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To the Student

With the hope that this work will stimulate  
an interest in Engineering Mechanics  

and provide an acceptable guide to its understanding.





The main purpose of this book is to provide the student with a clear and thorough 
presentation of the theory and application of engineering mechanics. To achieve this 
objective, this work has been shaped by the comments and suggestions of hundreds 
of reviewers in the teaching profession, as well as many of the author’s students.

New to this Edition
Preliminary Problems.  This new feature can be found throughout the text, and 
is given just before the Fundamental Problems. The intent here is to test the student’s 
conceptual understanding of the theory. Normally the solutions require little or no 
calculation, and as such, these problems provide a basic understanding of the concepts 
before they are applied numerically. All the solutions are given in the back of the text.

Expanded Important Points Sections.  Summaries have been added which 
reinforce the reading material and highlights the important definitions and concepts 
of the sections.

Re-writing of Text Material.  Further clarification of concepts has been 
included in this edition, and important definitions are now in boldface throughout 
the text to highlight their importance.

End-of-Chapter Review Problems.  All the review problems now have 
solutions given in the back, so that students can check their work when studying 
for exams, and reviewing their skills when the chapter is finished.

New Photos.  The relevance of knowing the subject matter is reflected by the 
real-world applications depicted in the over 60 new or updated photos placed 
throughout the book. These photos generally are used to explain how the relevant 
principles apply to real-world situations and how materials behave under load.

New Problems.  There are approximately 30% new problems that have been 
added to this edition, which involve applications to many different fields of 
engineering.
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Hallmark Features
Besides the new features mentioned above, other outstanding features that define 
the contents of the text include the following.

Organization and Approach.  Each chapter is organized into well-defined 
sections that contain an explanation of specific topics, illustrative example problems, 
and a set of homework problems. The topics within each section are placed into 
subgroups defined by boldface titles. The purpose of this is to present a structured 
method for introducing each new definition or concept and to make the book 
convenient for later reference and review.

Chapter Contents.  Each chapter begins with an illustration demonstrating a 
broad-range application of the material within the chapter. A bulleted list of the 
chapter contents is provided to give a general overview of the material that will be 
covered.

Emphasis on Free-Body Diagrams.  Drawing a free-body diagram is 
particularly important when solving problems, and for this reason this step is strongly 
emphasized throughout the book. In particular, special sections and examples are 
devoted to show how to draw free-body diagrams. Specific homework problems have 
also been added to develop this practice.

Procedures for Analysis.  A general procedure for analyzing any mechanical 
problem is presented at the end of the first chapter. Then this procedure is customized 
to relate to specific types of problems that are covered throughout the book. This 
unique feature provides the student with a logical and orderly method to follow when 
applying the theory. The example problems are solved using this outlined method in 
order to clarify its numerical application. Realize, however, that once the relevant 
principles have been mastered and enough confidence and judgment have been 
obtained, the student can then develop his or her own procedures for solving problems.

Important Points.  This feature provides a review or summary of the most 
important concepts in a section and highlights the most significant points that should 
be realized when applying the theory to solve problems.

Fundamental Problems.  These problem sets are selectively located just after 
most of the example problems. They provide students with simple applications of the 
concepts, and therefore, the chance to develop their problem-solving skills before 
attempting to solve any of the standard problems that follow. In addition, they can 
be used for preparing for exams, and they can be used at a later time when preparing 
for the Fundamentals in Engineering Exam.

Conceptual Understanding.  Through the use of photographs placed 
throughout the book, theory is applied in a simplified way in order to illustrate some 
of its more important conceptual features and instill the physical meaning of many 
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of the terms used in the equations. These simplified applications increase interest in 
the subject matter and better prepare the student to understand the examples and 
solve problems.

Homework Problems.  Apart from the Fundamental and Conceptual type 
problems mentioned previously, other types of problems contained in the book 
include the following:

•	 Free-Body Diagram Problems.  Some sections of the book contain 
introductory problems that only require drawing the free-body diagram for the 
specific problems within a problem set. These assignments will impress upon the 
student the importance of mastering this skill as a requirement for a complete 
solution of any equilibrium problem.

•	 General Analysis and Design Problems.  The majority of problems in the 
book depict realistic situations encountered in engineering practice. Some of 
these problems come from actual products used in industry. It is hoped that this 
realism will both stimulate the student’s interest in engineering mechanics and 
provide a means for developing the skill to reduce any such problem from its 
physical description to a model or symbolic representation to which the principles 
of mechanics may be applied.

Throughout the book, there is an approximate balance of problems using either 
SI or FPS units. Furthermore, in any set, an attempt has been made to arrange the 
problems in order of increasing difficulty except for the end of chapter review 
problems, which are presented in random order.

•	 Computer Problems. An effort has been made to include some problems that 
may be solved using a numerical procedure executed on either a desktop computer 
or a programmable pocket calculator. The intent here is to broaden the student’s 
capacity for using other forms of mathematical analysis without sacrificing the 
time needed to focus on the application of the principles of mechanics. Problems 
of this type, which either can or must be solved using numerical procedures, are 
identified by a “square” symbol (■) preceding the problem number.

The many homework problems in this edition, have been placed into two different 
categories. Problems that are simply indicated by a problem number have an 
answer and in some cases an additional numerical result given in the back of the 
book. An asterisk (*) before every fourth problem number indicates a problem 
without an answer.

Accuracy.  As with the previous editions, apart from the author, the accuracy of 
the text and problem solutions has been thoroughly checked by four other parties: 
Scott Hendricks, Virginia Polytechnic Institute and State University; Karim Nohra, 
University of South Florida; Kurt Norlin, Bittner Development Group; and finally 
Kai Beng, a practicing engineer, who in addition to accuracy review provided 
suggestions for problem development.
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Contents

Statics 
The book is divided into 11 chapters, in which the principles are first applied to 
simple, then to more complicated situations. In a general sense, each principle is 
applied first to a particle, then a rigid body subjected to a coplanar system of forces, 
and finally to three-dimensional force systems acting on a rigid body.

Chapter 1 begins with an introduction to mechanics and a discussion of units. The 
vector properties of a concurrent force system are introduced in Chapter 2. This 
theory is then applied to the equilibrium of a particle in Chapter 3. Chapter 4 contains 
a general discussion of both concentrated and distributed force systems and the 
methods used to simplify them. The principles of rigid-body equilibrium are 
developed in Chapter 5 and then applied to specific problems involving the 
equilibrium of trusses, frames, and machines in Chapter 6, and to the analysis of 
internal forces in beams and cables in Chapter 7. Applications to problems involving 
frictional forces are discussed in Chapter 8, and topics related to the center of gravity 
and centroid are treated in Chapter 9. If time permits, sections involving more 
advanced topics, indicated by stars (�), may be covered. Most of these topics are 
included in Chapter 10 (area and mass moments of inertia) and Chapter 11 (virtual 
work and potential energy). Note that this material also provides a suitable 
reference for basic principles when it is discussed in more advanced courses. Finally, 
Appendix A provides a review and list of mathematical formulas needed to solve 
the problems in the book.

Alternative Coverage.  At the discretion of the instructor, some of the 
material may be presented in a different sequence with no loss of continuity. For 
example, it is possible to introduce the concept of a force and all the necessary 
methods  of vector analysis by first covering Chapter 2 and Section 4.2 (the cross 
product). Then after covering the rest of Chapter 4 (force and moment systems), the 
equilibrium methods of Chapters 3 and 5 can be discussed.

Dynamics
The book is divided into 11 chapters, in which the principles are first applied to 
simple, then to more complicated situations.

The kinematics of a particle is discussed in Chapter 12, followed by a discussion of 
particle kinetics in Chapter 13 (Equation of Motion), Chapter 14 (Work and Energy), 
and Chapter 15 (Impulse and Momentum). The concepts of particle dynamics 
contained in these four chapters are then summarized in a “review” section, and the 
student is given the chance to identify and solve a variety of problems. A similar 
sequence of presentation is given for the planar motion of a rigid body: Chapter 16 
(Planar Kinematics), Chapter 17 (Equations of Motion), Chapter 18 (Work and 
Energy), and Chapter 19 (Impulse and Momentum), followed by a summary and 
review set of problems for these chapters.

If time permits, some of the material involving three-dimensional rigid-body 
motion may be included in the course. The kinematics and kinetics of this motion 
are discussed in Chapters 20 and 21, respectively. Chapter 22 (Vibrations) may  
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be included if the student has the necessary mathematical background. Sections of 
the book that are considered to be beyond the scope of the basic dynamics course 
are indicated by a star (�) and may be omitted. Note that this material also provides 
a suitable reference for basic principles when it is discussed in more advanced 
courses. Finally, Appendix A provides a list of mathematical formulas needed to 
solve the problems in the book, Appendix B provides a brief review of vector 
analysis, and Appendix C reviews application of the chain rule.

Alternative Coverage.  At the discretion of the instructor, it is possible to cover 
Chapters 12 through 19 in the following order with no loss in continuity: Chapters 12 
and 16 (Kinematics), Chapters 13 and 17 (Equations of Motion), Chapter 14 and 18 
(Work and Energy), and Chapters 15 and 19 (Impulse and Momentum).
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Resources for Instructors
•	 MasteringEngineering.  This online Tutorial Homework program allows you to integrate dynamic homework 
with automatic grading and adaptive tutoring. MasteringEngineering allows you to easily track the performance 
of your entire class on an assignment-by-assignment basis, or the detailed work of an individual student.

•	 Instructor’s Solutions Manual.  This supplement provides complete solutions supported by problem 
statements and problem figures. The fourteenth edition manual was revised to improve readability and was 
triple accuracy checked. The Instructor’s Solutions Manual is available on Pearson Higher Education website: 
www.pearsonhighered.com.

•	 Instructor’s Resource.  Visual resources to accompany the text are located on the Pearson Higher Education 
website: www.pearsonhighered.com. If you are in need of a login and password for this site, please contact your 
local Pearson representative. Visual resources include all art from the text, available in PowerPoint slide and 
JPEG format.

•	 Video Solutions.  Developed by Professor Edward Berger, Purdue University, video solutions are located 
in the study area of MasteringEngineering and offer step-by-step solution walkthroughs of representative 
homework problems from each section of the text. Make efficient use of class time and office hours by 
showing students the complete and concise problem-solving approaches that they can access any time and 
view at their own pace. The videos are designed to be a flexible resource to be used however each instructor 
and student prefers. A valuable tutorial resource, the videos are also helpful for student self-evaluation as 
students can pause the videos to check their understanding and work alongside the video. Access the videos 
at www.masteringengineering.com. 

Resources for Students
•	 MasteringEngineering.  Tutorial homework problems emulate the instructor’s office-hour environment, 
guiding students through engineering concepts with self-paced individualized coaching. These in-depth tutorial 
homework problems are designed to coach students with feedback specific to their errors and optional hints 
that break problems down into simpler steps.

•	 Statics Study Pack.  This supplement contains chapter-by-chapter study materials and a Free-Body Diagram 
Workbook.

•	 Dynamics Study Pack.  This supplement contains chapter-by-chapter study materials and a Free-Body Diagram 
Workbook.

•	 Video Solutions.  Complete, step-by-step solution walkthroughs of representative homework problems 
from each section. Videos offer fully worked solutions that show every step of representative homework 
problems—this helps students make vital connections between concepts.

•	 Statics Practice Problems Workbook.  This workbook contains additional worked problems. The problems 
are partially solved and are designed to help guide students through difficult topics.

•	 Dynamics Practice Problems Workbook.  This workbook contains additional worked problems. The 
problems are partially solved and are designed to help guide students through difficult topics.

xiv
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Ordering Options
The Statics and Dynamics Study Packs and MasteringEngineering resources are available as stand-alone items for 
student purchase and are also available packaged with the texts. The ISBN for each valuepack is as follows:

•	 Engineering Mechanics: Statics with Study Pack: ISBN 0134136683

•	 �Engineering Mechanics: Statics Plus MasteringEngineering with Pearson eText—Access Card Package: 
ISBN: 0134160681

•	 Engineering Mechanics: Dynamics with Study Pack: ISBN: 0134116658

•	 �Engineering Mechanics: Dynamics Plus MasteringEngineering with Pearson eText — Access Card Package: 
ISBN: 0134116992

Custom Solutions

Please contact your local Pearson Sales Representative for more details about custom options or visit 

www.pearsonlearningsolutions.com, keyword: Hibbeler.
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Chapter 1

Large cranes such as this one are required to lift extremely large loads. Their 
design is based on the basic principles of statics and dynamics, which form 

the subject matter of engineering mechanics.

(© Andrew Peacock/Lonely Planet Images/Getty Images)



General Principles

CHAPTER OBJECTIVES

n	 To provide an introduction to the basic quantities and idealizations 
of mechanics.

n	 To give a statement of Newton’s Laws of Motion and Gravitation.

n	 To review the principles for applying the SI system of units.

n	 To examine the standard procedures for performing numerical 
calculations.

n	 To present a general guide for solving problems.

1.1  Mechanics

Mechanics is a branch of the physical sciences that is concerned with the 
state of rest or motion of bodies that are subjected to the action of forces. 
In general, this subject can be subdivided into three branches: rigid-body 
mechanics, deformable-body mechanics, and fluid mechanics. In this book 
we will study rigid-body mechanics since it is a basic requirement for the 
study of the mechanics of deformable bodies and the mechanics of fluids. 
Furthermore, rigid-body mechanics is essential for the design and analysis 
of many types of structural members, mechanical components, or electrical 
devices encountered in engineering.

Rigid-body mechanics is divided into two areas: statics and dynamics. 
Statics deals with the equilibrium of bodies, that is, those that are either 
at rest or move with a constant velocity; whereas dynamics is concerned 
with the accelerated motion of bodies. We can consider statics as a special 
case of dynamics, in which the acceleration is zero; however, statics 
deserves separate treatment in engineering education since many objects 
are designed with the intention that they remain in equilibrium.



4 	 Chapter 1    General Pr inciples

1
Historical Development.  The subject of statics developed very 
early in history because its principles can be formulated simply from 
measurements of geometry and force. For example, the writings of 
Archimedes (287–212 B.C.) deal with the principle of the lever. Studies 
of the pulley, inclined plane, and wrench are also recorded in ancient 
writings—at times when the requirements for engineering were limited 
primarily to building construction.

Since the principles of dynamics depend on an accurate measurement 
of time, this subject developed much later. Galileo Galilei (1564–1642) 
was one of the first major contributors to this field. His work consisted of 
experiments using pendulums and falling bodies. The most significant 
contributions in dynamics, however, were made by Isaac Newton  
(1642–1727), who is noted for his formulation of the three fundamental 
laws of motion and the law of universal gravitational attraction. Shortly 
after these laws were postulated, important techniques for their 
application were developed by other scientists and engineers, some of 
whom will be mentioned throughout the text.

1.2  Fundamental Concepts

Before we begin our study of engineering mechanics, it is important to 
understand the meaning of certain fundamental concepts and principles.

Basic Quantities.  The following four quantities are used throughout 
mechanics.

Length.  Length is used to locate the position of a point in space and 
thereby describe the size of a physical system. Once a standard unit of 
length is defined, one can then use it to define distances and geometric 
properties of a body as multiples of this unit.

Time.  Time is conceived as a succession of events. Although the 
principles of statics are time independent, this quantity plays an 
important role in the study of dynamics.

Mass.  Mass is a measure of a quantity of matter that is used to 
compare the action of one body with that of another. This property 
manifests itself as a gravitational attraction between two bodies and 
provides a measure of the resistance of matter to a change in velocity.

Force.  In general, force is considered as a “push” or “pull” exerted by 
one body on another. This interaction can occur when there is direct 
contact between the bodies, such as a person pushing on a wall, or it can 
occur through a distance when the bodies are physically separated. 
Examples of the latter type include gravitational, electrical, and magnetic 
forces. In any case, a force is completely characterized by its magnitude, 
direction, and point of application.
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1
Idealizations.  Models or idealizations are used in mechanics in 
order to simplify application of the theory. Here we will consider three 
important idealizations.

Particle.  A particle has a mass, but a size that can be neglected. For 
example, the size of the earth is insignificant compared to the size of its 
orbit, and therefore the earth can be modeled as a particle when studying 
its orbital motion. When a body is idealized as a particle, the principles of 
mechanics reduce to a rather simplified form since the geometry of the 
body will not be involved in the analysis of the problem.

Rigid Body.  A rigid body can be considered as a combination of a 
large number of particles in which all the particles remain at a fixed 
distance from one another, both before and after applying a load. This 
model is important because the body’s shape does not change when a 
load is applied, and so we do not have to consider the type of material 
from which the body is made. In most cases the actual deformations 
occurring in structures, machines, mechanisms, and the like are relatively 
small, and the rigid-body assumption is suitable for analysis.

Concentrated Force.  A concentrated force represents the effect of 
a loading which is assumed to act at a point on a body. We can represent 
a load by a concentrated force, provided the area over which the load is 
applied is very small compared to the overall size of the body. An 
example would be the contact force between a wheel and the ground.

Three forces act on the ring. Since these 
forces all meet at a point, then for any 
force analysis, we can assume the ring to 
be represented as a particle. (© Russell 
C. Hibbeler)

Steel is a common engineering material that does not deform 
very much under load. Therefore, we can consider this 
railroad wheel to be a rigid body acted upon by the 
concentrated force of the rail. (© Russell C. Hibbeler)
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1
Newton’s Three Laws of Motion.  Engineering mechanics is 
formulated on the basis of Newton’s three laws of motion, the validity of 
which is  based on experimental observation. These laws apply to the 
motion of a particle as measured from a nonaccelerating reference frame. 
They may be briefly stated as follows.

First Law.  A particle originally at rest, or moving in a straight line with 
constant velocity, tends to remain in this state provided the particle is not 
subjected to an unbalanced force, Fig. 1–1a.

Equilibrium

v
F2F1

F3

(a)

Second Law.  A particle acted upon by an unbalanced force F 
experiences an acceleration a that has the same direction as the force 
and a magnitude that is directly proportional to the force, Fig. 1–1b.*  
If F is applied to a particle of mass m, this law may be expressed 
mathematically as

	 F = ma � (1–1)

Accelerated motion

a
F

(b)

Third Law.  The mutual forces of action and reaction between two 
particles are equal, opposite, and collinear, Fig. 1–1c.

Action – reaction

force of A on B

force of B on A

F F
A B

(c)

Fig. 1–1

*Stated another way, the unbalanced force acting on the particle is proportional to the 
time rate of change of the particle’s linear momentum.
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Newton’s Law of Gravitational Attraction.  Shortly after 
formulating his three laws of motion, Newton postulated a law governing 
the gravitational attraction between any two particles. Stated mathematically,

 	 F = G 
m1m2

r2 � (1–2)

where

	 F	 =	 force of gravitation between the two particles

	 G 	=	� universal constant of gravitation; according to experimental 
evidence, G = 66.73(10- 12) m3> (kg # s2)

	 m1, m2	 =	mass of each of the two particles

	 r	 =	distance between the two particles

Weight.  According to Eq. 1–2, any two particles or bodies have a 
mutual attractive (gravitational) force acting between them. In the case 
of a particle located at or near the surface of the earth, however, the only 
gravitational force having any sizable magnitude is that between the 
earth and the particle. Consequently, this force, termed the weight, will 
be the only gravitational force considered in our study of mechanics.

From Eq. 1–2, we can develop an approximate expression for finding the 
weight W of a particle having a mass m1 = m. If we assume the earth to be a 
nonrotating sphere of constant density and having a mass m2 = Me, then if  
r is the distance between the earth’s center and the particle, we have

W = G 
mMe

r2

Letting g = GMe>r2 yields

	 W = mg � (1–3)

By comparison with F = ma, we can see that g is the acceleration due to 
gravity. Since it depends on r, then the weight of a body is not an absolute 
quantity. Instead, its magnitude is determined from where the measurement 
was made. For most engineering calculations, however, g is determined at 
sea level and at a latitude of 45°, which is considered the “standard location.”

1.3  Units of Measurement

The four basic quantities—length, time, mass, and force—are not all 
independent from one another; in fact, they are related by Newton’s 
second law of motion, F = ma. Because of this, the units used to measure 
these quantities cannot all be selected arbitrarily. The equality F = ma is 
maintained only if three of the four units, called base units, are defined 
and the fourth unit is then derived from the equation.

The astronaut’s weight is diminished since 
she is far removed from the gravitational 
field of the earth. (© NikoNomad/
Shutterstock)
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1
SI Units.  The International System of units, abbreviated SI after the 
French “Système International d’Unités,” is a modern version of the 
metric system which has received worldwide recognition. As shown in 
Table 1–1, the SI system defines length in meters (m), time in seconds (s), 
and mass in kilograms (kg). The unit of force, called a newton (N), is 
derived from F = ma. Thus, 1 newton is equal to a force required to give 
1 kilogram of mass an acceleration of 1 m>s2 (N = kg # m>s2).

If the weight of a body located at the “standard location” is to be 
determined in newtons, then Eq. 1–3 must be applied. Here measurements 
give g = 9.806 65 m>s2; however, for calculations, the value g = 9.81 m>s2 
will be used. Thus,

 	 W = mg   (g = 9.81 m>s2)� (1–4)

Therefore, a body of mass 1 kg has a weight of 9.81 N, a 2-kg body weighs 
19.62 N, and so on, Fig. 1–2a.

U.S. Customary.  In the U.S. Customary system of units (FPS) 
length is measured in feet (ft), time in seconds (s), and force in pounds (lb), 
Table 1–1. The unit of mass, called a slug, is derived from F = ma. Hence, 
1 slug is equal to the amount of matter accelerated at 1 ft>s2 when acted 
upon by a force of 1 lb (slug = lb # s2>ft).

Therefore, if the measurements are made at the “standard location,” 
where g = 32.2 ft>s2, then from Eq. 1–3,

	 m =
W
g
   (g = 32.2 ft>s2)� (1–5)

And so a body weighing 32.2 lb has a mass of 1 slug, a 64.4-lb body has a 
mass of 2 slugs, and so on, Fig. 1–2b.

32.2 lb

1 slug

(b)

Fig. 1–2 

9.81 N

1 kg

(a)

Table 1–1  Systems of Units

Name Length Time Mass Force

International 
System of Units 

SI

meter

m

second

s

kilogram 

kg

newton*

N¢kg # m

s2 ≤
U.S. Customary 

FPS
foot

ft

second

s

slug*¢ lb # s2

ft
≤ pound

lb

*Derived unit.
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1
Conversion of Units.  Table 1–2 provides a set of direct conversion 
factors between FPS and SI units for the basic quantities. Also, in the 
FPS system, recall that 1 ft = 12 in. (inches), 5280 ft = 1 mi (mile),  
1000 lb = 1 kip (kilo-pound), and 2000 lb = 1 ton.

1.4  The International System of Units

The SI system of units is used extensively in this book since it is intended to 
become the worldwide standard for measurement. Therefore, we will 
now present some of the rules for its use and some of its terminology 
relevant to engineering mechanics.

Prefixes.  When a numerical quantity is either very large or very 
small, the units used to define its size may be modified by using a prefix. 
Some of the prefixes used in the SI system are shown in Table 1–3. Each 
represents a multiple or submultiple of a unit which, if applied 
successively, moves the decimal point of a numerical quantity to every 
third place.* For example, 4 000 000 N = 4 000 kN (kilo-newton) =  
4 MN (mega-newton), or 0.005 m = 5 mm (milli-meter). Notice that the 
SI system does not include the multiple deca (10) or the submultiple 
centi (0.01), which form part of the metric system. Except for some 
volume and area measurements, the use of these prefixes is to be avoided 
in science and engineering.

Table 1–2  Conversion Factors

Quantity
Unit of  

Measurement (FPS) Equals
Unit of  

Measurement (SI)

Force lb 4.448 N
Mass slug 14.59 kg
Length ft 0.3048 m

*The kilogram is the only base unit that is defined with a prefix.

Table 1–3  Prefixes

Exponential Form Prefix SI Symbol

Multiple
1 000 000 000 109 giga G
1 000 000 106 mega M
1 000 103 kilo k
Submultiple
0.001 10–3 milli m
0.000 001 10–6 micro m

0.000 000 001 10–9 nano n
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1
Rules for Use.  Here are a few of the important rules that describe 
the proper use of the various SI symbols:

	 •	 Quantities defined by several units which are multiples of one 
another are separated by a dot to avoid confusion with prefix 
notation, as indicated by N = kg # m>s2 = kg # m # s- 2. Also, m # s 
(meter-second), whereas ms (milli-second).

	 •	 The exponential power on a unit having a prefix refers to both the 
unit and its prefix. For example, mN2 = (mN)2 = mN # mN. Likewise, 
mm2 represents (mm)2 = mm # mm.

	 •	 With the exception of the base unit the kilogram, in general avoid 
the use of a prefix in the denominator of composite units. For 
example, do not write N>mm, but rather kN>m; also, m>mg should 
be written as Mm>kg.

	 •	 When performing calculations, represent the numbers in terms of 
their base or derived units by converting all prefixes to powers of 10. 
The final result should then be expressed using a single prefix. Also, 
after calculation, it is best to keep numerical values between 0.1 and 
1000; otherwise, a suitable prefix should be chosen. For example,

 (50 kN)(60 nm) = 350(103) N4 360(10- 9) m4
 = 3000(10- 6) N # m = 3(10- 3) N # m = 3 mN # m

1.5  Numerical Calculations

Numerical work in engineering practice is most often performed by using 
handheld calculators and computers. It is important, however, that the 
answers to any problem be reported with justifiable accuracy using 
appropriate significant figures. In this section we will discuss these topics 
together with some other important aspects involved in all engineering 
calculations.

Dimensional Homogeneity.  The terms of any equation used to 
describe a physical process must be dimensionally homogeneous; that is, 
each term must be expressed in the same units. Provided this is the case, 
all the terms of an equation can then be combined if numerical values 
are substituted for the variables. Consider, for example, the equation 
s = vt +

1
2  at2 , where, in SI units, s is the position in meters, m, t is time in 

seconds, s, v is velocity in m>s and a is acceleration in m>s2. Regardless of 
how this equation is evaluated, it maintains its dimensional homogeneity. 
In the form stated, each of the three terms is expressed in meters 
3m, (m>s)s, (m>s2)s2

  4  or solving for a, a = 2s>t2 - 2v>t, the terms are 
each expressed in units of m>s2 3m>s2, m>s2, (m>s) >s4 .

Keep in mind that problems in mechanics always involve the solution 
of dimensionally homogeneous equations, and so this fact can then be 
used as a partial check for algebraic manipulations of an equation.

Computers are often used in engineering for 
advanced design and analysis. (© Blaize 
Pascall/Alamy)
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1
Significant Figures.  The number of significant figures contained 
in any number determines the accuracy of the number. For instance, the 
number 4981 contains four significant figures. However, if zeros occur at 
the end of a whole number, it may be unclear as to how many significant 
figures the number represents. For example, 23 400 might have three 
(234), four (2340), or five (23 400) significant figures. To avoid these 
ambiguities, we will use engineering notation to report a result. This 
requires that numbers be rounded off to the appropriate number of 
significant digits and then expressed in multiples of (103), such as (103), 
(106), or (10–9). For instance, if 23 400 has five significant figures, it is 
written as 23.400(103), but if it has only three significant figures, it is 
written as 23.4(103).

If zeros occur at the beginning of a number that is less than one, then the 
zeros are not significant. For example, 0.008 21 has three significant 
figures. Using engineering notation, this number is expressed as 8.21(10–3). 
Likewise, 0.000 582 can be expressed as 0.582(10–3) or 582(10–6).

Rounding Off Numbers.  Rounding off a number is necessary so 
that the accuracy of the result will be the same as that of the problem 
data. As a general rule, any numerical figure ending in a number greater 
than five is rounded up and a number less than five is not rounded up. 
The rules for rounding off numbers are best illustrated by examples. 
Suppose the number 3.5587 is to be rounded off to three significant 
figures. Because the fourth digit (8) is greater than 5, the third number is 
rounded up to 3.56. Likewise 0.5896 becomes 0.590 and 9.3866 becomes 
9.39. If we round off 1.341 to three significant figures, because the fourth 
digit (1) is less than 5, then we get 1.34. Likewise 0.3762 becomes 0.376 
and 9.871 becomes 9.87. There is a special case for any number that ends 
in a 5. As a general rule, if the digit preceding the 5 is an even number, 
then this digit is not rounded up. If the digit preceding the 5 is an odd 
number, then it is rounded up. For example, 75.25 rounded off to three 
significant digits becomes 75.2, 0.1275 becomes 0.128, and 0.2555 
becomes 0.256.

Calculations.  When a sequence of calculations is performed, it is 
best to store the intermediate results in the calculator. In other words, do 
not round off calculations until expressing the final result. This procedure 
maintains precision throughout the series of steps to the final solution. In 
this text we will generally round off the answers to three significant 
figures since most of the data in engineering mechanics, such as geometry 
and loads, may be reliably measured to this accuracy.
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1 1.6  General Procedure for Analysis

Attending a lecture, reading this book, and studying the example problems 
helps, but the most effective way of learning the principles of engineering 
mechanics is to solve problems. To be successful at this, it is important to 
always present the work in a logical and orderly manner, as suggested by 
the following sequence of steps:

	•	 Read the problem carefully and try to correlate the actual physical 
situation with the theory studied.

	•	 Tabulate the problem data and draw to a large scale any necessary 
diagrams.

	•	 Apply the relevant principles, generally in mathematical form. When 
writing any equations, be sure they are dimensionally homogeneous.

	•	 Solve the necessary equations, and report the answer with no more 
than three significant figures.

	•	 Study the answer with technical judgment and common sense to 
determine whether or not it seems reasonable.

When solving problems, do the work as 
neatly as possible. Being neat will 
stimulate clear and orderly thinking, 
and vice versa. (© Russell C. Hibbeler)

Important Points

	 •	 Statics is the study of bodies that are at rest or move with constant 
velocity.

	 •	 A particle has a mass but a size that can be neglected, and a rigid 
body does not deform under load.

	 •	 A force is considered as a “push” or “pull” of one body on another.

	 •	 Concentrated forces are assumed to act at a point on a body.

	 •	 Newton’s three laws of motion should be memorized.

	 •	 Mass is measure of a quantity of matter that does not change 
from one location to another. Weight refers to the gravitational 
attraction of the earth on a body or quantity of mass. Its magnitude 
depends upon the elevation at which the mass is located.

	 •	 In the SI system the unit of force, the newton, is a derived unit. 
The meter, second, and kilogram are base units.

	 •	 Prefixes G, M, k, m, m, and n are used to represent large and small 
numerical quantities. Their exponential size should be known, 
along with the rules for using the SI units.

	 •	 Perform numerical calculations with several significant figures, 
and then report the final answer to three significant figures.

	 •	 Algebraic manipulations of an equation can be checked in part by 
verifying that the equation remains dimensionally homogeneous.

	 •	 Know the rules for rounding off numbers.
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Convert 2 km>h to m>s How many ft>s is this?

Solution
Since 1 km = 1000 m and 1 h = 3600 s, the factors of conversion are 
arranged in the following order, so that a cancellation of the units can 
be applied:

	  2 km>h =
2 km

h
¢ 1000 m

km
≤ ¢ 1 h

3600 s
≤ 

	  =
2000 m

3600 s
= 0.556 m>s� Ans.

From Table 1–2, 1 ft = 0.3048 m. Thus,

	  0.556 m>s = a 0.556 m
s
b a 1 ft

0.3048 m
b  

	  = 1.82 ft>s� Ans.

NOTE: Remember to round off the final answer to three significant 
figures.

Example   1.1

Example   1.2

Convert the quantities 300 lb # s and 52 slug>ft3 to appropriate SI units.

Solution
Using Table 1–2, 1 lb = 4.448 N.

	  300 lb # s = 300 lb # sa 4.448 N

1 lb
b  

	  = 1334.5 N # s = 1.33 kN # s� Ans.

Since 1 slug = 14.59 kg and 1 ft = 0.3048 m, then

	  52 slug>ft3 =
52 slug

ft3
a 14.59 kg

1 slug
b a 1 ft

0.3048 m
b

3

 

             = 26.8(103) kg>m3 

	  = 26.8 Mg>m3 � Ans.
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1 Example   1.3 

Evaluate each of the following and express with SI units having an 
appropriate prefix: (a) (50 mN)(6 GN), (b) (400 mm)(0.6 MN)2,  
(c) 45 MN3>900 Gg.

Solution
First convert each number to base units, perform the indicated 
operations, then choose an appropriate prefix.

Part (a)

	  (50 mN)(6 GN) = 350(10-3) N4 36(109) N4  

	  = 300(106) N2  

	  = 300(106) N2a 1 kN

103 N
b a 1 kN

103 N
b  

	  = 300 kN2 � Ans.

NOTE: Keep in mind the convention kN2 = (kN)2 = 106 N2.

Part (b)

	        (400 mm)(0.6 MN)2 = 3400(10-3) m4 30.6(106) N42

	        = 3400(10-3) m4 30.36(1012) N24
	        = 144(109) m # N2  

	        = 144 Gm # N2 � Ans.

