread, is based
on these same principles.

For analysis, a square-threaded screw, as in Fig. 814, can be considered
a cylinder having an inclined square ridge or thread wrapped around it. If
we unwind the thread by one revolution, as shown in Fig. 8-14b, the slope
or the lead angle 6 is determined from 6§ = tan™'(//27r). Here [ and 27r
are the vertical and horizontal distances between A and B, where r is the
mean radius of the thread. The distance / is called the lead of the screw
and it is equivalent to the distance the screw advances when it turns one
revolution.

Upward Impending Motion. Let us now consider the case of
the square-threaded screw jack in Fig. 8-15 that is subjected to upward
impending motion caused by the applied torsional moment *M. A free-
body diagram of the entire unraveled thread h in contact with the jack can
be represented as a block, as shown in Fig. 8-16a. The force W is the
vertical force acting on the thread or the axial force applied to the shaft,
Fig. 8-15, and M/r is the resultant horizontal force produced by the
couple moment M about the axis of the shaft. The reaction R of the
groove on the thread has both frictional and normal components, where
F = u,N. The angle of static friction is ¢, = tan” '(F/N) = tan 'u,.
Applying the force equations of equilibrium along the horizontal and
vertical axes, we have

EsF =0 M/r — Rsin (@ + ¢,) = 0
+13F, = 0; Rcos( + ¢,) — W=0

Eliminating R from these equations, we obtain

Fig. 8-14

M = rWtan (0 + ¢,) (8-3)
B
i
=~
0

2mr |

(b)
*For applications, M is developed by applying a horizontal force P at a right angle to the
end of a lever that would be fixed to the screw.
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Self-Locking Screw. A screw is said to be self-locking if it remains
in place under any axial load W when the moment M is removed. For this
to occur, the direction of the frictional force must be reversed so that R
acts on the other side of N. Here the angle of static friction ¢, becomes
greater than or equal to 6, Fig. 8-16d. If ¢, = 6, Fig. 8-16b, then R will act
vertically to balance W, and the screw will be on the verge of winding
downward.

Downward Impending Motion, (@ > ¢,). If the screw is not
self-locking, it is necessary to apply a moment M’ to prevent the screw
from winding downward. Here, a horizontal force M'/r is required to
push against the thread to prevent it from sliding down the plane,
Fig. 8-16¢. Using the same procedure as before, the magnitude of the
moment M’ required to prevent this unwinding is

M' = rWtan (6 — ¢,) (8-4)

Downward Impending Motion, (¢, > 0). If a screw is self-
locking, a couple moment M"” must be applied to the screw in the opposite
direction to wind the screw downward (¢, > 6). This causes a reverse
horizontal force M"/r that pushes the thread down as indicated in
Fig. 8-164d. In this case, we obtain

M" = rWtan (¢, — 6) (8-5)

If motion of the screw occurs, Egs. 8-3, 8-4, and 8-5 can be applied by
simply replacing ¢, with ¢;.

Upward screw motion

(a)

w

R
¢s=9n

Self-locking screw (6 = ¢y)
(on the verge of rotating downward)

(b)
w

vl
% \

\‘éd’s
6

[

n

Downward screw motion (0 > ¢y)

©

Downward screw motion (6 < ¢y)
(d)
Fig. 8-16
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EXAMPLE | 8.7

(© Russell C. Hibbeler)

The turnbuckle shown in Fig. 8-17 has a square thread with a mean
radius of 5 mm and a lead of 2 mm. If the coefficient of static friction
between the screw and the turnbuckle is u, = 0.25, determine the
moment M that must be applied to draw the end screws closer
together.

\\//Z\zx\

SOLUTION
The moment can be obtained by applying Eq. 8-3. Since friction at
two screws must be overcome, this requires

M = 2[rWtan(® + ¢,)] (1)

Here W = 2000 N, ¢, = tan 'u, = tan '(0.25) = 14.04°, r = 5 mm,
and 6 = tan '(I/27r) = tan }(2 mm/[27(5 mm)]) = 3.64°. Substi-
tuting these values into Eq. 1 and solving gives

M = 2[(2000 N)(5 mm) tan(14.04° + 3.64°)]

= 63747N-mm = 6.37N-m Ans.

NOTE: When the moment is removed, the turnbuckle will be
self-locking; i.e., it will not unscrew since ¢, > 6.
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“leromiews

8-58. Determine the largest angle 6 that will cause the
wedge to be self-locking regardless of the magnitude of
horizontal force P applied to the blocks. The coefficient of
static friction between the wedge and the blocks is u, = 0.3.
Neglect the weight of the wedge.

Prob. 8-58

8-59. If the beam AD is loaded as shown, determine the
horizontal force P which must be applied to the wedge in
order to remove it from under the beam. The coefficients of
static friction at the wedge’s top and bottom surfaces are
ea = 025 and pep = 0.35, respectively. If P = 0, is the
wedge self-locking? Neglect the weight and size of the
wedge and the thickness of the beam.

4kN/m

Prob. 8-59

*8-60. The wedge is used to level the member. Determine
the horizontal force P that must be applied to begin to
push the wedge forward. The coefficient of static friction
between the wedge and the two surfaces of contact is
s = 0.2. Neglect the weight of the wedge.

2m
500 N/m

YYYYYYYYYYYYYY

Prob. 8-60

8-61. The two blocks used in a measuring device have
negligible weight. If the spring is compressed 5 in. when in
the position shown, determine the smallest axial force P
which the adjustment screw must exert on B in order to
start the movement of B downward. The end of the screw is
smooth and the coefficient of static friction at all other
points of contact is u, = 0.3.

k=201b/in.

Prob. 8-61

8-62. If P =250 N, determine the required minimum
compression in the spring so that the wedge will not move
to the right. Neglect the weight of A and B. The coefficient
of static friction for all contacting surfaces is u, = 0.35.
Neglect friction at the rollers.

8-63. Determine the minimum applied force P required to
move wedge A to the right. The spring is compressed a
distance of 175 mm. Neglect the weight of A and B. The
coefficient of static friction for all contacting surfaces is
s = 0.35. Neglect friction at the rollers.

k

Probs. 8-62/63
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*8-04. If the coefficient of static friction between all the
surfaces of contact is u,, determine the force P that must be
applied to the wedge in order to lift the block having a
weight W.

()
‘ |
I

I
B\
(1]

—  —ale——P

Prob. 8-64

8-65. Determine the smallest force P needed to lift the
3000-Ib load. The coefficient of static friction between A
and C and between B and D is u, = 0.3, and between A and
B p's = 0.4. Neglect the weight of each wedge.

8-606. Determine the reversed horizontal force —P needed
to pull out wedge A.The coefficient of static friction between
A and C and between B and D is u, = 0.2, and between A
and B u; = 0.1. Neglect the weight of each wedge.

3000 Ib

Probs. 8-65/66

8-67. If the clamping force at G is 900 N, determine the
horizontal force F that must be applied perpendicular to the
handle of the lever at E. The mean diameter and lead of both
single square-threaded screws at C and D are 25 mm and
5 mm, respectively. The coefficient of static friction is u; = 0.3.

*8-68. If a horizontal force of F = 50 N is applied
perpendicular to the handle of the lever at E, determine the
clamping force developed at G. The mean diameter and lead
of the single square-threaded screw at C and D are 25 mm and
5 mm, respectively. The coefficient of static frictionis u, = 0.3.

’—;200 mm—~=—200 mm 4‘
. __E
B o
=)
E
‘125 mm‘

Probs. 8-67/68

8-69. The column is used to support the upper floor. If a
force F = 80 N is applied perpendicular to the handle to
tighten the screw, determine the compressive force in the
column. The square-threaded screw on the jack has a
coefficient of static friction of u, = 0.4, mean diameter of
25 mm, and a lead of 3 mm.

8-70. If the force F is removed from the handle of the jack
in Prob. 8-69, determine if the screw is self-locking.

Probs. 8-69/70



8-71. Ifcoupleforces of F = 101b are applied perpendicular
to the lever of the clamp at A and B, determine the clamping
force on the boards. The single square-threaded screw of the
clamp has a mean diameter of 1 in. and a lead of 0.25 in. The
coefficient of static friction is u, = 0.3.

*8-72. If the clamping force on the boards is 600 Ib,
determine the required magnitude of the couple forces that
must be applied perpendicular to the lever AB of the clamp
at A and B in order to loosen the screw. The single square-
threaded screw has a mean diameter of 1 in. and a lead of
0.25 in. The coefficient of static friction is w, = 0.3.

Probs. 8-71/72

8-73. Prove that the lead [ must be less than 27ru, for the
jack screw shown in Fig. 8-15 to be “self-locking.”

8-74. The square-threaded bolt is used to join two plates
together. If the bolt has a mean diameter of d = 20 mm and
alead of/ = 3 mm, determine the smallest torque M required
to loosen the bolt if the tension in the bolt is 7= 40 kN.
The coefficient of static friction between the threads and the
bolt is u, = 0.15.

Prob. 8-74
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8-75. The shaft has a square-threaded screw with a lead of
8 mm and a mean radius of 15 mm. If it is in contact with a
plate gear having a mean radius of 30 mm, determine the
resisting torque M on the plate gear which can be overcome
if a torque of 7 N-m is applied to the shaft. The coefficient
of static friction at the screw is up = 0.2. Neglect friction of
the bearings located at A and B.

Prob. 8-75

*8-76. If couple forces of F = 35 N are applied to the
handle of the machinist’s vise, determine the compressive
force developed in the block. Neglect friction at the bearing A.
The guide at B is smooth. The single square-threaded screw
has a mean radius of 6 mm and a lead of 8 mm, and the
coefficient of static friction is u, = 0.27.

Prob. 8-76
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8-77. The square-threaded screw has a mean diameter of
20 mm and a lead of 4 mm. If the weight of the plate A is
5 Ib, determine the smallest coefficient of static friction
between the screw and the plate so that the plate does not
travel down the screw when the plate is suspended as shown.

Prob. 8-77

8-78. The device is used to pull the battery cable terminal
C from the post of a battery. If the required pulling force is
85 Ib, determine the torque M that must be applied to the
handle on the screw to tighten it. The screw has square
threads, a mean diameter of 0.2 in., a lead of 0.08 in., and the
coefficient of static friction is u, = 0.5.

M
>
.

¥

——>»

Prob. 8-78

8-79. Determine the clamping force on the board A if
the screw is tightened with a torque of M = 8§ N-m. The
square-threaded screw has a mean radius of 10 mm and a
lead of 3 mm, and the coefficient of static friction is
ms = 0.35.

*8-80. If the required clamping force at the board A is to
be 2 kN, determine the torque M that must be applied to the
screw to tighten it down. The square-threaded screw has a
mean radius of 10 mm and a lead of 3 mm, and the coefficient
of static friction is w, = 0.35.

/|*\M
.

AT

Probs. 8-79/80

8-81. If a horizontal force of P = 100 N is applied
perpendicular to the handle of the lever at A, determine
the compressive force F exerted on the material. Each
single square-threaded screw has a mean diameter of
25 mm and a lead of 75 mm. The coefficient of static
friction at all contacting surfaces of the wedges is
e = 0.2, and the coefficient of static friction at the screw
is u; = 0.15.

8-82. Determine the horizontal force P that must be
applied perpendicular to the handle of the lever at A in
order to develop a compressive force of 12 kN on the
material. Each single square-threaded screw has a mean
diameter of 25 mm and a lead of 7.5 mm. The coefficient of
static friction at all contacting surfaces of the wedges is
e = 0.2, and the coefficient of static friction at the screw is

M = 0.15.

250 mm

Probs. 8-81/82
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8.5 Frictional Forces on Flat Belts

Whenever belt drives or band brakes are designed, it is necessary to
determine the frictional forces developed between the belt and its
contacting surface. In this section we will analyze the frictional forces
acting on a flat belt, although the analysis of other types of belts, such as
the V-belt, is based on similar principles.

Consider the flat belt shown in Fig. 8-18a, which passes over a fixed
curved surface. The total angle of belt-to-surface contact in radians is 3,
and the coefficient of friction between the two surfaces is p. We wish to
determine the tension 7, in the belt, which is needed to pull the belt
counterclockwise over the surface, and thereby overcome both the
frictional forces at the surface of contact and the tension 7' in the other
end of the belt. Obviously, 7, > T;.

Frictional Analysis. A free-body diagram of the belt segment in
contact with the surface is shown in Fig. 8-18b. As shown, the normal and
frictional forces, acting at different points along the belt, will vary both in
magnitude and direction. Due to this unknown distribution, the analysis
of the problem will first require a study of the forces acting on a
differential element of the belt.

A free-body diagram of an element having a length ds is shown in
Fig. 8-18c. Assuming either impending motion or motion of the belt,
the magnitude of the frictional force dF = u dN. This force opposes the
sliding motion of the belt, and so it will increase the magnitude of the
tensile force acting in the belt by d7. Applying the two force equations
of equilibrium, we have

d d
NFIF, = 0; Tcos(za) + wdN — (T + dT) cos(f) =0
+/3F, = 0; dN — (T + dT) sin(dze) - Tsin(dze) =0

Since df is of infinitesimal size, sin(df/2) = df/2 and cos(df/2) = 1.
Also, the product of the two infinitesimals dT and df /2 may be neglected
when compared to infinitesimals of the first order. As a result, these two
equations become

mwdN = dT
and

dN =Tdb
Eliminating dN yields

dT

— = udb

T I

Motion or impending
motion of belt relative

to surface

(c)
Fig. 8-18
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Flat or V-belts are often used to transmit
the torque developed by a motor to a
wheel attached to a pump, fan, or blower.
(© Russell C. Hibbeler)

Motion or impending
motion of belt relative
to surface

T,

(a)
Fig. 8-18 (Repeated)

Integrating this equation between all the points of contact that the belt
makes with the drum, and noting that T =T, at # = 0 and T = T, at

0 = B, yields
T B
dT
n T 0

Solving for T, we obtain

where

T,, T, = belt tensions; T; opposes the direction of motion (or
impending motion) of the belt measured relative to the
surface, while T, acts in the direction of the relative belt
motion (or impending motion); because of friction,
T, > T,

n = coefficient of static or kinetic friction between the belt
and the surface of contact

B = angle of belt-to-surface contact, measured in radians
e = 2.718 ..., base of the natural logarithm

Note that T, is independent of the radius of the drum, and instead it is
a function of the angle of belt to surface contact, 8. As a result, this
equation is valid for flat belts passing over any curved contacting surface.
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EXAVIPLE

The maximum tension that can be developed in the cord shown in
Fig. 8-19ais 500 N. If the pulley at A is free to rotate and the coefficient
of static friction at the fixed drums B and C is p, = 0.25, determine
the largest mass of the cylinder that can be lifted by the cord.

(a)

SOLUTION

Lifting the cylinder, which has a weight W = mg, causes the cord to
move counterclockwise over the drums at B and C; hence, the
maximum tension 7, in the cord occurs at D.Thus, F = T, = 500 N. A
section of the cord passing over the drum at B is shown in
Fig. 8-19b. Since 180° = = rad the angle of contact between the drum
and the cord is B = (135°/180°)7 = 37 /4 rad. Using Eq. 8-6, we have

T, = Tle“sﬁ; 500 N = TleO.ZS[(3/4)7r]

Hence,

500N 500N
60‘25[(3 /4] 1.80

T, = =2774N

Since the pulley at A is free to rotate, equilibrium requires that the
tension in the cord remains the same on both sides of the pulley.

The section of the cord passing over the drum at C is shown in
Fig. 8-19¢. The weight W < 277.4 N. Why? Applying Eq. 8-6, we obtain

T, = Te"P; 2774 N = WO1G/4Hm
W = 1539N
so that
W 1539N
m = — =
g 981m/s?
= 15.7kg Ans.

Impending
motion - -
¥
135° B
T,
500N
(b)
Impending
motion_ ——
7/
. 135°
C
2774 N
W =mg

(c)
Fig. 8-19
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8-83. A cylinder having a mass of 250 kg is to be supported
by the cord that wraps over the pipe. Determine the smallest
vertical force F needed to support the load if the cord passes
(a) once over the pipe, 8 = 180°, and (b) two times over the
pipe, B = 540°. Take u, = 0.2.

*8-84. A cylinder having a mass of 250 kg is to be supported
by the cord that wraps over the pipe. Determine the largest
vertical force F that can be applied to the cord without moving
the cylinder. The cord passes (a) once over the pipe, 8 = 180°,
and (b) two times over the pipe, 8 = 540°. Take u, = 0.2.

1

Probs. 8-83/84
8-85. A 180-Ib farmer tries to restrain the cow from escaping
by wrapping the rope two turns around the tree trunk as shown.
If the cow exerts a force of 250 1b on the rope, determine if the
farmer can successfully restrain the cow. The coefficient of
static friction between the rope and the tree trunk is u, = 0.15,
and between the farmer’s shoes and the ground u; = 0.3.

Prob. 8-85

8-86. The 100-Ib boy at A is suspended from the cable
that passes over the quarter circular cliff rock. Determine if
it is possible for the 185-1b woman to hoist him up; and if
this is possible, what smallest force must she exert on the
horizontal cable? The coefficient of static friction between
the cable and the rock is w, = 0.2,and between the shoes of
the woman and the ground u; = 0.8.

Prob. 8-86

8-87. The 100-Ib boy at A is suspended from the cable
that passes over the quarter circular cliff rock. What
horizontal force must the woman at A exert on the cable in
order to let the boy descend at constant velocity? The
coefficients of static and kinetic friction between the cable
and the rock are u; = 0.4 and w; = 0.35, respectively.

Prob. 8-87



*8-88. The uniform concrete pipe has a weight of 800 1b
and is unloaded slowly from the truck bed using the rope
and skids shown. If the coefficient of kinetic friction
between the rope and pipe is u;, = 0.3, determine the force
the worker must exert on the rope to lower the pipe at
constant speed. There is a pulley at B, and the pipe does not
slip on the skids. The lower portion of the rope is parallel to
the skids.

Prob. 8-88

8-89. A cable is attached to the 20-kg plate B, passes over
a fixed peg at C, and is attached to the block at A. Using the
coefficients of static friction shown, determine the smallest
mass of block A so that it will prevent sliding motion of B
down the plane.

Prob. 8-89
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8-90. The smooth beam is being hoisted using a rope that
is wrapped around the beam and passes through a ring at A
as shown. If the end of the rope is subjected to a tension T
and the coefficient of static friction between the rope and
ring is u, = 0.3, determine the smallest angle of 6 for
equilibrium.

T

Prob. 8-90

8-91. The boat has a weight of 500 1b and is held in
position off the side of a ship by the spars at A and B. A man
having a weight of 130 Ib gets in the boat, wraps a rope
around an overhead boom at C, and ties it to the end of the
boat as shown. If the boat is disconnected from the spars,
determine the minimum number of half turns the rope must
make around the boom so that the boat can be safely
lowered into the water at constant velocity. Also, what is the
normal force between the boat and the man? The coefficient
of kinetic friction between the rope and the boom is
s = 0.15. Hint: The problem requires that the normal force
between the man’s feet and the boat be as small as possible.

Prob. 8-91



444 CHAPTER 8 FRICTION

*8-92. Determine the force P that must be applied to the
handle of the lever so that the wheel is on the verge of
turning if M = 300 N -m. The coefficient of static friction
between the belt and the wheel is u, = 0.3.

8-93. [If aforce of P = 30 N is applied to the handle of the
lever, determine the largest couple moment M that can be
resisted so that the wheel does not turn. The coefficient of
static friction between the belt and the wheel is u, = 0.3.

Probs. 8-92/93

8-94. A minimum force of P = 50 Ib is required to hold
the cylinder from slipping against the belt and the wall.
Determine the weight of the cylinder if the coefficient of
friction between the belt and cylinder is u, = 0.3 and
slipping does not occur at the wall.

8-95. The cylinder weighs 10 1b and is held in equilibrium
by the belt and wall. If slipping does not occur at the wall,
determine the minimum vertical force P which must be
applied to the belt for equilibrium. The coefficient of static
friction between the belt and the cylinder is u, = 0.25.

P

Probs. 8-94/95

*8-96. Determine the maximum and the minimum values
of weight W which may be applied without causing the 50-1b
block to slip. The coefficient of static friction between the
block and the plane is g, = 0.2, and between the rope and
the drum D is w; = 0.3.

Prob. 8-96

8-97. Granular material, having a density of 1.5 Mg/m?, is
transported on a conveyor belt that slides over the fixed
surface, having a coefficient of kinetic friction of w;, = 0.3.
Operation of the belt is provided by a motor that supplies a
torque M to wheel A. The wheel at B is free to turn, and the
coefficient of static friction between the wheel at A and the
belt is u, = 0.4. If the belt is subjected to a pretension of
300 N when no load is on the belt, determine the greatest
volume V of material that is permitted on the belt at any
time without allowing the belt to stop. What is the torque M
required to drive the belt when it is subjected to this
maximum load?

Prob. 8-97



8-98. Show that the frictional relationship between the
belt tensions, the coefficient of friction w, and the angular
contacts « and B for the V-belt is T, = T,e#F/5n(@/2),

Impending
motion

Tz Tl

Prob. 8-98

8-99. The wheel is subjected to a torque of M = 50 N - m.
If the coefficient of kinetic friction between the band brake
and the rim of the wheel is u, = 0.3, determine the smallest
horizontal force P that must be applied to the lever to stop
the wheel.

Prob. 8-99
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*8-100. Blocks A and B have a mass of 7 kg and 10 kg,
respectively. Using the coefficients of static friction
indicated, determine the largest vertical force P which can
be applied to the cord without causing motion.

Prob. 8-100

8-101. The uniform bar AB is supported by a rope that
passes over a frictionless pulley at C and a fixed peg at D. If
the coefficient of static friction between the rope and the
pegis up = 0.3, determine the smallest distance x from the
end of the bar at which a 20-N force may be placed and not
cause the bar to move.

| Im

Prob. 8-101
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8-102. The belt on the portable dryer wraps around the
drum D, idler pulley A, and motor pulley B. If the motor
can develop a maximum torque of M = 0.80N-m,
determine the smallest spring tension required to hold the
belt from slipping. The coefficient of static friction between
the belt and the drum and motor pulley is u, = 0.3.

Prob. 8-102

8-103. Blocks A and B weigh 50 1b and 30 b, respectively.
Using the coefficients of static friction indicated, determine
the greatest weight of block D without causing motion.

Prob. 8-103

*8-104. The 20-kg motor has a center of gravity at G and
is pin connected at C to maintain a tension in the drive belt.
Determine the smallest counterclockwise twist or torque M
that must be supplied by the motor to turn the disk B if
wheel A locks and causes the belt to slip over the disk. No
slipping occurs at A. The coefficient of static friction
between the belt and the disk is w, = 0.3.

0mm yshm

[

100 mm

Prob. 8-104

8-105. A 10-kg cylinder D, which is attached to a small
pulley B, is placed on the cord as shown. Determine the
largest angles 6 so that the cord does not slip over the peg
at C. The cylinder at E also has a mass of 10 kg, and the
coefficient of static friction between the cord and the peg
is uy = 0.1.

Prob. 8-105

8-106. A conveyer belt is used to transfer granular
material and the frictional resistance on the top of the belt
is F = 500 N. Determine the smallest stretch of the spring
attached to the moveable axle of the idle pulley B so that
the belt does not slip at the drive pulley A when the
torque M is applied. What minimum torque M is required to
keep the belt moving? The coefficient of static friction
between the belt and the wheel at A is u, = 0.2.

=

0.1 m
0.1m§©; ) F=500N Z %
OO)M i k = 4KN/

A

Prob. 8-106
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*8.6 Frictional Forces on Collar Bearings,
Pivot Bearings, and Disks

Pivot and collar bearings are commonly used in machines to support an
axial load on a rotating shaft. Typical examples are shown in Fig. 8-20.
Provided these bearings are not lubricated, or are only partially lubricated,
the laws of dry friction may be applied to determine the moment needed
to turn the shaft when it supports an axial force.

P P

Lo L

Ry

Pivot bearing

(@ &

Collar bearing

(b)
Fig. 8-20

Frictional Analysis. The collar bearing on the shaft shown in Fig. 8-21
is subjected to an axial force P and has a total bearing or contact area
m(R3 — R}). Provided the bearing is new and evenly supported, then the
normal pressure p on the bearing will be uniformly distributed over this
area. Since XF, = 0, then p, measured as a force per unit area, is
p = P/m(R3 — RY)).

The moment needed to cause impending rotation of the shaft can be
determined from moment equilibrium about the z axis. A differential
area element dA = (rd6)(dr), shown in Fig. 8-21, is subjected to both a
normal force dN = p dA and an associated frictional force,

P
dF = ugdN = updA = ——————dA

Fig. 8-21

447
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The motor that turns the disk of this

sanding machine develops a torque that
must overcome the frictional forces
acting on the disk. (© Russell C.Hibbeler)

I

Fig. 8-21 (Repeated)

The normal force does not create a moment about the z axis of the
shaft; however, the frictional force does; namely, dM = rdF. Integration
is needed to compute the applied moment M needed to overcome all the
frictional forces. Therefore, for impending rotational motion,

SM, = 0; M—/rdF:o
A

Substituting for dF and dA and integrating over the entire bearing area
yields

R, p2m 21
M // VLT(RZ R2)](rd0dr) 77( R2) erzdr/ do

2 R%—R%)
M= "uPl ——— 87
SMS (R%—R% ( )

The moment developed at the end of the shaft, when it is rotating at
constant speed, can be found by substituting u, for u, in Eq. 8-7

In the case of a pivot bearing, Fig. 8~20a,then R, = R and R; = 0, and
Eq. 8-7 reduces to

M = %/.LSPR (8-8)

Remember that Eqs. 8-7 and 8-8 apply only for bearing surfaces

subjected to constant pressure. If the pressure is not uniform, a variation

of the pressure as a function of the bearing area must be determined

before integrating to obtain the moment. The following example
illustrates this concept.
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exavpie g9

The uniform bar shown in Fig. 822a has a weight of 4 Ib. If it is
assumed that the normal pressure acting at the contacting surface
varies linearly along the length of the bar as shown, determine the
couple moment M required to rotate the bar. Assume that the bar’s
width is negligible in comparison to its length. The coefficient of static
friction is equal to u, = 0.3.

SOLUTION

A free-body diagram of the bar is shown in Fig. 8-22b. The intensity
wq of the distributed load at the center (x = 0) is determined from
vertical force equilibrium, Fig. 8-22a.

1
+13F. =0, —41b+ 2[2(2 ft)wo} =0 wy=2Ib/ft

Since w = 0 at x = 2 ft, the distributed load expressed as a function
of x is

X
w = (21b/ft)<1 — ﬁ) =2 —x

The magnitude of the normal force acting on a differential segment of
area having a length dx is therefore

dN = wdx = 2 — x)dx

The magnitude of the frictional force acting on the same element of
area is

dF = pgdN = 032 — x)dx
Hence, the moment created by this force about the z axis is
dM = x dF = 0.32x — x*)dx

The summation of moments about the z axis of the bar is determined
by integration, which yields

2
SM, =0, M — 2/ 0.3)2x — x*) dx =0
0

3
M= 0.6<x2 - x—)
3

M = 081b-ft Ans. Fig. 8-22

2

0 (b)
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8.7 Frictional Forces on Journal Bearings

When a shaft or axle is subjected to lateral loads, a journal bearing is
commonly used for support. Provided the bearing is not lubricated, or is
only partially lubricated, a reasonable analysis of the frictional resistance
on the bearing can be based on the laws of dry friction.

Frictional Analysis. A typical journal-bearing support is shown in
Fig. 8-23a. As the shaft rotates, the contact point moves up the wall of the
bearing to some point A where slipping occurs. If the vertical load acting
at the end of the shaft is P, then the bearing reactive force R acting at A
will be equal and opposite to P, Fig. 8-23bh. The moment needed to
maintain constant rotation of the shaft can be found by summing
moments about the z axis of the shaft;i.e.,

M. = 0; M — (Rsingd)r =0
Unwinding the cable from this spool
requires overcoming friction from the or
supporting shaft. (© Russell C. Hibbeler)

M = Rrsin ¢ (8-9)

Rotation z where ¢, is the angle of kinetic friction defined by tan ¢, =

/ F/N = wN/N = p,. InFig. 8-23c,itis seen that rsin ¢, = r. The dashed
circle with radius r is called the friction circle, and as the shaft rotates, the
reaction R will always be tangent to it. If the bearing is partially lubricated,
M 1s small, and therefore sin ¢, = tan ¢, = w;. Under these conditions,
a reasonable approximation to the moment needed to overcome the
frictional resistance becomes

M = Rruy (8-10)

Notice that to minimize friction the bearing radius r should be as small as

! possible. In practice, however, this type of journal bearing is not suitable
for long service since friction between the shaft and bearing will eventually
wear down the surfaces. Instead, designers will incorporate “ball bearings”
or “rollers” in journal bearings to minimize frictional losses.

(b) (©)
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exavpie g0

The 100-mm-diameter pulley shown in Fig. 824a fits loosely on a
10-mm-diameter shaft for which the coefficient of static friction is
s = 0.4. Determine the minimum tension 7 in the belt needed to (a)
raise the 100-kg block and (b) lower the block. Assume that no slipping
occurs between the belt and pulley and neglect the weight of the pulley.

100 kg T (a)

¥y Imp.ending
\ motion
\

SOLUTION
Part (a). A free-body diagram of the pulley is shown in Fig. 8-24b.
When the pulley is subjected to belt tensions of 981 N each, it makes
contact with the shaft at point P;. As the tension 7 is increased, the
contact point will move around the shaft to point P, before motion
impends. From the figure, the friction circle has a radius r; = rsin ¢,.
Using the simplification that sin ¢, = tan ¢, = u, then r, = ru, =
(5 mm)(0.4) = 2 mm, so that summing moments about P, gives ‘
C+3IMp, = 0; 981 N(52 mm) — 7T(48 mm) = 0 52mm 48 mm
T = 1063N = 1.06k N Ans. (b)

If a more exact analysis is used, then ¢, = tan"' 0.4 = 21.8°. Thus, the
radius of the friction circle would be r = rsin ¢, = 5sin21.8° =

1.86 mm. Therefore, T &
»_ Impending

C '|'2Mp2 = 0; \ motion

981 N(50 mm + 1.86 mm) — 7(50 mm — 1.86 mm) = 0 \

T = 1057 N = 1.06 kN Ans.
Part (b). When the block is lowered, the resultant force R acting on
the shaft passes through point as shown in Fig. 824c. Summing
moments about this point yields T
C+IMp = 0; 981 N(48 mm) — T(52 mm) = 0
T =906 N Ans. 48mm 52 mm
()

NOTE: Using the approximate analysis, the difference between raising
and lowering the block is thus 157 N. Fig. 8-24
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iy

Rigid surface of contact

(a)

BN
Ny

Soft surface of contact

(b)
N,
N
Ny
(©) w
p
P
oyl o
I —a
A
N
(d)
Fig. 8-25

*8.8 Rolling Resistance

When a rigid cylinder rolls at constant velocity along a rigid surface, the
normal force exerted by the surface on the cylinder acts perpendicular to
the tangent at the point of contact, as shown in Fig. 8-25a. Actually,
however, no materials are perfectly rigid, and therefore the reaction of the
surface on the cylinder consists of a distribution of normal pressure. For
example, consider the cylinder to be made of a very hard material, and the
surface on which it rolls to be relatively soft. Due to its weight, the cylinder
compresses the surface underneath it, Fig. 8-25b. As the cylinder rolls, the
surface material in front of the cylinder retards the motion since it is being
deformed, whereas the material in the rear is restored from the deformed
state and therefore tends to push the cylinder forward. The normal
pressures acting on the cylinder in this manner are represented in
Fig. 8-25b by their resultant forces N, and N,. The magnitude of the force
of deformation, N;, and its horizontal component is always greater than
that of restoration, N,, and consequently a horizontal driving force P must
be applied to the cylinder to maintain the motion. Fig. 8-25b.%

Rolling resistance is caused primarily by this effect, although it is also,
to a lesser degree, the result of surface adhesion and relative micro-
sliding between the surfaces of contact. Because the actual force P
needed to overcome these effects is difficult to determine, a simplified
method will be developed here to explain one way engineers have
analyzed this phenomenon. To do this, we will consider the resultant of
the entire normal pressure, N = N; + N,, acting on the cylinder,
Fig. 8-25¢. As shown in Fig. 8-254d, this force acts at an angle 6 with the
vertical. To keep the cylinder in equilibrium, i.e., rolling at a constant
rate, it is necessary that N be concurrent with the driving force P and the
weight W. Summing moments about point A gives Wa = P (rcos ).
Since the deformations are generally very small in relation to the
cylinder’s radius, cos # = 1; hence,

Wa = Pr

or
(8-11)

The distance a is termed the coefficient of rolling resistance, which has
the dimension of length. For instance, @ = 0.5 mm for a wheel rolling on
a rail, both of which are made of mild steel. For hardened steel ball

*Actually, the deformation force N, causes energy to be stored in the material as its
magnitude is increased, whereas the restoration force N,, as its magnitude is decreased, allows
some of this energy to be released. The remaining energy is /ost since it is used to heat up
the surface, and if the cylinder’s weight is very large, it accounts for permanent deformation
of the surface. Work must be done by the horizontal force P to make up for this loss.



bearings on steel, ¢ = 0.1 mm. Experimentally, though, this factor is
difficult to measure, since it depends on such parameters as the rate of
rotation of the cylinder, the elastic properties of the contacting surfaces,
and the surface finish. For this reason, little reliance is placed on the data
for determining a. The analysis presented here does, however, indicate
why a heavy load (W) offers greater resistance to motion (P) than a light
load under the same conditions. Furthermore, since Wa/r is generally
very small compared to u; W, the force needed to roll a cylinder over the
surface will be much less than that needed to slide it across the surface. It
is for this reason that a roller or ball bearings are often used to minimize
the frictional resistance between moving parts.

Rolling resistance of railroad wheels on the
rails is small since steel is very stiff. By
comparison, the rolling resistance of the
wheels of a tractor in a wet field is very large.
(© Russell C. Hibbeler)
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_

EXAMPLE | 8.11

A 10-kg steel wheel shown in Fig. 8-26a has a radius of 100 mm and
rests on an inclined plane made of soft wood. If 6 is increased so that
the wheel begins to roll down the incline with constant velocity when
0 = 1.2°, determine the coefficient of rolling resistance.

(a)

SOLUTION

As shown on the free-body diagram, Fig. 8-26b, when the wheel has
impending motion, the normal reaction N acts at point A defined by the
dimension a. Resolving the weight into components parallel and
perpendicular to the incline, and summing moments about point A4, yields

Q"‘EMA =0,
—(98.1 cos 1.2° N)(a) + (98.1 sin 1.2° N)(100 cos 1.2° mm) = 0

Solving, we obtain
a = 2.09 mm Ans.

98.1sin 1.2° N
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. PEGIBUEWENTAL PROBLEMS

8-107. The collar bearing uniformly supports an axial
force of P = 5 kN. If the coefficient of static friction is
s = 0.3, determine the smallest torque M required to
overcome friction.

*8-108. The collar bearing uniformly supports an axial
force of P = 8 kN.If a torque of M = 200 N - m is applied to
the shaft and causes it to rotate at constant velocity, determine
the coefficient of kinetic friction at the surface of contact.

P
Sy
¢

150 mm

~—— 200 mm —|

Probs. 8-107/108

8-109. The floor-polishing machine rotates at a constant
angular velocity. If it has a weight of 80 Ib, determine the
couple forces F the operator must apply to the handles to
hold the machine stationary. The coefficient of kinetic
friction between the floor and brush is w, = 0.3. Assume
the brush exerts a uniform pressure on the floor.

Prob. 8-109

8-110. The double-collar bearing is subjected to an axial
force P = 4 kN. Assuming that collar A supports 0.75P and
collar B supports 0.25P, both with a uniform distribution of
pressure, determine the maximum frictional moment M that
may be resisted by the bearing. Take u, = 0.2 for both collars.

P
¢ | >M

20 mm

A 10 mm

—— 30 mm

Prob. 8-110

8-111. The double-collar bearing is subjected to an axial
force P = 16 kN. Assuming that collar A supports 0.75P
and collar B supports 0.25P, both with a uniform distribution
of pressure, determine the smallest torque M that must be
applied to overcome friction. Take w, = 0.2 for both collars.

30 mm

Prob. 8-111



*8-112. The pivot bearing is subjected to a pressure
distribution at its surface of contact which varies as shown.
If the coefficient of static friction is u, determine the
torque M required to overcome friction if the shaft supports
an axial force P.

— r
Po P =Po COST5

Prob. 8-112

8-113. The conical bearing is subjected to a constant
pressure distribution at its surface of contact. If the
coefficient of static friction is u,, determine the torque M
required to overcome friction if the shaft supports an axial
force P.

Prob. 8-113
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8-114. The 4-in.-diameter shaft is held in the hole such
that the normal pressure acting around the shaft varies
linearly with its depth as shown. Determine the frictional
torque that must be overcome to rotate the shaft. Take
e = 0.2.

60 Ib /in?

@3 .

‘ 6in. ‘

Prob. 8-114

8-115. The plate clutch consists of a flat plate A that slides
over the rotating shaft S. The shaft is fixed to the driving
plate gear B. If the gear C, which is in mesh with B, is
subjected to a torque of M = 0.8 N-m, determine the
smallest force P,that must be applied via the control arm, to
stop the rotation. The coefficient of static friction between
the plates A and D is u; = 0.4. Assume the bearing pressure
between A and D to be uniform.

150 mm

e 30 1;1m
\J M=08Nm

Prob. 8-115
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#8-116. The collar fits loosely around a fixed shaft that has
a radius of 2 in. If the coefficient of kinetic friction between
the shaft and the collar is u; = 0.3, determine the force P
on the horizontal segment of the belt so that the collar
rotates counterclockwise with a constant angular velocity.
Assume that the belt does not slip on the collar; rather, the
collar slips on the shaft. Neglect the weight and thickness of
the belt and collar. The radius, measured from the center of
the collar to the mean thickness of the belt, is 2.25 in.

8-117. The collar fits loosely around a fixed shaft that has
a radius of 2 in. If the coefficient of kinetic friction between
the shaft and the collar is u, = 0.3, determine the force P
on the horizontal segment of the belt so that the collar
rotates clockwise with a constant angular velocity. Assume
that the belt does not slip on the collar; rather, the collar
slips on the shaft. Neglect the weight and thickness of the
belt and collar. The radius, measured from the center of the
collar to the mean thickness of the belt, is 2.25 in.

201b

Probs. 8-116/117
8-118. The pivot bearing is subjected to a parabolic
pressure distribution at its surface of contact. If the
coefficient of static friction is wu;, determine the torque M
required to overcome friction and turn the shaft if it
supports an axial force P.

M-

Prob. 8-118

8-119. A disk having an outer diameter of 120 mm fits
loosely over a fixed shaft having a diameter of 30 mm. If the
coefficient of static friction between the disk and the shaft is
s = 0.15 and the disk has a mass of 50 kg, determine the
smallest vertical force F acting on the rim which must be
applied to the disk to cause it to slip over the shaft.

Prob. 8-119

*8-120. The 4-1b pulley has a diameter of 1 ft and the axle
has a diameter of 1 in. If the coefficient of kinetic friction
between the axle and the pulley is u; = 0.20, determine the
vertical force P on the rope required to lift the 20-1b block
at constant velocity.

8-121. Solve Prob. 8-120 if the force P is applied
horizontally to the left.

Probs. 8-120/121



8-122. Determine the tension T in the belt needed to
overcome the tension of 200 Ib created on the other side.
Also, what are the normal and frictional components of
force developed on the collar bushing? The coefficient of
static friction is u, = 0.21.

8-123. If a tension force T = 215 Ib is required to pull the
200-Ib force around the collar bushing, determine the
coefficient of static friction at the contacting surface. The
belt does not slip on the collar.

1.125 in.

2001 T

Probs. 8-122/123

*8-124. The uniform disk fits loosely over a fixed shaft
having a diameter of 40 mm. If the coefficient of static
friction between the disk and the shaft is u, = 0.15,
determine the smallest vertical force P, acting on the rim,
which must be applied to the disk to cause it to slip on the
shaft. The disk has a mass of 20 kg.

150mm —————

40 mm-

Prob. 8-124
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8-125. The 5-kg skateboard rolls down the 5° slope at
constant speed. If the coefficient of kinetic friction between
the 12.5-mm-diameter axles and the wheels is w; = 0.3,
determine the radius of the wheels. Neglect rolling
resistance of the wheels on the surface. The center of mass
for the skateboard is at G.

©
N J
250 mmTT 300 mm

Prob. 8-125

8-126. The bell crank fits loosely into a 0.5-in-diameter pin.
Determine the required force P which is just sufficient to
rotate the bell crank clockwise. The coefficient of static
friction between the pin and the bell crank is u, = 0.3.

Prob. 8-126

8-127. The bell crank fits loosely into a 0.5-in-diameter
pin. If P = 41 Ib, the bell crank is then on the verge of
rotating counterclockwise. Determine the coefficient of
static friction between the pin and the bell crank.

Prob. 8-127



458 CHAPTER 8 FRICTION

*8-128. The vehicle has a weight of 2600 Ib and center of
gravity at G. Determine the horizontal force P that must be
applied to overcome the rolling resistance of the wheels.
The coefficient of rolling resistance is 0.5 in. The tires have a
diameter of 2.75 ft.

Prob. 8-128

8-129. The tractor has a weight of 16 000 1b and the
coefficient of rolling resistance is ¢ = 2 in. Determine the
force P needed to overcome rolling resistance at all four
wheels and push it forward.

Prob. 8-129

8-130. The handcart has wheels with a diameter of 6 in. If
a crate having a weight of 1500 b is placed on the cart,
determine the force P that must be applied to the handle to
overcome the rolling resistance. The coefficient of rolling
resistance is 0.04 in. Neglect the weight of the cart.

==
T 0o

Prob. 8-130

8-131. The cylinder is subjected to a load that has a weight W.
If the coefficients of rolling resistance for the cylinder’s top and
bottom surfaces are a, and ap, respectively, show that a
horizontal force having a magnitude of P = [W(a, + ag)]/2r
is required to move the load and thereby roll the cylinder
forward. Neglect the weight of the cylinder.

Prob. 8-131

*8-132. The 1.4-Mg machine is to be moved over a level
surface using a series of rollers for which the coefficient of
rolling resistance is 0.5 mm at the ground and 0.2 mm at the
bottom surface of the machine. Determine the appropriate
diameter of the rollers so that the machine can be pushed
forward with a horizontal force of P = 250 N. Hint: Use the
result of Prob. 8-131.

Prob. 8-132
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Dry Friction

Frictional forces exist between two rough surfaces of
contact. These forces act on a body so as to oppose its
motion or tendency of motion.

A static frictional force approaches a maximum value
of F; = u,N, where p, is the coefficient of static friction.
In this case, motion between the contacting surfaces is
impending.

If slipping occurs, then the friction force remains
essentially constant and equal to F;, = w;N. Here y; is
the coefficient of kinetic friction.

The solution of a problem involving friction requires
first drawing the free-body diagram of the body. If the
unknowns cannot be determined strictly from the
equations of equilibrium, and the possibility of
slipping occurs, then the friction equation should be
applied at the appropriate points of contact in order to
complete the solution.

It may also be possible for slender objects, like crates,
to tip over, and this situation should also be
investigated.

m-

Rough surface

Impending
e
motion

4_T_Fs—l-bsN
N

w

Motion

P -——-

Fy = m N

[—
P
—_—
w
X
——
F
N

Impending slipping
F=uN

Tipping

A
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move heavy loads. They represent an
inclined plane, wrapped around a
cylinder.

The moment needed to turn a screw
depends upon the coefficient of friction
and the screw’s lead angle 6.

If the coefficient of friction between the
surfaces is large enough, then the screw
will support the load without tending to
turn, i.e., it will be self-locking.

Upward Impending Screw Motion

M' = W tan(@ — ¢,)

Downward Impending Screw
Motion

0 > ¢,

M" = W tan(¢, — 6)
Downward Screw Motion

Wedges
Wedges are inclined planes used to SF, =0 W/
increase the application of a force. The SE =0
two force equilibrium equations are ! P —
used to relate the forces acting on the )
wedge. Ilnnglz%‘(j)_?g
An applied force P must push on the F
wedge to move it to the right. N, *W | ?
<«— N

If the coefficients of friction between the Fz_ 0 \/ }
surfaces are large enough, then P can be P —>|>\é F, —4—
removed, and the wedge will be self- F<_+_ f
locking and remain in place. "N N,

w
Screws l
Square-threaded screws are used to M = /W tan(6 + ¢,) Ml Y

.

the coefficient of friction.

== M=
] _—

Motion or impending
motion of belt relative
to surface

Flat Belts

The force needed to move a flat belt s

Tz = Tle"
over a rough curved surface depends
only on the angle of belt contact, 8, and T, > T,
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Collar Bearings and Disks

The frictional analysis of a collar
bearing or disk requires looking at a
differential element of the contact area.
The normal force acting on this element
is determined from force equilibrium
along the shaft, and the moment needed
to turn the shaft at a constant rate is
determined from moment equilibrium
about the shaft’s axis.

If the pressure on the surface of a collar
bearing is uniform, then integration
gives the result shown.

Journal Bearings

When a moment is applied to a shaft in
a nonlubricated or partially lubricated
journal bearing, the shaft will tend to
roll up the side of the bearing until
slipping occurs. This defines the radius
of a friction circle, and from it the
moment needed to turn the shaft can be
determined.

M = Rrsin ¢

Rotation z P

-

r

Rolling Resistance

The resistance of a wheel to rolling over
a surface is caused by localized
deformation of the two materials in
contact. This causes the resultant normal
force acting on the rolling body to be
inclined so that it provides a component
that acts in the opposite direction of the
applied force P causing the motion. This
effect is characterized wusing the
coefficient of rolling resistance, a, which
is determined from experiment.

Wa
P~—
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. REVIEW PROBLEMS

All problem solutions must include FBDs.

R8-1. The uniform 20-Ib ladder rests on the rough floor for
which the coefficient of static friction is u; = 0.4 and against
the smooth wall at B. Determine the horizontal force P the
man must exert on the ladder in order to cause it to move.

6 ft

Prob. R8-1

R8-2. The uniform 60-kg crate C rests uniformly on a
10-kg dolly D. If the front casters of the dolly at A are
locked to prevent rolling while the casters at B are free to
roll, determine the maximum force P that may be applied
without causing motion of the crate. The coefficient of static
friction between the casters and the floor is u; = 0.35 and
between the dolly and the crate, u; = 0.5.

~06m—

\

\

0.8 m
T D
0.2? m@)p | @©A
‘ L—» 025 m
‘ 1.5m
Prob. R8-2

R8-3. A 35-kg disk rests on an inclined surface for which
s = 0.2. Determine the maximum vertical force P that
may be applied to bar AB without causing the disk to slip
at C. Neglect the mass of the bar.

Prob. R8-3

R8-4. The cam is subjected to a couple moment of 5 N - m.
Determine the minimum force P that should be applied to
the follower in order to hold the cam in the position shown.
The coefficient of static friction between the cam and the
follower is w = 0.4. The guide at A is smooth.

-10 mm

hN

60 mm

5N-m

Prob. R8—4



R8-5. The three stone blocks have weights of W, = 600 Ib,
Wy = 1501b, and W = 5001b. Determine the smallest
horizontal force P that must be applied to block C in order
to move this block. The coefficient of static friction between
the blocks is u, = 0.3, and between the floor and each
block u; = 0.5.

Prob. R8-5

R8-6. The jacking mechanism consists of a link that has a
square-threaded screw with a mean diameter of 0.5 in. and a
lead of 0.20 in., and the coefficient of static friction is
s = 0.4.Determine the torque M that should be applied to
the screw to start lifting the 6000-1b load acting at the end of
member ABC.

6000 1b

i— 20 in. ‘ 15 in. 10 in:

Prob. R8-6
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R8-7. The uniform 50-1b beam is supported by the rope
that is attached to the end of the beam, wraps over the
rough peg, and is then connected to the 100-Ib block. If
the coefficient of static friction between the beam and the
block, and between the rope and the peg, is u; = 04,
determine the maximum distance that the block can be
placed from A and still remain in equilibrium. Assume the
block will not tip.

10 ft 1

Prob. R8-7

R8-8. The hand cart has wheels with a diameter of 80 mm.
If a crate having a mass of 500 kg is placed on the cart so
that each wheel carries an equal load, determine the
horizontal force P that must be applied to the handle to
overcome the rolling resistance. The coefficient of rolling
resistance is 2 mm. Neglect the mass of the cart.

Prob. R8-8
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When a tank of any shape is designed, it is important to be able to
determine its center of gravity, calculate its volume and surface area,

and determine the forces of the liquids they contain. These topics
will be covered in this chapter.



Center of Gravity
and Centroid

CHAPTER OBJECTIVES

m To discuss the concept of the center of gravity, center of mass,
and the centroid.

= To show how to determine the location of the center of gravity
and centroid for a body of arbitrary shape and one composed of
composite parts.

m To use the theorems of Pappus and Guldinus for finding the
surface area and volume for a body having axial symmetry.

m To present a method for finding the resultant of a general
distributed loading and to show how it applies to finding the
resultant force of a pressure loading caused by a fluid.

9.1 Center of Gravity, Center of Mass,
and the Centroid of a Body

Knowing the resultant or total weight of a body and its location is
important when considering the effect this force produces on the body.
The point of location is called the center of gravity, and in this section we
will show how to find it for an irregularly shaped body. We will then
extend this method to show how to find the body’s center of mass, and its
geometric center or centroid.

Center of Gravity. A body is composed of an infinite number of
particles of differential size, and so if the body is located within a
gravitational field, then each of these particles will have a weight dW.
These weights will form a parallel force system, and the resultant of this
system is the total weight of the body, which passes through a single point
called the center of gravity, G*.

*In a strict sense this is true as long as the gravity field is assumed to have the same
magnitude and direction everywhere. Although the actual force of gravity is directed toward
the center of the earth, and this force varies with its distance from the center, for most
engineering applications we can assume the gravity field has the same magnitude and
direction everywhere.
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(a)

(b)

Fig. 9-1

(©)

To show how to determine the location of the center of gravity, consider
the rod in Fig. 9-1a, where the segment having the weight dW is located
at the arbitrary position x. Using the methods outlined in Sec. 4.8, the total
weight of the rod is the sum of the weights of all of its particles, that is

+Fp = SF; W= /dW

The location of the center of gravity, measured from the y axis, is
determined by equating the moment of W about the y axis, Fig. 9-1b, to
the sum of the moments of the weights of all its particles about this same
axis. Therefore,

(Mg), = ZM,; xW = / xdw

[zaw
X="—
[aw

In a similar manner, if the body represents a plate, Fig. 9-1b, then a
moment balance about the x and y axes would be required to determine
the location (X, y) of point G. Finally we can generalize this idea to a
three-dimensional body, Fig. 9-1¢, and perform a moment balance about
all three axes to locate G for any rotated position of the axes. This results
in the following equations.

(-1

where

X, y, z are the coordinates of the center of gravity G.
X, ¥, 7 are the coordinates of an arbitrary particle in the body.
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Center of Mass of a Body. In order to study the dynamic
response or accelerated motion of a body, it becomes important to locate
the body’s center of mass C,,, Fig. 9-2. This location can be determined
by substituting dW = g dm into Eqgs. 9-1. Provided g is constant, it cancels
out, and so

(9-2)

Centroid of a Volume. If the body in Fig. 9-3 is made from a
homogeneous material, then its density p (rtho) will be constant. Therefore,
a differential element of volume dV has a mass dm = p dV. Substituting
this into Egs. 9-2 and canceling out p, we obtain formulas that locate the
centroid C or geometric center of the body; namely

(9-3)

These equations represent a balance of the moments of the volume of
the body. Therefore, if the volume possesses two planes of symmetry,
then its centroid must lie along the line of intersection of these two
planes. For example, the cone in Fig. 9-4 has a centroid that lies on the
y axis so that x = z = 0. The location y can be found using a single
integration by choosing a differential element represented by a thin disk
having a thickness dy and radius =z Its volume is
dV = m*dy = wz>dy and its centroidisat X = 0,5 =y, 7 = 0.

467
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Fig. 9-2

Fig. 9-3
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Integration must be used to determine
the location of the center of gravity of
this lamp post due to the curvature of
the member. (O Russell C. Hibbeler)

CHAPTER 9 CENTER OF GRAVITY AND CENTROID

<

dyt”

(a)

(b) (©

Centroid of an Area. If an area lies in the x—y plane and is
bounded by the curve y = f(x), as shown in Fig. 9-5a, then its centroid
will be in this plane and can be determined from integrals similar to
Eqgs. 9-3, namely,

/sz /ydA
A A

y:

I
A

(9-4)

These integrals can be evaluated by performing a single integration if we use
a rectangular strip for the differential area element. For example, if a vertical
strip is used, Fig. 9-5b, the area of the elementis dA = y dx,and its centroid
islocated at ¥ = xand y = y/2.1f we consider a horizontal strip, Fig. 9-5c,
then dA = x dy,and its centroid is located at X = x/2andy = y.

Centroid of a Line. 1If a line segment (or rod) lies within the x—y
plane and it can be described by a thin curve y = f (x), Fig. 9-6a, then its
centroid is determined from

[ra  [ra
L L

x= y
/dL /dL
L L

(9-5)
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Here, the length of the differential element is given by the Pythagorean

theorem, dL = \/m, which can also be written in the form
dL = J <j§§>2a’x2 + (Z)dez
= < 1+ (3)2 >dx
or

a- (&) ()
(3 1)

Either one of these expressions can be used; however, for application,
the one that will result in a simpler integration should be selected. For
example, consider the rod in Fig. 9-6b, defined by y = 2x°. The length
of the element is dL = V1 + (dy/ dx)> dx, and since dy/dx = 4x,
then dL = V1 + (4x)* dx. The centroid for this element is located at

X =xandy = y.

Important Points

¢ The centroid represents the geometric center of a body. This point
coincides with the center of mass or the center of gravity only if
the material composing the body is uniform or homogeneous.

¢ Formulas used to locate the center of gravity or the centroid
simply represent a balance between the sum of moments of all
the parts of the system and the moment of the “resultant” for the
system.

¢ In some cases the centroid is located at a point that is not on
the object, as in the case of a ring, where the centroid is at its
center. Also, this point will lie on any axis of symmetry for the
body, Fig. 9-7

\ dL
P Y
x—eoC TdLde

‘ i dx

\

y

‘ x
o

(a)

Fig. 9-7
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The center of gravity or centroid of an object or shape can be
determined by single integrations using the following procedure.

Differential Element.

® Select an appropriate coordinate system, specify the coordinate
axes, and then choose a differential element for integration.

® For lines the element is represented by a differential line segment
of length dL.

¢ For areas the element is generally a rectangle of area dA, having a
finite length and differential width.

® For volumes the element can be a circular disk of volume dV,
having a finite radius and differential thickness.