We can also write

	  144(109) m # N2 = 144(109) m # N2a 1 MN

106 N
b a 1 MN

106 N
b  

	  = 0.144 m # MN2 � Ans.

Part (c)

	  
45 MN3

900 Gg
=

45(106 N)3

900(106) kg
 

	  = 50(109) N3>kg  

	  = 50(109) N3a 1 kN

103 N
b

3 1

kg
 

	  = 50 kN3>kg � Ans.
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1–1.  What is the weight in newtons of an object that  
has a mass of (a) 8 kg, (b) 0.04 kg, and (c) 760 Mg?

1–2.  Represent each of the following combinations of 
units in the correct SI form: (a) kN>ms, (b) Mg>mN, and  
(c) MN>(kg · ms).

1–3.  Represent each of the following combinations of 
units in the correct SI form: (a) Mg>ms, (b) N>mm,  
(c) mN>(kg · ms).

*1–4.  Convert: (a) 200 lb · ft to N · m, (b) 350 lb>ft3 to kN>m3, 
(c) 8 ft>h to mm>s. Express the result to three significant 
figures. Use an appropriate prefix.

1–5.  Represent each of the following as a number between 
0.1 and 1000 using an appropriate prefix: (a) 45 320 kN, 
(b) 568(105) mm, and (c) 0.00563 mg.

1–6.  Round off the following numbers to three significant 
figures: (a) 58 342 m, (b) 68.534 s, (c) 2553 N, and (d) 7555 kg.

1–7.  Represent each of the following quantities in the 
correct SI form using an appropriate prefix: (a) 0.000 431 kg, 
(b) 35.3(103) N, (c) 0.005 32 km.

*1–8.  Represent each of the following combinations of units 
in the correct SI form using an appropriate prefix: (a) Mg>mm, 
(b) mN>ms, (c) mm # Mg.

1–9.  Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix:  
(a) m>ms, (b) mkm, (c) ks>mg, and (d) km # mN.

1–10.  Represent each of the following combinations of units 
in the correct SI form: (a) GN # mm, (b) kg>mm, (c) N>ks2, 
and (d) kN>ms.

1–11.  Represent each of the following with SI units having 
an appropriate prefix: (a) 8653 ms, (b) 8368 N, (c) 0.893 kg.

*1–12.  Evaluate each of the following to three significant 
figures and express each answer in SI units using  
an appropriate prefix: (a) (684 mm)>(43 ms),  
(b) (28 ms)(0.0458 Mm)>(348 mg), (c) (2.68 mm)(426 Mg).

1–13.  The density (mass>volume) of aluminum is 
5.26 slug>ft3. Determine its density in SI units. Use an 
appropriate prefix.

1–14.  Evaluate each of the following to three significant 
figures and express each answer in SI units using an 
appropriate prefix: (a) (212 mN)2, (b) (52 800 ms)2, and  
(c) [548(106)]1>2 ms.

1–15.  Using the SI system of units, show that Eq. 1–2 is a 
dimensionally homogeneous equation which gives F in 
newtons. Determine to three significant figures the 
gravitational force acting between two spheres that are 
touching each other. The mass of each sphere is 200 kg and 
the radius is 300 mm.

*1–16.  The pascal (Pa) is actually a very small unit of 
pressure. To show this, convert 1 Pa = 1 N>m2 to lb>ft2. 
Atmosphere pressure at sea level is 14.7 lb>in2. How many 
pascals is this?

1–17.  Water has a density of 1.94 slug>ft3. What is the 
density expressed in SI units? Express the answer to three 
significant figures.

1–18.  Evaluate each of the following to three significant 
figures and express each answer in SI units using an 
appropriate prefix: (a) 354 mg(45 km)>(0.0356 kN), 
(b) (0.004 53 Mg)(201 ms), (c) 435 MN>23.2 mm.

1–19.  A concrete column has a diameter of 350 mm and 
a length of 2 m. If the density (mass>volume) of concrete is 
2.45 Mg>m3, determine the weight of the column in pounds.

*1–20.  If a man weighs 155 lb on earth, specify (a) his 
mass in slugs, (b) his mass in kilograms, and (c) his weight in 
newtons. If the man is on the moon, where the acceleration 
due to gravity is gm = 5.30 ft>s2, determine (d) his weight 
in pounds, and (e) his mass in kilograms.

1–21.  Two particles have a mass of 8 kg and 12 kg, 
respectively. If they are 800 mm apart, determine the force 
of gravity acting between them. Compare this result with 
the weight of each particle.

Problems

The answers to all but every fourth problem (asterisk) are given in the back of the book.



This electric transmission tower is stabilized by cables that exert forces on the 
tower at their points of connection. In this chapter we will show how to express 

these forces as Cartesian vectors, and then determine their resultant.

Chapter 2

(© Vasiliy Koval/Fotolia)



Force Vectors

CHAPTER OBJECTIVES

n	 To show how to add forces and resolve them into components 
using the Parallelogram Law.

n	 To express force and position in Cartesian vector form and 
explain how to determine the vector’s magnitude and direction.

n	 To introduce the dot product in order to use it to find the angle 
between two vectors or the projection of one vector onto another.

2.1  Scalars and Vectors

Many physical quantities in engineering mechanics are measured using 
either scalars or vectors.

Scalar.  A scalar is any positive or negative physical quantity that can 
be completely specified by its magnitude. Examples of scalar quantities 
include length, mass, and time.

Vector.  A vector is any physical quantity that requires both a 
magnitude and a direction for its complete description. Examples of 
vectors encountered in statics are force, position, and moment. A vector 
is shown graphically by an arrow. The length of the arrow represents the 
magnitude of the vector, and the angle u between the vector and a fixed 
axis defines the direction of its line of  action. The head or tip of the arrow 
indicates the sense of direction of the vector, Fig. 2–1.

In print, vector quantities are represented by boldface letters such as 
A, and the magnitude of a vector is italicized, A. For handwritten work, it 
is often convenient to denote a vector quantity by simply drawing an 
arrow above it, A   

S
.

Tail

Line of action
1

P

O

Head

A

20�

Fig. 2–1
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2.2  Vector Operations

Multiplication and Division of a Vector by a Scalar.  If a 
vector is multiplied by a positive scalar, its magnitude is increased by that 
amount. Multiplying by a negative scalar will also change the directional 
sense of the vector. Graphic examples of these operations are shown  
in Fig. 2–2.

Vector Addition.  When adding two vectors together it is important 
to account for both their magnitudes and their directions. To do this we 
must use the parallelogram law of addition. To illustrate, the two 
component vectors A and B in Fig. 2–3a are added to form a resultant 
vector R = A + B using the following procedure:

	 •	 First join the tails of the components at a point to make them 
concurrent, Fig. 2–3b.

	 •	 From the head of B, draw a line parallel to A. Draw another line 
from the head of A that is parallel to B. These two lines intersect at 
point P to form the adjacent sides of a parallelogram.

	 •	 The diagonal of this parallelogram that extends to P forms R, which 
then represents the resultant vector R = A + B, Fig. 2–3c.

A
A

2A

0.5

Scalar multiplication and division

�A
�

Fig. 2–2

A A

B
B

R

(a) (c)(b)

R � A � B

A

B

Parallelogram law

P

Fig. 2–3

We can also add B to A, Fig. 2–4a, using the triangle rule, which is a 
special case of the parallelogram law, whereby vector B is added to 
vector  A in a “head-to-tail” fashion, i.e., by connecting the head of  
A to the tail of B, Fig. 2–4b. The resultant R extends from the tail of A to 
the head of B. In a similar manner, R can also be obtained by adding  
A to B, Fig. 2–4c. By comparison, it is seen that vector addition is 
commutative; in other words, the vectors can be added in either order, 
i.e., R = A + B = B + A.
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As a special case, if the two vectors A and B are collinear, i.e., both 
have the same line of action, the parallelogram law reduces to an 
algebraic or scalar addition R = A + B, as shown in Fig. 2–5.

A

A

B

B

R

R

R � A � B R � B � A

(b)

Triangle rule Triangle rule

(c)

A

B

(a)

Fig. 2–4

A B

R

Addition of collinear vectors

R � A � B

Fig. 2–5

Vector Subtraction.  The resultant of the difference between two 
vectors A and B of the same type may be expressed as

R = A - B = A + (-B)

This vector sum is shown graphically in Fig. 2–6. Subtraction is therefore 
defined as a special case of addition, so the rules of vector addition also 
apply to vector subtraction.

R¿ A

�BB

A
�B

AR¿
or

Parallelogram law Triangle construction

Vector subtraction

Fig. 2–6
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2.3  Vector Addition of Forces

Experimental evidence has shown that a force is a vector quantity since 
it has a specified magnitude, direction, and sense and it adds according to 
the parallelogram law. Two common problems in statics involve either 
finding the resultant force, knowing its components, or resolving a known 
force into two components. We will now describe how each of these 
problems is solved using the parallelogram law.

Finding a Resultant Force.  The two component forces F1 and F2 
acting on the pin in Fig. 2–7a can be added together to form the resultant 
force FR = F1 + F2, as shown in Fig. 2–7b. From this construction, or using 
the triangle rule, Fig. 2–7c, we can apply the law of cosines or the law of 
sines to the triangle in order to obtain the magnitude of the resultant 
force and its direction.

Finding the Components of a Force.  Sometimes it is necessary 
to resolve a force into two components in order to study its pulling or 
pushing effect in two specific directions. For example, in Fig. 2–8a, F is to 
be resolved into two components along the two members, defined by the 
u and v axes. In order to determine the magnitude of each component, a 
parallelogram is constructed first, by drawing lines starting from the tip 
of F, one line parallel to u, and the other line parallel to v. These lines 
then intersect with the v and u axes, forming a parallelogram. The force 
components Fu and Fv are then established by simply joining the tail of F 
to the intersection points on the u and v axes, Fig. 2–8b. This parallelogram 
can then be reduced to a triangle, which represents the triangle rule,  
Fig. 2–8c. From this, the law of sines can then be applied to determine the 
unknown magnitudes of the components.

FR

F2F1

The parallelogram law must be used 
to determine the resultant of the 
two forces acting on the hook.  
(© Russell C. Hibbeler) 

FR � F1 � F2

FRFR

F1 F1 F1

F2 F2

F2

(c)(b)(a)

Fig. 2–7Fu
Fv

F
v u

Using the parallelogram law the 
supporting force F can be resolved into 
components acting along the u and v axes. 
(© Russell C. Hibbeler)
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Addition of Several Forces.  If more than two forces are to be 
added, successive applications of the parallelogram law can be carried 
out in order to obtain the resultant force. For example, if three forces  
F1, F2, F3 act at a point O, Fig. 2–9, the resultant of any two of the forces 
is found, say, F1 + F2—and then this resultant is added to the third force, 
yielding the resultant of all three forces; i.e., FR = (F1 + F2) + F3. Using 
the parallelogram law to add more than two forces, as shown here, often 
requires extensive geometric and trigonometric calculation to determine 
the numerical values for the magnitude and direction of the resultant. 
Instead, problems of this type are easily solved by using the “rectangular-
component method,” which is explained in Sec. 2.4.

Fig. 2–9

F1

F2

F1 � F2 FR

F3O

Fig. 2–8

F

u

(b)

F

FuFu

(c)

F

u

(a)

v v

Fv

Fv

FR

F1 � F2

F1

F3

F2

The resultant force FR on the hook requires 
the addition of F1 + F2, then this resultant is 
added to F3. (© Russell C. Hibbeler)
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Important Points

	 •	 A scalar is a positive or negative number.

	 •	 A vector is a quantity that has a magnitude, direction, and sense.

	 •	 Multiplication or division of a vector by a scalar will change the 
magnitude of the vector. The sense of the vector will change if the 
scalar is negative.

	 •	 As a special case, if the vectors are collinear, the resultant is 
formed by an algebraic or scalar addition.

A

C

B

b

(c)

c

a

Sine law:

sin a sin b sin c
A B� � C

Cosine law:
C �   A2 � B2 � 2AB cos c

FR

F1

F2

F

Fu

u

(b)

(a)

v

Fv

Fig. 2–10

Procedure for Analysis

Problems that involve the addition of two forces can be solved as 
follows:

Parallelogram Law.
	 •	 Two “component” forces F1 and F2 in Fig. 2–10a add according to 

the parallelogram law, yielding a resultant force FR that forms the 
diagonal of the parallelogram.

	 •	 If a force F is to be resolved into components along two axes  
u and v, Fig. 2–10b, then start at the head of force F and construct 
lines parallel to the axes, thereby forming the parallelogram. The 
sides of the parallelogram represent the components, Fu and Fv.

	 •	 Label all the known and unknown force magnitudes and the angles 
on the sketch and identify the two unknowns as the magnitude and 
direction of FR, or the magnitudes of its components.

Trigonometry.
	 •	 Redraw a half portion of the parallelogram to illustrate the 

triangular head-to-tail addition of the components.

	 •	 From this triangle, the magnitude of the resultant force can be 
determined using the law of cosines, and its direction is 
determined from the law of sines. The magnitudes of two force 
components are determined from the law of sines. The formulas 
are given in Fig. 2–10c.
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The screw eye in Fig. 2–11a is subjected to two forces, F1 and F2. 
Determine the magnitude and direction of the resultant force.

Example   2.1 

F1 � 100 N

F2 � 150 N
10�

15�

(a)

SOLUTION
Parallelogram Law.  The parallelogram is formed by drawing a line 
from the head of F1 that is parallel to F2, and another line from  
the head of F2 that is parallel to F1. The resultant force FR extends to 
where these lines intersect at point A, Fig. 2–11b. The two unknowns 
are the magnitude of FR and the angle u (theta).

Trigonometry.  From the parallelogram, the vector triangle is 
constructed, Fig. 2–11c. Using the law of cosines

	  FR = 2(100 N)2 + (150 N)2 - 2(100 N)(150 N) cos 115

	  = 210 000 + 22 500 - 30 000(-0.4226) = 212.6 N	

	  = 213 N	 Ans.

Applying the law of sines to determine u,

 
150 N

sin u
=

212.6 N

sin 115
 	  sin u =

150 N

212.6 N
 (sin 115)

	  u = 39.8

Thus, the direction f (phi) of FR, measured from the horizontal, is

	 f = 39.8 + 15.0 = 54.8	 Ans.

NOTE: The results seem reasonable, since Fig. 2–11b shows FR to have 
a magnitude larger than its components and a direction that is 
between them.

FR

90� � 25� � 65�

10�

15�

100 N

A

65�115�

150 N

(b)

� 115�
360� � 2(65�)

2

u

Fig. 2–11

(c)

FR 150 N

100 N15�

115�

u

f
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Resolve the horizontal 600-lb force in Fig. 2–12a into components 
acting along the u and v axes and determine the magnitudes of these 
components.

Example   2.2 

u

30�

30�

30�

30�

30�

120�

120�

120�

30�

30�

600 lb

(a)

u

C

B

A
600 lb

(b)

Fu

F

(c)

600 lb

Fu

F

v

v

v

v

Fig. 2–12

SOLUTION
The parallelogram is constructed by extending a line from the head of 
the 600-lb force parallel to the v axis until it intersects the u axis at 
point B, Fig. 2–12b.  The arrow from A to B represents Fu.  Similarly, the 
line extended from the head of the 600-lb force drawn parallel to the 
u axis intersects the v axis at point C, which gives Fv.

The vector addition using the triangle rule is shown in Fig. 2–12c.  
The two unknowns are the magnitudes of Fu and Fv. Applying the law 
of sines,

	  
Fu

sin 120
=

600 lb

sin 30
	

	  Fu = 1039 lb	 Ans.

	  
Fv

sin 30
=

600 lb

sin 30
	

	  Fv = 600 lb 	 Ans.

NOTE: The result for Fu shows that sometimes a component can have 
a greater magnitude than the resultant.
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Determine the magnitude of the component force F in Fig. 2–13a and 
the magnitude of the resultant force FR if FR is directed along the 
positive y axis.

Example   2.3

y

45�

45� 45�

45�

200 lb

30�

30�

30�

(a)

F

y

45�

200 lb

(b)

F
75�

60�60�
200 lb

(c)

F
FR FR

Fig. 2–13

SOLUTION
The parallelogram law of addition is shown in Fig. 2–13b, and the 
triangle rule is shown in Fig. 2–13c. The magnitudes of FR and F are the 
two unknowns. They can be determined by applying the law of sines.

	  
F

sin 60
=

200 lb

sin 45
	

	  F = 245 lb 	 Ans.

	  
FR

sin 75
=

200 lb

sin 45
	

	  FR = 273 lb 	 Ans.
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It is required that the resultant force acting on the eyebolt in Fig. 2–14a 
be directed along the positive x axis and that F2 have a minimum 
magnitude.  Determine this magnitude, the angle u, and the corresponding 
resultant force.

Example   2.4

x x x

(a)

(b) (c)

FRFR

F2

F2

F2

F1 � 800 N

F1 � 800 N F1 � 800 N

u � 90�

u

u

60�
60�60�

Fig. 2–14

SOLUTION
The triangle rule for FR = F1 + F2 is shown in Fig. 2–14b. Since the 
magnitudes (lengths) of FR and F2 are not specified, then F2 can actually 
be any vector that has its head touching the line of action of FR, Fig. 2–14c. 
However, as shown, the magnitude of F2 is a minimum or the shortest 
length when its line of action is perpendicular to the line of action of 
FR, that is, when 

	 u = 90	 Ans.

Since the vector addition now forms the shaded right triangle, the two 
unknown magnitudes can be obtained by trigonometry.

	  FR = (800 N)cos 60 = 400 N	 Ans.

	  F2 = (800 N)sin 60 = 693 N	 Ans.

It is strongly suggested that you test yourself on the solutions to these 
examples, by covering them over and then trying to draw the 
parallelogram law, and thinking about how the sine and cosine laws 
are  used to determine the unknowns. Then before solving any of 
the  problems, try to solve the Preliminary Problems and some of the 
Fundamental Problems given on the next pages. The solutions and 
answers to these are given in the back of the book. Doing this throughout  
the book will help immensely in developing your problem-solving skills.
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Preliminary Problems

u

v

(a)

70�

45�

30�

F � 200 N

u

(b)

v70�

120�

F � 400 N

u

(c)

v
30�

40�

F � 600 N

Prob. P2–2

P2–1.  In each case, construct the parallelogram law to 
show FR = F1 + F2. Then establish the triangle rule, where  
FR = F1 + F2. Label all known and unknown sides and 
internal angles.

45

15

(a)

F1 � 200 N

F2 � 100 N

130

(b)

F1 � 400 N

F2 � 500 N

(c)

20�

F1 � 450 N

F2 � 300 N

P2–2.  In each case, show how to resolve the force F into 
components acting along the u and v axes using the 
parallelogram law. Then establish the triangle rule to show 
FR = Fu + Fv. Label all known and unknown sides and 
interior angles.

Prob. P2–1

Partial solutions and answers to all Preliminary Problems are given in the back of the book. 
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F2–4.  Resolve the 30-lb force into components along the  
u and v axes, and determine the magnitude of each of these 
components.

30 lb

u

v

30�

15�

� Prob. F2–4

F2–5.  The force F = 450 lb acts on the frame. Resolve this 
force into components acting along members AB and AC, 
and determine the magnitude of each component.

A

C

B

450 lb

45�

30�

Prob. F2–5

F2–6.  If force F is to have a component along the u axis of 
Fu = 6 kN, determine the magnitude of F and the magnitude 
of its component Fv along the v axis.

u

v

F
45�

105�

� Prob. F2–6

FUNDAMENTAL PROBLEMS

F2–1.  Determine the magnitude of the resultant force 
acting on the screw eye and its direction measured clockwise 
from the x axis.

x

2 kN

6 kN

45�60�

	 Prob. F2–1

F2–2.  Two forces act on the hook. Determine the magnitude 
of the resultant force.

30�

40�

500 N

200 N

	 Prob. F2–2

F2–3.  Determine the magnitude of the resultant force and 
its direction measured counterclockwise from the positive 
x axis.

y

x

800 N

600 N

30�

	 Prob. F2–3

Partial solutions and answers to all Fundamental Problems are given in the back of the book.
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PROBLEMS

2–1.  If u = 60 and F = 450 N, determine the magnitude 
of the resultant force and its direction, measured 
counterclockwise from the positive x axis.

2–2.  If the magnitude of the resultant force is to be 500 N, 
directed along the positive y axis, determine the magnitude 
of force F and its direction u.

x

y

700 N

F

u

15�

Probs. 2–1/2

2–3.  Determine the magnitude of the resultant force 
FR = F1 + F2 and its direction, measured counterclockwise 
from the positive x axis.

y

F2 � 375 lb

x

F1 � 250 lb

45�

30�

Prob. 2–3

*2–4.  The vertical force F acts downward at A on the two-
membered frame. Determine the magnitudes of the two 
components of F directed along the axes of AB and AC.  
Set F = 500 N.

2–5.  Solve Prob. 2–4 with F = 350 lb.

F

C

B

A

30�

45�

Probs. 2–4/5

2–6.  Determine the magnitude of the resultant force 
FR = F1 + F2 and its direction, measured clockwise from 
the positive u axis.

2–7.  Resolve the force F1 into components acting along 
the u and v axes and determine the magnitudes of the 
components.

*2–8.  Resolve the force F2 into components acting along 
the u and v axes and determine the magnitudes of the 
components.

u

v

75�

30�

30�

F1 � 4 kN

F2 � 6 kN

Probs. 2–6/7/8
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2–13.  The force acting on the gear tooth is F = 20 lb. 
Resolve this force into two components acting along the 
lines aa and bb.

2–14.  The component of force F acting along line aa is 
required to be 30 lb. Determine the magnitude of F and its 
component along line bb.

80�

60�

a

a
b

b

F

Probs. 2–13/14

2–15.  Force F acts on the frame such that its component 
acting along member AB is 650 lb, directed from B 
towards A, and the component acting along member BC is 
500 lb, directed from B towards C. Determine the magnitude 
of F and its direction u. Set f =  60.

*2–16.  Force F acts on the frame such that its component 
acting along member AB is 650 lb, directed from B 
towards A. Determine the required angle f (0 … f … 45) 
and the component acting along member BC. Set F = 850 lb 
and u = 30.

A

B

C

F

45�

u

f

Probs. 2–15/16

2–9.  If the resultant force acting on the support is to be 
1200 lb, directed horizontally to the right, determine the 
force F in rope A and the corresponding angle u.

60� 900 lb

A

B

F

u

Prob. 2–9

2–10.  Determine the magnitude of the resultant force and its 
direction, measured counterclockwise from the positive x axis.

y

x

500 lb

800 lb

35�

40�

Prob. 2–10

2–11.  The plate is subjected to the two forces at A and B as 
shown. If u = 60, determine the magnitude of the resultant 
of these two forces and its direction measured clockwise 
from the horizontal.

*2–12.  Determine the angle u for connecting member A to 
the plate so that the resultant force of FA and FB is directed 
horizontally to the right. Also, what is the magnitude of the 
resultant force?

A

B

FA � 8 kN

FB � 6 kN

40�

u

Probs. 2–11/12
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2–17.  Determine the magnitude and direction of the 
resultant FR = F1 + F2 + F3 of the three forces by first 
finding the resultant F = F1 + F2 and then forming 
FR = F + F3.

2–18.  Determine the magnitude and direction of the 
resultant FR = F1 + F2 + F3 of the three forces by first 
finding the resultant F = F2 + F3 and then forming 
FR = F + F1.

y

x

F2 � 20 N

F1 � 30 N

20�

3
5

4 F3 � 50 N

Probs. 2–17/18

2–19.  Determine the design angle u (0 … u … 90) for 
strut AB so that the 400-lb horizontal force has a component 
of 500 lb directed from A towards C. What is the component 
of force acting along member AB? Take f = 40.

*2–20.  Determine the design angle f (0 … f … 90) 
between struts AB and AC so that the 400-lb horizontal 
force has a component of 600 lb which acts up to the left, in 
the same direction as from B towards A. Take u = 30.

A

C

B

400 lb

u

f

Probs. 2–19/20

2–21.  Determine the magnitude and direction of the 
resultant force, FR measured counterclockwise from 
the  positive x axis. Solve the problem by first finding the 
resultant F = F1 + F2 and then forming FR = F + F3.

2–22.  Determine the magnitude and direction of the 
resultant force, measured counterclockwise from the positive 
x axis. Solve l by first finding the resultant F = F2 + F3 and 
then forming FR = F + F1.

x

y

90º

150º

F1 � 400 N
F2 � 200 N

F3 � 300 N

Probs. 2–21/22

2–23.  Two forces act on the screw eye. If F1 = 400 N and 
F2 = 600 N, determine the angle u (0 … u … 180) between 
them, so that the resultant force has a magnitude of 
FR = 800 N.

*2–24.  Two forces F1 and F2 act on the screw eye. If their 
lines of action are at an angle u  apart and the magnitude of 
each force is F1 = F2 = F, determine the magnitude of the 
resultant force FR and the angle between FR and F1.

F2

F1

u

Probs. 2–23/24
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*2–28.  Determine the magnitude of force F so that the 
resultant FR of the three forces is as small as possible. What 
is the minimum magnitude of FR?

6 kN

8 kN

F

30�

Prob. 2–28

2–29.  If the resultant force of the two tugboats is 3 kN, 
directed along the positive x axis, determine the required 
magnitude of force FB and its direction u.

2–30.  If FB = 3 kN and u = 45, determine the magnitude 
of the resultant force of the two tugboats and its direction 
measured clockwise form the positive x axis.

2–31.  If the resultant force of the two tugboats is required 
to be directed towards the positive x axis, and FB is to be a 
minimum, determine the magnitude of FR and FB and the 
angle u.

x

y
A

B

FB

FA � 2 kN

30�

C

u

Probs. 2–29/30/31

2–25.  If F1 = 30 lb and F2 = 40 lb, determine the angles u 
and f so that the resultant force is directed along the 
positive x axis and has a magnitude of FR = 60 lb.

y

x
θ

φ

F1

F2

Prob. 2–25

2–26.  Determine the magnitude and direction u of FA so 
that the resultant force is directed along the positive x axis 
and has a magnitude of 1250 N.

2–27.  Determine the magnitude and direction, measured 
counterclockwise from the positive x axis, of the resultant 
force acting on the ring at O, if FA = 750 N and u = 45.

x
30�

y

O

B

A

F = 800 N

FA

B

Probs. 2–26/27
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2.4  �Addition of a System of Coplanar 
Forces

When a force is resolved into two components along the x and y axes, the 
components are then called rectangular components. For analytical work 
we can represent these components in one of two ways, using either scalar 
or Cartesian vector notation.

Scalar Notation.  The rectangular components of force F shown in 
Fig. 2–15a are found using the parallelogram law, so that F = Fx + Fy. 
Because these components form a right triangle, they can be  
determined from

Fx = F cos u  and  Fy = F sin u

Instead of using the angle u, however, the direction of F can also be 
defined using a small “slope” triangle, as in the example shown in  
Fig. 2–15b. Since this triangle and the larger shaded triangle are similar, 
the proportional length of the sides gives

Fx

F
=

a
c
 

or

Fx = F a a
c
b

and

 
Fy

F
=

b
c

or

 Fy = -F a b
c
b

Here the y component is a negative scalar since Fy is directed along the 
negative y axis.

It is important to keep in mind that this positive and negative scalar 
notation is to be used only for computational purposes, not for graphical 
representations in figures. Throughout the book, the head of a vector 
arrow in any figure indicates the sense of the vector graphically; algebraic 
signs are not used for this purpose. Thus, the vectors in Figs. 2–15a and  
2–15b are designated by using boldface (vector) notation.* Whenever 
italic symbols are written near vector arrows in figures, they indicate the 
magnitude of the vector, which is always a positive quantity.

*Negative signs are used only in figures with boldface notation when showing equal but 
opposite pairs of vectors, as in Fig. 2–2.

(a)

F

y

x
Fx

Fy

u

Fy

Fx

(b)

F

y

x

a
b

c

Fig. 2–15
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Cartesian Vector Notation.  It is also possible to represent the 
x and y components of a force in terms of Cartesian unit vectors i and j. 
They are called unit vectors because they have a dimensionless magnitude 
of 1, and so they can be used to designate the directions of the x and y 
axes, respectively, Fig. 2–16.*

Since the magnitude of each component of F is always a positive quantity, 
which is represented by the (positive) scalars Fx and Fy, then we can 
express F as a Cartesian vector,

F = Fx i + Fy   j

Coplanar Force Resultants.  We can use either of the two 
methods just described to determine the resultant of several coplanar 
forces, i.e., forces that all lie in the same plane. To do this, each force is first 
resolved into its x and y components, and then the respective components 
are added using scalar algebra since they are collinear. The resultant force 
is then formed by adding the resultant components using the parallelogram 
law. For example, consider the three concurrent forces in Fig. 2–17a, which 
have x and y components shown in Fig. 2–17b. Using Cartesian vector 
notation, each force is first represented as a Cartesian vector, i.e.,

F1 = F1x i + F1y j
F2 = -F2x i + F2y j
F3 = F3x i - F3y j

The vector resultant is therefore

 FR = F1 + F2 + F3

 = F1x i + F1y   j - F2x i + F2y   j + F3x i -  F3y j
 = (F1x - F2x + F3x) i + (F1y + F2y - F3y) j
 = (FRx)i + (FRy)j

If scalar notation is used, then indicating the positive directions of 
components along the x and y axes with symbolic arrows, we have

 +h   (FR)x = F1x - F2x + F3x

 +  c   (FR)y = F1y + F2y - F3y

These are the same results as the i and j components of FR determined 
above.

*For handwritten work, unit vectors are usually indicated using a circumflex, e.g., î and ĵ. 
Also, realize that Fx and Fy in Fig. 2–16 represent the magnitudes of the components, which 
are always positive scalars. The directions are defined by i and j. If instead we used scalar 
notation, then Fx and Fy could be positive or negative scalars, since they would account for 
both the magnitude and direction of the components.

F

Fx

Fy

y

x
i

j

Fig. 2–16

F3

F1

F2

(a)

x

y

 

(b)

x

y

F2x

F2y
F1y

F1x

F3x

F3y

Fig. 2–17

F1

F2

F3F4
y

x

The resultant force of the four cable forces 
acting on the post can be determined by 
adding algebraically the separate x and y 
components of each cable force. This resultant 
FR produces the same pulling effect on the 
post as all four cables. (© Russell C. Hibbeler)



	 2.4 A ddition of a System of Coplanar Forces	 35

2 

We can represent the components of the resultant force of any number 
of coplanar forces symbolically by the algebraic sum of the x and y 
components of all the forces, i.e.,

	
(FR)x = Fx

(FR)y = Fy
� (2–1)

Once these components are determined, they may be sketched along 
the x and y axes with their proper sense of direction, and the resultant 
force can be determined from vector addition, as shown in Fig. 2–17c. 
From this sketch, the magnitude of FR is then found from the Pythagorean 
theorem; that is,

FR = 2(FR)2
x + (FR)2

y

Also, the angle u, which specifies the direction of the resultant force, is 
determined from trigonometry:

u = tan-1 2 (FR)y

(FR)x

2
The above concepts are illustrated numerically in the examples which 
follow.

(c)

x

y

FR(FR)y

(FR)x

u

Fig. 2–17 (cont.)

Important Points

	 •	 The resultant of several coplanar forces can easily be determined 
if an x, y coordinate system is established and the forces are 
resolved along the axes.

	 •	 The direction of each force is specified by the angle its line of 
action makes with one of the axes, or by a slope triangle.

	 •	 The orientation of the x and y axes is arbitrary, and their positive 
direction can be specified by the Cartesian unit vectors i and j.

	 •	 The x and y components of the resultant force are simply the 
algebraic addition of the components of all the coplanar forces.

	 •	 The magnitude of the resultant force is determined from the 
Pythagorean theorem, and when the resultant components are 
sketched on the x and y axes, Fig. 2–17c, the direction u can be 
determined from trigonometry.
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y

x

F2 � 260 N

(c)

5
12

13

F2x � 260 12——
13( (N

F2y � 260 5——
13( (N

Fig. 2–18

y

x

F1 � 200 N

F1x � 200 sin 30� N

30�

F1y � 200 cos 30� N

(b)

y

x

F1 � 200 N

F2 � 260 N

30�

(a)

5
12

13

Determine the x and y components of F1 and F2 acting on the boom 
shown in Fig. 2–18a. Express each force as a Cartesian vector.

Solution
Scalar Notation.  By the parallelogram law, F1 is resolved into x and y 
components, Fig. 2–18b. Since F1x acts in the -x direction, and F1y acts in 
the +y direction, we have

	  F1x = -200 sin 30 N = -100 N = 100 N d  � Ans. 

	  F1y = 200 cos 30 N = 173 N = 173 Nc   � Ans.

The force F2 is resolved into its x and y components, as shown in  
Fig. 2–18c. Here the slope of the line of action for the force is indicated. 
From this “slope triangle” we could obtain the angle u, e.g.,  
u = tan-11 5

122, and then proceed to determine the magnitudes of the 
components in the same manner as for F1. The easier method, however, 
consists of using proportional parts of similar triangles, i.e.,

	
F2x

260 N
=

12

13
	 F2x = 260 Na 12

13
b = 240 N

Similarly,

F2y = 260 Na 5

13
b = 100 N

Notice how the magnitude of the horizontal component, F2x, was 
obtained by multiplying the force magnitude by the ratio of the 
horizontal leg of the slope triangle divided by the hypotenuse; whereas 
the magnitude of the vertical component, F2y, was obtained by 
multiplying the force magnitude by the ratio of the vertical leg divided 
by the hypotenuse. Hence, using scalar notation to represent these 
components, we have

	  F2x = 240 N = 240 N S   � Ans.

	  F2y = -100 N = 100 NT   � Ans.

Cartesian Vector Notation.  Having determined the magnitudes 
and directions of the components of each force, we can express each 
force as a Cartesian vector.

	  F1 = 5-100i + 173j6N� Ans.

	  F2 = 5240i - 100j6N� Ans.

Example   2.5
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y

F1 � 600 N

x

F2 � 400 N

30�

(b)

45�

y

F1 � 600 N

x

F2 � 400 N

45�

30�

(a)

The link in Fig. 2–19a is subjected to two forces F1 and F2. Determine 
the magnitude and direction of the resultant force.

Solution I
Scalar Notation.  First we resolve each force into its x and y 
components, Fig. 2–19b, then we sum these components algebraically.

 S+  (FR)x = Fx;  (FR)x = 600 cos 30 N - 400 sin 45 N

	  = 236.8 N S

 + c (FR)y = Fy;   (FR)y = 600 sin 30 N + 400 cos 45 N

	  = 582.8 Nc

The resultant force, shown in Fig. 2–19c, has a magnitude of

 FR = 2(236.8 N)2 + (582.8 N)2

	  = 629 N� Ans.

From the vector addition,

	 u = tan-1a 582.8 N

236.8 N
b = 67.9� Ans.

Solution II
Cartesian Vector Notation.  From Fig. 2–19b, each force is first 
expressed as a Cartesian vector.

 F1 = 5600 cos 30i + 600 sin 30j6N

 F2 = 5-400 sin 45i + 400 cos 45j6N
Then,

FR = F1 + F2 = (600 cos 30 N - 400 sin 45 N)i

	 + (600 sin 30 N + 400 cos 45 N)j

	 = 5236.8i + 582.8j6N

The magnitude and direction of FR are determined in the same 
manner as before.

NOTE: Comparing the two methods of solution, notice that the use 
of scalar notation is more efficient since the components can be 
found directly, without first having to express each force as a 
Cartesian vector before adding the components. Later, however, we 
will show that Cartesian vector analysis is very beneficial for solving 
three-dimensional problems.

Example   2.6

y

FR

x

(c)

582.8 N

236.8 N

u

Fig. 2–19
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FR
296.8 N

383.2 N

(c)

y

�
x

u

Fig. 2–20

250 N

(b)

y

�

45�

400 N

4
x

 200 N

3
5

F3 � 200 N

(a)

y

�
x

F1 � 400 N

F2 � 250 N

3
5

4

45�

The end of the boom O in Fig. 2–20a is subjected to three concurrent 
and coplanar forces. Determine the magnitude and direction of the 
resultant force.

Example   2.7

Solution
Each force is resolved into its x and y components, Fig. 2–20b. Summing 
the x components, we have

 S+ (FR)x = Fx;  (FR)x = -400 N + 250 sin 45 N - 20014
52 N

	  = -383.2 N = 383.2 N d

The negative sign indicates that FRx acts to the left, i.e., in the negative 
x direction, as noted by the small arrow. Obviously, this occurs because 
F1 and F3 in Fig. 2–20b contribute a greater pull to the left than F2 
which pulls to the right. Summing the y components yields

 + c (FR)y = Fy;  (FR)y = 250 cos 45 N + 20013
52 N

	  = 296.8 Nc

The resultant force, shown in Fig. 2–20c, has a magnitude of

 FR = 2(-383.2 N)2 + (296.8 N)2

	  = 485 N� Ans.

From the vector addition in Fig. 2–20c, the direction angle u is

	 u = tan-1a 296.8

383.2
b = 37.8   � Ans.

NOTE: Application of this method is more convenient, compared to 
using two applications of the parallelogram law, first to add F1 and F2 
then adding F3 to this resultant.
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FUNDAMENTAL PROBLEMS

F2–7.  Resolve each force acting on the post into its x and  
y components.

3

45

y

x

F2 � 450 N
F1 � 300 N

F3 � 600 N

45�

Prob. F2–7
F2–8.  Determine the magnitude and direction of the 
resultant force.

y

x
300 N

400 N

250 N

3
4

5

30�

Prob. F2–8
F2–9.  Determine the magnitude of the resultant force 
acting on the corbel and its direction u measured 
counterclockwise from the x axis.

3

4 5

F2 � 400 lb

F1 � 700 lb

y

x

F3 � 600 lb

30�

Prob. F2–9

F2–10.  If the resultant force acting on the bracket is to be 
750 N directed along the positive x axis, determine the 
magnitude of F and its direction u.

F

600 N

325 N

12

5

13

y

x
u

45�

Prob. F2–10

F2–11.  If the magnitude of the resultant force acting on 
the bracket is to be 80 lb directed along the u axis, determine 
the magnitude of F and its direction u.

90 lb

50 lb

F

3

4
5

x

u

y

45�

u

Prob. F2–11

F2–12.  Determine the magnitude of the resultant force 
and its direction u measured counterclockwise from the 
positive x axis.

F3 � 15 kN

F2 � 20 kN
F1 � 15 kN

y

x

44
33 55

Prob. F2–12
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Problems

*2–32.  Determine the magnitude of the resultant force 
and  its direction, measured counterclockwise from the 
positive x axis.

y

x

30�

F1 � 200 N

F2 � 150 N

45�

Prob. 2–32

2–33.  Determine the magnitude of the resultant force and 
its direction, measured clockwise from the positive x axis.

 800 N

 400 N

x

y

B

45�

30�

Prob. 2–33

2–34.  Resolve F1 and F2 into their x and y components.

2–35.  Determine the magnitude of the resultant force 
and its direction measured counterclockwise from the 
positive x axis.

F1 � 400 N

F2 � 250 N

x

y

60�

30�

45�

Probs. 2–34/35

*2–36.  Resolve each force acting on the gusset plate into 
its x and y components, and express each force as a 
Cartesian vector.

2–37.  Determine the magnitude of the resultant force 
acting on the plate and its direction, measured counter-
clockwise from the positive x axis.

F1 � 900 N

F2 � 750 N

45�

F3 � 650 N

3
4

5

x

y

Probs. 2–36/37
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2–42.  Express F1, F2, and F3 as Cartesian vectors.

2–43.  Determine the magnitude of the resultant force and its 
direction, measured counterclockwise from the positive x axis.

y

x

30�

45�

F2 � 625 N

F1 � 850 N

F3 � 750 N

5

4
3

Probs. 2–42/43

*2–44.  Determine the magnitude of the resultant force 
and its direction, measured clockwise from the positive 
x axis.

x

y

12

3

5

5

13

4

 30 lb

 40 lb

 91 lb

Prob. 2–44

2–45.  Determine the magnitude and direction u of the 
resultant force FR. Express the result in terms of the 
magnitudes of the components F1 and F2 and the angle f.

F1 FR

F2

u

f

Prob. 2–45

2–38.  Express each of the three forces acting on the 
support in Cartesian vector form and determine the 
magnitude of the resultant force and its direction, measured 
clockwise from positive x axis.

y

x

F2 � 80 N

F1 � 50 N

15�

3

4
5

4

F3 � 30 N

Prob. 2–38

2–39.  Determine the x and y components of F1 and F2.

*2–40.  Determine the magnitude of the resultant force 
and  its direction, measured counterclockwise from the 
positive x axis.

y

x

30�

F1 � 200 N

F2 � 150 N

45�

Probs. 2–39/40

2–41.  Determine the magnitude of the resultant force 
and its direction, measured counterclockwise from the 
positive x axis.

y

x

F2 � 5 kN 

F1 � 4 kN 

F3 � 8 kN 

60�

45�

Prob. 2–41
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2–50.  Express F1, F2, and F3 as Cartesian vectors.

2–51.  Determine the magnitude of the resultant force 
and its direction, measured counterclockwise from the 
positive x axis.

30�

y

x

F2 � 26 kN

F3 � 36 kN

5
12

13

F1 � 15 kN
40�

Probs. 2–50/51

*2–52.  Determine the x and y components of each force 
acting on the gusset plate of a bridge truss. Show that the 
resultant force is zero.

y

x

3
4

5 3
45

F1 � 8 kN

F2 � 6 kN

F3 � 4 kNF4 � 6 kN

Prob. 2–52

2–46.  Determine the magnitude and orientation u of FB so 
that the resultant force is directed along the positive y axis 
and has a magnitude of 1500 N.

2–47.  Determine the magnitude and orientation, measured 
counterclockwise from the positive y axis, of the resultant 
force acting on the bracket, if FB = 600 N and u = 20�.

y

x

30�B
A

u

FA � 700 N
FB

Probs. 2–46/47

*2–48.  Three forces act on the bracket. Determine the 
magnitude and direction u of F1 so that the resultant force 
is directed along the positive x � axis and has a magnitude 
of 800 N.

2–49.  If F1 = 300 N and u = 10�, determine the magnitude 
and direction, measured counterclockwise from the positive 
x � axis, of the resultant force acting on the bracket.

60�

y

x

F2 � 200 N

F3 � 180 N
F1

x¿

5

12

13
u

Probs. 2–48/49
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*2–56.  If the magnitude of the resultant force acting on 
the bracket is to be 450 N directed along the positive u axis, 
determine the magnitude of F1 and its direction f.

2–57.  If the resultant force acting on the bracket is 
required to be a minimum, determine the magnitudes of F1 
and the resultant force.  Set f = 30°.

5

12 13

y

x

u

F3 � 260 N

F2 � 200 N

F1

f

30�

Probs. 2–56/57

2–58.  Three forces act on the bracket. Determine the 
magnitude and direction u of F so that the resultant force is 
directed along the positive x  axis and has a magnitude 
of 8 kN.

2–59.  If F = 5 kN and u = 30°, determine the magnitude of 
the resultant force and its direction, measured counter-
clockwise from the positive x axis.

6 kN

4 kN

x'

x

y

F

15�

30�

u

Probs. 2–58/59

2–53.  Express F1 and F2 as Cartesian vectors.

2–54.  Determine the magnitude of the resultant force and 
its direction measured counterclockwise from the positive 
x axis.

F1 � 30 kN

F2 � 26 kN

12

5

13

x

y

30�

Probs. 2–53/54

2–55.  Determine the magnitude of force F so that the 
resultant force of the three forces is as small as possible. 
What is the magnitude of the resultant force?

F

8 kN

14 kN

4530

Prob. 2–55
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2.5  Cartesian Vectors

The operations of vector algebra, when applied to solving problems in 
three dimensions, are greatly simplified if the vectors are first represented 
in Cartesian vector form. In this section we will present a general method 
for doing this; then in the next section we will use this method for finding 
the resultant force of a system of concurrent forces.

Right-Handed Coordinate System.  We will use a right-
handed coordinate system to develop the theory of vector algebra that 
follows. A rectangular coordinate system is said to be right-handed if the 
thumb of the right hand points in the direction of the positive z axis when 
the right-hand fingers are curled about this axis and directed from the 
positive x towards the positive y axis, Fig. 2–21.

Rectangular Components of a Vector.  A vector A may have 
one, two, or three rectangular components along the x, y, z coordinate 
axes, depending on how the vector is oriented relative to the axes. In 
general, though, when A is directed within an octant of the x, y, z frame, 
Fig. 2–22, then by two successive applications of the parallelogram law, 
we may resolve the vector into components as A = A + Az and then  
A = Ax + Ay. Combining these equations, to eliminate A, A is 
represented by the vector sum of its three rectangular components,

	 A = Ax + Ay + Az� (2–2)

Cartesian Unit Vectors.  In three dimensions, the set of Cartesian 
unit vectors, i, j, k, is used to designate the directions of the x, y, z axes, 
respectively. As stated in Sec. 2–4, the sense (or arrowhead) of these 
vectors will be represented analytically by a plus or minus sign, depending 
on whether they are directed along the positive or negative x, y, or z axes. 
The positive Cartesian unit vectors are shown in Fig. 2–23.

k

j
i

z

y

x

Fig. 2–23

z

x

y

Fig. 2–21 (© Russell C. Hibbeler)

A

Ax

z

y

x

Ay

Az

A¿

Fig. 2–22
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Cartesian Vector Representation.  Since the three components 
of A in Eq. 2–2 act in the positive i, j, and k directions, Fig. 2–24, we can 
write A in Cartesian vector form as

	 A = A xi + A y   j + A zk 	 (2–3)

There is a distinct advantage to writing vectors in this manner. 
Separating the magnitude and direction of each component vector will 
simplify the operations of vector algebra, particularly in three dimensions.

Magnitude of a Cartesian Vector.  It is always possible to 
obtain the magnitude of A provided it is expressed in Cartesian vector 
form. As shown in Fig. 2–25, from the blue right triangle, A = 2A 2  + A 2

z , 
and from the gray right triangle, A  = 2A 2

x + A y
2. Combining these 

equations to eliminate A  yields

	 A = 2A 2
x + A 2

y + A 2
z � (2–4)

Hence, the magnitude of A is equal to the positive square root of the sum 
of the squares of its components.

Coordinate Direction Angles.  We will define the direction of 
A by the coordinate direction angles a (alpha), b (beta), and g (gamma), 
measured between the tail of A and the positive x, y, z axes provided they 
are located at the tail of A, Fig. 2–26. Note that regardless of where A is 
directed, each of these angles will be between 0° and 180°.

To determine a, b, and g, consider the projection of A onto the x, y, z 
axes, Fig. 2–27. Referring to the colored right triangles shown in the  
figure, we have

	 cos a =
A x

A
 cos b =

A y

A
 cos g =

A z

A
� (2–5)

These numbers are known as the direction cosines of A. Once they 
have been obtained, the coordinate direction angles a, b, g can then be 
determined from the inverse cosines.

A

Ax i

z

y

x

Ay j

Az k

k

i

j

Fig. 2–24

A

Axi

z

y

x

Ayj

Azk

A

A¿

Ay

Ax

Az

Fig. 2–25

A

Axi

z

y

x

Ayj

Azk

uA

g

a

b

Fig. 2–26
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An easy way of obtaining these direction cosines is to form a unit 
vector uA in the direction of A, Fig. 2–26. If A is expressed in Cartesian 
vector form, A = A xi + A y  j + A zk, then uA will have a magnitude of 
one and be dimensionless provided A is divided by its magnitude, i.e.,

	 uA =
A
A

=
A x

A
 i +

A y

A
 j +

A z

A
 k � (2–6)

where  A = 2A x
2 + A 2

y + A 2
z . By comparison with Eqs. 2–5, it is seen 

that the i, j, k components of uA represent the direction cosines of A, i.e.,

	 uA = cos a i + cos b j + cos g k� (2–7)

Since the magnitude of a vector is equal to the positive square root of 
the sum of the squares of the magnitudes of its components, and uA has a 
magnitude of one, then from the above equation an important relation 
among the direction cosines can be formulated as

	 cos2 a + cos2 b + cos2 g = 1 � (2–8)

Here we can see that if only two of the coordinate angles are known, 
the third angle can be found using this equation.

Finally, if the magnitude and coordinate direction angles of A are 
known, then A may be expressed in Cartesian vector form as

                            A = AuA

	  = A  cos a i + A  cos b j + A  cos g k� (2–9)
	  = A xi + A y  j + A zk

Transverse and Azmuth Angles.  Sometimes, the direction of A 
can be specified using two angles, namely, a transverse angle u and an 
azmuth angle f (phi), such as shown in Fig. 2–28. The components of A 
can then be determined by applying trigonometry first to the light blue 
right triangle, which yields

A z = A  cos f

and

A  = A  sin f

Now applying trigonometry to the dark blue right triangle,

A x = A   cos u = A  sin f cos u

A y = A   sin u = A  sin f sin u

z

y

x

90�

A

Ax

a
Ay

b

Az
g

Fig. 2–27

y
x

Ay

Az

Ax

A¿

A

z

O

u

f

Fig. 2–28
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Therefore A written in Cartesian vector form becomes

A = A  sin f cos u i + A  sin f sin u j + A  cos f k

You should not memorize this equation, rather it is important to 
understand how the components were determined using trigonometry.

2.6  Addition of Cartesian Vectors

The addition (or subtraction) of two or more vectors is greatly simplified 
if the vectors are expressed in terms of their Cartesian components. For 
example, if A = Ax i + Ay  j + A zk and B = Bxi + By  j + Bzk, Fig. 2–29, 
then the resultant vector, R, has components which are the scalar sums of 
the i, j, k components of A and B, i.e.,

R = A + B = (A x + Bx)i + (A y + By)j + (A z + Bz)k

If this is generalized and applied to a system of several concurrent 
forces, then the force resultant is the vector sum of all the forces in the 
system and can be written as

	 FR = F = Fxi + Fy  j + Fzk 	 (2–10)

Here Fx, Fy, and Fz represent the algebraic sums of the respective  
x, y, z or i, j, k components of each force in the system.

z

y

x

R

B

A

(Az � Bz)k

(Ax � Bx)i

(Ay � By)j

Fig. 2–29

Cartesian vector analysis provides a 
convenient method for finding both the 
resultant force and its components in three 
dimensions. (© Russell C. Hibbeler)

Important Points

	 •	 A Cartesian vector A has i, j, k components along the x, y, z axes. 

If A is known, its magnitude is defined by A = 2A x
2 + A y

2 + A z
2.

	 •	 The direction of a Cartesian vector can be defined by the three 
angles a, b, g, measured from the positive x, y, z axes to the tail of 
the vector. To find these angles formulate a unit vector in the 
direction of A, i.e., uA = A>A, and determine the inverse cosines of 
its components. Only two of these angles are independent of one 
another; the third angle is found from cos2 a + cos2 b + cos2 g = 1.

	 •	 The direction of a Cartesian vector can also be specified using a 
transverse angle u and azimuth angle f.
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(a)

z

y

x

F � 100 lb

60�

45�

Express the force F shown in Fig. 2–30a as a Cartesian vector.

Solution
The angles of 60° and 45° defining the direction of F are not coordinate 
direction angles. Two successive applications of the parallelogram law 
are needed to resolve F into its x, y, z components. First F = F + Fz, 
then F = Fx + Fy, Fig. 2–30b. By trigonometry, the magnitudes of the 
components are

 Fz = 100 sin 60 lb = 86.6 lb

 F = 100 cos 60 lb = 50 lb

Fx = F cos 45 = 50 cos 45 lb = 35.4 lb

Fy = F sin 45 = 50 sin 45 lb = 35.4 lb

Realizing that Fy has a direction defined by –j, we have

		  F = 535.4i - 35.4j + 86.6k6  lb  	 Ans.

To show that the magnitude of this vector is indeed 100 lb, apply  
Eq. 2–4,

 F = 2F2
x + F2

y + F2
z

 = 2(35.4)2 + (35.4)2 + (86.6)2 = 100 lb

If needed, the coordinate direction angles of F can be determined from 
the components of the unit vector acting in the direction of F. Hence,

 u =
F
F

=
Fx

F
 i +

Fy

F
 j +

Fz

F
 k  

 =
35.4

100
 i -

35.4

100
 j +

86.6

100
 k  

 = 0.354i - 0.354j + 0.866k

so that

 a = cos-1(0.354) = 69.3

 b = cos-1(-0.354) = 111

 g = cos-1(0.866) = 30.0

These results are shown in Fig. 2–30c.

Example   2.8 

z

F¿ Fx

Fz

y

x

F � 100 lb

60�

45�

Fy

(b)

Fig. 2–30

(c)

z

y

x

F � 100 lb

69.3�

111�

30.0�
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Example          2.9 

z

F2

F1 � 300 N

(a)
x

y
60�

45�

120�

z

(b)

F1 � 300 N

F2 � 700 N

FR � 800 N

x

y

g2 � 77.6�

b2 � 21.8�

a2 � 108�

Fig. 2–31

Two forces act on the hook shown in Fig. 2–31a. Specify the magnitude 
of F2 and its coordinate direction angles so that the resultant force FR 
acts along the positive y axis and has a magnitude of 800 N.

Solution
To solve this problem, the resultant force FR and its two components, 
F1 and F2, will each be expressed in Cartesian vector form. Then, as 
shown in Fig. 2–31b, it is necessary that FR = F1 + F2.

Applying Eq. 2–9,

 F1 = F1 cos a1i + F1 cos b1 j + F1 cos g1k

 = 300 cos 45 i + 300 cos 60 j + 300 cos 120 k

 = 5212.1i + 150j - 150k6N

 F2 = F2x  i + F2y   j + F2z  k

Since FR has a magnitude of 800 N and acts in the +j direction,

FR = (800 N)(+j) = 5800j6  N
We require

 FR = F1 + F2

 800j = 212.1i + 150j - 150k + F2x  i + F2y  j + F2z  k

 800j = (212.1 + F2x)i + (150 + F2y)j + (-150 + F2z)k

To satisfy this equation the i, j, k components of FR must be equal to 
the corresponding i, j, k components of (F1 + F2). Hence,

 0 = 212.1 + F2x   F2x = -212.1 N

 800 = 150 + F2y   F2y = 650 N

 0 = -150 + F2z   F2z = 150 N

The magnitude of F2 is thus

 F2 = 2(-212.1 N)2 + (650 N)2 + (150 N)2

	  = 700 N 	 Ans.

We can use Eq. 2–9 to determine a2, b2, g2.

 cos a2 =
-212.1

700
;	 a2 = 108   	 Ans.

 cos b2 =
650

700
;	 b2 = 21.8   	 Ans.

 cos g2 =
150

700
;	 g2 = 77.6   	 Ans.

These results are shown in Fig. 2–31b.
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P2–3.  Sketch the following forces on the x, y, z coordinate 
axes. Show a, b, g.
a)  F = {50i + 60j - 10k} kN

b)  F = {-40i - 80j + 60k} kN

P2–4.  In each case, establish F as a Cartesian vector, and 
find the magnitude of F and the direction cosine of b.

	 Preliminary Problems

(a)

F

y

4 kN 

x

z

4 kN 

2 kN 

(b)

F

y

z

10 N 

x

20 N 

20 N 

Prob. P2–4

P2–5.  Show how to resolve each force into its x, y, z 
components. Set up the calculation used to find the 
magnitude of each component.

(a)

y
20�

F � 600 N 

z

x

45�

(b)

y

 
z

x

5

5

4

4
3

3

F � 500 N

Prob. P2–5

y

30�

z

x

(c)

F � 800 N

60�



	 2.6 A ddition of Cartesian Vectors	 51

2 

F2–16.    Express the force as a Cartesian vector.

z

y
x

34

5

F � 50 lb

45�

F2–17.    Express the force as a Cartesian vector.

F � 750 N

z

y

x

45�

60�

F2–18.    Determine the resultant force acting on the hook.

F2 � 800 lb

F1 � 500 lb

3
4

5

y

z

x
30�

45�

F2–13.    Determine the coordinate direction angles of the 
force.

y

z

x 30�

F � 75 lb

45�

F2–14.    Express the force as a Cartesian vector.

F � 500 Nz

yx

60�

60�

F2–15.    Express the force as a Cartesian vector.

F � 500 N

z

y

x

45�

60�

Prob. F2–13

Prob. F2–14

Prob. F2–15

Prob. F2–16

Prob. F2–17

Prob. F2–18

     FUNDAMENTAL PROBLEMS
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*2–60.    The force F has a magnitude of 80 lb and acts 
within the octant shown. Determine the magnitudes of the  
x, y, z components of F.

y

F � 80 lb

Fx

Fy

x

a � 60�

z

Fz

b � 45�

Prob. 2–60

2–61.    The bolt is subjected to the force F, which has 
components acting along the x, y, z axes as shown. If the 
magnitude of F is 80 N, and a = 60 and g = 45, determine 
the magnitudes of its components.

x

z

Fz

Fy

Fx

F
y

g

a

b

Prob. 2–61

2–62.    Determine the magnitude and coordinate direction 
angles of the force F acting on the support. The component 
of F in the x–y plane is 7 kN. 

y

z

x

7 kN 

40�

30�

F

Prob. 2–62

2–63.    Determine the magnitude and coordinate direction 
angles of the resultant force and sketch this vector on the 
coordinate system.

*2–64.    Specify the coordinate direction angles of F1 and F2 
and express each force as a Cartesian vector.

y

z

x

F1 � 80 lb

40�

F2 � 130 lb

30�

Probs. 2–63/64

PROBLEMS
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2–65.    The screw eye is subjected to the two forces shown. 
Express each force in Cartesian vector form and then 
determine the resultant force. Find the magnitude and 
coordinate direction angles of the resultant force.

2–66.    Determine the coordinate direction angles of F1.

45�

z

x

F1 � 300 N

45�

60�

F2 � 500 N

y

60�

120�

Probs. 2–65/66

2–67.    Determine the magnitude and coordinate direction 
angles of F3 so that the resultant of the three forces acts 
along the positive y axis and has a magnitude of 600 lb.

*2–68.    Determine the magnitude and coordinate direction 
angles of F3 so that the resultant of the three forces is zero.

z

y

x

F3

30�

40�

F1 � 180 lb

F2 � 300 lb

Probs. 2–67/68

2–69.    Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system.

y

z

x

45�
20�

3
4

5

60�

60�

F1 � 400 N

F2 � 125 N

Prob. 2–69

2–70.    Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system.

3

4 5

60�
120�

45�

x

z

y

F2 � 525 N

F1 � 450 N

Prob. 2–70

2–71.    Specify the magnitude and coordinate direction 
angles a1, b1, g1 of F1 so that the resultant of the three 
forces acting on the bracket is FR = 5-350k6  lb. Note that  
F3 lies in the x–y plane.

z

F1

F2 � 200 lb

F3 � 400 lb

x

y30�

g1

b1

a1

Prob. 2–71
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*2–72.    Two forces F1 and F2 act on the screw eye. If the   
resultant force FR has a magnitude of 150 lb and  
the coordinate direction angles shown, determine the 
magnitude of F2 and its coordinate direction angles.

F2

120�

130�

x

y

z

g

F1 � 80 lb

FR � 150 lb

Prob. 2–72

2–73.    Express each force in Cartesian vector form.

2–74.    Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system.

x

y

z

3 4

5

45�

60�F1 � 90 N

F2 � 150 N
F3 � 200 N

Probs. 2–73/74

2–75.    The spur gear is subjected to the two forces caused 
by contact with other gears. Express each force as a 
Cartesian vector.

*2–76.    The spur gear is subjected to the two forces caused 
by contact with other gears. Determine the resultant of the 
two forces and express the result as a Cartesian vector.

135�

F1 � 50 lb

F2 � 180 lb

24

7

25

60�

60�

z

y

x

Probs. 2–75/76

2–77.    Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system.

x

z

F2 � 500 N

F1 = 400 N

135�

60�
60�

20�

y

60�

Prob. 2–77
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2–78.    The two forces F1 and F2 acting at A have a resultant 
force of FR = 5-100k6  lb. Determine the magnitude and 
coordinate direction angles of F2.

2–79.    Determine the coordinate direction angles of the 
force F1 and indicate them on the figure.

y

x
F1 = 60 lb

F2

z

A

B

30

50

Probs. 2–78/79

*2–80.    The bracket is subjected to the two forces shown. 
Express each force in Cartesian vector form and then 
determine the resultant force FR. Find the magnitude and 
coordinate direction angles of the resultant force.

y

z

F1 � 250 N

F2 � 400 N

x

120�

45�

35�

25�

60�

Prob. 2–80

2–81.    If the coordinate direction angles for F3 are  
a3 = 120, b3 = 60 and g3 = 45, determine the magnitude 
and coordinate direction angles of the resultant force acting 
on the eyebolt.

2–82.    If the coordinate direction angles for F3 are 
a3 = 120, b3 = 45, and g3 = 60, determine the 
magnitude and coordinate direction angles of the resultant 
force acting on the eyebolt.

2–83.    If the direction of the resultant force acting on the 
eyebolt is defined by the unit vector uFR

= cos 30j +sin 30k, 
determine the coordinate direction angles of F3 and the 
magnitude of FR.

x

30�

4 3
5

y

z

F2 � 600 lb

F1 � 700 lb

F3 � 800 lb

Probs. 2–81/82/83

*2–84.    The pole is subjected to the force F, which has 
components acting along the x, y, z axes as shown. If the 
magnitude of F is 3 kN, b = 30, and g = 75, determine 
the magnitudes of its three components.

2–85.    The pole is subjected to the force F which has 
components Fx = 1.5 kN and Fz = 1.25 kN. If b = 75, 
determine the magnitudes of F and Fy.

z

Fz

Fy

Fx

F

y

x

a

b
g

Probs. 2–84/85



56 	 Chapter 2    Force Vectors

2 

2.7  Position Vectors

In this section we will introduce the concept of a position vector. It will 
be shown that this vector is of importance in formulating a Cartesian force 
vector directed between two points in space.	

x, y, z Coordinates.  Throughout the book we will use a right-
handed coordinate system to reference the location of points in space. We 
will also use the convention followed in many technical books, which 
requires the positive z axis to be directed upward (the zenith direction) so 
that it measures the height of an object or the altitude of a point. The x, y 
axes then lie in the horizontal plane, Fig. 2–32. Points in space are located 
relative to the origin of coordinates, O, by successive measurements along 
the x, y, z axes. For example, the coordinates of point A are obtained by 
starting at O and measuring xA = +4 m along the x axis, then yA = +2 m 
along the y axis, and finally zA = - 6 m along the z axis, so that 
 A(4 m, 2 m, - 6 m). In a similar manner, measurements along the x, y, z 
axes from O to B yield the coordinates of B, that is, B(6 m, -1 m, 4 m).

Position Vector.  A position vector r is defined as a fixed vector 
which locates a point in space relative to another point. For example, if r 
extends from the origin of coordinates, O, to point P(x, y, z), Fig. 2–33a, 
then r can be expressed in Cartesian vector form as

r = xi + yj + zk

Note how the head-to-tail vector addition of the three components yields 
vector r, Fig. 2–33b. Starting at the origin O, one “travels” x in the +i 
direction, then y in the +j direction, and finally z in the +k direction to 
arrive at point P(x, y, z).

z

y

x

4 m

1 m

2 m

O
B

A

2 m

4 m

6 m

Fig. 2–32

z

y

x

y j
r

x i
O

z k

(a)

P(x, y, z)

Fig. 2–33

z

y

x

z k
r

x i
O

(b)

P(x, y, z)

y j
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In the more general case, the position vector may be directed from 
point A to point B in space, Fig. 2–34a. This vector is also designated by 
the symbol r. As a matter of convention, we will sometimes refer to this 
vector with two subscripts to indicate from and to the point where it is 
directed. Thus, r can also be designated as rAB. Also, note that rA and rB in 
Fig. 2–34a are referenced with only one subscript since they extend from 
the origin of coordinates.

From Fig. 2–34a, by the head-to-tail vector addition, using the triangle 
rule, we require

rA + r = rB

Solving for r and expressing rA and rB in Cartesian vector form yields

r = rB - rA = (xBi + yB   j + zBk) - (xAi + yA   j + zAk)

or

	 r = (xB - xA)i + (yB - yA)j + (zB - zA)k 	 (2–11)

Thus, the i, j, k components of the position vector r may be formed by 
taking the coordinates of the tail of the vector A (xA, yA, zA) and subtracting 
them from the corresponding coordinates of the head B(xB, yB, zB). We can 
also form these components directly, Fig. 2–34b, by starting at A and 
moving through a distance of (xB - xA) along the positive x axis (+i), then 
(yB - yA) along the positive y axis (+j), and finally (zB - zA) along the 
positive z axis (+k) to get to B.

z

y

x

(a)

B(xB, yB, zB)

A(xA, yA, zA)
rA

rB

r

Fig. 2–34

B

r

u

A

If an x, y, z coordinate system is established, 
then the coordinates of two points A and B 
on the cable can be determined. From this 
the position vector r acting along the cable 
can be formulated. Its magnitude represents 
the distance from A to B, and its unit vector, 
u = r>r, gives the direction defined by a, b, g.
(© Russell C. Hibbeler)

(b)

z

y

x

(xB � xA)i

r
B

A

(yB � yA)j

(zB � zA)k
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(a)

z

y

x
3 m

1 mA

B

3 m

2 m

2 m

An elastic rubber band is attached to points A and B as shown in  
Fig. 2–35a. Determine its length and its direction measured from  
A toward B.