® Locate the element so that it touches the arbitrary point (x, y, z)
on the curve that defines the boundary of the shape.

Size and Moment Arms.

® Express the length dL, area dA, or volume dV of the element in
terms of the coordinates describing the curve.

® Express the moment arms X, y, z for the centroid or center of
gravity of the element in terms of the coordinates describing the
curve.

Integrations.

® Substitute the formulations for x, y, 7 and dL, dA, or dV into the
appropriate equations (Egs. 9-1 through 9-5).

¢ Express the function in the integrand in terms of the same variable
as the differential thickness of the element.

® The limits of the integral are defined from the two extreme
locations of the element’s differential thickness, so that when the
elements are “summed” or the integration performed, the entire
region is covered.
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EXAMPLE | 9.1

Locate the centroid of the rod bent into the shape of a parabolic arc as y

shown in Fig. 9-8.

SOLUTION

Differential Element. The differential element is shown in Fig. 9-8.
It is located on the curve at the arbitrary point (x, y).

Im

&9, EE&)

e

Area and Moment Arms. The differential element of length dL =y
can be expressed in terms of the differentials dx and dy using the l
Pythagorean theorem. G *
X=X
RN 1 [ ? .
dL = V(dx)" + (dy)” = <E> + 1dy Fig. 9-8

Since x = y? then dx/dy = 2y. Therefore, expressing dL in terms
of y and dy, we have

dL = V(2y)* + ldy
As shown in Fig. 9-8, the centroid of the element is located at X = x,
y =Y

Integrations. Applying Eq. 9-5 and using the integration formula
to evaluate the integrals, we get

[za
_ L _

Im 1 m
/ x\/4y2+ldy / y2V4y2+ldy
0 _Jo
1 m -
\/4y2 + 1ldy

0 0

Ja
L

0.6063
1.479

Im
\/4y2 + 1dy

= 0410 m Ans.

1m
/ydL / yV4ay? + 1dy
L _Jo
- Im
/LdL / Vay? + 1.dy
0

~0.8484
1.479

= 0.574 m Ans.

<l
|

NOTE: These results for C seem reasonable when they are plotted on
Fig. 9-8.
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EXAMPLE | 9.2

Locate the centroid of the circular wire segment shown in Fig. 9-9.

y

X =Rcosb

Fig. 9-9

SOLUTION

Polar coordinates will be used to solve this problem since the arc is
circular.

Differential Element. A differential circular arc is selected as
shown in the figure. This element lies on the curve at (R, 6).

Length and Moment Arm. The length of the differential element
is dL = RdO, and its centroid is located at X = R cos # and
Y = R sin6.

Integrations. Applying Eqgs. 9-5 and integrating with respect to 6,
we obtain

/2 /2
/ X dL / (Rcos®)RdO R? / cos 0 d
IL 0 0

= = = = Ans.

% = /2 /2 T
dL / R do R / do
Z 0 0

/2 /2
/ y dL / (Rsin®R dd R? / sin 0 d6
L 0 0 2R

y = = 7/2 = - /2 = ; AI/IS.
dL / R db R / de
L 0 0

NOTE: As expected, the two coordinates are numerically the same due
to the symmetry of the wire.
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exavpie og

Determine the distance y measured from the x axis to the centroid of
the area of the triangle shown in Fig. 9-10.

Fig. 9-10

SOLUTION

Differential Element. Consider a rectangular element having a
thickness dy, and located in an arbitrary position so that it intersects
the boundary at (x, y), Fig. 9-10.

Area and Moment Arms. The area of the element is dA = x dy
b . I . ~
= Z(h — y) dy, and its centroid is located a distance y = y from the

X axis.

Integration. Applying the second of Egs. 94 and integrating with
respect to y yields

"Tp
y dA /y[—(h—y)dy}
/A _Jo LA B tbh?

y= - n =
b Lbh
dA “(h—yd ?

/A /oh( y)dy

= Ans.

NOTE: This result is valid for any shape of triangle. It states that the
centroid is located at one-third the height, measured from the base of
the triangle.
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EXAMPLE | 9.4

Locate the centroid for the area of a quarter circle shown in Fig. 9-11.

y
VR do
A
R
= R 6
R {3 ’
iz%RSine 4o
| 6
X
—X = %R cos 6 L
Fig. 9-11
SOLUTION

Differential Element. Polar coordinates will be used, since the
boundary is circular. We choose the element in the shape of a triangle,
Fig. 9-11. (Actually the shape is a circular sector; however, neglecting
higher-order differentials, the element becomes triangular.) The
element intersects the curve at point (R, ).

Area and Moment Arms. The area of the element is

RZ
dA = R)(R df) = —do

and using the results of Example 9.3, the centroid of the (triangular)
element is located at ¥ = 3R cos 6, y = 3R sin 6.

Integrations. Applying Egs. 94 and integrating with respect to 6,

we obtain

N /2 2 R2 2 /2

X dA —Rcos 6 |—db =JR cos 0 db
_ A 0 3 2 3 0 A
X = = = = — ns.

7/2 2 /2 37
R
dA / = do / d9
4 o 2 0

/2 D) /2
/ (ER sin 0) R—dH <%R> / sin 6 df
_Jo 3 2 3 0

4R
= = — Ans

y =] =]
7/2 ) /2 3
/ el / R a6 / do
4 0 2 0

S
=
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exavpie los

Locate the centroid of the area shown in Fig. 9-12a. y

SOLUTION |

Differential Element. A differential element of thickness dx is
shown in Fig. 9-12a. The element intersects the curve at the arbitrary
point (x, y), and so it has a height y.

Area and Moment Arms. The area of the element is dA = y dx,
and its centroid is located at x = x, y = y/2.

Integrations. Applying Egs. 94 and integrating with respect to x yields

Im Im

/)chA / xy dx / x* dx

A 0 _Jo 0250
I'm - Im

0.75 m Ans.

f: =

0333
/dA / y dx / x% dx
A 0 0

1m 1m
y dA 2)y d 2/2)x?% dx
/5 =/0 o [Cemea o

y = = = 0. Ans.

y m ™ 0333 0.3m Ans
dA y dx x% dx y
A 0 0

SOLUTION Ii o,

Differential Element. The differential element of thickness dy is
shown in Fig. 9-12b. The element intersects the curve at the arbitrary
point (x, y), and so it has a length (1 — x). ) J 1m

Areaand Moment Arms. Theareaoftheelementis dA = (1 — x) dy, T &
and its centroid is located at ¥ *5)
~ n (1 — x) 1 +x - l
= — = X
o o 2 2 7 Y Y x4—-{1 — X)~|
Integrations. Applying Egs. 9-4 and integrating with respect to y, IT'm
we obtain (b)
~ a L Fig. 9-12
X dA [(1 + x)/2](1 — x)dy E (1 —y)dy 0.250 g
F=t =0 =L = """ =075m Ans
JA 0.333
(1 = x)dy (1 = Vy)dy
A 0 0
Im Im
¥ dA 1—x)d -y d
) /A y /0 ¥( ) dy . O —y"dy 0.100
y = = =03m Ans.

T m T m T 0333
/dA / (1= x)dy / (1= Vy)dy
A 0 0

NOTE: Plot these results and notice that they seem reasonable. Also,
for this problem, elements of thickness dx offer a simpler solution.
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Locate the centroid of the semi-elliptical area shown in Fig. 9-13a.

2 ft

y

/

21t 21t 5
dA / (v dv) l/ (1—x—)dx
y
S a2 _2) g 4 4/3

M P

(b)
Fig. 9-13
SOLUTION |

Differential Element. The rectangular differential element parallel
to the y axis shown shaded in Fig. 9-13a will be considered. This
element has a thickness of dx and a height of y.

Area and Moment Arms. Thus, the area is dA = y dx, and its
centroid is located at ¥ = xandy = y/2.

Integration. Since the area is symmetrical about the y axis,
x=0 Ans.

2
Applying the second of Eqs. 94 with y = /1 — XZ, we have

1 ft 1 ft
/idA / y(2x dy) / 4yV1 -y dy
A 0

o i > = o = 0424t  Ans.
/ y dx / A1 ——dx
21t ot 4

SOLUTION I

Differential Element. The shaded rectangular differential element
of thickness dy and width 2x, parallel to the x axis, will be considered,
Fig. 9-13b.

Area and Moment Arms. The areais dA = 2x dy, and its centroid
isatx = 0andy = y.

Integration. Applying the second of Egs. 9—4, withx = 2V 1 — y?,
we have

4/3

0

/

1t 11t P
dA / 2x dy / 4NV'1—y2dy
0 0

= —ft = 0424 ft Ans.
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EXAVIPLE

Locate the y centroid for the paraboloid of revolution, shown in

Fig. 9-14.

z

B 72 = 100y -
Y=Y
.y 2),
100 mm
y
X
100 mm
Fig. 9-14

SOLUTION

Differential Element. An element having the shape of a thin disk is
chosen. This element has a thickness dy, it intersects the generating
curve at the arbitrary point (0, y, z), and so its radius is r = z.

Volume and Moment Arm. The volume of the element is
dV = (wz%) dy, and its centroid is located at y = y.

Integration. Applying the second of Egs. 9-3 and integrating with
respect to y yields.

100 mm 100 mm
/ y dv / y(mz?)dy 1007 / y? dy
v 0 = 0 = 66.7mm  Ans.

= 100 mm 100 mm
/ av / (mzddy 1007 / y dy
4 0 0

y:
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Determine the location of the center of mass of the cylinder shown
in Fig. 9-15 if its density varies directly with the distance from its base,
i.e.,p = 200z kg/m>.

Fig. 9-15

SOLUTION
For reasons of material symmetry,

x=y=0 Ans.

Differential Element. A disk element of radius 0.5 m and thickness
dz is chosen for integration, Fig. 9-15, since the density of the entire
element is constant for a given value of z. The element is located along
the z axis at the arbitrary point (0,0, z).

Volume and Moment Arm. The volume of the element is
dV = m(0.5)% dz,and its centroid is located at 7 = z.

Integrations. Using the third of Eqs. 9-2 with dm = pdV and
integrating with respect to z, noting that p = 200z, we have

I'm
/ Zpadv / 2(200z) [ m(0.5)? dz |

1m
/ pdv / (2002)7r(0.5)% dz

v

/01
b

= 0.667 m Ans.

(=)
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. PRELIMINARY PROBLEM

P9-1. In each case, use the element shown and specify
X,y,and dA.

d
© Prob. P9-1 @
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. FUNDAMENTAL PROBLEMS

F9-1. Determine the centroid (x, y) of the shaded area. F9-4. Locate the center of mass x of the straight rod if its

y mass per unit length is given by m = my(1 + x%/L?).

L \
* Prob. F9-4
1m
F9-5. Locate the centroid y of the homogeneous solid
Prob. F9-1

formed by revolving the shaded area about the y axis.

F9-2. Determine the centroid (x, y) of the shaded area.

y

f——1m—
X
Im Prob. F9-5
Prob. F9-2 ) .
F9-6. Locate the centroid z of the homogeneous solid
F9-3. Determine the centroid y of the shaded area. formed by revolving the shaded area about the z axis.
4 b4
2 ft
2m y=2¢ T z=+(12-8y)
2 ft
X l \\/ y
—1m—t—1m— x/ 1.5 ftJ
Prob. F9-3

Prob. F9-6
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“leropews

9-1. Locate the center of mass of the homogeneous rod
bent into the shape of a circular arc.

30°—

Prob. 9-1

9-2. Determine the location (x, y) of the centroid of the wire.

Prob. 9-2

9-3. Locate the center of gravity x of the homogeneous
rod. If the rod has a weight per unit length of 100 N/m,
determine the vertical reaction at A and the x and y
components of reaction at the pin B.

*9—4. Locate the center of gravity y of the homogeneous rod.
y

Probs. 9-3/4

9-5. Determine the distance y to the center of gravity of
the homogeneous rod.

y

._1mﬁ

Prob. 9-5
9-6. Locate the centroid y of the area.
y

=1

Im

E—

Prob. 9-6
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9-7. Locate the centroid x of the parabolic area.

Prob. 9-7

*#9-8. Locate the centroid of the shaded area.

<

mX
= acos==
’ L

L L
T

9-9. Locate the centroid x of the shaded area.

9-10. Locate the centroid y of the shaded area.

Probs. 9-9/10

9-11. Locate the centroid x of the area.

#9-12. Locate the centroid y of the area.

b

Probs. 9-11/12
9-13. Locate the centroid x of the area.

9-14. Locate the centroid y of the area.

y
41 5
y=4 6%
T
4 m
l .
8 m———+

Probs. 9-13/14

9-15. Locate the centroid x of the shaded area. Solve the
problem by evaluating the integrals using Simpson’s rule.

*9-16. Locate the centroid y of the shaded area. Solve the
problem by evaluating the integrals using Simpson’s rule.

y

Im

Probs. 9-15/16
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9-17. Locate the centroid y of the area. 9-21. Locate the centroid x of the shaded area.
9-22. Locate the centroid y of the shaded area.

y
y -
1y
= (4 —
16 ft y=@-x)
4in
x 1
4 ft
8in. N | N
4 ft—]
Prob. 9-17
Probs. 9-21/22
9-23. Locate the centroid x of the shaded area.
9-18. Locate the centroid x of the area. %924, Locate the centroid y of the shaded area.
9-19. Locate the centroid y of the area. y
h
v Y= axth
h
X
a |
X
a T‘ Probs. 9-23/24
9-25. The plate has a thickness of 0.25 ft and a specific
Probs. 9-18/19 weight of y = 180 1b/ft>. Determine the location of its
center of gravity. Also, find the tension in each of the cords
used to support it.
*9-20. Locate the centroid y of the shaded area. z
h
X
a |

Prob. 9-20 Prob. 9-25
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9-26. Locate the centroid x of the shaded area.
9-27. Locate the centroid y of the shaded area.
y

‘ 4 ft ‘
Probs. 9-26/27

*9-28. Locate the centroid x of the shaded area.
9-29. Locate the centroid y of the shaded area.
y

100 mm 1
Y =100

le——100 mm ——|

Probs. 9-28/29

9-30. Locate the centroid x of the shaded area.
9-31. Locate the centroid y of the shaded area.
y

h
y=-"x

—

Probs. 9-30/31

.

*#0-32. Locate the centroid x of the area.

9-33. Locate the centroid y of the area.

y

( y =asing

Probs. 9-32/33

9-34. The steel plate is 0.3 m thick and has a density of
7850 kg/m®. Determine the location of its center of mass.
Also find the reactions at the pin and roller support.

Prob. 9-34
9-35. Locate the centroid x of the shaded area.
#9-36. Locate the centroid y of the shaded area.

y

=

IS}

Probs. 9-35/36
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9-37. Locate the centroid x of the circular sector.

Prob. 9-37

9-38. Determine the location 7 of the centroid C for the
loop of the lemniscate, > = 2a’cos 20, (—45° = 0 = 45°).

( r2 = 2a? cos 20

Prob. 9-38

9-39. Locate the center of gravity of the volume. The
material is homogeneous.

¥ =2z

Prob. 9-39

#9-40. Locate the centroid y of the paraboloid.

<—4m—»\

Prob. 9-40

9-41. Locate the centroid z of the frustum of the

right-circular cone.

Prob. 9-41
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9-42. Determine the centroid y of the solid. #9-44. The hemisphere of radius r is made from a stack of
very thin plates such that the density varies with height,
p = kz, where k is a constant. Determine its mass and the
distance z to the center of mass G.

2= 501

7 Prob. 9-44

9-45. Locate the centroid z of the volume.

3ft z

Im —

Prob. 9-42

9-43. Locate the centroid of the quarter-cone.

< Prob. 9-45

9-46. Locate the centroid of the ellipsoid of revolution.

\ .

Prob. 9-43 Prob. 9-46
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9-47. Locate the center of gravity z of the solid. 9-49. Locate the centroid z of the spherical segment.

[Zzzaz_yz

CID

2
=45 | l6in

8in. Prob. 9-49

Prob. 9-47

9-50. Determine the location z of the centroid for the
tetrahedron. Suggestion: Use a triangular “plate” element
parallel to the x—y plane and of thickness dz.

*9-48. Locate the center of gravity y of the volume. The

material is homogeneous.

~—10 in.—~+10 in.—~| /

Prob. 9-48 Prob. 9-50
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A stress analysis of this angle requires that
the centroid of its cross-sectional area be
located. (© Russell C. Hibbeler)

9.2 Composite Bodies

A composite body consists of a series of connected “simpler” shaped
bodies, which may be rectangular, triangular, semicircular, etc. Such a
body can often be sectioned or divided into its composite parts and,
provided the weight and location of the center of gravity of each of these
parts are known, we can then eliminate the need for integration to
determine the center of gravity for the entire body. The method for doing
this follows the same procedure outlined in Sec. 9.1. Formulas analogous
to Egs. 9-1 result; however, rather than account for an infinite number of
differential weights, we have instead a finite number of weights. Therefore,

s w S wW _ sEw
=35w T sw T 3w (9-6)

X,y,z  represent the coordinates of the center of gravity G of the
composite body.

X,y,z represent the coordinates of the center of gravity of each
composite part of the body.

SwW is the sum of the weights of all the composite parts of the
body, or simply the total weight of the body.

When the body has a constant density or specific weight, the center of
gravity coincides with the centroid of the body. The centroid for composite
lines, areas, and volumes can be found using relations analogous to Eqgs. 9-6;
however, the W’s are replaced by L’s, A’s, and V’s, respectively. Centroids
for common shapes of lines, areas, shells, and volumes that often make up a
composite body are given in the table on the inside back cover.

In order to determine the force required
to tip over this concrete barrier it is
first necessary to determine the location
of its center of gravity G. Due to symmetry,
G will lie on the vertical axis of symmetry.
(© Russell C. Hibbeler)
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Procedure for Analysis

The location of the center of gravity of a body or the centroid of a
composite geometrical object represented by a line, area, or volume
can be determined using the following procedure.

Composite Parts.

® Using a sketch, divide the body or object into a finite number of
composite parts that have simpler shapes.

® [If a composite body has a hole, or a geometric region having no
material, then consider the composite body without the hole and
consider the hole as an additional composite part having negative
weight or size.

Moment Arms.
® Establish the coordinate axes on the sketch and determine the
coordinates X, y, Z of the center of gravity or centroid of each part.

Summations.
® Determine X, y, Z by applying the center of gravity equations,
Eqgs. 9-6, or the analogous centroid equations.

® [Ifan object is symmetrical about an axis, the centroid of the object
lies on this axis.

If desired, the calculations can be arranged in tabular form, as
indicated in the following three examples.

The center of gravity of this water tank can be
determined by dividing it into composite parts
and applying Egs. 9-6. (© Russell C. Hibbeler)
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EXAMPLE | 9.9

Locate the centroid of the wire shown in Fig. 9-16a.

SOLUTION

Composite Parts. The wire is divided into three segments as shown
in Fig. 9-16b.

Moment Arms. The location of the centroid for each segment is
determined and indicated in the figure. In particular, the centroid of

segment @ is determined either by integration or by using the table
on the inside back cover.

Summations. For convenience, the calculations can be tabulated as

follows:

Segment L (mm) X(mm) y(mm) 7 (mm) XL (mm?) yL (mm?) ZL (mm?)
1 (60) = 188.5 60 —38.2 0 11 310 —7200 0
2 40 0 20 0 0 800 0
3 20 0 40 -10 0 800 —200

SL = 2485 SXL =11310 XyL = —-5600 X7ZL = —200
Thus,
_ _32XL 11310 _ ‘
X = SL . 2485 45.5 mm Ans.
_ 3L —5600
y = SL O ass 22.5 mm Ans.
ZL )
p= 2T 2200 605 mm Ans.

SL 2485

(®)
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EXAMPLE | 2.10

Locate the centroid of the plate area shown in Fig. 9-17a.

y

2 ft

+

1ft

+ TN "
| it ‘ 2 ft 3 ft |
(a)
Fig. 9-17
SOLUTION y

Composite Parts. The plate is divided into three segments as shown
in Fig. 9-17b. Here the area of the small rectangle @ is considered

“negative” since it must be subtracted from the larger one @ (2)
Moment Arms. The centroid of each segment is located as indicated ot o\
in the figure. Note that the ¥ coordinates of (2) and (3) are negative. 1-? i 1t
tx
Summations. Taking the data from Fig. 9-17b, the calculations are 15ft | 11t
tabulated as follows:
Segment A (ft%) X(fy yd) XA (fF) YA (ft) y
1 13)3) = 45 1 1 45 45
2 3)3) =9 -1.5 15 —135 13.5
[~—2.5 ft—
3 —Q()y=-2 -25 2 5 —4 ©
A =115 SXA=—-4 3yA=14 T
Thus, zlﬁ
SXA 4 *
X = = —— = —0348f Ans. b
X SA s 0.348 ft ns (b)
YA 14
y = = ——= 1221t Ans.
YT sa T "

NOTE: If these results are plotted in Fig. 9—17a, the location of point C
seems reasonable.
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EXAMPLE | 9.11

z Locate the center of mass of the assembly shown in Fig. 9-18a. The
conical frustum has a density of p. = 8 Mg/m?, and the hemisphere
has a density of p, = 4 Mg/m’. There is a 25-mm-radius cylindrical
hole in the center of the frustum.

SOLUTION

Composite Parts. The assembly can be thought of as consisting of

four segments as shown in Fig. 9-18b. For the calculations, (3) and (4)
must be considered as “negative” segments in order that the four
segments, when added together, yield the total composite shape shown

in Fig. 9-18a.
@ Moment Arm. Using the table on the inside back cover, the
Fig. 9-18 computations for the centroid 7 of each piece are shown in the figure.

Summations. Because of symmetry, note that
x=y=0 Ans.

Since W = mg, and g is constant, the third of Eqs. 9-6 becomes
Z = X7Zm/Zm.The mass of each piece can be computed from m = pV
and used for the calculations. Also, I Mg/m* = 107° kg/mm?, so that

Segment m (kg) Z (mm) Zm (kg * mm)
1 8(107°)(3) m(50)2(200) = 4.189 50 209.440
2 4(107%)(3)m(50)° = 1.047 —18.75 —19.635
3 —8(107(3)7(25)%(100) = —0.524 100 + 25 = 125 —65.450
4 —8(107%(25)%(100) = —1.571 50 —78.540
Sm = 3.142 S7zm = 45.815
g Z 45.815
Thus, 7 = 2;’: = 3142 = 14.6 mm Ans.
(3]
J 100 mm
1004mm =125 m
200 mm
o 50 mm T ‘
— 25 mm 100 mm
200 mm ‘rtnm = 50 mm
A N

(50) = 18.75 mm

|
Ff
€
=

(b)
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F9-7. Locate the centroid (x, y, z7) of the wire bent in the
shape shown.

Prob. F9-7

F9-8. Locate the centroid y of the beam’s cross-sectional
area.

y
150 mm |150 mm

g (]

300 mm

ot

25mm 25 mm

Prob. F9-8

F9-9. Locate the centroid y of the beam’s cross-sectional area.

F9-10. Locate the centroid (x,y) of the cross-sectional
area.

Fﬁn.%

Prob. F9-10

F9-11. Locate the center of mass (x,y,z) of the
homogeneous solid block.

z

6 ft

-

3ft Q%
x7 2t 5 ft

Prob. F9-11

y

F9-12. Determine the center of mass (x,y,z) of the
homogeneous solid block.

Z

0.%
1.5m

Prob. F9-12
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| PROBLEMS

9-51. The truss is made from five members, each having a
length of 4 m and a mass of 7 kg/m. If the mass of the gusset
plates at the joints and the thickness of the members can be
neglected, determine the distance d to where the hoisting
cable must be attached, so that the truss does not tip (rotate)
when it is lifted.

Prob. 9-51

*9-52. Determine the location (x, y, z) of the centroid of
the homogeneous rod.

f
20(1 mm

30°

600 mm

100mm| || <

Prob. 9-52

9-53. A rack is made from roll-formed sheet steel and has
the cross section shown. Determine the location (x, y) of the
centroid of the cross section. The dimensions are indicated
at the center thickness of each segment.

<

"730 mmﬁ‘ o

80 mm

50 mm

- =

Prob. 9-53

9-54. Locate the centroid (x, y) of the metal cross section.
Neglect the thickness of the material and slight bends at
the corners.

50'mm 100 mm 100 mm SO mm

Prob. 9-54



9-55. Locate the center of gravity (x,y,z) of the
homogeneous wire.

400 mm

300 mm

Prob. 9-55

*9-56. The steel and aluminum plate assembly is bolted
together and fastened to the wall. Each plate has a constant
width in the z direction of 200 mm and thickness of 20 mm.
If the density of A and B is p; = 7.85 Mg/m?, and for C,
pa = 2.71 Mg/m?, determine the location x of the center of
mass. Neglect the size of the bolts.

y

100 mm
’-QP 200 mm

A jia 1 ml
[ | ] X

C
B g ¥
300 mm

Prob. 9-56
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9-57. Locate the center of gravity G(x, y) of the streetlight.
Neglect the thickness of each segment. The mass per unit
length of each segment is as follows: p,z = 12 kg/m,
psc = 8kg/m, pcp = Skg/m, and ppy = 2kg/m.

Im 15m
| T
/ T D ; E
902 Im
1 Im
C
°G(x,y)
3m
1B
4m
A
4 th_ x
Prob. 9-57

9-58. Determine the location y of the centroidal axis x—x
of the beam’s cross-sectional area. Neglect the size of the
corner welds at A and B for the calculation.

L’-;BO mm—»‘i

15 mm | |1
B
y
150 mm — |15 mm
_ C _
X . X
N A
/
50 mm
Prob. 9-58
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9-59. Locate the centroid (x, y) of the shaded area.

y

*9-60. Locate the centroid y for the beam’s cross-sectional

area.

9-61. Determine the location y of the centroid C of the
beam having the cross-sectional area shown.

’-;150 mm 4—‘

15 mml

150

L—6in.—
Prob. 9-59

Prob. 9-60

—

15 mm

L; 100 mm %‘

Prob. 9-61

9-62. Locate the centroid (x, y) of the shaded area.
y

<—6in.—-‘

— 6in.

Prob. 9-62

9-63. Determine the location y of the centroid of the
beam’s cross-sectional area. Neglect the size of the corner
welds at A and B for the calculation.

110 mm

Prob. 9-63
*9-64. Locate the centroid (x, y) of the shaded area.
y
1in. 3in.
~
A x

P 3 in#ﬁi in.—

Prob. 9-64



9-65. Determine the location (¥, y) of the centroid C of
the area.

‘«1.5 in.»‘

Prob. 9-65

9-66. Determine the location y of the centroid C for a
beam having the cross-sectional area shown. The beam is
symmetric with respect to the y axis.

y

E in.

IR

[ [
2in. 1in. 2in.11in.

Prob. 9-66

9-67. Locate the centroid y of the cross-sectional area of
the beam constructed from a channel and a plate. Assume
all corners are square and neglect the size of the weld at A.

y
350 mm
10 mm
}
= T e
}—; 325 mm 325 mm l

Prob. 9-67
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*9-68. A triangular plate made of homogeneous material has a
constant thickness that is very small. If it is folded over as shown,
determine the location y of the plate’s center of gravity G.

Prob. 9-68

9-69. A triangular plate made of homogeneous material
has a constant thickness that is very small. If it is folded over
as shown, determine the location z of the plate’s center of
gravity G.

Prob. 9-69
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9-70. Locate the center of mass z of the forked level
which is made from a homogeneous material and has the
dimensions shown.

Prob. 9-70
9-71. Determine the location x of the centroid C of the
shaded area that is part of a circle having a radius r.
y

01
o
/_
"\

Prob. 9-71

*9-72. A toy skyrocket consists of a solid conical top,
pi = 600 kg/m?, a hollow cylinder, p, = 400 kg/m®, and a
stick having a circular cross section, p, = 300 kg/m’.
Determine the length of the stick, x, so that the center of
gravity G of the skyrocket is located along line aa.

5 i 20 mm
3 mm m 100 mm | |
L 10 mmI —

T

e

X

Prob. 9-72

9-73. Locate the centroid y for the cross-sectional area of
the angle.

_—
7

>
i

&

Prob. 9-73

9-74. Determine the location (x, y) of the center of gravity
of the three-wheeler. The location of the center of gravity of
each component and its weight are tabulated in the figure. If
the three-wheeler is symmetrical with respect to the x—y
plane, determine the normal reaction each of its wheels
exerts on the ground.

1. Rear wheels 18 1b
y 2. Mechanical components 85 1b
3. Frame 120 1b

4. Front wheel 81b

0.80 ft

Prob. 9-74



9-75. Locate the center of mass (x, y, z) of the
homogeneous block assembly.

Prob. 9-75

*9-76. The sheet metal part has the dimensions shown.
Determine the location (x, y, 7) of its centroid.

9-77. The sheet metal part has a weight per unit area of
2 Ib/ft*> and is supported by the smooth rod and the cord at
C.If the cord is cut, the part will rotate about the y axis until
it reaches equilibrium. Determine the equilibrium angle of
tilt, measured downward from the negative x axis, that AD
makes with the —x axis.

6 in.

Probs. 9-76/77
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9-78. The wooden table is made from a square board
having a weight of 15 1b. Each of the legs weighs 2 1b and is
3 ft long. Determine how high its center of gravity is from
the floor. Also, what is the angle, measured from the
horizontal, through which its top surface can be tilted on
two of its legs before it begins to overturn? Neglect the
thickness of each leg.

4

4 ft

Prob. 9-78

9-79. The buoy is made from two homogeneous cones
each having a radius of 1.5 ft. If » = 1.2 ft, find the distance
7 to the buoy’s center of gravity G.

#*9-80. The buoy is made from two homogeneous cones
each having a radius of 1.5 ft. If it is required that the buoy’s
center of gravity G be located at z = 0.5 ft, determine the
height £ of the top cone.

IL\

1.SV\

4ft \7
\\

Probs. 9-79/80

A,
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9-81. The assembly is made from a steel hemisphere,
py = 7.80 Mg/ m’, and an aluminum cylinder,
pa = 270 Mg/m®. Determine the mass center of the
assembly if the height of the cylinder is 2 =200 mm.

9-82. The assembly is made from a steel hemisphere,

py = 7.80 Mg/m?, and an aluminum  cylinder,

pa = 2.70 Mg/m?>. Determine the height / of the cylinder so

that the mass center of the assembly is located at z =160 mm.
z

80 mm

iR
e

x|

160 mm

Probs. 9-81/82

9-83. The car rests on four scales and in this position the
scale readings of both the front and rear tires are shown by
F, and Fp. When the rear wheels are elevated to a height of
3 ft above the front scales, the new readings of the front
wheels are also recorded. Use this data to compute the
location x and y to the center of gravity G of the car. The
tires each have a diameter of 1.98 ft.

9.40 ft
F,=11291b + 1168 1b = 2297 1b
Fg=9751b + 984 1b = 1959 Ib

F,=12691b + 1307 Ib = 2576 1b

Prob. 9-83

*9-84. Determine the distance 4 towhicha100-mm-diameter
hole must be bored into the base of the cone so that the center
of mass of the resulting shape is located at 7 = 115 mm. The
material has a density of § Mg/m®.

ol

500 mm
]l
) / -
l L A
50 mm 150
X
Prob. 9-84

9-85. Determine the distance z to the centroid of the
shape that consists of a cone with a hole of height 7 = 50 mm
bored into its base.

N

500 mm
all
) / e
| N [z
50 mm 150
x
Prob. 9-85
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9-86. Locate the center of mass z of the assembly. The *9-88. The assembly consists of a 20-in. wooden dowel
cylinder and the cone are made from materials having rod and a tight-fitting steel collar. Determine the distance x
densities of 5 Mg/m? and 9 Mg/m?, respectively. to its center of gravity if the specific weights of the materials

are vy, = 1501b/f¢ and y,, = 490 Ib/ft’. The radii of the
dowel and collar are shown.

0.4m 0.6 m
1in.
Prob. 9-88
0.2m 0.8 m
X/ y
Prob. 9-86

9-89. The composite plate is made from both steel (A)
and brass (B) segments. Determine the mass and location
(x, v, 7) of its mass center G. Take p, = 7.85 Mg/m> and
ppr = 8.74 Mg/m?.

9-87. Major floor loadings in a shop are caused by the
weights of the objects shown. Each force acts through its
respective center of gravity G. Locate the center of gravity
(x, y) of all these components.

Prob. 9-87 Prob. 9-89
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The amount of material used on this
storage building can be estimated by
using the first theorem of Pappus and
Guldinus to determine its surface area.
(© Russell C. Hibbeler)

*9.3 Theorems of Pappus and Guldinus

The two theorems of Pappus and Guldinus are used to find the surface
area and volume of any body of revolution. They were first developed
by Pappus of Alexandria during the fourth century A.p. and then restated
at a later time by the Swiss mathematician Paul Guldin or Guldinus
(1577-1643).

2mr

Fig. 9-19

Surface Area. If we revolve a plane curve about an axis that does
not intersect the curve we will generate a surface area of revolution. For
example, the surface area in Fig. 9-19 is formed by revolving the curve of
length L about the horizontal axis. To determine this surface area, we will
first consider the differential line element of length dL. If this element is
revolved 27 radians about the axis, a ring having a surface area of
dA = 2mrdL will be generated. Thus, the surface area of the entire body
is A =27 [rdL. Since [rdL = 7L (Eq. 9-5), then A = 2ar7L. If the
curve is revolved only through an angle 6 (radians), then

-7

where

A = surface area of revolution
0 = angle of revolution measured in radians, § = 27

7 = perpendicular distance from the axis of revolution to
the centroid of the generating curve

L = length of the generating curve

Therefore the first theorem of Pappus and Guldinus states that the
area of a surface of revolution equals the product of the length of the
generating curve and the distance traveled by the centroid of the curve in
generating the surface area.
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Fig. 9-20

Volume. A volume can be generated by revolving a plane area about
an axis that does not intersect the area. For example, if we revolve the
shaded area A in Fig. 9-20 about the horizontal axis, it generates the
volume shown. This volume can be determined by first revolving
the differential element of area dA 27 radians about the axis, so that a
ring having the volume dV = 27rrdA is generated. The entire volume is
then V = 27 f rdA. However, f rdA =7A, Eq.94,s0 that V = 277A.
If the area is only revolved through an angle 6 (radians), then

V = 67A (9-8)
V= 674

where
V = volume of revolution
0 = angle of revolution measured in radians, § < 27

7 = perpendicular distance from the axis of revolution to
the centroid of the generating area

A = generating area

Therefore the second theorem of Pappus and Guldinus states that the
volume of a body of revolution equals the product of the generating area
and the distance traveled by the centroid of the area in generating the
volume.

Composite Shapes. We may also apply the above two theorems
to lines or areas that are composed of a series of composite parts. In this
case the total surface area or volume generated is the addition of
the surface areas or volumes generated by each of the composite parts. If
the perpendicular distance from the axis of revolution to the centroid of
each composite part is 7, then

A = 02(7L) (9-9)
and
V = 03(7A) (9-10)

Application of the above theorems is illustrated numerically in the
following examples.

The volume of fertilizer contained within
this silo can be determined using the
second theorem of Pappus and Guldinus.
(© Russell C. Hibbeler)
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.12

Show that the surface area of a sphere is A = 47R? and its volume is
V = 37R,

(b)

Fig. 9-21

SOLUTION

Surface Area. The surface area of the sphere in Fig. 9-21a is
generated by revolving a semicircular arc about the x axis. Using the
table on the inside back cover, it is seen that the centroid of this arc is
located at a distance ¥ = 2R/ from the axis of revolution (x axis).
Since the centroid moves through an angle of # = 27 rad to generate
the sphere, then applying Eq. 9-7 we have

2R
A = 07L; = 27T<?>7TR = 47R? Ans.

Volume. The volume of the sphere is generated by revolving the
semicircular area in Fig. 9-21b about the x axis. Using the table on the
inside back cover to locate the centroid of the area, i.e., 7 = 4R /3,
and applying Eq. 9-8, we have

B 4R\(1 4
V = 0iA,; V=27 — || =@#R" | = —@wR Ans.
37 )\2 3
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Determine the surface area and volume of the full solid in Fig. 9-22a.

3in. |
3.5in. |

25in. | ‘

(@) (®)

Fig. 9-22

SOLUTION

Surface Area. The surface area is generated by revolving the four
line segments shown in Fig. 9-22b 27 radians about the z axis. The
distances from the centroid of each segment to the z axis are also
shown in the figure. Applying Eq. 9-7 yields
2.5in.+ ($)(1in) = 3.1667 in.

A =277 = 27[(2.51n)21in.) + (3 in.)< V(1 in.)2 + (1 in.)2> z
<—1in.4|

+ (3.5in.)(31in.) + (3 in.)(1 in.)] ‘ T
143 in? Ans. 1in.

Volume. The volume of the solid is generated by revolving the two
area segments shown in Fig. 9-22¢ 27 radians about the z axis. The
distances from the centroid of each segment to the z axis are also . 2 in.
shown in the figure. Applying Eq. 9-10, we have 3in. I

V =23 = 27 {(3.1667 in.)[%(l in.)(1 in.)] + (3 in)[(2 in)(1 in.) }

= 47.6 in® Ans. (c)
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. FUNDAMENTAL PROBLEMS

F9-13. Determine the surface area and volume of the solid F9-15. Determine the surface area and volume of the solid
formed by revolving the shaded area 360° about the z axis. formed by revolving the shaded area 360° about the z axis.

in.

in.

Prob. F9-13

: 30 in.

Prob. F9-15
F9-14. Determine the surface area and volume of the solid

formed by revolving the shaded area 360° about the z axis. F9-16. Determine the surface area and volume of the solid

formed by revolving the shaded area 360° about the z axis.

Prob. F9-14 Prob. F9-16



9-90. Determine the volume of the silo which consists of
a cylinder and hemispherical cap. Neglect the thickness of
the plates.

’12310 i

10 ft

80 ft

Prob. 9-90

9-91. Determine the outside surface area of the storage tank.

#9-92. Determine the volume of the storage tank.

hlS ft—-
] e

30 ft

Probs. 9-91/92
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9-93. Determine the surface area of the concrete seawall,
excluding its bottom.

9-94. A circular seawall is made of concrete. Determine
the total weight of the wall if the concrete has a specific
weight of y, = 150 Ib/ft>.

Probs. 9-93/94

9-95. A ring is generated by rotating the quarter circular
area about the x axis. Determine its volume.

*9-96. A ring is generated by rotating the quarter circular
area about the x axis. Determine its surface area.

2a

Probs. 9-95/96
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9-97. Determine the volume of concrete needed to 9-101. The water-supply tank has a hemispherical bottom
construct the curb. and cylindrical sides. Determine the weight of water in the

. tank when it is filled to the top at C. Take y,, = 62.4 Ib/ft’.
9-98. Determine the surface area of the curb. Do not

include the area of the ends in the calculation. 9-102. Determine the number of gallons of paint needed
to paint the outside surface of the water-supply tank, which
consists of a hemispherical bottom, cylindrical sides, and
conical top. Each gallon of paint can cover 250 ft>.

00 mm

150 mm

e

150 mm

Probs. 9-97/98
Probs. 9-101/102

9-103. Determine the surface area and the volume of the

ring formed by rotating the square about the vertical axis.
9-99. A ring is formed by rotating the area 360" about the
x—Xx axes. Determine its surface area.

#9-100. A ring is formed by rotating the area 360" about
the x—Xx axes. Determine its volume.

Prob. 9-103

*9-104. Determine the surface area of the ring. The cross
section is circular as shown.

80 mm

=
=

Probs. 9-99/100 Prob. 9-104



9-105. The heat exchanger radiates thermal energy at
the rate of 2500 kJ /h for each square meter of its surface
area. Determine how many joules (J) are radiated within a
S-hour period.

Prob. 9-105

9-106. Determine the interior surface area of the brake
piston. It consists of a full circular part. Its cross section is
shown in the figure.

40 mm

60 mm

80 mm

~ 120mm

40 mm 30 mm 20 mm

Prob. 9-106
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9-107. The suspension bunker is made from plates which
are curved to the natural shape which a completely flexible
membrane would take if subjected to a full load of coal. This
curve may be approximated by a parabola, y = 0.2x2.
Determine the weight of coal which the bunker would
contain when completely filled. Coal has a specific weight of
v =3501b/ft?, and assume there is a 20% loss in volume due
to air voids. Solve the problem by integration to determine
the cross-sectional area of ABC; then use the second
theorem of Pappus—Guldinus to find the volume.

Prob. 9-107

*9-108. Determine the height 4 to which liquid should be
poured into the cup so that it contacts three-fourths the
surface area on the inside of the cup. Neglect the cup’s
thickness for the calculation.

Prob. 9-108
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9-109. Determine the surface area of the roof of the structure
if it is formed by rotating the parabola about the y axis.

y =16 — (¥*/16)

16

L 16 m E

Prob. 9-109

9-110. A steel wheel has a diameter of 840 mm and a cross
section as shown in the figure. Determine the total mass of
the wheel if p = 5 Mg/m?>.

mm

A Section A-A

Prob. 9-110

9-111. Half the cross section of the steel housing is shown
in the figure. There are six 10-mm-diameter bolt holes
around its rim. Determine its mass. The density of steel
is 785 Mg/m?. The housing is a full circular part.

20 mm

30 mm,y 40 mm ‘

4" LIO mm

Prob. 9-111

*9-112. The water tank has a paraboloid-shaped roof. If
one liter of paint can cover 3 m? of the tank, determine the
number of liters required to coat the roof.

Prob. 9-112

9-113. Determine the volume of material needed to make
the casting.

2 in.

Side View

Front View

Prob. 9-113

9-114. Determine the height # to which liquid should be
poured into the cup so that it contacts half the surface area
on the inside of the cup. Neglect the cup’s thickness for the
calculation.

) I

50 mm

o
|

Prob. 9-114
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*9.4 Resultant of a General Distributed
Loading

In Sec. 4.9, we discussed the method used to simplify a two-dimensional
distributed loading to a single resultant force acting at a specific point. In
this section we will generalize this method to include flat surfaces that
have an arbitrary shape and are subjected to a variable load distribution.
Consider, for example, the flat plate shown in Fig. 9-23a, which is subjected
to the loading defined by p = p(x, y) Pa, where 1 Pa (pascal) = 1 N/mz.
Knowing this function, we can determine the resultant force Fy acting on
the plate and its location (x, y), Fig. 9-23b.

Magnitude of Resultant Force. The force dF acting on the
differential area dA m?” of the plate, located at the arbitrary point (x, y),
has a magnitude of dF = [p(x, y) N/m?](dA m?) = [p(x, y) dA] N. Notice
that p(x, y) dA = dV, the colored differential volume element shown in
Fig. 9-23a. The magnitude of Fy is the sum of the differential forces acting
over the plate’s entire surface area A. Thus:

Fr = SF, Fg = /p(x, y)dA = /dV =V (9-11)
A \%

This result indicates that the magnitude of the resultant force is equal to
the total volume under the distributed-loading diagram.

Location of Resultant Force. The location (x,y) of Fy is
determined by setting the moments of Fy equal to the moments of all the
differential forces dF about the respective y and x axes: From Figs. 9-23a
and 9-23b, using Eq. 9-11, this results in

/xp(x, y) dA /x av /yp(x, y) dA /y av
A _ \4 A \4 (9_12)

X = = y =
/p(x,y) dA /dV /p(x,y) dA /dV
A v A v

Hence, the line of action of the resultant force passes through the
geometric center or centroid of the volume under the distributed-loading
diagram.

Fig. 9-23

The resultant of a wind loading that is
distributed on the front or side walls

of this building must be calculated
using integration in order to design the
framework that holds the building
together. (© Russell C. Hibbeler)
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*9.5 Fluid Pressure

According to Pascal’s law, a fluid at rest creates a pressure p at a point that
is the same in all directions. The magnitude of p, measured as a force per
unit area, depends on the specific weight y or mass density p of the fluid
and the depth z of the point from the fluid surface.* The relationship can
be expressed mathematically as

o3

where g is the acceleration due to gravity. This equation is valid only for
fluids that are assumed incompressible, as in the case of most liquids.
Gases are compressible fluids, and since their density changes significantly
with both pressure and temperature, Eq. 9-13 cannot be used.

To illustrate how Eq. 9-13 is applied, consider the submerged plate
shown in Fig. 9-24. Three points on the plate have been specified. Since
point B is at depth z; from the liquid surface, the pressure at this point has
a magnitude p; = vyz;. Likewise, points C and D are both at depth z,;
hence, p, = yz,. In all cases, the pressure acts normal to the surface area
dA located at the specified point.

Using Eq. 9-13 and the results of Sec. 9.4, it is possible to determine
the resultant force caused by a liquid and specify its location on the
surface of a submerged plate. Three different shapes of plates will now be
considered.

Liquid surface

Fig. 9-24

*In particular, for water y = 62.4 Ib/ft%, or y = pg = 9810 N/m? since p = 1000 kg/m?
and g = 9.81 m/s%



Flat Plate of Constant Width. A flat rectangular plate of
constant width, which is submerged in a liquid having a specific weight vy,
is shown in Fig. 9-25a. Since pressure varies linearly with depth, Eq. 9-13,
the distribution of pressure over the plate’s surface is represented by a
trapezoidal volume having an intensity of p; = yz; at depth z; and
p>» = 7z, at depth z,. As noted in Sec. 9.4, the magnitude of the resultant
force Fy is equal to the volume of this loading diagram and Fy, has a line
of action that passes through the volume’s centroid C. Hence, F does not
act at the centroid of the plate; rather, it acts at point P, called the center
of pressure.

Since the plate has a constant width, the loading distribution may also
be viewed in two dimensions, Fig. 9-25b. Here the loading intensity is
measured as force/length and varies linearly from w, = bp, = byz, to
w, = bp, = byz,. The magnitude of Fy in this case equals the trapezoidal
area, and Fy has a line of action that passes through the area’s centroid C.
For numerical applications, the area and location of the centroid for a
trapezoid are tabulated on the inside back cover.

()

Fig. 9-25

9.5 FLUID PRESSURE 513

The walls of the tank must be designed
to support the pressure loading of the
liquid that is contained within it.
(© Russell C. Hibbeler)

Liquid surface
y

(b)
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(a)

Liquid surface

(©)

Liquid surface

/ Liquid surface

wy = bp;

(®) -

Fig. 9-26

Curved Plate of Constant Width. When a submerged plate
of constant width is curved, the pressure acting normal to the plate
continually changes both its magnitude and direction, and therefore
calculation of the magnitude of Fy and its location P is more difficult
than for a flat plate. Three- and two-dimensional views of the loading
distribution are shown in Figs. 9-26a and 9-26b, respectively. Although
integration can be used to solve this problem, a simpler method exists.
This method requires separate calculations for the horizontal and vertical
components of Fg.

For example, the distributed loading acting on the plate can be
represented by the equivalent loading shown in Fig. 9-26¢. Here the plate
supports the weight of liquid W, contained within the block BDA. This
force has a magnitude W, = (yb)(areagp,) and acts through the centroid
of BDA. In addition, there are the pressure distributions caused by the
liquid acting along the vertical and horizontal sides of the block. Along
the vertical side AD, the force F,p has a magnitude equal to the area of
the trapezoid. It acts through the centroid C, , of this area. The distributed
loading along the horizontal side AB is constant since all points lying in
this plane are at the same depth from the surface of the liquid. The
magnitude of F,p is simply the area of the rectangle. This force acts
through the centroid C,p or at the midpoint of AB. Summing these three
forces yields Fr = XF = F,, + F,5 + W,. Finally, the location of the
center of pressure P on the plate is determined by applying M = IM,
which states that the moment of the resultant force about a convenient
reference point such as D or B, in Fig. 9-26b, is equal to the sum of the
moments of the three forces in Fig. 9-26¢ about this same point.



Flat Plate of Variable Width. The pressure distribution acting
on the surface of a submerged plate having a variable width is shown in
Fig. 9-27 If we consider the force dF acting on the differential area strip
dA, parallel to the x axis, then its magnitude is dF = p dA. Since the
depth of dA is z, the pressure on the element is p = yz. Therefore,
dF = (yz)dA and so the resultant force becomes

Fp= [dF =7y [zdA

If the depth to the centroid C’ of the area is z, Fig. 9-27 then, f zdA = ZA.
Substituting, we have

Fr = yZA (9-14)

In other words, the magnitude of the resultant force acting on any flat
plate is equal to the product of the area A of the plate and the pressure
p = vz at the depth of the area’s centroid C'. As discussed in Sec. 9.4, this
force is also equivalent to the volume under the pressure distribution.
Realize that its line of action passes through the centroid C of this volume
and intersects the plate at the center of pressure P, Fig. 9-27 Notice that
the location of C' does not coincide with the location of P.

Fig. 9-27
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The resultant force of the water pressure
and its location on the elliptical back plate
of this tank truck must be determined by
integration. (© Russell C. Hibbeler)
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Determine the magnitude and location of the resultant hydrostatic force
acting on the submerged rectangular plate AB shown in Fig. 9-28a.
The plate has a width of 1.5 m; p,, = 1000 kg/m°.

SOLUTION |

The water pressures at depths A and B are
Pa = pugza = (1000 kg/m?)(9.81 m/s*)(2 m) = 19.62 kPa
e = pygzs = (1000 kg/m?)(9.81 m/s*)(5 m) = 49.05 kPa

Since the plate has a constant width, the pressure loading can be
viewed in two dimensions, as shown in Fig. 9-28b. The intensities of
the load at A and B are

wa = bpy = (1.5 m)(19.62 kPa) = 29.43 kN/m
wg = bpp = (1.5 m)(49.05 kPa) = 73.58 kN/m

2m  From the table on the inside back cover, the magnitude of the resultant
A force Fj created by this distributed load is

wy = 29.43kN/m ——
Fr = area of a trapezoid = %(3)(29.4 + 73.6) = 154.5 kN Ans.

Fr
h

This force acts through the centroid of this area,

_ 1<2(29.43) + 73.58
3\ 2943 + 73.58

wg = 73.58 kN /m )(3) =129m Ans.

measured upward from B, Fig. 9-31b.

(®)
SOLUTION I

The same results can be obtained by considering two components of
Fy, defined by the triangle and rectangle shown in Fig. 9-28¢. Each
p *r force acts through its associated centroid and has a magnitude of

/ 2m Fg, = (29.43 kKN/m)(3 m) = 88.3 kN

/
/ A
4 F, = %(44.15kN/m)(3 m) = 66.2 kN
Fr, — s Hence,
f — Fp = Fg, + F, = 883 + 66.2 = 154.5 kN Ans.
1.5 mFt1 -
; = R The location of Fy is determined by summing moments about B,
44.15KN/m Figs. 9-28b and ¢, i.e.,
29.43 kN/m|
C+(Mg)g = SMyg; (154.5)h = 88.3(1.5) + 66.2(1)
(c) h=129m Ans.
Fig. 9-28

NOTE: Using Eq. 9-14, the resultant force can be calculated as
Fr = yZA = (9810 N/m*)(3.5 m)(3 m)(1.5 m) = 154.5 kN.
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Determine the magnitude of the resultant hydrostatic force acting on
the surface of a seawall shaped in the form of a parabola, as shown
in Fig. 9-29a. The wall is 5 m long; p,, = 1020 kg/m’>.

wp = 150.1 kN/m

(b)

Fig. 9-29

SOLUTION
The horizontal and vertical components of the resultant force will be
calculated, Fig. 9-29b. Since

s = pugzp = (1020 kg/m?)(9.81 m/s?)(3 m) = 30.02 kPa
then
wg = bpg = 5m(30.02 kPa) = 150.1 kN/m
Thus,
F, = 3(3 m)(150.1 kN/m) = 225.1 kN

The area of the parabolic section ABC can be determined using the
formula for a parabolic area A = ab. Hence, the weight of water
within this 5-m-long region is

F, = (p,gb)(areaypc)
= (1020 kg/m*)(9.81 m/s?)(5 m) [ $(1 m)(3 m) | = 50.0 kN

The resultant force is therefore

Fr= VF: + F2 = \V/(225.1 kN)? + (50.0 kN)?
= 231 kN Ans.
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Determine the magnitude and location of the resultant force acting on
the triangular end plates of the water trough shown in Fig. 9-30a;
p, = 1000 kg/m?.,

(a)

SOLUTION

The pressure distribution acting on the end plate E is shown in Fig. 9-30b.
The magnitude of the resultant force is equal to the volume of this loading
distribution. We will solve the problem by integration. Choosing the
differential volume element shown in the figure, we have

dF = dV = pdA = p,gz(2x dz) = 19 620zx dz

1m The equation of line AB is
x =051 -2
Hence, substituting and integrating with respect to z from z = 0 to
z = 1 myields
Im
(b) F=V= /dV = / (19 620)z[0.5(1 — 2)] dz
v 0
Fig. 9-30 I'm
= 9810/ (z — ) dz = 1635N = 1.64 kN Ans.
0

This resultant passes through the centroid of the volume. Because of
symmetry,

x=0 Ans.
Since 7 = z for the volume element, then

1m 1m
/ 7 dv / 2(19 620)2[0.5(1 — 2)1dz 9810 / @ - D dz
1% 0 0

°T / 1635 B 1635
|4
=05m Ans.

NOTE: We can also determine the resultant force by applying Eq. 9-14,
Fr = yzA = (9810N/m?) (§)(1 m)[3(1 m)(1 m)] = 1.64 kN.
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. FUNDAMENTAL PROBLEMS

F9-17. Determine the magnitude of the hydrostatic force F9-20. Determine the magnitude of the hydrostatic force
acting per meter length of the wall. Water has a density of acting on gate AB, which has a width of 2 m. Water has a
p =1Mg/m’. density of p = 1 Mg/m?.

Prob. F9-17

F9-18. Determine the magnitude of the hydrostatic force
acting on gate AB, which has a width of 4 ft. The specific
weight of water is y = 62.4 Ib/ft>.

Prob. F9-20

ft

F9-21. Determine the magnitude of the hydrostatic force
acting on gate AB, which has a width of 2 ft. The specific
B weight of water is y = 62.4 1b/ft>.

38—

Prob. F9-18

F9-19. Determine the magnitude of the hydrostatic force
acting on gate AB, which has a width of 1.5 m. Water has a

density of p = 1 Mg/m?.

2m

A

s

Prob. F9-19 Prob. F9-21
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“leropews

9-115. The pressure loading on the plate varies uniformly
along each of its edges. Determine the magnitude of the
resultant force and the coordinates (x,y) of the point where
the line of action of the force intersects the plate. Hint:
The equation defining the boundary of the load has the form
p = ax + by + ¢, where the constants a, b, and ¢ have to be
determined.

p

‘ 40 Ib/ft

30 Ib/ft

Prob. 9-115

*9-116. The load over the plate varies linearly along the
sides of the plate such that p = (12 — 6x + 4y) kPa.
Determine the magnitude of the resultant force and the
coordinates (x,y) of the point where the line of action of
the force intersects the plate.

Prob. 9-116

9-117. The load over the plate varies linearly along the
sides of the plate such that p = % [x(4 — y)] kPa. Determine
the resultant force and its position (¥, y) on the plate.

p
8 kPa

3m

4m

Prob. 9-117

9-118. The rectangular plate is subjected to a distributed
load over its entire surface. The load is defined by
the expression p = p, sin (mx/a) sin (wy/b),where p,
represents the pressure acting at the center of the plate.
Determine the magnitude and location of the resultant
force acting on the plate.

Prob. 9-118

9-119. A wind loading creates a positive pressure on one
side of the chimney and a negative (suction) pressure on
the other side, as shown. If this pressure loading acts
uniformly along the chimney’s length, determine the
magnitude of the resultant force created by the wind.




*9-120. When the tide water A subsides, the tide gate
automatically swings open to drain the marsh B. For the
condition of high tide shown, determine the horizontal
reactions developed at the hinge C and stop block D. The
length of the gate is 6m and its heightis4m. p,, = 1.0 Mg/m>.

Prob. 9-120
9-121. The tank is filled with water to a depth of d = 4 m.
Determine the resultant force the water exerts on side A and
side B of the tank. If oil instead of water is placed in the tank,
to what depth d should it reach so that it creates the same
resultant forces? p, = 900 kg/m? and p,, = 1000 kg/m>.

3m 2m\

Prob. 9-121
9-122. The concrete “gravity” dam is held in place by its
own weight. If the density of concrete is p. = 2.5 Mg/m?,
and water has a density of p,, = 1.0 Mg/m?, determine the
smallest dimension d that will prevent the dam from
overturning about its end A.

‘«1 m»‘
Eeo’
0o,
(300 o,
10,0
BRCX
o
.00
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o
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P oop P09
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20
10,070
S 0000 A

o

OHQO

d

Prob. 9-122
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9-123. 'The factor of safety for tipping of the concrete dam is
defined as the ratio of the stabilizing moment due to the dam’s
weight divided by the overturning moment about O due to
the water pressure. Determine this factor if the concrete has a
density of pegne = 2.5 Mg/m? and for water p,, = 1 Mg/m>.

y
i

4 m

Prob. 9-123

*9-124. The concrete dam in the shape of a quarter circle.
Determine the magnitude of the resultant hydrostatic force
that acts on the dam per meter of length. The density of
water is p,, = 1 Mg/m’.

Prob. 9-124

9-125. The tank is used to store a liquid having a density
of 80 1b/ft3. If it is filled to the top, determine the magnitude
of force the liquid exerts on each of its two sides ABDC
and BDFE.

C

Prob. 9-125
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9-126. The parabolic plate is subjected to a fluid pressure
that varies linearly from 0 at its top to 100 b /ft at its bottom B.
Determine the magnitude of the resultant force and its
location on the plate.

y
‘& 21t
-
|
4 ft
J X
B
Prob. 9-126

9-127. The 2-m-wide rectangular gate is pinned at its
center A and is prevented from rotating by the block at B.
Determine the reactions at these supports due to hydrostatic
pressure. p,, = 1.0 Mg/m’.

—_—
6 m -

-
1.5m

AOD%
1.5m

B |

il

Prob. 9-127

*9-128. The tank is filled with a liquid that has a density of
900 kg/m?>. Determine the resultant force that it exerts on
the elliptical end plate, and the location of the center of
pressure, measured from the x axis.

y
“1m—‘1m»‘
4y +x%=1
~ % f
0.5m
(o — S— * x
0.5m

Prob. 9-128

9-129. Determine the magnitude of the resultant force
acting on the gate ABC due to hydrostatic pressure. The
gate has a width of 1.5 m. p,, = 1.0 Mg/m?.

e

1.5m
1.25 m—
| o
Q)
C
/& 2 m
60°
A |
Prob. 9-129

9-130. The semicircular drainage pipe is filled with water.
Determine the resultant horizontal and vertical force
components that the water exerts on the side AB of the
pipe per foot of pipe length; y,, = 62.4 Ib/ft’.

Prob. 9-130



. CHAPTER REVIEW

Center of Gravity and Centroid

The center of gravity G represents a point
where the weight of the body can be
considered concentrated. The distance
from an axis to this point can be
determined from a balance of moments,
which requires that the moment of the
weight of all the particles of the body
about this axis must equal the moment of
the entire weight of the body about
the axis.

The center of mass will coincide with
the center of gravity provided the
acceleration of gravity is constant.

The centroid is the location of the
geometric center for the body. It is
determined in a similar manner, using a
moment balance of geometric elements
such as line, area, or volume segments.
For bodies having a continuous shape,
moments are summed (integrated)
using differential elements.

The center of mass will coincide with
the centroid provided the material is
homogeneous, i.e., the density of the
material is the same throughout. The
centroid will always lie on an axis of
symmetry.
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=

=|

=|
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Composite Body SXW z
W

=
Il

If the body is a composite of several
shapes, each having a known location
for its center of gravity or centroid, then ywW

the location of the center of gravity or YT sw
centroid of the body can be determined
from a discrete summation using its ~
composite parts. 7= W
SW y

Theorems of Pappus and Guldinus

The theorems of Pappus and Guldinus
can be used to determine the surface
area and volume of a body of revolution.

The surface area equals the product of
the length of the generating curve and the A = 07L
distance traveled by the centroid of the
curve needed to generate the area.

The volume of the body equals the ’ 3

product of the generating area and the V = 67A — 07
distance traveled by the centroid of this

area needed to generate the volume.
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General Distributed Loading F / (e, y) dA / &V
= [ px,y =
: A

The magnitude of the resultant force is v
equal to the total volume under the

distributed-loading diagram. The line of / xdV
action of the resultant force passes A
through the geometric center or centroid / av
of this volume. v

Fluid Pressure

The pressure developed by a liquid at a
point on a submerged surface depends
upon the depth of the point and the
density of the liquid in accordance with
Pascal’s law, p = pgh = +yh. This pressure
will create a linear distribution of loading
on a flat vertical or inclined surface.

If the surface is horizontal, then the
loading will be uniform.

In any case, the resultants of these
loadings can be determined by finding
the volume under the loading curve or
using Fp = yz A, where 7 is the depth to
the centroid of the plate’s area. The line
of action of the resultant force passes
through the centroid of the volume of
the loading diagram and acts at a point P
on the plate called the center of pressure.




526 CHAPTER 9 CENTER OF GRAVITY AND CENTROID

. REVIEW PROBLEMS

R9-1. Locate the centroid x of the area. R9-4. Locate the centroid of the rod.

R9-2. Locate the centroid y of the area.

_xy=¢ /\

Prob. R9-4

b

Probs. R9-1/2

R9-5. Locate the centroid y of the beam’s cross-sectional

area.
R9-3. Locate the centroid z of the hemisphere.
z y
50 mm 50 mm
75 mm-—-=75 mm
Y rr=d 25 mm ( W
LF
y
100 mm

/ J—ﬂ% —~ *

Prob. R9-3 Prob. R9-5
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R9-6. A circular V-belt has an inner radius of 600 mm and R9-9. The gate AB is 8 m wide. Determine the horizontal
a cross-sectional area as shown. Determine the surface area and vertical components of force acting on the pin at B
of the belt. and the vertical reaction at the smooth support A;

. . . pw = 1.0 Mg/m’.
R9-7. A circular V-belt has an inner radius of 600 mm and
a cross-sectional area as shown. Determine the volume of

material required to make the belt.

Sm
75 mm
——50 mm—— 4m
2 25 mm 25 mm
600 mm @
Probs. R9-6/7 P3 m—
Prob. R9-9

R9-8. The rectangular bin is filled with coal, which creates

a pressure distribution along wall A that varies as shown,

ie, 1P = 4fZ”3 Ib/ft%, W(}jlef z his in fleet. ld)e.ternlline .the R9-10. Determine the magnitude of the resultant
resultant force created by the coal, and 1ts location, hydrostatic force acting per foot of length on the seawall;
measured from the top surface of the coal. o 3

v, = 62.41b/ft.
y
y= -2x2
T X
W
\
\
\
8 ft

LZﬁ*

Prob. R9-8 Prob. R9-10




Chapter 10
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The design of these structural members requires calculation of their cross-
sectional moment of inertia. In this chapter we will discuss how this is done.



Moments of Inertia

CHAPTER OBJECTIVES

m To develop a method for determining the moment of inertia for
an area.

m To introduce the product of inertia and show how to determine
the maximum and minimum moments of inertia for an area.

m To discuss the mass moment of inertia.

10.1 Definition of Moments of Inertia
for Areas

Whenever a distributed load acts perpendicular to an area and its intensity
varies linearly, the calculation of the moment of the loading about an axis

will involve an integral of the form f y*dA . For example, consider the plate
in Fig. 10-1, which is submerged in a fluid and subjected to the pressure p.
As discussed in Sec. 9.5, this pressure varies linearly with depth, such that
p = vy, where v is the specific weight of the fluid. Thus, the force acting
on the differential area dA of the plate is dF = pdA = (yy)dA.
The moment of this force about the x axis is therefore dM = y dF = yy2dA,
and so integrating dM over the entire area of the plate yields M = vy f yZdA.
The integral f y*dA is sometimes referred to as the “second moment” of
the area about an axis (the x axis), but more often it is called the moment
of inertia of the area. The word “inertia” is used here since the formulation
is similar to the mass moment of inertia, f y2dm, which is a dynamical
property described in Sec. 10.8. Although for an area this integral has no
physical meaning, it often arises in formulas used in fluid mechanics,
mechanics of materials, structural mechanics, and mechanical design, and
so the engineer needs to be familiar with the methods used to determine
the moment of inertia.
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y
) |
| da
. y
19)
Fig. 10-2
y Y
d,
d}’
19)
Fig. 10-3

Moment of Inertia. By definition, the moments of inertia of a
differential area dA about the x and y axes are dI, = y*dA and
dl, = x* dA, respectively, Fig. 10-2. For the entire area A the moments of
inertia are determined by integration;i.e.,

T, = / v dA
A (10-1)

I, = /xsz
A

We can also formulate this quantity for dA about the “pole” O or 7 axis,
Fig. 10-2. This is referred to as the polar moment of inertia. It is defined
as dJ, = r*dA, where r is the perpendicular distance from the pole
(z axis) to the element dA. For the entire area the polar moment of inertia is

Jo = / PdA =1, + 1, (10-2)
A

This relation between J, and I, I, is possible since r* = x> + y?,
Fig. 10-2.

From the above formulations it is seen that I, I,, and J, will always be
positive since they involve the product of distance squared and area.
Furthermore, the units for moment of inertia involve length raised to the

fourth power, e.g., m*, mm* or ft* in.*.

10.2 Parallel-Axis Theorem for an Area

The parallel-axis theorem can be used to find the moment of inertia of an
area about any axis that is parallel to an axis passing through the centroid
and about which the moment of inertia is known. To develop this theorem,
we will consider finding the moment of inertia of the shaded area shown
in Fig. 10-3 about the x axis. To start, we choose a differential element dA
located at an arbitrary distance y’ from the centroidal x' axis. If the distance
between the parallel x and x” axis is d,, then the moment of inertia of dA
about the x axisis dl, = (y' + dy)2 dA . For the entire area,

I, = /(y’ +d,)* dA
A

= /y’sz +2dy/y’dA +d§/dA
A A A
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The first integral represents the moment of inertia of the area about the
centroidal axis, I,.. The second integral is zero since the x’ axis passes
through the area’s centroid C; i.e., fy’ dA = i’fdA = 0 since y' = 0.
Since the third integral represents the total area A, the final result is
therefore

I, =1, + Ad; (10-3)

A similar expression can be written for /,; i.e.,

I, =1, + Ad’ (10-4)

And finally, for the polar moment of inertia, since J- = I, + I, and

y
d* = d} + d;,wehave

Jo =Jc + Ad* (10-5)

The form of each of these three equations states that the moment of
inertia for an area about an axis is equal to its moment of inertia about a
parallel axis passing through the area’s centroid plus the product of the
area and the square of the perpendicular distance between the axes.

10.3 Radius of Gyration of an Area

The radius of gyration of an area about an axis has units of length and is
a quantity that is often used for the design of columns in structural
mechanics. Provided the areas and moments of inertia are known, the radii
of gyration are determined from the formulas

ky = [~ (10-6)

Jo

ko = \|—

© A
The form of these equations is easily remembered since it is similar to

that for finding the moment of inertia for a differential area about an
axis. For example, I, = k?A; whereas for a differential area, dI, = y* dA.

In order to predict the strength and
deflection of this beam, it is necessary to
calculate the moment of inertia of the
beam’s cross-sectional area. (© Russell
C. Hibbeler)
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Important Points

¢ The moment of inertia is a geometric property of an area that is
used to determine the strength of a structural member or the
location of a resultant pressure force acting on a plate submerged
in a fluid. It is sometimes referred to as the second moment of the
area about an axis, because the distance from the axis to each area
element is squared.

¢ If the moment of inertia of an area is known about its centroidal
axis, then the moment of inertia about a corresponding parallel
axis can be determined using the parallel-axis theorem.

Procedure for Analysis

In most cases the moment of inertia can be determined using a
single integration. The following procedure shows two ways in which
this can be done.

® [f the curve defining the boundary of the area is expressed as
y = f(x), then select a rectangular differential element such that
it has a finite length and differential width.

Ve y = fx) ® The element should be located so that it intersects the curve at
dA (x,y) the arbitrary point (x, y).

dyi”

Case 1.

® Orient the element so that its length is parallel to the axis about
Y which the moment of inertia is computed. This situation occurs
when the rectangular element shown in Fig. 104a is used to
determine /, for the area. Here the entire element is at a distance y

(a) from the x axis since it has a thickness dy. Thus I, = / ysz .To find
y 1, the element is oriented as shown in Fig. 10-4b. Thiszelement lies
at the same distance x from the y axis so that /, = f X dA.

Case 2.

® The length of the element can be oriented perpendicular to the
axis about which the moment of inertia is computed; however,
Eq. 10-1 does not apply since all points on the element will not lie
at the same moment-arm distance from the axis. For example, if
the rectangular element in Fig. 10—4a is used to determine /,,, it
will first be necessary to calculate the moment of inertia of the
i element about an axis parallel to the y axis that passes through
the element’s centroid, and then determine the moment of inertia
(b) of the element about the y axis using the parallel-axis theorem.
Integration of this result will yield /,. See Examples 10.2 and 10.3.

Fig. 104
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exavpie 104

Determine the moment of inertia for the rectangular area shown in y
Fig. 10-5 with respect to (a) the centroidal x’ axis, (b) the axis x,

passing through the base of the rectangle, and (c) the pole or 7" axis ___
perpendicular to the x'—y’ plane and passing through the centroid C.

&

STy

SOLUTION (CASE 1)

Part (a). The differential element shown in Fig. 10-5 is chosen for —— X
integration. Because of its location and orientation, the entire element
is at a distance y’ from the x" axis. Here it is necessary to integrate from
y' = —h/2toy’ = h/2.Since dA = bdy’', then

et |

[Ty

) /2 1 xb
I, = /y’2 dA = / yAbdy') = b/ ¥ dy’ b b
! A ) —h/2 ‘ 2 2

i % b Ans, Fig. 10-5

Part (b). The moment of inertia about an axis passing through the
base of the rectangle can be obtained by using the above result of
part (a) and applying the parallel-axis theorem, Eq. 10-3.

=1, + Ad>

1, AN
= —bh’ + bh| = | == Ans.
bh bh<2> Jbh ns

Part (¢). To obtai_n the polar moment of inertia about point C, we
which may be found by interchanging the

must first obtain I,
dimensions b and 4 in the result of part (a), i.e.,

_ 1
I, = —hb
Y12

Using Eq. 10-2, the polar moment of inertia about C is therefore

i} 1
=1, +1, =—

ot L= 2bh(h2 + b?) Ans.
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- s

200 mm
X
(a)
y [
y? = 400x
200 mm
y ] — X
o Y
itz
i | .
X H‘ }_7 dx
100 mm
(b)
Fig. 10-6

Determine the moment of inertia for the shaded area shown in
Fig. 10-6a about the x axis.

SOLUTION I (CASE 1)

A differential element of area that is parallel to the x axis, as shown in
Fig. 10-64, is chosen for integration. Since this element has a thickness
dy and intersects the curve at the arbitrary point (x, y), its area is
dA = (100 — x) dy. Furthermore, the element lies at the same distance y
from the x axis. Hence, integrating with respect to y, from y = 0 to
y = 200 mm, yields

200 mm
I, = /y2 dA = / y%(100 — x) dy
A 0

200 mm y2 200 mm y4
= 2100—)51 :/ (1002—>d
/0 Y < 400)“ ~ J, Y400/

107(10%) mm* Ans.

SOLUTION 11 (CASE 2)

A differential element parallel to the y axis, as shown in Fig. 10-6b, is
chosen for integration. It intersects the curve at the arbitrary point
(x, y). In this case, all points of the element do not lie at the same
distance from the x axis, and therefore the parallel-axis theorem must
be used to determine the moment of inertia of the element with respect
to this axis. For a rectangle having a base b and height 4, the moment
of inertia about its centroidal axis has been determined in part (a) of
Example 10.1. There it was found that I,, = 5bh*. For the differential
elementshownin Fig.10-6b,b = dxandh = y,andthusdl, = %dx 3.
Since the centroid of the element is y = y/2 from the x axis, the
moment of inertia of the element about this axis is

- N 1 2
dIXZdIXf+dAy2=lzdxy3+ydx<)2)> =§y3dx

(This result can also be concluded from part (b) of Example 10.1.)
Integrating with respect to x, from x = 0 to x = 100 mm, yields

100 mm 1 100 mm 1
/ dl, = / §y3 dx = / §(400x)3/2 dx
0 0

107(10°) mm* Ans.

I



10.3 RADIUS OF GYRATION OF AN AREA 535

exavpie 108

Determine the moment of inertia with respect to the x axis for the
circular area shown in Fig. 10-7a.

(@)

SOLUTION I (CASE 1)
Using the differential element shown in Fig. 10-7a, since dA = 2x dy,

we have
I = / y dA = / y*(2x) dy
A A

a 4
= /y2<2\/a2—y2) dy = Wj Ans.
SOLUTION Il (CASE 2)
When the differential element shown in Fig. 10-7b is chosen, the Y
E:entroid for the element happens to lie on the x axis, and since R4y =
I, = {5bh’ for a rectangle, we have ‘\(x_ Y)
| |
I, = —dx(2y)’
d x lzdx( }’) y
2 (¥ )1
3
a
Integrating with respect to x yields I
I, = ag(az - ax = ma’ Ans -y
* _a3 4 ’ dx

NOTE: By comparison, Solution I requires much less computation.
Therefore, if an integral using a particular element appears difficult to Fig. 10-7
evaluate, try solving the problem using an element oriented in the

other direction.
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F10-1. Determine the moment of inertia of the shaded
area about the x axis.

Im ‘

Prob. F10-1

F10-2. Determine the moment of inertia of the shaded
area about the x axis.

Im

Prob. F10-2

F10-3. Determine the moment of inertia of the shaded
area about the y axis.

Im ‘

Prob. F10-3

F10-4. Determine the moment of inertia of the shaded
area about the y axis.

1m

Prob. F10-4



10-1. Determine the moment of inertia about the x axis.

10-2. Determine the moment of inertia about the y axis.

Probs. 10-1/2

10-3. Determine the moment of inertia for the shaded
area about the x axis.

*10—4. Determine the moment of inertia for the shaded
area about the y axis.

~— 100 mm *“

200 mm \y=1 2

Probs. 10-3/4
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10-5. Determine the moment of inertia for the shaded
area about the x axis.

10-6. Determine the moment of inertia for the shaded
area about the y axis.

2

y=x!

Im |

Probs. 10-5/6

10-7. Determine the moment of inertia for the shaded
area about the x axis.

#10-8. Determine the moment of inertia for the shaded
area about the y axis.

2 m l

Probs. 10-7/8
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10-9. Determine the moment of inertia of the area about
the x axis. Solve the problem in two ways, using rectangular
differential elements: (a) having a thickness dx and
(b) having a thickness of dy.

y=25-01x°

I x
PR

Prob. 10-9

10-10. Determine the moment of inertia of the area about
the x axis.

<

I
o=
[}

=

b

Prob. 10-10

10-11. Determine the moment of inertia for the shaded
area about the x axis.

#*10-12. Determine the moment of inertia for the shaded
area about the y axis.

Probs. 10-11/12

10-13. Determine the moment of inertia about the x axis.

10-14. Determine the moment of inertia about the y axis.

x2+4y2=4

2m l

Probs. 10-13/14

10-15. Determine the moment of inertia for the shaded
area about the x axis.

l 16 in. l

Prob. 10-15

#10-16. Determine the moment of inertia for the shaded
area about the y axis.

‘r 16 in. l

Prob. 10-16



10-17. Determine the moment of inertia for the shaded
area about the x axis.

Prob. 10-17

10-18. Determine the moment of inertia for the shaded
area about the y axis.

Prob. 10-18

10-19. Determine the moment of inertia for the shaded
area about the x axis.

#10-20. Determine the moment of inertia for the shaded
area about the y axis.

y=1-—x

—_

—_
“;EH‘;EH‘
=

~—1m —

Probs. 10-19/20
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10-21. Determine the moment of inertia for the shaded
area about the x axis.

10-22. Determine the moment of inertia for the shaded
area about the y axis.

X

2m——-—

Probs. 10-21/22

10-23. Determine the moment of inertia for the shaded
area about the x axis.

Prob. 10-23

#*10-24. Determine the moment of inertia for the shaded
area about the y axis.

y
2 _ b
y=9x
b b
X
a |
Prob. 10-24
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10.4 Moments of Inertia for
Composite Areas

A composite area consists of a series of connected “simpler” parts or
shapes, such as rectangles, triangles, and circles. Provided the moment of
inertia of each of these parts is known or can be determined about a
common axis, then the moment of inertia for the composite area about
this axis equals the algebraic sum of the moments of inertia of all its parts.

Procedure for Analysis

The moment of inertia for a composite area about a reference axis
can be determined using the following procedure.

Composite Parts.

® Using a sketch, divide the area into its composite parts and
indicate the perpendicular distance from the centroid of each
part to the reference axis.

Parallel-Axis Theorem.

® [If the centroidal axis for each part does not coincide with the
reference axis, the parallel-axis theorem, I = I + Ad%, should be
used to determine the moment of inertia of the part about the
reference axis. For the calculation of 7, use the table on the inside
back cover.

Summation.

® The moment of inertia of the entire area about the reference axis
is determined by summing the results of its composite parts about
this axis.

® [If a composite part has an empty region (hole), its moment of
inertia is found by subtracting the moment of inertia of this region
from the moment of inertia of the entire part including the region.

For design or analysis of this T-beam,
engineers must be able to locate the
centroid of its cross-sectional area,
and then find the moment of inertia
of this area about the centroidal axis.
(© Russell C. Hibbeler)




10.4 MOMENTS OF INERTIA FOR COMPOSITE AREAS 541

I T —

Determine the moment of inertia of the area shown in Fig. 10-8a about
the x axis.

% 100 mm H‘ %100 mm ﬂ‘
25 mm ;—Elm 75 inm 25 mm
Yaltl - @
\_/ |1
75 mm 75 mm

| |

X X

(a) (b)
Fig. 10-8

SOLUTION

Composite Parts. The area can be obtained by subtracting the circle
from the rectangle shown in Fig. 10-8b. The centroid of each area is
located in the figure.

Parallel-Axis Theorem. The moments of inertia about the x axis

are determined using the parallel-axis theorem and the geometric

properties formulae for circular and rectangular areas I, = %m’“;
I, = $bh*, found on the inside back cover.

Circle
I, =1, + Ad;
1
= Z”(25)4 + 7(25)%(75)* = 11.4(10°% mm*
Rectangle
I, =1, + Ad:

%(100)(150)3 + (100)(150)(75)*> = 112.5(10°) mm*

Summation. The moment of inertia for the area is therefore

I, = —11.4(10% + 112.5(10%
101(10% mm* Ans.
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—| 100 mm

y
100 mm | ‘P
200 mm
T4
300 mm| e 250 mm
e
B—— X
] T
250 mm' /—* 1o | 300 mm
200 mm | D l
% ‘HlOO mm
(b)
Fig. 10-9

Determine the moments of inertia for the cross-sectional area of the
member shown in Fig. 10-9a about the x and y centroidal axes.

SOLUTION

Composite Parts. The cross section can be subdivided into the three
rectangular areas A, B, and D shown in Fig. 10-9b. For the calculation,
the centroid of each of these rectangles is located in the figure.

Parallel-Axis Theorem. From the table on the inside back cover, or
Example 10.1, the moment of inertia of a rectangle about its centroidal
axisis I = 75bh*. Hence, using the parallel-axis theorem for rectangles A
and D, the calculations are as follows:

Rectangles A and D

- 1
I =1, +Ad = 5(100)(300)3 + (100)(300)(200)*

1.425(10%) mm*

. 1
I, = Iy + Ad; = (300)(100)° + (100)(300)(250)°

= 1.90(10%) mm*

1
I, = 5(600)(100)3 = 0.05(10”) mm*

1
I, = 5(100)(600)3 = 1.80(10”) mm*

Summation. The moments of inertia for the entire cross section
are thus
I, = 2[1.425(10%)] + 0.05(10%)
= 2.90(10%) mm* Ans.
I, = 2[1.90(10°)] + 1.80(10%)
= 5.60(10%) mm* Ans.
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. FUNDAMENTAL PROBLEMS

F10-5. Determine the moment of inertia of the beam’s
cross-sectional area about the centroidal x and y axes.

200 mm

50 mm X

200 mm
|

150 mm ( 150 mm
50 mm

Prob. F10-5

F10-6. Determine the moment of inertia of the beam’s
cross-sectional area about the centroidal x and y axes.

y
T 7% —— %30 mm
200 mm ’,/ A x
|
= [ 7T30mm
HL.’:OO mm
30 mm 30 mm

Prob. F10-6

F10-7. Determine the moment of inertia of the
cross-sectional area of the channel with respect to the y axis.

y

50 mm |

300 mm

%

50 mm

LZOO mmJ

Prob. F10-7

F10-8. Determine the moment of inertia of the cross-
sectional area of the T-beam with respect to the x' axis
passing through the centroid of the cross section.

150

30 mm

Prob. F10-8
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“leromiews

10-25. Determine the moment of inertia of the composite *10-28. Determine the location y of the centroid of the
area about the x axis. channel’s cross-sectional area and then calculate the
moment of inertia of the area about this axis.

10-26. Determine the moment of inertia of the composite
area about the y axis.

L 3in. i 6in.
250

e
T

3in.

50 mm

mm

Probs. 10-25/26

10-27. The polar moment of inertia for the area is
Je = 642 (10°) mm*, about the z’ axis passing through the
centroid C. The moment of inertia about the y’ axis is
264 (10°) mm?, and the moment of inertia about the x axis is
938 (10°) mm*. Determine the area A.

200 mm

Prob. 10-27

50 mm
350 mm
Prob. 10-28

10-29. Determine y, which locates the centroidal axis x’
for the cross-sectional area of the T-beam, and then find the
moments of inertia /,» and /.

Prob. 10-29



10-30. Determine the moment of inertia for the beam’s
cross-sectional area about the x axis.

10-31. Determine the moment of inertia for the beam’s
cross-sectional area about the y axis.

10in. |

Probs. 10-30/31

*10-32. Determine the moment of inertia /, of the shaded
area about the x axis.

10-33. Determine the moment of inertia /, of the shaded
area about the y axis.

y
<100 mm>‘< 100 mm»’-f 150 mm —
150 mm
150 mm 75 mm
l .
[9)

Probs. 10-32/33
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10-34. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

10-35. Determine y, which locates the centroidal axis x’
for the cross-sectional area of the T-beam, and then find the
moment of inertia about the x’ axis.

50 mm\

250

Probs. 10-34/35

#10-36. Determine the moment of inertia about the x axis.

10-37. Determine the moment of inertia about the y axis.

150 mm 150 mm |

Probs. 10-36/37
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10-38. Determine the moment of inertia of the shaded
area about the x axis.

10-39. Determine the moment of inertia of the shaded
area about the y axis.

| 6in. } 6in——

Probs. 10-38/39

*10-40. Determine the distance y to the centroid of the
beam’s cross-sectional area; then find the moment of inertia
about the centroidal x" axis.

10-41. Determine the moment of inertia for the beam’s
cross-sectional area about the y axis.

1 in.‘ . . 1in.
3in. 3in.

<) —>

1in.

Probs. 10-40/41

10-42. Determine the moment of inertia of the beam’s
cross-sectional area about the x axis.

10-43. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

#*10-44. Determine the distance y to the centroid C of the
beam’s cross-sectional area and then compute the moment
of inertia I, about the x' axis.

10-45. Determine the distance x to the centroid C of the
beam’s cross-sectional area and then compute the moment
of inertia /,» about the y” axis.

140 mm

30 mm

Probs. 10-42/43/44/45

10-46. Determine the moment of inertia for the shaded
area about the x axis.

10-47. Determine the moment of inertia for the shaded
area about the y axis.

~— 61in.—

1
3in.
a4
¥
3in.
v

3in.

|
3 in. =3 in.~

Probs. 10-46/47




#10-48. Determine the moment of inertia of the
parallelogram about the x' axis, which passes through the
centroid C of the area.

Prob. 10-48

10-49. Determine the moment of inertia of the
parallelogram about the y' axis, which passes through the
centroid C of the area.

b |

Prob. 10-49

10-50. Locate the centroid y of the cross section and
determine the moment of inertia of the section about the
x' axis.

m-- 1 |
02m0.2m

Prob. 10-50
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10-51. Determine the moment of inertia for the beam’s
cross-sectional area about the x’ axis passing through the
centroid C of the cross section.

Prob. 10-51

#10-52. Determine the moment of inertia of the area
about the x axis.

10-53. Determine the moment of inertia of the area about
the y axis.

Probs. 10-52/53
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Fig. 10-10

LA

The effectiveness of this beam to resist
bending can be determined once its
moments of inertia and its product of
inertia are known. (© Russell C. Hibbeler)

*10.5 Product of Inertia for an Area

It will be shown in the next section that the property of an area, called the
product of inertia, is required in order to determine the maximum and
minimum moments of inertia for the area. These maximum and minimum
values are important properties needed for designing structural and
mechanical members such as beams, columns, and shafts.

The product of inertia of the area in Fig. 10-10 with respect to the
x and y axes is defined as

= (10-7)
s /Axy dA

If the element of area chosen has a differential size in two directions, as
shown in Fig. 10-10, a double integration must be performed to evaluate
I,,. Most often, however, it is easier to choose an element having a
differential size or thickness in only one direction in which case the
evaluation requires only a single integration (see Example 10.6).

Like the moment of inertia, the product of inertia has units of length
raised to the fourth power, e.g., m*, mm* or ft*, in*. However, since x or y
may be negative, the product of inertia may either be positive, negative, or
zero, depending on the location and orientation of the coordinate axes.
For example, the product of inertia /,, for an area will be zero if either the
X or y axis is an axis of symmetry for the area, as in Fig. 10-11. Here every
element dA located at point (x, y) has a corresponding element dA
located at (x, —y). Since the products of inertia for these elements are,
respectively, xy dA and —xy dA, the algebraic sum or integration of all the
elements that are chosen in this way will cancel each other. Consequently,
the product of inertia for the total area becomes zero. It also follows from
the definition of /,, that the “sign” of this quantity depends on the
quadrant where the area is located. As shown in Fig. 10-12, if the area is
rotated from one quadrant to another, the sign of I, will change.

<

Fig. 10-11
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Ly=—fxydAl _, L | I,=[xydA

.
‘ < =
=

f— — X —— X —=

L, = —fxy dA

Fig. 10-12

Parallel-Axis Theorem. Consider the shaded area shown in
Fig. 10-13, where x’ and y’ represent a set of axes passing through the
centroid of the area, and x and y represent a corresponding set of parallel
axes. Since the product of inertia of dA with respect to the x and y axes is
dl,, = (x" +d,) (y' + d,) dA, then for the entire area,

I, = / '+ d)0' + dy) dA
A

= /x’y’dA +dx/y’dA +dy/x’dA +dxdy/dA
A A A A

The first term on the right represents the product of inertia for the area
with respect to the centroidal axes, I,-,.. The integrals in the second and
third terms are zero since the moments of the area are taken about the
centroidal axis. Realizing that the fourth integral represents the entire
area A, the parallel-axis theorem for the product of inertia becomes

Ly =Ly + Add, (10-8)

It is important that the algebraic signs for d, and d, be maintained
when applying this equation.

549



550

CHAPTER 10 MOMENTS OF INERTIA

(a)

(c)
Fig. 10-14

b
(b)
y
h P——
y=px
- La@n |7
(x,y) [ )
— (b —x) — W
b

Determine the product of inertia I, for the triangle shown in
Fig. 10-14a.

SOLUTION |

A differential element that has a thickness dx, as shown in Fig. 10-14b,
has an area dA = y dx. The product of inertia of this element with
respect to the x and y axes is determined using the parallel-axis
theorem.

dl,, = dl,y + dAXy
where X and y locate the centroid of the element or the origin of the

x', y' axes. (See Fig. 10-13.) Since dl,.,, = 0, due to symmetry, and
X =x,y = y/2,then

Yy h h
dl,, =0+ (y dx)x<5> = (Zx dx)x(ix)
h2
= —2b2x3 dx

Integrating with respect to x from x = 0 tox = b yields

2 b 272
I, = h—2 xdx = b Ans.
2b° /o 8

SOLUTION 1l
The differential element that has a thickness dy, as shown in
Fig. 10-14c, can also be used. Its area is dA = (b — x) dy.The centroid
is located at point X = x + (b — x)/2 = (b + x)/2, Yy =y, so the
product of inertia of the element becomes

dl, = dl,y + dA X5

=0+ (O —x)dy(b;x>y
_(,_?b b+ G/hy] 1 (, b 2>
= (b hy)dy{ 5 }y = zy(b 2 dy

Integrating with respect to y fromy = 0 toy = h yields

h 2 2712
1 , b, b°h
I, = 2/0 y(b - ;zy )dy = N Ans.
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EXAVIPLE

Determine the product of inertia for the cross-sectional area of the
member shown in Fig. 10-154, about the x and y centroidal axes.

y
100 mm | %
100 mm 200 mm
- T
N A
400 mm 300 mm| @ 1) 1950 1m
A
1 ot .
100 mm 250 mm' /e | 300 mm
200 mm | D |
— 100 mm — 100 mm
600 mrnj ‘ }‘;
(a) (b)

Fig. 10-15

SOLUTION

As in Example 10.5, the cross section can be subdivided into three
composite rectangular areas A, B, and D, Fig. 10-15b. The coordinates
for the centroid of each of these rectangles are shown in the figure.
Due to symmetry, the product of inertia of each rectangle is zero about
aset of x', y’ axes that passes through the centroid of each rectangle.
Using the parallel-axis theorem, we have

Rectangle A
Ly = Loy + Add,

= 0 + (300)(100)(—250)(200) = —1.50(10%) mm*
Rectangle B

Rectangle D
I, =1, +Add,
= 0 + (300)(100)(250)(—200) = —1.50(10%) mm*
The product of inertia for the entire cross section is therefore
I, = —1.50(10°) + 0 — 1.50(10%) = —3.00(10°) mm*  Ans.

NOTE: This negative result is due to the fact that rectangles A and D
have centroids located with negative x and negative y coordinates,
respectively.
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*10.6 Moments of Inertia for an Area
about Inclined Axes

v Y In structural and mechanical design, it is sometimes necessary to calculate
the moments and product of inertia /,, I,, and I, for an area with respect
to a set of inclined u and v axes when the values for 6, I,, 1, and I, are
known. To do this we will use transformation equations which relate the
x, y and u, v coordinates. From Fig. 10-16, these equations are

u=xcosf + ysin6

v =1ycosf — x sin @

With these equations, the moments and product of inertia of dA about
the u and v axes become

dl, = v*dA = (ycos§ — xsin0)>dA
dl, = u* dA = (x cos § + y sin 0)* dA
dl,, = uvdA = (x cos @ + y sin 0)(y cos 0 — x sin 0) dA

Expanding each expression and integrating, realizing that I, = f y? dA,
I, = fx2 dA,and I, = fxy dA, we obtain

I, = I, cos*0 + I,sin® @ — 21, sin 6 cos 6

I, = I sin* 6 + I, cos® § + 2I,, sin 6 cos 0

Ly, = I, sin @ cos 6 — I, sin 6 cos 6 + Ixy(cos2 6 — sin® 0)

Using the  trigonometric  identities sin26 = 2sinfcos® and
cos 20 = cos’@ — sin® @ we can simplify the above expressions, in which case

I +1, I,—1I

I, = > 4+ S cos 20 — I, sin 260
I, +1, I —1I .

I, = 5 5 oS 20 + I, sin 20 (10-9)
I, — I,

L, = > sin 20 + I, cos 20

Notice that if the first and second equations are added together, we can
show that the polar moment of inertia about the z axis passing through
point O is, as expected, independent of the orientation of the u and v
axes;i.e.,

Jo=1,+1,=1I +1I,
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Principal Moments of Inertia. Equations 10-9 show that /,, I,
and /,, depend on the angle of inclination, 6, of the u, v axes. We will now
determine the orientation of these axes about which the moments of
inertia for the area are maximum and minimum. This particular set of axes
is called the principal axes of the area, and the corresponding moments of
inertia with respect to these axes are called the principal moments of
inertia. In general, there is a set of principal axes for every chosen origin O.
However, for structural and mechanical design, the origin O is located at
the centroid of the area.

The angle which defines the orientation of the principal axes can be
found by differentiating the first of Eqs. 10-9 with respect to 6 and setting
the result equal to zero. Thus,

dl, I, — 1,
i = -2 5 sin 20 — 21, cos 20 = 0

Therefore, at 0 = 0,,

=/
tan20, = ———— 10-10
an 20, I - Iy)/2 ( )

The two roots 6, and 6, of this equation are 90" apart, and so they each
specity the inclination of one of the principal axes. In order to substitute
them into Eq. 10-9, we must first find the sine and cosine of 26, and 26,,.
This can be done using these ratios from the triangles shown in Fig. 10-17,
which are based on Eq. 10-10.

Substituting each of the sine and cosine ratios into the first or second
of Egs. 10-9 and simplifying, we obtain

I + 1, I, — L\?
Iy =~ + 5 + I3 (10-11)

Depending on the sign chosen, this result gives the maximum or minimum
moment of inertia for the area. Furthermore, if the above trigonometric
relations for 6, and 6, are substituted into the third of Egs. 10-9, it can
be shown that 7,, = 0; that is, the product of inertia with respect to the
principal axes is zero. Since it was indicated in Sec. 10.6 that the product
of inertia is zero with respect to any symmetrical axis, it therefore follows
that any symmetrical axis represents a principal axis of inertia for the area.
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y Determine the principal moments of inertia and the orientation of
the principal axes for the cross-sectional area of the member shown in

100 mm
| Fig. 10-18a with respect to an axis passing through the centroid.
40 men SOLUTION
-+ a The moments and product of inertia of the cross section with respect
1 - to the x, y axes have been determined in Examples 10.5 and 10.7
100 mm The results are
- I, = 2.90(10°) mm* [, = 5.60(10°) mm* 1, = —3.00(10°) mm*
100 mm
600 mm Using Eq. 10-10, the angles of inclination of the principal axes u and
(a) v are
-1 ~[—3.00(10°
tan 26, = 2= [9 10)] s = —2.22
(I, — 1)/2  [2.90(10°) — 5.60(10%)]/2
v 20, = —65.8°and 114.2°
Thus, by inspection of Fig. 10-18b,
0, = —329° and 0, = 57.1° Ans.

The principal moments of inertia with respect to these axes are
determined from Eq. 10-11. Hence,

I +1, . L =L\
(b) Lo = ——— = 2 + Ly
Fig. 10-18 ~2.90(10%) + 5.60(10°)
2
2.90(10%) — 5.60(10%) 1?
+ J[ 107 5 ( )] + [—3.00(10%)1?
Imax = 4.25(10%) + 3.29(10%)
min
or
Lo = 7.54(10°) mm*  I;, = 0.960(10%) mm* Ans.

NOTE: The maximum moment of inertia, I,,,, = 7.54(10°) mm*, occurs
with respect to the u axis since by inspection most of the cross-sectional
area is farthest away from this axis. Or, stated in another manner, 7,
occurs about the u axis since this axis is located within +45° of the
y axis, which has the larger value of I (I, > I,). Also, this can be
concluded by substituting the data with 6 = 57.1° into the first of
Egs. 10-9 and solving for 1,.
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*10.7 Mohr's Circle for Moments
of Inertia

Equations 10-9 to 10-11 have a graphical solution that is convenient to use
and generally easy to remember. Squaring the first and third of Eqgs. 10-9
and adding, it is found that

I, + I,\?2 1, — I,\2
X y X y
<1u— 5 ) + 12, ——( 5 > + 13

Here I, I, and I,, are known constants. Thus, the above equation may be
written in compact form as

(U, = @ + 13, = R

When this equation is plotted on a set of axes that represent the
respective moment of inertia and the product of inertia, as shown in
Fig. 10-19, the resulting graph represents a circle of radius

L= 1N\
R = 5 + 12

and having its center located at point (a, 0), where a = (I, + I,)/2. The
circle so constructed is called Mohr’s circle, named after the German
engineer Otto Mohr (1835-1918).

y
v
/ 2
L—1 2
Ixy R= \/ ( 2 ) Ly
N Axis for minor principal ja
moment of inertia, /;, *
A
20,
g 1

Axis for major principal 2
moment of inertia, 7, I

(a) (b)
Fig. 10-19
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N

P / /9”1

Axis for major principal

moment of inertia, 7,

(@)

Axis for minor principal
moment of inertia, /;,

) 2
Ixy \/ 2 + IXY
I —
A
201,1 ;
xy
|
<‘Imin ™
I + Iy
2
1,

(b)
Fig. 10-19 (Repeated)
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The main purpose in using Mohr’s circle here is to have a convenient
means for finding the principal moments of inertia for an area. The
following procedure provides a method for doing this.

Determine I, I, and I,,.

® Establish the x, y axes and determine /,, I, and Ly,

Fig. 10-19a.

Construct the Circle.

® Construct a rectangular coordinate system such that the
horizontal axis represents the moment of inertia /, and the
vertical axis represents the product of inertia I, Fig. 10-19b.

® Determine the center of the circle, O, which is located at a distance
(I, + I,)/2 from the origin, and plot the reference point A
having coordinates (I, I,). Remember, I, is always positive,
whereas I, can be either positive or negative.

® Connect the reference point A with the center of the circle and
determine the distance OA by trigonometry. This distance
represents the radius of the circle, Fig. 10-19b. Finally, draw
the circle.

Principal Moments of Inertia.

® The points where the circle intersects the / axis give the values
of the principal moments of inertia I.,;, and [,,,. Notice that,
as expected, the product of inertia will be zero at these points,
Fig. 10-19b.

Principal Axes.

¢ To find the orientation of the major principal axis, use trigonometry
to find the angle 260, , measured from the radius OA to the positive
[ axis, Fig. 10-19b. This angle represents twice the angle from the
x axis to the axis of maximum moment of inertia /,,,,, Fig. 10-19a.
Both the angle on the circle, 26,, and the angle 6, must be
measured in the same sense, as shown in Fig. 10-19. The axis for
minimum moment of inertia /;, is perpendicular to the axis

for I,,.

Using trigonometry, the above procedure can be verified to be in

accordance with the equations developed in Sec. 10.6.
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EXAMPLE | 10.9

Using Mohr’s circle, determine the principal moments of inertia and
the orientation of the major principal axes for the cross-sectional area
of the member shown in Fig. 10-20a, with respect to an axis passing

through the centroid. y

100 mmﬁ»‘ ‘F Ly (109) mm?*

| - = 3 I © 1(10°) mm*
. 571
100 mm 400 ‘nnn -3.00
> A (2.90, —3.00)

H‘ ‘«100 mm
600 mm d

(b)
SOLUTION @

Determine I,, I, I,,. The moments and product of inertia have been 1Ly (10°) mm*
determined in Examples 10.5 and 10.7 with respect to the Ly = 7.54 ——
x, y axes shown in Fig. 10-20a. The results are I, = 2.90(10°) mm*, _. L. = 0.960

I, = 5.60(10°) mm*, and I,, = —3.00(10°) mm*.

Construct the Circle. The I and I,, axes are shown in Fig. 10-205.
The center of the circle, O, lies at a distance (I, + 1,)/2 =
(2.90 +5.60)/2 = 4.25 from the origin. When the reference point
A, I,) or A(2.90,—3.00) is connected to point O, the radius OA is
determined from the triangle OBA using the Pythagorean theorem.

0A = V(1357 + (—3.00)> = 3.29

The circle is constructed in Fig. 10-20c.
Principal Moments of Inertia. The circle intersects the I axis at
points (754, 0) and (0.960, 0). Hence,

Lo = (425 + 3.29)10° = 7.54(10°) mm* Ans.

v

I = (425 — 3.29)10° = 0.960(10°) mm* Ans.

1(10°) mm*

Principal Axes.  Asshownin Fig. 10-20c, the angle 26, is determined
from the circle by measuring counterclockwise from OA to the
direction of the positive I axis. Hence,

BA 3.00
26, = 180° — sin—1<||0A||> = 180° — sin—1<329> = 114.2°

The principal axis for /,,,, = 7.54(10”) mm* is therefore oriented at an
angle 6, = 57.1°, measured counterclockwise, from the positive x axis
to the positive u axis. The v axis is perpendicular to this axis. The results Fi

T ig. 10-20
are shown in Fig. 10-20d.

(d)
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' | PROBLEMS

10-54. Determine the product of inertia of the thin strip of
area with respect to the x and y axes. The strip is oriented at
an angle 6 from the x axis. Assume that 1 << [.

y

A

<\ %

Prob. 10-54

10-55. Determine the product of inertia of the shaded
area with respect to the x and y axes.

y

3in.

Prob. 10-55

*10-56. Determine the product of inertia for the shaded
portion of the parabola with respect to the x and y axes.

y

100 mm—

200 mm

Prob. 10-56

10-57. Determine the product of inertia of the shaded
area with respect to the x and y axes, and then use the
parallel-axis theorem to find the product of inertia of the
area with respect to the centroidal x’ and y’ axes.

’

y y

y=x

4m

Prob. 10-57

10-58. Determine the product of inertia for the parabolic
area with respect to the x and y axes.

Prob. 10-58

10-59. Determine the product of inertia of the shaded
area with respect to the x and y axes.

y

Prob. 10-59
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*10-60. Determine the product of inertia of the shaded 10-63. Determine the moments of inertia of the shaded
area with respect to the x and y axes. area with respect to the u and v axes.

‘ 2 in. ‘

Prob. 10-60

10-61. Determine the product of inertia of the shaded
area with respect to the x and y axes.

4 in.

H‘ 1 in.‘

Prob. 10-63

*10-64. Determine the product of inertia for the beam’s
cross-sectional area with respect to the u and v axes.

Prob. 10-61

10-62. Determine the product of inertia for the beam’s
cross-sectional area with respect to the x and y axes.

12 in.

Prob. 10-62 Prob. 10-64
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10-65. Determine the product of inertia for the shaded
area with respect to the x and y axes.

2 in——2 in.—

1in.

Prob. 10-65

10-66. Determine the product of inertia of the cross-
sectional area with respect to the x and y axes.

1 100 mm-| |- 20 mm

Prob. 10-66

10-67. Determine the location (x ,y ) to the centroid C of
the angle’s cross-sectional area, and then compute the
product of inertia with respect to the x’ and y' axes.

i 150 mm |

Prob. 10-67

*10-68. Determine the distance y to the centroid of the
area and then calculate the moments of inertia 7, and I, of
the channel’s cross-sectional area. The u and v axes have
their origin at the centroid C. For the calculation, assume all
corners to be square.

150 mm

‘ 150 mm i

Prob. 10-68



10-69. Determine the moments of inertia /,, I, and the
product of inertia 7, for the beam’s cross-sectional area.
Take 6 = 45°.

e 8in e 8in 51

2in. 21in.

Prob. 10-69

10-70. Determine the moments of inertia /,, I, and the
product of inertia [, for the rectangular area. The u and v
axes pass through the centroid C.

10-71. Solve Prob. 10-70 using Mohr’s circle. Hint: To
solve, find the coordinates of the point P(I,, I,,) on the
circle, measured counterclockwise from the radial line OA.
(See Fig. 10-19.) The point Q(,, —1,,) is on the opposite
side of the circle.

@

L— 120 mm

Probs. 10-70/71
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*10-72. Determine the directions of the principal axes
having an origin at point O, and the principal moments of
inertia for the triangular area about the axes.

10-73. Solve Prob. 10-72 using Mohr’s circle.

9in.

Probs. 10-72/73

10-74. Determine the orientation of the principal axes
having an origin at point C, and the principal moments of
inertia of the cross section about these axes.

10-75. Solve Prob. 10-74 using Mohr’s circle.

100 mm

10 mm »‘ F

Probs. 10-74/75
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*10-76. Determine the orientation of the principal axes
having an origin at point O, and the principal moments of
inertia for the rectangular area about these axes.

10-77. Solve Prob. 10-76 using Mohr’s circle.

6 in. ‘

Probs. 10-76/77

10-78. The area of the cross section of an airplane wing
has the following properties about the x and y axes passing
through the centroid C: I, =450in*, I, = 1730in"
7)‘}, = 138 in*. Determine the orientation of the principal

axes and the principal moments of inertia.

10-79. Solve Prob. 10-78 using Mohr’s circle.

=

Probs. 10-78/79

*10-80. Determine the moments and product of inertia
for the shaded area with respect to the u and v axes.

10-81. Solve Prob. 10-80 using Mohr’s circle.

10 mm

60°

r 10 mm
110 mmx

120 mm

— 120 mm——

20 mm

Probs. 10-80/81

10-82. Determine the directions of the principal axes with
origin located at point O, and the principal moments of
inertia for the area about these axes.

10-83. Solve Prob. 10-82 using Mohr’s circle.

2 in.—~— 2 in.—

1in.

Probs. 10-82/83
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10.8 Mass Moment of Inertia

The mass moment of inertia of a body is a measure of the body’s resistance
to angular acceleration. Since it is used in dynamics to study rotational
motion, methods for its calculation will now be discussed.*

Consider the rigid body shown in Fig. 10-21. We define the mass
moment of inertia of the body about the z axis as

1= /r2 dm (10-12)

Here r is the perpendicular distance from the axis to the arbitrary
element dm. Since the formulation involves r, the value of I is unique for
each axis about which it is computed. The axis which is generally chosen,
however, passes through the body’s mass center G. Common units used
for its measurement are kg - m” or slug - ft°.

If the body consists of material having a density p, then dm = pdV,
Fig. 10-22a. Substituting this into Eq. 10-12, the body’s moment of inertia
is then computed using volume elements for integration;i.e.,

I= /rzp dv (10-13)
4

For most applications, p will be a constant, and so this term may be
factored out of the integral, and the integration is then purely a function
of geometry.

I= p/r2 dv (10-14)
v

dm = pdV
(x,y,2)

-

(a)
Fig. 10-22

*Another property of the body, which measures the symmetry of the body’s mass with
respect to a coordinate system, is the mass product of inertia. This property most often
applies to the three-dimensional motion of a body and is discussed in Engineering
Mechanics: Dynamics (Chapter 21).

/

X

MAss MOMENT OF INERTIA

/ N
( r A
N — ] —
dm
Fig. 10-21
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Fig. 10-22 (cont’d)

Procedure for Analysis

If a body is symmetrical with respect to an axis, as in Fig. 10-22, then
its mass moment of inertia about the axis can be determined by using
a single integration. Shell and disk elements are used for this purpose.

Shell Element.

® If a shell element having a height z, radius y, and thickness dy
is chosen for integration, Fig. 10-22b, then its volume is
dV = (2my)(z) dy.

® This element can be used in Eq. 10-13 or 10-14 for determining
the moment of inertia I, of the body about the z axis since the
entire element, due to its “thinness,” lies at the same perpendicular
distance r = y from the z axis (see Example 10.10).

Disk Element.

® If a disk element having a radius y and a thickness dz is chosen
for integration, Fig. 10-22c, then its volume is dV = (my?) dz.

® In this case the element is finite in the radial direction, and
consequently its points do not all lie at the same radial distance r
from the z axis. As a result, Egs. 10-13 or 10-14 cannot be used to
determine I. Instead, to perform the integration using this
element, it is first necessary to determine the moment of inertia
of the element about the z axis and then integrate this result (see
Example 10.11).
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oxavpLe oo

Determine the mass moment of inertia of the cylinder shown in
Fig. 10-23a about the z axis. The density of the material, p, is constant.

(a) (b)
Fig. 10-23

SOLUTION
Shell Element. This problem will be solved using the shell element
in Fig. 10-23b and thus only a single integration is required. The
volume of the element is dV = 2wr)(h)dr, and so its mass is
dm = pdV = pQwhrdr). Since the entire element lies at the same
distance r from the z axis, the moment of inertia of the element is

dl, = r*dm = p2whr’ dr

Integrating over the entire cylinder yields

R
L= /rzdm=p277h/ Pdr =R
m 0 2

Since the mass of the cylinder is

R
m = /dm = p277h/ rdr = pmhR?
m 0

1
I, = EmR2 Ans.

then
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If the density of the solid in Fig. 10-24a s 5 slug /ft, determine the mass
moment of inertia about the y axis.

(a) (b)
Fig. 10-24

SOLUTION

Disk Element. The moment of inertia will be determined using this
disk element, as shown in Fig. 10-24b. Here the element intersects the
curve at the arbitrary point (x, y) and has a mass

dm = pdV = p(mx®) dy

Although all points on the element are not located at the same
distance from the y axis, it is still possible to determine the moment of
inertia dl, of the element about the y axis. In the previous example it
was shown that the moment of inertia of a homogeneous cylinder
about its longitudinal axis is / = ymR?, where m and R are the mass
and radius of the cylinder. Since the height of the cylinder is not
involved in this formula, we can also use this result for a disk. Thus, for
the disk element in Fig. 10-24b, we have

1 »_ 1 2 2
dl, = E(dm)x = E[p(ﬂ'x ) dylx

Substituting x = y?, p = 5slug/ft>, and integrating with respect to y,
fromy = 0toy = 1 ft, yields the moment of inertia for the entire solid.