Solution
We first establish a position vector from A to B, Fig. 2–35b. In 
accordance with Eq. 2–11, the coordinates of the tail A(1 m, 0, -3 m) 
are subtracted from the coordinates of the head B(-2 m, 2 m, 3 m), 
which yields

 r = [-2 m - 1 m]i + [2 m - 0] j + [3 m - (-3 m)]k

	  = 5-3i + 2j + 6k6  m

These components of r can also be determined directly by realizing 
that they represent the direction and distance one must travel along 
each axis in order to move from A to B, i.e., along the x axis 5-3i6  m, 
along the y axis 52j6  m, and finally along the z axis 56k6  m.

The length of the rubber band is therefore

	  r = 2(-3 m)2 + (2 m)2 + (6 m)2 = 7 m  	 Ans.

Formulating a unit vector in the direction of r, we have

u =
r
r

= -
3

7
 i +

2

7
 j +

6

7
 k

The components of this unit vector give the coordinate direction 
angles

	  a = cos-1a-  
3

7
b = 115	 Ans.

	  b = cos-1a 2

7
b = 73.4   	 Ans.

	  g = cos-1a 6

7
b = 31.0   	 Ans.

NOTE: These angles are measured from the positive axes of a localized 
coordinate system placed at the tail of r, as shown in Fig. 2–35c.

Example    2.10 

Fig. 2–35

(b)

z

y

A

B

{6 k} m

{2 j} m
{�3 i} m

r

x

(c)

A

B

z¿

y¿

x¿

r � 7 m

g � 31.0�

a � 115�
b � 73.4�
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2.8  Force Vector Directed Along a Line

Quite often in three-dimensional statics problems, the direction of a force is 
specified by two points through which its line of action passes. Such a situation 
is shown in Fig. 2–36, where the force F is directed along the cord AB. We can 
formulate F as a Cartesian vector by realizing that it has the same direction 
and sense as the position vector r directed from point A to point B on the 
cord. This common direction is specified by the unit vector u = r>r. Hence,

F = F u = Fa r
r
b = Fa (xB - xA)i + (yB - yA)j + (zB - zA)k2(xB - xA)2 + (yB - yA)2 + (zB - zA)2

b

Although we have represented F symbolically in Fig. 2–36, note that it 
has units of force, unlike r, which has units of length.

z

y

x

r

u

B

F

A

Fig. 2–36

u

r

F

The force F acting along the rope can be  
represented as a Cartesian vector by 
establishing x, y, z axes and first forming a 
position vector r along the length of the rope. 
Then the corresponding unit vector u = r>r 
that defines the direction of both the rope 
and the force can be determined. Finally, the 
magnitude of the force is combined with its 
direction, F = Fu. (© Russell C. Hibbeler)

Important Points

	 •	 A position vector locates one point in space relative to 
another point.

	 •	 The easiest way to formulate the components of a position vector is 
to determine the distance and direction that must be traveled along 
the x, y, z directions—going from the tail to the head of the vector.

	 •	 A force F acting in the direction of a position vector r can be 
represented in Cartesian form if the unit vector u of the position 
vector is determined and it is multiplied by the magnitude of the 
force, i.e., F = Fu = F(r>r).
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The man shown in Fig. 2–37a pulls on the cord with a force of 70 lb. 
Represent this force acting on the support A as a Cartesian vector and 
determine its direction.

Solution
Force F is shown in Fig. 2–37b. The direction of this vector, u, is 
determined from the position vector r, which extends from A to B. 
Rather than using the coordinates of the end points of the cord, r can 
be determined directly by noting in Fig. 2–37a that one must travel 
from A {-24k} ft, then {-8j} ft, and finally {12i} ft to get to B. Thus,

r = 512i - 8j - 24k6  ft

The magnitude of r, which represents the length of cord AB, is

 r = 2(12 ft)2 + (-8 ft)2 + (-24 ft)2 = 28 ft

Forming the unit vector that defines the direction and sense of both 
r and F, we have

u =
r
r

=
12

28
 i -

8

28
 j -

24

28
 k

Since F has a magnitude of 70 lb and a direction specified by u, then

 F = Fu = 70 lba 12

28
 i -

8

28
 j -

24

28
 kb

	  = 530i - 20j - 60k6  lb   � Ans.

The coordinate direction angles are measured between r (or F) and 
the positive axes of a localized coordinate system with origin placed at 
A, Fig. 2–37b. From the components of the unit vector:

	  a = cos-1a 12

28
b = 64.6 � Ans.

	  b = cos-1a -8

28
b = 107 � Ans.

	  g = cos-1a -24

28
b = 149 � Ans.

NOTE: These results make sense when compared with the angles identi
fied in Fig. 2–37b.

Example   2.11 

y

x

z

A

30 ft

8 ft

6 ft

12 ft

B

(a)

Fig. 2–37

F � 70 lb

(b)

x¿

y¿

z¿

A

u

r

B

g

b

a
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The roof is supported by cables as shown in the photo. If the cables 
exert forces FAB = 100 N and FAC = 120 N on the wall hook at A as 
shown in Fig. 2–38a, determine the resultant force acting at A. Express 
the result as a Cartesian vector.

Solution
The resultant force FR is shown graphically in Fig. 2–38b. We can 
express this force as a Cartesian vector by first formulating FAB and 
FAC as Cartesian vectors and then adding their components. The 
directions of FAB and FAC are specified by forming unit vectors uAB 
and uAC along the cables. These unit vectors are obtained from the 
associated position vectors rAB and rAC. With reference to Fig. 2–38a, 
to go from A to B, we must travel 5-4k6  m, and then 54i6  m. Thus,

 rAB = 54i - 4k6  m

 rAB = 2(4 m)2 + (-4 m)2 = 5.66 m

 FAB = FAB a rAB

rAB
b = (100 N) a 4

5.66
 i -

4

5.66
 kb

 FAB = 570.7i - 70.7k6  N

To go from A to C, we must travel 5-4k6m, then 52j6  m, and finally 
54i6. Thus,

 rAC = 54i + 2j - 4k6  m

 rAC = 2(4 m)2 + (2 m)2 + (-4 m)2 = 6 m

 FAC = FAC a rAC

rAC
b = (120 N) a 4

6
 i +

2

6
 j -

4

6
 kb

 = 580i + 40j - 80k6  N

The resultant force is therefore

 FR = FAB + FAC = 570.7i - 70.7k6  N + 580i + 40j - 80k6  N

 = 5151i + 40j - 151k6  N 	 Ans.

Example    2.12 

Fig. 2–38

(a)

y

x

2 m

4 m

B

4 m

A

C

FAB � 100 N FAC � 120 N

z

y

x

B C

A

FAB FAC

rAB

rAC

FR

(b)

z
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(© Russell C. Hibbeler)
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Example   2.13

Solution
As shown in Fig. 2–39b, the coordinates for points A and B are

 A (2 m, 0, 2 m) 

and

B c - a 4

5
b5 sin 30 m, a 4

5
b5 cos 30 m, a 3

5
b  5 m d

or 

B(-2 m, 3.464 m, 3 m)

Therefore, to go from A to B, one must travel {-4i} m, then {3.464j} m, 
and finally {1k} m. Thus,

 uB = a rB

rB
b =

5-4i + 3.464j + 1k6  m2(-4 m)2 + (3.464 m)2 + (1 m)2

 = -0.7428i + 0.6433j + 0.1857k

Force FB expressed as a Cartesian vector becomes

 FB = FB uB = (750 N)(-0.74281i + 0.6433j + 0.1857k)

 = 5-557i + 482j + 139k6  N � Ans.

The force in Fig. 2–39a acts on the hook. Express it as a Cartesian vector.

2 m

(a)

2 m

yx

A

B

z

5 m

30°

FB � 750 N

(b)

yx

z

rB

FB

uB

A(2 m, 0 , 2 m)

B(–2 m, 3.464 m, 3 m)

3
4

5

)(5 m)3
5

(

)(5 m)4
5

(

Fig. 2–39
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    Preliminary Problems

P2–6.  In each case, establish a position vector from point 
A to point B.

y

z

3 m

x

(a)

2 m
5 m

A
B

P2–7.  In each case, express F as a Cartesian vector.

y

z

4 m

3 m

x

(a)

 F � 15 kN 

y

z

x

(b)

3 m

4 m

A

B

1 m

4 m

3 m
y

z

2 m

2 m

1 mx

(b)

 F � 600 N 

Prob. P2–6

y

z

x

(c)

3 m

A

B
1 m3 m

4 m

2 m

Prob. P2–7

y

z

1 m

1 m

1 m

1 m

1 m

x

(c)

 F � 300 N 

	 2.8  Force Vector Directed Along a Line	 63



64 	 Chapter 2    Force Vectors

2 

FUNDAMENTAL PROBLEMS

z B

A

y

x

4 m

2 m

3 m

3 m

3 mrAB

F2–19.  Express the position vector rAB in Cartesian 
vector form, then determine its magnitude and coordinate 
direction angles.

Prob. F2–19

F2–20.  Determine the length of the rod and the position 
vector directed from A  to B. What is the angle u?

4 ft

z

A yx

4 ft

2 ft
B

Ou

Prob. F2–20

F2–21.  Express the force as a Cartesian vector.

3 m

2 m

2 m

4 m

4 m yx

A

B

z

F � 630 N

Prob. F2–21

F2–22.  Express the force as a Cartesian vector.

4 m
2 m

7 m

2 m

z

y

A

B

x

F � 900 N

Prob. F2–22

F2–23.  Determine the magnitude of the resultant force  
at A .

z

yx

6 mFB � 840 N

FC � 420 N

3 m

3 m

2 m

2 m

B

C

A

Prob. F2–23

F2–24.  Determine the resultant force at A.

4 ft6 ft

4 ft

3 ft

4 ft 2 ft

z

y

x

FC � 490 lb

FB � 600 lb

2 ft

C

B

A

Prob. F2–24
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PROBLEMS

*2–88.  Express each of the forces in Cartesian vector form 
and determine the magnitude and coordinate direction 
angles of the resultant force.

2–86.  Determine the length of the connecting rod AB by 
first formulating a Cartesian position vector from A to B 
and then determining its magnitude.

300 mm

O

150 mm

A

B

x

y

30�

Prob. 2–86

2–87.  Express force F as a Cartesian vector; then determine 
its coordinate direction angles.

F � 135 lb

70�

30�

B

A

7 ft

10
 ft

5 ft
y

x

z

Prob. 2–87

F2 � 50 lb

F1 � 80 lb

C

O

A

B
2 ft

6 ft

4 ft

x

y

z

1213
5

2.5 ft

Prob. 2–88

2–89.  If F = 5350i - 250j - 450k6  N and cable AB is 
9 m long, determine the x, y, z coordinates of point A.

x

x
B

A

yy

z

z
F

Prob. 2–89
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2–93.  If FB = 560 N and FC = 700 N, determine the 
magnitude and coordinate direction angles of the resultant 
force acting on the flag pole.

2–94.  If FB = 700 N, and FC = 560 N, determine the 
magnitude and coordinate direction angles of the resultant 
force acting on the flag pole.

z

x

A

B

C

y

6 m

2 m

3 m

2 m
3 m

FB

FC

Probs. 2–93/94

2–95.  The plate is suspended using the three cables which 
exert the forces shown. Express each force as a Cartesian 
vector.

y

x

z

FBA � 350 lb
FDA � 400 lb

FCA � 500 lb

A

B

C

6 ft
3 ft3 ft 3 ft 2 ft

D
3 ft

14 ft

Prob. 2–95

2–90.  The 8-m-long cable is anchored to the ground at A. 
If x = 4 m and y = 2 m, determine the coordinate z to the 
highest point of attachment along the column.

2–91.  The 8-m-long cable is anchored to the ground at A. 
If z = 5 m, determine the location +x, +y of point A. Choose 
a value such that x = y.

x

z

z

y
x

y
A

B

Probs. 2–90/91

*2–92.  Express each of the forces in Cartesian vector form 
and determine the magnitude and coordinate direction 
angles of the resultant force.

FAC � 400 N

FAB � 250 N

y

x

0.75 m

z

A

40�

BC

1 m

2 m 2 m

3 m

Prob. 2–92
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2–99.  The load at A creates a force of 60 lb in wire AB. 
Express this force as a Cartesian vector acting on A and 
directed toward B as shown.

10 ft

5 ft
30�

A

z

y

x
F � 60 lb

B

Prob. 2–99

*2–100.  Determine the magnitude and coordinate direction 
angles of the resultant force acting at point A on the post.

4 m

3 m

3 m

2 m

3
4

5

O

A

C

B

FAC �150 N
FAB � 200 N

y

z

x

Prob. 2–100

*2–96.  The three supporting cables exert the forces shown 
on the sign. Represent each force as a Cartesian vector.

2–97.  Determine the magnitude and coordinate direction 
angles of the resultant force of the two forces acting on the 
sign at point A.

z

A

D

C

E

B

3 m

3 m

2 m

2 m

2 m

y

x

FC � 400 N

FB � 400 N

FE � 350 N

Probs. 2–96/97

2–98.  The force F has a magnitude of 80 lb and acts at the 
midpoint C of the thin rod. Express the force as a Cartesian 
vector.

y

2 ft

3 ft

6 ft

F � 80 lb

B

C

A

O

x

z

Prob. 2–98
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2–103.  Determine the magnitude and coordinate direction 
angles of the resultant force.

x

y

z

C

B

A
40 lb

4 ft

2 ft

3 ft

2 ft
20 

1.5 ft

20 lb

Prob. 2–103

*2–104.  If the force in each cable tied to the bin is 70 lb, 
determine the magnitude and coordinate direction angles 
of the resultant force.

2–105.  If the resultant of the four forces is FR = 5-360k6 lb, 
determine the tension developed in each cable. Due to 
symmetry, the tension in the four cables is the same.

z

B

C

E

D

A

x
y

6 ft

3 ft

3 ft

2 ft
2 ft

FC

D

FA

FB

Probs. 2–104/105

2–101.  The two mooring cables exert forces on the stern of 
a ship as shown. Represent each force as as Cartesian vector 
and determine the magnitude and coordinate direction 
angles of the resultant.

x

y

z

50 ft

30 ft

40 ft

A

C

B

10 ft

FB � 150 lbFA � 200 lb

Prob. 2–101

2–102.  The engine of the lightweight plane is supported by 
struts that are connected to the space truss that makes up 
the structure of the plane. The anticipated loading in two of 
the struts is shown. Express each of those forces as Cartesian 
vector.

3 ft

3 ft

2.5 ft

0.5 ft
B

C

A

D

0.5 ft

F2 � 600 lb

F1 � 400 lb

0.5 ft

y

z

x

2.5 ft

Prob. 2–102
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2.9  Dot Product

Occasionally in statics one has to find the angle between two lines or the 
components of a force parallel and perpendicular to a line. In two 
dimensions, these problems can readily be solved by trigonometry since 
the geometry is easy to visualize. In three dimensions, however, this is 
often difficult, and consequently vector methods should be employed for 
the solution. The dot product, which defines a particular method for 
“multiplying” two vectors, can be used to solve the above-mentioned 
problems.

The dot product of vectors A and B, written A # B and read “A dot B,” 
is defined as the product of the magnitudes of A and B and the cosine of 
the angle u between their tails, Fig. 2–40. Expressed in equation form,

	 A # B = AB cos u � (2–12)

where 0 … u … 180. The dot product is often referred to as the scalar 
product of vectors since the result is a scalar and not a vector.

Laws of Operation.

	 1.	 Commutative law: A # B = B # A

	 2.	 Multiplication by a scalar: a (A # B) = (aA) # B = A # (aB)

	 3.	 Distributive law: A # (B + D) = (A # B) + (A # D)

It is easy to prove the first and second laws by using Eq. 2–12. The proof 
of the distributive law is left as an exercise (see Prob. 2–112).

Cartesian Vector Formulation.  Equation 2–12 must be used to 
find the dot product for any two Cartesian unit vectors. For example, 
i # i = (1)(1) cos 0 = 1 and i # j = (1)(1) cos 90 = 0. If we want to find 
the dot product of two general vectors A and B that are expressed in 
Cartesian vector form, then we have

 A # B = (A xi + A y  j + A zk) # (Bxi + By  j + Bzk)

 = A xBx(i # i) + A xBy(i # j) + A xBz(i # k)

+ A yBx( j # i) + A yBy( j # j) + A yBz( j # k)

+ A zBx(k # i) + A zBy(k # j) + A zBz(k # k)

Carrying out the dot-product operations, the final result becomes

	 A # B = A xBx + A yBy + A zBz 	 (2–13)

Thus, to determine the dot product of two Cartesian vectors, multiply their 
corresponding x, y, z components and sum these products algebraically. Note 
that the result will be either a positive or negative scalar, or it could be zero.

A

B

u

Fig. 2–40
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Applications.  The dot product has two important applications in 
mechanics.

	 •	 The angle formed between two vectors or intersecting lines.  The 
angle u between the tails of vectors A and B in Fig. 2–40 can be 
determined from Eq. 2–12 and written as

u = cos-1aA # B
AB
b 0 … u … 180

		  Here A # B is found from Eq. 2–13. In particular, notice that if 
A # B = 0, u = cos-1 0 = 90 so that A will be perpendicular to B.

	 •	 The components of a vector parallel and perpendicular to a line. 
The component of vector A parallel to or collinear with the line aa in 
Fig. 2–40 is defined by Aa where A a = A  cos u. This component is 
sometimes referred to as the projection of A onto the line, since a 
right angle is formed in the construction. If the direction of the line is 
specified by the unit vector ua, then since ua = 1, we can determine 
the magnitude of Aa  directly from the dot product (Eq. 2–12); i.e.,

A a = A  cos u = A # ua

		  Hence, the scalar projection of A along a line is determined from the 
dot product of A and the unit vector ua which defines the direction of 
the line. Notice that if this result is positive, then Aa has a directional 
sense which is the same as ua, whereas if Aa is a negative scalar, then 
Aa has the opposite sense of direction to ua.

	 The component Aa represented as a vector is therefore

Aa = A a ua

		  The component of A that is perpendicular to line aa can also be 
obtained, Fig. 2–41. Since A = Aa + A# , then A#  = A - Aa. There 
are two possible ways of obtaining A # . One way would be to 
determine u from the dot product, u = cos-1(A # uA >A ), then 
A #  = A  sin u. Alternatively, if Aa is known, then by Pythagorean’s 
theorem we can also write A #  = 2A 2 - A a 2.

A�

a a
uaAa � A cos u ua

A

u

Fig. 2–41

A

B

u

Fig. 2–40 (Repeated)

u

ub

ur

The angle u between the rope and the beam 
can be determined by formulating unit 
vectors along the beam and rope and then 
using the dot product ub

# ur = (1)(1) cos u. 
(© Russell C. Hibbeler)

F

Fbub

The projection of the cable force F along the beam 
can be determined by first finding the unit vector 
ub that defines this direction. Then apply the dot 
product, Fb = F # ub. (© Russell C. Hibbeler)
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Important Points

	 •	 The dot product is used to determine the angle between two 
vectors or the projection of a vector in a specified direction.

	 •	 If vectors A and B are expressed in Cartesian vector form, the 
dot product is determined by multiplying the respective x, y, z 
scalar components and algebraically adding the results, i.e., 
A # B = A xBx + A yBy + A zBz.

	 •	 From the definition of the dot product, the angle formed between 
the tails of vectors A and B is u = cos-1(A # B>AB).

	 •	 The magnitude of the projection of vector A along a line aa 
whose direction is specified by ua is determined from the dot 
product Aa = A # ua.

Determine the magnitudes of the projection of the force F in Fig. 2–42 
onto the u and v axes.

Example   2.14

F � 100 N

u

(Fu)proj

v

15�

45�

(F )projv

Fig. 2–42
Solution

Projections of Force.  The graphical representation of the projections 
is shown in Fig. 2–42. From this figure, the magnitudes of the projections 
of F onto the u and v axes can be obtained by trigonometry:

	  (Fu)proj = (100 N)cos 45 = 70.7 N� Ans.

	  (F
v
)proj = (100 N)cos 15 = 96.6 N� Ans.

NOTE: These projections are not equal to the magnitudes of the 
components of force F along the u and v axes found from the  
parallelogram law. They will only be equal if the u and v axes are 
perpendicular to one another.
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Example   2.15

The frame shown in Fig. 2–43a is subjected to a horizontal force  
F = {300j} N. Determine the magnitudes of the components of this 
force parallel and perpendicular to member AB.

(a)

z

y

x

6 m

2 m

3 mA

B F � {300 j} N

Solution
The magnitude of the component of F along AB is equal to the dot 
product of F and the unit vector uB, which defines the direction of AB, 
Fig. 2–43b. Since

uB =
rB

rB
=

2i + 6j + 3k2(2)2 + (6)2 + (3)2
= 0.286 i + 0.857 j + 0.429 k

then

 FAB = F cos u = F # uB = (300j) # (0.286i + 0.857j + 0.429k)

 = (0)(0.286) + (300)(0.857) + (0)(0.429)

 = 257.1 N� Ans.

Since the result is a positive scalar, FAB has the same sense of direction 
as uB, Fig. 2–43b.

Expressing FAB in Cartesian vector form, we have

 FAB = FABuB = (257.1 N)(0.286i + 0.857j + 0.429k)

 = 573.5i + 220j + 110k6N � Ans.

The perpendicular component, Fig. 2–43b, is therefore

 F# = F - FAB = 300j - (73.5i + 220j + 110k)

 = 5-73.5i + 79.6j - 110k6N

Its magnitude can be determined either from this vector or by using 
the Pythagorean theorem, Fig. 2–43b:

 F# = 2F2 - F2
AB = 2(300 N)2 - (257.1 N)2

	  = 155 N � Ans.

Fig. 2–43
(b)

F

F

FAB

z

y

x

A

B
uB
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Example   2.16

The pipe in Fig. 2–44a is subjected to the force of F = 80 lb. Determine 
the angle u between F and the pipe segment BA and the projection of 
F along this segment.

F � 80 lb

2 ft

2 ft1 ft

B

1 ft

y

x

z

(a)

C

A

u

Solution
Angle U.  First we will establish position vectors from B to A and B 
to C; Fig. 2–44b. Then we will determine the angle u between the tails 
of these two vectors.

 rBA = 5-2i - 2j + 1k6  ft, rBA = 3 ft

 rBC = 5-3j + 1k6  ft, rBC = 210 ft

Thus,

	  cos u =
rBA

# rBC

rBArBC
=

(-2)(0) + (-2)(-3) + (1)(1)

3210
= 0.7379

	  u = 42.5� Ans.

Components of F.  The component of F along BA is shown in  
Fig. 2–44c. We must first formulate the unit vector along BA and force 
F as Cartesian vectors.

 uBA =
rBA

rBA
=

(-2i - 2j + 1k)

3
= -  

2

3
 i -

2

3
 j +

1

3
 k

 F = 80 lba rBC

rBC
b = 80a -3j + 1k210

b = -75.89j + 25.30k

Thus,

 FBA = F # uBA = (-75.89j + 25.30k) # a -  
2

3
 i -

2

3
 j +

1

3
 kb

 = 0 a- 2

3
b + (-75.89)a-  

2

3
b + (25.30) a 1

3
b

	  = 59.0 lb � Ans.

B

y

x

z

(b)

C

A

u
rBC

rBA

(c)

x F � 80 lb

F

z

y
A

B

FBA
u

Fig. 2–44
Note: Since u has been calculated, then also, FBA = F cos u =
80 lb cos 42.5 = 59.0 lb.
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Preliminary Problems
P2–8.    In each case, set up the dot product to find the  
angle u. Do not calculate the result.

(a)

2 m
y

z

x

O

A

B

3 m

2 m

1 m

u

P2–9.    In each case, set up the dot product to find the 
magnitude of the projection of the force F along a-a axes. 
Do not calculate the result.

(a)

y

z
2 m

1.5 m

x

a

2 m

2 m 1 m

a

 F � 300 N 

Prob. P2–8

(b)

2 m
y

z

x

O

B

A

2 m

1.5 m

2 m

1 m

u

Prob. P2–9

(b)

y

z

5

x

2 m

2 m

1 ma

a

3
4

 F � 500 N 
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F2–25.  Determine the angle u between the force and the 
line AO.

F2–29.  Find the magnitude of the projected component of 
the force along the pipe AO.

FUNDAMENTAL PROBLEMS

2 m

2 m

1 m

z

y

A

O

x

F � {�6 i � 9 j � 3 k} kN

u

Prob. F2–25

F2–26.  Determine the angle u between the force and the 
line AB.

y
x

z

A
F � 600 N

C

B

4 m

4 m

3 m

u

Prob. F2–26

O

z

y
x

4 m

6 m

5 m B

A

F � 400 N

4 m

Prob. F2–29

F2–30.  Determine the components of the force acting 
parallel and perpendicular to the axis of the pole.

z

x

y

A

F � 600 lb

60�

30�

4 ft

2 ft

4 ft

O

Prob. F2–30

F2–31.  Determine the magnitudes of the components of the 
force F = 56 N acting along and perpendicular to line AO.

y

x

z

C
O

D

A

B
3 m

1.5 m

1 m

1 m F � 56 N

Prob. F2–31

F2–27.  Determine the angle u between the force and the 
line OA. 

F2–28.  Determine the projected component of the force 
along the line OA.

F � 650 N

x

A

O

y

13

12
5u

Probs. F2–27/28
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*2–108.  The chandelier is supported by three chains which 
are concurrent at point O. If the force in each chain has a 
magnitude of 60 lb, express each force as a Cartesian vector 
and determine the magnitude and coordinate direction 
angles of the resultant force.

2–109.  The chandelier is supported by three chains which 
are concurrent at point O. If the resultant force at O has a 
magnitude of 130 lb and is directed along the negative  
z axis, determine the force in each chain.

120�

z

y
120� 4 ft

A

B

C

6 ft

O

FA

FB
FC

x

120�

Probs. 2–108/109

2–110.  The window is held open by chain AB. Determine 
the length of the chain, and express the 50-lb force acting at 
A along the chain as a Cartesian vector and determine its 
coordinate direction angles.

40�

x

y
5 ft

12 ft

8 ft

A

B5 ft

z

5 ft

F � 50 lb

Prob. 2–110

2–106.  Express the force F in Cartesian vector form if it 
acts at the midpoint B of the rod.

3 m

4 m y

x

z

6 m

4 m

4 m

O F � 600 N

B

A

C

D

Prob. 2–106

2–107.  Express force F in Cartesian vector form if point B 
is located 3 m along the rod from end C.

3 m

4 m y

x

z

6 m

4 m

4 m

O F � 600 N

B

A

C

D

Prob. 2–107

PROBLEMS
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2–114.  Determine the angle u between the two cables.

2–115.  Determine the magnitude of the projection of the 
force F1 along cable AC.

z

x

A

B

C

y

2 m

3 m

3 m

3 m

2 m

4 m

F1 � 70 N

F2 � 40 N

u

Probs. 2–114/115

*2–116.  Determine the angle u between the y axis of the 
pole and the wire AB.

A

B

y

z

x
2 ft

2 ft

2 ft
3 ft

θ

Prob. 2–116

2–111.  The window is held open by cable AB. Determine 
the length of the cable and express the 30-N force acting at 
A along the cable as a Cartesian vector.

x

y

250 mm

A

B

150 mm

z

300 mm

500 mm

30� 30 N

Prob. 2–111

*2–112.  Given the three vectors A, B, and D, show that 
A # (B + D) = (A # B) + (A # D).

2–113.  Determine the magnitudes of the components of 
F = 600 N acting along and perpendicular to segment DE 
of the pipe assembly.

x y

E

D

C

B

A

z

2 m

2 m

2 m

2 m

3 m

F � 600 N

Probs. 2–112/113
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*2–120.  Two cables exert forces on the pipe. Determine 
the magnitude of the projected component of F1 along the 
line of action of F2.

2–121.  Determine the angle u between the two cables 
attached to the pipe.

60�

y

z

60�

30�
30�

x

F2 � 25 lb

F1 � 30 lb

u

Probs. 2–120/121

2–122.  Determine the angle u between the cables AB and AC.

2–123.  Determine the magnitude of the projected 
component of the force F = {400i - 200j + 500k} N acting 
along the cable BA.

*2–124.  Determine the magnitude of the projected 
component of the force F = {400i - 200j + 500k} N acting 
along the cable CA.

z

A

B

C

D

y
x

3 m

6 m

1 m
2 m

1 m

F u

Probs. 2–122/123/124

2–117.  Determine the magnitudes of the projected 
components of the force F = [60i + 12j - 40k] N along the 
cables AB and AC.

2–118.  Determine the angle u between cables AB and AC.

F

1.5 m

3 m

1 m

0.75 m

1 m
B

C

A

z

y
x

u

Probs. 2–117/118

2–119.  A force of F = {-40k} lb acts at the end of the pipe. 
Determine the magnitudes of the components F1 and F2 
which are directed along the pipe’s axis and perpendicular 
to it.

z

x

y

F2

3 ft

3 ft

F1

A

O

F � {�40 k} lb

5 ft

Prob. 2–119
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*2–128.  Determine the angle u between BA and BC.

2–129.  Determine the magnitude of the projected component 
of the 3 kN force acting along the axis BC of the pipe.

y

C

B

A

D

z

3 m

2 m

1 m

4 m
5 m

x F � 3 kN

u

Probs. 2–128/129

2–130.  Determine the angles u and f made between the 
axes OA of the flag pole and AB and AC, respectively, of 
each cable.

3 m

4 m

CB

x
y

z

O

FC � 40 N
FB � 55 N

2 m

1.5 m

6 m

4 m

Au f

Prob. 2–130

2–125.  Determine the magnitude of the projection of 
force F = 600 N along the u axis.

30�

2 m

4 m
4 m

F � 600 N

z

x u

O
y

A

Prob. 2–125

2–126.  Determine the magnitude of the projected 
component of the 100-lb force acting along the axis BC of  
the pipe.

2–127.  Determine the angle u between pipe segments BA 
and BC.

z

yD

3 ft

6 ft
4 ft

8 ft

F  100 lbC

A

B

2 ft

u

x

Probs. 2–126/127
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2–135.  Determine the magnitudes of the components of 
the force F = 90 lb acting parallel and perpendicular to 
diagonal AB of the crate.

1 ft

60�

45�

F � 90 lb

A

C

B

x

z

y
1.5 ft3 ft

Prob. 2–135

*2–136.  Determine the magnitudes of the projected com
ponents of the force F = 300 N acting along the x and y axes.

2–137.  Determine the magnitude of the projected 
component of the force F = 300 N acting along line OA.

z
A

O

x y

300 mm

300 mm

300 mm

F � 300 N

30�

30�

Probs. 2–136/137
2–138.  Determine the angle u between the two cables.

2–139.  Determine the projected component of the force  
F = 12 lb acting in the direction of cable AC. Express the 
result as a Cartesian vector.

z

x

B

C

y
4 ft

6 ft

10 ft

10 ft

8 ft A

8 ft

u FAB � 12 lb

Probs. 2–138/139

2–131.  Determine the magnitudes of the components of  
F acting along and perpendicular to segment BC of the pipe 
assembly.

*2–132.  Determine the magnitude of the projected 
component of F along AC. Express this component as a 
Cartesian vector.

2–133.  Determine the angle u between the pipe segments 
BA and BC.

yx

z

A

C

B

4 ft
2 ft4 ft

4 ft

3 ft

F � {30i � 45j � 50k} lb

u

Probs. 2–131/132/133

2–134.  If the force F = 100 N lies in the plane DBEC, 
which is parallel to the x–z plane, and makes an angle of 10 
with the extended line DB as shown, determine the angle 
that F makes with the diagonal AB of the crate.

30�

F
2 � 6 kN 0.5 m

F

B

C

Ax

y

E    0.2 m

15�

zz¿

15�

10u

0.2 m

D

Prob. 2–134
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CHAPTER REVIEW

A scalar is a positive or negative number; 
e.g., mass and temperature.

A vector has a magnitude and direction, 
where the arrowhead represents the 
sense of the vector.

A

Multiplication or division of a vector by a 
scalar will change only the magnitude of 
the vector. If the scalar is negative, the 
sense of the vector will change so that it 
acts in the opposite sense.

A

2 A

0.5 A

�1.5 A

If vectors are collinear, the resultant is 
simply the algebraic or scalar addition.

R =  A + B
A B

R

Parallelogram Law

Two forces add according to the 
parallelogram law. The components form 
the sides of the parallelogram and the 
resultant is the diagonal.

To find the components of a force along 
any two axes, extend lines from the head 
of the force, parallel to the axes, to form 
the components.

To obtain the components of the 
resultant, show how the forces add by  
tip-to-tail using the triangle rule, and 
then use the law of cosines and the law of 
sines to calculate their values.