1ft 1ft
5 5
L, = —;/ xtdy = —;/ ydy = 0.873 slug-ft2 Ans.
0 0



10.8 MAss MOMENT OF INERTIA

Fig. 10-25

Parallel-Axis Theorem. If the moment of inertia of the body
about an axis passing through the body’s mass center is known, then the
moment of inertia about any other parallel axis can be determined by
using the parallel-axis theorem.To derive this theorem, consider the body
shown in Fig. 10-25. The 7’ axis passes through the mass center G,
whereas the corresponding parallel z axis lies at a constant distance d
away. Selecting the differential element of mass dm, which is located at
point (x', y'), and using the Pythagorean theorem, * = (d + x')> + y'%,
the moment of inertia of the body about the z axis is

1= /rzdm: /[(d+x’)2+y’2]dm

= /(x’2+y’2)dm+2d/x’dm+d2/dm

Since '? = x'* + y'?, the first integral represents /;. The second integral
is equal to zero, since the z' axis passes through the body’s mass center,
ie., f x"dm =X f dm = 0 since x = 0. Finally, the third integral is the
total mass m of the body. Hence, the moment of inertia about the z axis
becomes

I=1I; + md (10-15)

where

= moment of inertia about the z’ axis passing through the mass
center G

~
Q
|

m = mass of the body

S8
Il

distance between the parallel axes

567
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Radius of Gyration. Occasionally, the moment of inertia of a body
about a specified axis is reported in handbooks using the radius of
gyration, k. This value has units of length, and when it and the body’s mass m
are known, the moment of inertia can be determined from the equation

[=mk® or k= \/7 (10-16)
m

Note the similarity between the definition of k in this formula and r in
the equation dI = r* dm, which defines the moment of inertia of a
differential element of mass dm of the body about an axis.

Composite Bodies. If a body is constructed from a number of
simple shapes such as disks, spheres, and rods, the moment of inertia of
the body about any axis z can be determined by adding algebraically the
moments of inertia of all the composite shapes calculated about the same
axis. Algebraic addition is necessary since a composite part must be
considered as a negative quantity if it has already been included within
another part—as in the case of a “hole” subtracted from a solid plate.
Also, the parallel-axis theorem is needed for the calculations if the center
of mass of each composite part does not lie on the z axis. For calculations,
a table of some simple shapes is given on the inside back cover.

This flywheel, which operates a metal
cutter, has a large moment of inertia
about its center. Once it begins
rotating it is difficult to stop it and
therefore a uniform motion can be
effectively transferred to the cutting
blade. (© Russell C. Hibbeler)



10.8 MaAss MOMENT OF INERTIA 569

If the plate shown in Fig. 10-26a has a density of 8000 kg/m? and a
thickness of 10 mm, determine its mass moment of inertia about an axis
perpendicular to the page and passing through the pin at O.

i 0.125 m
0.25m G @/0.125 m
o

Thickness 0.01 m

(a) (b)
Fig. 10-26

SOLUTION

The plate consists of two composite parts, the 250-mm-radius disk
minus a 125-mm-radius disk, Fig. 10-26b. The moment of inertia
about O can be determined by finding the moment of inertia of each
of these parts about O and then algebraically adding the results. The
calculations are performed by using the parallel-axis theorem in

conjunction with the mass moment of inertia formula for a circular
disk, I; = %mrz, as found on the inside back cover.

Disk. The moment of inertia of a disk about an axis perpendicular
to the plane of the disk and passing through G is I; = §mr*. The mass
center of both disks is 0.25 m from point O. Thus,

my = pgV, = 8000 kg/m? [7(0.25 m)*(0.01 m)] = 15.71 kg
Uo)a = 3marg + md”
= 3(15.71 kg)(0.25 m)> + (15.71 kg)(0.25 m)?
= 1473 kg-m?
Hole. For the smaller disk (hole), we have
my, = p,V, = 8000 kg/m? [7(0.125 m)*(0.01 m)] = 3.93 kg
o) = 3myri; + myd®
= 2(3.93 kg)(0.125 m)*> + (3.93 kg)(0.25 m)>
0.276 kg - m?

The moment of inertia of the plate about the pin is therefore
lo = (Ip)a — (o
= 1473 kg-m? — 0.276 kg - m?
= 1.20 kg m? Ans.
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EXAMPLE | 10.13

The pendulum in Fig. 10-27 consists of two thin rods each having a
weight of 10 Ib. Determine the pendulum’s mass moment of inertia
about an axis passing through (a) the pin at O,and (b) the mass center G
of the pendulum.

SOLUTION

Part (a). Using the table on the inside back cover, the moment of
inertia of rod OA about an axis perpendicular to the page and passing
through the end point O of the rod is I, = $m/*. Hence,

1 1 10 1b
I == 12=<>2ft2=0.414 lug - ft>
Uondo = 3m =3\ 35012 )10 e

Realize that this same value may be determined using I; = 15m/’ and
the parallel-axis theorem;i.e.,

1 1/ 100 101b
I = —mP + d2=<>2ft2+1ft2
Uondo = ppmb+ md™ = 1\ 3221/ )™ T 322y ™

= 0.414 slug - ft?
For rod BC we have

1 1/ 101b 10 Ib
Iio)o = —ml® + d2=<>2ft2+2ft2
Uscdo = Tpmb+ md™ =\ oy )Y T 32y O

= 1.346 slug - ft?

The moment of inertia of the pendulum about O is therefore
Ip, = 0.414 + 1.346 = 1.76 slug - ft Ans.

Part (b). The mass center G will be located relative to the pin at O.
Assuming this distance to be y, Fig. 10-27, and using the formula for
determining the mass center, we have

__ Sm _ 100/322) +200/322) _
Y= 3m T Ta0/322) + (o322 0N

The moment of inertia /; may be computed in the same manner as /),
which requires successive applications of the parallel-axis theorem in
order to transfer the moments of inertia of rods OA and BC to G.
A more direct solution, however, involves applying the parallel-axis
theorem using the result for /, determined above;i.e.,

20 1b
322 ft/s?

I = 0.362 slug - ft* Ans.

Ip = Ig + md*; 1.76 slug - ft> = I + ( )(1.50 ft)?
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| PROBLEMS

#*10-84. Determine the moment of inertia of the thin ring
about the z axis. The ring has a mass m.

|

Prob. 10-84

10-85. Determine the moment of inertia of the ellipsoid
with respect to the x axis and express the result in terms of
the mass m of the ellipsoid. The material has a constant
density p.

Prob. 10-85

10-86. Determine the radius of gyration k, of the

paraboloid. The density of the material is p = 5 Mg/m?>.

y

y2=50x

100 mm

200 mm

Prob. 10-86

10-87. The paraboloid is formed by revolving the shaded
area around the x axis. Determine the moment of inertia about
the x axis and express the result in terms of the total mass 71 of
the paraboloid. The material has a constant density p.

y

2
y2=%x\

=

a

X

h

| Prob. 10-87

*10-88. Determine the moment of inertia of the homogenous
triangular prism with respect to the y axis. Express the result
in terms of the mass m of the prism. Hint: For integration,
use thin plate elements parallel to the x—y plane having a
thickness of dz.

z=_a—hx—a)

|

h

SN

10-89. Determine the moment of inertia of the semiellipsoid
with respect to the x axis and express the result in terms of
the mass m of the semiellipsoid. The material has a constant
density p.

y

S
e

Prob. 10-88

Prob. 10-89
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10-90. Determine the radius of gyration k, of the solid
formed by revolving the shaded area about x axis. The
density of the material is p.

\ .
|

X

]

Prob. 10-90

10-91. The concrete shape is formed by rotating the
shaded area about the y axis. Determine the moment of
inertia I,. The specific weight of concrete is y = 150 1b/ fts.

Prob. 10-91

*10-92. Determine the moment of inertia I, of the sphere
and express the result in terms of the total mass m of the
sphere. The sphere has a constant density p.

Prob. 10-92

10-93. The right circular cone is formed by revolving the
shaded area around the x axis. Determine the moment of
inertia /, and express the result in terms of the total mass m
of the cone. The cone has a constant density p.

H x
’ h.
\

Prob. 10-93

10-94. Determine the mass moment of inertia /, of the
solid formed by revolving the shaded area around the y axis.
The total mass of the solid is 1500 kg.

4m

Prob. 10-94



10-95. The slender rods have a mass of 4 kg/m. Determine
the moment of inertia of the assembly about an axis
perpendicular to the page and passing through point A.

200 mm

‘F 100 mm —~— 100 mm ﬂ‘

Prob. 10-95

*10-96. The pendulum consists of a 8-kg circular disk A, a
2-kg circular disk B, and a 4-kg slender rod. Determine the
radius of gyration of the pendulum about an axis
perpendicular to the page and passing through point O.

|
0.4m 02m

3
154
n
=

Prob. 10-96
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10-97. Determine the moment of inertia /. of the frustum
of the cone which has a conical depression. The material has
a density of 200 kg/m?>.

Prob. 10-97

10-98. The pendulum consists of the 3-kg slender rod and
the 5-kg thin plate. Determine the location y of the center
of mass G of the pendulum; then find the mass moment of
inertia of the pendulum about an axis perpendicular to the
page and passing through G.

)
3

—le G

‘ ! 0.5 m
o

—tm—]

Prob. 10-98
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10-99. Determine the mass moment of inertia of the thin
plate about an axis perpendicular to the page and passing

10-102. Determine the mass moment of inertia of the
assembly about the z axis. The density of the material is

through point O. The material has a mass per unit area of 7.85 Mg/m?.

20 kg/m>.

R

150 mm 150 mm

Prob. 10-99

*10-100. The pendulum consists of a plate having a weight
of 12 1b and a slender rod having a weight of 4 Ib. Determine
the radius of gyration of the pendulum about an axis
perpendicular to the page and passing through point O.

t [ o
1ft A ° |
4

2ft—|

Prob. 10-102

‘ 3 ft

| | 10-103. Each of the three slender rods has a mass m.
Determine the moment of inertia of the assembly about an
axis that is perpendicular to the page and passes through
the center point O.

Prob. 10-100

10-101. If the large ring, small ring and each of the spokes
weigh 100 Ib, 15 Ib, and 20 Ib, respectively, determine the
mass moment of inertia of the wheel about an axis
perpendicular to the page and passing through point A.

<%
Fos

A a

Prob. 10-101 Prob. 10-103
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#10-104. The thin plate has a mass per unit area of 10 kg /m>. *10-108. The pendulum consists of two slender rods AB
Determine its mass moment of inertia about the y axis. and OC which have a mass of 3 kg/m. The thin plate has a
mass of 12 kg/m?. Determine the location y of the center of
mass G of the pendulum, then calculate the moment of
inertia of the pendulum about an axis perpendicular to the
page and passing through G.

10-105. The thin plate has a mass per unit area of 10 kg/m>

Determine its mass moment of inertia about the z axis.

z

&200 nllm

Probs. 10-104/105

Prob. 10-108
10-106. Determine the moment of inertia of the assembly
about an axis that is perpendicular to the page and passes

through the center of mass G. The material has a specific

weight of y = 90 Ib/ft>. } L
10-109. Determine the moment of inertia 7. of the frustum

10-107. Determine the moment of inertia of the assembly of the cone which has a conical depression. The material has
about an axis that is perpendicular to the page and passes a density of 200 kg/m>.

through point O. The material has a specific weight of

v = 90 1b/ft’.

0.25 ft

800 m:
7

— 1t —

Probs. 10-106/107 Prob. 10-109
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. CHAPTER REVIEW

Area Moment of Inertia

The area moment of inertia represents
the second moment of the area about an
axis. It is frequently used in formulas
related to the strength and stability of
structural members or mechanical
elements. I, = / 2dA
A
If the area shape is irregular but can
be described mathematically, then a
differential element must be selected
and integration over the entire area
must be performed to determine the
moment of inertia.

Parallel-Axis Theorem A

If the moment of inertia for an area is
. . . _ * I

known aboqt a (?entrmdal axis, then 1Fs I =1+ Ad C

moment of inertia about a parallel axis

can be determined using the parallel- d

axis theorem.

Composite Area

If an area is a composite of common
shapes, as found on the inside back cover,
then its moment of inertia is equal to the
algebraic sum of the moments of inertia
of each of its parts.

Product of Inertia

The product of inertia of an area is used in
formulas to determine the orientation of
an axis about which the moment of inertia I,= [xydA
for the area is a maximum or minimum. A

. . . d
If the product of inertia for an area is I, =1 + Add -
known with respect to its centroidal x’, y’ 4 *y Y
axes, then its value can be determined with d d

respect to any x, y axes using the parallel-
axis theorem for the product of inertia.
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Principal Moments of Inertia

Provided the moments of inertia, 7, and
I, and the product of inertia, I,,, are
known, then the transformation formulas,
or Mohr’s circle, can be used to determine
the maximum and minimum or principal
moments of inertia for the area, as well as
finding the orientation of the principal
axes of inertia.

Mass Moment of Inertia

The mass moment of inertia is a property
of a body that measures its resistance to a
change in its rotation. It is defined as the
“second moment” of the mass elements
of the body about an axis.

For homogeneous bodies having axial
symmetry, the mass moment of inertia
can be determined by a single integration,
using a disk or shell element.

The mass moment of inertia of a
composite body is determined by using
tabular values of its composite shapes,
found on the inside back cover, along
with the parallel-axis theorem.

m

I=1I;+ md®
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. REVIEW PROBLEMS

R10-1. Determine the moment of inertia for the shaded R10-3. Determine the area moment of inertia of the
area about the x axis. shaded area about the y axis.
y
y
- T _— dy =422
1ft
y= 1. 5 l x
3P* in. 2 ft __‘
Prob. R10-3
X
4 in. |
Prob. R10-1

R10-4. Determine the area moment of inertia of the area
about the x axis. Then, using the parallel-axis theorem, find
the area moment of inertia about the x’ axis that passes
through the centroid C of the area.y = 120 mm.

R10-2. Determine the moment of inertia for the shaded
area about the x axis.

T 4y =4 —x2 200 mm

26—

Prob. R10-2 Prob. R10-4




REVIEW PROBLEMS 579

R10-7. Determine the area moment of inertia of the
beam’s cross-sectional area about the x axis which passes
through the centroid C.

R10-5. Determine the area moment of inertia of the
triangular area about (a) the x axis, and (b) the centroidal

x' axis.
y y
f
d
h a
/ 2 60°
T x ! y
L c f / C
3 d 60°
t X 2 e
\ b l |
Ld o Ld ]
Prob. R10-5 2 2
Prob. R10-7

R10-6. Determine the product of inertia of the shaded

area with respect to the x and y axes.
R10-8. Determine the mass moment of inertia 7, of the

body and express the result in terms of the total mass m of
the body. The density is constant.

yy=%x+b
\ |

2b

—

Im

— 3
=X
Y Zz

Prob. R10-6 Prob. R10-8
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(© John Kershaw/Alamy)

Equilibrium and stability of this scissors lift as a function of its position
can be determined using the methods of work and energy, which are
explained in this chapter.



Virtual Work

CHAPTER OBJECTIVES

m To introduce the principle of virtual work and show how it applies
to finding the equilibrium configuration of a system of pin-
connected members.

m To establish the potential-energy function and use the potential-
energy method to investigate the type of equilibrium or stability
of a rigid body or system of pin-connected members.

11.1 Definition of Work

The principle of virtual work was proposed by the Swiss mathematician
Jean Bernoulli in the eighteenth century. It provides an alternative method
for solving problems involving the equilibrium of a particle, a rigid body,
or a system of connected rigid bodies. Before we discuss this principle,
however, we must first define the work produced by a force and by a
couple moment.

Work of a Force. A force does work when it undergoes a displacement
in the direction of its line of action. Consider, for example, the force F in
Fig. 11-1a that undergoes a differential displacement dr. If 6 is the angle
between the force and the displacement, then the component of F in



582

CHAPTER 11

(b)
Fig. 11-1

Fig. 11-2

VIRTUAL WORK

the direction of the displacement is Fcos . And so the work produced
by Fis

dU = Fdrcos 60

Notice that this expression is also the product of the force F and the
component of displacement in the direction of the force, drcosé,
Fig. 11-1b. If we use the definition of the dot product (Eq. 2-11) the
work can also be written as

dU = F-dr

As the above equations indicate, work is a scalar, and like other scalar
quantities, it has a magnitude that can either be positive or negative.

In the SI system, the unit of work is a joule (J), which is the work
produced by a 1-N force that displaces through a distance of 1 m in the
direction of the force (1 J = 1 N-m).The unit of work in the FPS system
is the foot-pound (ft-1b), which is the work produced by a 1-1b force
that displaces through a distance of 1 ft in the direction of
the force.

The moment of a force has this same combination of units; however,
the concepts of moment and work are in no way related. A moment is a
vector quantity, whereas work is a scalar.

Work of a Couple Moment. The rotation of a couple moment
also produces work. Consider the rigid body in Fig. 11-2, which is acted
upon by the couple forces F and —F that produce a couple moment M
having a magnitude M = Fr. When the body undergoes the differential
displacement shown, points A and B move dr, and dry to their final
positions A" and B’, respectively. Since drgy = dry + dr’, this movement
can be thought of as a translation dr,, where A and B move to A’
and B”, and a rotation about A’, where the body rotates through the angle
df about A. The couple forces do no work during the translation dr,
because each force undergoes the same amount of displacement
in opposite directions, thus canceling out the work. During
rotation, however, F is displaced dr' = rdf, and so it does work
dU = Fdr' = Frdf. Since M = Fr, the work of the couple moment M
is therefore

dU = Mdo

If M and d6 have the same sense, the work is positive; however, if they
have the opposite sense, the work will be negative.



11.2 PRINCIPLE OF VIRTUAL WORK

Virtual Work. The definitions of the work of a force and a couple
have been presented in terms of actual movements expressed by
differential displacements having magnitudes of dr and df. Consider
now an imaginary or virtual movement of a body in static equilibrium,
which indicates a displacement or rotation that is assumed and does not
actually exist. These movements are first-order differential quantities
and will be denoted by the symbols 6r and 66 (delta r and delta 6),
respectively. The virtual work done by a force having a virtual
displacement 67 is

8U = Fcos 0 5r | (11-1)

Similarly, when a couple undergoes a virtual rotation 86 in the plane of
the couple forces, the virtual work is

(11-2)

11.2 Principle of Virtual Work

The principle of virtual work states that if a body is in equilibrium, then
the algebraic sum of the virtual work done by all the forces and couple

moments acting on the body is zero for any virtual displacement of the
body. Thus,

8U =0 (11-3)

For example, consider the free-body diagram of the particle (ball) that
rests on the floor, Fig. 11-3. If we “imagine” the ball to be displaced
downwards a virtual amount 8y, then the weight does positive virtual
work, W 8y, and the normal force does negative virtual work, —N &y. For
equilibrium the total virtual work must be zero, so that
oU=Wédéy —Ndy = (W —N)béy = 0. Since 8y # 0, then N = W as
required by applying 2 F, = 0.

Q s

z—>

Fig. 11-3

583
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In a similar manner, we can also apply the virtual-work equation
6U = 0 to a rigid body subjected to a coplanar force system. Here,
separate virtual translations in the x and y directions, and a virtual
rotation about an axis perpendicular to the x—y plane that passes through
an arbitrary point O, will correspond to the three equilibrium equations,
2F, = 0,XF, = 0,and 2M, = 0. When writing these equations, it is not
necessary to include the work done by the internal forces acting within
the body since a rigid body does not deform when subjected to an
external loading, and furthermore, when the body moves through a
virtual displacement, the internal forces occur in equal but opposite
collinear pairs, so that the corresponding work done by each pair of
forces will cancel.

To demonstrate an application, consider the simply supported beam in
Fig. 11-4a. When the beam is given a virtual rotation 66 about point B,
Fig. 11-4b, the only forces that do work are P and A,. Since dy = 180
and &y’ = (I/2) 660, the virtual work equation for this case is
U = Ay(166) — P(1/2) 80 = (A,l — PI/2) 80 = 0. Since 80 # 0, then
A, = P/2. Excluding &6, notice that the terms in parentheses actually
represent the application of XMz = 0.

As seen from the above two examples, no added advantage is gained
by solving particle and rigid-body equilibrium problems using the
principle of virtual work. This is because for each application of the
virtual-work equation, the virtual displacement, common to every term,
factors out, leaving an equation that could have been obtained in a more
direct manner by simply applying an equation of equilibrium.

i

(b)
Fig. 11-4
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11.3 Principle of Virtual Work for a
System of Connected Rigid Bodies

The method of virtual work is particularly effective for solving equilibrium
problems that involve a system of several connected rigid bodies, such as
the ones shown in Fig. 11-5.

Each of these systems is said to have only one degree of freedom since
the arrangement of the links can be completely specified using only one
coordinate 6. In other words, with this single coordinate and the length of
the members, we can locate the position of the forces F and P.

In this text, we will only consider the application of the principle of
virtual work to systems containing one degree of freedom.* Because
they are less complicated, they will serve as a way to approach the
solution of more complex problems involving systems with many degrees
of freedom. The procedure for solving problems involving a system of
frictionless connected rigid bodies follows.

Important Points

¢ A force does work when it moves through a displacement in the
direction of the force. A couple moment does work when it moves
through a collinear rotation. Specifically, positive work is done
when the force or couple moment and its displacement have the
same sense of direction.

¢ The principle of virtual work is generally used to determine the
equilibrium configuration for a system of multiple connected
members.

¢ A virtual displacement is imaginary;i.e., it does not really happen.
It is a differential displacement that is given in the positive
direction of a position coordinate.

¢ Forces or couple moments that do not virtually displace do no
virtual work.

*This method of applying the principle of virtual work is sometimes called the method
of virtual displacements because a virtual displacement is applied, resulting in the calculation
of a real force. Although it is not used here, we can also apply the principle of virtual work
as a method of virtual forces. This method is often used to apply a virtual force and then
determine the displacements of points on deformable bodies. See R. C. Hibbeler, Mechanics
of Materials, 8th edition, Pearson/Prentice Hall, 2011.

This scissors lift has one degree of
freedom. Without the need for
dismembering the mechanism, the
force in the hydraulic cylinder AB
required to provide the lift can be
determined directly by using the
principle of virtual work. (© Russell
C. Hibbeler)
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Free-Body Diagram.

® Draw the free-body diagram of the entire system of connected

bodies and define the coordinate q.

® Sketch the “deflected position” of the system on the free-

body diagram when the system undergoes a positive virtual
displacement &q.

Virtual Displacements.

® Indicate position coordinates s, each measured from a fixed point

on the free-body diagram. These coordinates are directed to the
forces that do work.

Each of these coordinate axes should be parallel to the line of
action of the force to which it is directed, so that the virtual work
along the coordinate axis can be calculated.

Relate each of the position coordinates s to the coordinate g;
then differentiate these expressions in order to express each
virtual displacement 8s in terms of dq.

Virtual-Work Equation.

® Write the virtual-work equation for the system assuming that,

whether possible or not, each position coordinate s undergoes a
positive virtual displacement 6s. If a force or couple moment is in
the same direction as the positive virtual displacement, the work
is positive. Otherwise, it is negative.

Express the work of each force and couple moment in the
equation in terms of dq.

Factor out this common displacement from all the terms, and
solve for the unknown force, couple moment, or equilibrium
position q.
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EXAMPLE | 11.1

Determine the angle 6 for equilibrium of the two-member linkage

B p_
shown in Fig. 11-6a. Each member has a mass of 10 kg. e . g =N
SOLUTION : C

1m - 1m
Free-Body Diagram. The system has only one degree of freedom \/ V

since the location of both links can be specified by the single coordinate,
(g = ) 0. As shown on the free-body diagram in Fig. 11-6 b, when 6 has
a positive (clockwise) virtual rotation 86, only the force F and the two

98.1-N weights do work. (The reactive forces D, and D, are fixed, and Xp 5 P e oSN
a Yom 0 g xp| L=

B, does not displace along its line of action.) D p /R{ 5 /‘

Virtual Displacements. If the origin of coordinates is established at Si,)w Al Toy

the fixed pin support D, then the position of F and W can be specified D, '\W B,
by the position coordinates xg and y,,. In order to determine the work, Y & Y
note that, as required, these coordinates are parallel to the lines of

W=981N W=0981N

action of their associated forces. Expressing these position coordinates (b)

in terms of 6 and taking the derivatives yields Fig. 11-6
xp=2(lcosf)m bxzg = —2sinf 60 m (1)
Yy = 5(1sin@)m 8y, = 0.5cos 650 m 2)

It is seen by the signs of these equations, and indicated in Fig. 11-6b, that
an increase in 6 (i.e., 60) causes a decrease in xz and an increase in y,,..

Virtual-Work Equation. If the virtual displacements 8xz and 8y,
were both positive, then the forces W and F would do positive work
since the forces and their corresponding displacements would have the
same sense. Hence, the virtual-work equation for the displacement 66 is

oU = 0; W dy,, + Woy, + Féxzg =0 3)

Substituting Eqgs. 1 and 2 into Eq. 3 in order to relate the virtual
displacements to the common virtual displacement 66 yields

98.1(0.5 cos 0 80) + 98.1(0.5 cos 0 80) + 25(—2 sin 6 80) = 0

Notice that the “negative work” done by F (force in the opposite sense
to displacement) has actually been accounted for in the above
equation by the “negative sign” of Eq. 1. Factoring out the common
displacement 86 and solving for 6, noting that 66 # 0, yields

(98.1cos§ — 50sin ) 660 = 0

98.1
0 = tan_lﬁ = 63.0° Ans.

NOTE: If this problem had been solved using the equations of equilibrium,
it would be necessary to dismember the links and apply three scalar
equations to each link. The principle of virtual work, by means of calculus,
has eliminated this task so that the answer is obtained directly.
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EXAMPLE | 11.2

Determine the required force P in Fig. 11-7a needed to maintain
equilibrium of the scissors linkage when 6 = 60°. The spring is
unstretched when 6 = 30°. Neglect the mass of the links.

SOLUTION

Free-Body Diagram. Only F, and P do work when 6 undergoes a
positive virtual displacement 66, Fig. 11-7b. For the arbitrary position 6,
the spring is stretched (0.3 m) sin & — (0.3 m) sin 30°, so that

F, = ks = 5000 N/m [(0.3 m) sin # — (0.3 m) sin 30°]
T = (1500 sin® — 750) N

@) Virtual Displacements. The position coordinates, xz and xp,
measured from the fixed point A, are used to locate F, and P. These
coordinates are parallel to the line of action of their corresponding
forces. Expressing xp and xj in terms of the angle 6 using trigonometry,

xg = (0.3 m) sin 0

xp = 3[(0.3 m) sin 8] = (0.9 m) sin 6

Differentiating, we obtain the virtual displacements of points B and D.

Sxg = 0.3 cos 0 66 (1)
Sxp = 0.9 cos 6 860 (2)

Virtual-Work Equation. Force P does positive work since it acts in
(b) the positive sense of its virtual displacement. The spring force F, does
negative work since it acts opposite to its positive virtual displacement.
Thus, the virtual-work equation becomes

S8U = 0; —F,8xz + Péxp, = 0
—[1500 sin & — 750] (0.3 cos 68 60) + P (0.9 cos 6 66) = 0
[0.9P + 225 — 450 sin 0] cos 8 60 = 0O

Since cos 6 66 # 0, then this equation requires
P = 500sin6 — 250
When 6 = 60°,

P = 500sin 60° — 250 = 183N Ans.
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EXAMPLE | 11.3

If the box in Fig. 11-8a has a mass of 10 kg, determine the couple
moment M needed to maintain equilibrium when 6 = 60°. Neglect the
mass of the members.

10(9.81) N

oyg

(@)

SOLUTION Fig. 11-8

Free-Body Diagram. When 6 undergoes a positive virtual
displacement 60, only the couple moment M and the weight of the box
do work, Fig. 11-8b.

Virtual Displacements. The position coordinate yz, measured from
the fixed point B,locates the weight, 10(9.81) N. Here,

vg = (045 m)sin6 + b
where b is a constant distance. Differentiating this equation, we obtain
8yr = 0.45 mcos 6 66 (1)

Virtual-Work Equation. The virtual-work equation becomes

oU = 0; M 66 — [10(9.81) N1y = 0
Substituting Eq. 1 into this equation

M 66 — 10(9.81) N(0.45 m cos 6 66) = 0
06(M — 44.145cos 0) = 0

Since 60 # 0, then
M — 44.145cos 0 = 0

Since it is required that # = 60°, then

M = 44.145 cos 60° = 22.1 N*-m Ans.

(b)
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EXAMPLE | 11.4

The mechanism in Fig. 11-9a supports the 50-1b cylinder. Determine
the angle 0 for equilibrium if the spring has an unstretched length of
2 ft when 6 = 0°. Neglect the mass of the members.

SOLUTION

Free-Body Diagram. When the mechanism undergoes a positive
virtual displacement 66, Fig. 11-9b, only F, and the 50-1b force do work.
Since the final length of the spring is 2(1 ft cos ), then

F, = ks = (200 Ib/ft)(2 ft — 2 ft cos ) = (400 — 400 cos 6) Ib

Virtual Displacements. The position coordinates x, and x; are
established from the fixed point A to locate F; at D and at E.
The coordinate yg, also measured from A, specifies the position of the
50-1b force at B. The coordinates can be expressed in terms of 6 using
trigonometry.

xp = (1 ft) cos 6
xg = 3[(1 ft) cos 8] = (3 ft) cos O
yg = (2ft) sin 0

Differentiating, we obtain the virtual displacements of points D, E,
and B as

oxp = —1sin 6 66 (1)
oxp = —3sin 6 66 2)
dyp = 2 cos 6 60 3)

Virtual-Work Equation. The virtual-work equation is written as if
all virtual displacements are positive, thus

8U:O, F36XE+505yB_F56xD:0
(400 — 400 cos 0)(—3 sin 6 60) + 50(2 cos 6 60)
— (400 — 400 cos 0)(—1 sin 6 66) = 0

06(800 sin 6 cos ® — 800 sin & + 100 cos §) = 0
Since 66 # 0, then

800 sin § cos @ — 800sin 6 + 100 cos 6 = 0
Solving by trial and error,

0 = 34.9° Ans.
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. FUNDAMENTAL PROBLEMS

F11-1. Determine the required magnitude of force P to
maintain equilibrium of the linkage at 6 = 60°. Each link
has a mass of 20 kg.

F11-4. The linkage is subjected to a force of P = 6 kN.
Determine the angle 6 for equilibrium. The spring is
unstretched at & = 60°. Neglect the mass of the links.

Y

Prob. F11-1

Prob. F11-4

F11-2. Determine the magnitude of force P required to . L
hold the 50-kg smooth rod in equilibrium at 8 = 60°. Fll'—.S. .Determlne ‘the. angle 6 where the 50-kg bar is in
equilibrium. The spring is unstretched at 6 = 60°.

B
Sm
0 P
A
Prob. F11-2 Prob. F11-5
F11-3. The linkage is subjected to a force of P = 2kN. F11-6. The scissors linkage is subjected to a force of
Determine the angle 6 for equilibrium. The spring is P = 150 N. Determine the angle 6 for equilibrium. The
unstretched when § = 0°. Neglect the mass of the links.

spring is unstretched at 6 = 0°. Neglect the mass of the links.

Prob. F11-3 Prob. F11-6
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“leropews

11-1. Use the method of virtual work to determine the
tension in cable AC. The lamp weighs 10 1b.

Prob. 11-1

11-2. The scissors jack supports a load P. Determine the
axial force in the screw necessary for equilibrium when the
jack is in the position 6. Each of the four links has a length
L and is pin connected at its center. Points B and D can
move horizontally.

2 B
G%Wﬂn - omm

QO

Prob. 11-2

11-3. If a force of P = 51b is applied to the handle of the
mechanism, determine the force the screw exerts on the cork
of the bottle. The screw is attached to the pin at A and passes
through the collar that is attached to the bottle neck at B.

Prob. 11-3

*11-4. The disk has a weight of 10 Ib and is subjected to a
vertical force P = 81b and a couple moment M = 81b-ft.
Determine the disk’s rotation 6 if the end of the spring
wraps around the periphery of the disk as the disk turns.
The spring is originally unstretched.

M =81b-ft

k= 121b/it

P=381Ib

Prob. 114
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11-5. The punch press consists of the ram R, connecting
rod AB, and a flywheel. If a torque of M = 75N-+m is
applied to the flywheel, determine the force F applied at the
ram to hold the rod in the position # = 60°.

11-6. The flywheel is subjected to a torque of
M = 75N -m. Determine the horizontal compressive force
F and plot the result of F (ordinate) versus the equilibrium
position 6 (abscissa) for 0° = § = 180°.

Probs. 11-5/6

11-7. When 6 = 20°, the 50-1b uniform block compresses
the two vertical springs 4 in. If the uniform links AB and CD
each weigh 10 Ib, determine the magnitude of the applied
couple moments M needed to maintain equilibrium when
0 = 20°.

O 00000000 O

Prob. 11-7

*11-8. The bar is supported by the spring and smooth
collar that allows the spring to be always perpendicular to
the bar for any angle 6. If the unstretched length of the
spring is /y, determine the force P needed to hold the bar in
the equilibrium position 6. Neglect the weight of the bar.

Prob. 11-8

11-9. The 4-ft members of the mechanism are pin
connected at their centers. If vertical forces P, = P, = 30 1b
act at C and E as shown, determine the angle 6 for
equilibrium. The spring is unstretched when 6 = 45°
Neglect the weight of the members.

Prob. 11-9



594 CHAPTER 11 VIRTUAL WORK

11-10. The thin rod of weight W rests against the smooth
wall and floor. Determine the magnitude of force P needed
to hold it in equilibrium for a given angle 6.

Prob. 11-10

11-11. If each of the three links of the mechanism have a
mass of 4 kg, determine the angle 6 for equilibrium. The
spring, which always remains vertical, is unstretched
when 6 = 0°.

200 mm

0
200 mm o C

Prob. 11-11

*11-12. The disk is subjected to a couple moment M.
Determine the disk’s rotation 6 required for equilibrium.
The end of the spring wraps around the periphery of the
disk as the disk turns. The spring is originally unstretched.

k =4kN/m

Prob. 11-12

11-13. A 5-kg uniform serving table is supported on each
side by pairs of two identical links, AB and CD, and
springs CE. If the bowl has a mass of 1 kg, determine the
angle 6 where the table is in equilibrium. The springs each
have a stiffness of k = 200N/m and are unstretched when
0 = 90°. Neglect the mass of the links.

11-14. A 5-kg uniform serving table is supported on each
side by two pairs of identical links, AB and CD, and
springs CE. If the bowl has a mass of 1kg and is in
equilibrium when 6§ = 45°, determine the stiffness k of each
spring. The springs are unstretched when 6 = 90°. Neglect
the mass of the links.

L 250mm 150 mm,

 150mm

Probs. 11-13/14
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11-15. The service window at a fast-food restaurant
consists of glass doors that open and close automatically
using a motor which supplies a torque M to each door. The
far ends, A and B, move along the horizontal guides. If a
food tray becomes stuck between the doors as shown,
determine the horizontal force the doors exert on the tray
at the position 6.

Prob. 11-15

*11-16. The members of the mechanism are pin connected.
If a vertical force of 800 N acts at A, determine the angle 6
for equilibrium. The spring is unstretched when 6 = 0°
Neglect the mass of the links.

800 N

Prob. 11-16

11-17.  When 6 = 30°, the 25-kg uniform block compresses
the two horizontal springs 100 mm. Determine the
magnitude of the applied couple moments M needed to
maintain equilibrium. Take k¥ = 3kN/m and neglect the
mass of the links.

Q00009

Prob. 11-17

11-18. The “Nuremberg scissors” is subjected to a
horizontal force of P = 600 N. Determine the angle 6 for
equilibrium. The spring has a stiffness of k = 15kN/m and
is unstretched when 6 = 15°.

11-19. The “Nuremberg scissors” is subjected to a
horizontal force of P = 600 N. Determine the stiffness k of
the spring for equilibrium when 6 = 60°. The spring is
unstretched when 6 = 15°.

Probs. 11-18/19
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*11-20. The crankshaft is subjected to a torque of
M = 50 N - m. Determine the horizontal compressive force F
applied to the piston for equilibrium when 6§ = 60°.

11-21. The crankshaft is subjected to a torque of
M = 50 N - m. Determine the horizontal compressive force F
and plot the result of F (ordinate) versus 6 (abscissa) for
0° =6 =90°.

Probs. 11-20/21

11-22. 'The spring is unstretched when § = 0°.If P = 8 1b,
determine the angle 6 for equilibrium. Due to the roller
guide, the spring always remains vertical. Neglect the weight
of the links.

B k = 50 1b /ft

2 ft

2 ft

)

Prob. 11-22

11-23. Determine the weight of block G required to
balance the differential lever when the 20-1b load F'is placed
on the pan. The lever is in balance when the load and block
are not on the lever. Take x = 12 in.

*11-24. If the load F weighs 20 1b and the block G weighs
2 Ib, determine its position x for equilibrium of the
differential lever. The lever is in balance when the load and
block are not on the lever.

T in-din x ‘
\ C G

Probs. 11-23/24

11-25. The dumpster has a weight W and a center of
gravity at G. Determine the force in the hydraulic cylinder
needed to hold it in the general position 6.

Prob. 11-25



*11.4 Conservative Forces

When a force does work that depends only upon the initial and final
positions of the force, and it is independent of the path it travels, then the
force is referred to as a conservative force. The weight of a body and the
force of a spring are two examples of conservative forces.

Weight. Consider a block of weight W that travels along the path in
Fig. 11-10a. When it is displaced up the path by an amount dr, then the
work is dU = W-dr or dU = —W(drcos §) = —Wdy, as shown in
Fig. 11-10b. In this case, the work is negative since W acts in the opposite
sense of dy. Thus, if the block moves from A to B, through the vertical
displacement £, the work is

h
UZ—/WdyZ—Wh
0

The weight of a body is therefore a conservative force, since the work
done by the weight depends only on the vertical displacement of the
body, and is independent of the path along which the body travels.

Spring Force. Now consider the linearly elastic spring in Fig. 11-11,
which undergoes a displacement ds. The work done by the spring force
on the block is dU = —F;ds = —ks ds. The work is negative because
F, acts in the opposite sense to that of ds. Thus, the work of F; when the
block is displaced from s = s, to s = s, is

52
U= —/ ksds = —<éks% - ;kﬁ)

Here the work depends only on the spring’s initial and final positions,
s; and s,, measured from the spring’s unstretched position. Since this
result is independent of the path taken by the block as it moves, then a
spring force is also a conservative force.

A A A
v v
F,

E.

Undeformed
position

Fig. 11-11

11.4 CONSERVATIVE FORCES
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0
dy = dr cos 6 ; dr

(b)
Fig. 11-10
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Friction. 1In contrast to a conservative force, consider the force of
friction exerted on a sliding body by a fixed surface. The work done by
the frictional force depends on the path; the longer the path, the greater
the work. Consequently, frictional forces are nonconservative, and most
of the work done by them is dissipated from the body in the form of heat.

*11.5 Potential Energy

A conservative force can give the body the capacity to do work. This capacity,
measured as potential energy, depends on the location or “position” of the
body measured relative to a fixed reference position or datum.

Gravitational Potential Energy. 1If a body is located a distance
y above a fixed horizontal reference or datum as in Fig. 11-12, the weight
of the body has positive gravitational potential energy V, since W has the
capacity of doing positive work when the body is moved back down to
the datum. Likewise, if the body is located a distance y below the datum,
V, is negative since the weight does negative work when the body is
moved back up to the datum. At the datum, V, = 0.

Measuring y as positive upward, the gravitational potential energy of
the body’s weight W is therefore

V, = Wy (11-4)

Elastic Potential Energy. When a spring is either elongated or
compressed by an amount s from its unstretched position (the datum),
the energy stored in the spring is called elastic potential energy. It is
determined from

(11-5)

This energy is always a positive quantity since the spring force acting on
the attached body does positive work on the body as the force returns the
body to the spring’s unstretched position, Fig. 11-13.

Undeformed Undeformed
position position
s N
A A £
AANAAQ
s

_ 1 2
Vc— +7kS

Fig. 11-13



Potential Function. 1In the general case, if a body is subjected to
both gravitational and elastic forces, the potential energy or potential
function V of the body can be expressed as the algebraic sum

V=V, +V, (11-6)

where measurement of V depends on the location of the body with
respect to a selected datum in accordance with Egs. 11-4 and 11-5.

In particular, if a system of frictionless connected rigid bodies has a
single degree of freedom, such that its vertical distance from the datum is
defined by the coordinate g, then the potential function for the system
can be expressed as V = V(g). The work done by all the weight and
spring forces acting on the system in moving it from ¢, to ¢, is measured
by the difference in V;i.e.,

Ui, = V(g — V(g (11-7)

For example, the potential function for a system consisting of a block of
weight W supported by a spring, as in Fig. 11-14, can be expressed in
terms of the coordinate (¢ = ) y, measured from a fixed datum located at
the unstretched length of the spring. Here

14

V, +V,

~Wy + 3ky? (11-8)

If the block moves from y; to y,, then applying Eq. 11-7 the work of
W and F; is

Uiy = V(y) — V(yo) = —=W(y; — y2) + sky} — 3k}

(a)
Fig. 11-14

11.5 POTENTIAL ENERGY
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The counterweight at A balances the
weight of the deck B of this simple lift
bridge. By applying the method of potential
energy we can analyze the equilibrium

state of the bridge. (© Russell C. Hibbeler)

Datum
Y1
Y2 "

J

k

(a)

T

Fs = kyeq

(b)
Fig. 11-14 (cont’d)

*11.6 Potential-Energy Criterion for
Equilibrium
If a frictionless connected system has one degree of freedom, and its

position is defined by the coordinate g, then if it displaces from g to
q + dq, Eq.11-7 becomes

dU = V(g) — V(g + dq)
or
dUu = —dv

If the system is in equilibrium and undergoes a virtual displacement dq,
rather than an actual displacement dg, then the above equation becomes
oU = —8V. However, the principle of virtual work requires that U = 0,
and therefore, 8V = 0, and so we can write 6V = (dV /dg)6q = 0. Since
6q # 0, this expression becomes

@ _

=0 11-
i (11-9)

Hence, when a frictionless connected system of rigid bodies is in
equilibrium, the first derivative of its potential function is zero. For
example, using Eq. 11-8 we can determine the equilibrium position for
the spring and block in Fig. 11-14a. We have

dv

=-W+ky=0
dy Y

Hence, the equilibrium position y = y, is

w
yeq_I

Of course, this same result can be obtained by applying XF, = 0 to the
forces acting on the free-body diagram of the block, Fig. 11-14b.
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*11.7 Stability of Equilibrium
Configuration

The potential function V of a system can also be used to investigate the
stability of the equilibrium configuration, which is classified as stable,
neutral, or unstable.

Stable Equilibrium. A system is said to be in stable equilibrium if
a system has a tendency to return to its original position when a small
displacement is given to the system. The potential energy of the system in
this case is at its minimum. A simple example is shown in Fig. 11-15a.
When the disk is given a small displacement, its center of gravity G will
always move (rotate) back to its equilibrium position, which is at the
lowest point of its path. This is where the potential energy of the disk is at
its minimum.

Neutral Equilibrium. A system s said to be in neutral equilibrium
if the system still remains in equilibrium when the system is given a small
displacement away from its original position. In this case, the potential
energy of the system is constant. Neutral equilibrium is shown in
Fig. 11-15b, where a disk is pinned at G. Each time the disk is rotated, a
new equilibrium position is established and the potential energy remains
unchanged.

Unstable Equilibrium. A system is said to be in unstable
equilibrium if it has a tendency to be displaced farther away from its
original equilibrium position when it is given a small displacement. The
potential energy of the system in this case is a maximum. An unstable
equilibrium position of the disk is shown in Fig. 11-15¢. Here the disk will
rotate away from its equilibrium position when its center of gravity is
slightly displaced. At this highest point,its potential energy is at a maximum.

One-Degree-of-Freedom System. If a system has only one
degree of freedom, and its position is defined by the coordinate g, then the
potential function V for the system in terms of g can be plotted, Fig. 11-16.

)
SR
{oF
Stable equilibrium Neutral equilibrium Unstable equilibrium
(a) (b) (©)

Fig. 11-15

During high winds and when going
around a curve, these sugar-cane
trucks can become unstable and tip
over since their center of gravity is
high off the road when they are fully
loaded. (© Russell C. Hibbeler)
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V
d*v
\dqz >O/
v _
-
q
Geq
Stable equilibrium
(a)
Vv
d’v
=—<0
dq’ av _,
/ \ dgq
q
qeq
Unstable equilibrium
(b)
Vv
av
a0
v _,
dgq
q
deq

Neutral equilibrium
(©
Fig. 11-16

Provided the system is in equilibrium, then dV /dg, which represents the
slope of this function, must be equal to zero. An investigation of stability
at the equilibrium configuration therefore requires that the second
derivative of the potential function be evaluated.

If &*V /dq” is greater than zero, Fig. 11-16a, the potential energy of the
system will be a minimum.This indicates that the equilibrium configuration
is stable. Thus,

2
v _ 0, di‘; >0 stable equilibrium (11-10)
dq dq

If d°V /dq? is less than zero, Fig. 11-16b, the potential energy of the
system will be a maximum. This indicates an unstable equilibrium
configuration. Thus,

2
v _ 0, di‘: <0 unstable equilibrium (11-11)
dq dq

Finally, if 4>V /dq? is equal to zero, it will be necessary to investigate the
higher order derivatives to determine the stability. The equilibrium
configuration will be stable if the first non-zero derivative is of an even
order and it is positive. Likewise, the equilibrium will be unstable if this
first non-zero derivative is odd or if it is even and negative. If all the higher
order derivatives are zero, the system is said to be in neutral equilibrium,
Fig. 11-16¢. Thus,

av._d*V 4V
= == =0 neutral equilibrium (11-12)
dg  dq dgq

This condition occurs only if the potential-energy function for the
system is constant at or around the neighborhood of g.

Important Points

¢ A conservative force does work that is independent of the path
through which the force moves. Examples include the weight and
the spring force.

¢ Potential energy provides the body with the capacity to do work
when the body moves relative to a fixed position or datum.
Gravitational potential energy can be positive when the body is
above a datum, and negative when the body is below the datum.
Spring or elastic potential energy is always positive. It depends
upon the stretch or compression of the spring.

¢ The sum of these two forms of potential energy represents the
potential function. Equilibrium requires that the first derivative
of the potential function be equal to zero. Stability at the
equilibrium position is determined from the second derivative of
the potential function.
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Using potential-energy methods, the equilibrium positions and the
stability of a body or a system of connected bodies having a single
degree of freedom can be obtained by applying the following
procedure.

Potential Function.

® Sketch the system so that it is in the arbitrary position specified
by the coordinate g.

® Establish a horizontal datum through a fixed point* and express
the gravitational potential energy V, in terms of the weight W of
each member and its vertical distance y from the datum, V, = Wy.

® Express the elastic potential energy V, of the system in terms of
the stretch or compression, s, of any connecting spring, V, = ks>,

¢ Formulate the potential function V = V, + V, and express the
position coordinates y and s in terms of the single coordinate q.

Equilibrium Position.

® The equilibrium position of the system is determined by taking
the first derivative of V and setting it equal to zero, dV/dg = 0.

Stability.
¢ Stability at the equilibrium position is determined by evaluating
the second or higher-order derivatives of V.

¢ If the second derivative is greater than zero, the system is stable;
if all derivatives are equal to zero, the system is in neutral
equilibrium; and if the second derivative is less than zero, the
system is unstable.

*The location of the datum is arbitrary, since only the changes or differentials
of V are required for investigation of the equilibrium position and its stability.
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The uniform link shown in Fig. 11-17a has a mass of 10 kg. If the spring
is unstretched when § = 0°, determine the angle 6 for equilibrium and
investigate the stability at the equilibrium position.

SOLUTION

Potential Function. The datum is established at the bottom of the
link, Fig. 11-17b. When the link is located in the arbitrary position 6,
the spring increases its potential energy by stretching and the weight
decreases its potential energy. Hence,

1
VZVe-f—Vg:EksvaWy
Sincel = s + [cosfors = (1 — cos f),and y = (I/2) cos 0, then

1, ) [
VZEkl(l—cose) + W Ecosﬂ

Equilibrium Position. The first derivative of V is
av

14!
i k(1 — cos 0)sin @ — 75in0 =0

(a)

w
l{kl(l — cos ) — 2} sinf = 0

This equation is satisfied provided
sinf = 0 0=0° Ans.

|

or

. % . 10(9.81)
6 =cos (1 - —]= 1[1—}=53.8° Ans.
cos ( 2kl> cos 2(200)(0.6) "

Stability. The second derivative of V' is

v Wi
Datum —— = kI’(1 — cos 6) cos 0 + kI*sin @ sin @ — ——cos 6
do 2
Wi
®) = ki*(cos 8 — cos 20) — —cos 0
Fig. 11-17 o 2 . _

Substituting values for the constants, with § = 0°and 6 = 53.8°, yields

v 10(9.81)(0.6

—| = 200(0.6)*(cos 0° — cos 0°) — 1005DOO) s ¢

do- |e=0°

= -294<0 (unstable equilibrium at § = 0°) Ans.

v 10(9.81)(0.6
— = 200(0.6)*(cos 53.8° — cos 107.6°) — wcos 53.8°
do- |o=538° 2

=469 >0 (stable equilibrium at § = 53.8°) Ans.
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If the spring AD in Fig. 11-18a has a stiffness of 18 kKN /m and is unstretched
when # = 60°, determine the angle 6 for equilibrium. The load has a
mass of 1.5 Mg. Investigate the stability at the equilibrium position.

SOLUTION

Potential Energy. The gravitational potential energy for the load
with respect to the fixed datum, shown in Fig. 11-18b, is

V, = mgy = 1500(9.81) N[(4 m) sin & + h] = 58 860 sin 0 + 14 715h

where £ is a constant distance. From the geometry of the system, the
elongation of the spring when the load is on the platform is
s = (@m)cosd — (4m)cos60° = (4dm)cosd — 2m.

Thus, the elastic potential energy of the system is

V, = Tks*> = 3(18 000 N/m)(4 m cos § — 2 m)> = 9000(4 cos § — 2)?

The potential energy function for the system is therefore

V=V, +V,=58860sin0 + 14 715h + 9000(4 cos 6 — 2)* (1)

Equilibrium. When the system is in equilibrium,

av
g~ 58860 cos 6 + 18 000(4 cos § — 2)(~4sin 6) = 0

58 860 cos 8 — 288 000 sin 6 cos 8 + 144 000 sin & = 0
Since sin 260 = 2 sin 0 cos 0,

58 860 cos & — 144 000 sin 20 + 144 000sin§ = 0

Solving by trial and error,

0 = 28.18°and 6 = 45.51° Ans.

Stability. Taking the second derivative of Eq. 1,

v (b)

—— = —58 860 sin § — 288 000 cos 26 + 144 000 cos ¢

do Fig. 11-18
Substituting 6 = 28.18° yields

%

ﬁ = —-60402 <0 Unstable Ans.

And for 6 = 45.51°,

v
o 64073 > 0 Stable Ans.
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((R + g ) cos @
(b)
Fig. 11-19

The uniform block having a mass m rests on the top surface of the half
cylinder, Fig. 11-19a. Show that this is a condition of unstable
equilibrium if 2 > 2R.

SOLUTION

Potential Function. The datum is established at the base of the
cylinder, Fig. 11-19b. If the block is displaced by an amount 6 from the
equilibrium position, the potential function is

V=V, +V,
=0+ mgy

From Fig. 11-195,

h
y = (R +2>cos0+R03in0

Thus,

h
V= mg[(R + 2) cos @ + RO sinO]

Equilibrium Position.

av _ [-(R +h>sin0+Rsin0+R000s0} =0
a0 "8 2

h
= mg(—zsin() + RO cos 0) =0
Note that & = (° satisfies this equation.
Stability. Taking the second derivative of V yields

&V h .
W:mg —Ecosé)-i-RcosH—Rf)smB
Ato = 0°,

&y
d6?

(3-#)
= —m —_——
6=0° § 2

Since all the constants are positive, the block is in unstable equilibrium
provided & > 2R, because then @’V /d6* < 0.



11-26. The potential energy of a one-degree-of-freedom
system is defined by V = (20x* — 10x> — 25x — 10) ft-Ib,
where x is in ft. Determine the equilibrium positions and
investigate the stability for each position.

11-27. 1If the potential function for a conservative one-
degree-of-freedom system is V =(12sin260+15cos6)],
where 0° < 6 < 180°, determine the positions for equilibrium
and investigate the stability at each of these positions.

*11-28. If the potential function for a conservative one-
degree-of-freedom system is V = (8x° — 2x? — 10) 7,
where x is given in meters, determine the positions for
equilibrium and investigate the stability at each of these
positions.

11-29. 1If the potential function for a conservative one-
degree-of-freedom system is V = (10 cos 20 + 25sin6) J,
where 0° < 6 < 180°, determine the positions for equilibrium
and investigate the stability at each of these positions.

11-30. If the potential energy for a conservative one-
degree-of-freedom system is expressed by the relation
V = (4x® — x* — 3x + 10) ft- b, where x is given in feet,
determine the equilibrium positions and investigate the
stability at each position.

11-31. The uniform link AB, has a mass of 3 kg and is pin
connected at both of its ends. The rod BD, having negligible
weight, passes through a swivel block at C. If the spring has
a stiffness of k = 100N/m and is unstretched when 6 = 0°,
determine the angle 6 for equilibrium and investigate the
stability at the equilibrium position. Neglect the size of the
swivel block.

Prob. 11-31
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#*11-32. The spring of the scale has an unstretched length
of a. Determine the angle 6 for equilibrium when a
weight W is supported on the platform. Neglect the weight
of the members. What value W would be required to keep
the scale in neutral equilibrium when 6 = 0°?

Prob. 11-32

11-33. The uniform bar has a mass of 80 kg. Determine
the angle 6 for equilibrium and investigate the stability of
the bar when it is in this position. The spring has an
unstretched length when 6 = 90°.

k = 400 N/m

Prob. 11-33
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11-34. The uniform bar AD has a mass of 20 kg. If the *11-36. Determine the angle 6 for equilibrium and
attached spring is unstretched when 6 = 90°, determine the investigate the stability at this position. The bars each have
angle 6 for equilibrium. Note that the spring always remains a mass of 3 kg and the suspended block D has a mass of
in the vertical position due to the roller guide. Investigate 7 kg. Cord DC has a total length of 1 m.

the stability of the bar when it is in the equilibrium position.

500 mm

Prob. 11-36

Prob. 11-34
11-37. Determine the angle 6 for equilibrium and
11-35. The two bars each have a weight of 8 Ib. Determine investigate the stability at this position. The bars each have
the required stiffness k of the spring so that the two bars are a mass of 10 kg and the spring has an unstretched length of
in equilibrium when 6 = 30°. The spring has an unstretched 100 mm.

length of 1 ft.

500 mm

Prob. 11-35 Prob. 11-37



11-38. The two bars each have a mass of 8 kg. Determine
the required stiffness k of the spring so that the two bars are
in equilibrium when 6§ = 60°. The spring has an unstretched
length of 1 m. Investigate the stability of the system at the
equilibrium position.

Prob. 11-38

11-39. A spring with a torsional stiffness k is attached to
the hinge at B. It is unstretched when the rod assembly is in
the vertical position. Determine the weight W of the block
that results in neutral equilibrium. Hint: Establish the
potential energy function for a small angle 6, i.e.,
approximate sin @ ~ 0,and cos § =~ 1 — 6?/2.