 FR = 2F 1
2 + F2

2 - 2 F1F2 cos uR

       
F1

sin u1
=

F2

sin u2
=

FR

sin uR

a

b

Components

Resultant

FR
F1

F2

u1

u2

uR

FR F1

F2
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2 F
Fy

y

x
Fx

x

y

(FR)y
FR

(FR)x
�x

y

F2x

F2y
F1y

F1x

F3x

F3y

u

u =
F
F

F = 2Fx
2 + F 2

y + F 2
z  

 u =
F
F

=
Fx

F
 i +

Fy

F
 j +

Fz

F
 k

 u = cos a i + cos b j + cos g k

u

1

F
F

Fx i

x

F

z

Fz k

y
Fy ja b

u

g

Rectangular Components: Two Dimensions

Vectors Fx and Fy are rectangular components  
of F.

The resultant force is determined from the 
algebraic sum of its components.

(FR)x = Fx

(FR)y = Fy

FR = 2(FR)x
2 + (FR)y

2

u = tan-1 2 (FR)y

(FR)x

2
Cartesian Vectors

The unit vector u has a length of 1, no units, and 
it points in the direction of the vector F.

A force can be resolved into its Cartesian 
components along the x, y, z axes so that 
F = Fxi + Fy  j + Fzk.

The magnitude of F is determined from the 
positive square root of the sum of the squares of 
its components.

The coordinate direction angles a, b, g are 
determined by formulating a unit vector in the 
direction of F. The x, y, z components of  
u represent cos a, cos b, cos g.
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The coordinate direction angles are 
related so that only two of the three 
angles are independent of one another.

To find the resultant of a concurrent force 
system, express each force as a Cartesian 
vector and add the i, j, k components of all 
the forces in the system.

cos2 a + cos2 b + cos2 g = 1

FR = F = Fxi +  Fy  j + Fzk

Position and Force Vectors

A position vector locates one point in space 
relative to another. The easiest way to 
formulate the components of a position 
vector is to determine the distance and 
direction that one must travel along the  
x, y, and z directions—going from the tail to 
the head of the vector.

If the line of action of a force passes 
through points A and B, then the force 
acts in the same direction as the position 
vector r, which is defined by the unit 
vector u. The force can then be expressed 
as a Cartesian vector.

r = (xB - xA)i

+ (yB - yA)j

+ (zB - zA)k

F = Fu = F a r
r
b

y

r
B

A

x

(xB � xA)i (yB � yA)j

z
(zB � zA)k

z

y

x

u

Br

F

A

Dot Product

The dot product between two vectors A 
and B yields a scalar. If A and B are 
expressed in Cartesian vector form, then 
the dot product is the sum of the products 
of their x, y, and z components.

The dot product can be used to determine 
the angle between A and B.

The dot product is also used to 
determine the projected component of a 
vector A onto an axis aa defined by its 
unit vector ua.

 A # B = AB cos u

 = AxBx + AyBy + AzBz

u = cos-1aA # B
AB
b

Aa = A  cos u ua = (A # ua)ua

A

B

u

A

a
ua

A

u

Aa � A cos uau
a
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Chapter Review

2 
R2–1.    Determine the magnitude of the resultant force FR 
and its direction, measured clockwise from the positive  
u axis.

u

70�

30�

45�
F1 � 300 N

F2 � 500 N v

Prob. R2–1

R2–2.    Resolve F into components along the u and v axes 
and determine the magnitudes of these components.

F � 250 N

u

v

30�

105�

Prob. R2–2

Review Problems

R2–3.    Determine the magnitude of the resultant force  
acting on the gusset plate of the bridge truss.

yx
3

4
5

3 4
5

F1 � 200 lb

F2 � 400 lb

F3 � 300 lb

F4 � 300 lb

Prob. R2–3

R2–4.    The cable at the end of the crane boom exerts a 
force of 250 lb on the boom as shown. Express F as a 
Cartesian vector.

y

x

F � 250 lb

z

30�

70�

Prob. R2–4

Partial solutions and answers to all Review Problems are given in the back of the book.
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R2–5.    The cable attached to the tractor at B exerts a force 
of 350 lb on the framework. Express this force as a Cartesian 
vector.

20�

A

F � 350 lb

y

z

x

35 ft

50 ft
B

Prob. R2–5

R2–6.    Express F1 and F2 as Cartesian vectors.

F2 � 450 N

30�
45�

F1 � 600 N

3 4

5

y

z

x

Prob. R2–6

R2–7.    Determine the angle u between the edges of the 
sheet-metal bracket.

x

y

z

400 mm

250 mm

300 mm

50 mm

u

Prob. R2–7

R2–8.    Determine the projection of the force F along 
the pole.

O

z

x

y

1 m

2 m

2 m

F � {2i � 4j � 10k} kN

Prob. R2–8



When this load is lifted at constant velocity, or is just suspended, then it is in a state of 
equilibrium. In this chapter we will study equilibrium for a particle and show how these 

ideas can be used to calculate the forces in cables used to hold suspended loads.

Chapter 3

(© Igor Tumarkin/ITPS/Shutterstock)



Equilibrium of a 
Particle

CHAPTER OBJECTIVES

n	 To introduce the concept of the free-body diagram for a particle.

n	 To show how to solve particle equilibrium problems using the 
equations of equilibrium.

3.1  �Condition for the Equilibrium  
of a Particle

A particle is said to be in equilibrium if it remains at rest if originally at 
rest, or has a constant velocity if originally in motion. Most often, however, 
the term “equilibrium” or, more specifically, “static equilibrium” is used 
to describe an object at rest. To maintain equilibrium, it is necessary to 
satisfy Newton’s first law of motion, which requires the resultant force 
acting on a particle to be equal to zero. This condition is stated by the 
equation of equilibrium,

	 �F = 0	 (3–1)

where �F is the vector sum of all the forces acting on the particle.
Not only is Eq. 3–1 a necessary condition for equilibrium, it is also a 

sufficient condition. This follows from Newton’s second law of motion, 
which can be written as �F = ma. Since the force system satisfies  
Eq. 3–1, then ma = 0, and therefore the particle’s acceleration a = 0. 
Consequently, the particle indeed moves with constant velocity or 
remains at rest.
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3.2  The Free-Body Diagram

To apply the equation of equilibrium, we must account for all the known 
and unknown forces (�F) which act on the particle. The best way to do 
this is to think of the particle as isolated and “free” from its surroundings. 
A drawing that shows the particle with all the forces that act on it is called 
a free-body diagram (FBD).

Before presenting a formal procedure as to how to draw a free-body 
diagram, we will first consider three types of supports often encountered 
in particle equilibrium problems.

Springs.  If a linearly elastic spring (or cord) of undeformed length 
l0 is used to support a particle, the length of the spring will change in 
direct proportion to the force F acting on it, Fig. 3–1a. A characteristic 
that defines the “elasticity” of a spring is the spring constant or stiffness k.

The magnitude of force exerted on a linearly elastic spring which has a 
stiffness k and is deformed (elongated or compressed) a distance 
s = l - l0, measured from its unloaded position, is

	 F = ks 	 (3–2)

If s is positive, causing an elongation, then F must pull on the spring; 
whereas if s is negative, causing a shortening, then F must push on it. For 
example, if the spring in Fig. 3–1a has an unstretched length of 0.8 m and 
a stiffness k = 500 N>m and it is stretched to a length of 1 m,  
so that s = l - l0 = 1 m - 0.8 m = 0.2 m, then a force F = ks =  
500 N>m(0.2 m) = 100 N is needed.

Cables and Pulleys.  Unless otherwise stated throughout this 
book, except in Sec. 7.4, all cables (or cords) will be assumed to have 
negligible weight and they cannot stretch. Also, a cable can support only 
a tension or “pulling” force, and this force always acts in the direction of 
the cable. In Chapter 5, it will be shown that the tension force developed 
in a continuous cable which passes over a frictionless pulley must have a 
constant magnitude to keep the cable in equilibrium. Hence, for any 
angle u, shown in Fig. 3–1b, the cable is subjected to a constant tension T 
throughout its length.

Smooth Contact.  If an object rests on a smooth surface, then the 
surface will exert a force on the object that is normal to the surface at 
the point of contact. An example of this is shown in Fig. 3–2a. In 
addition to this normal force N, the cylinder is also subjected to its 
weight W and the force T of the cord. Since these three forces are 
concurrent at the center of the cylinder, Fig. 3–2b, we can apply the 
equation of equilibrium to this “particle,” which is the same as applying 
it to the cylinder.

F

�s

l

l0

T

T

u

Fig. 3–1

T

W
N

T

30�
30�

20�

20�

(a) (b)

Fig. 3–2

Cable is in tension

(a)

(b)
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Procedure for Drawing a Free-Body Diagram

Since we must account for all the forces acting on the particle when 
applying the equations of equilibrium, the importance of first 
drawing a free-body diagram cannot be overemphasized. To construct 
a free-body diagram, the following three steps are necessary.

Draw Outlined Shape.
Imagine the particle to be isolated or cut “free” from its surroundings. 
This requires removing all the supports and drawing the particle’s 
outlined shape.

Show All Forces.
Indicate on this sketch all the forces that act on the particle. These 
forces can be active forces, which tend to set the particle in motion, 
or they can be reactive forces which are the result of the constraints 
or supports that tend to prevent motion. To account for all these 
forces, it may be helpful to trace around the particle’s boundary, 
carefully noting each force acting on it.

Identify Each Force.
The forces that are known should be labeled with their proper 
magnitudes and directions. Letters are used to represent the 
magnitudes and directions of forces that are unknown.

W

T

The bucket is held in equilibrium by 
the cable, and instinctively we know 
that the force in the cable must 
equal the weight of the bucket. By 
drawing a free-body diagram of the 
bucket we can understand why this 
is so. This diagram shows that there 
are only two forces acting on the 
bucket, namely, its weight W and the 
force T of the cable. For equilibrium, 
the resultant of these forces must be 
equal to zero, and so T = W .  
(© Russell C. Hibbeler)

TBTA

5(9.81) N

A B

The 5-kg plate is suspended by two straps 
A and B. To find the force in each strap 
we  should consider the free-body diagram 
of the plate. As noted, the three forces 
acting  on it are concurrent at the center. 
(© Russell C. Hibbeler)
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The sphere in Fig. 3–3a has a mass of 6 kg and is supported as shown. 
Draw a free-body diagram of the sphere, the cord CE, and the knot at C.

Example     3.1 

45�

60�

C

E

B

A

(a)

D

k

30� 30�

Solution

Sphere.  Once the supports are removed, we can see that there  
are four forces acting on the sphere, namely, its weight,  
6 kg (9.81 m>s2) = 58.9 N, the force of cord CE, and the two normal 
forces caused by the smooth inclined planes. The free-body diagram is 
shown in Fig. 3–3b.

Cord CE.  When the cord CE is isolated from its surroundings, its  
free-body diagram shows only two forces acting on it, namely, the force of 
the sphere and the force of the knot, Fig. 3–3c. Notice that FCE shown here 
is equal but opposite to that shown in Fig. 3–3b, a consequence of Newton’s 
third law of action–reaction. Also, FCE and FEC pull on the cord and keep 
it in tension so that it doesn’t collapse. For equilibrium, FCE = FEC.

Knot.  The knot at C is subjected to three forces, Fig. 3–3d. They are 
caused by the cords CBA and CE and the spring CD. As required, the 
free-body diagram shows all these forces labeled with their magnitudes 
and directions. It is important to recognize that the weight of the 
sphere does not directly act on the knot. Instead, the cord CE subjects 
the knot to this force.

Fig. 3–3

(Force of cord CE
acting on sphere)

(b)

30� 30�

NA NB

(Forces of smooth planes
acting on sphere)

58.9 N
(Weight or gravity acting on sphere)

FCE

FCE (Force of sphere acting on cord CE)

FEC (Force of knot acting on cord CE)

(c)

C

FCBA (Force of cord CBA acting on knot)

FCD (Force of spring acting on knot)

FCE (Force of cord CE acting on knot)

60�

(d)
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3.3  Coplanar Force Systems

If a particle is subjected to a system of coplanar forces that lie in the x–y 
plane, as in Fig. 3–4, then each force can be resolved into its i and j 
components. For equilibrium, these forces must sum to produce a zero 
force resultant, i.e.,

 �F = 0

 �Fx  i + �Fy  j = 0

For this vector equation to be satisfied, the resultant force’s x and y 
components must both be equal to zero. Hence,

	
�Fx = 0

�Fy = 0
	 (3–3)

These two equations can be solved for at most two unknowns, generally 
represented as angles and magnitudes of forces shown on the particle’s 
free-body diagram.

When applying each of the two equations of equilibrium, we must 
account for the sense of direction of any component by using an algebraic 
sign which corresponds to the arrowhead direction of the component 
along the x or y axis. It is important to note that if a force has an unknown 
magnitude, then the arrowhead sense of the force on the free-body 
diagram can be assumed. Then if the solution yields a negative scalar, this 
indicates that the sense of the force is opposite to that which was assumed.

For example, consider the free-body diagram of the particle subjected to 
the two forces shown in Fig. 3–5. Here it is assumed that the unknown 
force  F acts to the right, that is, in the positive x direction, to maintain 
equilibrium. Applying the equation of equilibrium along the x axis, we have

S+ �Fx = 0;                    +F + 10 N = 0

Both terms are “positive” since both forces act in the positive x 
direction. When this equation is solved, F = -10 N. Here the negative 
sign indicates that F must act to the left to hold the particle in 
equilibrium, Fig. 3–5. Notice that if the +x axis in Fig. 3–5 were directed 
to the left, both terms in the above equation would be negative, but 
again, after solving, F = -10 N, indicating that F would have to be 
directed to the left.

y

F2

F1

F3
F4

x

Fig. 3–4

F
x

10 N

Fig. 3–5
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Important Points

The first step in solving any equilibrium problem is to draw the 
particle’s free-body diagram. This requires removing all the supports 
and isolating or freeing the particle from its surroundings and then 
showing all the forces that act on it.

Equilibrium means the particle is at rest or moving at constant 
velocity. In two dimensions, the necessary and sufficient conditions 
for equilibrium require �Fx = 0 and �Fy = 0.

Procedure for Analysis

Coplanar force equilibrium problems for a particle can be solved 
using the following procedure.

Free-Body Diagram.
	 •	 Establish the x, y axes in any suitable orientation.

	 •	 Label all the known and unknown force magnitudes and 
directions on the diagram.

	 •	 The sense of a force having an unknown magnitude can be 
assumed.

Equations of Equilibrium.
	 •	 Apply the equations of equilibrium, �Fx = 0 and �Fy = 0. For 

convenience, arrows can be written alongside each equation to 
define the positive directions. 

	 •	 Components are positive if they are directed along a positive axis, 
and negative if they are directed along a negative axis.

	 •	 If more than two unknowns exist and the problem involves a 
spring, apply F = ks to relate the spring force to the deformation 
s of the spring.

	 •	 Since the magnitude of a force is always a positive quantity, then if 
the solution for a force yields a negative result, this indicates that 
its sense is the reverse of that shown on the free-body diagram.

TC
TB

TD

y

xA

B

D

A

C

The chains exert three forces on the ring at A, 
as shown on its free-body diagram. The ring 
will not move, or will move with constant 
velocity, provided the summation of these 
forces along the x and along the y axis equals 
zero. If one of the three forces is known, the 
magnitudes of the other two forces can be 
obtained from the two equations of 
equilibrium. (© Russell C. Hibbeler)
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Determine the tension in cables BA and BC necessary to support the 
60-kg cylinder in Fig. 3–6a.

(a)

B

3

4

5

A

D

C

45�

Solution
Free-Body Diagram.  Due to equilibrium, the weight of the cylinder 
causes the tension in cable BD to be TBD = 60(9.81) N, Fig. 3–6b. The 
forces in cables BA  and BC can be determined by investigating the 
equilibrium of ring B. Its free-body diagram is shown in Fig. 3–6c. The 
magnitudes of TA  and TC are unknown, but their directions are known.

Equations of Equilibrium.  Applying the equations of equilibrium 
along the x and y axes, we have

S+ �Fx = 0;	 TC cos 45� - 14
52TA = 0	 (1)

+ c �Fy = 0; 	 TC sin 45� + 13
52TA - 60(9.81) N = 0	 (2)

Equation (1) can be written as TA = 0.8839TC. Substituting this into 
Eq. (2) yields

TC sin 45� + 13
52(0.8839TC) - 60(9.81) N = 0

so that
	 TC = 475.66 N = 476 N 	 Ans.

Substituting this result into either Eq. (1) or Eq. (2), we get
	 TA = 420 N	 Ans.
NOTE: The accuracy of these results, of course, depends on the accuracy 
of the data, i.e., measurements of geometry and loads. For most 
engineering work involving a problem such as this, the data as measured 
to three significant figures would be sufficient.

Example    3.2

Fig. 3–6

60 (9.81) N

TBD � 60 (9.81) N

(b)

TBD � 60 (9.81) N

TA TC

y

x

(c)

B

3

4

5
45�
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The 200-kg crate in Fig. 3–7a is suspended using the ropes AB and AC. Each 
rope can withstand a maximum force of 10 kN before it breaks. If AB 
always remains horizontal, determine the smallest angle u to which the 
crate can be suspended before one of the ropes breaks.

Example    3.3 

FD � 1962 N

y

x

(b)

A

FC

FBu

Fig. 3–7
Solution
Free-Body Diagram.  We will study the equilibrium of ring A . There 
are three forces acting on it, Fig. 3–7b. The magnitude of FD is equal to 
the weight of the crate, i.e., FD = 200 (9.81) N = 1962 N 6 10 kN.

Equations of Equilibrium.  Applying the equations of equilibrium 
along the x and y axes,

S+ �Fx = 0;	 -FC cos u + FB = 0;  FC =
FB

cos u
	 (1)

+ c �Fy = 0;	 FC sin u - 1962 N = 0	 (2)

From Eq. (1), FC is always greater than FB since cos u … 1. Therefore, 
rope AC will reach the maximum tensile force of 10 kN before rope AB. 
Substituting FC = 10 kN into Eq. (2), we get

	 [10(103) N] sin u - 1962 N = 0

	 u = sin- 1(0.1962) = 11.31� = 11.3� 	 Ans.

The force developed in rope AB can be obtained by substituting the 
values for u and FC into Eq. (1).

 10(103) N =
FB

cos 11.31�

 FB = 9.81 kN

(a)

D

A B

C u
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Determine the required length of cord AC in Fig. 3–8a so that the 8-kg 
lamp can be suspended in the position shown. The undeformed length 
of spring AB is l�AB = 0.4 m, and the spring has a stiffness of 
kAB = 300 N>m.

(a)

A B

� 300 N/m
30�

2 m

C

kAB

Example    3.4

Fig. 3–8
Solution
If the force in spring AB is known, the stretch of the spring can be 
found using F = ks. From the problem geometry, it is then possible to 
calculate the required length of AC.

Free-Body Diagram.  The lamp has a weight W = 8(9.81) = 78.5 N 
and so the free-body diagram of the ring at A is shown in Fig. 3–8b.

Equations of Equilibrium.  Using the x, y axes,

S+ �Fx = 0;	 TAB - TAC cos 30� = 0

+ c �Fy = 0;	 TAC sin 30� - 78.5 N = 0

Solving, we obtain
	  TAC = 157.0 N

	  TAB = 135.9 N

The stretch of spring AB is therefore

TAB = kABsAB;	  135.9 N = 300 N>m(sAB)

	           sAB = 0.453 m

so the stretched length is

 lAB = l�AB + sAB

 lAB = 0.4 m + 0.453 m = 0.853 m

The horizontal distance from C to B, Fig. 3–8a, requires

	  2 m = lAC cos 30� + 0.853 m

	  lAC = 1.32 m 	 Ans.

y

x

W � 78.5 N

A

(b)

30�

TAC

TAB
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P3–1.  In each case, draw a free-body diagram of the ring 
at A and identify each force.

(a)

A

Weight
200 N

B C

4

3

5

30�

    Preliminary Problems

P3–2.  Write the two equations of equilibrium, �Fx = 0 
and �Fy = 0. Do not solve.

x

1

P

(a)

600 N

F

y

13
4

5

60�

(b)

A

600 N

C

B

4
3

5

30�

(c)

A

D

500 N

200 N

C

B 30�

45�

Prob. P3–1 Prob. P3–2

x

P

(b)

200 N

F

y

3
4

5

105�

60�

x

P

(c)

450 N 

F
y

300 N 

30�

40�

20�
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F3–4.  The block has a mass of 5 kg and rests on the smooth 
plane. Determine the unstretched length of the spring.

45�

0.4 m

0.3 m

k � 200 N/m

Prob. F3–4

F3–5.  If the mass of cylinder C is 40 kg, determine the 
mass of cylinder A in order to hold the assembly in the 
position shown.

 40 kg

D

A

C

E

B

30�

Prob. F3–5

F3–6.  Determine the tension in cables AB, BC, and CD, 
necessary to support the 10-kg and 15-kg traffic lights at B 
and C, respectively. Also, find the angle u.

B

A

C

D

u15�

Prob. F3–6

All problem solutions must include an FBD.

F3–1.  The crate has a weight of 550 lb. Determine the 
force in each supporting cable.

30�

4
35

A

B
C

D

Prob. F3–1

F3–2.  The beam has a weight of 700 lb. Determine the 
shortest cable ABC that can be used to lift it if the maximum 
force the cable can sustain is 1500 lb.

10 ft

A C

B

u u

Prob. F3–2

F3–3.  If the 5-kg block is suspended from the pulley B and 
the sag of the cord is d = 0.15 m, determine the force in cord 
ABC. Neglect the size of the pulley.

d � 0.15 m

D

A C

B

0.4 m

Prob. F3–3

    FUNDAMENTAL PROBLEMS
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*3–4.  The bearing consists of rollers, symmetrically 
confined within the housing. The bottom one is subjected to 
a 125-N force at its contact A due to the load on the shaft. 
Determine the normal reactions NB and NC on the bearing 
at its contact points B and C for equilibrium.

B

125 N

A

C

40�

NB

NC

Prob. 3–4

3–5.  The members of a truss are connected to the gusset 
plate. If the forces are concurrent at point O, determine the 
magnitudes of F and T for equilibrium. Take u = 90�.

3–6.  The gusset plate is subjected to the forces of three 
members. Determine the tension force in member C and its 
angle u for equilibrium. The forces are concurrent at point O. 
Take F = 8 kN.

x

y

A

O

F

T

9 kN

C

u

B
4

5 3

Probs. 3–5/6

All problem solutions must include an FBD.

3–1.  The members of a truss are pin connected at joint O. 
Determine the magnitudes of F1 and F2 for equilibrium.  
Set u = 60�.

3–2.  The members of a truss are pin connected at joint O. 
Determine the magnitude of F1 and its angle u for 
equilibrium. Set F2 = 6 kN.

u

F1

F270�

30�

7 kN

5 kN

4

y

x
O

3
5

Probs. 3–1/2

3–3.  Determine the magnitude and direction u of F so that 
the particle is in equilibrium.

y

5 kN

8 kN

4 kN

F

x

60�

30�

u

Prob. 3–3

       Problems
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3–7.  The man attempts to pull down the tree using the 
cable and small pulley arrangement shown. If the tension in 
AB is 60 lb, determine the tension in cable CAD and the 
angle u which the cable makes at the pulley.

20�

B

A

C

D

30�

u

Prob. 3–7

*3–8.  The cords ABC and BD can each support a 
maximum load of 100 lb. Determine the maximum weight 
of the crate, and the angle u for equilibrium.

12

5

13

B

A

C

D

u

Prob. 3–8

3–9.  Determine the maximum force F that can be 
supported in the position shown if each chain can support a 
maximum tension of 600 lb before it fails.

CA

B

4 5

3

30�

F

Prob. 3–9

3–10.  The block has a weight of 20 lb and is being hoisted 
at uniform velocity. Determine the angle u for equilibrium 
and the force in cord AB.

3–11.  Determine the maximum weight W of the block 
that can be suspended in the position shown if cords AB 
and CAD can each support a maximum tension of 80 lb. 
Also, what is the angle u for equilibrium?

B

F

20� A

C

Du

Probs. 3–10/11
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3–12.  The lift sling is used to hoist a container having a 
mass of 500 kg. Determine the force in each of the cables  
AB and AC as a function of u. If the maximum tension 
allowed in each cable is 5 kN, determine the shortest length 
of cables AB and AC that can be used for the lift. The center 
of gravity of the container is located at G.

uu

A

B C

1.5 m 1.5 m

G

F

Prob. 3–12

3–13.  A nuclear-reactor vessel has a weight of 500(103) lb. 
Determine the horizontal compressive force that the 
spreader bar AB exerts on point A and the force that each 
cable segment CA and AD exert on this point while the 
vessel is hoisted upward at constant velocity.

A B

C

D E

30� 30�

Prob. 3–13

3–14.  Determine the stretch in each spring for equilibrium 
of the 2-kg block. The springs are shown in the equilibrium 
position.

3–15.  The unstretched length of spring AB is 3 m. If the 
block is held in the equilibrium position shown, determine 
the mass of the block at D.

3 m

3 m 4 m

kAD � 40 N/m

kAB � 30 N/m

kAC � 20 N/m

C B

A

D

Probs. 3–14/15

*3–16.  Determine the mass of each of the two cylinders if 
they cause a sag of s = 0.5 m when suspended from the rings at  
A and B. Note that s = 0 when the cylinders are removed.

1 m 2 m2 m

1.5 m

s

BA

C D

k � 100 N/m k � 100 N/m

Prob. 3–16
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3–17.  Determine the stiffness kT of the single spring such 
that the force F will stretch it by the same amount s as the 
force F stretches the two springs. Express kT in terms of 
stiffness k1 and k2 of the two springs.

s

Unstretched 
position

k1

s
k2

kT

F

F

Prob. 3–17

3–18.  If the spring DB has an unstretched length of 2 m, 
determine the stiffness of the spring to hold the 40-kg crate 
in the position shown.

3–19.  Determine the unstretched length of DB to hold the 
40-kg crate in the position shown. Take k = 180 N>m.

2 m

2 m 3 m

k

C B

A

D

Probs. 3–18/19

*3–20.  A vertical force P = 10 lb is applied to the ends of 
the 2-ft cord AB and spring AC. If the spring has an 
unstretched length of 2 ft, determine the angle u for 
equilibrium. Take k = 15 lb>ft.
3–21.  Determine the unstretched length of spring AC if a 
force P = 80 lb causes the angle u = 60° for equilibrium. 
Cord AB is 2 ft long. Take k = 50 lb>ft.

2 ft

k

2 ft

A

B C

P

u

Probs. 3–20/21

3–22.  The springs BA and BC each have a stiffness of 
500 N>m and an unstretched length of 3 m. Determine the 
horizontal force F applied to the cord which is attached to 
the small ring B so that the displacement of AB from the 
wall is d = 1.5 m.

3–23.  The springs BA and BC each have a stiffness of 
500 N>m and an unstretched length of 3 m. Determine 
the displacement d of the cord from the wall when a 
force F = 175 N is applied to the cord.

F

B

C

d

A

k � 500 N/m

k � 500 N/m

6 m

Probs. 3–22/23
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*3–28.  The street-lights at A and B are suspended from 
the two poles as shown. If each light has a weight of 50 lb, 
determine the tension in each of the three supporting cables 
and the required height h of the pole DE so that cable AB is 
horizontal.

D

A
h

B

C

E
24 ft

18 ft

6 ft

10 ft

5 ft

Prob. 3–28

3–29.  Determine the tension developed in each cord 
required for equilibrium of the 20-kg lamp.

3–30.  Determine the maximum mass of the lamp that the 
cord system can support so that no single cord develops a 
tension exceeding 400 N.

A

B

D

E

F

C

45°

30°
3

4 5

Probs. 3–29/30

*3–24.  Determine the distances x and y for equilibrium if 
F1 = 800 N and F2 = 1000 N.

3–25.  Determine the magnitude of F1 and the distance y if 
x = 1.5 m and F2 = 1000 N.

B

A

C D
F1

F2

x

2 m

y

Probs. 3–24/25

3–26.  The 30-kg pipe is supported at A by a system of five 
cords. Determine the force in each cord for equilibrium.

3–27.  Each cord can sustain a maximum tension of 500 N. 
Determine the largest mass of pipe that can be supported.

A

H

E

B

C

D
3

4

5

60�

Probs. 3–26/27
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3–31.  Blocks D and E have a mass of 4 kg and 6 kg, 
respectively. If x = 2 m determine the force F and the sag s 
for equilibrium.

*3–32.  Blocks D and E have a mass of 4 kg and 6 kg, 
respectively. If F = 80 N, determine the sag s and distance x 
for equilibrium. 

ED

A

CB

6 m

x

F

s

Probs. 3–31/32

3–33.  The lamp has a weight of 15 lb and is supported by 
the six cords connected together as shown. Determine the 
tension in each cord and the angle u for equilibrium. Cord 
BC is horizontal.

3–34.  Each cord can sustain a maximum tension of 20 lb. 
Determine the largest weight of the lamp that can be 
supported. Also, determine u of cord DC for equilibrium.

E

B C

D

A

30�

45�60�

u

Probs. 3–33/34

3–35.  The ring of negligible size is subjected to a vertical 
force of 200 lb. Determine the required length l of cord AC 
such that the tension acting in AC is 160 lb. Also, what is the 
force in cord AB? Hint: Use the equilibrium condition to 
determine the required angle u for attachment, then 
determine l using trigonometry applied to triangle ABC.

40�
BC

A

l 2 ft

200 lb

u

Prob. 3–35

*3–36.  Cable ABC  has a length of 5 m. Determine the 
position x and the tension developed in ABC required for 
equilibrium of the 100-kg sack. Neglect the size of the 
pulley at B.

A

B

C

x
3.5 m

0.75 m

Prob. 3–36

3–37.  A 4-kg sphere rests on the smooth parabolic surface. 
Determine the normal force it exerts on the surface and the 
mass mB of block B needed to hold it in the equilibrium 
position shown.

B

A

y

x
0.4 m

0.4 m

60�

y � 2.5x2

Prob. 3–37
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3–38.  Determine the forces in cables AC and AB needed 
to hold the 20-kg ball D in equilibrium. Take F = 300 N and 
d = 1 m.

3–39.  The ball D has a mass of 20 kg. If a force of F = 100 N 
is applied horizontally to the ring at A, determine the 
dimension d so that the force in cable AC is zero.

A

C

B

F

D

2 m

1.5 m

d

Probs. 3–38/39

*3–40.  The 200-lb uniform container is suspended by 
means of a 6-ft-long cable, which is attached to the sides of 
the tank and passes over the small pulley located at O. If the 
cable can be attached at either points A and B, or C and D, 
determine which attachment produces the least amount of 
tension in the cable. What is this tension?

A

O

C

1 ft
B

2 ft

F

D

2 ft

2 ft

Prob. 3–40

3–41.  The single elastic cord ABC is used to support the 
40-lb load. Determine the position x and the tension in the 
cord that is required for equilibrium. The cord passes 
through the smooth ring at B and has an unstretched length 
of 6ft and stiffness of k =  50 lb>ft. 

A

C

B

x

5 ft

1 ft

Prob. 3–41

3–42.  A “scale” is constructed with a 4-ft-long cord and 
the 10-lb block D. The cord is fixed to a pin at A and passes 
over two small pulleys. Determine the weight of the 
suspended block B if the system is in equilibrium when  
s = 1.5 ft.

s � 1.5 ft

D

C

B

A

1 ft

Prob. 3–42
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       CONCEPTUAL PROBLEMS

C3–1.  The concrete wall panel is hoisted into position using 
the two cables AB and AC of equal length. Establish 
appropriate dimensions and use an equilibrium analysis to 
show that the longer the cables the less the force in each cable.

A

B C

Prob. C3–1 (© Russell C. Hibbeler)

C3–2.  The hoisting cables BA and BC each have a length 
of 20 ft. If the maximum tension that can be supported by 
each cable is 900 lb, determine the maximum distance AC 
between them in order to lift the uniform 1200-lb truss with 
constant velocity.

B

A C ED

Prob. C3–2 (© Russell C. Hibbeler)

C3–3.  The device DB is used to pull on the chain ABC to 
hold a door closed on the bin. If the angle between AB and 
BC is 30°, determine the angle between DB and BC for 
equilibrium.

A

C

B

D

Prob. C3–3 (© Russell C. Hibbeler)

C3–4.  Chain AB is 1 m long and chain AC is 1.2 m long. If 
the distance BC is 1.5 m, and AB can support a maximum 
force of 2 kN, whereas AC can support a maximum force of 
0.8 kN, determine the largest vertical force F that can be 
applied to the link at A.

F

B

A

C

Prob. C3–4 (© Russell C. Hibbeler)
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3.4  Three-Dimensional Force Systems

In Section 3.1 we stated that the necessary and sufficient condition for 
particle equilibrium is

�F = 0� (3–4)

In the case of a three-dimensional force system, as in Fig. 3–9, we can 
resolve the forces into their respective i, j, k components, so that 
�Fxi + �Fy   j + �Fzk = 0. To satisfy this equation we require

�Fx = 0

�Fy = 0

�Fz = 0
� (3–5)

These three equations state that the algebraic sum of the components of 
all the forces acting on the particle along each of the coordinate axes 
must be zero. Using them we can solve for at most three unknowns, 
generally represented as coordinate direction angles or magnitudes of 
forces shown on the particle’s free-body diagram.