L
2
L
2
1k
5@+
L
2

Prob. 11-39
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#11-40. A conical hole is drilled into the bottom of the
cylinder, which is supported on the fulcrum at A. Determine
the minimum distance d in order for it to remain in stable

equilibrium.

Prob. 11-40

11-41. The uniform rod has a mass of 100 kg. If the spring
is unstretched when 6 = 60°, determine the angle 6 for
equilibrium and investigate the stability at the equilibrium
position. The spring is always in the horizontal position due
to the roller guide at B.

Prob. 11-41



610 CHAPTER 11 VIRTUAL WORK

11-42. Each bar has a mass per length of m,. Determine the
angles 6 and ¢ at which they are suspended in equilibrium.
The contact at A is smooth, and both are pin connected at B.

Prob. 11-42

11-43. The truck has a mass of 20 Mg and a mass center
at G. Determine the steepest grade 6 along which it can
park without overturning and investigate the stability in this
position.

*11-44. The small postal scale consists of a counterweight
Wi, connected to the members having negligible weight.
Determine the weight W, that is on the pan in terms of the
angles 6 and ¢ and the dimensions shown. All members are
pin connected.

Prob. 11-44

11-45. A 3-1b weight is attached to the end of rod ABC. If
the rod is supported by a smooth slider block at C and
rod BD, determine the angle 0 for equilibrium. Neglect the
weight of the rods and the slider.

Prob. 11-43

Prob. 11-45



11-46. If the uniform rod OA has a mass of 12 kg,
determine the mass m that will hold the rod in equilibrium
when 6 = 30°. Point C is coincident with B when OA is
horizontal. Neglect the size of the pulley at B.

Prob. 11-46

11-47. The cylinder is made of two materials such that it
has a mass of m and a center of gravity at point G. Show
that when G lies above the centroid C of the cylinder, the
equilibrium is unstable.

a.Q
-

Prob. 11-47
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*11-48. The bent rod has a weight of 5 1b/ft. A pivot is
attached at its center A and the rod is balanced as shown.
Determine the length L of its vertical segments so that it
remains in neutral equilibrium. Neglect the thickness of
the rod.

‘ 8in. | 8in. |

-
}‘;

Prob. 11-48

11-49. The triangular block of weight W rests on the
smooth corners which are a distance a apart. If the block
has three equal sides of length d, determine the angle 6 for
equilibrium.

Prob. 11-49
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. CHAPTER REVIEW

Principle of Virtual Work

The forces on a body will do virtual 8y, 8y’ —virtual displacements P
work when the body undergoes an ) )

imaginary differential displacement or 80—virtual rotation

rotation.

For equilibrium, the sum of the virtual
work done by all the forces acting on the
body must be equal to zero for any virtual
displacement. This is referred to as the SU =0
principle of virtual work, and it is useful
for finding the equilibrium configuration
for a mechanism or a reactive force acting
on a series of connected members.

If the system of connected members has
one degree of freedom, then its position
can be specified by one independent
coordinate, such as 6.

To apply the principle of virtual work,
it is first necessary to use position
coordinates to locate all the forces and
moments on the mechanism that will do
work when the mechanism undergoes a
virtual movement 86.

The coordinates are related to the
independent coordinate 6 and then these
expressions are differentiated in order to
relate the virtual coordinate displacements
to the virtual displacement 6.

Finally, the equation of virtual work is
written for the mechanism in terms of
the common virtual displacement &6,
and then it is set equal to zero. By
factoring 60 out of the equation, it is
then possible to determine either the
unknown force or couple moment, or
the equilibrium position 6.
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Potential-Energy Criterion for Equilibrium

When a system is subjected only to con-
servative forces, such as weight and spring
forces, then the equilibrium configuration
can be determined using the potential-energy
function V for the system.

The potential-energy function is established
by expressing the weight and spring potential
energy for the system in terms of the
independent coordinate q.

Once the potential-energy function is
formulated, its first derivative is set equal
to zero. The solution yields the equilibrium
position ¢, for the system.

The stability of the system can be investigated
by taking the second derivative of V.

av
dg

av
dq

av
dq

av _
dgq
2
=0, d_V > ( stable equilibrium
dq2
2
=0, v < 0 unstable equilibrium
dq2
&PV PV

=——=——= ... =0 neutral equilibrium
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. REVIEW PROBLEMS

R11-1. The toggle joint is subjected to the load P.
Determine the compressive force Fit creates on the cylinder
at A as a function of 6.

R11-3. The punch press consists of the ram R, connecting
rod AB, and a flywheel. If a torque of M = 50N-m is
applied to the flywheel, determine the force F applied at the
ram to hold the rod in the position § = 60°.

Prob. R11-1

R11-2. The uniform links AB and BC each weigh 2 Ib and
the cylinder weighs 20 Ib. Determine the horizontal force P
required to hold the mechanism in the position when
0 = 45°. The spring has an unstretched length of 6 in.

Prob. R11-3

R11-4. The uniform bar AB weighs 10 Ib. If the attached
spring is unstretched when 6 = 90°, use the method of
virtual work and determine the angle 6 for equilibrium.
Note that the spring always remains in the vertical position
due to the roller guide.

Prob. R11-2

Prob. R11-4



R11-5. The spring has an unstretched length of 0.3 m.
Determine the angle 6 for equilibrium if the uniform links
each have a mass of 5 kg.

k = 400 N/m
A

Prob. R11-5

R11-6. Determine the angle 6 for equilibrium and
investigate the stability of the mechanism in this position.
The spring has a stiffness of k = 1.5kN/m and is unstretched
when 6 = 90°. The block A has a mass of 40 kg. Neglect the
mass of the links.

Prob. R11-6
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R11-7. The uniform bar AB weighs 100 Ib. If both springs
DE and BC are unstretched when 6 = 90°, determine the
angle 0 for equilibrium using the principle of potential
energy. Investigate the stability at the equilibrium position.
Both springs always act in the horizontal position because
of the roller guides at C and E.

Prob. R11-7

R11-8. The spring attached to the mechanism has an
unstretched length when # = 90°. Determine the position 6
for equilibrium and investigate the stability of the
mechanism at this position. Disk A is pin connected to the
frame at B and has a weight of 20 1b. Neglect the weight of
the bars.

Prob. R11-8



APPENDIX

Mathematical Review
and Expressions

Geometry and Trigonometry Review
The angles 6 in Fig. A-1 are equal between the transverse and two
parallel lines.

For a line and its normal, the angles 0 in Fig. A-2 are equal.

Fig. A-2
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For the circle in Fig. A-3, s = 6r, so that when 6 = 360° = 27 rad then
the circumference is s = 2wr. Also, since 180° = & rad, then
6 (rad) = (7/180°)6°. The area of the circle is A = 7r%.

Fig. A-3
A C
a c
The sides of a similar triangle can be obtained by proportion as in ) 2
. a_b _ ¢
Fig. A4, where; =3 Fig. A4
For the right triangle in Fig. A-5, the Pythagorean theorem is
h =Ny + @
The trigonometric functions are
) 0
sinf = —
h h (hypotenuse) o (opposite)
cos 6 = % y
a (adjacent)
tanf = — Fig. A-5

This is easily remembered as “soh, cah, toa’; i.e., the sine is the opposite
over the hypotenuse, etc. The other trigonometric functions follow

from this.
0 1
csc O = =
sin 6
1 h
sec = = —
cos 0 a
1
coth = = —
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Trigonometric Identities

sin @ + cos’ 6 = 1

sin(@ + ¢) = sinfcos¢p t cosOsin¢
sin 20 = 2 sin 6 cos 6

cos( £ ¢) = cosfcos¢p + sinfsin¢

cos 20 = cos® 0 — sin® 6

1 + cos26 . 1 — cos 20
cosh = = f,smﬂz_ f

+
+

1 + tan® 6 = sec’ 6 1 + cot>6 = csc? 6

Quadratic Formula

-b + V> — dac

Ifax> + bx + ¢ = 0, thenx =
2a

Hyperbolic Functions

X X
. et —e
sinhx = ——,
2
e +e”
coshx = ——,
2
sinh x
tanh x =

cosh x

Power-Series Expansions

x3 2

. X
sinx =x — -+ - ,cosx =1—_~+ -

3 2!

3 2

: — o - XL
sinhx = x + 3l + , cosh x 1+ o +

Derivatives

d _,du d . du

—@W" = n" — —(sinu) = cos u—

dx dx dx dx

L R D

I u udx I I cos u sin udx
du dv

d (u) dx dx d « ) , du
— — = — R n = —_—
I an u sec” u I

d (cot ) d (sinh 1) b du
—(co = —csc u— —(sin = cosh u—
dx " udx dx " udx

d d di
a(sec u) = tan u sec ué E(cosh u) = sinh ué

d (csc u) csc u cot du
— u) = —cscu u—
dx dx
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Integrals

xn+1
xtdx = +C,n # —1
n+1

S
a+ bx a x

b
a+ x\ —ab
a— xV —ab

ab <0

/ d L :|+C
= n s

a+ bx* N —ab

T o xdx 1

——— = —Inbx*+a) + C
/a+bx2 2b n(bx ?
/x2dx X a_ _lx\/a_b
= —— an
a+bx> b b\/a_b a

’ 2
/\/a+bxdx=3b\/(a+bx)3+C

+ C,ab >0

—2Qa — 3bx)\V(a + bx)*
/x\/a+bxdx= (2a x)2 (@ %) + C
15b
/xz\/a+bxdx=
28 — 12abx + 156x)V (a + bx)? e
1056°
1
/\/az—xzdx :E x\/az—x2+azsin_l§] + C,
a>0

/-x\/az—xzdx = —%\/(a2 -+ cC
[eVa == i@ =y

&
+§<x\/a2 - x? +azsin_1g) + C,a>0
/\/)c2 + Pdx =

;[x\/xz + &2+ azln(x + Va2 t az)} +C

jw
Q
N
+
a

o?

/)c\/x2 + dx =

1
3

/)cz\/)c2 + azdxzi\/(x2 + a%?

4

4
igx\/x2 iaz—%ln(x-i- VX2 + a2) +C

/ dx _2\/a+bx+c
Va+ bx b
x dx VT2
—=Vx *ta +C
Vit + &

dx 1 5
———— = ——In| Va + bx + cx* +
Va+ bx + x> Ve

xVe + b }+Cc>0
2Ve ’
1 __1(—2cx—b)+c <0

= sin”_ | —— ,C

V—cC Vb — dac

/ sinxdx = —cosx + C

/cosxdx =sinx + C

1
/ x cos(ax) dx = —cos(ax) + gsin(ax) + C
a

2.2

5 2x ax 2
x~ cos(ax) dx = —cos(ax) + ————
a a

1
/e‘”‘dxze“x-i-c
a

/xe’”dxze—z(ax— )+ C
a

/
/

sin(ax) + C

sinhxdx = coshx + C

coshxdx = sinhx + C
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Fundamental Problems

Partial Solutions And Answers

Chapter 2
F2-1.
Fre = V2 KN + (6 kN)> — 2(2 kN)(6 kN) cos 105°
= 6.798 kN = 6.80 kN
sing  sin 105°
6kN  6.798 kN’
0 = 45° + ¢ = 45° + 58.49° = 103°

¢ = 58.49°

Ans.

Ans.

Ans.

Ans.

Auns.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.
Ans.
Ans.
Ans.

Auns.

F2-2.  Fr = \V200% + 500% — 2(200)(500) cos 140°
= 666 N
F2-3.  Fr = V600> + 8007 — 2(600)(800) cos 60°
=721.11N = 72IN
sina sin60°; o = 73.90°
800  721.11
¢ = a — 30° = 73.90° — 30° = 43.9°
F, 30
F2-4. =———. F,=2201Ib
sin 45°  sin 105°° "
F 30
— = F,=1550Db
sin 30 sin 105
F2-5. =
sin 105° sin 30°
FAB = 869 lb
Fae 450
sin 45°  sin 30°
FAC = 636 lb
F 6
F2-6. — = — - F=311kN
sin 30 sin 105
F, 6
= F, = 439kN
sin 45°  sin 105° v
F2-7.  (F), =0 (F), = 300N
(F,), = —(450 N) cos 45° = —318 N
(F,), = (450 N) sin 45° = 318 N
(F3), = ()600N = 360 N
(F3), = (£)600N = 480 N
F2-8.  Fg, = 300 + 400 cos 30° — 250(%) = 446.4 N

Fgy = 400 sin 30° + 250(2) = 350N
Fr = V(446.4)* + 350° = 567N
0 = tan gy = 38.1°4

620

Ans.
Ans.

F2-9.

i>(FR))c = EF)C;
(Fp), = — (700 1b) cos 30° + 0 + (2) (600 Ib)

= —246.221b

+1(Fp)y = 3F;
(Fg), = —(700 Ib) sin 30° — 400 1b — (2) (600 1b)

= —12301b
Fr = V(24622 1b)2 + (1230 1b)? = 1254 1b Ans.
¢ = tan' (sig31) = 78.68°

6 = 180° + ¢ = 180° + 78.68° = 259° Ans.

F2-11.

F2-12.

F2-13.

:(FR)X =3F;
750N = Fcos 6 + (i5)(325N) + (600 N)cos 45°
+T(FR)_V = EFy;

0 = Fsin 6 + (12)(325N) — (600 N)sin 45°
tan@ = 0.6190 6 = 31.76° = 31.8°«

F =236N

Auns.
Ans.

S(Fp)y = XFy

(80 1b) cos 45° = Fcosf + 501b — (2)901b
+T(FR)_V = EFy;

—(80 1b) sin 45° = F'sin @ — (%)(90 Ib)

tan = 0.2547 6 = 14.29° = 14.3° <1 Ans.
F=6251b Ans.
(Fp, = 15(%) + 0+ 15(%) = 24kN—
(Fp), = 15(2) +20 — 15(2) = 20kN 1

Fr = 31.2kN Ans.

0 = 39.8° Ans.

F, = 75 cos 30° sin 45° = 45.93 Ib
Fy, = 75 cos 30° cos 45° = 45.93 1b
F, = —75sin30° = —37.51b
a = cosfl(%> = 52.2° Ans.
B = cosfl(%) = 52.2° Ans.
y = cos |(32) = 120° Ans.



F2-14.

F2-15.

F2-16.

F2-17.

F2-18.

F2-19.

F2-20.

F2-21.

cos B=V1 — cos? 120° — cos? 60° = £0.7071
Require B = 135°.
F = Fuy = (500 N)(—0.5i — 0.7071j + 0.5k)

= {—250i — 354j + 250k} N Ans.

cos’a + cos?135° + cos?120° = 1
a = 60°
F = Fuy = (500 N)(0.51 — 0.7071j — 0.5k)

= {250i — 354j — 250k} N Ans.
F. = (501b) sin 45° = 35.36 1b
F' = (501b) cos 45° = 35.36Ib
F, = (2)(35361b) = 2121 1b
Fy, = (%)(35.361b) = 28.28 Ib
F = {—21.2i + 283j + 354k} 1b Ans.
F, = (750 N) sin 45° = 530.33 N
F' = (750 N) cos 45° = 530.33 N
F, = (530.33 N) cos 60° = 2652 N
F, = (530.33 N) sin 60° = 459.3 N
F, = {265i—459j + 530k} N Ans.

F, = (2)(5001b) j + (2)(500 Ib)k
= {400j + 300k} 1b
F, = [(800 1b) cos 45°] cos 30° i
+ [(800 Ib) cos 45°] sin 30%
+ (800 Ib) sin 45° (—k)
= {489.90i + 282.84j — 565.69k } 1b
Fr,=F, + F, = {490i + 683j — 266k} Ib  Ans.

ry = {—6i + 6j + 3k} m Ans.
= V(—=6mP + (6mP + 3m>? =9m Ans.

a=132°, B =482°, y=705° Ans.
ryp = {—4i + 2j + 4k} ft Ans.

rmp= V(=41 + Q) + 4f)2 = 6ft  Ans.
a = cos () =131.8°
6 = 180° — 131.8° = 48.2° Ans.
ry = {2i+3j — 6k} m
Fup = Fapuyp

(630N) (3 + 3j — %K)

{180i + 270j — 540k } N Ans.

F2-22.

F2-23.

F2-24.

F2-25.

F2-26.

F2-27.

F2-28.
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F = Fu,z = 900N(—gi + &j — 3k)
= {—400i + 700j — 400k } N Ans
Fp = Fpup
= (840 N)(3i — % — %K)
= {360i — 240j — 720k } N
Fe = Feuc
= @20N)(3i + 3j — k)
= {120i + 180j — 360k } N
Fr = V(480 N)> + (—60 N)> + (—1080 N)
= 1.18 kN Ans.
Fp = Fpup
= (600 1b)( —3i + 3j — 3k)
= {—200i + 400j — 400k } 1b
Fe = Feuc

= (490 1b)(—%i + 3j — k)
= {—420i + 210j — 140k } Ib
Fp = Fy + Fo = {—620i + 610j — 540k } 1b Ans.

W0 = _;’i + %j - %k
ur = —0.5345i + 0.8018j + 0.2673k
0 = cos™! (uyp rup) = 57.7° Ans.
Uyp = _%j + %k
u =4 -3
6 = cos™! (u,p +up) = 68.9° Ans.
Ups = %i + %j
Upy*J = upa(l) cos 0
cosh =75 =674 Ans.
Ups = %i + %j
F = Fup = [650j] N
FOA = F'UOA = 250N
Foix = Foaupy = {231i + 96.2j} N Ans.
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{4i+1j-6k}m
V@dm? + (1m? + (—6m)
= {219.78i + 54.94j — 329.67k } N

{-4j—-6k}m
V(=4 m)* + (=6 my?
= —0.5547j — 0.8321k

F2-29. F = (400 N)

(F AO)proj

F2-30. F

[(—=600 Ib) cos 60°] sin 30° i

+ [(600 1b) cos 60°] cos 30° j

+ [(600 Ib) sin 60°] k

{—150i + 259.81j + 519.62k } Ib

u, = —3i +3j + 3k

(Fo)par = Fruy = 44641 1b = 446 1b Ans.

(Fi)per = V(600 1b)> — (446.41 1b)?

= 401 1b Ans.

F2-31. F =56NGi — & + 2k)
= {24i — 48j + 16k} N

(Fao)| = Frugo= (24i — 48j + 16k) - (3i — $j — 7k)

= 4686 N = 469N Ans.
(Fao) 1 = VP = (Fi0)) = V(56)% — (46.86)°
= 30.7N Ans.
Chapter 3
F3-1. 5 SF, = 0; 3Fyc — Fupc0s30° =0
+13F, = 0; 3F,¢ + Fypsin30° — 550 = 0
Fap = 478 1b Ans.
FAC = 5181b Ans.
F3-2. +13F, = 0; —2(1500) sin 6 + 700 = 0
6 = 13.5°
Lyse = 2(2hs) = 103 ft Ans.
F3-3. I3F.=0; Tcos® — Tcosh =0
¢ =0
+13F, = 0; 2Tsing — 49.05N =0
0 = tan | (G52) = 36.87°
T =409 N Ans.
F3-4. +/3F, = 0; %(F,) — 5(9.81)sin45° =
F, = 4335N
Fy, = k(I — ); 43.35 = 200(0.5 — I)
lp =0.283m Ans.

=F- Uy — 244 N Ans.

F3-5.

F3-6.

F3-17.

F3-8.

F3-9.

F3-10.

+13F, = 0; (3924 N)sin 30° — m,(9.81) = 0
my = 20kg Ans.
+13F, = 0; Tygsin15° — 109.81)N =0
T = 379.03N = 379N Ans.
HSF, =0; Tpe— 379.03Ncos 15° = 0
Tye = 366.11 N = 366 N Ans.

I3F, =0; Tepcosh —366.11N =0
+13F, = 0, Tepsinf — 159.81)N =0

TCD = 395N Ans.
0 = 21.9° Auns.
SF= 0 [(3)F](3) + 600N = F, =0 (1)
SF=0 (5)F - [(3)F]3) = )
SF.=0;, (2)F;+ (2)F, — 900N = (3)
F3; =776 N Ans.
F; = 466 N Ans.
F, =879N Ans.
SF, =0, Fup(3) —900=0
Fip = 1125N = 1.125kN Ans.
SF,=0; Fae(?) —1125(3) =0
Fyc = 84375N = 844N Ans.
SF,=0; Fu—84375(2) =0

Fap = 50625N = 506 N Ans.

Tap . .
Fip = FAD(T) = %FADI - %FAD.] + %FADk
AD

SF, = 0; 2Fup — 600 = 0
F,p = 900N Ans.
SF, = 0; Fppcos 30° — 5 (900) = 0
Fig = 692.82N = 693N Ans.
SF, =0 1(900) + 692.82sin 30° — F4c = 0

Fue = 64641N = 646N Ans.

Fuic = Fuc {—cos 60° sin 30°i
+ cos 60° cos 30° j + sin 60°k }
= —0.25F,ci + 0.4330F,cj + 0.8660F, k
F.p = Fyp{cos 120°i + cos 120°j + cos 45°k }
—0.5Fpi — 0.5F,pj + 0.7071F,p k

SF, =0; 04330F,c — 0.5F, =0

SF, = 0; 0.8660F, + 0.7071F,, — 300 = 0
Fap = 175.741b = 176 b Ans.
Fae = 202.921b = 203 1b Ans.

SF, = 0; Fu — 0.25202.92) — 0.5(175.74) = 0

Fup = 138.601b = 139 1b Ans.



r
F3-11. F, = FB(ﬁ)
'aB
[ {—6i + 3j + 2k} ft J
= FB
V(=6 + (3 f0? + (2 fr)?
= —SF4 + 2 Fgj + 2 Fgk
r
FC = Fc(ﬁ)
T'ac
[ {—6i — 2j + 3k} ft J
= FC
V(=62 + (=2 ft)® + (3ft)?
= —$Fci = 3Fcj+7Fck
FD = FDi
W = {-150k} Ib
SF,=0; —$Fy —SFc+F,=0 )
SF,=0;3F;—3F-=0 )
SF,=0,2Fy+3F-— 150 =0 3)
Fgp = 1621b Ans.
Fo = 1.5(1621b) = 242 1b Ans.
Fp = 346.151b = 346 Ib Ans.
Chapter 4
F4-1. C+My = —(2)(100 N)2 m) — (2)(100 N)(5 m)
= —460N'm = 460 N-m ) Ans.
F4-2. C+M, = [(300 N) sin 30°][0.4 m + (0.3 m) cos 45°]
— [(300 N) cos 30°][(0.3 m) sin 45°]
=367N'm Ans.
F4-3. C+M, = (600 Ib)(4 ft + (3 ft)cos 45° — 1 ft)
= 3.07 kip - ft Ans.
F44. (+M, = 50sin 60° (0.1 + 0.2 cos 45° + 0.1)
— 50 cos 60°(0.2 sin 45°)
= 112N'm Ans.
F4-5. C+M, = 600 sin 50° (5) + 600 cos 50° (0.5)
= 249 kip - ft Ans.
F4-6. C+M, = 500sin45° (3 + 3 cos 45°)
— 500 cos 45° (3 sin 45°)
= 1.06 kN-m Ans.
F4-7. C+WMp), = SFd;

(Mg)o = —(600 N)(1 m)
+ (500 N)[3m + (2.5 m) cos 45°]
— (300 N)[(2.5 m) sin 45°]

= 1254N-m = 1.25kN'm Ans.
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F4-8. C+Myp), = SFd;
(Mg)o = [(2)500 N](0.425 m)
- [(%)500 N (0.25 m)
— [(600 N) cos 60°](0.25 m)
— [(600 N) sin 60°](0.425 m)
= —268N-m =268N-m J  Ans
F49. C+My), = SFd,
(Mg)o = (300 cos 30° Ib)(6 ft + 6 sin 30° ft)
— (300 sin 30° 1b)(6 cos 30° ft)
+ (200 1b)(6 cos 30° ft)
= 2.60 kip - ft Ans.
F4-10. F = Fu,z = 500 N(%i — 3j) = {400i — 300j} N
M, = roy X F = {3j} m x {400i — 300§} N
= {1200k} N'm Ans.
or
My =rop X F = {4i} m x {400i — 300j} N
= {1200k} N'm Ans.
F4-11. F = Fugc
=1201b[ {4i—4j-2Kk}ft J
VA2 + (—4 02 + (=2 fo)?
= {80i — 80j — 40k } Ib
i k
My=rcXF=1[5 0 0
80 —80 —40
= {200j — 400k } 1b-ft Ans.
or
i Kk
Mp=r; XF= |1 4 2
80 —80 —40
= {200j — 400k } 1b - ft Ans.
F4-12. F,=F, +F,
= {(100 — 200)i + (=120 + 250)j
+ (75 + 100)k } 1b
= {—100i + 130j + 175k} Ib
i j k
Mp)o =14 X Fr=| 4 5 3
—100 130 175
= {485i — 1000j + 1020k } b - ft Ans.
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1 0 0
F4-13. M, =i-(rozxF) = (03 04 —02
300 —200 150

=20N-'m Ans.
y 0.3i + 04j; m
F4-14. u,, = = = { i} = 0.6i+08j
2 V(03m)? + (0.4 m)
06 038 0
Moy =upp (g XF) =10 0 -0.2
300 —200 150
= —-72N'm Ans.
’MOA‘ =72N-'m
F4-15. Scalar Analysis
The magnitudes of the force components are
F, = |200cos 120°| = 100N
Fy, = 200cos60° = 100 N
F. = 200cos45° = 14142 N
M, = _Fy(z) + F.(y)
= —(100N)(0.25m) + (141.42N) (0.3 m)
=174N'm Ans.
Vector Analysis
1 0 0
M,=| 0 0.3 025 | = 174N-m Ans.
—100 100 141.42
0 1 0
F4-16. M, =j-(y x P = |-3 -4 2
30 —20 50
=210N'm Ans.
r —4i + 3jrft
F4-17. u,, = 2 = { i _ —0.8i + 0.6
TAB - V(=4 ft)? + (3 ft)?
Myp = uyp* (ryc X F)
-08 06 0
=10 0 21 = —41b-ft
50 —40 20
M,z = Mugup = {3.2i — 24j} Ib-ft Ans.
F4-18. Scalar Analysis

The magnitudes of the force components are
F, = (3)[4(500) ] = 240N

Fy, = 3[2(500)] = 320N

F4-19.

F4-20.

F4-21.

F4-22.

F4-23.

F. = 2(500) = 300N
M, = —320(3) +300(2) = —360N-m  Ans.
M, = —240(3) —300(-2) = —120N-m  Ans.
M

. =240(2) —320(2) = —~160N-m Ans.

<

Vector Analysis

F = {—240i + 320j + 300k } N
roa = {—2i+2j+3k}m
=i (rpy X F) = =360N-m
,=j (rpy X F) = —120N-m
M, =k (rpy XF) = —160N-m

C+Mc, = SM, = 400(3) — 400(5) + 300(5)

vg »:
Il

+ 200(0.2) = 740 N-m Ans.
Also,
C+Mc, = 300(5) — 400(2) + 200(0.2)
=T740N'm Ans.
G +M¢, = 300(4) + 200(4) + 150(4)
= 2600 1b - ft Ans.

C+Mp)g = SMp
—1.5kN+m = (2 kN)(0.3 m) — F(0.9 m)

F = 233kN Auns.
C+Mc=10(2)2) — 10(2)4) = —20kN-m
=20kN-+mD Ans.
r {—2i + 2j + 3.5k} ft
N T V(2 + Q) + Gs oy
=—Zi+ & +3k
w = —k
uy = 53— 55
M), = (M),
= (450 b+ ft)(—&i + 5j + 312K)
= {—200i + 200j + 350k } Ib- ft
M), = (M), = (250 1b - f)(—k)
= {—250k} Ib-ft
M,); = (M)3u3 = (300 Ib- ft) (351 — 55
= {180i — 240j} Ib-ft
(M) = SM,;
M,z = {—20i — 40j + 100k} Ib- ft Ans.



F4-24. Fy = (3)@50N)j — (3)@50 Nk
= {360j — 270k} N
i Kk
M. =1 XF;=104 0 0
0 360 —270
= {108j + 144k} N-m Ans.
Also,
M, = (ry X Fy) + (ry X Fp)
i Kk i Kk
=0 0 03/+1[04 0 03
0 -360 270 0 360 —270
= {108j + 144k} N-m Ans.
F4-25. © Fp = 3SF,; Fg, = 200 — 2(100) = 140 Ib
+|Fg, = SF; Fg, = 150 — 2(100) = 70 1b
Fr = V140> + 70 = 157 1b Ans.
0 = tanfl(%) = 26.6°> Ans.
C+M,, = 3SM,;
M,, = 3(100)(4) — £ (100)(6) + 150(3)
Mpg, = 2101b-ft Ans.
F4-26. © Fgo = 3SF; Fg = 2(50)=40N
+|Fg, = SFy; Fg, =40 + 30 + £ (50)
= 100N
Fr = V(40)* + (100)*> = 108 N Ans.
0 = tan ' (42) = 682° % Ans.
C tMy, = S My;
My, = 30(3) + 3 (50)(6) + 200
=470 N-'m Ans.
F4-27. L (Fp), = SFy
(Fp)y = 900 sin 30° = 450 N —
+T(FR)y = EFy;
(Fg)y = —900 cos 30° — 300
= —1079.42N = 1079.42N |
Fr = V450° + 1079.422
= 1169.47N = 1.17kN Ans.
0 = tan ' (19%2) = 67.4° 5 Ans.

FUNDAMENTAL PROBLEMS 625

CH+(Mp)a
(Mp)a

= 3My;
= 300 — 900 cos30° (0.75) — 300(2.25)
= —95957N'm
=960N-m )

Ans.

F4-28. L (Fp), = SF,
(Fp), = 150(%) + 50 — 100(%) = 601b—
+T(FR)y = EFyQ
(Fp), = —150(3) — 100(5)
= —1801b = 1801b |
Fr = V60> + 180> = 189.741b = 1901b  Ans.
0= tanﬁl(%) =71.6°~% Ans.
CHMp)a = IMy;
(Mp)4 = 100(2)(1) — 100(2)(6) — 150(%)(3)
= —640 = 640 1b-ft D Ans.
F4-29. Fp = 3F;
Fr=F +F,
= (=300i + 150§ + 200K) + (—450k)
= {-300i + 150j — 250k } N Ans.
roa =2 —0j= {2j} m
rop = (—1.5-0)i + 2 — 0)j + (1 — Ok
={-15i+2j+ 1k} m
Mg)o = ZM;
Mp)p = rog X Fi + 1oy X F,
i j k i j k
=|-15 2 1|+]0 2 0
=300 150 200 0 0 —450
= {—650i + 375k }N-m Ans.
F4-30. F, = {-100j} N
[ {-04i — 03k} m J
F, = (200 N)
V(=04 m) + (—0.3 m)?
= {—-160i — 120k} N
M, = {-75i} N'm
Fr = {—160i — 100j — 120k} N Ans.
(Mg)o = (0.3k) X (—100j)
i j Kk
+1 0 05 03]+ (=750
-160 0 —120
= {—105i — 48j + 80k} N+-m Ans.
F4-31. +|Fy = 3F; Fg =500 + 250 + 500
= 12501b Ans.
C+Frx = SMy;
1250(x) = 500(3) + 250(6) + 500(9)
x = 6ft Ans.
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F4-32. 5 (Fp), = SF;
(Fp), = 100(2)+ 50 5in 30° = 851b —
+T(FR)y = EEv;
(Fg)y = 200 + 50 cos 30° — 100(%)
= 163.301b7
Fr = V85% + 163.30> = 184 1b
0 = tan '(192°) = 62.5° < Ans.
g+(MR)A = 3IMy;
163.30(d) = 200(3) — 100(%)(6) + 50 cos 30°(9)
d = 3.12ft Ans.
F4-33. 5 (Fyp), = SF,
(Fp, = 15(%) = 12kN—
+1(Fp)y = 2Fy;
(Fply = =20 + 15(%) = —11kN = 11 kN|
Fo= V122 + 112 = 163kN Ans.
0= tan_l(%) =425°% Ans.
C+HMp)a = SMy;
—11(d) = —202) — 15(2)2) + 15(2)(6)
d = 0.909 m Ans.
F4-34. . (Fp), = 3F,
(Fp), = (3) 5kN — 8kN
= —5kN = 5kN <«
+T(FR)y = EF)';
(Fp)y = —6kN — (%) 5kN
= —10kN = 10kN|
Fr= V5 + 10> = 11.2kN Ans.
0 =tan ' (14) = 63.4° 7 Ans.
CH+Mp)y = My,
5kN(d) = 8 kKN(3m) — 6 kN(0.5 m)
- [(5)sxN]@m)
~ [(3)skN]@m)
d=02m Ans.
F4-35. +|Fp = 3F,; Fz= 400 + 500 — 100

= 800N Ans.

Mg, = 2M,; —800y = —400(4) — 500(4)

y = 4.50m Ans.

Mg, = 2M,; 800x = 500(4) — 100(3)

x = 2.125m Ans.

F4-36.

F4-37.

F4-38.

F4-39.

F4-40.

F4-41.

+Fg = 3F;
Fr =200 + 200 + 100 + 100
= 600N Ans.
CH+Mg, = 3M,;
=600y = 200(1) + 200(1) + 100(3) — 100(3)
y = —0.667 m Ans.
CJ'—MRy = EMy;
600x = 100(3) + 100(3) + 200(2) — 200(3)
x = 0.667 m Ans.
+1Fr = 3F,;
—Fr = —6(1.5) — 93) — 3(1.5)

Fp = 40.5kN/ Ans.
Q"‘(MR)A = 2My;

—40.5(d) = 6(1.5)(0.75)

—9(3)(1.5) — 3(1.5)(3.75)

d=125m Ans.
Fr = 3 (6)(150) + 8(150) = 16501b  Ans.
C+MAR = EMA;
1650d = [} (6)(150) |(4) + [8(150)](10)
d = 836 ft Ans.
+TFR = EFV;
—Fr = =3(6)3) = 5(6)(6)

Fp = 27kN| Ans.
CHWMp)y = SMy;
—27(d) = 6)3)(1) — 3(6)(6)(2)

d=1m Ans.
+Fp = 3F;
Fr = (50)(6) + 150(6) + 500
= 1550 1b Ans.
C+My, = 3My;
1550d = [5(50)(6)](4) + [150(6)1(3) + 500(9)
d=503ft Ans.
+1Fr = 3Fy;
—Fp = —5(3)(4.5) — 3(6)
Fr = 2475kN| Ans.

Q+(MR)A = 2My;
—24.75(d) = —15(3)(4.5)(1.5) — 3(6)(3)
d=259m Ans.



4
F4-42. Fr = /w(x) dx = / 258 dx = 160N
0

C+MAR = EMA, 4
/ xw(x) dx / 2.5x* dx
0
x = = = 320 m Ans.
/w(x) dx 160
Chapter 5
F5-1. L3F, =0; —A,+500(2) =0
A, = 3001b Ans.
C+3IM, = 0; By(10) — 500(2)(5) — 600 = 0
B, = 2601b Ans.
+13F, =0; A, + 260 — 500(%) =0
A, = 1401b Ans.
F5-2. Q“FEMA = 0,
Fepsin 45°(1.5m) — 4kNG3 m) = 0
Fep = 11.31kN = 11.3kN Ans.
I3F. =0; A, + (11.31kN) cos 45° = 0
A, = —8kN = 8 kN « Ans.
+13F, = 0;
A, + (1131 kN) sin 45° — 4kN = 0
A, = —4kN = 4kN | Ans.
F5-3. §+2MA - 0,

Ng[6 m + (6 m) cos 45°]
— 1I0KkN[2 m + (6 m) cos 45°]

—~5kN@m) =0
Ny = 8.047 kN = 8.05 kN Ans.
LSF = 0;
(5kN)cos45° — A, =0
A, = 3.54 kN Ans.
+13F, = 0;
A, + 8.047KkN — (5 kN) sin 45° — 10kN = 0
A, = 549kN Ans.
F5-4. ©L3F . =0; —A, + 400cos30° =0
A, =346 N Ans.
+13F, = 0;
A, — 200 — 200 — 200 — 400 sin 30° =
A, = 800N Ans.
C+2M, = 0;

M, — 200(2.5) — 200(3.5) — 200(4.5)
— 400 sin 30°(4.5) — 400 cos 30°(3 sin 60°) = 0
M, = 390kN-m Ans.

F5-5.

F5-6.

F5-17.

F5-8.

FUNDAMENTAL PROBLEMS 627

C+2M, = 0;
N(0.7 m) — [25(9.81) N] (0.5 m) cos 30° = 0
Ne = 15171 N = 152N Ans.
L3F, =0;
Typcos 15° — (151.71 N) cos 60° =
T,g = 7853N =785N Ans.

+13F, = 0;

F, + (78.53 N) sin 15°

+ (151.71 N) sin 60° — 25(9.81) N = 0

Fy=93.5N Ans.
LIF, = 0;
N¢ sin 30° — (250 N) sin 60° = 0
Ne = 433.0N = 433N Ans.
QJFEMB =0

—N, sin 30°(0.15 m) — 433.0 N(0.2 m)
+ [(250 N) cos 30°](0.6 m) = 0

Ny = 5774N = 577N Ans.
+13F, = 0;

Ng—577.4 N + (433.0 N)cos 30°

— (250 N) cos 60° =

Np = 327N Ans.
SF, = 0;

T, + Ty + Te — 200 — 500 = 0
M, = 0;

T,(3) + Te(3) — 500(1.5) — 200(3) = 0
IM, = 0;

—Tp(4) — T(4) + 500(2) + 200(2) = 0

T, = 3501b, T5 = 250 Ib, T = 100 Ib Ans.
M, = 0;
600 N(0.2m) + 900 N(0.6 m) — F,(1m) =0

F, = 660N Ans.
M, = 0;
D,(0.8 m) — 600 N(0.5 m) — 900 N(0.1 m) = 0

D, = 4875N Ans.
SF, =0 D, =0 Ans.
3F, =0; D, =0 Ans.
SF, = 0;

Tge + 660N + 487.5N — 900N — 600N = 0
Tgc = 352.5N Ans.
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F5-9. 3F,=0; 400N + C, = 0; F5-12. 3F, = 0; A, =0 Ans.
C, = —400N Ans. 3F,=0; A, =0 Ans.
M, =0; —C,(0.4m)— 600N (0.6m) =0 SF, = 0; A+ Fpe — 80 =0
C, = —900N Ans. SM, = 0; (My), + 6Fpc — 80(6) = 0
M, = 0; B(0.6m) + 600 N (1.2 m) SM, = 0;3Fpc — 80(1.5) = 0 Fye =401b  Ans.
+ (400 N)(0.4m) = 0 SM, = 0: (M), = 0 Ans
B, = —9333N Ans. A, =401 (M), = 240 1b- ft Ans.

M, = 0;
—B, (0.6 m) — (—900 N)(1.2 m)

Chapter 6
+ (=400 N)(0.6 m) = 0

F6-1. Joint A.

B, = 1400 N Ans. o
SF,=0; 1400N + (—900N) + A, = 0 FIRF, =0, 22516 = Fypsinds® =0
t B ! F,p = 318201b = 318 1b (C) Ans.
A, = —500N Ans. R o
SF =0 A —9333N + 600N = 0 HSF, =0;  Fuz— (318.201b) cos 45° = 0
A.=3333N Ans. Fpp = 2251b(T) Ans.
Joint B.
F5-10. 3F, = 0; B, =0 Ans. HSF, =0,  Fpe—2251b =0
M, = 0; Fpe = 2251b (T) Ans.
G04m+06m =0 C, =0 Ans. +T2Fy =0 Fgp =0 Ans.
2F, =0, A, +0=0 A, =0 Ans. Joint D.
M, = 0; C(0.6m + 0.6 m) + B.(0.6 m) E3F, =0
~ 40NO6m + 0.6m) =0 Fep cos 45° + (31820 Ib) cos 45° — 450 b = 0
1.2C; + 0.6B; — 540 =0 Fep = 318201b = 318 1b (T) Ans.
2M, = 0; —C,(0.6m + 0.4 m)
= B0.6 m) + 450 N(0.6 m) = 0 F6-2. Joint D.
—C, — 0.6B, + 270 = 0 +T2Fy:0§%FCD*300:0§
Cz = 1350 N Bz = —1800 N Ans. FCD = 5001b (T) Ans.
SF,=0; 5 SF, = 0; —Fsp + 2(500) = 0
A, + 1350 N + (—1800 N) — 450 N = 0 Fup = 4001b (C) Ans
A, = 900N Ans. Fge = 5001b(T), Fye = Fyp = 0 Ans.
FS-1L. EE; T 8; Ay; 0 o A g3, D, =2001b, D, = 6501b, B, = 1501b
= ; — —+ = -
! ) ce) Joint B.
SM. =0, Fep(3)—6(3) =0 — &by = Uilpy = ns.
Fo— kN Ans +13F, = 0; 150 — Fze = 0; Fge = 1501b (C) Ans.
cF = - )
SM, = 0; 94) — A,(4) — 6(15) =0 Joint A. \

A, = 6.75kN Ans. S 3F = 0:Fye(5) = 0:Fac = 0 Ans.
SF.=0, A +6-6=0 A, =0 Ans. +12F, = 0; Fyp — 800 = 0; Fyp = 800 1b (T) Ans.
SF, =0, Fpp+9-9+675=0 Joint C.

Fpg = —6.75kN Ans. - 3F, = 0; —F¢p + 200 = 0; Fep = 200 1b (T) Ans.



Fo-4.

Fo-5.

Fo6-6.

Fo6-7.

Joint C.

+13F, = 0; 2Fcos30° — P =0
Fac = Fpe = F = 5.555 = 0.5774P (C)
Joint B.

H3F, = 0;0.5774P cos 60° — Fu = 0
F,p = 0.2887P (T)

Fup = 0.2887P = 2kN

P = 6.928 kN

Fic = Fge = 0.5774P = 1.5kN

P = 2.598 kN

The smaller value of P is chosen,

P = 2598 kN = 2.60 kN Ans.
Fep=0 Ans.
Fep =0 Ans.
Fae =0 Ans.
Fpe =20 Ans.
Joint C.

+13F,=0;  259.811b — F¢psin30° =0

Fep = 519.621b = 5201b (C) Ans.
I3F, =0; (519.621b)cos30° — Fge =0

Fge = 4501b (T) Ans.
Joint D.

+]EF)" = 0; FBD cos30° =0 FBD =0 Ans.

FNIF, = 0; Fpp—519.621b =0

Fpg = 519.621b = 5201b (C) Ans.
Joint B.

13F, =0; Fpgsing =0 Fpz=0 Ans.
L3F, =0; 4501b — Fy =0

Fug = 4501b (T) Ans.
Joint A.

+13F, = 0; 340.191b — F4z = 0

Fyz = 3401b (C) Ans.

+13F, = 0; Fepsin45° — 600 — 800 = 0

Fer = 1980 1b (T) Ans.

C+3IMe = 0; Fre(4) — 800(4) = 0
Frp = 800 1b (T) Ans.
C+3Mp = 0; Fpe4) — 600(4) — 800(8) = 0
Fge = 22001b (C) Ans.

F6-8.

F6-9.

F6-10.

F6-11.

FUNDAMENTAL PROBLEMS 629

C+3ZM, =0; G,(12m) — 20 kN2 m)
— 30kN@m) — 40kN(6m) =0
G, = 33.33kN
+13F, = 0; Fgc + 3333kN — 40kN = 0
Fyc = 6.67kN (O) Ans.
C+ IMg = 0;
33.33kN(8 m) — 40kNQ2m) — Fep(3m) = 0
Fep = 62.22kN = 622 kN (T) Ans.
HSF,=0; Figx— 6222kN =0
Frx = 62.2kN (C) Ans.

From the geometry of the truss,
¢ = tan '3 m/2m) = 56.31°.

C+IMg = 0;
33.33kN(@ m) — 40kN(2m) — Fp(3m) = 0
Fep = 622kN (T) Ans.
C+3IMp =0; 3333kN(O6m) — Fr(3m) =0
Fy; = 66.7kN (C) Ans.
+13F, = 0;
3333 kN — 40 kN + Fgp sin 56.31° = 0
Fxp = 8.01 kKN (T) Ans.

From the geometry of the truss,
(9 ft) tan 30°

tanp = —35— = 1.732 ¢ = 60°
C+3IMc = 0;
Fypsin 30°(6 ft) + 300 1b(6 ft) = 0
Fgr = —6001b = 600 b (C) Ans.
C+3IMp = 0;

300 1b(6 ft) — Fep sin 60° (6 ft) = 0
Fep = 346.411b = 346 1b (T) Ans.
C+3Mp = 0;
300 1b(9 ft) — 300 Ib(3 ft) — Fp(9 ftytan 30° = 0
Fye = 346.411b = 346 1b (T) Ans.

From the geometry of the truss,
6 = tan"! (1 m/2m) = 26.57°
¢ =tan ' (3m/2m) = 56.31°.
The location of O can be found using similar
triangles.
Im_ 2m
2m  2m + x
4m=2m + x

x=2m
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Fo-12.

F6-13.

F6-14.

Fo-15.

PARTIAL SOLUTIONS AND ANSWERS

C+3IM; = 0;
26.25kN@m) — 15kNQ2m) — Fep(3m) = 0
Fep = 25kN (T) Ans.
C+3IMp = 0;
26.25 kKN(2 m) — Fgpcos 26.57°2m) = 0
Fer = 293 kN (C) Ans.

C+3M, = 0; 15kN@ m) — 26.25 kN2 m)
— Fgpsin 56.31°(4 m) = 0
Fop = 2253 kN = 2.25kN (T) Ans.

C+3IMy = 0;

Fpc(12 ft) + 1200 1b(9 ft) — 1600 Ib(21 ft) = 0
Fpe = 1900 1b (C) Ans.

C+3IMp =0

1200 1b(21 ft) — 1600 1b(9 ft) — Fp,(12 ft) = 0

Fyr = 900 1b (C) Ans.

C+3Mp = 0; Fjcos 45°(12 ft) + 1200 Ib(21 ft)

— 900 1b(12 ft) — 1600 1b(9 ft) = 0

FJI = 0 AnS.
+13F,=0; 3P —-60=0
P=201Ib Ans.
—(%)(Fap)(9) + 400(6) + 500(3) = 0
Fup = 541.67 b
53F, =0;,—C, + 2(541.67) = 0
C, = 3251b Ans.
+13F, = 0; C, + 5(541.67) — 400 — 500 = 0
C, = 4671b Ans.

C+3IM, = 0; 100 N(250 mm) — Ng(50 mm) = 0

N = 500N Ans.
L3F, =0; (500N)sin45° —A, =0
A, = 353.55N
+13F, = 0;A, — 100N — (500 N) cos 45° = 0
A, = 45355N
Fy = V(353.55 N)? + (453.55 N)?
= 575N Ans.

F6-16. C+3M, = 0;
400(2) + 800 — Fyy (175)(1)
~ Fpa (Y5)3 =0
Fp, = 84327N
L3F, = 0;C, — 84327 () =0
C, = 800N Ans.
+13F, = 0: C, + 843.27(/5) — 400 = 0
C, = 133N Ans.
F6-17. Plate A:
+13F, = 0; 2T + Nyp — 100 = 0
Plate B:
+13F, =0; 2T = Nagy — 30 =0
T =3251b,N,; = 351b Ans.
F6-18. Pulley C:
+12F,=0; T—2P=0;T =2P
Beam:
+13F,=0; 2P+P—-6=0
P = 2kN Ans.
C+3M, =0; 2(1) — 6(x) =0
x = 0333 m Auns.
F6-19. Member CD
C+3Mp =0; 600(1.5) — Ne(3) =0
Ne = 300N
Member ABC
C+3IM, =0; —800 + B,(2) — (300 sin45°) 4 = 0
B, = 82426 = 824N Ans.
L3F, =0; A, — 300 cos45° = 0;
A, =2I2N Ans.
+13F, = 0; —A, + 824.26 — 300 sin45° = 0;
A, = 612N Ans.
F6-20. AB is a two-force member.
Member BC
C+3M, = 0; 15(3) + 10(6) — Fye(2)(9) =0
Fye = 14.58kN
LIF, =0, (1458)(3) - ¢ =0
.= 8.75kN
+13SF, =0; (1458)(2) — 10— 15+ C, = 0;
C, = 133kN
Member CD
L3F, = 0; 875 - D,=0; D,=3875kN Ans
+13F, = 0; =133 + D, =0; D, =133kN Ans.
C+IMp = 0; —8.75(4) + Mp = 0; Mp = 35kN-m Ans.



F6-21.

Entire frame

C+EM, =0; —600(3) — [400(3)](1.5) + C,(3) =0
C, = 1200N Ans.
+13F, =0; A, —400(3) + 1200 = 0
A, =0 Ans.
ESF.=0; 600 —A, —C,=0
Member AB
C+3Mz =0; 400(1.5)(0.75) — A(3) =0
A, = 150N Ans.
C, = 450N Ans.

Fo-22.

These same results can be obtained by considering
members AB and BC.

Entire frame
C+3IMp =0; 250(6) —A,(6) =0
A, = 250N
L3F, =0, E,=0
+13F,=0; 250 —-250 +E, =0; E, =0
Member BD
C+3Mp =0; 250(4.5) — B,(3) = 0;

B, = 375N

Member ABC

C+3Mp = 0; —250(3) + 375(1.5) + B, (2) =0
B, =9375N

Y3F, =0, C,— B, =0; C,=9375N Ans.

+13F, =0, 250 =375+ C,=0; C,=125N Ans

Fo-23.

AD, CB are two-force members.

Member AB

C+3M, =0 —[5(3)(4)](1.5) + B,(3) = 0

B, = 3kN

Since BC is a two-force member C, = B, = 3kN

and C, = 0 (M = 0).

Member EDC

C+3Mp = 0; Fpa(3)(15) = 5(3) = 3(3) =0
Fpa = 20kN

S3F, =0, E,—20(3) =0, E,=12kN Ans.

+1SF,=0; —E, +20(3) —5-3=0;

E, = 8 kKN Ans.

F6-24.

FUNDAMENTAL PROBLEMS 631

AC and DC are two-force members.

Member BC
C+IMc=0; [53)®)](1) —B,(3)=0
B, = 4kN
Member BA
C+IMp =0; 6(2) —A(4) =0
A, = 3kN Ans.

+13F,=0; —4kN+A, =0; A, =4kN Ans.
Entire Frame

C+3M, = 0; —=6(2) = [3(3)(8)](2) + Dy(3) =0

D, = 12 kN Ans.
Since DC is a two-force member (XM, = 0) then
D.=0 Ans.
Chapter 7
F7-1. C+3IM, = 0; B\(6) — 10(1.5) — 15(4.5) = 0
B, = 13.75kN
I3SF,=0; Nc=0 Ans.
+13F, =0; Ve+1375-15=0
Ve = 1.25kN Ans.
C+3IM-=0; 13.753) — 15(1.5) — Mc= 0
Me = 1875kN-m Ans.
F7-2. C+3Mz =0; 30— 10(1.5) — Ay3) =0
Ay = 5kN
I3F,=0; Nc=0 Ans.
+13F,=0; 5-Vc=0
Ve = 5kN Ans.
C+3Me=0; Mg+ 30— 515 =0
Mc= —225kN-m Ans.
F7-3. 13F.,=0; B,=0
C+3IM, = 0; 3(6)3) — B9 =0
B, = 6 kip
3F,=0; Ne=0 Ans.
CHI2F,=0; Ve—6=0
Ve = 6 kip Ans.
C+3Mo=0; —Mq— 6(45) =0
Mq= —27kip - ft Ans.
F7-4. C+3IM, = 0; B\(6) — 12(1.5) — 9(3)(4.5) = 0

B, = 23.25kN

3F,=0; Nc=0 Ans.
+13F, = 0; Ve +2325-9(1.5) =0

Ve = —=9.75kN Ans.
C+2M- = 0;
23.25(1.5) — 9(1.5)(0.75) — M= 0

My = 24775kN-m Ans.
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F7-5.  C+3M, = 0; By(6) — 5(9)(6)3) = 0
B, = 135kN
I3F,=0; Nc=0 Ans.
+13F, =0; Ve+ 135 -3903) =0
VC =0 Al’lS.
C+3EMc=0; 13.53) — $(9)3)1) — Mc =0
Me = 27kN-m Ans.
F7-6. C+3M, = 0;
B,(6) — 5 (6)(3)(2) — 6(3)(4.5) = 0
B, = 16.5kN
I3F,=0; Ne=0 Ans.
+13F, =0; Ve+165—-6(3) =0
Ve = 1.50kN Ans.
C+3IMc=0; 16.53) — 6(3)(1.5) — Mc = 0
Mc=225kN-'m Ans.
F7-7. +13F,=0; 6 -V =0 V =6kN
C+IM,=0;, M+ 18 —6x =0
M = (6x — 18) kN-m
V (kN) M (kN-m)
6
3
x (m) — x (m)
-3
-18
Fig. F7-7
F7-8. +13F,=0; -V -2x=0
V = (—2x) kN
C+3Mp=0; M+2x(%) —15=0
M= (15— x)kN-m
V (kN) M (kN-m)
15+
: L
—x (m) — x (m)
‘ 3
-6

Fig. F7-8

F7-9. +13F,=0; -V —320x) =0
V = —(x?)kN
CH+3IMy=0; M+ 320)@®3) =0
M= —(Gx)kN-m
V (kN) M (kN-m)
3
‘ x (m) \I x (m)
‘ -9 -9
Fig. F7-9
F7-10. +13F,=0; —V -2x=0
V = —2kN
C+3My=0; M+ 2x=0
M = (—2x)kN-+m
V (kN) M (kN-m)
6
x (m) — x (m)
S |
-12
Fig. F7-10
F7-11. Region3m =x <3m
+13F,=0;, -V-5=0V=-5kN
C+IMy =0, M+5c=0
M = (=5x)kN-m
Region0) < x = 6m
+13F,=0;, V+5=0 V=-5kN
C+3My=10; 5(6 —x) —M =0
M = (56— x)) kN-m
V (kN) M (kN-m)
15
6
x (m) 3||\ x (m)
- ‘ ~15
Fig. F7-11



Region 0 = x < 3m
+13F,=0; V=0
C+3IMy=0, M—12=0

M = 12kN-m
Region3m < x = 6m
+13F,=0; V+4=0 V=-4kN
C+3M,=0; 46 —x)—M=0

M = (46 — x)) kKN-m

M (kKN-m)

x (m) ‘ — X (m)
6

Fig. F7-12

M (kKN-m)

: x (m)

=
n
w

‘ x (m)

x (m)

N
o

Fig. F7-15
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F7-16.
V (kN) M (kN-m)
9
1.5 l\ 15 456
| ! y x(m) | | | x(m)
45 6 | |
—-6.75
-9
Fig. F7-16
F7-17.
V (kN) M (kN-m)

\l x (m) 3} é x (m)

|
-9

9 9
K3 0

Fig. F7-17

F7-18.
V (kN) M (KN-m)

13.5 ‘}—\ \/27\
36 |
— x (m) T — x (m)
‘ 3 6

~

~13.5
Fig. F7-18
Chapter 8
F8-1. a) +13F, =0; N —5009.81) —200(%) =0
N =6105N
E3F, =0, F—200(%) =0
F=160N
F < Fp = N = 0.3(610.5) = 183.15N,
therefore F = 160 N Ans.

b) +13F, =0; N —5009.81)—400(2) =0

N =7305N
L3F, =0, F—400(%) =0
F=320N

F > Fpa = N = 0.3(730.5) = 219.15N
Block slips
F = u,N = 0.2(730.5) = 146N Ans.