F3
F2

F1

x

y

z

Fig. 3–9

FD

W

FCFB

B D C 

A 

A

The joint at A is subjected to the force from the 
support as well as forces from each of the three 
chains. If the tire and any load on it have a 
weight W, then the force at the support will be 
W, and the three scalar equations of equilibrium 
can be applied to the free-body diagram of the 
joint in order to determine the chain forces, 
FB, FC, and FD. (© Russell C. Hibbeler)

Procedure for Analysis

Three-dimensional force equilibrium problems for a particle can be 
solved using the following procedure.

Free-Body Diagram.
	 •	 Establish the x, y, z axes in any suitable orientation.

	 •	 Label all the known and unknown force magnitudes and 
directions on the diagram.

	 •	 The sense of a force having an unknown magnitude can be 
assumed.

Equations of Equilibrium.
	 •	 Use the scalar equations of equilibrium,  �Fx = 0, �Fy = 0, 

�Fz = 0, in cases where it is easy to resolve each force into its  
x, y, z components.

	 •	 If the three-dimensional geometry appears difficult, then first 
express each force on the free-body diagram as a Cartesian 
vector, substitute these vectors into �F = 0, and then set the i, j, 
k components equal to zero.

	 •	 If the solution for a force yields a negative result, this indicates 
that its sense is the reverse of that shown on the free-body diagram.
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A 90-lb load is suspended from the hook shown in Fig. 3–10a. If the 
load is supported by two cables and a spring having a stiffness 
k = 500 lb>ft, determine the force in the cables and the stretch of the 
spring for equilibrium. Cable AD lies in the x–y plane and cable AC 
lies in the x–z plane.

Solution
The stretch of the spring can be determined once the force in the spring 
is determined.

Free-Body Diagram.  The connection at A is chosen for the 
equilibrium analysis since the cable forces are concurrent at this point. 
The free-body diagram is shown in Fig. 3–10b.

Equations of Equilibrium.  By inspection, each force can easily be 
resolved into its x, y, z components, and therefore the three scalar 
equations of equilibrium can be used. Considering components 
directed along each positive axis as “positive,” we have

�Fx = 0;	  FD sin 30� - 1 4
52 FC = 0 � (1)

�Fy = 0; 	  -FD cos 30� + FB = 0�  (2)

�Fz = 0;  	  1 3
5 2 FC - 90 lb = 0 � (3)

Solving Eq. (3) for FC, then Eq. (1) for FD, and finally Eq. (2) for FB, 
yields
			        FC = 150 lb � Ans.

			        FD = 240 lb � Ans.

			        FB = 207.8 lb = 208 lb� Ans.

The stretch of the spring is therefore

 FB = ksAB

 207.8 lb = (500 lb>ft)(sAB) 

 sAB = 0.416 ft � Ans.

NOTE: Since the results for all the cable forces are positive, each  
cable is in tension; that is, it pulls on point A as expected, Fig. 3–10b.

example    3.5

y

x

z

(b)

30�

90 lb

A

5 3

4

FC

FB

FD

Fig. 3–10

x

y

z

(a)

30�

C

90 lb

A

5 3
4
k = 500 lb/ft

B

D
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example    3.6

The 10-kg lamp in Fig. 3–11a is suspended from the three equal-length 
cords. Determine its smallest vertical distance s from the ceiling if the 
force developed in any cord is not allowed to exceed 50 N.

x
y

s

(a)

z

D
A

B

C

600 mm
120�

120�

Fig. 3–11

Solution

Free-Body Diagram.  Due to symmetry, Fig. 3–11b, the distance 
DA = DB = DC = 600 mm. It follows that from gFx = 0 and gFy = 0, the tension T in each cord will be the same. Also, the angle 
between each cord and the z  axis is g.

Equation of Equilibrium.  Applying the equilibrium equation along 
the z  axis, with T = 50 N, we have

gFz = 0; 	     3[(50 N) cos g] - 10(9.81) N = 0

g = cos- 1 
98.1

150
= 49.16�

From the shaded triangle shown in Fig. 3–11b,

 tan 49.16� =
600 mm

s

  s = 519 mm � Ans.

x

y

s

600 mm

D

z

(b)

A

B

C

10(9.81) N

T
T

T
g
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Determine the force in each cable used to support the 40-lb crate 
shown in Fig. 3–12a.

example    3.7

Solution
Free-Body Diagram.  As shown in Fig. 3–12b, the free-body diagram 
of point A is considered in order to “expose” the three unknown forces 
in the cables.

Equations of Equilibrium.  First we will express each force in 
Cartesian vector form. Since the coordinates of points B and C are 
B(-3 ft, -4 ft, 8 ft) and C(-3 ft, 4 ft, 8 ft), we have

 FB = FBJ -3i - 4j + 8k2(-3)2 + (-4)2 + (8)2
R

 = -0.318FBi - 0.424FBj + 0.848FBk

  FC = FCJ -3i + 4j + 8k2(-3)2 + (4)2 + (8)2
R

 = -0.318FC i + 0.424FC j + 0.848FC k

 FD = FDi

 W = 5-40k6  lb

Equilibrium requires

�F = 0;	             FB + FC + FD + W = 0

-0.318FB  i - 0.424FB  j + 0.848FBk

-0.318FC i + 0.424FC j + 0.848FC k + FDi - 40k = 0

Equating the respective i, j, k components to zero yields

�Fx = 0;                    -0.318FB - 0.318FC + FD = 0� (1)

�Fy = 0;	                  -0.424FB + 0.424FC = 0� (2)

�Fz = 0; 	           0.848FB + 0.848FC - 40 = 0� (3)

Equation (2) states that FB = FC. Thus, solving Eq. (3) for FB and FC 
and substituting the result into Eq. (1) to obtain FD, we have

 FB = FC = 23.6 lb � Ans.

 FD = 15.0 lb � Ans.

Fig. 3–12

y

x

z

(a)

8 ft

3 ft

4 ft

4 ft

C

B

D A

y

x

z

W � 40 lb

(b)

FB

A

FC

FD
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Determine the tension in each cord used to support the 100-kg crate 
shown in Fig. 3–13a.

example    3.8

y1 m
2 m

z

60� 135�
2 m

D

120�

x

(a)

B

A

k � 1.5 kN/m

C

Fig. 3–13

Solution
Free-Body Diagram.   The force in each of the cords can be 
determined by investigating the equilibrium of point A. The free-body 
diagram is shown in Fig. 3–13b. The weight of the crate is 
W = 100(9.81) = 981 N.

Equations of Equilibrium.  Each force on the free-body diagram is 
first expressed in Cartesian vector form. Using Eq. 2–9 for FC and 
noting point D(–1 m, 2 m, 2 m) for FD, we have

 FB = FB  i

 FC = FC cos 120�i + FC cos 135�j + FC cos 60�k

 = -0.5FC i - 0.707FC 
 

j + 0.5FC k

 FD = FDJ -1i + 2j + 2k2(-1)2 + (2)2 + (2)2
R

 = -0.333FDi + 0.667FDj + 0.667FDk

 W = 5-981k6  N

Equilibrium requires

�F = 0;                FB + FC + FD + W = 0

 FB  i - 0.5FC i - 0.707FC  j + 0.5FC k

-0.333FD i + 0.667FD j + 0.667FD k - 981k = 0

Equating the respective i, j, k components to zero,

�Fx = 0;	  FB - 0.5FC - 0.333FD = 0� (1)

�Fy = 0;	  -0.707FC + 0.667FD = 0� (2)

�Fz = 0; 	  0.5FC + 0.667FD - 981 = 0� (3)

Solving Eq. (2) for FD in terms of FC and substituting this into Eq. (3) 
yields FC. FD is then determined from Eq. (2). Finally, substituting the 
results into Eq. (1) gives FB. Hence,

 FC = 813 N� Ans.

 FD = 862 N� Ans.

 FB = 694 N� Ans.

y

x

z

W � 981 N

A

FC

(b)

FD

FB
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All problem solutions must include an FBD.

F3–7.    Determine the magnitude of forces F1, F2, F3,  so 
that the particle is held in equilibrium.

900 N

600 N

z

x y

4

4
4

3

3

3

5

5 F1

F2

F3

5

Prob. F3–7

F3–8.    Determine the tension developed in cables AB, AC, 
and AD.

A

C

z

y

x

B

D

3

3

4

4

5

5

900 N

Prob. F3–8

F3–9.    Determine the tension developed in cables AB, AC, 
and AD.

2 m
1 m

2 m
A

C

z

y

x B

D

600 N

30�

Prob. F3–9

FUNDAMENTAL PROBLEMS

F3–10.    Determine the tension developed in cables AB, 
AC, and AD.

A

Cz

y

x

B

60º

300 lb

30�

45�

120�

60�

D

Prob. F3–10

F3–11.    The 150-lb crate is supported by cables AB, AC, 
and AD. Determine the tension in these wires.

A

D

E

B

C

2 ft

3 ft

3 ft

2 ft

6 ft

z

y

x

Prob. F3–11
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3–45.    If the bucket and its contents have a total weight of 
20 lb, determine the force in the supporting cables DA, DB, 
and DC.

1.5 ft

4.5 ft

2.5 ft

3 ft

3 ft
1.5 ft

A

D

B

C

y

x

z

Prob. 3–45

3–46.    Determine the stretch in each of the two springs 
required to hold the 20-kg crate in the equilibrium position 
shown. Each spring has an unstretched length of 2 m and a 
stiffness of k =  300 N>m. 

y
x

z

O

C

B
A

12 m

6 m4 m

Prob. 3–46

Problems

All problem solutions must include an FBD.

3–43.    The three cables are used to support the 40-kg 
flowerpot. Determine the force developed in each cable for 
equilibrium.

2 m

z

1.5 m

1.5 m

D

y

x

A

B

C

Prob. 3–43

*3–44.    Determine the magnitudes of F1, F2, and F3 for 
equilibrium of the particle.

y
30�

30�

25

24
7

4 kN
10 kN

F1

F2

F3

z

x

Prob. 3–44
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3–47.    Determine the force in each cable needed to support 
the 20-kg flowerpot.

D

y

x
C

A

B

4 m

2 m

2 m

6 m

3 m

z

Prob. 3–47

*3–48.    Determine the tension in the cables in order to 
support the 100-kg crate in the equilibrium position shown.

3–49.    Determine the maximum mass of the crate so that 
the tension developed in any cable does not exceeded 3 kN.

2.5 m
2 m

2 m

2 m

1 mA

z

D

y
x

B

C

Probs. 3–48/49

3–50.    Determine the force in each cable if F = 500 lb.

3–51.    Determine the greatest force F that can be applied 
to the ring if each cable can support a maximum force  
of 800 lb.

z

A

B

x

y

D

F

1

1 ft

2 ft 3 ft

3 ft

6 ft

2 ft
1 ftC

Probs. 3–50/51

*3–52.    Determine the tension developed in cables AB and 
AC and the force developed along strut AD for equilibrium 
of the 400-lb crate.

3–53.    If the tension developed in each cable cannot exceed 
300 lb, determine the largest weight of the crate that can be 
supported. Also, what is the force developed along strut AD?

x 

y 

z

5.5 ft

2 ft

2 ft

A

B

D

C
4 ft

2.5 ft

6 ft

Probs. 3–52/53
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3–58.    Determine the tension developed in the three cables 
required to support the traffic light, which has a mass of  
15 kg. Take h = 4 m.

D
A

h B

C

4 m

4 m

6 m

4 m

3 m

4 m

3 m

6 m3 m

yx

z

Prob. 3–58

3–59.    Determine the tension developed in the three cables 
required to support the traffic light, which has a mass of  
20 kg. Take h = 3.5 m.

D
A

h B

C

4 m

4 m

6 m

4 m

3 m

4 m

3 m

6 m3 m

yx

z

Prob. 3–59

3–54.    Determine the tension developed in each cable for 
equilibrium of the 300-lb crate.

3–55.    Determine the maximum weight of the crate that can 
be suspended from cables AB, AC, and AD so that the tension 
developed in any one of the cables does not exceed 250 lb.

y

A

B

C

D

x

z

6 ft

3 ft

3 ft

2 ft
2 ft

3 ft

4 ft

Probs. 3–54/55

*3–56.    The 25-kg flowerpot is supported at A by the three 
cords. Determine the force acting in each cord for 
equilibrium.

3–57.    If each cord can sustain a maximum tension of 50 N 
before it fails, determine the greatest weight of the flowerpot 
the cords can support.

30�

30�
60�

45�

x

A

z

B

y

D

C

Probs. 3–56/57
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3–62.    If the maximum force in each rod can not exceed 
1500 N, determine the greatest mass of the crate that can be 
supported.

3 m

2 m

1 m

2 m

2 m

1 m

3 m

3 m

A

O

B

C

y

x

z

2 m

Prob. 3–62

3–63.    The crate has a mass of 130 kg. Determine the 
tension developed in each cable for equilibrium.

3 m4 m

y

C

2 m1 m 
1 m 

1 m 

A B

D
x

z

Prob. 3–63

*3–60.    The 800-lb cylinder is supported by three chains as 
shown. Determine the force in each chain for equilibrium. 
Take d = 1 ft.

90�

135�

135�

1 ftD
B

C

A

x

z

y

d

Prob. 3–60

3–61.    Determine the tension in each cable for equilibrium.

5 m

y
O

C

B

D

A

5 m

4 m

4 m

3 m

800 N

4 m

2 m

x

z

Prob. 3–61
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3–66.    Determine the tension developed in cables AB, AC, 
and AD required for equilibrium of the 300-lb crate.

A

D

C

x

1 ft

3 ft

2 ft
1 ft

2 ft

2 ft

y

z

2 ft

B

Prob. 3–66

3–67.    Determine the maximum weight of the crate so that 
the tension developed in any cable does not exceed 450 lb.

A

D

C

x

1 ft

3 ft

2 ft
1 ft

2 ft

2 ft

y

z

2 ft

B

Prob. 3–67

*3–64.    If cable AD is tightened by a turnbuckle and 
develops a tension of 1300 lb, determine the tension 
developed in cables AB and AC and the force developed 
along the antenna tower AE at point A.

15 ft 15 ft

10 ft
10 ft

z

x

B E
D

C

A

y

30 ft

12.5 ft

Prob. 3–64

3–65.    If the tension developed in either cable AB or AC 
can not exceed 1000 lb, determine the maximum tension 
that can be developed in cable AD when it is tightened by 
the turnbuckle. Also, what is the force developed along the 
antenna tower at point A?

15 ft 15 ft

10 ft
10 ft

z

x

B E
D

C

A

y

30 ft

12.5 ft

Prob. 3–65
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Particle Equilibrium

When a particle is at rest or moves with 
constant velocity, it is in equilibrium. 
This requires that all the forces acting on 
the particle form a zero resultant force.

In order to account for all the forces that 
act on a particle, it is necessary to draw 
its free-body diagram. This diagram is an 
outlined shape of the particle that shows 
all the forces listed with their known or 
unknown magnitudes and directions.

F4 F3

F1 F2

Two Dimensions

If the problem involves a linearly elastic 
spring, then the stretch or compression s 
of the spring can be related to the force 
applied to it.

The tensile force developed in a 
continuous cable that passes over a 
frictionless pulley must have a constant 
magnitude throughout the cable to keep 
the cable in equilibrium.

The two scalar equations of force 
equilibrium can be applied with reference 
to an established x, y coordinate system. T

T
Cable is in tension

u

Three Dimensions

If the three-dimensional geometry is 
difficult to visualize, then the equilibrium 
equation should be applied using a 
Cartesian vector analysis. This requires 
first expressing each force on the free-
body diagram as a Cartesian vector. 
When the forces are summed and set 
equal to zero, then the i, j, and k 
components are also zero.

F3
F2

F1

x

y

z
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CHAPTER REVIEW

FR = �F = 0

�Fx = 0
�Fy = 0

 �F = 0

 �Fx = 0
 �Fy = 0
 �Fz = 0

 F = ks

F

�s

l
l0
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All problem solutions must include an FBD.

R3–1.    The pipe is held in place by the vise. If the bolt 
exerts a force of 50 lb on the pipe in the direction shown, 
determine the forces FA and FB that the smooth contacts at 
A and B exert on the pipe.

30�

50 lb

A

B
FB

FA

C

3
4

5

Prob. R3–1

R3–2.    Determine the maximum weight of the engine that 
can be supported without exceeding a tension of 450 lb in 
chain AB and 480 lb in chain AC.

B

C

A

30�

Prob. R3–2

Review Problems

R3–3.    Determine the maximum weight of the flowerpot 
that can be supported without exceeding a cable tension of 
50 lb in either cable AB or AC.

30�
4

3

5

B

C

A

Prob. R3–3

R3–4.    When y is zero, the springs sustain a force of 60 lb. 
Determine the magnitude of the applied vertical forces F 
and -F required to pull point A away from point B a 
distance of y = 2 ft. The ends of cords CAD and CBD are 
attached to rings at C and D.

F

k � 40 lb/ft k � 40 lb/ft

2 ft

2 ft

2 ft

2 ft

–F

y

A

B

DC

Prob. R3–4
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R3–7.    Determine the force in each cable needed to 
support the 500-lb load.

D

y

x

C

A

B

6 ft

8 ft

2 ft
2 ft

6 ft

z

Prob. R3–7

R3–8.    If cable AB is subjected to a tension of 700 N, 
determine the tension in cables AC and AD and the 
magnitude of the vertical force F.

y

6 m

O

C

B

D

A

F

6 m

3 m

3 m

2 m

2 m

1.5 m

x

z

Prob. R3–8

R3–5.    The joint of a space frame is subjected to four 
member forces. Member OA lies in the x–y plane and 
member OB lies in the y–z plane. Determine the force 
acting in each of the members required for equilibrium of 
the joint.

x

45�

A

B

200 lb

F1

z

y

40�

F2

F3
O

Prob. R3–5

R3–6.    Determine the magnitudes of F1, F2, and F3 for 
equilibrium of the particle.

�

F3

F2
F1

�

y

x

z

�

Prob. R3–6



Chapter 4

The force applied to this wrench will produce rotation or a tendency for 
rotation. This effect is called a moment, and in this chapter we will study how 
to determine the moment of a system of forces and calculate their resultants.

(© Rolf Adlercreutz/Alamy)



Force System 
Resultants

CHAPTER OBJECTIVES

n	 To discuss the concept of the moment of a force and show how 
to calculate it in two and three dimensions.

n	 To provide a method for finding the moment of a force about a 
specified axis.

n	 To define the moment of a couple.

n	 To show how to find the resultant effect of a nonconcurrent 
force system.

n	 To indicate how to reduce a simple distributed loading to a 
resultant force acting at a specified location.

4.1  �Moment of a Force—
Scalar Formulation

When a force is applied to a body it will produce a tendency for the body 
to rotate about a point that is not on the line of action of the force. This 
tendency to rotate is sometimes called a torque, but most often it is called 
the moment of a force or simply the moment. For example, consider a 
wrench used to unscrew the bolt in Fig. 4–1a. If a force is applied to 
the handle of the wrench it will tend to turn the bolt about point O (or 
the z axis). The magnitude of the moment is directly proportional to the 
magnitude of F and the perpendicular distance or moment arm d. The 
larger the force or the longer the moment arm, the greater the moment 
or turning effect. Note that if the force F is applied at an angle u � 90�, 
Fig. 4–1b, then it will be more difficult to turn the bolt since the moment 
arm d� = d sin u will be smaller than d. If F is applied along the wrench, 
Fig. 4–1c, its moment arm will be zero since the line of action of F will 
intersect point O (the z axis). As a result, the moment of F about O is also 
zero and no turning can occur.

z

O

(c)

F

Fig. 4–1

z

O

F

d¿ � d sin u

(b)

u

d

z

O d

F

(a)
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We can generalize the above discussion and consider the force F and 
point O which lie in the shaded plane as shown in Fig. 4–2a. The moment 
MO about point O, or about an axis passing through O and perpendicular 
to the plane, is a vector quantity since it has a specified magnitude and 
direction.

Magnitude.  The magnitude of MO is

	 MO = Fd � (4–1)

where d is the moment arm or perpendicular distance from the axis at 
point O to the line of action of the force. Units of moment magnitude 
consist of force times distance, e.g., N # m or lb # ft.

Direction.  The direction of MO is defined by its moment axis, which 
is perpendicular to the plane that contains the force F and its moment 
arm d. The right-hand rule is used to establish the sense of direction of 
MO. According to this rule, the natural curl of the fingers of the right 
hand, as they are drawn towards the palm, represent the rotation, or if no 
movement is possible, there is a tendency for rotation caused by the 
moment. As this action is performed, the thumb of the right hand will 
give the directional sense of MO, Fig. 4–2a. Notice that the moment vector 
is represented three-dimensionally by a curl around an arrow. In two 
dimensions this vector is represented only by the curl as in Fig. 4–2b. 
Since in this case the moment will tend to cause a counterclockwise 
rotation, the moment vector is actually directed out of the page.

Resultant Moment.  For two-dimensional problems, where all the 
forces lie within the x–y plane, Fig. 4–3, the resultant moment (MR )O 

  
about point O (the z axis) can be determined by finding the algebraic sum 
of the moments caused by all the forces in the system. As a convention, 
we will generally consider positive moments as counterclockwise since 
they are directed along the positive z axis (out of the page). Clockwise 
moments will be negative. Doing this, the directional sense of each 
moment can be represented by a plus or minus sign. Using this sign 
convention, with a symbolic curl to define the positive direction, the 
resultant moment in Fig. 4–3 is therefore

 a+(MR)
O

= �Fd;  (MR)
O

= F1d1 - F2d2 + F3d3

If the numerical result of this sum is a positive scalar, (MR )
O
 will be a 

counterclockwise moment (out of the page); and if the result is negative, 
(MR )

O
 will be a clockwise moment (into the page).

Sense of rotation

O

Moment axis

d
F

MO

MO

F

d

O

(a)

(b)

Fig. 4–2

y

x
O

F3

F2

F1

M3

M2 M1

d3

d2
d1

Fig. 4–3
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Example   4.1

For each case illustrated in Fig. 4–4, determine the moment of the 
force about point O.

SOLUTION (Scalar Analysis)
The line of action of each force is extended as a dashed line in order to 
establish the moment arm d. Also illustrated is the tendency of 
rotation of the member as caused by the force. Furthermore, the orbit 
of the force about O is shown as a colored curl. Thus,

Fig. 4–4a	  MO = (100 N)(2 m) = 200 N # m b� Ans.

Fig. 4–4b	  MO = (50 N)(0.75 m) = 37.5 N # mb� Ans.

Fig. 4–4c	  MO = (40 lb)(4 ft + 2 cos 30� ft) = 229 lb # ft b� Ans.

Fig. 4–4d	  MO = (60 lb)(1 sin 45� ft) = 42.4 lb # ft d� Ans.

Fig. 4–4e	  MO = (7 kN)(4 m - 1 m) = 21.0 kN # m d� Ans.

2 m

O

(a)

100 N

Fig. 4–4

2 m

O

(b)

50 N

0.75 m

2 ft

(c)

O

4 ft
2 cos 30� ft

40 lb30�

(d)

O
1 sin 45� ft

60 lb

3 ft

45�
1 ft

2 m

O (e)

4 m

1 m
7 kN
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Determine the resultant moment of the four forces acting on the rod 
shown in Fig. 4–5 about point O.

SOLUTION
Assuming that positive moments act in the +  k direction, i.e., 
counterclockwise, we have

 a + (MR)
O

= �Fd;

 (MR)
O

= -50 N(2 m) + 60 N(0) + 20 N(3 sin 30� m)

 -40 N(4 m + 3 cos 30� m)

 (MR)
O

= -334 N # m = 334 N # mb � Ans.

For this calculation, note how the moment-arm distances for the 20-N 
and 40-N forces are established from the extended (dashed) lines of 
action of each of these forces.

Example   4.2

50 N

40 N

20 N3 m

2 m 2 m

O

x

y

60 N

30�

Fig. 4–5

FN

FH

O

The ability to remove the nail will require the 
moment of FH about point O to be larger than the 
moment of the force FN about O that is needed to 
pull the nail out. (© Russell C. Hibbeler)

MA � FdA

dA

F

A B

As illustrated by the example problems, the moment of a 
force does not always cause a rotation. For example, the force 
F tends to rotate the beam clockwise about its support at A 
with a moment MA = FdA. The actual rotation would occur 
if the support at B were removed. (© Russell C. Hibbeler)
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4.2  Cross Product

The moment of a force will be formulated using Cartesian vectors in the 
next section. Before doing this, however, it is first necessary to expand our 
knowledge of vector algebra and introduce the cross-product method of 
vector multiplication, first used by Willard Gibbs in lectures given in the 
late 19th century.

The cross product of two vectors A and B yields the vector C, which is 
written

	 C = A * B	 (4–2)

and is read “C equals A cross B.”

Magnitude.  The magnitude of C is defined as the product of the 
magnitudes of A and B and the sine of the angle u between their tails 
(0� … u … 180�). Thus, C = AB sin u.

Direction.  Vector C has a direction that is perpendicular to the plane 
containing A and B such that C is specified by the right-hand rule; i.e., 
curling the fingers of the right hand from vector A (cross) to vector B, 
the thumb points in the direction of C, as shown in Fig. 4–6.

Knowing both the magnitude and direction of C, we can write

	 C = A * B = (AB sin u)uC	 (4–3)

where the scalar AB sin u defines the magnitude of C and the unit vector 
uC defines the direction of C. The terms of Eq. 4–3 are illustrated 
graphically in Fig. 4–6.

C � A � B

A

B

u

uC

Fig. 4–6
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B

A

�C � B � A

C � A � B

B

A

Fig. 4–7

Laws of Operation.

	 •	 The commutative law is not valid; i.e., A * B � B * A. Rather,

A * B = -B * A

		  This is shown in Fig. 4–7 by using the right-hand rule. The cross 
product B * A yields a vector that has the same magnitude but acts 
in the opposite direction to C; i.e., B * A = -C.

	 •	 If the cross product is multiplied by a scalar a, it obeys the associa-
tive law;

a(A * B) = (aA) * B = A * (aB) = (A * B)a

		  This property is easily shown since the magnitude of the resultant 
vector 1 � a� AB sin u2 and its direction are the same in each case.

	 •	 The vector cross product also obeys the distributive law of addition,

A * (B + D) = (A * B) + (A * D)

	 •	 The proof of this identity is left as an exercise (see Prob. 4–1). It is 
important to note that proper order of the cross products must be 
maintained, since they are not commutative.

Cartesian Vector Formulation.  Equation 4–3 may be used 
to  find the cross product of any pair of Cartesian unit vectors. For 
example,  to find i * j, the magnitude of the resultant vector is 
(i)( j)(sin 90�) = (1)(1)(1) = 1, and its direction is determined using the 
right-hand rule. As shown in Fig. 4–8, the resultant vector points in the 
+k direction. Thus, i * j = (1)k. In a similar manner,

i * j = k  i * k = -j  i * i = 0

j * k = i  j * i = -k  j * j = 0

k * i = j  k * j = - i  k * k = 0

These results should not be memorized; rather, it should be clearly 
understood how each is obtained by using the right-hand rule and the 
definition of the cross product. A simple scheme shown in Fig. 4–9 is 
helpful for obtaining the same results when the need arises. If the circle 
is constructed as shown, then “crossing” two unit vectors in a 
counterclockwise fashion around the circle yields the positive third unit 
vector; e.g., k * i = j. “Crossing” clockwise, a negative unit vector is 
obtained; e.g., i * k = -j.

y

x

z

k � i � j

j

i

Fig. 4–8

�

�

i

j k

Fig. 4–9

4
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Let us now consider the cross product of two general vectors A and B 
which are expressed in Cartesian vector form. We have

 A * B = (A x i + A y j + A zk) * (Bx i + By j + Bzk)

 = A xBx(i * i) + A xBy(i * j) + A xBz(i * k)

 + A yBx(j * i) + A yBy(j * j) + A yBz(j * k)

 + A zBx(k * i) + A zBy(k * j) + A zBz(k * k)

Carrying out the cross-product operations and combining terms yields

A * B = (A yBz - A zBy)i - (A xBz - A zBx)j + (A xBy - A yBx)k	 (4–4)

This equation may also be written in a more compact determinant 
form as

	 A * B = †
i j k

A x A y A z

Bx By Bz

† 	 (4–5)

Thus, to find the cross product of any two Cartesian vectors A and B, it is 
necessary to expand a determinant whose first row of elements consists 
of the unit vectors i, j, and k and whose second and third rows represent 
the x, y, z components of the two vectors A and B, respectively.*

*A determinant having three rows and three columns can be expanded using three 
minors, each of which is multiplied by one of the three terms in the first row. There are 
four elements in each minor, for example,

A11 A12

A21 A22

By definition, this determinant notation represents the terms (A11A22 - A12A21), which is 
simply the product of the two elements intersected by the arrow slanting downward to the 
right (A11A22) minus the product of the two elements intersected by the arrow slanting 
downward to the left (A12A21). For a 3 * 3 determinant, such as Eq. 4–5, the three minors 
can be generated in accordance with the following scheme:

For element k:

For element j:

For element i: Ax

Bx

Ay

By

Az

Bz

i j k
Ax

Bx

Ay

By

Az

Bz

i j k

i j k
Ax

Bx

Ay

By

Az

Bz

Remember the
negative sign

Adding the results and noting that the j element must include the minus sign yields the 
expanded form of A * B given by Eq. 4–4.
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4.3  �Moment of a Force—Vector 
Formulation

The moment of a force F about point O, or actually about the moment 
axis passing through O and perpendicular to the plane containing O and 
F, Fig. 4–10a, can be expressed using the vector cross product, namely,

	 MO = r * F	 (4–6)

Here r represents a position vector directed from O to any point on the 
line of action of F. We will now show that indeed the moment MO, when 
determined by this cross product, has the proper magnitude and direction.

Magnitude.  The magnitude of the cross product is defined from 
Eq. 4–3 as MO = rF sin u, where the angle u is measured between the 
tails of r and F. To establish this angle, r must be treated as a sliding vector 
so that u can be constructed properly, Fig. 4–10b. Since the moment arm 
d = r sin u, then

MO = rF sin u = F(r sin u) = Fd

which agrees with Eq. 4–1.

Direction.  The direction and sense of MO in Eq. 4–6 are determined 
by the right-hand rule as it applies to the cross product. Thus, sliding r to 
the dashed position and curling the right-hand fingers from r toward F, 
“r cross F,” the thumb is directed upward or perpendicular to the plane 
containing r and F and this is in the same direction as MO, the moment of 
the force about point O, Fig. 4–10b. Note that the “curl” of the fingers, 
like the curl around the moment vector, indicates the sense of rotation 
caused by the force. Since the cross product does not obey the 
commutative law, the order of r * F must be maintained to produce the 
correct sense of direction for MO.

Principle of Transmissibility.  The cross product operation is 
often used in three dimensions since the perpendicular distance or 
moment arm from point O to the line of action of the force is not needed. 
In other words, we can use any position vector r measured from point O 
to any point on the line of action of the force F, Fig. 4–11. Thus,

MO = r1 * F = r2 * F = r3 * F

Since F can be applied at any point along its line of action and still create 
this same moment about point O, then F can be considered a sliding 
vector. This property is called the principle of transmissibility of a force.

O

Moment axis

d

MO

rAr

F

(b)

u

u

Fig. 4–10

O

Moment axis

MO

rA

F

(a)

r1r3 r2

O

F

MO � r1 � F � r2 � F � r3 � F

Line of action

Fig. 4–11
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Cartesian Vector Formulation.  If we establish x, y, z coordinate 
axes, then the position vector r and force F can be expressed as Cartesian 
vectors, Fig. 4–12a. Applying Eq. 4–5 we have

	 MO = r * F = 3 i j k
rx ry rz

Fx Fy Fz

3 	 (4–7)

where

rx, ry, rz   �  represent the x, y, z components of the position  
vector drawn from point O to any point on the  
line of action of the force

Fx, Fy, Fz � represent the x, y, z components of the force vector

If the determinant is expanded, then like Eq. 4–4 we have

	 MO = (ryFz - rzFy)i - (rxFz - rzFx)j + (rxFy - ryFx)k	 (4–8)

The physical meaning of these three moment components becomes 
evident by studying Fig. 4–12b. For example, the i component of MO can 
be determined from the moments of Fx, Fy, and Fz about the x axis. The 
component Fx does not create a moment or tendency to cause turning 
about the x axis since this force is parallel to the x axis. The line of 
action of Fy passes through point B, and so the magnitude of the 
moment of Fy about point A on the x axis is rzFy. By the right-hand rule 
this component acts in the negative i direction. Likewise, Fz passes 
through point C and so it contributes a moment component of ryFzi 
about the x axis. Thus, (MO)x = (ryFz - rzFy) as shown in Eq. 4–8. As an 
exercise, establish the j and k components of MO in this manner and 
show that indeed the expanded form of the determinant, Eq. 4–8, 
represents the moment of F about point O. Once MO is determined, 
realize that it will always be perpendicular to the shaded plane 
containing vectors r and F, Fig. 4–12a.