634 PARTIAL SOLUTIONS AND ANSWERS

F82. C+3My;=0;
N4(3) + 0.2N,(4) — 30(9.81)(2) = 0
N, = 154.89 N
L3F.=0; P— 15489 =0
P =15489N = 155N Ans.
F8-3. Crate A
+13F, =0; Ny —5009.81) =0
Ny = 490.5N
LSF. =0; T— 0254905 =0
= 122.62N
Crate B
+13F, = 0; N + Psin30° — 50(9.81) = 0
Ny = 490.5 — 0.5P
I3F. =0;
P cos 30° — 0.25(490.5 — 0.5 P) — 122.62 = 0
P = 247N Ans.
F8-4. 13F.=0; Ny— 03Ny =0
+13F, = 0;
Ny + 03N, + P — 100(9.81) = 0
C+3IM, = 0;
P(0.6) — 0.3N(0.9) — 0.3 N,(0.9) = 0
N, = 17570 N Ny = 585.67N
P = 343N Ans.
F8-5.  If slipping occurs:
+13F,=0; N,—2501b=0;N,=2501b
L3F. =0; P —04(250)=0; P =1001Ib
If tipping occurs:
C+3M, = 0; —P(4.5) + 250(1.5) = 0
P =28331b Ans.
F8-6.

C+3IM, = 0; 490.5(0.6) — Tcos 60°(0.3 cos 60° + 0.6)
— Tsin60° (0.3 sin 60°) = 0
T = 490.5N
B3F, =0; 490.5sin60° — Ny, =0; N, = 4248N
+13F, = 0; u,(424.8) + 490.5cos 60° — 490.5 = 0
e = 0.577 Ans.

F8-7. A will not move. Assume B is about to slip on C
and A, and C is stationary.
LSF, =0, P—03(50) —04(75); P=45N
Assume C is about to slip and B does not slip on
C, but is about to slip at A.
HSF, =0, P—03(50) —0.35(90) =0
P =465N > 45N
P =45N Ans.
F8-8. A is about to move down the plane and B moves
upward.
Block A
+NZF, =0; N= Wcosf
+/3F, =0, T+ pu(Wcosf) — Wsinf =0
T = Wsin6 — u,Wcos 0 (1)
Block B
+'\2Fy =0; N =2Wcosb
+/73F, = 0; 2T — u,Wcos6 — u,(2W cos 6)
— Wsinf =0
Using Eq.(1);
6 = tan~!5u, Ans.
F8-9.  Assume B is about to slip on A, Fz = 0.3 Np.
Y3F, =0, P—03(10)(9.81) =0
P =294N
Assume B is about to tip on A, x = 0.
C+3IMy=0; 10(9.81)(0.15) — P(0.4) =0
P =368N
Assume A is about to slip, F4 = 0.1 N,.
BSF=0 P—0.1[7(9.81) + 10(9.81)] =0
P =167N
Choose the smallest result. P = 16.7 N Ans.
Chapter 9
I'm
/sz %/ y*? dy
F9-1. x=-2 = Olm =04m Ans.
/AdA /0 Yy
I'm
/ 5 dA / ¥4 dy
y=t— =" =057lm  Ans
/AdA /0 Y34y
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- tm o o VA _ 1501300650)] + 325[50(300)]
B /A"dA /0 > dx) Y TUSA T T 300650) + 50300)
F9-2 r - Im = 237.5 mm Auns.
dA / © dx
A 0
oo, o SVA _ 100[2200)(50)] + 225[50(400)]
=08m o Ans. T YT USA T 2(200050) + 50(400)
/ y dA / lx3(x3 dx) = 162.5 mm Ans.
y _ A _ 0 2
1m
3 ¥ 0.25[4(0.5)] + 1.75[0.5(2.5
/dA / N Fot0, ¢ S¥A _ 025405)] [0.52.5)]
A 0 SA 40.5) + 0.5(2.5)
= 0.286m Ans. = 0.827 in. Ans.
~ 2m 12 _ SFA 2[4(0.5)] + 0.25[(0.5)(2.5)]
) /Ay dA /0 y(2<\/2))dy Y7 3aA 40.5) + (0.5)(2.5)
F9-3. y= - 2m 12 = 1.33in. Ans.
[ A
A 0 V2 _
=12m Ans. _ 3XV O IRM6)] + 4[42)(3)]
F9-11. x = =
sV 2(7)(6) + 4(2)(3)
L 2
/}dm / x[m0<1 N xz)dx} = 1.67ft Ans.
P4, =ln =l L S = 3TV _ 35200+ IHO)
5 - -
/ dm / m0<1 . x2>dx SV 2006 + 400)
m 0 L = 2.94 ft Ans.
9 -
= RL Ans. z = 2z V _ 3200 + 1.5[42)3)]
Im v 2(71)(6) + 42)(3)
/ ¥ dv / y<77ydy> = 2.67 ft Ans.
4
F9-5. y=‘"— ="
av T __SR¥v
/V /0 D F-12. = o
= 0.667 m Ans. 1 1
0.25[0.5(2.5)(1.8)] + 0’25[5(1'5)(1'8)(0‘5)} + (1‘0)|:5(l.5)(1.8)(0.5):|
2 ft
~ T 2 =
/VZ av /0 Z{674(4 —2) ‘4 0.5(2.5)(1.8) + %(1.5)(1.8)(0.5) + %(1.5)(1.8)(0.5)
F9-6. 7= =
/ av / O 4 — 2P de = 0391 m Ans,
v 0 64 S5
Sy V 500625
= 0.786 ft Ans. =7 = =1 Ans.
" YT sy 36 39m s
X 7 2.
Fo7 o SXL _ 150(300) + 300(600) + 300(400) J_ZEV 2835 oo s,
SL 300 + 600 + 400 sV 3.6
= 265 mm Ans.
_3YL0(300) + 300(600) + 600(400) F9-13. A = 2w37L
Y=o T 300 + 600 + 400 = 271'[0‘75(1.5) + 1.52) + 0.75V (1.5 + (2)2}
= 323 mm Ans. = 377 m? Ans.
_SZL_ 0(300) + 0(600) + (—200)(400) V=2m3FA
CTosL 300 + 600 + 400 = 27[0.75(1.5)2) + 0.5(3)(1.5)2) ]

—61.5 mm Ans. = 18.8 m? Ans.
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F9-14. A = 2737L
=27[1.95V(0.9) + (1.2)> + 2.4(1.5) + 1.9500.9) + 1.5(2.7) ]

= 77.5 m? Ans.

V =2m37A
=27 [ 1.8(5)(0.9)(1.2) + 1.95(0.9)(1.5) ]

=226m’ Ans.

F9-15. A =2w37L
= 27 [7.5(15) + 15(18) + 22.5V15% + 20% + 15(30) |

= 8765 in.? Ans.

V =2m37A
= 27[7.5(15)(38) + 20(5)(15)(20)]

= 45710in.} Ans.

F9-16. A = 2w3FL
=27 [22(™52) + 1.52) + 0.75(1.5) ]

= 40.1 m? Ans.

V =27X7A
= 277[%(”(‘4‘5 )) +0.75(1.5)2) ]

=212m’ Ans.

F9-17. w, = p,ghb = 1000(9.81)(6)(1)
= 58.86 kN/m

Frp = %(58.76)(6) = 176.58 kN = 177 kN Ans.

F9-18. w, = v, hb = 62.4 (4)(4) = 998.4 Ib/ft
Fr = 998.4(3) = 3.00 kip Ans.
F9-19. w, = p,ghzb = 1000(9.81)(2)(1.5)

= 2943 kN/m

Fr = 529.43)( V(1.5 + (2°)

= 36.8 kN Ans.
F9-20. w, = p,ghsb = 1000(9.81)(3)(2)
= 58.86 kN/m
wp = pyghsb = 1000(9.81)(5)(2)
= 98.1 kN/m
Fr = 5(58.86 + 98.1)(2) = 157 kN Ans.
F9-21. wy = v,y b = 62.4(6)(2) = 748.8 Ib/ft

wg = g b = 62.4(10)(2) = 1248 Ib/ft

Fr=13(748.8 + 1248)( V(3 + (4)?)

= 4.99 kip Ans.

Chapter 10
F10-1.

I'm
Ixz/yszz-/ Y[(1=y?)ay] =0111m* Ans
A 0

F10-2.
1m
I, = /y2 dA = / ¥ (y*?dy) = 0222 m* Ans.
A 0
F10-3.
1m
I, = / X dA = / (x3)dx = 0.273 m* Ans.
A A .
F10-4.

Im
I, = /xsz = / [ = ) dx] = 00606 m* Ans.
A 0

F10-5. 1, = [1;(50)(450°) + 0] + [1(300)(50°) + 0]
= 383(10°) mm"* Ans.
I, = [{5450)(50°) + 0]
+2[$5(50)(150%) + (150)(50)(100)* ]
= 183(10°) mm"* Ans.

F10-6. I, = {5 (360)(200%) — 35 (300)(140°)
= 171(10°) mm* Ans.

I, = {5 (200)(360°) — 15(140)(300% )
= 463(10°) mm* Ans.

F10-7. I, = 2[5(50)(200°) + 0]
+ [$(300)(50%) + 0]

= 69.8 (10° mm* Ans.
F10-8.
3 A 15(150)(30) + 105(30)(150)
y = = = 60 mm
SA 150(30) + 30(150)

I =3I + Ad%
= [$5 (150)(30)* + (150)(30)(60 — 15)]
+ [15(30)(150)* + 30(150)(105 — 60)* ]

= 27.0 (10° mm* Ans.



Chapter 11

F11-1.

F11-2.

F11-3.

F11-4.

v = 0.75sin 6 0yg = 0.75 cos 0 66
Xc = 2(1.5)cos 0 0xc = —3sin 6 60
oU = 0; 2Wdyg + Poxc =0

(294.3 cos 6 — 3P sin 6)660 = 0
P =98.1cotf|y—gpr = 56.6 N

x4 = S5cos 0 ox, = —5sin 6 66

yg = 2.5sin 6 0y = 2.5 cos 6 60

8U = 0; —Péx, + (—Wdyg) =0
(5P sin 6 — 1226.25 cos 0)66 = 0

P = 24525cot 0| p=er = 142N

xg = 0.6sin 6 oxp = 0.6 cos 6 60
ye = 0.6 cos 6 8yc = —0.6 sin 0 60
oU = 0; —Fg,0xz + (—=Poyc) = 0

—9(10%) sin 6 (0.6 cos 6 8)
—2000(—0.6 sin 6 86) = 0
sinf = 0 6 =0°
—5400 cos & + 1200 = 0
6 = 77.16° = 77.2°

xg = 0.9 cos 0 oxg = —0.9 sin 6 66
xc = 2(09cos @) béxc = —1.8sin 6 66
8U = 0; Pdxz+ (—F,dxc) =0

Ans.

Ans.

Ans.

Ans.

F11-5.

F11-6.

FUNDAMENTAL PROBLEMS

6(10°)(—0.9 sin 6 56)
—36(10%)(cos 6 — 0.5)(—1.8 sin 6 80) = 0
sin 0 (64 800 cos § — 37 80039 = 0
sinf =0 0 =0
64 800 cos 6 — 37800 = 0
0 = 54.31° = 54.3°

yg = 2.5sin6 dby; = 2.5 cos 0 60
Xy, =5cosf  Sxc = —5sin6 60
U = 0; (—F0x4)—Wdyg = 0
(15 000 sin O cos & — 7500 sin 0

— 1226.25 cos 0)66 = 0
0 = 56.33° = 56.3°
or = 9.545° = 9.55°

Fy, = 15000(0.6 — 0.6 cos 0)

xc = 3[0.3 sin 6] oxc = 0.9 cos 0 660
vg = 2[0.3 cos 6] 6y = —0.6sin 6 60
oU = 0; Poxe + Fy,8y; = 0

637

Ans.

Auns.

Auns.
Ans.

(135 cos 6 — 5400 sin O + 5400 sin 0 cos 0)60 = 0

0 = 20.9°

Ans.



Preliminary Problems
Statics Solutions
Chapter 2

2-2.

30°

400 N

(b)

638

60°
10°
F,

600 N F,
110° F, W40°1 100
< 40° 30° 00NN T,
F,
(©
2-3.
Z
o .
Y 60j
50i /B

/—10k N\

\} 60k

“a0i

(b)

2-4. a)F = {—4i — 4j + 2k} kN

F=\V@?+ (-4 + 2 = 6kN
-2
cos B = 3

b) F = {20i + 20j — 10k} N

F= V@207 + (200 + (—10 = 30N

P 2
cosB = =
3



2-5.

600 N

[ 45°

20°

F,

e 600 sin 45° N
X

(a)
F, = (600 sin 45°) sin 20° N
F, = (600 sin 45°) cos 20° N
F, = 600 cos 45° N

500 N

2(500N) = 400N

(b)

3
F, = —S(@0)N

4

F, = S(400)N
3

F, = S(500)N

2-6.

2-7.

2-8.

PRELIMINARY PROBLEMS

800 N

60° F,

639

-

F,
800 cos 60° N/ 30°
X

(0)
F, = 800 cos 60° cos 30° N

F, = —800 cos 60° sin 30° N
F, = 800 sin 60° N

a) s = {—51+3j— 2k} m
by = {4i + 8§ — 3k} m
) = {6i —3j — 4k} m

-3, 4
a)F = ISKN(?i + gj) = {-9i + 12j} kN

b) F 6OON(2'+2' lk)
_ 2,,.2..1
377373

= {400i + 400j — 200k} N

3737 3
= {—200i + 200j — 100k} N

20 2. 1
c)F= 3OON<—*1 + -j— *k)

a)r, = {3k} m, 7, =3m
= {2i+2j— lk}m r=3m
r g = 02) + 0Q2) + 3)(—1) = —3m?
Iy *Tp = ryrgcos 6
—3 = 3(3)cos 0
b)r, = {-2i+2j+ 1k} m r,=3m
6= {15i— 2k} m, r, = 25m
£ org = (—2)(1.5) + 2(0) + (1)(—2) = —5m?
Iy *Tg = ryrgcos 6

-5 3(2.5) cos 6



640 STATICS SOLUTIONS

2-9. a) 4
d)y My = 5 (500 N)(3m) = 1200N-m D
2. 2. 1
F = 300 N(Ei + gj - gk) = {200i + 200j — 100k} N 3

e) My = —(5)(100 N)SGm) = 300N-m)
W st f) My = 100 N(0) = 0

3 4
F,=F-u, = (200)(—%) + (200)(?) + (—100)(0) g) My = —(g)(SOO N)2 m) + (g)(SOO N)(1 m)

4 3 =200N-m)
b) F= 500N (—gj + gk) = {—400j + 300k} N

h) M, = f@)(soo N)3m — 1 m)

1, 22
u =—-i+j+ -k
3733 4
| 5 ) + (g)(soo N)(1 m) = 200 N-m)
F,=F-u, = (0)(—5) + (—400)(5) + (300)<§> . 5 y
i) Mo = | 5 500 N)(1 m) — { < )(500 N)@ m)
Chapter 3 oo
3-1. . C
42. My=|2 -3 0 Mp=1[2 5 -1
-3 2 5 2 -4 -3
i J k
Mp= |5 -4 -1
-2 3 4

4-3. a)M, = —(100N)3m) = —300N-m

M, = —(200 N)2 m) = —400 N-m

(a) (®) (©)

1 4 M, = —(300N)2m) = —600 N-m
3-2. a)XF, =0; Fcos60° — P(%> - 600<g) =0 b) M, = (50 N)(0.5m) = 25N-m
SF = 0 —Fsin60° — P(L> . 600(3) . M, = (400 N)(0.5m) — (300 N)(3m) = —700 N-m
4 ’ V2 5 M, = (100N)(3m) = 300N-m

¢) M, = (300 N)(2 m) — (100 N)2m) = 400 N-m
M, = —(300 N)(1 m) + (50 N)(I m)
+ (400 N)(0.5m) = 250N -m
M, = —(200N)(I1 m) = —200N+m

4
b) 3F, = 0; P(g) — Fsin 60° — 200 sin 15° = 0

3
EF), = 0; —P<g) — Fcos 60° + 200 cos 15° = 0

c) 3F, = 0;
. 4-4. a)
300 cos 40° + 450 cos 30° — Pcos 30° + Fsin 10° = 0
4 3 4 3
IF, = 0; -~ =2 0 |- -2 o
5 5 5 5
—300 sin 40° + 450 sin 30° — Psin 30° — Fcos 10° = 0 M =1-5 2 ol=1]-1 5 o0
6 2 3 6 2 3
Chapter 4
b
4-1. a)M, = 100NQm) = 200N-m> ) | | | |
b) My = —100N(1 m) = 100N -m) V2 Va2 0 V2 V2 0
3 = 9| = _
Q) My = —(f)(soo N)(2m) = 600 N -m ) M, 3 4 2 3 2 2
5 2 -4 3 2 -4 3



2 12 2 12
3 3 3 33 3
OM,=|-5 -4 0|=|-3 -5 2
2 -4 3 2 -4 3

4-5. a) 5 (Fp), = SF,:

(Fp), = —G)SOON + 200N = —200N
+1(Fg), = 3F;
(Fp)y = —%(500 N) — 400N = —700 N
C+ Mp)o = 2My;
Mp)o = —(%)(500 N)(2 m) — 400 N(4 m)
= —2200N-m

b) 5 (Fp) = SFy:
(Fp), = (%)(soo N) = 400 N
+1(Fp)y = 2F);
(Fg)y = —(300N) — @)(500 N) = —600 N
C+ Mp)o = ZMy;

(Mg)o = —(300 N)(2 m) — (%)(500 N)@4 m)
— 200 N+*m = —2000 N -m
C) i) (FR)x = EFX;
(Fp), = <%>(500 N) + 100N = 400
+1(Fr)y = 2F;

(Fr)y = —(500N) — (%)(500 N) = —900 N

C+ Mp)o = IMy;
Mr)o = —(500 N)2 m) — (%)(500 N)(4 m)
+ G)(soo N)2m) = —2000 N*m
d) 5 (Fp), = 3F;
(Fp)y = —(%)(500 N) + (%)(500 N) = —100N
+1(Fp)y = 2F;

(Fp)y = —(%)(500 N) — (?)(SOO N) = =700 N
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C+ Mp)o = ZMy;
Mg)o = <%)(500 N)(4 m) + (%)(SOO N)(2 m)

3
- (g)(SOO N)(4m) + 200N-m = 1200 N+m

4-6. a) i>(FR))( = EF’(; (FR)X =0

+1(Fr)y = 3F;

(Fg)y = —200N — 260N = —460 N

C+ (Fp)yd = TMy;

—(460 N)d = —(200 N)(2 m) — (260 N)(4 m)
d=313m

Note: Although 460 N acts downward, this is not
why —(460 N)d is negative. It is because the moment
of 460 N about O is negative.

b) 5 (Fp), = SFy
(Fp)y = —(%)(500 N) = 300N
+1(Fp)y = SF,;
(Fg)y = —400N — (?)(500 N) = —800 N
C+ (Fp),d = SMy;
—(800N)d = —(400 N)(2 m) — (?)(500 N)(4 m)
d=3m

©) L (Fp), = SFg

(F), = (§)<soo N) - (g)aoo N) =0
+1(Fg), = 3F;

(Fr)y = f@)(soo N) — (g)(soo N) = —600N
C+ (Fp),d = SMy;

—(600N)d = — (g) (500N)(2m) — (%) (500 N)(4 m)

— 600N-m
d=4m

4-7. a) +lFR = 3F;

Fr = 200N + 100N + 200N = 500 N

(Mg), = IM,;

—(500 N)y = —(100 N)(2 m) — (200 N)(2 m)
y =120m

(Mg), = 3M,;

(500 N)x = (100 N)(2 m) + (200 N)(1 m)
x = 0.80m
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b) +{F, = SF;;

Fr = 100N — 100N + 200N = 200 N

(Mg), = XM,;

—(200 N)y = (100 N)(1 m) + (100 N)(2 m)

— (200 N)(2 m)
y =05m

(Mp), = SM,;

(200 N)x = —(100 N)(2 m) + (100 N)(2 m)
x=0

¢) +{Fp = 3F;
Fr = 400N + 300N + 200N + 100N = 1000 N

(Mp), = M,

—(1000 N)y = —(300 N)(4 m) — (100 N)(4 m)
y = 1.6m

(Mp), = SM,;

(1000 N)x = (400 N)(2 m) + (300 N)(2 m)
— (200 N)2 m) — (100 N)(2 m)

x = 0.8m
Chapter 5
5-L 500 N
Tp
l o
4
Ao |
A ‘
3m ‘ 2m—=
Ay
(a)
600 N - m
N =)
A
«—2m——ﬁ
Y
3m
B, —>| \
(b)
1200 N
[ +—>B,

A, —>fe
A,y
30°
(d)
400 N
M, l
A _.E ]
‘ A
} 2m i 2m B,
(e)
F,
30°
\©
A 5—>C,
A
2m 1m4
B,
()
5-2.
300 N




5-3. a)3XIM, =0

—(400 N)2m) — (600 N)(5m) + B,(5m) = 0

M, = 0;
M. = 0;
b)IM, = 0,
M, = 0;
M, = 0;
c)IM, =0,
M, = 0;
M, = 0;
Chapter 6

~A,(4m) — B,(4m) = 0
By(4m) — B,(5m)
+ (300N)(5m) = 0

A,4m) + C(6m) =0
B,(Im)— C(1m) =0
—B,(1 m) + (300 N)(2 m)
—A@4m) + C(1m) =0
B,2m) + C,3m) —800N'm =0
—-C(15m) =0
—B,2m) + C(1.5m) =0

6-1. a) A,=200N, D, =0, D, =200 N

400 N
Feg Fep
45°
°C
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b) A, =300 N, C, =0, C,=300N

600 N
Fep
N A
Fep T
300 N
6-2. a)
Fuc=0 Frgr=0
Frc=0
-— EC =
Fya=0 Fpe=0 b Fep =0
b) T Fgo=0 Fer
Fgy B Fpe Fga Foe=0
0
Fcrp=10 Frg
le_. 4
Fep Fep Frg Fpp=10
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6-3. a)
60 N-m
N
-« ) >—> B
A,
4 m
A, Y B,
}"
) ——
B,
1.5m
» 200 N
1.5m
-
o A
C

b) CB is a two-force member.
600 N

%—Zm—iflm%‘

A, —@ 2)

i o4
FCB ‘

A

Fep

y

Fep

¢) CD is a two-force member.

800 N
d) 4, 600 N
A l
B, B,
Ay = f— =
A A
My \
3m 3m y 2m 2m
B, B, C
BC is a two-force member.
e) -
200N BC
-
200N —A?
i 200N Fac
A, 200N ,4{
— e — 73
BC
200 N |
2m \ 2m |
A, 200N
BC is a two-force member.
f) e 400N
400 N
400 N
| 2m | 2m 400 N
<t — » 400 N
A SA
Y
400 N
Fpe
Chapter 7
7-1.
Fep M
pashl
. 1m 4‘
Ve
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N+ H3F =0
600 N B R 4
T [ B —|J(500N) — F' = 0,F = 400N
TI )"NB 5
}-—Zmﬁ%lm»‘ +T2Ev =0
Vg 3
N —200N — | = J(500N) = 0,N = 500 N
2400 N - m 5
Frax = 0.3(500N) = 150N < 400 N

Slipping F = N = 02(500N) = 100N Ans.

b) 100N
N 40N
!
A
- F
N

HSF =0
4
SU00N) = F' = 0; F' = 80N
+13F, = 0;

3
N — 40N — (g)(lOON) =0;N = 100N
Fuae = 0.9(100N) = 90N > 80 N

F=F =80N Ans.
Nj
+ 8-2.
400 N 2R v 100 N
T
I1m
1 N
1600 N - m
200 N
F,
0 T
Chapter 8 N,
8-1. a) . Require Fy = 0.1N,
+13F, = 0; Ny — 100N =0
N 200N Ny = 100N
4 |
Y Fy, = 0.1(100N) = 10N
C+3My, =0, —M + (10N)(1m) =0
A M =10N-m
<~ }—F
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8-3. a) Slipping must occur between A and B.
100 N

TA{— *

—F> fa

N,=100N

Fy = 02(100N) = 20N

b) Assume B slips on C and C does not slip.
100 N

20N<—l—
100N//L

Fp <

> P

Ng=200N
Fz = 0.2(200N) = 40N

£K3F =0, P—-20N-40N=0
P=60N
¢) Assume C slips and B does not slip on C.

100 N

20 N —¥—o

100 N//l

200 N //l

Fe

= P

400 N

Fe = 0.1(400 N) = 40 N

KSF, =0;

Therefore,
8-4.
a) P

P—20N—-40N =0
P=60N
P=60N Ans.

2m

Assume slipping,
X3SF = 0;

Block tips,

g""EMO =0

b) P

200 N

0.5m

o A
< F
Y7

N=200N

F = 03200N) = 60N
P—-—60N=0;, P=60N
200 N(x) — (60N)2m) =0

x=06m>05m
x =0.5m

(200 N)(0.5m) — P2m) =0
P=50N Ans.

100N
|

Assume slipping,
L3F =0

Y

0.5m

A

F

Y
N =100N

F = 04(100N) = 40N
P—40N=0;P=40N
(100 N)(x) — @ON)(1m) = 0
x=04m<05m

No tipping

P=40N Ans.



Chapter 9

9-1. a)
X =x
Sy _Vx
YT 2

b) y

X

|
! Im

1+y2

-~ +<1—x)_1+x_
X X B B

y=y

2

dA = (1 = x)dy = (1 — y)dy

©)

d)

PRELIMINARY PROBLEMS

dy §
Ty
X

Im

"

= X

=

_ +(1—y>_1+y_1+x2
- 2 )T 2 T 2

dA = (1 — y)dx = (1 — xP)dx

=

647



Review Problem Solutions

Chapter 2
R2-1. Fp = V/(300)* + (5002 — 2(300)(500) cos 95°
= 605.1 = 605N Ans.
605.1 500
sin 95°  sin 0
6 = 55.40°
¢ = 55.40° + 30° = 85.4° Ans.
F 250
R2-2. —2 =-"""—  F,=129N Ans.
sin 30 sin 105
Fy, 250
o F, = 183N Ans.
sin 45°  sin 105°
R2—3. FRx = le + sz + F3)( + F4x
Fg, = —200 + 320 + 180 — 300 = 0
Fpy = Fiy + Fy, + Fy, + F,,
Fpy =0 —240 +240 + 0 =0
Thus, Fp = 0 Ans.
R2-4. cos?30° + cos?70° + cos’y = 1
cosy = 10.3647
y = 68.61°or 111.39°
By inspection, y = 111.39°.
F = 250{cos 30°% + cos 70°j + cos 111.39°} 1b
= {217i + 85.5j — 91.2k } 1b Ans.
R2-5. r = {50 sin 20°% + 50 cos 20°j — 35k} ft
r=V(17.10* + (46.98)% + (=357 = 61.03 ft
u="=(0280i + 0.770j — 0.573k)
r
F = Fu = {98.1i + 269j — 201k} Ib Ans.
4 . 41 . .
R2-6. F, = 600 5 cos 30°(+i) + 600 5 sin 30°(—j)
3
+ 600 5 (+K)
= {415.69i — 240j + 360k} N Ans.
F, = 0i + 450 cos 45°(+j) + 450 sin 45°(+k)
= {318.20§ + 31820k} N Ans.
R2-7. r, = {400i + 250k}mm; r = 471.70 mm

648

r, = {50i + 300§} mm; r, = 304.14 mm

r; -, = (400)(50) + 0(300) + 250(0) = 20 000

0= cosf'(r1 -r2> = cosfl(—20 000 )
nr (471.70)(304.14)

Ans.

2 2 1
R2-8. Fpy = F-u, = (2i + 4j + 10k)- (gi +3i- gk)
FProj = 0.667 kN
Chapter 3
4
R3-1. £ 3F =0; Fy— F,cos60° — 50<§> =0
. 3
+13F, =0;  —F,sin60° + 50 5)= 0
Fy =34.61b Fy =5731b Ans.
R3-2. £ SF =0; Fucc0830° — Fyp = 0 1)
+13F, = 0; Fyesin30° — W =0 )
Assuming cable AB reaches the maximum tension
Fyp=4501b.
From Eq. (1) Fy¢cos 30° — 450 = 0
Fyc = 519.61b > 480 Ib (No Good)
Assuming cable AC reaches the maximum tension
FAC =480 Ib.
From Eq. (1) 480 cos 30° — F43 = 0
Fop = 415.71b < 450 1b (OK)
From Eq. (2) 480sin30° — W =0 W = 2401b
Ans.
+ 300 3
R3—3. —)EI:,C = O; FAC sin 30° — FAB g =0
FAC = 120FAB (1)

4
+13F, =0;  Fyccos30° + FAB(g) -W=
0.8660F ¢ + 0.8Fy 5 = W (2)

Since Fyc > Fj4p, failure will occur first at cable AC
with F, - = 50 Ib. Then solving Egs. (1) and (2) yields

Fup = 41.671b

W = 176.61b Ans.



60
R34. 5, = = L5t
40

1
+13F, = 0; F—2(5T>=O; F=T
V3

i)EF,( =0; —F, + Z(T)F =

F, = 1.732F

Final stretch is 1.5 + 0.268 = 1.768 ft
40(1.768) = 1.732F

F = 40.81b Ans.

R3-5. XF, = 0; —F,sin45° =0 F,=0 Ans.
SF, = 0; F,sin 40° — 200 = 0

F, =311.141b = 3111b Ans.

Using the results F; = 0 and F, = 311.141b and
then summing forces along the y axis, we have

3F, =0; F; — 311.14 cos 40° = 0
F; =2381b Ans.

R3-6. F, = F,{cos 60°% + sin 60°k }
{0.5F)i + 0.8660Fk} N

Fzze{Si_4j}
5 5

= {06FKi — 08F,j} N
F; = F;{—cos 30°i — sin 30°% }

{-0.8660F;i — 0.5Fj} N

SF, =0, 0.5F + 0.6F, — 0.8660F; = 0
SF,=0;  —0.8F, — 0.5F; + 800sin30° = 0
SF.=0;  0.8660F, — 800 cos30° = 0
F,=80N F =14IN F,=564N Ans

R3-7. EFX = O; FCA('\/]E> - FCB('\/]E> =0
3 3
2F, =0; —FCA(\/B) - FCB(\/E) + Fm(%) =0

4
SF,=0; —500 + FCD(g) =0

Solving:
FCD =6251b FCA = FCB = 198 1b
2i + 3j — 6k
R3-8. F,z = 700
V22 + 3+ (—6)

{200i + 300j — 600k} N
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e ( —1.5i + 2j — 6k >
N1 + 22+ (-6
—0.2308F, i + 0.3077F,cj — 0.9231F,ck
FAD:FAD( ~3i — 6 — 6k )
V(=3 + (=6) + (—6)}
= —0.3333F, pi — 0.6667F,pj — 0.6667F, ok
F = Fk
XF = 0; Fup + Fuc + Fip+ F=0
(200 — 0.2308F,¢ — 0.3333F,p)i
+ (300 + 0.3077F, ¢ — 0.6667F, p)j
+ (=600 — 0.9231F, — 0.6667F,p + F)k = 0
200 — 0.2308F, — 0.3333F,p, =0
300 + 0.3077F, ¢ — 0.6667F,, = 0
—600 — 0.9231F, - — 0.6667F,, + F = 0
Fue — 130N F,p = 510N

F = 1060 N = 1.06 kN Ans.
Chapter 4
R4-1. 20(10%) = 800(16 cos 30°) + W(30 cos 30° + 2)
W =3191b Ans.

(10i + 15§ — 30k)

R4-2. Fr = 501b
! V10)> + (157 + (—30)

Fr = {14.3i + 21.4j — 429k} 1b Ans.
i j k
(Mg)e =13 XF = 10 45 0

1429 2143 —42.86
= {—1929i + 428.6j —428.6k} Ib-ft Ans.

R4-3. r = {4i} ft

( —2i + 2j + 4k )
F =241
V(=272 + 27 + @)

= {-9.80i + 9.80j + 19.60k } 1b

0 1 0
M,=| 4 0 0 | =—7841b-ft
—-9.80 9.80 19.60
M, = {-784j} Ib-ft Ans.

R4-4. (M )p = M. 0 = 100 — 0.75F
F = 133N Ans.
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5
R4-5. £ SF, =3SF; Fg = 6(—) — 4 cos 60°

13
0.30769 kN

12
+T2FR)7 = EF‘, FRy = 6(5) — 4 sin 60°

= 20744 kN
Fr = V(030769 + (2.0744)> = 2.10kN  Ans.

b — 1 ,1{ 2.0744
0.30769

} = 81.6° & Ans.

12 5
C+Mp=3SMp, Mp=8—6(—)7)+6=)05)

13 13
— 4 cos 60°(4) + 4 sin 60°(3)

Mp= —168kN-m
= 16.8kN-m Ans.
4

R4-6. L 3(Fy), = SF; (Fp), = 200 cos 45° — 250(5)
— 300 = —358.58 Ib = 358.58 Ib <

3
+1(Fp), = 3F,;; (Fg)y, = —200sin45° — 250(5)

—291.421b = 291.42 b}
Fr = V(F? + (Fp)? = V/358.58” + 29142

= 462.071b = 462 1b Ans.
(Fr)y } { 291 .42}

0 = tan! = tan” =39.1°> Ans.

o {(FR)X 35858 ns

3 4
C+(Mpg)y =2M,; 358.58(d) = 250 5 (2.5) + 250 5 4)
+ 300(4) — 200cos 45°(6) — 200sin 45°(3)
d = 3.07ft Ans.

R4-7. +1Fy = SF; Fp= —20 — 50 — 30 — 40
= —140kN = 140kN|  Ans
(Mp), = SM,; —140y = —50(3) — 30(11) — 40(13)

y =714m Ans.
Mpg)y, = EMy; 140x = 50(4) + 20(10) + 40(10)
x=57lm Ans.

R4-8. +|Fy = 3F. Fg = 12000 + 6000 = 18000 Ib
Fr = 18.0 kip Ans.

CH+Mpge = SMg;  18000x = 12000(7.5) + 6000(20)
x = 11.7ft Ans.

Chapter 5
R5-1.C+3M, = 0: F(6) + F(4) + F(2) — 3 cos 45°(2) = 0
F = 03536 kN = 354N Ans.
R5-2. C+3M, = 0; Ny(7) — 1400(3.5) — 300(6) = 0
Np = 957.14N = 957N Ans.

+13F, =0; A,—1400—-300+957=0 A,=743N

ESF. =0, A,=0 Ans.
R5-3. C+3M, = 0; 10(0.6 + 1.2 cos 60°) + 6(0.4)
— N4(1.2 + 1.2 cos 60°) = 0
N, = 8.00kN Ans.
XSF, =0, B, —6cos30°=0; B, =520kN Ans
+1%F, =0; B, + 800 — 6sin30° — 10 =0

B, = 5.00kN Ans.
R5-4. C+3M, = 0; 50cos30°20) + 50 sin 30°(14)
— Fp(18) = 0
Fz = 67.561b = 67.61b Ans.

A, — 50sin30° =0
A, =251 Ans.
+13F, =0; A, —50co0s30° — 67.56 = 0
A, =110861b = 1111b Ans.

y

R5-5. 3F, = 0; A, =0 Ans.

SF,=0; A, +200=0

A, = —200N Ans.
SE = 0; A.— 150 = 0

A, = 150N Ans.
SM, = 0; —150(2) + 2002) — (M), = 0

(My), = 100N * m Ans.
M, = 0; (My), =0 Ans.
SM.=0;  2002.5) — (My). = 0

(My), = 500N-m Ans.

M, =0; P@®) —80(10) =0 P =1001b Ans.
SM, =0; B.(28) — 80(14) = 0 B.=401b  Ans
SM.=0; —B,28) —10010) =0 B, = —3571b Ans.
SF,=0; A+ (=357)—100=0 A, = 1361b  Ans.
2F,=0; B,=0 Ans.
SE. =0, A, +40—80=0 A.=40b  Ans.



R5-7. W = (4R ft)(21b/ft?) = 161b
SF, =0 A, =0 Ans.
3F, =0; A, =0 Ans.
SF,.=0, A.+B.+C.—-16=0
SM, =0, 2B, — 16(1) + C,(1) =0
SM,=0; —B,(2) + 16Q2) — C,(4) =0
A, + B, + C,=5331b Ans.
R5-8.
SF, = 0; A, =0 Ans.
SF, = 0 350 — 0.6Fgc + 0.6Fzp = 0
SF, = 0; A, — 800 + 0.8Fgc + 0.8Fzp = 0
SM,=0; (M,), + 0.8F(6) + 0.8Fz(6) — 800(6) = 0
SM, =0;  800(2) — 0.8F3(2) — 0.8F5p(2) = 0
SM, =0;  (My), — 0.6Fc(2) + 0.6Fzp(2) = 0
FBD = 208 N Ans.
FBC = 792 N AI’ZS.
A, =0 Ans.
(M), =0 Ans.
(MA)Z = 700 N-m Ans.
Chapter 6
R6-1. Joint B:
HKSF. =0, Fzge=3kN() Ans.
+13F, = 0; Fgzy = 8kN (O Ans.
Joint A:
3
+13F, =0; 8875—-8— Shac = 0
Fic = 1458 = 1.46kN (C) Ans.
4
KSF. =0, Fy—3-— 5(1:458) =0
Fyp = 417kN (T) Ans.
Joint C:
4
XSF =0, 3+ 51458) = Fep = 0
Fep = 4.167 = 4.17KN (C) Ans.
3
+13F, =0; Fop—4+ 5(1458) =0
Fep = 3.125 = 3.12kN (C) Ans.
Joint E:
X SF,=0;, Fgp=0 Ans.
+13F, =0;  Fgp = 13.125 = 13.1 kN (O) Ans.

Joint D:
+13F, = 0;

R6-2. Joint A:

REVIEW PROBLEM SOLUTIONS

3
13125 — 10 = S Fpp = 0

651

Ans.

Ans.
Ans.

Ans.
Ans.

Ans.

Ans.
Ans.

Auns.
Auns.

Auns.

Auns.

Auns.

Ans.

Auns.

i)EFX = 0; FAB - FAGCOS4SO =0
+13F, =0; 3333 — Fygsin45° =0
Fyp = 3333 = 3331b(T)
Joint B:
KSF, =0; Fze=13333=3331b(T)
+13F,=0; Fgp=0
Joint D:
XSF, =0, —Fpe+ Fpgcosd5® =0
+13F, = 0; 6667 — Fpesin45° = 0
Fpr = 942.91b = 943 1b (C)
Fpe = 666.71b = 667 Ib (T)
Joint E:
BSF =0; —9429sin45° + Fpg =0
+13F, = 0; —Fge + 9429 cos 45° = 0
Fee = 666.71b = 667 1b (T)
Fre = 666.71b = 667 Ib (C)
Joint C:
+13F, = 0;  Fgecos45° + 666.7 — 1000 = 0
Fee = 4711b (T)
R6-3. C+3M, = 0; —1000(10) + 1500(20)
— Fgycos 30°(20 tan 30°) = 0
Fg; = 2.00 kip (C)
+13F, = 0; —1000 + 2(2000 cos 60°) — Fgc = 0
R6-4.
+13F, =0; 24,—800—-600—800=0 A, = 11001b
KSF =0, A, =0
C+3My =0; Fgpsin30°(10) + 800(10 — 10 cos’ 30°)
— 1100(10) = 0
Fgr = 1800 1b (C) = 1.80 kip (C)
C+3M, = 0; Fppsin 60°(10) — 800(10 cos® 30°) = 0
Frp = 692.821b (T) = 693 Ib (T)
C+3IMp=0; Fye(15tan 30°) + 800(15 — 10 cos? 30°)

— 1100(15) = 0

Fge = 121243 1b (T) = 1.21 kip (T)

Ans.
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R6-5. Joint A:
SF, =0; FAD(L> — 600 =0
V68
Fup = 2473.861b (T) = 2.47 kip (T) Ans.
1.5 1.5
Moo FAC( \/66.25) - FAB(\/66.25> -0
Fac = Fap
SF, = 0; FAC(L) + FAB(L)
' V 66.25 V 66.25
8
2473.86< \/678> =0
0.9829 F, + 0.9829 F,, = 2400
Fue = Fyp = 122091 1b (C) = 1.22kip (C) Ans.
R6-6. CB is a two force member.
Member AC:
C+IM, = 0; —600(0.75) + 1.5(Fp sin75°) = 0
Fep = 3106
B,=8B,= 310.6(\16) = 220N Ans.
BHSF =0; —A, + 600sin60° — 310.6 cos 45° = 0
A, = 300N Ans.
+T2Fy = 0; Ay, — 600 cos 60° + 310.6sin45° = 0
A, = 804N Ans.
R6-7. Member AB:
C+3M, =0; —7502) + B,(3) = 0
B, = 500N
Member BC:
C+IMs = 0; —1200(1.5) — 900(1) + B,(3) — 500(3) = 0
B, = 1400N
+13F, =0; A, — 750 + 500 =0
A, = 250N Ans.
Member AB:
KSF =0, —A, + 1400 =0
A, = 1400 N = 1.40 kN Ans.
Member BC:
XSF. =0, C, +900— 1400 = 0
C, = 500N Ans.
+1%F, =0; —500 - 1200 + C, =0

C, = 1700 N = 1.70 kN Ans.

R6-8. C+3Mz=0; Fep(7) — ?FBE(Z) =0

4
C+IM, = 0; —150(7)(3.5) + gFBE(S) — Fep(7) =0
Fgrp = 1531 1b = 1.53 kip Ans.
Fep = 3501b Ans.
Chapter 7
R7-1. C+3M, =0;  Fep8) — 150(8 tan 30°) = 0
Since member CF is a two-force member,
VD = MD =0 Ans.
Np = Fcp = 86.61b Ans.
C+3IM, = 0; B,(12) — 150(8 tan 30°) = 0
B, = 57.7351b
XSF, =0, Ng=0 Ans.
+T2Fy =0; Vyp+ 57735 —-286.60=0
Ve =2891b Ans.
C+3IM;=0; 57.735(9) — 86.60(5) — My = 0
My = 86.61b-ft Ans.
R7-2. Segment DC
KSF, =0, Nc=0 Ans.

+13F,=0; Ve—300-6=0 Vc=900kN Ans
C+3IMc =0, —M¢ — 3.00(1.5) — 6(3) — 40 =0

Mqc= —625kN m Ans.
Segment DB
XESF =0, Nz=0 Ans.
+13F,=0; Vy—100-75-400-6=0
Vg = 27.5kN Ans.
C+3Mpz =0, —Mz— 10.02.5)-7.505)
—4.00(7) — 6(9) —40 =0
Mg = —184.5kN-m Ans.
R7-3.
V (kip)
36 36

. - -36
M (kip-ft)
0 \/\/ X
—108 —108



R7-4.
V (kN)

=30

R7-5.

V (kN) M (kKN-m)

2.5

| | x (m)

‘ 1 x (m)

’ 7.5

=50 m
R7-6.

Atx = 30 ft;

Fy 0.5
= 3ft; = —_| cosh| — -1
y 3ft; 3 05 cos (FH(3O)>

Fy =175251b

d 0.5(30
i = sinh( ( )> Omax = 11.346°
x=30 ft

dx

AN O = 75.25

F, 75.25
Ty = —— = = =17671b Ans.
cos O cos 11.346

Chapter 8

R8-1. Assume that the ladder slips at A:
Fy = 04Ny
+13F, = 0; Ny —20=0

N, = 201b

F, = 0.420) = 81b

P(4) — 20(3) + 20(6) — 8(8) =0
P=11Ib Ans.
Ny+1—-8=0

Ny =71b>0 OK

C+3IMy = 0;
HKE3F =0,

The ladder will remain in contact with the wall.
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R8-2. Crate

+13F, = 0; N,—5886=0 N,=58.6N
X3F =0 P—F,=0 @
C+3IM, =0;  588.6(x) — P(0.8) =0 Q?)
Crate and dolly

+13F, = 0; Ng + N, — 588.6 — 98.1 =0 3)
LE3F =0 P—F;=0 )
C+3IMp =0,  N4y(1.5) — P(1.05)

— 588.6(0.95) — 98.1(0.75) = 0 Q)

Friction: Assuming the crate slips on dolly, then
F; = uaNg, = 0.5(588.6) = 294.3 N. Solving Egs. (1) and (2)

P=2943N x = 0.400 m
Since x > 0.3 m, the crate tips on the dolly. If this is the case
x = 0.3 m. Solving Egs. (1) and (2) with x = 0.3 m yields
P = 220.725N
F; = 220725 N

Assuming the dolly slips at A, then F, = u N, = 0.35N,.
Substituting this value into Egs. (3), (4), and (5) and solving,
we have

N, =559N Ny = 128N

P = 195.6 N = 196 N (Controls) Ans.
R8-3. Bar
C+3IMyz = 0; P(600) — A (900) =0 A, = 0.6667P
Disk
+13F, = 0; N¢sin 60° — Fgsin 30°

— 0.6667P — 34335=0 (D)

C+3IMy =0;  F(200) — 0.6667P(200) = 0 ?2)

Friction: If the disk is on the verge of moving, slipping
would have to occur at point C. Hence, Fr = u,Ne = 0.2N¢.
Substituting this into Egs. (1) and (2) and solving, we have

P=182N Ans.
N¢c = 606.60 N
R8-4. Cam:
C+3IM, = 0; 5 — 0.4 Ng(0.06) — 0.01(Ng) = 0
Np = 147.06 N
Follower:
+13F, = 0; 147.06 — P =0
P =147N Ans.
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R8-5. L3SF. =0; —P+ 0.5(1250) = 0

P =6251b
Assume block B slips up and block A does not move.

Block A:

XSF =0 F,—N'" =0

+13F,=0; Ny — 600 - 03N" =0

Block B:

HK3SF, =0, N'— N'cos45° — 03N'sin45° =0

+13F,=0; N'sin45 — 03N'cos45° — 150 — 0.3 N"
V =0

Block C:

HSF, =0, 03N'cos45 — N'cos45 — 05N — P =0

+13F, =0; Nc— N'sind5 — 03 N'sin45 — 500 = 0

Solving

N" = 629.0lb, N' = 684.31b, No = 838.71b, P = 1048 Ib,
N, = 41131b

Fy = 629.01b > 0.5 (411.3) = 205.61b No good
All blocks slip at the same time: P=6251b Ans.

10
R8-6. o = tan—l(—> = 21.80°

25
C+3M, =0; — 6000 (35) + Fyp cos 21.80°(10)
+ Fpp sin 21.80°(20) = 0
¢, = tan" ' (0.4) = 21.80°
6 = tan”! <L
27(0.25)
M = Wrtan (0 + ¢)

) = 7.256°

M = 12565 (0.25) tan (7.256° + 21.80°)
M = 17451b-in = 1451b-ft Ans.
R8-7. Block:
+13F, = 0; N =100 =0
N — 1001b
E3F =0, T, = 0.4(100) = 0
T, = Te"; T, = 40¢°*G) = 74.978 Ib
System:
C+3IM, =0; —100(d) — 40(1) — 50(5) + 74.978(10) = 0
d = 4.60 ft Ans.
w
R$-8. P~ =
p
2
= 500(9.81) —
osn( )

P =245N Ans.

Chapter 9

R9-1. Using an element of thickness dx,

b 6‘2 b
/ xdA / x<*dx) / Fdx Ay
A a X a

b

_ « b—a
= - - - -
b b b b
/dA Aln— Aln=  Aln— In—
A a a a a
Ans.
R9-2. Using an element of thickness dx,
dA b(cz)(czd ) bc—4d
_ Ay a 2)C X ! a 2)(2 N
y = - -
/dA A ln é A ln é
A a a
64 b
2, 2 —
= xb = ( Z) Ans.
Aln— 2ab In —
a a
/ 7 dv / (7 (d® — Z%)dz]
R9-3. 7z =" =0
/ av / (@ - )z
v 0
(5 -9
I R
2 4/, 3
e s ga Ans.
(%)
a a2Z -
3 0
R9-4. SXL = 0(4) + 2(m)(2) = 12.5664 ft>
202
SYL = 0(4) + (—)(w)(z) = 8 ft
ar
SZL = 2(4) + 0(m)(2) = 8 ft?
SL =44+ 72) = 10.2832 ft
o _ 3XL _ 12.5664 _ L s
SL 10.2832
SYL 8
y= 2= = 0.778 fi Ans.
SL 10.2832
ZL 8
y o 22 = 0778 ft Ans.
SL 10.2832
R9-5.
Segment A(mm?) y (mm) A (mm?®)
1 300(25) 112.5 843 750
2 100(50) 50 250 000
py 12 500 1093 750



Thus,
SYA 1093750
y=——=—"—"-—=4¢7. Ans.
Y7 A 12500 _ o7mm s
R9-6.
A = 30FL
= 2] 0.6 (0.05) + 2(0.6375)\/ (0.025)* + (0.075)2
+ 0.675 (0.1)]
= 125m? Ans.
RY-7.
V = 307A

2 {2 (0.65) (% (0.025)(0.075)) + 0.6375(0.05)(0.075)}

= 0.0227 m’ Ans.
R9-8. dF = / dA = 47(3)dz
* 3.8
F=12 / #d; = 12[74 = 1441b Ans.
0 4 0

8 8
. 3
/zdF= 12/ fd; = 12{74 — 658.29 Ib - ft
A 0 7 0

658.29
:= = 457 ft
144

Ans.

RY-9.

po = 1.0(10%)(9.81)(9) = 88290 N/m?> = 88.29 kN/m>
Py = 1.0(10°)(9.81)(5) = 49 050 N/m? = 49.05 kN /m?
Thus,

w, = 88.29(8) = 706.32 kN /m

wy = 49.05(8) = 392.40 kN /m

Fr, = 392.4(5) = 1962.0 kN
1
Fr, = 5 (70632 = 392.4) (5) = 7848 kN
C+3Mp =0;  1962.02.5) + 784.8(3.333) — A,(3) = 0
A, = 2507kN = 2.51 MN Ans.
4 4
KSF =0; 784.8(§> + 1962(5) -B, =0
B, = 2197kN = 2.20 MN Ans.
3 3
+13F, =0; 2507 — 7848 5) 1962 5) - B, =0

B, = 859 kN Ans.

REVIEW PROBLEM SOLUTIONS

R9-10.
a a 2 0
A= / dA = / —ydx = / 2x%dx = =x3| = 533311
A -2 -2 30
w=>byh=1624)(8) = 499.2 1b-ft
F, = 5.333(1)(62.4) = 332.8 Ib
1
F, = 5 (499.2)8) = 1997 Ib
Fy = V(332.8)> + (1997)* = 2024 1b = 2.02 kip Ans.
Chapter 10
R10-1.
2 2 11
I = / ydA = / Y4 — xydy = / y2(4 — 32y )dy
A 0 0
= 1.07 in* Ans.
R10-2.
1 1
I = / VA = / VA(2x dy) = / Y241 — y¥ ) dy
A 0 0
= 0.610 ft* Ans.
R10-3.
2 2
I, = /xsz = 2/ X2y dx) = 2/ x2(1 = 0.25 x*)dx
’ A 0 0
=213 ft Ans.

_ i 1
R10-4. dlxy = d]X2y2 + dAEy =0+ (y§dy) (Eyi) (y)

I

[

<
U

<

Im

= 0.1875 m* Ans.

R10-5. = é, s =
y h

~
o

—

1NN

B
Il

b
sdy = h(h - y)}dy

h 3
b bh
= [y%dA = Z{fh— }d =—
A /y Oy h( y) |dy D
3

_ L)/ 1 h\? b’
IL.=1.+Ad —=1,+=bh|=) I.=—-— Ans
(b) I, ; d 12 N th (3) ; ns.

R10-6. dl,, = dlp + dA Xy

~
|

1 1 1
0 + (ydy) (Eyg)(y)
1 s

= —vid
zy‘y

655
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1m
1s 3
I, = [dI, = Vidy = —vy3
Xy / xy /0 2)’ y l6y

= 0.1875 m*

I'm

0
Ans.

SU = 0;
(20F,sin & — 20P sin 6 — 220 cos 6)60 = 0

However, from the spring formula,
Fy, = kx = 2[2(10 cos §) — 6] = 40 cos 6 — 12.