Resultant Moment of a System of Forces.  If a body is acted 
upon by a system of forces, Fig. 4–13, the resultant moment of the forces 
about point O can be determined by vector addition of the moment of 
each force. This resultant can be written symbolically as

	 (MR)
O

= �(r * F)� (4–9)

z

C

y

Fy

Fx

rz

r ry

rx

x

A

B

O

F

(b)

Fz

Fig. 4–12

z

MO

Moment
axis

x

y
O

F

(a)

r

z

x

y
O

r2

r1
r3

F3 F1

F2

(MR)
O

Fig. 4–13
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Determine the moment produced by the force F in Fig. 4–14a about 
point O. Express the result as a Cartesian vector.

SOLUTION
As shown in Fig. 4–14b, either rA or rB can be used to determine the 
moment about point O. These position vectors are

rA = {12k} m˚and˚rB = {4i + 12j} m

Force F expressed as a Cartesian vector is

 F = FuAB = 2 kNC {4i + 12j - 12k} m2(4 m)2 + (12 m)2 + (-12 m)2
S

 = {0.4588i + 1.376j - 1.376k} kN

Thus

 MO = rA * F = 3 i j k
0 0 12

0.4588  1.376 -1.376

3
 = [0(-1.376) - 12(1.376)]i - [0(-1.376) - 12(0.4588)]j

 + [0(1.376) - 0(0.4588)]k

	  = {-16.5i + 5.51j} kN # m� Ans.

or

 MO = rB * F = 3 i j k
4 12 0

0.4588  1.376 -1.376

3  
 = [12(-1.376) - 0(1.376)]i - [4(-1.376) - 0(0.4588)]j

+ [4(1.376) - 12(0.4588)]k

	  = {-16.5i + 5.51j} kN # m� Ans.

NOTE: As shown in Fig. 4–14b, MO acts perpendicular to the plane 
that contains F, rA, and rB. Had this problem been worked using 
MO = Fd, notice the difficulty that would arise in obtaining the 
moment arm d.

Example   4.3

(b)

A

B

O

x

y

z

F

rB

rA

MO

Fig. 4–14

12 m

4 m

12 mA

B

O

x

y

z

(a)

F � 2 kN

uAB
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Two forces act on the rod shown in Fig. 4–15a. Determine the resultant 
moment they create about the flange at O. Express the result as a 
Cartesian vector.

Example   4.4

x

y

z

O A

B

(b)

rA

rB

F1

F2

x

z

O

5 ft

4 ft

2 ft

A

B

F2 � {80i � 40j � 30k} lb

F1 � {�60i � 40j � 20k} lb

(a)

y

x

y

z

O

 � 39.8�

 � 67.4�

 � 121�

(MR)
O

 � {30i � 40j � 60k} lb·ft

(c)

a

g
b

Fig. 4–15

SOLUTION
Position vectors are directed from point O to each force as shown in 
Fig. 4–15b. These vectors are

 rA = {5j} ft

 rB = {4i + 5j - 2k} ft

The resultant moment about O is therefore

 (MR)
O

= �(r * F)

 = rA * F1 + rB * F2

 = 3 i j k
0 5 0

-60 40 20

3 + 3 i j k
4 5 -2

80 40 -30

3
 = [5(20) - 0(40)]i - [0]j + [0(40) - (5)(-60)]k

 +  [5(-30) - (-2)(40)]i - [4(-30) - (-2)(80)]j + [4(40) - 5(80)]k

 = {30i - 40j + 60k} lb # ft� Ans.

NOTE: This result is shown in Fig. 4–15c. The coordinate direction 
angles were determined from the unit vector for (MR )

O
. Realize that 

the two forces tend to cause the rod to rotate about the moment axis 
in the manner shown by the curl indicated on the moment vector.
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4.4  Principle of Moments

A concept often used in mechanics is the principle of moments, which 
is sometimes referred to as Varignon’s theorem since it was orginally 
developed by the French mathematician Pierre Varignon (1654–1722). 
It states that the moment of a force about a point is equal to the sum of 
the moments of the components of the force about the point. This 
theorem can be proven easily using the vector cross product since the 
cross product obeys the distributive law. For example, consider the 
moments of the force F and two of its components about point O, 
Fig. 4–16. Since F = F1 + F2 we have

MO = r * F = r * (F1 + F2) = r * F1 + r * F2

For two-dimensional problems, Fig. 4–17, we can use the principle of 
moments by resolving the force into its rectangular components and 
then determine the moment using a scalar analysis. Thus,

MO = Fx y - Fy x

This method is generally easier than finding the same moment using 
MO = Fd.

F2

O

r

F1F

Fig. 4–16

MO

Fx

FFy

O

d

x

y

Fig. 4–17

Important Points

	 •	 The moment of a force creates the tendency of a body to turn 
about an axis passing through a specific point O.

	 •	 Using the right-hand rule, the sense of rotation is indicated by the 
curl of the fingers, and the thumb is directed along the moment 
axis, or line of action of the moment.

	 •	 The magnitude of the moment is determined from MO = Fd, 
where d is called the moment arm, which represents the 
perpendicular or shortest distance from point O to the line of 
action of the force.

	 •	 In three dimensions the vector cross product is used to determine 
the moment, i.e., MO = r * F. Remember that r is directed from 
point O to any point on the line of action of F.

Fy

r

Fx

FO

x

d

y

MO

The moment of the force about point O is 
MO = Fd. But it is easier to find this moment 
using MO = Fx(0) + Fyr = Fyr. (© Russell 
C. Hibbeler)
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x

y

(c)

45�

30�

30�
3 m

O

Fx � (5 kN) cos 75�

Fy � (5 kN) sin 75�

Fig. 4–18

Determine the moment of the force in Fig. 4–18a about point O.

Example   4.5

30�

(a)

45�

F � 5 kN3 m

O

d
75�

y

x

(b)

30�

45�

O

dy � 3 sin 30� m

dx � 3 cos 30� m
Fx � (5 kN) cos 45�

Fy � (5 kN) sin 45�

SOLUTION I
The moment arm d in Fig. 4–18a can be found from trigonometry.

d = (3 m) sin 75� = 2.898 m

Thus,

	 MO = Fd = (5 kN)(2.898 m) = 14.5 kN # mb� Ans.

Since the force tends to rotate or orbit clockwise about point O, the 
moment is directed into the page.

SOLUTION II
The x and y components of the force are indicated in Fig. 4–18b. 
Considering counterclockwise moments as positive, and applying the 
principle of moments, we have

 a+  MO = -Fxdy - Fydx

	 =  -(5 cos 45� kN)(3 sin 30� m) - (5 sin 45� kN)(3 cos 30� m)

	  = -14.5 kN # m = 14.5 kN # m b� Ans.

SOLUTION III
The x and y axes can be set parallel and perpendicular to the rod’s 
axis  as shown in Fig. 4–18c. Here Fx produces no moment about 
point O since its line of action passes through this point. Therefore,

 a+  MO = -Fy dx

 = -(5 sin 75� kN)(3 m)

 = -14.5 kN # m = 14.5 kN # mb� Ans.
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0.4 m

0.2 m

30�

O

F = 400 N
(a)

Force F acts at the end of the angle bracket in Fig. 4–19a. Determine 
the moment of the force about point O.

SOLUTION I (Scalar Analysis)
The force is resolved into its x and y components, Fig. 4–19b, then

 a+  MO = 400 sin 30� N(0.2 m) - 400 cos 30� N(0.4 m)

 = -98.6 N # m = 98.6 N # m b

or

	 MO = {-98.6k} N # m � Ans.

SOLUTION II (Vector Analysis)
Using a Cartesian vector approach, the force and position vectors,  
Fig. 4–19c, are

 r = {0.4i - 0.2j} m

 F = {400 sin 30� i - 400 cos 30� j} N

 = {200.0i - 346.4j} N

The moment is therefore

 MO = r * F = 3 i j k
0.4  -0.2 0

200.0  -346.4 0

3
 = 0i - 0j + [0.4(-346.4) - (-0.2)(200.0)]k

 = {-98.6k} N # m � Ans.

NOTE: It is seen that the scalar analysis (Solution I) provides a more 
convenient method for analysis than Solution II since the direction of 
the moment and the moment arm for each component force are easy 
to establish. Hence, this method is generally recommended for solving 
problems displayed in two dimensions, whereas a Cartesian vector 
analysis is generally recommended only for solving three-dimensional 
problems.

example   4.6

Fig. 4–19

0.4 m

0.2 m

(b)

400 cos 30� N

400 sin 30� N

O

y

y

x

0.4 m

0.2 m

30�

O

F(c)

r
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P4–2.  In each case, set up the determinant to find the 
moment of the force about point P.

P4–1.  In each case, determine the moment of the force 
about point O.

3 m 2 m

100 N

(a)

O

Prob. P4–1

(a)

y
P2 m

3 m

z

x

F � {�3i � 2j � 5k} kN

Prob. P4–2

Preliminary Problems

100 N

O

1 m 3 m

(b)

5 m3
4

5

100 N

(e)

O

(h)

1 m

O
500 N

3 m

4
3

1 m

5

2 m

O
3

4

5

500 N

(c)

2 m 3 m

100 N

(f)

O

(i)

O

500 N

4
3 5

1 m

2 m

1 m

2 m 3 m

3
4 5

500 N

(d)

O

(g)

1 m

2 m3
4

5

500 N

O

(b)

y
P

2 m2 m

1 m

3 m

z

x

F � {2i � 4j � 3k} kN

(c)

y

P

1 m
2 m

2 m

2 m

3 m

4 m

z

x

F � {�2i � 3j � 4k} kN
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FUNDAMENTAL PROBLEMS

F4–1.    Determine the moment of the force about point O.

5 m

2 m

100 N
3

4

5

O

Prob. F4–1

F4–2.    Determine the moment of the force about point O.

30�

45�

F � 300 N

0.4 m

0.3 m
O

Prob. F4–2

F4–3.    Determine the moment of the force about point O.

4 ft

3 ft

1 ft

600 lb

O

45�

Prob. F4–3

F4–4.    Determine the moment of the force about point O. 
Neglect the thickness of the member.

50 N

60�

45�

100 mm

100 mm

200 mm
O

Prob. F4–4

F4–5.    Determine the moment of the force about point O.

5 ft

0.5 ft

600 lb

20�

30�

O

Prob. F4–5

F4–6.    Determine the moment of the force about point O.

500 N

3 m

O

45�

Prob. F4–6
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F4–10.	 Determine the moment of force F about point O. 
Express the result as a Cartesian vector.

x

z

y

O

A
B

4 m
3 m

F � 500 N

Prob. F4–10

F4–11.	 Determine the moment of force F about point O. 
Express the result as a Cartesian vector.

x

z

y

O

A

B

C 2 ft

1 ft

4 ft

4 ft

F � 120 lb

Prob. F4–11

F4–12.	 If the two forces F1 = {100i -  120j + 75k} lb and  
F2 = { -200i  +  250j + 100k} lb act at A, determine the 
resultant moment produced by these forces about point O. 
Express the result as a Cartesian vector.

z

O

A

x

y

4 ft

3 ft 5 ft

F1

F2

Prob. F4–12

F4–7.    Determine the resultant moment produced by the 
forces about point O.

O

2 m

2.5 m45�

1 m

600 N

 300 N

 500 N

Prob. F4–7

F4–8.    Determine the resultant moment produced by the 
forces about point O.

F1 � 500 N

F2 � 600 N

A

0.25 m

0.3 m
0.125 m

60�

4
35

O

Prob. F4–8

F4–9.    Determine the resultant moment produced by the 
forces about point O.

O

30�30�

6 ft

6 ft

F2 � 200 lb

F1 � 300 lb

Prob. F4–9
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4–1.  If A, B, and D are given vectors, prove the 
distributive  law for the vector cross product, i.e., 
A * (B + D) = (A * B) + (A * D).

4–2.    Prove the triple scalar product identity 
A # (B * C) = (A * B) # C.

4–3.    Given the three nonzero vectors A, B, and C, show 
that if A # (B * C) = 0, the three vectors must lie in the 
same plane.

*4–4.    Determine the moment about point A of each of the 
three forces acting on the beam.

4–5.    Determine the moment about point B of each of the 
three forces acting on the beam.

F2 � 500 lbF1 � 375 lb

F3 � 160 lb

4

3

5

8 ft 6 ft

0.5 ft

30�

5 ft

BA

Probs. 4–4/5

4–6.  The crowbar is subjected to a vertical force of P = 25 lb 
at the grip, whereas it takes a force of F = 155 lb at the claw to 
pull the nail out. Find the moment of each force about point A 
and determine if P is sufficient to pull out the nail. The crowbar 
contacts the board at point A.

20�

3 in.

1.5 in.

60�

O

A

F

P
14 in.

Prob. 4–6

4–7.    Determine the moment of each of the three forces 
about point A.

*4–8.    Determine the moment of each of the three forces 
about point B.

2 m 3 m

4 m

60�

30�F1 � 250 N

B

F2 � 300 N

F3 � 500 N

A

4
3

5

Probs. 4–7/8

4–9.    Determine the moment of each force about the bolt 
located at A. Take FB = 40 lb, FC = 50 lb.

4–10.    If FB = 30 lb and FC = 45 lb, determine the 
resultant moment about the bolt located at A.

20�

2.5 ft

A
FB

FC

0.75 ft

30�
B

C

25�

Probs. 4–9/10

PROBLEMS
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4–15.    Two men exert forces of F = 80 lb and P = 50 lb on 
the ropes. Determine the moment of each force about A. 
Which way will the pole rotate, clockwise or counterclockwise?

*4–16.    If the man at B exerts a force of P = 30 lb on his 
rope, determine the magnitude of the force F the man at C 
must exert to prevent the pole from rotating, i.e., so the 
resultant moment about A of both forces is zero.

A

P

F

B

C

6 ft

45�

12 ft
3

4

5

Probs. 4–15/16

4–17.    The torque wrench ABC is used to measure the 
moment or torque applied to a bolt when the bolt is located 
at A and a force is applied to the handle at C. The mechanic 
reads the torque on the scale at B. If an extension AO of 
length d is used on the wrench, determine the required scale 
reading if the desired torque on the bolt at O is to be M.

A

F

B

Cd l
O

M

Prob. 4–17

4–11.    The towline exerts a force of P = 6 kN at the end of 
the 8-m-long crane boom. If u = 30�, determine the 
placement x of the hook at B so that this force creates a 
maximum moment about point O. What is this moment?

*4–12.    The towline exerts a force of P = 6 kN at the end 
of the 8-m-long crane boom. If x = 10 m, determine the 
position u of the boom so that this force creates a maximum 
moment about point O. What is this moment?

1 m

O

8 m

A

B

P � 6 kN

u

x

Probs. 4–11/12

4–13.    The 20-N horizontal force acts on the handle of the 
socket wrench. What is the moment of this force about point B. 
Specify the coordinate direction angles a, b, g of the moment 
axis.

4–14.    The 20-N horizontal force acts on the handle of the 
socket wrench. Determine the moment of this force about 
point O. Specify the coordinate direction angles a, b, g of 
the moment axis.

O

x

z

B A

y

50 mm

200 mm

10 mm

20 N

60�

Probs. 4–13/14
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4–22.  Old clocks were constructed using a fusee B to drive 
the gears and watch hands. The purpose of the fusee is to 
increase the leverage developed by the mainspring A as it 
uncoils and thereby loses some of its tension. The 
mainspring can develop a torque (moment) Ts = ku, where 
k = 0.015 N # m/rad is the torsional stiffness and u is the 
angle of twist of the spring in radians. If the torque Tf 
developed by the fusee is to remain constant as the 
mainspring winds down, and x = 10 mm when u = 4 rad, 
determine the required radius of the fusee when u = 3 rad.

Tf

A

Ts

y

x

y

t

B

12 mm

x

Prob. 4–22
4–23.    The tower crane is used to hoist the 2-Mg load upward 
at constant velocity. The 1.5-Mg jib BD, 0.5-Mg jib BC, and 
6-Mg counterweight C have centers of mass at G1, G2, and G3, 
respectively. Determine the resultant moment produced by 
the load and the weights of the tower crane jibs about point A 
and about point B.

*4–24.  The tower crane is used to hoist a 2-Mg load upward 
at constant velocity. The 1.5-Mg jib BD and 0.5-Mg jib BC 
have centers of mass at G1 and G2, respectively. Determine 
the required mass of the counterweight C so that the resultant 
moment produced by the load and the weight of the tower 
crane jibs about point A is zero. The center of mass for the 
counterweight is located at G3.

C
B D

G2

G3

A

9.5m

7.5 m

4 m

G112.5 m

23 m

Probs. 4–23/24

4–18.    The tongs are used to grip the ends of the drilling pipe P. 
Determine the torque (moment) MP that the applied force 
F = 150 lb exerts on the pipe about point P as a function of u. 
Plot this moment MP versus u for 0 …  u …  90°.

4–19.    The tongs are used to grip the ends of the drilling 
pipe P. If a torque (moment) of MP = 800 lb # ft is needed 
at P to turn the pipe, determine the cable force F that must 
be applied to the tongs. Set u = 30°.

43 in.

P

MP

6 in. 

F

u

Probs. 4–18/19

*4–20.    The handle of the hammer is subjected to the force 
of F = 20 lb. Determine the moment of this force about the 
point A.

4–21.    In order to pull out the nail at B, the force F exerted 
on the handle of the hammer must produce a clockwise 
moment of 500 lb # in. about point A. Determine the 
required magnitude of force F.

F

B

A

18 in.

5 in.

30�

Probs. 4–20/21
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4–29.    The force F = {400i - 100j - 700k} lb acts at the 
end of the beam. Determine the moment of this force about 
point O.

4–30.    The force F = {400i - 100j - 700k}  lb acts at the 
end of the beam. Determine the moment of this force about 
point A.

1.5 ft

x

8 ft

0.25 ft

z

A

O

B

F

y

Probs. 4–29/30

4–31.    Determine the moment of the force F about point P. 
Express the result as a Cartesian vector.

2 m

1 m

3 m

3 m

3 m

2 m

A

O

P

x

y

F � {2i � 4j � 6k} kN

z

Prob. 4–31

4–25.    If the 1500-lb boom AB, the 200-lb cage BCD, and 
the 175-lb man have centers of gravity located at points G1, 
G2, and G3, respectively, determine the resultant moment 
produced by each weight about point A.

4–26.    If the 1500-lb boom AB, the 200-lb cage BCD, and 
the 175-lb man have centers of gravity located at points G1, 
G2, and G3, respectively, determine the resultant moment 
produced by all the weights about point A.

75�

B
C

D

20 ft

10 ft

G1

G2

G3

1.75 ft2.5 ft

A

Probs. 4–25/26

4–27.    Determine the moment of the force F about point O. 
Express the result as a Cartesian vector.

*4–28.    Determine the moment of the force F about point P. 
Express the result as a Cartesian vector.

F � {–6i + 4 j � 8k} kN

4 m

3 m6 m

2 m

1 m
O y 

z

x

P

A

Probs. 4–27/28
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*4–36.    Determine the coordinate direction angles a, b, g 
of force F, so that the moment of F about O is zero.

4–37.    Determine the moment of force F about point O. 
The force has a magnitude of 800 N and coordinate direction 
angles of a = 60�, b = 120�, g = 45�. Express the result as 
a Cartesian vector.

x

F

0.4 m

A

z

O y

0.5 m
0.3 m

Probs. 4–36/37

4–38.    Determine the moment of the force F about the 
door hinge at A. Express the result as a Cartesian vector.

4–39.    Determine the moment of the force F about the 
door hinge at B. Express the result as a Cartesian vector. 

5 ft

1.5 ft

1.5 ft

3 ft

7 ft 4 ft

z

C
A

B D

x y

F � 80 lb

45�

Probs. 4–38/39

*4–32.    The pipe assembly is subjected to the force of 
F = {600i + 800j - 500k} N. Determine the moment of 
this force about point A.

4–33.    The pipe assembly is subjected to the force of 
F = {600i + 800j - 500k} N. Determine the moment of 
this force about point B.

y

0.5 m

0.4 m

0.3 m

0.3 m

x

z

F

B

C

A

Probs. 4–32/33

4–34.    Determine the moment of the force of F = 600 N 
about point A.

4–35.    Determine the smallest force F that must be applied 
along the rope in order to cause the curved rod, which has a 
radius of 4 m, to fail at the support A. This requires a 
moment of M = 1500 N # m to be developed at A.

4 m

4 m

z

x

y
6 m

6 m

A

C

B

F

45�

Probs. 4–34/35
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4–43.    The pipe assembly is subjected to the 80-N force. 
Determine the moment of this force about point A.

*4–44.    The pipe assembly is subjected to the 80-N force. 
Determine the moment of this force about point B.

400 mm

y300 mm

200 mm

250 mm200 mm

x

z

30�

40�

F � 80 N

B

C

A

Probs. 4–43/44

4–45.    A force of F = {6i - 2j + 1k} kN produces a 
moment of MO = {4i + 5j - 14k} kN # m about the origin, 
point O. If the force acts at a point having an x coordinate 
of x = 1 m, determine the y and z coordinates. Note: The 
figure shows F and MO in an arbitrary position. 

4–46.    The force F = {6i + 8j + 10k} N creates a moment 
about point O of MO = {-14i + 8j + 2k} N # m. If the 
force passes through a point having an x coordinate of 1 m, 
determine the y and z coordinates of the point. Also, 
realizing that MO = Fd, determine the perpendicular 
distance d from point O to the line of action of F. Note: The 
figure shows F and MO in an arbitrary position.

MO

d

z

x

y
O

y

1 m

z

P
F

Probs. 4–45/46

*4–40.    The curved rod has a radius of 5 ft. If a force of 
60 lb acts at its end as shown, determine the moment of this 
force about point C.

4–41.    Determine the smallest force F that must be applied 
along the rope in order to cause the curved rod, which has a 
radius of 5 ft, to fail at the support C. This requires a moment 
of M = 80 lb # ft to be developed at C.

5 ft

5 ft

60�

z

x

y

6 ft
60 lb

A

C

B

7 ft

Probs. 4–40/41

4–42.    A 20-N horizontal force is applied perpendicular to 
the handle of the socket wrench. Determine the magnitude 
and the coordinate direction angles of the moment created 
by this force about point O.

15�

200 mm

75 mm

20 N

A

O

x

y

z

Prob. 4–42



144 	 Chapter 4    Force System Resultants

4

4–50.    Strut AB of the 1-m-diameter hatch door exerts a 
force of 450 N on point B. Determine the moment of this 
force about point O.

x

z

y

F � 450 N

0.5 m A

B

O

30�

30�
0.5 m

Prob. 4–50

4–51.    Using a ring collar, the 75-N force can act in the 
vertical plane at various angles u. Determine the magnitude 
of the moment it produces about point A, plot the result of M 
(ordinate) versus u (abscissa) for 0� … u … 180�, and specify 
the angles that give the maximum and minimum moment.

1.5 m

75 N

y

2 m

x

z

A

u

Prob. 4–51

4–47.    A force F having a magnitude of F = 100 N acts 
along the diagonal of the parallelepiped. Determine the 
moment of F about the point A, using MA = rB * F and 
MA = rC * F.

F

F

z

y

x

B
A

C

200 mm

400 mm

600 mm

rC

rB

Prob. 4–47

*4–48.    Force F acts perpendicular to the inclined plane. 
Determine the moment produced by F about point A. 
Express the result as a Cartesian vector.

4–49.    Force F acts perpendicular to the inclined plane. 
Determine the moment produced by F about point B. 
Express the result as a Cartesian vector.

z

x y

3 m

3 m

4 m

A

B C

F � 400 N

Probs. 4–48/49



	 4.5 M oment of a Force about a Specified Axis	 145

4

4.5  �Moment of a Force about a 
Specified Axis

Sometimes, the moment produced by a force about a specified axis must 
be determined. For example, suppose the lug nut at O on the car tire in 
Fig. 4–20a needs to be loosened. The force applied to the wrench will 
create a tendency for the wrench and the nut to rotate about the moment 
axis passing through O; however, the nut can only rotate about the y axis. 
Therefore, to determine the turning effect, only the y component of the 
moment is needed, and the total moment produced is not important. To 
determine this component, we can use either a scalar or vector analysis.

Scalar Analysis.  To use a scalar analysis in the case of the lug nut in 
Fig. 4–20a, the moment arm, or perpendicular distance from the axis to 
the line of action of the force, is dy = d cos u. Thus, the moment of F 
about the y axis is My = F dy = F(d cos u). According to the right-hand 
rule, My is directed along the positive y axis as shown in the figure. In 
general, for any axis a, the moment is

	 Ma = Fda 	 (4–10)

(© Russell C. Hibbeler)

F

x y

d

(a)

z

O

dy

MO

My

Moment axis

u

Fig. 4–20
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Vector Analysis.  To find the moment of force F in Fig. 4–20b about 
the y axis using a vector analysis, we must first determine the moment of 
the force about any point O on the y axis by applying Eq. 4–7, MO = r * F. 
The component My along the y axis is the projection of MO onto the y axis. 
It can be found using the dot product discussed in Chapter 2, so that 
My = j # MO = j # (r * F), where j is the unit vector for the y axis.

We can generalize this approach by letting ua be the unit vector that 
specifies the direction of the a axis shown in Fig. 4–21. Then the moment 
of F about a point O on the axis is MO =  r * F, and the projection of 
this moment onto the a axis is Ma = ua

# (r * F). This combination is 
referred to as the scalar triple product. If the vectors are written in 
Cartesian form, we have

 Ma = [uax
i + uay j + uaz

k] # 3 i j k
rx ry rz

Fx Fy Fz

3
 = uax

(ryFz - rzFy ) - uay
(rxFz - rzFx ) + uaz

(rxFy - ryFx )

This result can also be written in the form of a determinant, making it 
easier to memorize.*

	 Ma = ua
# (r * F) = 3 uax

uay
uaz

rx ry rz

Fx Fy Fz

3 	 (4–11)

where 

uax
, uay

, uaz
   �represent the x, y, z components of the unit vector 

defining the direction of the a axis

rx, ry, rz    �represent the x, y, z components of the position 
vector extended from any point O on the a axis  
to any point A on the line of action of the force

Fx, Fy, Fz   �represent the x, y, z components of the force vector.

When Ma is evaluated from Eq. 4–11, it will yield a positive or negative scalar. 
The sign of this scalar indicates the sense of direction of Ma along the a axis. 
If it is positive, then Ma will have the same sense as ua, whereas if it is negative, 
then Ma will act opposite to ua. Once the a axis is established, point your 
right-hand thumb in the direction of Ma, and the curl of your fingers will 
indicate the sense of twist about the axis, Fig. 4–21.

x y

r

j

(b)

z

O

MO � r � F

F

u

u My

Fig. 4–20 (cont.)

*Take a minute to expand this determinant, to show that it will yield the above result.

r

O

MO � r � FMa

ua

a

Axis of projection

F
A

Fig. 4–21
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Important Points

	 •	 The moment of a force about a specified axis can be determined 
provided the perpendicular distance da from the force line of 
action to the axis can be determined. Ma = Fda.

	 •	 If vector analysis is used, Ma = ua
# (r * F), where ua defines the 

direction of the axis and r is extended from any point on the axis 
to any point on the line of action of the force.

	 •	 If Ma is calculated as a negative scalar, then the sense of direction 
of Ma is opposite to ua.

	 •	 The moment Ma expressed as a Cartesian vector is determined 
from Ma = Maua.

Example   4.7

Determine the resultant moment of the three forces in Fig. 4–22 about 
the x axis, the y axis, and the z axis.

SOLUTION
A force that is parallel to a coordinate axis or has a line of action that 
passes through the axis does not produce any moment or tendency for 
turning about that axis. Therefore, defining the positive direction of 
the moment of a force according to the right-hand rule, as shown in 
the figure, we have

	  Mx = (60 lb)(2 ft) + (50 lb)(2 ft) + 0 = 220 lb # ft� Ans.

	  My = 0 - (50 lb)(3 ft) - (40 lb)(2 ft) = -230 lb # ft� Ans.

	  Mz = 0 + 0 - (40 lb)(2 ft) = -80 lb # ft� Ans.

The negative signs indicate that My and Mz act in the -y and -z 
directions, respectively.

2 ft

2 ft
2 ft 3 ft

x
y

z

B

C

A

O

F3 � 40 lb

F2 � 50 lb

F1 � 60 lb

Fig. 4–22

Provided Ma is determined, we can then express Ma as a Cartesian 
vector, namely,

	 Ma = Maua	 (4–12)

The examples which follow illustrate numerical applications of the 
above concepts.
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Determine the moment MAB produced by the force F in Fig. 4–23a, 
which tends to rotate the rod about the AB axis.

SOLUTION
A vector analysis using MAB = uB

# (r * F) will be considered for the 
solution rather than trying to find the moment arm or perpendicular 
distance from the line of action of F to the AB axis. Each of the terms 
in the equation will now be identified.

Unit vector uB defines the direction of the AB axis of the rod,  
Fig. 4–23b, where

uB =
rB

rB
=

{0.4i + 0.2j} m2(0.4 m)2 + (0.2 m)2
= 0.8944i + 0.4472j

Vector r is directed from any point on the AB axis to any point on the 
line of action of the force. For example, position vectors rC and rD are 
suitable, Fig. 4–23b. (Although not shown, rBC or rBD can also be used.) 
For simplicity, we choose rD, where

rD = {0.6i} m

The force is

F = {-300k} N

Substituting these vectors into the determinant form and expanding, 
we have

MAB = uB
# (rD * F) = 3 0.8944 0.4472 0

0.6 0 0

0 0  -300

3
=  0.8944[0(-300) - 0(0)] - 0.4472[0.6(-300) - 0(0)]

+  0[0.6(0) - 0(0)]

 = 80.50 N # m

This positive result indicates that the sense of MAB is in the same 
direction as uB.

Expressing MAB in Fig. 4–23b as a Cartesian vector yields

 MAB = MABuB = (80.50 N # m)(0.8944i + 0.4472j)

	  = {72.0i + 36.0j} N # m	 Ans.

NOTE: If axis AB is defined using a unit vector directed from B toward 
A, then in the above formulation -uB would have to be used. This 
would lead to MAB = -80.50 N # m. Consequently, MAB = MAB(-uB), 
and the same result would be obtained.

0.4 m

(a)

0.3 m
0.6 m

0.2 m

C

F = 300 N

B

x

y

z

A

Example   4.8

Fig. 4–23

(b)

F

C

B

x

z

MAB

uB

rC

rD

A

D

y
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Determine the magnitude of the moment of force F about segment 
OA of the pipe assembly in Fig. 4–24a.

SOLUTION
The moment of F about the OA axis is determined from 
MOA = uOA

# (r * F), where r is a position vector extending from any 
point on the OA axis to any point on the line of action of F. As 
indicated in Fig. 4–24b, either rOD, rOC, rAD, or rAC can be used; 
however, rOD will be considered since it will simplify the calculation.

The unit vector uOA, which specifies the direction of the OA axis, is

uOA =
rOA

rOA
=

{0.3i + 0.4j} m2(0.3 m)2 + (0.4 m)2
= 0.6i + 0.8j

and the position vector rOD is

rOD = {0.5i + 0.5k} m

The force F expressed as a Cartesian vector is

 F = Fa rCD

rCD
b

 = (300 N) C {0.4i - 0.4j + 0.2k} m2(0.4 m)2 + (-0.4 m)2 + (0.2 m)2
S

 = {200i - 200j + 100k} N

Therefore,

 MOA = uOA
# (rOD * F)

 = 3 0.6 0.8   0

0.5 0   0.5

200 -200  100

3
 = 0.6[0(100) - (0.5)(-200)] - 0.8[0.5(100) - (0.5)(200)] + 0

 = 100 N # m	 Ans.

0.1 m

0.3 m

0.2 m0.4 m

0.5 m

0.5 m

(a)

x y

C

A

O

D

z

F � 300 N

B

Example   4.9

Fig. 4–24

x

y

z

F

(b)

D

A

C
O

rOD

rAD

rAC

rOC

uOA
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Preliminary Problems

P4–3.    In each case, determine the resultant moment of the 
forces acting about the x, y, and z axes.

z

y

x

200 N 50 N 

3 m 

2 m

100 N 

300 N 

(a)

z

y

x

300 N 

50 N 

3 m

2 m 100 N 

(b)

0.5 m 

400 N 

z

y

x

300 N 

50 N 
1 m 

2 m 

100 N 

(c)

0.5 m 

400 N 

200 N 

Prob. P4–3

P4–4.    In each case, set up the determinant needed to find 
the moment of the force about the a–a axes.

y

z

x

(a)

a

a

2 m

3 m 1 m

4 m

F � {6i � 2j � 3k} kN

y

z

a

x

(b)

a

2 m

3 m

2 m

2 m

4 m

F � {2i � 4j � 3k} kN

y

z

x

(c)

3 m

2 m

2 m

1 m

4 m
a

a

F � {2i � 4j � 3k} kN

Prob. P4–4
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F4–13.    Determine the magnitude of the moment of the 
force F = {300i - 200j + 150k} N about the x axis.