—F,0xc — 2(20yp — 208y + Poxc = 0

1 1 d\? P
R10-7. I, = [E(d)(f) + o} +4 [ 36 (0.2887d) (3) Substituting
(800 sin O cos @ — 240 sin § — 220 cos & — 20Psin ) 660 = 0
2
+ %(0288761) (g) (g) :| Since 60 # 0, then
800 sin § cos & — 240 sinf — 220 cos @ — 20Psinh = 0
= 0.0954d* Ans. P=40cosf — 11 cotd — 12
1 1 bt 4p* 6b* At the equilibrium position, & = 45". Then
R10-8. dI, = —pmy*dx =*p'rr(f4x4+7x3+fx2 quiibriim posth
2 2 da a & P =40cos45° — 11 cot45° — 12 = 5281b Ans.
4p*
+ 7 + b4)dx R11-3. Using the law of cosines,
2 _ 2 2 _
. 1 a b: . 47b4 - 67174 , 0.4 x3 + 0.1 2(x4)(0.1)cos 6
T x = HPT 0 & S 2 Differentiating,
4p* . 0 = 2x,8x, — 0.26x4 cos 6 + 0.2x, sin 6560
Foetp )d" s 02xsino
_ 31 2 A 0.2 cos 0 — 2x,
10°7 SU=0;  —Fox, — 5000 =0
— [an=[ prya ( 02xasind 50)80 =0
"= mm— OpTry o 0.2 cosf — 2x, B
Upr o, 2, Since 86 # 0, then
= pm / (;x + —x +b" |dx 0.2x, sin 0
0 A F-50=0
7 ) 0.2cos 0 — 2x,
=y pmab L 3002056 — 2x,)
93 0.2x4 sin 6
I, = —mb’ Ans. .
70 At the equilibrium position, # = 60°,
0.4% = x3 + 0.1 — 2(x4)(0.1) cos 60°
Chapter 11 x4 = 0.4405m
50(0.2 60° — 2(0.4405
R11-1. x = 2L cos6 F= [ 0;(::4405 '(60° )] = 512N Ans.
dx = —2L sin 0 8 2(0.4405) sin
y = Lsin6 R11-4. y = 4sin 0
dy = Lcos 650 8y = 4 cos 6 60
oU =0, —Pdy—Féx =20 F, =54 — 4sin6)
—PL cos 060 — 1.‘7(—2L sin 6)660 = 0 SU = 0: —108y + Fdy = 0
_Pcosi+2FS‘“9_0 [—10 + 20(1 — sin 6) ] (4 cos 6 80) = 0
F= Ans. cos® =0 and 10 — 20sinf = 0
2 tan 6
6 = 90° 0 = 30° Ans.
R11-2. yp = 10sin6 dyp = 10 cos 650 R11-5. xz = 0.1 sin dxy = 0.1 cos 650
yp = 5sin 6 8yp = 5 cos 056 xp = 2(0.7sin0) — 0.1sinf = 1.3sind &bxp = 1.3 cos 0566
xc =2(10cos 0) bxc = —20sin 050 yG = 035cos6 Oy = —0.35 sin 659
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8U = 0, 2(—49.058y¢) + F,,(6xg — dxp) = 0 R11-7. V=V, +V,
; _ - 1 1
(34335 sin 0 l.stp COS 9)69 =0 — 5(24) (2 cos 0)2 + 5(48) (6 cos 0)2
However, from the spring formula, + 10003 sin 0)
F,, = kx= 400[2(0.6 sin §) — 0.3] = 480sin § — 120. — 912 cos26 + 300 sin 6
Substituting, dv }
) ) — = —1824sinfcosH + 300cosf = 0
(34.335sin 0 — 576 sin 6 cos 0 + 144 cos £)66 = 0 do
Since 80 # 0, then Z—‘; = —912sin20 + 300cos§ = 0
34.335sinf — 576 sinf cos 6 + 144 cos @ = 0 0 = 90° or 0 = 9467°
0 = 155° Ans. 2V
and 8 = 85.4° Ans. ﬁ = —1824 cos 260 — 300 sin 6
d*v
R11-6. =21 = —1824 cos 180° — 300 sin 90°
V, = mgy = 40(9.81)(0.45 sin @ + b) = 176.58 sin 6 + 392.4 b do” lo=o0°
1 =1524 >0 Ans.
Ve = (1500)(0.45 cos 0)* = 151.875 cos” 2V
— = —1824 cos 18.933° — 300 sin 9.467°
V=V, +V,= 17658 sin0 + 151.875 cos?0 + 3924 b 6" lo=9.467°
= 17747 <0
av = 176.58 cos 8 — 303.75 cos @ sin @ = 0 Thus, the system is in unstable equilibrium at 6 = 9.47°. Ans.
do
R11-8. V=V, + V,
cos 0(176.58 — 303.75sin0) = 0 16 &
cos 6 = 0 0 = 90° Ans. = Skt = Wy
= °o — 3550 1
0=3554"=355 Ans. = J(16)(2:5 — 255in ) — 2025 cos 6)
v ,
o —176.58 sin 6 — 303.75 cos 260 = 50sin’># — 100 sin & — 50 cos 6 + 50
dv
P2V — = 100sin @ cos @ — 100 cos @ + 50sin = 0
Atf = 90°, —— = —176.58 sin 90° — 303.75 cos 180° do
40 lo-c av
— 12717 >0 %=SOsin29—100c030+5051n0=0
= 12717 >0  Stable Ans. 0 = 37.77° = 37.8°
&2V 4 i
Atf = 355404 = —176.58 sin 35.54° ﬁ = 100 cos 20 + 100sin & + 50 cos 6
d%0 lg=3s.5 2V
— 303.75 cos 71.09° 2 S = 100 cos 75.55° + 100 sin 37.77° + 50 cos 37.77°
= —-201.10 < 0  Unstable Ans. =1257>0

Thus, the system is in stable equilibrium at § = 37.8° Auns.



Answers to Selected Problems

Chapter 1
1-1. a. 785N
b. 0.392 mN
c. 746 MN
1-2. a. GN/s
b. Gg/N
c. GN/(kg-s)
1-3. a. Gg/s
b. kN/m
c. kN/(kg-s)
1-5. a. 453 MN
b. 56.8 km
c. 563 pug
1-6. a. 58.3km
b. 68.5s
c. 2.55kN
d. 7.56mg
1-7. a. 0431g
b. 353kN
c. 532m
1-9. a. km/s
b. mm
c. Gs/kg
d. mm-N
1-10. a. kN-m
b. Gg/m
c.  uN/s?
d. GN/s
1-11. a. 8.653s
b. 8.368 kN
c. 893g
1-13. 271 Mg/m?
1-14.  a. 449(10) > N?
b. 2.79(10°) §?
c. 234s
1-15. 741 uN
1-17. 1.00 Mg/m?
1-18. a. 0447kg-m/N
b. 0911kg-s
¢. 18.8GN/m
1-19.  1.04kip
1-21. F=10.0nN, W, = 785N, W, = 118N
Chapter 2
2-1.  Fp=497N,¢ = 155°
2-2. F = 960N, § = 45.2°
2-3.  Fp=13931b, ¢ = 353°
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2-5.
2-6.
2-17.
2-9.

2-10.
2-11.
2-13.
2-14.
2-15.
2-17.
2-18.
2-19.
2-21.
2-22.
2-23.
2-25.
2-26.
2-217.
2-29.
2-30.
2-31.
2-33.
2-34.
2-35.
2-317.
2-38.

2-39.

2-41.
2-42.

2-43.
2-45.

2-46.
2-47.
2-49.
2-50.

2-51.
2-53.

2-54.
2-55.
2-57.

Fyp = 3141b, Fyc = 256 1b
¢ = 122°
(F), = 2.93 kN, (F), = 2.07 kN
F = 6161b,6 = 46.9°
Fr = 9801b, ¢ = 19.4°
Fr = 108kN, ¢ = 3.16°
F,=3061b, F, = 2691b
F=1961b, F, = 26.41b
F=9171b,6 = 31.8°
Fr = 192N,0 = 237° <%
Fr = 192N, 60 = 237°<%
0 =535 Fyp = 6211b
Fr = 257N, ¢ = 163°
Fr=25TN, ¢ = 163°
6 =1755°
6 = 36.3°, ¢ = 264°
6 = 54.3°, F, = 686N
Fr = 123kN, 6 = 6.08°
Fy = 1.61 kN, 6 = 38.3°
Fr = 401kN, ¢ = 162°
0 = 90°, Fy = 1 kN, Fp = 1.73kN
Frp=983N,60 = 21.8°
F, = {200i + 346j} N,F, = {177i — 177j} N
Fr = 413N, 0 = 242°
Fr = 1.96kN, 6 = 4.12°
F, = {30i + 40j} N, F, = {—20.7i — 77.3j} N,
F; = {30i}, Fx = 542N, 0 = 43.5°
Fi, = 141N, F;, = 141N, F,, = —130N,
Fp, = 75N
Frp = 125kN, 0 = 64.1°
F, = {680i — 510j} N, F, = {—312i — 541} N,
F; = {—530i + 5305} N
Fp = 546N, 6 = 253°
Fr = VF? + F2 + 2F,F, cos ¢,

B 71< F, sin ¢ )
0 = tan — -

F, + Fycos ¢

0 = 68.6°, Fy = 960N
Fr = 839N, 0 = 14.8°
Fr = 389N, ¢' = 42.7°
F, = {9.64i + 11.5j} kN, F, = {—24i + 10j} kN,
F, = {31.2i — 18j} kN
Frp=172kN,0 = 11.7°
F, = {—15.0i — 26.0j} kN,
F, = {—10.0i + 24.0j} kN
Fr = 25.1kN, 6 = 185°
F = 2.03kN, Fy = 7.87kN
Frp=380N,F, = 578N




2-58.
2-59.
2-61.
2-62.
2-63.
2-65.

2-66.
2-67.
2-69.
2-170.

2-71.
2-73.

2-74.
2-175.

2-77.
2-78.
2-79.
2-81.
2-82.
2-83.

2-85.
2-86.
2-87.

2-89.
2-90.
2-91.
2-93.
2-94.
2-95.

2-97.
2-98.
2-99.
2-101.

2-102.

2-103.
2-105.

0 = 86.0°, F = 1.97 kN

Fr= 11.1kN, 9 = 47.7°

F, = 40N,F, = 40N, F, = 56.6 N

a = 484° B = 124°,y = 60°, F = 8.08 kN
Fr = 1141b,a = 62.1°, B = 113°, y = 142°
F, = {—106i + 106j + 260k} N,

F, = {250i + 354j — 250K} N,

F, = {144i + 460j + 9.81k} N, F, = 482 N,
a=726% B = 174° y = 88.8°

a; = 111° B, = 69.3°, y, = 30.0°

F3; = 428 1b, @ = 88.3%, B = 20.6° y = 69.5°
Fr = 430N, a = 28.9°, B = 67.3°, y = 107°
Fr = 384N, cos a = 14.8°, cos B = 88.9°,
cosy = 105°

Fy = 4291b, a; = 62.2°, B, = 110°, y, = 145°
F, = {72.0i + 54.0k} N,

F, = {53.0i + 53.0j + 130k} N, F; = {200k}
Fr=407N, a = 72.1°, B = 82.5°, y = 19.5°
F, = {14.0j — 48.0k} Ib,

F, = {90i — 127j + 90K} Ib

Fr=0610N,a = 194°, 8 = 77.5°, y = 105°
F, = 6641b, a = 59.8°, B = 107°, y = 144°
a = 124°, B = 71.3% y = 140°

Fr = 1.55kip, @ = 82.4°, B = 37.6°, y = 53.4°
Fr = 1.60kN, a = 82.6°, 8 = 29.4°, v = 61.7°
a3 = 139°,

By = 128 ;5 = 102°, Fg, = 387N,

B; = 60.7°,y; = 64.4°, Fp, = 141 kN

F = 2.02kN, F, = 0.523kN

rap = 397 mm

F = {59.4i — 88.2j — 83.2k} Ib, @ = 63.9°,
B =131°%y = 128°

x =506m,y =36lm,z=065lm

z = 6.63m

x=y=442m

Fr = 1.L17TkN, a = 66.9°, B = 92.0°, y = 157°
Fr = 1.17kN, a = 68.0°, B = 96.8°, y = 157°
Fyzy = {—109i + 131j + 306k} Ib,

Fo, = {103i + 103j + 479k} b,

Fpy = {—52.1i — 156j + 365k} Ib

Fr = 757N, a = 149°, B = 90.0°, y = 59.0°
F = {—34.3i + 22.9j — 68.6k} Ib

F = {13.4i + 23.2j + 53.7k} Ib

F, = {169i + 33.8j — 101k} Ib,

Fy = {97.61 + 97.6j — 58.6k} Ib,

Fr = 3381b, « = 37.8°,

B =67.1°%y = 118°

F, = {389i — 64.9j + 64.9k} Ib,

F, = {—584i + 97.3j — 97.3k} Ib

Fr =5221b,a = 87.8°, B = 63.7°,y = 154°
F=1051b
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2-106. F = {466i + 339j — 169k} N

2-107. F = {476i + 329§ — 159k} N

2-109. F=5211b

2-110. ryp = 10.0ft,
F = {—19.1i — 14.9j + 43.7k} b, & = 112°,
B = 107°,y = 29.0°

2-111. 1y = 592mm, F = {—13.2i — 17.7j + 203Kk} N

2-113. (Fgp) = 334N, (Fgp), = 498N

2-114. 6 = 36.4°

2-115. (F)ac = 56.3N

2-117. |Proj Fy5| = 70.5N, |Proj Fy| = 65.1 N

2-118. 6 = 31.0°

2-119. F, = 1831b, F, = 35.61b

2-121. 6 = 100°

2-122. 6 =19.2°

2-123. Fy, = 187N

2-125. F, = 246N

2-126. FH = 1051b

2-127. 6 = 142°

2-129. F) = 0.182kN

2-130. 0 = 74.4°, ¢ = 55.4°

2-131. (Fpe) = 28.31b, (Fpe), = 68.01b

2-133. 6 = 132°

2-134. 0 = 23.4°

2-135. [(F)ap]) = 63.21b, [(F)ap], = 64.11b

2-137. F,, = 242N

2-138. 6 = 82.9°

2-139. Proj Fy; = {0.229i — 0.916j + 1.15k} Ib

Chapter 3

3-1.  F =9.60kN, F, = 1.83kN

3-2. 0 =469 F =431kN

3-3. 9 =822°F=2396kN

3-5. T =720kN, F= 540kN

3-6. T =766kN,0 = 70.1°

3-7. 6=20°,T=3051Ib

39. F=9601Ib

3-10. 6 = 40°, T, = 37.61b

3-11. 6 =40°, W =4261b

3-13.  Fgy = 500(10%) b, Fyp = 433(10°) Ib,
Fip = 250(10%) Ib

3-14.  x,p = 04905m, x4c = 0.793m, x45 = 0.467 m

3-15. m = 8.56kg

s, Lol
kr ki Kk

3-18. k= 176N/m

3-19. [, =203m

3-21. [ =266ft

3-22. F=158N

3-23. d=156m

3-25. y=2m,F, = 833N
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3-26. Ty, = 294N, Ty = 340N, T,z = 170N, 4-14. M, = {0.5i + 0.866j — 3.36k} N-m,
Typ = 490N, Tpe = 562N a=81.8,8=757,y = 163°
3-27. m=267kg 4-15. (My)c = 7681b-ftD
3-29.  Fpp = 392N, Fop = 340N, Fep = 275N, (My)p = 636 Ib-ftD
Fey = 243N Clockwise
3-30. m =204kg
331, s=338m, F=760N 7. m = (ﬁ)
3-33. T, =11.01b, Tyc = 7.761b, Tyc = 11.01b, 4-18. M, = (537.5c0s 6 + 75 sin ) Ib- ft
Tpe = 19.01b, Tep = 17.41b, 0 = 18.4° 419, F=12391b
334. 9 =184°W=1581b 421. F=2761lb
3-35. Fu; = 1751b,1 = 2.34 ft, or 422, r=133mm
Fag = 82.41b,1 = 1.40 ft 4-23. (Mp), = (Mp)y = 76.0kN-m )
3-37. my =358kg, N =197N 4-25. (M), = 3.88 kip-ftD,
3-38. F,3 =98.6N,F,c = 267N (Myep)s = 2.05 kip ft D,
3-39. d=242m (Myu)a = 2.10 kip + ft D
3-41. T =3061b, x = 1.92ft 4-26. (Mp), = 8.04 kip - ft D
3-42. Wz =183 4-27. M, = {—40i — 44j — 8k} kN-m
3-43.  Fap = T63N, Fyc = 392N, Fyp = 523N 4-29. M, = {—25i + 6200j — 900k} Ib- ft
3-45.  Fps = 10.01b, Fpg = 1.111b, Fpc = 15.61b 4-30. M, = {—175i + 5600j — 900k} Ib- ft
3-46. spop = 327 mm, sp, = 218 mm 4-31. M, = {—24i + 24j + 8k} kN-m
3-47.  Fap = 219N, Fyc = Fyp = 548N 4-33. Mg = {—110i — 180j — 420k} N-m
3-49. m = 102kg 4-34. M, = {574i + 350j + 1385k} N-m
3-50. Fuc = 1131b, Fyy = 257 1b, F4p = 2101b 435, F —=585N
351. F=15581b 4-37. M, = {163i — 346j — 360k} N-m
3-53. F,p =15571b,W = 4071b 4-38. M, = {—82.9i + 41.5j + 232k} Ib-ft
3-54.  Fu5 = 7921b, Fye = 1191b, F,, = 283 1b 4-39. M, = {—82.9i — 96.8j — 52.8k} Ib- ft
3-55. Wc=2651Ib 441. F=1860b
3-57. W =558N 442. My, =42IN-m a = 952° B = 110°,y = 20.6°
3-58. Fyp = 441N, Fyc = 515N, Fyp = 221N 443, M, = {—539 + 13.1j + 11.4k} N-m
3-59. Fp = 348N, Fc = 413N, Ep = 174N 445, y=2m,z=1m
361. Fc=2858N,FEy=578N,FEp = 565N 4-46. y=1m,z=3m,d=1.15m
3-62. m=885kg 4-47. M, = {—16.0i — 32.1k} N-m
3-63. F,p = L56kN, Fgp = 521N, F¢p = 1.28 kN 4-49. Mg = {1.00i + 0.750j — 1.56k} kN -m
3-65. F,z=291kip, F = 1.61 kip 4-50. M, = {373i — 99.9j + 173k} N-m
3-66. F,z = 3601b, F,c = 1801b, F,p = 360 1b 4-51. O, = 90°, 0, = 0, 180°
367. W =375 4-53.  Yes, yes
4-54. M, = 464 1b-ft
Chapter 4 4-55. M, = 440 b fi
4-5.  (Mp)p = 4.125kip-ftD, 4-57. M, = {11.5i + 8.64j) Ib-ft
(Mp,)p = 2.00 kip- ft D, 458. M,=217N'm
(Mp,)p = 40.01b+ft> 459. F=139N
46. Mp=341in.-1bD 4-61. My = 136 N-m
My = 403 in.*1b) 4-62. My = 165N-m
Not sufficient 4-63. My = 226N+m
4-7. (Mp)y =433N-mD 4-65. F=566N
(Mp,)s = 1.30kN-m) 4-66. M,=437N-m, a = 33.7°, B = 90°, y = 56.3°,
(MF3)A=800N'mD M =541 N-m
4-9, Mg =90.61b-ft), M- = 1411b-ft) 4-67. R =289N
4-10. M, = 1951b-ftD 4-69. F=75N,P= 100N
411, (Mp)yax = 48.0kN-mD, x = 9.81 m 4-70.  (Mp)e = 435 1b-ft D
4-13. M = {—3.36k} N-m,a = 90°, B = 90°, 471. F=1391b

v = 180° 4-73. F= 830N



4-74.
4-7s.
4-71.
4-78.
4-79.
4-81.
4-82.
4-83.
4-8s.
4-86.
4-87.
4-89.
4-90.
4-91.
4-93.
4-94.

4-95.
4-97.
4-98.
4-99.

4-101.

4-102.

4-103.

4-105.
4-106.
4-107.
4-109.

4-110.

4-111.

4-113.
4-114.
4-115.
4-117.
4-118.

4-119.
4-121.
4-122.
4-123.
4-125.
4-126.
4-127.
4-129.
4-130.
4-131.

Me=225N-mD

F = 833N

(Mg)c = 2401b-ft

F = 167 Ib. Resultant couple can act anywhere.
d =203t

Mc = 1261b-1t9

M¢ = {—50i + 60j} Ib- ft

Mg = 96.0Ib-ft, a = 47.4°, B = 74.9°, y = 133°
Mg = 6401b-ft, @ = 94.7°, B = 13.2°, y = 102°
M, = 424N-m, M; = 300N-m

My = 5761b-in., o = 37.0° 8 = 111°,y = 61.2°
F= 154N

Mc=451N-m

F = 832N

F=981N

Mc = {—2i + 20j + 17k} kKN -m,

My = 263kN-m

Mg =T19Nm, a=442°, B =131°, y = 103°
Fr = 365N,0 = 70.8° %, (My)p = 2364N-m 9
Fr = 365N,0 = 70.8° 2, (Mpp = 2799N-m 9
Fp = 5.93kN,0 = 77.8° 57, My, = 348kN-m D
Fp = 294N, 0 = 40.1° >,

Mgo = 39.6N-m)D

Fr = 1.30kN, 6 = 86.7° <5,

(Mg)y = 1.02kN+-m 5

Fr = 130kN, 0 = 86.7° <5,

(Mg)g = 10.1kN-m 5

Frp=938N,0 = 35.9°<G, (Mp), = 680N-m 9
Mo = {0.650i + 19.75j — 9.05k} kN +m

Fr = {270k} N, Mg, = {—2.22i} N-m

Fr = {6i + 5j — 5k} kN,

(Mg)o = {2.5i — 7j} kN+m

Fp = {44.5i + 53.1j — 40.0k} N,

Mg, = {—5.3% + 13.1j + 114k} N-m

Fr = {—40j — 40k} N,

Mg, = {—12j+ 12k} N-m

Fr = 1075kipl,d = 13.7ft

Fr = 10.75kip 4, d = 9.26 ft

F=17981b, 67.9° 3, x = 743 ft

F=1302N,0 = 845° 2, x = 7.36m
F=1302N, 0 = 84.5° =,

x = 1.36 m (to the right)

Fr=1000N,0 = 53.1°~5,d = 2.17m
Fr=235N,0=518,d=175m

Fr = 542N,60 = 10.6° =, d = 0.827m

Fr = 542N,60 = 10.6° =~,d = 2.17m

Fr = 1971b,0 = 42.6°.2,d = 524 ft

Fr = 1971b,0 = 42.6°.2,d = 0.824 ft

Fr = 26kN,y = 82.7mm, x = 3.85 mm

Fc = 600N, Fp = 500 N

Fp=35kN,y =113m,x = 11.5m

F, = 27.6kN, F, = 24.0kN
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5-34.

4-133. F, = 30kN, Fy = 20kN, Fr = 190kN
4-134. Fp = {141i + 100j + 159k} N,
Mg, = {122i — 183k} N-m
4-135. Fp = 379N, Mg = 590N-m,z = 2.68 m,
x = =276 m
4-137. Fp = 539N, Mg = 1.45kN-m, x = 1.21 m,
y =359m
4-138. Fr = 0, Mgy, = 1.35kip- ft
4-139. Fp = 6.75kN,X = 25m
4-141. F, = 71b,Xx = 0.268 ft
4-142. Fp = 150kN,d = 340m
4-143. Fp = 125kN,d = 1.54m
4-145. Fyr = 154KkN, (Mg), = 185kN-m D
4-146. Fyr = 27.0kN, (M), = 81.0kN-m D
4-147. a = 154m
4-149. w, = 17.2kN/m, w; = 30.3kN/m
4-150. Fr = SL.OKN |, Mg, = 914kN-m D
4-151. Fz = 510kN|,d =179m
4-153. Fr = 1.80kN,d = 233 m
4-154. Fr = 120kN,0 = 48.4°>, d = 328m
4-155. Fr = 120kN,0 = 48.4°,d = 3.69m
4-157. Fp = 6.75kN, (Mg)o = 4.05kN-m 9
4-158. F, = 43.61b,x = 327 ft
4-159. d = 2221t
FI6L Fp= 2 (M = (2” : 4)w0L2 p)
m T
4-162. Fp = 107kN,h = 1.60 m
Chapter 5
5-10. A, = 346kN, A, = 8kN, M, = 202kN-m
5-11. N, = 750N, B, = 600N, B, = 450N
5-13. N, = 2.175kN,B, = 1.875kN, B, = 0
5-14. N, = 3.33kN, B, = 240kN, B, = 133N
5-15. A, = 5.00kN, Ny = 9.00kN, A, = 5.00kN
5-17. 0 =414°
5-18. A, =0,B,=P M, = %
5-19. T= %sin 7]
5-21. Ty = 113N
522. N, =371kN,B, = 1.86 kN, B, = 8.78 kN
5-23. w = 2.67kN/m
5-25. N, =39.71b, Ny = 8251b, My = 1061b-ft
5-26. 6 = 70.3° N = (29.4 — 31.3sin 6) kN,
Nj = (73.6 + 31.3sin 6) kN
527. Ny=98.1N,A, = 850N, A, = 147N
5-29. P =272N
5-30. P, =27IN
5-31. Fyz=866N,B, = 433N, B, = 110N
5-33. A, = 254kN, B, = 22.8kN, B, = 25.4kN

F = 14.0 kN
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5-35.
5-37.
5-38.
5-39.
5-41.
5-42.
5-43.
5-45.

5-46.

5-47.
5-49.
5-50.
5-51.
5-53.
5-54.

5-55.
5-57.
5-58.

5-59.
5-61.
5-62.
5-63.
5-65.
5-66.

5-67.
5-69.

5-70.

5-71.

5-73.

5-74.

5-7s.

5-71.

5-78.

5-79.
5-81.

5-82.

ANSWERS TO SELECTED PROBLEMS

Ny = 173N, No = 416 N, Ny = 692N
N, = 9751b,B, = 9751b, B, = 780 Ib
A, = 146 kip, Fy = 1.66 klp
=175°
F=311kN, A, = 460kN, A, = 7.85kN
Fep = 782N, A, = 625N, A, = 681 N
F, = 724N, F, = 145kN, F, = 1.75kN
P =660N,N, = 442N, 6 = 48.0° =~
3a
4=
Fge = 80kN, A, = 54kN, A, = 16 kN
Fe = 10mN ‘

k = 250 N/m
wp = 2.19 kip/ft, w, = 10.7 kip/ft
a = 104°
h =0.645m
h= =P
3
wy = 83.31b/ft, w, = 167 Ib/ft
2P 4p
Wy = —— Wy = —
L L
0 = 23.2°, 85.2°

Ny = 346N, Ny = 693N, a = 0.650 m
T = 184kN, F = 6.18 kN
Rp = 22.6kip, Ry = 22.6 kip, Ry = 13.7kip
Ny = 28.61b, Ny = 10.71b, N = 10.71b
Tye = 439N, Ny = 589N, A, = 589N,
A, =392N, A, = 177N
Te = 14.8kN, Ty = 165kN, T,
Fap = 467N, Fyc = 674N, D, =
Dy =0,D.=0

= 200 kN, Tpe = 1.35kN, D, = 0.327 kN,
D = 131kN, D, = 458 kN
Fyp = Fpe = 350N, A, = 600N,
A, =0,A, = 300N
C, = 800N, B. = 107N, B, = 600 N,
C, = 536N, A, = 400 N, A = 800 N
F = 746N
Tse = L4OKN, A, = 800N, A, = 120 kN,
(M), = 600N -m, (M), = 1.20 kN -m,
M), = 240kN-m
A, = 300N, A, = 500N, Ny = 400 N,

= 7.27kN
1.04 kN,

(M), = 1.00KN-m, (M), = 200 N-m,
(M,), = 1.50kN-m

A, =6331b,A, = —1411b, B, = —7211b
B, =8951b, C, = 2001b, C. = —5061b
F, = 6741b

C. = 10.61b, D, = —0.230Ib,

C, = 0.2301b, D, = 5.17 Ib,

C,=5441b, M = 0459 1b- ft
FBD = 294N7FBC: 589N,Ax :O,
A, = 589N, A, = 490.5N

583 T =3580N, C,=870N,C, =288N,D, =0,
D, =T792N, D, = 58.0N
5-85. FBC 0,A, =0,A, = 8001Ib,
My), = 480 kip-ft, (M), = 0, (M,). = 0
Chapter 6
6-1. Fop =0, Fep = 20.0kN (C),
Fpp = 333 kN (T), Fpy, = 36.7kN (C)
6-2. Fop =0, Fep = 45.0 kN (C),
Fps = 75.0 kN (T), Fpy = 90.0 kN (C)
6-3. F,c= 1501b(C), Fyz = 1401b (T),
Fyp = 1401b (T), Fye = 0, Fepy = 150 1b (T),
Fop = 1801b (C), Fpr = 1201b (C),
Fpr = 2301 (T), Fgr = 3001b (C)
6-5.  Fep = 521KN(C), Fey = 4.17 kN(T),
Fip = 146KN(C), Fyz = 4.17KN(T),
Fap = 4KN(T)
6-6.  Fop = 521kN(C), Fep = 2.36 kN (T),
Fap = 146 kN (C), Fyp = 2.36 kN (T),
Fyp = 4 kN (T)
6-7.  Fpp = 163kN (C), Fpe = 8.40 kN (T),
Fyy = 8.85kN (C), Fye = 6.20 kN (C),
Fep = 87TKN (T), Fopg = 2.20kN (T),
Fys = 3.11 KN (T), Fgr = 6.20 kN (C),
Fuy = 6.20 kN (T)
6-9.  Fyz = 5.66 kN (C), Fys = 4.00 kN (T),
Fpe = 7.07kN (C), Fpe = 5.00 kN (T),
Fpe = 3.16 kKN (T), Fye = 3.00 kN (T),
Fep = 632 KN (T)
6-10. F,; = 9.90kN (C), Fys = 7.00 kN (T),
Fpr = 113 kN (C), Fpe = 8.00 kN (T),
Fye = 632 kN (T), Fze = 5.00 kN (T),
Fep = 9.49 kN (T)
6-11.  Fp = 333kN(T),
Fyr = Foy = Frg = Far = 28.3kN(C),
Fap = For = Fpc = Frg = Fcp = Fep =
20 kN (T),
Fpr = Fry = Fc = Fgg = 0,
Fex = Fy = 10kN(T), Fy, = Fyy = 23.6 kN (C),
Fep = Fyp = 745KN(C)
6-13.  Fep = Fup = 0.687P (T),
FCB = F,p = 0.943P (C),
= 1.33P (T)
6-14. max = 849 Ib
6-15. max = 849 Ib
6-17. = 5.20kN
6-18. FDE = 8.94 kN (T), Fpe = 4.00 kN (C),

Feg = 4.00kN (C), Fop = 0,

Fep = 11.3kN (C), Fr = 12.0 kN (T),
12.0kN (C), Fgr = 18.0 kN (T),
Fry = 20.1 kKN (C), Fre = 21.0KN (T)

-
>
[



6-19.

6-21.

6-22.

6-23.

6-25.

6-26.
6-27.

6-29.

6-30.

6-31.

6-33.
6-34.

6-35.

6-37.

6-38.

6-39.

6-41.

6-42.

6-43.

6-45.
6-46.

6-47.

Fpg = 134N (T), Fpe = 6.00 kN (C),
Fep = 6.00kN (C), Fop = 0, Fpz = 17.0 kN (C),
Frp = 18.0kN (T), Fpy = 18.0kN (),
Fgr = 20.0kN (T), Fry = 224 kN (C),
Frc = 28.0 kN (T)

Fpg = Fpe = Fpy = 0, Fp = 34.4kN (C),
Feg = 20.6 kN (T), Fgy = 20.6 kN (T),
Fye = 15.0kN (T), Frz: = 30.0kN (O),
Fgy = 15.6 kN (T)

Frz = 0.667P(T), Frp = 1.67P(T),

Fu3 = 0471P(C), Fyz = 1.67P(T),

Fyc = 149P(C), Fgr = 1.41P(T),

Fyp = 1.49P(C), Fpe = 1.41P(T),

Fep = 0.471P(C)

Fze = 1.20P(T), Fyp = 0,

Fu3 = Fyp = 0.373P (C), Fpe = 0.373P (C),
Fpg = 0.333P(T), Fye = 0.373P (C)

Fep = 231kN (C), Fpp = LISKN (O),
Fpg = 4.00 kN (T), Fpy = 4.62 kN (C),
Fus = 2.31kN (C)

Prax = 1.30kN

Fyy = 42.5kN (T), Fye = 100 kN (T),
Fpe = 125kN (C)

Fye = 1125 b (T), Fpp = 3375 1b (C),
Fgy = 3750 b (T)

Fep = 33751b(C), Fy; = 6750 1b (T),
Fey = 56251b (C)

Fy; = 11.25kip (T), Fep = 9.375 kip (C),
Fey = 3.125kip (C), Fp; = 0

For = 125kN (C), Frp = 6.67kN(T), Fge = 0
Foy = 12.5kN (C), Fpg = 6.01 kN (T),
Fge = 6.67kN (T)

Fge = 533 kN (C), Fzr = 5.33 kKN (T),
Fep = 4.00 kN (T)

Frp = 14.0kN (C), Fye = 13.0kN (T),
Fye = 141 KN (T), Fpr = 8.00 kN (T)
Frr = 15.0kN (C), Fze = 12.0kN (T),
Fgp = 424 KN (T)

Fge = 104KN (C), Fyg = 9.16 kN (T),
Fye = 224 kN (T)

Fye = 18.0kN (T), Frp = 15.0kN (C),
Fzp = 5.00kN (C)

Fye = 17.6 kKN (C), Fye = 5.41 kN (C),
Fge = 19.1 KN (T)

Fgy = 17.6 KN (C), Fey = 8.11kN (C),
Fep = 214KN(T), Fog = 7.50 kN (T)
Fpr = 0, Fpg = 35.4kN (C), Fyp = 45kN (T)
Fge = 11.OKN (T), Fgy = 11.2kN (O),
Feyy = 1.25kN (C), Feg = 10.0kN (T)
Fep = 18.0kN(T), Fy = 10.8 kN (T),
Fy; = 26.8 kN (T)

ANSWERS TO SELECTED PROBLEMS 663

6-49.

6-50.

6-51.

6-53.

6-54.

6-55.

6-57.

6-58.

6-59.

6-61.
6-62.
6-63.
6-65.
6-66.

6-67.
6-69.

6-70.

6-71.

6-73.

6-74.

6-75.

6-717.

6-78.

Fgr = 129KN (T), Fr; = 7.21 kN (T),
Fy = 21.1kN (O)

Fep = Feg = 12216 (C), Fep = 173 1b (T),
Fyp = 86.6 1b(T), Fgy = 0, Fp, = 86.6 1b(T)
Fup = 646 KN (T), Fyc = Fyp = 1.50 kN (C),
Fge = Fpp = 3.70 kN (C), Fgr = 4.80 kN (T)
Fes = 8331b(T), Fep = 667 1b (O),

Fep = 3331b(T), Fyp = Fup = 3541b (C),
Fps = 501b (T)

Fey = 10001b (C), Fep = 406 1b (T),

Fep = 3441b (C), Fyp = Fup = 4241b (T),
Fpp = 5441b (C)

Fpr = 531 kN (C), Fgr = 2.00 kN (T),

Fap = 0.691 kN (T)

Fgp =0, Fge = 0, Fgz = 5001b (T),

Fu = 3001b (C), Fye = 5831b (T),

Fup = 3331b(T), Fyz = 6671b (C), Fpz = 0,
Fer = 3001b (C), Fep = 3001b (C),

Fep = 3001b (C), Fpp = 4241b (T)

Fgp = 0, Fye = 0, Fg = 5001b (T),

Fu = 3001b (C), Fye = 9721b(T), Fyp = O,
Fup = 3671b (C), Fpp = 0, Fgr = 3001b (C),
Fep = 5001b (C), Fer = 3001b (C),

Fpp = 4241b (T)

Fyp = 686 N (T), Fyp = 0, Fep = 615N (O),
Fye = 229N (T), Fye = 343N (T),

Fpe = 457N (C)

P=1250b
a.P=2501b,b.P=333b,c.P=11.11b
P= 189N

B, = 400 kN, B, = 5.33kN, A, = 400 kN,
A, = 533kN

A, = 240kN, A, = 12.0kN, D, = 18.0kN,

D, = 24.0kN

A, =1201b,A, = 0, Nc = 1501b

B, = 2.80 kip, B, = 1.05 kip, A, = 2.80 kip,
A, = 5.10kip, M, = 432 kip- ft

C, = 184N, C, = 490.5N, B, = 1.23kN,
B, = 920 kN

Ny = 18.0kN, N = 450kN, A, = 0,
A, = 750kN, M, = 22.5kN-m

N = 3.60kN, Ny = 900N, A, = 0,

A, = 2.70kN, M, = 8.10kN-m

T =3501b,A, = 7001b, A, = 1.88 kip,
D, = 1.70kip, D, = 1.70 kip

T =350 1b,A, = 700 Ib, D, = 1.82 kip,
D, = 1.84 kip, A, = 2.00 kip

A, =961b, A, = 721b, D, = 2.18 kip,
E, = 96.01b, E, = 1.61 kip

N¢ = 3.00kN, N, = 3.00 kN,

B, = 18.0kN,B, = 0
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ANSWERS TO SELECTED PROBLEMS

6-79. No=Np=21Ib
6-81. Fp = 1.94kN, Fp), = 2.60kN
6-82. N, =3601Ib
6-83. Fpp = 20.1 kN, Fpp = 25.5kN,
Member EDC: C; = 18.0kN, Cy = 12.0 kN,
Member ABC: Cy =12.0kN, C; = 18.0kN
6-85. T4, = 2.88kip, Fy = 3.99 kip
6-86. M = 3141b-ft
6-87. F. = 19.6 kN
6-89. +=0650N,C, =0
6-90. Np=Nco=495N
6-91. Fgr = 8.18kN (T), F4p = 158 kN (C)
V2252 — cos20
6-93. P@O) = 250 V2.25 cos“ 6
sin 0 cos @ + V2257 — cos?6 - cos 0
6-94. Nz = 0.11751b, Ny = 0.07051b
6-95. Fy=5251b
6-97. a.F = 2051b, N, = 3801b,
b. F=1021b,No = 7251b
6-98. E, = 1.00kN, E, = 3.00kN, B, = 2.50 kN,
B, = L.OOKN, A, = 2.50kN, A, = 500 N
699. Nc=127kN,A, = 12.7kN, A, = 2.94kN,
Np = 1.05kN
6-101. F = 370N
6-102. N, = 284N
6-103. B, = 2.67kN, B, = 425kN,
A, =333kN,A, = 7.25kN
6-105. P = 198N
6-106. F = 66.11b
6-107. d = 0.638 ft
6-109. P = 4691b
6-110. 6 = 23.7°
6-111. m = 26.0kg
6-113. mg = 1.71 kg
6-114. m; = 106 kg
6-115. P = 283N,B, = D, = 425N,
B, =D, =283N,B, = D, = 283N
6-117. My, = 0.5kN'm, Mg, = 0,E, =0, E, =0
6-118. F, = 20.81b, Fr = 14.71b, F, = 24.51b
Chapter 7
7-1. Ne=0,Ve= —3861b, Mo = =857 Ib-ft,
Np =0,Vp=3001Ib, Mp = —6001b - ft
7-2. N¢e =0, Ve = —1.00 kip, M = 56.0 kip - ft,
Np =0, Vp = —1.00 kip, M;, = 48.0 kip - ft
7-3.  V,=0,N, = —39kN, M, = —2.425kN-m
7-5. Ve = —1331b, M- = 133 1b-in.
L
7-6. a= 3
7-7. Ve = —4.00kip, M = 24.0 kip - ft
7-9.  No= —30kN, Vo= —8kN, M- = 6kN-m

7-10.
7-11.
7-13.
7-14.
7-15.
7-17.
7-18.

7-19.
7-21.

7-22.

7-23.
7-25.

7-26.

7-217.
7-29.
7-30.
7-31.
7-33.
7-34.
7-35.
7-37.
7-38.
7-39.

7-41.

7-42.

7-43.

7-45.

P = 0.533kN, No = —2 kN, V. = —0.533 kN,
Mc = 0.400 kN - m

Ne =2651b, Vo = —6491b, M- = —4.23 kip - ft,
Np = —2651b, V), = 637 1b, M;, = —3.18 kip - ft
Np = 0, Vp, = 3.00 kip, M, = 12.0 kip - ft,

Ng = 0, V; = —8.00 kip, Mz = —20.0 kip - ft
M= —150kip-ft, No = 0, Vo = 2.01 kip,

My = 3.77kip*ft, Np = 0, V;, = 1.11 kip
Ne=0,Ve=—150kN, Mc = 13.5kN-m

N, = 86.61b, V, = 1501b, M, = 1.80 kip - in.
Ve = 249KkN, No = 249kN, M = 497 kN -m,
Np =0, Vp = —249kN, M, = 16.5kN-m
Ne= —432kip, Vo = 1.35kip, M = 4.72 kip - ft
Np = 720N, Vy = 1.12kN, Mz = —320 N -m,
Np=0,Vp=—124kN,Mz = —141 kN-m

Np =4kN,Vp = —9kN, M, = —18kN-m,
Np = 4kN, V= 375kN, M; = —4.875kN-m
Ne = 400N, Ve = —96N, M- = —144N-m
Np =0, Vy, = 0.75kip, M;, = 13.5kip - ft,

Np =0, Vg = —9kip, M = —24.0kip- ft

Ne = —20.0kN, V. = 70.6kN,

M= —302kN-m

Ne = —1.60kN, Ve = 200N, Mc = 200 N-m
Ne = —4061b, Ve = 9031b, M- = 1.35kip - ft
Np = —4641b, V,, = —203 b, M}, = 2.61 kip - ft
Np = 220kN, V= 0,M; = 0,

Np = —220kN, V,, = 600N, Mp = 1.20kN-m
Np = —225kN, V, = 1.25kN, —1.88 kN -m
Ng = 125kN, Vy; = 0, My = 1.69kN-m

d = 0.200m

Np = 1.26kN, V,, = 0, Mp = 500N -m

Ng = —148KkN, V; = 500N, My = 1000 N - m
V = 0278 wor, N = 0.0759 wyr,

M = 0.0759 wor

N¢ = —3501b, (V¢), = 700 1b, (V¢), = —150Ib,
(M¢), = —1.20kip - ft, (M), = =750 1b- ft,
(M¢), = 1.40 kip - ft

(Vo) = 1041b, Ne = 0, (Vo) = 101b,

(M¢), = 201b-ft, M), = 721b-ft,

(M¢), = —1781b-ft

N, = —500N,V, = 100N, V. = 900 N,

M, = 600N-m, M, = —900 N-m,

M. = 400N-m
a. 05x<a:V=(1—£)P,
L
a
M=(1 **)Px,
L
a
a<x<L:V=—(*)P,
L



7-46.

7-47.

7-49.

7-50.
7-51.

7-53.

7-54.

7-55.

b. 0=x <2m:V=6kN,M = {6x} kN-m
2m < x =6m:V = —3kN,
M = {18 — 3x} kN-m

a. ForO=x<aV =P, M = Px,
Fora<x <L —a, V=0, M = Pa,
ForL —a<x=L,V = —P,

M= P(L — x)
b. For0=x < 5ft, V = 800 Ib,

M = 800x Ib- ft,

For5ft <x < 7ft, V =0,

M = 4000 1b- ft,

For7ft < x = 12ft,V = —800 Ib,
M = (9600 — 800x) Ib - ft

Pb Pb
a. For0=x<aqV = M = X,
a+ b a+ b
Pa
Fora<x=a+ b,V = — s
a+b
Pa
M = Pa — X,
a+ b

b. For0=x < 5ft,V = 3501b,
M = 350x Ib-ft,
For5ft <x = 12ft, V = —2501b,
M = 3000 — 250x Ib- ft

L
05x<§:V=O,M=0,
L

cx<ty_om=u
T<x< = V=0M=M,
3 3 0

2L
?<xSL:V:0,M:0,
8
Osx<§m:V=O,M=O,
8

gm < xgjm: V=0 M=500N"-m,

16
?m<x£8m:V=O,M=O
M .« = 2kN-m
OSx<a:V=—wx,M=—%x
a<x=2aV =wQa— x),

_ L)
M—2wax—2wa2—5x
For0 < x < 20ft, V = {490 — 50.0x }Ib,

M = {490x — 25.0x*}1b-ft,
For 20 ft < x < 30ft, V = 0,M = —2001b- ft

w w 2
V= (L= 20.M = Ly~ x)

2

b. V = (2500 — 500x) Ib,
M = (2500x — 250x%) Ib - ft
ForO0 = x < 8m, V = (133.75 — 40x) kN,
M = (133.75x — 20x*) KN - m,
For8m < x = 11m, V = 20kN,
M = (20x — 370)kN-m

ANSWERS TO SELECTED PROBLEMS

7-57.

7-58.

7-59.

7-61.

7-62.

7-63.

7-65.

7-66.

7-67.

7-69.

7-70.

ForO0=x<1L, V= IV—SGL — 18x),
M= ]W—8(7Lx — 9x2),

For L < x < 2L,

_w _w 2 2
V=" 6L~ 20, M= (27Lx — 201 - 92),
For2L < x =3L, V = 1W—8(47L— 18),

M= 1W—8(47Lx — 92 — 60L2)

Member AB: For0 = x < 12 ft,

V = {875 — 150x} Ib,

M = {875x — 75.0x*} b - ft,

For 12 ft < x < 14ft, V = {2100 — 150x }Ib,
M = {=75.0x* + 2100x — 14700 }Ib- ft,
Member CBD:For0 = x < 2ft, V = 9191b,
M = {919x} Ib- ft, For 2 ft < x = 8 ft,

V = —3061b,M = {2450 — 306x }Ib- ft

For 0 = x < 9ft, V=25 — 1.67x%,

M = 25x — 0.556x°

For 9ft < x = 135ft, V=0, M = —180

x =157,V = =20,M = —300,

x =30",V =0,M = 150,

x =457,V = —-60,M = —300
L _ 4Mmax
X = 5, - L

A

x2

0=x=12fc V= {48.0 - Z} kip,

x3
M = {48.0x T 576} kip - ft,

1
2<x=24fV= {8(24 - x)z} kip,
1

M = {—§(24 - x)3} kip - ft
For 0 =x <3m,V = {21.0 — 2x*} kN,

2 3
M = 1210 = 2 KN-m,

For3m <x=6m, V = {39.0 — 12x} kN,
M = {—6x*> + 39x — 18} kN-m

T 7 _ 2.2
\% 12L(4L 6Lx — 3x°),

w

M = ——@L>x — 3Lx* — x%), My, = 0.0940 wL?

12L
N = Psin(@ + ¢),V = —Pcos (6 + ¢),
M = Pr[sin (0 + ¢) — sin ¢]
V,=0,V,= {240 — 4y}1b,
M, = {2y? — 24y + 64.0} Ib-ft,
M, =800lb-ft, M, = 0
x=1,V=450N, M = 450 N - m,
x=3"V=-950N,M =950 N'm

665
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ANSWERS TO SELECTED PROBLEMS

7-71. x=1,V=600N, M = 600N-m
7-74. x =05,V =450N, M = —150N-m,
x=15,V=—750N, M= —300N-m
7-75. x=2%,V=—-375N,M = 750N+m
7-77.  x = 10",V = 20.0kip, M = —50.0 kip - ft
7-78. x=2"V=—-143,M = —86
7-79. x = 1%,V = 175,M = —200,
X =57,V =-25M= —300
7-81. x =45,V =—315kN,M = —450kN - m,
x =85,V =2360kN, M = —540kN-m
7-82. x=275V=0M=1356N-m
7-83. x =13,V =-225kN,M = 2025kN-m
7-85. x=3",V =18001b, M = —900 Ib - ft
x=6,V=0M=18001Ib-ft
7-86. x =15V =225kN,M = —225kN-m
7-87. x=23,V =300kN,M = —1.50kN-m
7-89. x=\15V =0,M = 1291 Ib-ft
x =127,V = —19001b, M = —6000 Ib- ft
7-90. x=0,V=135kN,M = —9.5kN-m
7-91. x=3,V=0M=180kN-m
x=6,V=-270kN,M = —18.0kN-m
7-93. x=15V = 0,M = 37.5kip-ft
7-94. y, =222m,y, = 1.55m
7-95. P, = 320N,y, = 233 m
7-97. x5 = 539m
7-98. P = 700N
7-99. yp = 8.67ft,yp, = 7.04 1t
7-101. y; = 3.53m, P = 0.8KkN, T\uy = Tpp = 8.17kN
7-102. w = 51.91b/ft
7-103. T, = l4.4kip, T, = 13.0 kip
7-105. T,z = Tep = 212 1b (max), yz = 2ft
7-106. x = 2.57ft, W = 2471b
7-107. T, = 61.7kip, Ty = 36.5 kip, T, = 50.7 kip
7-109. T,, = 594 kN
7-110. T, = 552kN
7-111. T, = 3.63 kip
x2 x2 .
T3y = (75 200), Toae = 9.28 kip
T-114. h = 444 ft
7-115. (F,)r = 6.25 kip, (F,)z = 2.51 kip
7-117. (F,), = 165N, (F), = 739N
7-118. W = 4.00 kip, T,,, = 2.01 kip
7-121. [ = 104 ft
7-122. h = 146 ft
7-123. L = 302 ft
Chapter 8
$-1. = 12.8kN
82. N, = 243kip, No = 1.62kip, F = 200 Ib
83. N, = 165kN, Ny = 42.3kN,

8-5.

It does not move.
F =276 kN

8-6.
8-7.

8-10.
8-11.

8-13.
8-14.
8-15.
8-17.
8-18.
8-19.
8-21.
8-22.
8-23.
8-25.
8-26.
8-27.
8-29.
8-30.
8-31.
8-33.

8-34.

8-35.
8-37.
8-38.
8-39.
8-41.
8-42.
8-43.
8-45.
8-46.
8-47.
8-49.
8-50.
8-51.
8-53.
8-54.
8-55.
8-57.
8-58.
8-59.
8-61.
8-62.
8-63.

F = 579kN
a. No
b. Yes

¢ =06,P= Wsin(a + 0)
a. W =3181Ib
b. W = 3601b

Fep = 3.05 kN
0 =21.8°

[ = 26.7 ft
e = 0.231
P =13501b
N4 = 200 1b
n=12

ne = 0.595
0 = 334°

d = 13.4ft
P =T740N
P = 860N
0 =11.0°

= 10.6° x = 0.184 ft
0 = 8.53°, F, = 1.481b, Fy = 0.890 1b
No

1 1
IfP= W, pu=—
SWon

3
WP~ tw
W,

P+ W) — VW + TPYW — P)
s = 20P — W)
forO<P<W
P =8.181b

0, = 400N, O, = 464N
P =350N,0, = 945N, O, = 280N

s = 0.230
6 = 31.0°
P = 654N

The block fails to be in equilibrium.
P =35N
pe = 0.0734, gy = 0.0964

0 = 16.3°

Yes

m = 66.7 kg

P = 408 N

M = 5521b-ft
0 = 334°
P=1331b

P = 100N, d = 1.50 ft
0 = 334°

P = 5.53 kN, yes
P =13961b

x = 183mm

P =239kN



8-65.
8-66.
8-67.
8-69.
8-70.
8-71.
8-74.
8-75.
8-77.
8-78.
8-79.
8-81.
8-82.
8-83.

8-85.
8-86.

8-87.
8-89.
8-90.
8-91.
8-93.
8-94.
8-95.
8-97.
8-99.

8-101.
8-102.
8-103.
8-10s.
8-106.
8-107.
8-109.
8-110.
8-111.

8-113.

8-114.
8-115.
8-117.

8-118.

8-119.
8-121.
8-122.
8-123.
8-125.
8-126.
8-127.
8-129.
8-130.

P = 4.05 kip
P =106 1b
F=667N
W = 7.19kN

The screw is self-locking.
P = 6171b

M = 406N-m
M = 483N-m
w, = 0.0637

M = 5.691b-in.
F = 1.98kN
F=11.6kN
P=104N

a. F=131kN
b. F=372N

He will successfully restrain the cow.

Yes, it is possible.

F =1371b
T, =5771Ib
my = 2.22kg
0 = 99.2°

n = 3 half turns, N,, = 6.74 1b
M = 458 N+m

W =9.171b
P="7871b
M =754N-m, V = 0.171 m®
P=536N
x = 0.384 m
F, = 854N
Wp =12.71b
Opnax = 38.8°
M = 50.0N-m, x = 286 mm
M =132N'm
F=10.71b
M = 16.1N-m
M = 237N-m
2w, PR

" 3cos@
T = 9051b-in.
P=118N
P=2901Ib

8

M = 15 s PR
F=189N
P =2051b
T =2891b, N =4791b, F = 101 Ib
e = 0.0407
r = 20.6mm
P=4221b
me = 0411
P =13331b
P=2531b

ANSWERS TO SELECTED PROBLEMS

667

Chapter 9
—-1. X =124mm,y =0
9-2. x=0y=182ft
9-3. x=0574m,B, =0,A, = 63.1N, B, = 848N
9-5. y=085m
2
9—6. = gm
3
9—7. X = ga
9-9, x = Em
2
12
9-10. y = 5 m
3
-11. x = —
9 X 1 b
9-13. x=6m
9-14. y=28m
9-15. x = 0.398m
9-17. y = 143in.
- a(l + n)
9-18. x =
22 + n)
hn
9-19. y =
YT i+ 1
9-21. x 13 ft
21. x =1—-
5
8
922, y = d4—ft
55
3
9-23. x = 39
9-25. x =3.20ft,y = 3.201t, T4, = 3841b,
Te = 3841b, Ty = 1.15kip
9-26. x = 3ft
6
9-27. y = —ft
Y75
9-29. y = 40.0 mm
1
9-30. x = g(a + b)
h
9-31. y=—
Y73
Ta
9-33. y=—
YT
9-34, ¥ =126m,y = 0.143m, Ny = 47.9kN,
A, =339 kN,Ay = 73.9kN
- 2n + 1)
9-35. =|——"|a
3(n + 2)
9-37. ¥ = 3(’““ a)
3 @
9-38. x =0.785a
4
9-39. x=y=0,Z=-m

3
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9-41.
9-42.
9-43.

9-45.

9-46.

9-417.
9-49.

9-50.

9-51.
9-53.
9-54.
9-55.
9-57.
9-58.
9-59.
9-61.
9-62.
9-63.
9-65.
9-66.
9-67.
9-69.
9-70.

9-71.

9-73.
9-74.

9-75.
9-71.
9-78.
9-79.
9-81.
9-82.
9-83.
9-85.
9-86.
9-87.
9-89.

9-90.
9-91.
9-93.

ANSWERS TO SELECTED PROBLEMS

R* + 37 + 2R
4R* + P + 1R)
2.611t

<o
[l

I8}

Il
s
=
Il
~<|
Il

|2

2
Il
=4

<
Il
0w W[~

[l
o P
o
~J o0

®
=

x|
Il
[

=3m

= 244 mm, y = 40.6 mm
=0,y = 583 mm
=112mm,y = 112mm, z = 136 mm
=0200m,y = 437m

= 154 mm

= 057lin,y = —0.571 in.
79.7 mm

—1.001in.,y = 4.625 in.
85.9 mm

1.571in.,y = 1.57 in.

2 in.

272 mm

1.625 in.

4.32in.

2 .
$rsin’ @

et ] Rl =] R R =] R R
Il

__ sin2a
2

- \/2((12 + at — 2)

YT T 2024 - 0

x =281ft,y = 1.73ft, Ny = 72.11b,
N,y = 8691b

x = 120 mm, y = 305 mm, z = 73.4 mm
0 = 53.1°

7 = 248ft, 6 = 38.9°

z = 0.70 ft

. 122 mm

385 mm

5.07 ft,y = 3.80 ft

128 mm

754 mm

19.0ft,y = 11.0ft

= 164 kg, x = 153 mm,
—15mm,z = 111 mm

v =272(10°) f¢

A = 3.56 (10%) ft?

A = 485611

<l M =)= S
s Il

9-94. W = 3.12(10°) Ib
_m(6m + 4)
9-95, = o«
9-97. V =0.114m?
9-98. A =225m’
9-99, A = 276(10°) mm?
9-101. W = 84.7 kip
9-102. Number of gal. = 2.75 gal
9-103. A = 8wha, V = 2whd’
9-105. Q = 205 MJ
9-106. A = 119(10%) mm?
9-107. W = 126 kip
9-109. A = 1365 m?
9-110. m = 138kg
9-111. m = 2.68 kg
9-113. V = 1.40(10°) in®
9-114. h = 29.9 mm
9-115. Fp = 1250 1b,x = 2.33ft, y = 4.33 ft
9-117. Fr = 24.0kN,
¥ =1200m,y = 133m
9-118. Fy = %’po, i= g,y = g
9-119. Fy, = 2rlp0(§), Fq = wlip,
9-121. For water: Fg, = 157kN, Fp, = 235kN
For oil: d = 422 m
9-122. d=126lm
9-123. FE.S. =271
9-125. F, = 9.60 kip, F, = 40.3 kip
9-126. Fr = 4271b,y = 1.71ft,x = 0
9-127. Fp = 29.4kN, F, = 235kN
9-129. F = 102kN
9-130. Fp = 1961b, Fp, = 1251b
Chapter 10
3
101 =2
3B3n + 1)
a’b
10-2. I, = s
10-3. I, = 457(10%) mm*
10-5. 1, = 0.133m*
10-6. I, = 0.286 m*
10-7. [, = 0.267m*
10-9. I = 2381t
10-10. 7, = ib}ﬁ
15
10-11. [, = 614 m*
10-13. 7, = =
8
10-14. 1, = —m*



10-15.
10-17.

10-18.

10-19.
10-21.
10-22.

10-23.

10-25.
10-26.
10-27.
10-29.

10-30.
10-31.
10-33.
10-34.
10-35.
10-37.
10-38.
10-39.
10-41.
10-42.
10-43.
10-45.
10-46.
10-47.

10-49.

10-50.
10-51.
10-53.

10-54.

10-55.
10-57.

10-58.

10-59.

10-61.
10-62.
10-63.
10-65.
10-66.
10-67.

10-69.

I, = 205 in*

— 1 3
T
I b*h
Y6
I, = 0267 m*
I, = 0.8 m*
I, = 0571 m*

3ab’

I, =
: 35
I, = 209 in*
I, = 533 in*
A = 14.0(10°) mm?
y = 525mm, I, = 16.6(10°) mm*,
I, = 5.725(10°) mm*
I, = 182 in*
I, = 966 in*
I, = 2.03(10°) mm*
I, = 115(10°) mm*
y = 207mm, I, = 222(10%) mm*
I, = 90.2(10°) mm*
I, = 1971 in*
I, = 2376 in*
I, = 341in*
I, = 154(10°) mm*
I, = 913(10°) mm*
X = 61.6mm, I, = 41.2(10°) mm*
I, = 1845in*
I, = 522in*
I, = dbsin 51n6(b2 + @?cos?0)

12
y = 0.181m, I, = 4.23(107%) m*
I, = 520(10°) mm*

I, = 365in*

_ 1.
L, = gtl sin 26
I, = 5.06in*
I, =107m* I, = 1.07m*
I, = éazbz

a4

I = 250
I, = 0.667 in*
I, = 978 in*
I, = 1575 n* I, = 25.75 in*
I, = 119 in*

Xy
I, = 98.4(10°) mm*

X=y=441mm, I,, = —6.26(10°) mm*
I, = 3.47(10%) in*, I, = 3.47(10%) in*,
Iu

» = 2.05(10%) in*

ANSWERS TO SELECTED PROBLEMS

10-70.

10-71.

10-73.

10-74.

10-75.

10-77.

10-78.
10-79.
10-81.

10-82.

10-83.

10-8s.
10-86.
10-87.

10-89.

10-90.
10-91.
10-93.

10-94.
10-95.
10-97.
10-98.
10-99.
10-101

I
I, = —1.75(10°) mm*

=

1,
I, = 3.31(10°) mm*

= 1.28(10°) mm*, 7, = 3.31(10%) mm*,

= 1.28(10°) mm*, I, = —1.75(10°) mm®,

669

Inax = 12191in*, Iy, = 36310, (6,), = 19.0° D,

0,), = 71.0° D

Lo = 17.4(10%) mm*, I;, = 1.84(10°) mm*

0, = 60.0° (0,), = —30.0°
I

ax = 17.4(10%) mm*, I, = 1.84(10°) mm?*,
6,), = 30.0° D, (6,), = 60.0° D

Inax = 250in*, I, = 2041in*, (6,), = 22.5° D

0,), = 67.5° D

6 = 6.08°, I,,, = 1.74(10%) in*, I,;;, = 435 in*
= 6.08°, I = 1.74(10%) in*, I, = 435 in*

I,

I, = 5.90(10°) mm*
0,1 = —31.4°0,, = 58.6°, Iy = 309 in”,
Lo = 42.1 in*
Lo = 309 in*, I, = 42.11in*,
0, = —31.4° 6,, = 58.6°
I = 2 b
X 5m
k, = 57.7 mm
I, = %ma2
I, = gmb2
5

n+2
ky=——h
20n + 4)
I, = 2.25 slug - ft?
3
= —mr
10"
I, = 1.71(10°) kg - m*
I, = 0.0453 kg - m?
I, = 1.53kg-m?
y = 1.78m, I = 445 kg-m’
Ip = 0.276 kg - m?
. I, = 222 slug - ft?

]X

10-102. /. = 29.4 kg m?
1

10-103. 1, = Ema2

10-105. 7, = 0.113 kg m?

10-106. I; = 118 slug - ft

10-107. 1, = 282 slug - ft

10-109. I, = 342 kg-m?
Chapter 11

11-1.  F,c = 7.32Ib

11-2. F = 2Pcotf

11-3. Fg=151b

11-5. F =369N

= 11.8(10°) mm*, I, = —5.09(10°) mm*,
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11-7.
11-9.

11-10.

11-11.
11-13.
11-14.

11-15.

11-17.
11-18.
11-19.

11-21.

11-22.
11-23.

11-25.

11-26.
11-27.

ANSWERS TO SELECTED PROBLEMS

M = 5201b-ft
0 = 16.6° 0 = 35.8°

w
P=—cotf
2CO

0 = 23.8°0 = 72.3°
0 =90° 6 = 36.1°

= 166 N/m

M

" 2asin6
M= 131N-m
6 =412°
k = 9.88kN/m
P 5001/0.04 cos? 0 + 0.6

(0.2 cos @ + V0.04 cos’> 6 + 0.6) sin 0

6 =921°
Ws=251b

W(a + b — dtan 6
F = (a an )\/a2
ac
x = —0.5 ft unstable, x = 0.833 ft stable

Unstable at § = 34.6°, stable at 6 = 145°

+ ¢ + 2acsin 6

11-29.

11-30.
11-31.
11-33.

11-34.

11-35.
11-37.

11-38.

11-39.

11-41.
11-42.
11-43.
11-45.
11-46.

11-49.

0 = 38.7° unstable, § = 90° stable,
= 141° unstable

x = —0.424 ft unstable, x = 0.590 ft stable

0 = 20.2°, stable

Unstable equilibrium at § = 90°

Stable equilibrium at 6 = 49.0°

Unstable equilibrium at § = 0°

Stable equilibrium at § = 72.9°

k = 2.811b/ft

Stable equilibrium at § = 51.2°

Unstable equilibrium at § = 4.71°

k = 157N/m
Stable equilibrium at 6§ = 60°
w o 8k
S 3L
Stable equilibrium at 6 = 24.6°

¢ =174°6 =9.18°

Unstable equilibrium at § = 23.2°
0 =0°%6 =33.0°

m = 529kg

d
0=0°%60 = cosfl<f)
4a



Index

Active force, 89
Angles, 45-47,69-73, 82-83, 403-405, 432
azimuth (¢), 46-47
Cartesian force vectors, 45-47
coordinate direction, 45-46, 82-83
dot product used for, 69-73, 83
dry friction and, 403-405, 432
formed between intersecting lines, 70
impending motion and, 403-405
kinetic friction (8;), 404-405
lead, 432
mathematical review of, 616-617
Pythagorean’s theorem for, 70, 617
screws, 432
static friction (6;), 403,405
transverse (0), 4647
vectors and, 45-47,69-73, 82-81
Applied force (P), 402-405, 459-460
Area (A), 468,470, 502-505, 523-524,
529-535, 540-542, 548-557,576
axial symmetry and rotation, 502-505,
524,548-549
centroid (C) of an, 468,470, 502-505,
523-524
centroidal axis of, 530-531
composite shapes, 503, 540-542, 576
inclined axis, about, 552-554
integration for, 468, 523, 529-532
Mohr’s circle for, 555-557
moments of inertia (1) for, 529-535,
540-542, 548-557,576
Pappus and Guldinus, theorems of,
502-505, 524
parallel-axis theorem for, 530-531,
540, 549,567,576
polar moment of inertia, 530-531
principal moments of inertia, 553-554
procedures for analysis of, 470, 532, 540
product of inertia for, 548-551, 576
radius of gyration of, 531
surface of revolution, 502, 504-505, 524
transformation equations for, 552
volume of revolution, 503-505, 524
Associative law, 126
Axes, 145-149, 190, 202, 529-535, 540-542,
552-557,563-570,576-577
area moments of inertia for, 529-535,
552-554
centroidal axis of, 530-531
composite bodies, 540-542, 568
distributed loads along single, 190
inclined, area about, 552-554
mass moments of inertia for,
563-570,577
Mohr’s circle for, 555-557

moment of a force about specified,
145-149,202

moments of inertia (T), 529-535,
540-542, 552-557,563-570, 576-577

parallel-axis theorem for, 530-531,
540, 549, 567,576

principal, 553-554, 556

procedures for analysis of, 532, 556, 564

product of inertia and, 548-551, 576

radius of gyration for, 531, 568

resultant forces and, 145-149, 190, 202

scalar analysis, 145

transformation equations for, 552

vector analysis, 146-147

Axial loads, friction (F) and, 447-449, 461
Axial revolution, 502-505, 524
Axial symmetry, 488-489, 502-505, 523-524

axial revolution and, 502-505, 524

center of gravity (G) and, 488-489,
502-505, 523

centroid (C) and, 488-489, 502-505, 523

composite bodies, 488-489, 503

Pappus and Guldinus, theorems of,
502-505, 524

rotation and, 502-505, 524

surface area and, 502, 504-505, 524

volume and, 503-505, 524

Axis of symmetry, 467,469, 488-489, 523,

548-551
area product of inertia, 548-551
centroid (C) and, 467,469, 488, 523

Azimuth angles, 46

Ball and socket connections, 245-246, 248
Base units, 7
Beams, 342-380, 396-398

bending moments (M) and, 344-345,
370-375,396

cantilevered, 361

centroid (C), 344

couple moment (M) and, 372

distributed loads, 370-375, 398

force equilibrium, 370-371

free-body diagrams, 343-350, 396

internal forces, 342-380, 396-398

internal loads of, 361-364, 370-375

method of sections for, 343-350

moments, 344-345,370-375, 396

normal force (N) and, 344-345, 396

procedures for analysis of, 345,362

resultant loadings, 344,396

shear and moment diagrams,
361-364,397

shear force (V) and, 344-345,
370-375,396

sign convention for, 345, 397
simply supported, 361
torsional (twisting) moment, 344, 396

Bearings, 246-248, 447-451, 461

collar, 447-449, 461

free-body diagrams, 246-248

frictional analysis of, 447-451, 461

journal, 246-247,450-451, 461

pivot, 447-449, 461

rigid-body support reactions,
246-248

thrust, 247-248

Belts (flat), frictional analysis of, 439441, 460
Bending moment diagrams, 361-364. See

also Shear and moment diagrams

Bending moments (M), 344-345,370-375,

396,398
distributed loads and, 370-375, 398
internal forces and, 344-345,370-375,
396,398
method of sections for, 344-345
shear (V) and, 371

Body at rest (zero), 208
By inspection, determination of forces,

282,292

Cables, 88, 117,210, 246, 381-395, 398

concentrated loads, 381-383, 398
continuous, 88, 117

distributed loads, 384-387, 398
equilibrium of, 88, 117

flexibility of, 381

free-body diagram for, 88,246
inextensible, 381

internal forces of, 381-395, 398
support reactions, 88, 246
weight of as force, 388-391, 398

Calculations, engineering importance of,

10-11

Cantilevered beam, 361
Cartesian coordinate system, 44—49, 56-58,

69, 82-83,125-131,201
addition of vectors, 47
azimuth angles (¢), 46
concurrent force resultants, 47-49, 83
coordinate direction angles, 45-46,
82-83
coplanar force resultants, 34
cross product using, 125-127
direction and, 45-47,125, 128
dot product in, 69
magnitude in, 45, 82, 125, 128
moment of a force, calculations by,
128-131,201
position vectors (r), 56-58, 83

671



672 INDEX

Cartesian coordinate system (continued)
rectangular components, 44, 82
right-hand rule, 44, 56, 125-126, 128
three-dimensional systems, 44—49
transverse angles (g), 46-47
two-dimensional systems, 34
unit vectors, 44, 82
vector formulation, 126-127, 129
vector representation, 45, 82-83

Cartesian vector notation, 34

Center of gravity (G), 6,212, 464-527
center of mass (C,,) and, 467,523
centroid (C) and, 464-527
composite bodies, 488-492, 524
constant density and, 488
coplanar forces, 212
free-body diagrams of, 212
location of, 465-466, 470, 523
Newton’s law and, 6
procedure for analysis of, 470, 489
rigid-body equilibrium and, 212
specific weight and, 488
weight (W) and, 6, 212, 465-466,

488,523

Center of pressure (P), 513,525

Centroid (C), 191,212, 344, 464-527
area in x—y plane, 468, 523
axis of symmetry, 467,469, 488, 523
axial symmetry, 488-489, 502-505,

523-424
beam cross-section location, 344
center of gravity (G) and, 464-527
composite bodies, 488-492, 524
composite shapes, 503
coplanar forces, 212
distributed loads and, 511-518, 525
distributed loads, 191
flat surfaces, 511
fluid pressure and, 512-518, 525
free-body diagrams and, 212
integration for determination of,
467-477,523
line in x—y plane, 468-469, 523
line of action and, 191, 511, 513, 525
location of, 191, 467-477,523
mass of a body (C,,), 467,478,523
method of sections and, 344
Pappus and Guldinus, theorems of,
502-505, 524
plates, 497-518
procedure for analysis of, 470, 489
Pythagorean’s theorem for, 469
resultant forces and, 191, 344, 511,
513-518,525
rigid-body equilibrium and, 212

rotation of an axis, 502-505, 524

surface area and, 502, 504-505, 524

volume and, 467, 503-505, 523-524
Centroidal axis, 530-531

Coefficient of kinetic friction (uy), 404-405

Coefficient of rolling resistance, 452-453
Coefficient of static friction (), 403,405
Collar bearings, frictional analysis of,
447-449, 461
Collinear vectors, 19, 81
Communitative law, 18, 126
Components of a force, 18,20-22
Composite bodies, 488492, 503, 503, 524,
540-542, 568, 576-577
area of, 503, 540-542, 576
axial symmetry and, 488-489
center of gravity (G), 488-492, 524
centroid (C) of, 488-492, 503, 524
constant density and, 488
mass moments of inertia, 568, 577
moments of inertia (1), 540-542,
568, 576
procedure for analysis of, 489, 540
theorem of Pappus and Guldinus for
parts of, 503
specific weight and, 488
weight (W) and, 488,524
Compressive forces (C),275-277,291-292
method of joints and, 276-277
method of sections and, 291-292
truss members, 275
Concentrated force, 5
Concentrated loads, 370-371, 381-383,
397-398
cables subjected to, 381-383, 398
distributed loads, 370-371
shear and moment discontinuities
from, 371,397
Concurrent forces, 47-49, 83, 106-110, 117,
177,252
addition of vectors, 47-49
Cartesian coordinate system for,
47-49, 83
couple moments and, 177
equilibrium of, 106-110, 117,252
statical determinacy and, 252
systems, simplification of, 177
Conservative forces, 597-599
potential energy and, 598-599
potential function for, 599
spring force, 597
virtual work (U) and, 597-599
weight, 597
Constant density, center of gravity (G)
and, 488

Constraints, 251-259
improper, 252-253
procedure of analysis of, 254
redundant, 251
statical determinacy and, 251-259
rigid-body equilibrium and, 251-259
Conversion of units, 9
Coordinate direction angles, 45-46, 82-83
Coordinates, 44-49, 56-58, 82-83, 585-586,
600, 612. See also Cartesian
coordinate system
Cartesian, 44-49, 56-58, 82-83
direction angles (6), 45-46, 82
frictionless systems, 600
position, 585-586, 600, 612
potential energy and, 600
vector representation, 44-49, 56-58
virtual work for rigid-body connec-
tions, 585-586, 600, 612
X, Y, Z positions, 56
Coplanar distributed loads, 190-194
Coplanar forces, 33-38, 82, 91-95, 117,
166-171,177,208-244, 268-269
addition of systems of, 33-38
Cartesian vector notation, 34
center of gravity, 212
centroid (geometric center), 212
couple moments and, 166-171, 177
direct solution for unknowns,
220-229, 269
direction of, 33,34
equations of equilibrium, 91, 208,
220-229
equilibrium of, 91-95, 117, 208-244,
268-269
equivalent system, 166-171
free-body diagrams, 91-92,209-218, 268
idealized models of, 212-213
internal forces and, 212
magnitude of, 33,34, 91
particles subjected to, 91-95, 117
procedure for analysis of, 92,214,221
rectangular components, 33-38, 82
resultants, 34-38
rigid bodies, 208-244, 268-269
scalar notation, 33, 34
support reactions, 209-211, 268
system components, 33-38
systems, simplification of, 166-171,
177
three-force members, 230-231
two-force members, 230-231
vectors for, 33-38, 82
weight and, 212
Cosine functions, 617



Cosine law, 22, 81
Coulomb friction, 401. See also
Dry friction
Couple, 154
Couple moments (M), 154-159, 166-171,
177-183,202-203, 372, 582-583
concurrent force systems and, 177
coplanar force systems and,
166-171, 177
distributed load relationships, 372
equivalent couples, 155
equivalent system, 166-171
force systems, 154-159
free vectors, 154
internal forces and, 372
parallel force systems and, 178
procedure for analysis of, 168
resultant, 155-156
right-hand rule for, 154
rotation of, 582
scalar formulation of, 154
shear load (V) relationships, 372
systems, simplification of, 166-171,
177-183
three-dimensional systems, 166-171,
177-183
translation of, 582
vector formulation of, 154
virtual work of, 583
work of, 582
wrench, reduction of forces to, 179
Cross product, 125-127
Cartesian vector formulation, 126-127
direction and magnitude by, 125
laws of operation, 126
right-hand rule for, 125-126
vector multiplication using, 125-127
Curved plates, fluid pressure and, 514
Cylinders, rolling resistance of, 452—453, 461

Derivatives, 618
Derived units, 7-8
Dimensional homogeneity, 10
Direct solution for unknowns, 220-229, 269
Direction, 17,33, 34, 45-47,70, 81, 122, 125,
128,201, 405,407
azimuth angles, 46
Cartesian coordinate vectors, 45-47
coordinate direction angles, 45-46
coplanar force systems, 33, 34
cross product and, 125
dot product applications, 70
frictional forces, 405, 407
moments, 122, 125,128,201
right-hand rule for, 125, 128,201

three-dimensional systems, 4547
transverse angles, 46-47
vector sense of, 17,33, 34, 81

Direction cosines, 45-46
Disks, 447-449, 461, 564, 577

frictional analysis of, 447-449, 461
mass moments of inertia, 564, 577

Displacement (8), 583-590, 600, 612

frictionless systems, 600

potential energy and, 600

principle of virtual work and,
583-590, 612

procedure for analysis of, 586

rigid-bodies, connected systems of,
585-590

virtual work (U) and, 583-590,
600,612

virtual work equations for, 583

Distributed loads, 190-194, 203, 370-375,

384-387,397-398, 511-518, 525
axis representation, along single, 190
beams subjected to, 370-375,
397-398

bending moment (M) relationships,
370-375,398

cables subjected to, 384-387, 398

center of pressure (P), 513,525

centroid (C) of, 191, 511-518, 525

concentrated loads, 370-371

coplanar, 190

couple moment (M) relationships, 372

fluid pressure and, 512-518, 525

force equilibrium, 370-371

force system resultants, 190-194, 203

incompressible fluids, 512

internal forces, 370-375, 384-387,
397-398

linearly, 513, 515, 525

line of action of, 191

magnitude and, 190, 511, 525

reduction of force and, 190-194, 203

resultant forces of, 190-194, 203,
511,525

shear force (V) relationships,
370-375, 398

uniform, 370, 525

Distributive law, 69, 132
Dot notation, 10
Dot product, 69-73, 83, 146

applications in mechanics, 70

Cartesian vector formulation, 69

laws of operation, 69

moment about a specified axis, 146

vector angles and direction from,
69-73, 83

INDEX 673

Dry friction, 400-463

angles (9) of, 403-404

applied force (P) and, 402-405,
459-460

bearings, analysis of, 447-451, 447

belts (flat), analysis of, 439-441, 460

collar and pivot bearings, analysis of,
447-449, 461

characteristics of, 401-405, 459

coefficients of (u), 403405, 459

direction of force, 405, 407

disks, analysis of, 447-449

equations for friction versus equilib-
rium, 407-414

equilibrium and, 402,407

impending motion, 403, 406-414,
432-433,459-460

journal bearings, analysis of,
450451, 461

kinetic force (Fy), 404-405, 459

motion and, 403-405, 406414,
432-434,459-460

problems involving, 406-414

procedure for analysis of, 409

rolling resistance and, 452-453, 461

screws, forces on, 432-434, 460

slipping and, 403-405, 406-414, 459

static force (Fy), 403,405,459

theory of, 402

tipping effect, balance of, 402, 459

wedges and, 430-431, 460

Dynamics, study of, 3

Elastic potential energy(V,), 598
Engineering notation, 11
Equations of equilibrium, 87,91, 106, 208,
220-229,250,268-269, 407-414
alternative sets, 220-221
body at rest (zero), 208
coplanar force systems, 91, 220-229,
268-269
direct solution, 220-229, 269
frictional equations and, 407-414
particles, 87,91, 106
procedure for analysis using, 221
rigid bodies, 208, 220-229, 268-269
scalar form, 250, 268-269
three-dimensional force systems, 106,
250,269
three-force members, 230-231
two-force members, 230-231
vector form, 250, 269
Equilibrium, 86-119, 206271, 370-371, 402,
407-414, 600-606, 613
concurrent forces, 106-110, 117
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Equilibrium (continued)

conditions for, 87,207-208, 220

coplanar force systems, 91-95, 117,
208-244,268-269

distributed loads, 370-371

free-body diagrams, 88-91, 106,
209-218,245-248,268-269

friction and, 402, 407

frictionless systems, 600

impending motion and, 407-414

improper constraints and, 252-253

neutral, 601-602

one degree-of-freedom system, 601

particles, 86-119

potential-energy (V) criterion for,
600,613

procedures for analysis of, 92, 106,
214,221,254,603

redundant constraints and, 251

rigid bodies, 206-271

stability of systems, 601-606, 613

stable, 601-602

statical determinacy and,
251-259,269

support reactions, 209-211, 245-249,
268-269

three-dimensional force systems,
106-110, 117,245-259, 269

three-force members, 230-231

tipping effect, balance of, 402,459

two-dimensional force systems,
91-95,117

two-force members, 230-231

unstable, 601-602

virtual work (U) and, 600-606, 613

zero condition, 87,117,208

Equivalent couples, 155
Equivalent systems, 166-171, 177-183

concurrent force system, 177

coplanar systems, 166-171, 177

force and couple moment simplifica-
tion, 166-171,177-183

parallel force systems, 178

principle of transmissibility for, 166

procedures for analysis, 168, 178

wrench, reduction to, 179

three-dimensional systems, 166-171, 177

Exponential notation, 10

fluid pressure and, 513, 515, 525
variable width, 515

Floor beams, truss analysis and, 274
Fluid pressure, 512-518, 525

center of pressure (P), 513
centroid (C), 512-518, 525

curved plate of constant width, 514
flat plate of constant width, 513
flat plate of variable width, 515
incompressible fluids, 512

line of action, 513

Pascal’s law, 512

plates, 512-518, 525

resultant forces and, 513-518, 525

Force, 4, 5-9, 16-85, 86-119, 120-205, 212,

230-231,275-277,291, 305, 342-399,
402-405, 459-460, 511, 513-518,
525,581-583, 585-590, 597-598
active, 89
addition of vectors, 20-26, 33-38,
47-49
applied (P), 402-405, 459-460
axis, about a specified, 145-149, 190
basic quantity of mechanics, 4
by inspection, 282,292
cables, 88, 381-395
Cartesian vector notation for, 34
components of, 20-22, 33-38
compressive (C),275-277,291-292
concentrated, 5
concurrent, 47-49, 83, 166-171, 177
conservative, 597-598
coplanar, 33-38, 91-95, 117, 166-171,
177,203
couple moments and, 154-159,
166-171, 177-183,203
cross product, 125-127
directed along a line, 59-62
displacements from, 585-590
distributed loads, 190-194, 203, 511, 525
dot product, 69-73, 83
equilibrium and, 86-119, 230-231,
370-371
equivalent system, reduction to,
166-171,177-183
external, 207,305
free-body diagrams, 88-92, 117,
291-296, 305, 343-350

moment of, 121-124, 128-131, 145-149,
154-159,166-171,201-202

motion and, 403-405

Newton’s laws, 6-7

nonconservative, 597

normal (N), 344-345, 396, 402-403

parallel systems, 178

parallelogram law for, 18,20-22, 81

particles subjected to, 86-119

position vectors and, 56-58, 83

principle of moments, 132-134

principle of transmissibility, 128, 166

procedures for analysis of, 22, 89,92,
168,178, 345

pulleys, 88

reactive, 89

rectangular components, 33-38, 44, 82

resultant, 18,20-22, 34-38, 120-205,
511,513-518, 525

scalar notation for, 33, 34

scalars and, 17,18, 69, 81, 121-124, 201

shear (V), 344-345,370-375,
396,398

simplification of systems, 166-171, 203

spring (F;), 597

springs, 88

static frictional (Fy), 403,405,459

structural analysis and, 275-277,
291-292, 305, 343-350

structural members, 230-231, 274-275,
292-293, 343-380

systems of, 33-38, 120-205

tensile (T),275-277,291-292

three-dimensional systems, 44—49,
56-58,106-110, 117, 166-171

unbalanced, 6

units of, 8-9

unknown, 291-292

virtual work (U) and, 581-583,
585-590, 597-598

weight, 7 388-391, 398, 597

work (W) of, 581-583

wrench, reduction to, 179

vectors and, 16-85, 86-119, 125-131, 201

Frames, 305-320, 337

free-body diagrams for, 305-311, 337
procedure for analysis of, 311
structural analysis of, 305-320, 337

External effects, 166
External forces, 207, 305

friction, 402-405, 459, 597
gravitational, 7

internal, 212,291, 305, 342-399
kinetic frictional (F}), 404-405, 459

Free vector, 154

Free-body diagrams, 88-92, 106, 117,
209-218,245-249,251,268-269,

Fixed supports, 209, 211, 247 291-296,305-311, 337, 343-350, 396

Flat plates, 511, 513, 515, 525

constant width, 513
distributed loads on, 511, 525

line of action, 17,59-62, 83
method of sections for, 291-296,
343-350

beams, 343-350, 396
cables, 88
center of gravity, 212



centroid (geometric center), 212

concurrent forces, 106

coplanar force systems, 91-92,
209-218,221,268

equilibrium and, 88-92,209-218, 221,
245-259,251,268-269

external forces and, 305

frames, 305-311, 337

idealized models of, 212-213

internal forces and, 212, 305,
343-350, 396

machines, 305-311, 337

method of sections using, 291-296,
343-350

particle equilibrium, 88-92

procedures for analysis using, 214,
221,254,311

pulleys, 88

rigid bodies, 209-218, 245-249, 251,
268-269

smooth surfaces, 88

springs, 88

statical determinacy and, 251,269

structural analysis using, 291-296,
305-311, 337

support reactions, 209-211, 245-248,
251,268-269

three-dimensional systems, 245-249,
251,269

weight and, 212

Frictional circle, 450
Friction (F),400-463,597

angles (0) of, 403—-404

applied force (P), 402-405,
459-460

axial loads and, 447-449, 461

bearings, analysis of, 447-451, 461

belts (flat), forces on, 439-441, 460

characteristics of, 401-405, 459

coefficients of (u),403-405,
452-453,459

collar bearings, analysis of, 447449, 461

Coulomb, 401

disks, analysis of, 447-449, 461

dry, 400-463

equations for friction and equilib-
rium, 407-414

equilibrium and, 402, 407

force of, 402-405, 459

impending motion, 403, 406-414,
432-433, 459-460

journal bearings, analysis of,
450-451, 461

kinetic force (Fy), 404-405, 459

lateral loads and, 450-451, 461

nonconservative force, as a, 597
point of contact, 401-402, 404
pivot bearings, analysis of, 447-449, 461
procedure for analysis of, 409
rolling resistance and, 452-453, 461
screws, forces of, 432-434, 460
shaft rotation and, 447-451, 461
slipping and, 404-405, 406-414, 459
static force (Fj), 403,405,459
virtual work (U) and, 597
wedges and, 430-431, 460
Frictionless systems, 600

Geometric center, 191,212, 344. See also
Centroid (C)

Gravitational attraction, Newton’s law of, 7

Gravitational potential energy (V,), 598

Gravity, see Center of gravity (G)

Hinge connections, 209, 212, 245, 247
Hyperbolic functions, 618

Idealizations for mechanics, 5
Impending motion, 403, 406-414,432-433,
459-460
all points of contact, 406
angle of static friction for, 403
coefficient of static friction ()
for, 403
downward, 433, 460
dry friction problems due to, 406-414
equilibrium and frictional equations
for, 407-414
friction and, 403, 406414, 432433,
459-460
no apparent, 406
points of contact, 404
procedure for analysis of, 409
screws and, 432-434, 460
some points of contact, 407
upward, 432-433, 460
verge of slipping, 403
Inclined axes, moment of inertia for area
about, 552-554
Incompressible fluids, 512
Inertia, see Moments of inertia
Integrals, 619
Integration, 467-477,511, 515, 525, 529-532,
563,576-577
area (A) integration, 468, 529-532
center of mass (C,,), determination of
using, 467477
centroid (C), determination of using,
467-477,511, 515,525
distributed loads, 511, 515, 525
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line segment, 468—469

mass moments of inertia, determina-
tion of using, 563, 577

moments of inertia, determination of
using, 529-532, 576

parallel-axis theorem for, 530-531

pressure distribution and, 515, 525

procedure for analysis using, 532

resultant force integration, 511, 525

volume (V), 467

volume elements for, 563

Internal forces, 212, 291, 305, 342-399

beams subjected to, 342-380, 396-398

bending moments (M) and, 344-345,
370-375, 396, 398

cables subjected to, 381-395, 398

compressive (C), 291

concentrated loads, 370-371, 381-383,
397-398

couple moment (M) and, 372

distributed loads, 370-375, 397-398

force equilibrium, 370-371

frames, 305

free-body diagrams, 305, 343-350, 396

machines, 305

method of sections and, 291, 343-350

moments and, 344-345,370-375,
396-398

normal force (N) and, 344-345,396

procedures for analysis of, 345, 362

resultant loadings, 344, 396

rigid-body equilibrium and, 212

shear and moment diagrams,
361-364, 397

shear force (V) and, 344-345,
370-375, 396, 398

sign convention for, 345, 397

structural members with, 343-350, 396

tensile (T), 291

torsional (twisting) moment, 344,396

weight, 388-391, 398

International System (SI) of units, 8, 9-10

Joints, truss analysis and, 273-274,276-281.
See also Method of joints

Joules (J), unit of, 582

Journal bearings, 246-248, 450-451, 461
frictional analysis of, 450451, 461
support connections, 246-248

Kinetic frictional force (F}), 404-405, 459
Lateral loads, friction (F) and, 450-451, 460

Laws of operation, 69
Lead of a screw, 432
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Lead angle, 432

Length, 4, 8-9,468-470, 523
basic quantity of mechanics, 4
centroid (C) of lines, 468-470, 523
procedure for analysis of, 470
Pythagorean theorem for, 469
units of, 8-9

Line of action, 17, 59-62, 83,191, 511,513,525
force vector directed along, 59-62, 83
resultant force, 191, 511
vector representation of, 17

Linear elastic behavior, 88

Lines, centroid (C) of, 468-469. See also

Length
Loads, 190-194,274, 370-375, 381-383,

396-398,447-451, 461, 512-518, 525.

See also Distributed loads
axial, 447-449, 461
beams, 370-375, 396-397
cables, 381-383, 398
concentrated, 370-371, 381-383,
397-398
distributed, 370-375, 398
fluid pressure, 512-518
friction (F) and, 447-451, 461
lateral, 450-451, 461
linear distribution of, 513-514, 525
moment (M) relations with,
370-375, 398
resultant forces, 190-192
reduction of distributed, 190-194
shaft rotation and, 447-451, 461
shear (V), 370-375, 396, 398
single axis representation, 190
three-dimensional, 344, 396
truss joints, 274
uniform, 525

Machines, 305-320, 337
free-body diagrams for, 305-311, 337
procedure for analysis of, 311
structural analysis and, 305-320, 337
Magnitude, 17,33, 34,44, 88,91, 122, 125,
128,190,201, 511, 525
Cartesian vectors, 45
coplanar force systems, 33, 34, 91
constant, 88
cross product and, 125
distributed load reduction and, 190,
511,525
equilibrium and, 88,91
integration for, 511, 525
moments and, 122, 125, 128,201
resultant forces, 190, 511, 525

right-hand rule for, 128
vector representation of, 17,33, 34,45
units of, 122
Mass, 4, 8-9, 467,478, 523
basic quantity of mechanics, 4
center of (C,,), 467 478,523
integration of, 467 523
units of, 8-9
Mass moments of inertia, 563-570, 577
axis systems, 563-570, 563, 577
composite bodies, 568, 577
disk elements, 564, 577
parallel-axis theorem for, 567
procedure for analysis of, 564
radius of gyration for, 568
shell elements, 564, 577
volume elements for integration, 563
Mathematical expressions, 616-619
Mechanics, study of, 3
Members, 230-231, 274-275,292-293,
343-350,396
compressive force (C), 275
equilibrium of forces, 230-231
internal loads in, 343-350, 396
joint connections, 274
tensile force (T), 275
three-force, 230-231
truss analysis and, 274-275, 291-292
two-force, 230-231
unknown forces, 291-292
Method of joints, 276-284,301, 335
compressive forces, 276-277
procedures for analysis using, 277,301
space truss analysis, 301
structural analysis using, 276-284,
301, 335
tensile forces, 276-277
truss analysis, 276-284,301, 335
zero-force members, 282-284
Method of sections, 291-296, 301, 336,
343-350
compressive forces, 291-292
internal forces from, 291, 343-350
free-body diagrams for, 291-296,
343-350
procedures for analysis using, 293,
301,345
space truss analysis, 301
structural analysis using, 291-296, 301,
336, 343-350
tensile forces, 291-292
truss analysis, 291-296, 336
unknown member forces, 291-292, 336
Models, idealized rigid bodies, 212-213

Mohr’s circle, 555-557
Moment arm (perpendicular distance),
121-122
Moment axis, 122, 145-149, 202
direction and, 122
force about a, 145-149, 202
scalar analysis of, 145
vector analysis of, 146-147
Moments (M), 120-205, 344-345, 370-375,
396,398
bending (M), 344-345,370-375, 396,398
concentrated load discontinuities, 371
couple (M), 154-159, 166171,
177-183,202-203, 372
cross product for, 125-127
direction and, 122, 125,128,201
distributed loads and, 190-194, 203,
370-375, 398
force, of, 120-205
free vector, 154
internal forces and, 344-345, 370-375,
396,398
magnitude and, 122, 125, 128,201
parallel force systems and, 178
perpendicular to force resultants,
177-183
principle of moments, 132-134
principle of transmissibility, 128, 166
procedures for analysis of, 168, 178
resultant, 122-124, 129, 155-156
scalar formulation of, 121-124,
154,201
shear loads (V) and, 370-375, 398
sign convention for, 122, 126
system simplification of, 166-171,
177-183,203
torque, 121
torsional (twisting), 344, 396
Varignon’s theorem, 132-134
vector formulation of, 126-131,
154,201
wrench, reduction of force and couple
to, 179
Moments of inertia (/), 528-579
algebraic sum of, 540
area (A), 529-535, 540-542,
548-557,576
axis systems, 529-535, 540-542,
548-554,563-570
composite shapes, 540-542, 564,
576-577
disk elements, 564
inclined axis, area about, 552-554
integration and, 529-532



mass, 563-570, 563, 577

Mohr’s circle for, 555-557

parallel-axis theorem for, 530-531,
540, 549,567,576

polar, 530-531

principle, 552-554, 556, 577

procedures for analysis of, 532, 540,
556,564

product of inertia and, 548-551, 576

radius of gyration for, 531, 568

shell elements, 564

transformation equations for, 552

Motion, 6, 403-414, 430-434,439-441,
447-435, 459461

belt drives, 439-441, 460

coefficients of friction (u) and,
403-405, 452-453,459

downward, 433, 460

equilibrium and frictional equations
for, 407-414

friction and, 403-414, 430434,
439-441, 447-435, 459-460

impending, 403, 406414, 432-433,
459-460

kinetic frictional force (Fy),
404-405, 459

Newton’s laws of, 6

points of contact, 404

procedure for analysis of, 409

rolling resistance and,
452-453, 461

screws and, 432-434, 460

self-locking mechanisms, 430, 433

shaft rotation, 447-451, 461

slipping, 404405, 406414, 459

static frictional force (Fy), 403,
405,459

upward, 432-433, 460

verge of sliding, 403

wedges, 430-431, 460

Multiforce members, 305. See also Frames;
Machines

Neutral equilibrium, 601-602
Newton, unit of, 8
Newton’s laws, 6-7
gravitational attraction, 7
motion, 6
Nonconservative force, friction as a, 597
Normal force (N), 344-345, 396, 402-403
friction and, 402-403
internal forces as, 344-345
method of sections for, 344-345
Numerical calculations, importance of, 10-11

Pappus and Guldinus, theorems of,
502-505, 524
axial revolution and symmetry, 502-505
centroid (C) and, 502-505, 524
composite shapes, 503
surface area and, 502, 504-505, 524
volume and, 503-505, 524
Parallel-axis theorem, 530-531, 540, 549,
567,576
area moments of inertia determined
by, 530-531
area product of inertia determined by,
549,576
centroidal axis for, 530-531, 576
composite areas, 540
mass moments of inertia, 567
moments of inertia, 530-531, 540,
567,576
product of inertia determined by,
549, 576
Parallel force and couple moments,
simplification of, 178
Parallelogram law, 18,20-22, 81
Particles, 5-7, 86119
coplanar force systems, 91-95, 117
defined, 5
equations of equilibrium, 87 91, 106
equilibrium of, 86-119
free-body diagrams, 88-91
gravitational attraction, 7
Newton’s laws applied to, 6-7
nonaccelerating reference of motion, 6
procedures for analysis of, 92, 106
three-dimensional force systems,
106-110, 117
two-dimensional force systems,
91-95, 117
zero condition, 87, 117
Perpendicular distance (moment arm),
121-122
Pin connections, 209-211, 213, 247-248, 274
coplanar systems, 209-211, 213
free-body diagrams of, 209-211,
247-248
three-dimensional systems, 247-248
truss member joints, 274
Pivot bearings, frictional analysis of,
447-449
Planar truss, 273
Plates, 511-518, 525
flat of constant width, 513
distributed loads on, 511
flat of variable width, 515
centroid (C), 511-518, 525
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curved of constant width, 514
flat of constant width, 499
flat of variable width, 501
fluid pressure and, 512-518, 525
resultant forces acting on, 511,
513-518, 525
Point of contact, 401-402, 404
Polar moments of inertia, 530-531
Position coordinates, 585-586, 600, 612
Position vectors (r), 56-58, 83
head-to-tail addition, 56-57
x, y, z coordinates, 56, 83
Potential energy (V), 598-606, 613
elastic (V,), 598
equilibrium, criterion for, 600, 613
equilibrium configurations, 601-606
frictionless systems, 600
gravitational (V,), 598
position coordinates for, 600
potential function equations, 599
procedure for analysis of, 603
single degree-of-freedom systems,
599, 601
stability of systems and, 601-606, 613
virtual work (V) and, 598-606, 613
Power-series expansions, 618
Pressure, see Fluid pressure
Principal axes, 552-554, 556
Principle moments of inertia, 553-554,
556, 563
Principle of moments, 132-134
Principle of transmissibility, 128, 166
Principle of virtual work, 581, 583-590, 612
Product of inertia, 548-551,576
axis of symmetry for, 548-549
moments of inertia of an area and,
548-551,576
parallel-axis theorem for, 549, 576
Procedure for analysis, 12-14
Projection, 70, 146
Pulleys, free-body diagram of, 88
Purlins, 273
Pythagorean theorem, 70,469, 617

Quadratic formula, 618

Radius of gyration, 531, 568
Reactive force, 89
Rectangular components, force vectors of,
33-38,44
Resultants, 18, 20-22, 34-38, 81, 120-205,
344,396,511, 513-518, 525
axis, moment of force about, 145-149,
190,202
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Resultants (continued)

Cartesian vector components, 44

Cartesian vector notation for, 34

centroid (C) and, 191, 344, 511,
513-518, 525

concurrent forces, 4749, 177

coplanar forces, 34-38, 177

couple moments, 154-159, 166-171,
177-183,203

distributed loads, reduction of,
190-194,203, 511, 525

fluid pressure and, 513-518, 525

force components of, 18,20-22

force system, 120-205

integration for, 511, 525

internal forces, 344, 396

line of action, 191, 511, 513

magnitude of, 190, 511, 525

method of sections for, 344

moments of a force, 128-132

parallel forces, 178

parallelogram law for, 18, 20-22, 81

perpendicular to moments, 177-183

plates, 511-518, 525

principle moments, 132-134

procedure for analysis of, 178

scalar formulation of, 121-124, 145,
154,201

scalar notation for, 33

system reduction for, 166-171,
177-183, 203

vector addition for, 18, 20-22

vector formulation of, 128-131,
154,202

wrench, reduction to, 179

Revolution, 502-505, 524

axial symmetry and, 502-505

centroid (C) and, 502-505, 524

composite shapes, 503

Pappus and Guldinus, theorems of,
502-505, 524

surface area, 502, 504-505, 524

volume, 503-505, 524

Right-hand rule, 44, 56, 125-126, 128, 154

cross product direction, 125-126
moment of a couple, 154
three-dimensional coordinate
systems, 44, 56

vector formulation, 126, 128

Rigid bodies, 3, 5,206-271, 585-590, 612
center of gravity, 212
centroid (geometric center), 212
conditions for, 207-208
connected systems of, 585-590, 612
constraints of, 251-259

coplanar force systems, 208-244,
268-269
defined, 5
displacement (8) and, 585-590, 600, 612
equations of equilibrium for, 208,
220-229,268-269
equilibrium of, 206-271
external forces and, 207
force and couple systems acting on,
207-208
free-body diagrams, 209-218, 245-249,
251,268-269
frictionless systems, 600
idealized models of, 212-213
internal forces and, 212
improper constraints for, 252-253
mechanics, study of, 3
position coordinates for, 585-586,
600, 612
procedures for analysis of, 214, 221,
254,586
redundant constraints for, 251
statical determinacy and, 251-259, 269
support reactions, 209-211, 245-248,
251-259,268-269
three-dimensional systems,
245-259,269
three-force members, 230-231
two-force members, 230-231
uniform, 212
virtual work (V) for, 585-590, 600, 612
weight and, 212
Rocker connections, 210
Roller connections, 209-210, 213, 246
Rolling resistance, frictional forces and,
452-453,461
Roof truss, 273-274, 335
Rotation of couple moments, 582. See also
Revolution; Shaft rotation
Rounding off numbers, 11

Scalar notation, 33, 34
Scalar product, 69
Scalar triple product, 146
Scalars, 17,18, 33, 69, 121-124, 145, 154, 201,
250,268-269, 582
couple moments, formulation by, 154
dot product and, 69
equations of equilibrium, 250,
268-269
moment of a force about an axis, 145
moment of a force, formulation by,
121-124,201
multiplication and division of vectors
by, 18

vectors and, 17,69
negative, 33,91
torque, 121
work as, 582
Screw, reduction of force and couple to, 179
Screws, frictional forces on, 430—434, 460
Self-locking mechanisms, 430, 433
Sense of direction, 17
Shaft rotation, 447-451, 461
axial loads, 447-449, 461
collar and pivot bearings for, 447-449
frictional analysis of, 447-451, 461
frictional circle, 450
journal bearings for, 450-451, 461
lateral loads, 450-451, 461
Shear and moment diagrams, 361-364,
370-357,397-398
beam analysis using, 361-364,
370-375
couple moment (M) and, 372
discontinuities in, 371
distributed load relations and,
370-375, 398
internal forces and, 361-364, 370-375,
397-398
moment (M) relations in, 371-375, 398
procedure for analysis of, 362
shear force (V) relations in,
370-375, 398
Shear force (V), 344-345,370-375, 396, 398
beams, 344-345,370-375, 396,398
bending moments (M) and, 344-345,
370-375, 396,398
concentrated load discontinuities, 371
couple moment (M) and, 372
distributed load relations,
370-375, 398
internal forces, 344-345, 370-375,
396, 398
method of sections for, 344-345
Shell elements, mass moments of inertia,
564,577
Significant figures, 11
Simple truss, 275
Simply supported beam, 361
Sine functions, 617
Sine law, 22, 81
Single degree-of-freedom systems, 599, 601
Sliding vector, 128, 166
Slipping, 403-414,459
friction and, 403-414, 459
impending motion of, 403,
406-414, 459
kinetic frictional force (Fy),
404-405, 459



motion of, 404414
points of contact, 404
problems involving, 406-414
static frictional force (F;), 403,405,459
verge of, 403, 459
Slug, unit of, 8
Smooth surface support, 88, 246
Solving problems, procedure for, 12-14
Space trusses, structural analysis of,
301-302,337
Specific weight, center of gravity (G)
and, 488
Spring constant (k), 88
Spring force (F), virtual work and, 597
Springs, free-body diagram of, 88, 117
Stability of a system, 252-253, 269, 601-606,
613. See also Equilibrium
equilibrium configurations for,
601-602, 613
potential energy and, 601-606
procedure for analysis of, 603
statical determinacy and, 252-253,269
virtual work and, 601-606, 613
Stable equilibrium, 601-602
Static frictional force (Fy), 403, 405, 459
Statical determinacy, 251-259, 269
procedure for analysis of, 254
improper constraints and, 252-253
indeterminacy, 251, 269
reactive parallel forces, 243
redundant constraints and, 251
rigid-body equilibrium and,
251-259,269
stability and, 252-253,269
Statically indeterminate bodies, 251,269
Statics, 2-15
basic quantities, 4
concentrated force, 5
force, 4,5-9
gravitational attraction, 7
historical development of, 4
idealizations, 5
length, 4,8-9
mass, 4, 8-9
mechanics study of, 3
motion, 6
Newton’s laws, 6-7
numerical calculations for, 10-11
particles, 5
procedure for analysis of, 12-14
rigid bodies, 5
study of, 2-15
time, 4,8
units of measurement, 7-10
weight, 7

Stiffness factor (k), 88
Stringers, 274
Structural analysis, 272-341, 343-350
compressive forces (C), 275-277,
291-292
frames, 305-320, 337
free-body diagrams, 291-296,
305-311, 337
internal forces and, 343-350
machines, 305-320, 337
method of joints, 276-284, 301, 335
method of sections, 291-296, 301, 336,
343-350
multiforce members, 305
procedures for analysis of, 277, 293,
301,311,345
space trusses, 301-302, 337
tensile forces (T), 275-277,291-292
trusses, 273-304, 335-337
zero-force members, 282-284
Structural members, see Members
Support reactions, 209-211, 245-248,
251-259,268-269
coplanar force systems, 209-211, 268
improper constraints, 252-253
procedure for analysis of, 254
redundant constraints, 251
rigid-body equilibrium and, 209-211,
245-248,268-269
statical determinacy and, 251-259, 269
three-dimensional force systems,
245-248,251-259,269
Surface area, centroid (C) and, 502,
504-505, 524
Symmetry, see Axial symmetry; Axis of
symmetry
System simplification, 166-171, 177-183
concurrent force system, 177
coplanar force system, 177
coplanar systems, 166-171, 177
equivalent system, reduction to,
166-171,177-183
force and couple moments, 167
parallel force systems, 178
procedures for analysis, 168, 178
reduction to a wrench, 179
three-dimensional systems,
166-171,177

Tangent functions, 617

Tensile forces (T),275-277,291-292
method of joints and, 276-277
method of sections and, 291-292
truss members, 275

Tetrahedron form, 301
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Thread of a screw, 432
Three-dimensional systems, 44—49,
56-58,82-83,106-110, 117, 166-171,
245-259,269.
See also Concurrent forces
addition of vectors, 47
azimuth angles, 46
Cartesian coordinate system for,
4449, 82-83
Cartesian unit vectors, 44
Cartesian vector representation, 45
concurrent forces, 47-49, 83, 106-110,
117,252
constraints for, 251-259, 269
coordinate direction angles,
45-46
direction and, 45-47
equations of equilibrium, 106,
250,269
equilibrium of, 106-110, 117,
245-259,269
equivalent system, 166-171
force and couple moments, 166-171
force vectors, 44-49
free-body diagrams, 106
magnitude in, 45
particles, 106-110, 117
position vectors, 56-58, 83
procedure for analysis of, 106
reactive parallel forces, 253
rectangular components, 44
resultants, 47-49
right-hand rule, 44, 56
rigid bodies, 245-259
statical determinacy and,
251-259,269
support reactions for, 245-248,
251-259,269
transverse angles (), 46-47
Three-force member equilibrium,
230-231
Thrust bearing connections, 247,248
Time, 4,8
basic quantity of mechanics, 4
units of, 8
Tipping effect, balance of, 402,459
Torque, 121. See also Moments (M)
Torsional (twisting) moment, 344,396
Transformation equations, moments of
inertia (/) and, 552
Translation of a couple moment, 582
Transverse angles, 46-47
Triangle rule, 18-19, 81
Triangular truss, 275
Trigonometric identities, 618
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Trusses, 273-304, 335-337
assumptions for design, 274-275, 301
compressive force (C) and, 275-277,
291-292
floor beams, 274
joints, 273-274,276-281
method of joints, 276-284, 301, 335
method of sections, 291-296, 301, 336
planar, 273
procedures for analysis of, 277,
293,301
purlins, 273
roof, 273-274, 335
simple, 273-275
space trusses, 301-302, 337
stringers, 274
structural analysis for, 273-304,
335-337
tensile force (T) and, 275-277,291-292
zero-force members, 282-284
Two-dimensional systems, 33-38, 82, 91-95,
208-244. See also Coplanar forces
force vectors, 33-38, 82
particle equilibrium, 91-95
rigid-body equilibrium, 208-244
Two-force member equilibrium, 230-231

U.S. Customary (FPS) system of units, 8
Uniform distributed load, 370, 525
Uniform rigid bodies, 212
Unit vectors, 44, 59, 82
Units of measurement, 7-10

base, 7

conversion of, 9

derived, 7-8

International System (SI) of, 8, 9-10

prefixes, 9

rules for use, 10

U.S. Customary (FPS) system of, 8
Unknown member forces, 291-292, 336
Unstable equilibrium, 601-602

Varignon’s theorem, 132-134
Vectors, 16-85, 125-131, 146-147,154, 201,
250,269
addition of, 18-19, 47
addition of forces, 20-26, 33-38
Cartesian coordinate system, 4449,
56-58, 69, 125-131,201

Cartesian notation for, 34

components of a force, 18,20-22, 81

concurrent forces, 4749, 83

coplanar force systems, 33-38

cross product method of multiplica-
tion, 125-127

collinear, 19, 81

couple moments, formulation
by, 154

direction and, 17, 33, 34, 45-47

division by scalars, 18

dot product, 69-73, 83

equations of equilibrium, 250, 269

force directed along a line, 59-62

forces and, 16-85

free, 154

line of action, 17,59-62, 83

magnitude and, 17,33, 34,45

moment of a force about an axis,
146-147

moments of a force, formulation by,
128-131,201

multiplication by scalars, 18

operations, 18-19

parallelogram law for, 18,20-22, 81

physical quantity requirements, 17

position (r), 56-58, 83

procedure for analysis of, 22

rectangular components, 33-38,
44,82

resultant of a force, 18,20-22, 81

scalar notation for, 33

scalars and, 17,18, 69, 81

sliding, 128, 166

subtraction, 19

systems of coplanar forces, 33-38

three-dimensional systems, 44—49,
82-83

triangle rule for, 18-19, 81

two-dimensional systems, 33-38, 82

unit, 44,59, 82

Virtual work (U), 580-615

conservative forces and, 597-599

couple moment, work of, 582-583

displacement (8) and, 583-590,
600, 612

equations for, 583

equilibrium and, 600-606, 613

force (F) and, 581-583, 585-590,
597-598, 612

friction and, 598

frictionless systems, 600

movement as, 583

position coordinates for, 585-586,
600, 612

potential energy (V) and,
598-606, 613

principle of, 581, 583-590, 612

procedures for analysis using,
586, 603

rigid-bodies, connected systems of,
585-590

single degree-of-freedom systems,
599, 601

spring force (F,) and, 597

stability of a system, 601-606, 613

weight (W) and, 597

work (W) of a force, 581-583

Volume (V), 467,470, 503-505, 523-524

axial rotation and symmetry,
503-505, 524

centroid of (C), 467,470, 503-505,
523-524

integration of, 467, 523

Pappus and Guldinus, theorems of,
503-505, 524

procedure for analysis of, 470

Wedges, 430431, 460
Weight (W), 7,212, 388-391, 398, 465-466,

488,523-524,597
cables subjected to own,
388-391, 398
center of gravity (G) and, 212,
465-466, 523-524
composite bodies, 488, 524
conservative force of, 597
gravitational attraction and, 7
internal force of, 388-391, 398
rigid-body equilibrium and, 212
virtual work (U) and, 597

Work (W) of a force, 581-583. See also

Virtual work

Wrench, reduction of force and moment

to, 179

X, y, z position coordinates, 56, 83

Zero condition of equilibrium, 87, 117,208
Zero-force members, method of joints

and, 282-284



Multiple Exponential Form Prefix SI Symbol
1000 000 000 10° giga G
1000 000 106 mega M
1000 103 kilo k
Submultiple

0.001 103 milli m
0.000 001 10-6 micro u
0.000 000 001 1079 nano n

Conversion Factors (FPSJ to [S“ ]

Conversion Factors (FPS] ]

1 ft =12 in. (inches)
1 mi. (mile) = 5280 ft
1 kip (kilopound) = 1000 1b
1 ton=2000 1b

Unit of Unit of
Quantity Measurement (FPS) Equals Measurement (SI)
Force b 4.448 N
Mass slug 14.59 kg
Length ft 0.3048 m




Geometric Properties of Line and Area Elements
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