F4–14.    Determine the magnitude of the moment of the 
force F = {300i - 200j + 150k} N about the OA axis. 

z

O

A

BF

x
y0.4 m

0.2 m

0.3 m

Probs. F4–13/14

F4–15.    Determine the magnitude of the moment of the 
200-N force about the x axis. Solve the problem using both a 
scalar and a vector analysis.

x

O

A

45�

120�

60�

F � 200 N

z

y

0.25 m

0.3 m

Prob. F4–15

F4–16.    Determine the magnitude of the moment of the 
force about the y axis.

2 m

F � {30i � 20j � 50k} N

4 m

z

x

y

A

3 m

Prob. F4–16
F4–17.  Determine the moment of the force 
F = {50i - 40j + 20k} lb about the AB axis. Express the 
result as a Cartesian vector.

2 ft

4 ft3 ftx y

z

B

C

A

F

Prob. F4–17
F4–18.    Determine the moment of force F about the x, the 
y, and the z axes. Solve the problem using both a scalar and 
a vector analysis.

z

A

O

y

x

F � 500 N

3 m

2 m2 m

3

3

4

4

5

5

Prob. F4–18

FUNDAMENTAL PROBLEMS
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*4–52.    The lug nut on the wheel of the automobile is to be 
removed using the wrench and applying the vertical force of 
F = 30 N at A. Determine if this force is adequate, provided 
14 N # m of torque about the x axis is initially required to 
turn the nut. If the 30-N force can be applied at A in any 
other direction, will it be possible to turn the nut?

4–53.    Solve Prob. 4–52 if the cheater pipe AB is slipped 
over the handle of the wrench and the 30-N force can be 
applied at any point and in any direction on the assembly.

F � 30 N

A

B

0.25 m

0.3 m

0.1 m

z

y

x

0.5 m

Probs. 4–52/53

4–54.    The A-frame is being hoisted into an upright 
position by the vertical force of F = 80 lb. Determine the 
moment of this force about the y � axis passing through 
points A and B when the frame is in the position shown.

4–55.    The A-frame is being hoisted into an upright 
position by the vertical force of F = 80 lb. Determine the 
moment of this force about the x axis when the frame is in 
the position shown.

30�

15�
6 ft

y

y¿

x¿

C

A

B

F

x

z

6 ft

Probs. 4–54/55

*4–56.    Determine the magnitude of the moments of the 
force F about the x, y, and z axes. Solve the problem (a) using 
a Cartesian vector approach and (b) using a scalar approach.

4–57.    Determine the moment of this force F about an axis 
extending between A and C. Express the result as a Cartesian 
vector.

4 ft

3 ft

2 ft

y

z

C

B

F � {4i � 12j � 3k} lb

x

A

Probs. 4–56/57

4–58.    The board is used to hold the end of a four-way lug 
wrench in the position shown when the man applies a force of 
F = 100 N. Determine the magnitude of the moment produced 
by this force about the x axis. Force F lies in a vertical plane.

4–59.    The board is used to hold the end of a four-way lug 
wrench in position. If a torque of 30 N # m about the x axis is 
required to tighten the nut, determine the required magnitude 
of the force F that the man’s foot must apply on the end of 
the wrench in order to turn it. Force F lies in a vertical plane.

250 mm

F

250 mm

z

y

x

60�

Probs. 4–58/59

PROBLEMS



	 4.5 M oment of a Force about a Specified Axis	 153

4

*4–60.  The A-frame is being hoisted into an upright 
position by the vertical force of F = 80 lb. Determine the 
moment of this force about the y axis when the frame is in 
the position shown.

30�

15�
6 ft

y

y¿

x¿

C

A

B

F

x

z

6 ft

Prob. 4–60

4–61.    Determine the magnitude of the moment of the force 
F =  {50i -  20j -  80k} N about the base line AB of the tripod.

4–62.    Determine the magnitude of the moment of the force 
F =  {50i -  20j -  80k} N about the base line BC of the tripod.

4–63.    Determine the magnitude of the moment of the force 
F =  {50i -  20j -  80k} N about the base line CA of the tripod.

x

y

C A

D

B

F

z

0.5 m

2.5 m

1 m

2 m

1.5 m

2 m

4 m

Probs. 4–61/62/63

*4–64.    A horizontal force of F =  {-50i} N is applied 
perpendicular to the handle of the pipe wrench. Determine 
the moment that this force exerts along the axis OA (z axis) 
of the pipe assembly. Both the wrench and pipe assembly, 
OABC, lie in the y-z plane. Suggestion: Use a scalar analysis.

4–65.    Determine the magnitude of the horizontal force 
F = -F i acting on the handle of the wrench so that this 
force produces a component of the moment along the 
OA axis (z axis) of the pipe assembly of Mz = {4k} N # m. 
Both the wrench and the pipe assembly, OABC, lie in 
the y-z plane. Suggestion: Use a scalar analysis.

y

z

O

A

x

135°

0.6 m

0.8 m

B

C

F

0.2 m

Probs. 4–64/65
4–66.    The force of F = 30 N acts on the bracket as shown. 
Determine the moment of the force about the a-a axis of 
the pipe if a = 60�, b = 60�, and g = 45�. Also, determine 
the coordinate direction angles of F in order to produce the 
maximum moment about the a-a axis. What is this moment?

b

g

a

y

a

a

x

z

100 mm

50 mm

F � 30 N

100 mm

Prob. 4–66
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4.6  Moment of a Couple

A couple is defined as two parallel forces that have the same magnitude, 
but opposite directions, and are separated by a perpendicular distance d, 
Fig. 4–25. Since the resultant force is zero, the only effect of a couple is to 
produce an actual rotation, or if no movement is possible, there is a 
tendency of rotation in a specified direction. For example, imagine that 
you are driving a car with both hands on the steering wheel and you are 
making a turn. One hand will push up on the wheel while the other hand 
pulls down, which causes the steering wheel to rotate.

The moment produced by a couple is called a couple moment. We can 
determine its value by finding the sum of the moments of both couple 
forces about any arbitrary point. For example, in Fig. 4–26, position vectors 
rA and rB are directed from point O to points A and B lying on the line of 
action of -F and F. The couple moment determined about O is therefore

M = rB * F + rA * -F = (rB - rA) * F

However rB = rA + r or r = rB - rA, so that

	 M = r * F	 (4–13)

This result indicates that a couple moment is a free vector, i.e., it can 
act at any point since M depends only upon the position vector r directed 
between the forces and not the position vectors rA and rB, directed from 
the arbitrary point O to the forces. This concept is unlike the moment of 
a force, which requires a definite point (or axis) about which moments 
are determined.

Scalar Formulation.  The moment of a couple, M, Fig. 4–27, is 
defined as having a magnitude of

	 M = Fd 	 (4–14)

where F is the magnitude of one of the forces and d is the perpendicular 
distance or moment arm between the forces. The direction and sense of 
the couple moment are determined by the right-hand rule, where the 
thumb indicates this direction when the fingers are curled with the sense 
of rotation caused by the couple forces. In all cases, M will act 
perpendicular to the plane containing these forces.

Vector Formulation.  The moment of a couple can also be 
expressed by the vector cross product using Eq. 4–13, i.e.,

	 M = r * F 	 (4–15)

Application of this equation is easily remembered if one thinks of taking 
the moments of both forces about a point lying on the line of action of 
one of the forces. For example, if moments are taken about point A in 
Fig. 4–26, the moment of -F is zero about this point, and the moment of 
F is defined from Eq. 4–15. Therefore, in the formulation r is crossed with 
the force F to which it is directed.

F

�F

d

Fig. 4–25

F

�F
d

M

Fig. 4–27

O

B
A

F

�F

rArB

r

Fig. 4–26
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Equivalent Couples.  If two couples produce a moment with the same 
magnitude and direction, then these two couples are equivalent. For example, 
the two couples shown in Fig. 4–28 are equivalent because each couple 
moment has a magnitude of M = 30 N(0.4 m) = 40 N(0.3 m) = 12 N # m, 
and each is directed into the plane of the page. Notice that larger forces are 
required in the second case to create the same turning effect because the 
hands are placed closer together. Also, if the wheel was connected to the shaft 
at a point other than at its center, then the wheel would still turn when each 
couple is applied since the 12 N # m couple is a free vector.

Resultant Couple Moment.  Since couple moments are vectors, 
their resultant can be determined by vector addition. For example, 
consider the couple moments M1 and M2 acting on the pipe in Fig. 4–29a. 
Since each couple moment is a free vector, we can join their tails at any 
arbitrary point and find the resultant couple moment, MR = M1 + M2 as 
shown in Fig. 4–29b.

If more than two couple moments act on the body, we may generalize 
this concept and write the vector resultant as

	 MR = �(r * F)	 (4–16)

These concepts are illustrated numerically in the examples that follow. 
In general, problems projected in two dimensions should be solved using 
a scalar analysis since the moment arms and force components are easy 
to determine.

0.3 m0.4 m

30 N

40 N

40 N

30 N

Fig. 4–28 (© Russell C. Hibbeler)

M2

M1

(a)

MR
(b)

M2 M1

Fig. 4–29
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F F

Steering wheels on vehicles have been made 
smaller than on older vehicles because 
power steering does not require the driver 
to apply a large couple moment to the rim 
of the wheel. (© Russell C. Hibbeler)

Important Points

	 •	 A couple moment is produced by two noncollinear forces that 
are equal in magnitude but opposite in direction. Its effect is to 
produce pure rotation, or tendency for rotation in a specified 
direction.

	 •	 A couple moment is a free vector, and as a result it causes the 
same rotational effect on a body regardless of where the couple 
moment is applied to the body.

	 •	 The moment of the two couple forces can be determined about 
any point. For convenience, this point is often chosen on the line 
of action of one of the forces in order to eliminate the moment of 
this force about the point.

	 •	 In three dimensions the couple moment is often determined 
using the vector formulation, M = r * F, where r is directed 
from any point on the line of action of one of the forces to any 
point on the line of action of the other force F.

	 •	 A resultant couple moment is simply the vector sum of all the 
couple moments of the system.

Determine the resultant couple moment of the three couples acting 
on the plate in Fig. 4–30.

SOLUTION
As shown the perpendicular distances between each pair of couple forces 
are d1 = 4 ft, d2 = 3 ft, and d3 = 5 ft. Considering counterclockwise 
couple moments as positive, we have

 a+  MR = �M;  MR = -F1d1 + F2d2 - F3d3

 = -(200 lb)(4 ft) + (450 lb)(3 ft) - (300 lb)(5 ft)

 = -950 lb # ft = 950 lb # ft b� Ans.

The negative sign indicates that MR has a clockwise rotational sense.

Example   4.10

F2 � 450 lb

F1 � 200 lb
F3 � 300 lb

F3 � 300 lb

F2 � 450 lb

d3 � 5 ft

F1 � 200 lb

A

B

d2 � 3 ft

d1 � 4 ft

Fig. 4–30
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Example   4.11

Determine the magnitude and direction of the couple moment acting 
on the gear in Fig. 4–31a.

30�

30�

(c)

F � 600 N

F � 600 N

O

d

Fig. 4–31

(b)

30�

F � 600 N
600 sin 30� N

600 cos 30� N

30�

F � 600 N 600 sin 30� N

600 cos 30� N

0.2 m

O

A

30�

30�

(a)

F � 600 N

F � 600 N

0.2 m

O

SOLUTION
The easiest solution requires resolving each force into its components 
as shown in Fig. 4–31b. The couple moment can be determined by 
summing the moments of these force components about any point, for 
example, the center O of the gear or point A. If we consider 
counterclockwise moments as positive, we have

 a+  M = �MO;  M = (600 cos 30� N)(0.2 m) - (600 sin 30� N)(0.2 m)

 = 43.9 N # md � Ans.

or

 a+  M = �MA;  M = (600 cos 30� N)(0.2 m) - (600 sin 30� N)(0.2 m)

 = 43.9 N # md � Ans.

This positive result indicates that M has a counterclockwise rotational 
sense, so it is directed outward, perpendicular to the page.

NOTE: The same result can also be obtained using M = Fd, where d is 
the perpendicular distance between the lines of action of the couple 
forces, Fig. 4–31c. However, the computation for d is more involved. 
Realize that the couple moment is a free vector and can act at any 
point on the gear and produce the same turning effect about point O.
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Determine the couple moment acting on the pipe shown in Fig. 4–32a. 
Segment AB is directed 30° below the x–y plane.

Example   4.12

6 in.

z

x

y

25 lb

A

25 lb

B
(d)

30�

d

O

Fig. 4–32

z

x
25 lb

A

25 lb

B

(b)

y
rB

rA

O

SOLUTION I (VECTOR ANALYSIS)
The moment of the two couple forces can be found about any point. If 
point O is considered, Fig. 4–32b, we have

 M = rA * (-25k) + rB * (25k)

 = (8j) * (-25k) + (6 cos 30�i + 8j - 6 sin 30�k) * (25k)

 = -200i - 129.9j + 200i

 = {-130j} lb # in. � Ans.

It is easier to take moments of the couple forces about a point lying on 
the line of action of one of the forces, e.g., point A, Fig. 4–32c. In this 
case the moment of the force at A is zero, so that

 M = rAB * (25k)

 = (6 cos 30�i - 6 sin 30�k) * (25k)

	  = {-130j} lb # in. � Ans.

SOLUTION II (SCALAR ANALYSIS)
Although this problem is shown in three dimensions, the geometry is 
simple enough to use the scalar equation M = Fd. The perpendicular 
distance between the lines of action of the couple forces is 
d = 6 cos 30� = 5.196 in., Fig. 4–32d. Hence, taking moments of the 
forces about either point A or point B yields

M = Fd = 25 lb (5.196 in.) = 129.9 lb # in.

Applying the right-hand rule, M acts in the -j direction. Thus,

	 M = {-130j} lb # in. � Ans.

z

x

y

25 lb

A

25 lb

B
(c)

rAB

O

O

z

30�

x
y

25 lb

A

25 lb

B

8 in.

6 in.

(a)
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Replace the two couples acting on the pipe column in Fig. 4–33a by a 
resultant couple moment.

Example   4.13

SOLUTION (VECTOR ANALYSIS)
The couple moment M1, developed by the forces at A and B, can 
easily be determined from a scalar formulation.

M1 = Fd = 150 N(0.4 m) = 60 N # m

By the right-hand rule, M1 acts in the + i direction, Fig. 4–33b. Hence,

M1 = {60i} N # m

Vector analysis will be used to determine M2, caused by forces at C 
and D. If moments are calculated about point D, Fig. 4–33a, 
M2 = rDC * FC, then

 M2 = rDC * FC = (0.3i) * 312514
52j - 12513

52k4
 = (0.3i) * [100j - 75k] = 30(i * j) - 22.5(i * k)

 = {22.5j + 30k} N # m

Since M1 and M2 are free vectors, they may be moved to some 
arbitrary point and added vectorially, Fig. 4–33c. The resultant couple 
moment becomes

	 MR = M1 + M2 = {60i + 22.5j + 30k} N # m� Ans.

0.3 m

150 N
125 N

125 N

3
45

D

z

y
53

4

C

0.4 m
150 N

A

B

x

(a)

M2

M1

3
45

(b) (c)

M1

MR
M2

Fig. 4–33
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FUNDAMENTAL PROBLEMS

F4–22.  Determine the couple moment acting on the beam.

A B

4 m

1 m

1 m

10 kN

10 kN

4

3

5

4

3

5

Prob. F4–22

F4–23.  Determine the resultant couple moment acting on 
the pipe assembly.

y

z

(Mc)3 � 300 lb �ft

(Mc)1 � 450 lb �ft

(Mc)2 � 250 lb �ft

2 ft
2 ft

2 ft
1.5 ft

3.5 ft

x

Prob. F4–23

F4–24.  Determine the couple moment acting on the pipe 
assembly and express the result as a Cartesian vector.

B

A
0.4 m

z

yx

FA � 450 N

FB � 450 N

3

3

4

4

5

5

C

O

0.3 m

Prob. F4–24

F4–19.  Determine the resultant couple moment acting on 
the beam.

0.2 m

200 N

200 N

A

300 N300 N

400 N 400 N

3 m 2 m

Prob. F4–19

F4–20.  Determine the resultant couple moment acting on 
the triangular plate.

4 ft

4 ft 4 ft

300 lb

200 lb

200 lb

300 lb

150 lb

150 lb

Prob. F4–20

F4–21.  Determine the magnitude of F so that the resultant 
couple moment acting on the beam is 1.5 kN # m clockwise.

2 kN

2 kN

0.3 m
A

F

�F

B

0.9 m

Prob. F4–21
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4

PROBLEMS

4–69.  If the resultant couple of the three couples acting on 
the triangular block is to be zero, determine the magnitude 
of forces F and P.

F

y

z

D P

�F

�PA

C

B

x

600 mm
150 N

150 N

400 mm

500 mm300 mm

Prob. 4–69

4–70.  Two couples act on the beam. If F = 125 lb, 
determine the resultant couple moment.

4–71.  Two couples act on the beam. Determine the 
magnitude of F so that the resultant couple moment is 
450 lb # ft, counterclockwise. Where on the beam does the 
resultant couple moment act?

200 lb

200 lb

2 ft

1.5 ft 1.25 ft

30�

30�

�F

F

Probs. 4–70/71

4–67.  A clockwise couple M = 5 N # m is resisted by the 
shaft of the electric motor. Determine the magnitude of the 
reactive forces -R and R which act at supports A and B so 
that the resultant of the two couples is zero.

A B

M

R�R

150 mm

60�60�

Prob. 4–67

*4–68.  A twist of 4 N # m is applied to the handle of the 
screwdriver. Resolve this couple moment into a pair of couple 
forces F exerted on the handle and P exerted on the blade.

30 mm

5 mm

4 N�m

F
P

–F

–P

Prob. 4–68



162 	 Chapter 4    Force System Resultants

4

4–74.  The man tries to open the valve by applying the 
couple forces of F = 75 N to the wheel. Determine the 
couple moment produced.

4–75.  If the valve can be opened with a couple moment of 
25 N # m, determine the required magnitude of each couple 
force which must be applied to the wheel.

150 mm 150 mm

F

F

Probs. 4–74/75

*4–76.  Determine the magnitude of F so that the resultant 
couple moment is 12 kN # m, counterclockwise. Where on 
the beam does the resultant couple moment act?

F�F

8 kN

8 kN

1.2 m

0.3 m

0.4 m

30� 30�

Prob. 4–76

*4–72.  Determine the magnitude of the couple forces F so 
that the resultant couple moment on the crank is zero.

150 lb

150 lb

30� 30�

45�45�
30�

30�

F

–F
5 in.

5 in.

4 in.

4 in.

Prob. 4–72

4–73.  The ends of the triangular plate are subjected to 
three couples. Determine the magnitude of the force F so 
that the resultant couple moment is 400 N # m clockwise.

250 N 250 N

600 N

600 N

1 m

�F

F

40� 40� 

Prob. 4–73
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4–82.  Express the moment of the couple acting on the 
pipe assembly in Cartesian vector form. What is the 
magnitude of the couple moment?

z

y

x
B

A

20 lb

20 lb

1 ft
C

1.5 ft

3 ft

2 ft

1 ft

Prob. 4–82

4–83.  If M1 = 180 lb # ft, M2 = 90 lb # ft, and M3 = 120 lb # ft, 
determine the magnitude and coordinate direction angles 
of the resultant couple moment.

*4–84.  Determine the magnitudes of couple moments M1, 
M2, and M3 so that the resultant couple moment is zero.

x

z

y

2 ft

2 ft

2 ft

3 ft

150 lb � ft

1 ft

45�

45�

M1

M2

M3

Probs. 4–83/84

4–77.  Two couples act on the beam as shown. If F = 150 lb, 
determine the resultant couple moment.

4–78.  Two couples act on the beam as shown. Determine 
the magnitude of F so that the resultant couple moment is 
300 lb # ft counterclockwise. Where on the beam does the 
resultant couple act?

200 lb

200 lb

1.5 ft

–F

4
35

F 4
35

4 ft

Probs. 4–77/78

4–79.  Two couples act on the frame. If the resultant couple 
moment is to be zero, determine the distance d between the 
80-lb couple forces.

*4–80.  Two couples act on the frame. If d = 4 ft, determine 
the resultant couple moment. Compute the result by 
resolving each force into x and y components and (a) finding 
the moment of each couple (Eq. 4–13) and (b) summing the 
moments of all the force components about point A.

4–81.  Two couples act on the frame. If d = 4 ft, determine 
the resultant couple moment. Compute the result by 
resolving each force into x and y components and (a) finding 
the moment of each couple (Eq. 4–13) and (b) summing the 
moments of all the force components about point B.

2 ft

B

A

y

1 ft

3 ft
50 lb

80 lb

50 lb
30�

30�

5

4
3

80 lb

3 ft

d

x

5

4
3

Probs. 4–79/80/81
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4–87.  Determine the resultant couple moment of the two 
couples that act on the assembly. Specify its magnitude and 
coordinate direction angles.

30�

60 lb

80 lb

80 lb

60 lb

x
y

z

2 in.
2 in.

4 in.

3 in.

Prob. 4–87

*4–88.  Express the moment of the couple acting on the 
frame in Cartesian vector form. The forces are applied 
perpendicular to the frame. What is the magnitude of the 
couple moment? Take F = 50 N.

4–89.  In order to turn over the frame, a couple moment is 
applied as shown. If the component of this couple moment 
along the x axis is Mx = {-20i} N # m, determine the 
magnitude F of the couple forces.

�F
x

y

z

O

1.5 m

3 m

30�

F

Probs. 4–88/89

4–85.  The gears are subjected to the couple moments 
shown. Determine the magnitude and coordinate direction 
angles of the resultant couple moment.

z

x

y

M1 � 40 lb � ft

M2 � 30 lb � ft20�

30�

15�

Prob. 4–85

4–86.  Determine the required magnitude of the couple 
moments M2 and M3 so that the resultant couple moment 
is zero.

M3

M2

45�

M1 � 300 N � m

Prob. 4–86
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4–94.  Express the moment of the couple acting on the rod 
in Cartesian vector form. What is the magnitude of the 
couple moment?

1 m

2 m

1 m 3 m

x

y

B

A

z

�F � { 4i  � 3j � 4k} kN

F � {– 4i + 3j � 4k} kN

Prob. 4–94

4–95.  If F1 = 100 N, F2 = 120 N, and F3 = 80 N, 
determine the magnitude and coordinate direction angles 
of the resultant couple moment.

*4–96.  Determine the required magnitude of F1, F2, 
and  F3 so that the resultant couple moment is  
(Mc)R = [50i - 45j - 20k] N # m.

–F1
y

x

z

0.2 m

0.2 m

0.2 m

0.3 m

0.2 m

0.2 m

0.3 m

0.3 m

30�

–F2

F1

–F4 � [�150 k] N

F4 � [150 k] N

 F2

–F3

F3

Probs. 4–95/96

4–90.  Express the moment of the couple acting on the 
pipe in Cartesian vector form. What is the magnitude of the 
couple moment? Take F = 125 N.

4–91.  If the couple moment acting on the pipe has a 
magnitude of 300 N # m, determine the magnitude F of the 
forces applied to the wrenches.

z

O

x

y

A

B

�F

F

600 mm

200 mm

150 mm

150 mm

Probs. 4–90/91

*4–92.  If F = 80 N, determine the magnitude and 
coordinate direction angles of the couple moment. The pipe 
assembly lies in the x–y plane.

4–93.  If the magnitude of the couple moment acting on 
the pipe assembly is 50 N # m, determine the magnitude of 
the couple forces applied to each wrench. The pipe assembly 
lies in the x–y plane.

x

z

y

300 mm

200 mm

200 mm
300 mm

300 mm

�F

F

Probs. 4–92/93
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4.7  �Simplification of a Force and Couple 
System

Sometimes it is convenient to reduce a system of forces and couple moments 
acting on a body to a simpler form by replacing it with an equivalent system, 
consisting of a single resultant force acting at a specific point and a resultant 
couple moment. A system is equivalent if the external effects it produces on 
a body are the same as those caused by the original force and couple 
moment system. In this context, the external effects of a system refer to the 
translating and rotating motion of the body if the body is free to move, or it 
refers to the reactive forces at the supports if the body is held fixed.

For example, consider holding the stick in Fig. 4–34a, which is subjected 
to the force F at point A. If we attach a pair of equal but opposite forces 
F and -F at point B, which is on the line of action of F, Fig. 4–34b, we 
observe that -F at B and F at A will cancel each other, leaving only F 
at  B, Fig. 4–34c. Force F has now been moved from A to B without 
modifying  its external effects on the stick; i.e., the reaction at the grip 
remains the same. This demonstrates the principle of transmissibility, 
which states that a force acting on a body (stick) is a sliding vector since 
it can be applied at any point along its line of action.

We can also use the above procedure to move a force to a point that is not 
on the line of action of the force. If F is applied perpendicular to the stick, as 
in Fig. 4–35a, then we can attach a pair of equal but opposite forces F and -F 
to B, Fig. 4–35b. Force F is now applied at B, and the other two forces, F at A 
and -F at B, form a couple that produces the couple moment M = Fd, 
Fig. 4–35c. Therefore, the force F can be moved from A to B provided a 
couple moment M is added to maintain an equivalent system. This couple 
moment is determined by taking the moment of F about B. Since M is 
actually a free vector, it can act at any point on the stick. In both cases the 
systems are equivalent, which causes a downward force F and clockwise 
couple moment M = Fd to be felt at the grip.

F F

F�FAB

(a)

AB

F

(b) (c)

Fig. 4–34 (© Russell C. Hibbeler)

F F

�F
A

d

(a)

F
F

M � Fd

(b) (c)

Fig. 4–35 (© Russell C. Hibbeler)
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System of Forces and Couple Moments.  Using the above 
method, a system of several forces and couple moments acting on a body 
can be reduced to an equivalent single resultant force acting at a point O 
and a resultant couple moment. For example, in Fig. 4–36a, O is not on the 
line of action of F1, and so this force can be moved to point O provided a 
couple moment (MO)1 = r1 * F is added to the body. Similarly, the couple 
moment (MO)2 = r2 * F2 should be added to the body when we move F2 
to point O. Finally, since the couple moment M is a free vector, it can just 
be moved to point O. By doing this, we obtain the equivalent system 
shown in Fig. 4–36b, which produces the same external effects (support 
reactions) on the body as that of the force and couple system shown in 
Fig. 4–36a. If we sum the forces and couple moments, we obtain the 
resultant force FR = F1 + F2 and the resultant couple moment 
(MR)O = M + (MO)1 + (MO)2, Fig. 4–36c.

Notice that FR is independent of the location of point O since it is 
simply a summation of the forces. However, (MR)O depends upon this 
location since the moments M1 and M2 are determined using the position 
vectors r1 and r2, which extend from O to each force. Also note that 
(MR)O is a free vector and can act at any point on the body, although 
point O is generally chosen as its point of application.

We can generalize the above method of reducing a force and couple 
system to an equivalent resultant force FR acting at point O and a 
resultant couple moment (MR)O by using the following two equations.

	
    FR = �F
(MR)O = �MO + �M

	 (4–17)

The first equation states that the resultant force of the system is 
equivalent to the sum of all the forces; and the second equation states 
that the resultant couple moment of the system is equivalent to the sum 
of all the couple moments gM plus the moments of all the forces gMO 
about point O. If the force system lies in the x–y plane and any couple 
moments are perpendicular to this plane, then the above equations 
reduce to the following three scalar equations.

	  

 (FR)x = �Fx

 (FR)y = �Fy

(MR)O = �MO + �M

	 (4–18)

Here the resultant force is determined from the vector sum of its two 
components (FR)x and (FR)y.

O

F1

(a)

F2

r2

r1

M

(b)

O(c)

�

O

F1

F2

M

(MO)2 � r2 � F2

(MO)1 � r1 � F1

FR

(MR)
O

�

u

Fig. 4–36
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The weights of these traffic lights can be 
replaced by their equivalent resultant 
force W R = W 1 + W 2 and a couple 
moment (MR)O = W 1d1 + W 2 d2 at the 
support, O. In both cases the support 
must provide the same resistance to 
translation and rotation in order to 
keep the member in the horizontal 
position. (© Russell C. Hibbeler)

W1 W2

d1
d2

O

WR

(MR)O

O

Procedure for Analysis

The following points should be kept in mind when simplifying a 
force and couple moment system to an equivalent resultant force 
and couple system.

	 •	 Establish the coordinate axes with the origin located at point O 
and the axes having a selected orientation.

Force Summation.
	 •	 If the force system is coplanar, resolve each force into its x and 

y components. If a component is directed along the positive x or 
y axis, it represents a positive scalar; whereas if it is directed along 
the negative x or y axis, it is a negative scalar.

	 •	 In three dimensions, represent each force as a Cartesian vector 
before summing the forces.

Moment Summation.
	 •	 When determining the moments of a coplanar force system about 

point O, it is generally advantageous to use the principle of 
moments, i.e., determine the moments of the components of each 
force, rather than the moment of the force itself.

	 •	 In three dimensions use the vector cross product to determine the 
moment of each force about point O. Here the position vectors 
extend from O to any point on the line of action of each force.

Important Points

	 •	 Force is a sliding vector, since it will create the same external 
effects on a body when it is applied at any point P along its line of 
action. This is called the principle of transmissibility.

	 •	 A couple moment is a free vector since it will create the same 
external effects on a body when it is applied at any point P on 
the body.

	 •	 When a force is moved to another point P that is not on its line of 
action, it will create the same external effects on the body if a 
couple moment is also applied to the body. The couple moment is 
determined by taking the moment of the force about point P.
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Replace the force and couple system shown in Fig. 4–37a by an 
equivalent resultant force and couple moment acting at point O.

Example   4.14

 0.2 m  0.3 m

 4 kN
 5 kN

3 kN

O

(a)

54
3

30�

 0.1 m

 0.1 m

	

(3 kN)cos 30�

(3 kN)sin 30�

y

x

 0.2 m  0.3 m

 4 kN

 (5 kN)

O

(b)

4
5

3
5

 (5 kN)

 0.1 m

 0.1 m

(c)

(FR)y � 6.50 kN

(MR)O � 2.46 kN �m

(FR)x � 5.598 kN

FR

u

O

Fig. 4–37

Using the Pythagorean theorem, Fig. 4–37c, the magnitude of FR is

 FR = 2(FR)x
2 + (FR)y

2 = 2(5.598 kN)2 + (6.50 kN)2 = 8.58 kN� Ans.

Its direction u is

u = tan- 1¢ (FR)y

(FR)x
≤ = tan- 1¢ 6.50 kN

5.598 kN
≤ = 49.3�� Ans.

Moment Summation.  The moments of 3 kN and 5 kN about point O  
will be determined using their x and y components. Referring to Fig. 4–37b, 
we have

a+  (MR)O = �MO;

(MR)O = (3 kN) sin 30�(0.2 m) -  (3 kN) cos 30�(0.1 m) +  13
52(5 kN) (0.1 m) 

- 14
52(5 kN) (0.5 m) - (4 kN)(0.2 m)

	  = -2.46 kN # m = 2.46 kN # mb� Ans.

This clockwise moment is shown in Fig. 4–37c.

NOTE: Realize that the resultant force and couple moment in Fig. 4–37c 
will produce the same external effects or reactions at the supports as 
those produced by the force system, Fig. 4–37a.

SOLUTION
Force Summation.  The 3 kN and 5 kN forces are resolved into  
their x and y components as shown in Fig. 4–37b. We have

  S+ (FR)x = �Fx;	 (FR)x = (3 kN) cos 30� +  13
52(5 kN) = 5.598 kN S

	 + c (FR)y = �Fy;	 (FR)y = (3 kN) sin 30� -  14
52(5 kN) -  4 kN = -6.50 kN = 6.50 kNT
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Example   4.15

Replace the force and couple system acting on the member in Fig. 4–38a 
by an equivalent resultant force and couple moment acting at point O.

O

4
3

5

1 m

1 m
1.25 m 1.25 m

(a)

200 N

200 N

500 N
750 N

	 (b)

O

y

x
(FR)x � 300 N

(FR)y � 350 N

(MR)O � 37.5 N�m

FR

u

Fig. 4–38

SOLUTION

Force Summation.  Since the couple forces of 200 N are equal but 
opposite, they produce a zero resultant force, and so it is not necessary 
to consider them in the force summation. The 500-N force is resolved 
into its x and y components, thus,

   S+ (FR)x = �Fx;  (FR)x = 13
52(500 N) = 300 N S

+ c (FR)y = �Fy;  (FR)y = (500 N)14
52 -  750 N = -350 N = 350 NT

From Fig. 4–15b, the magnitude of FR is

	 FR = 2(FR)x
2 + (FR)y

2

	 = 2(300 N)2 + (350 N)2 = 461 N� Ans.

And the angle u is

	 u = tan- 1¢ (FR)y

(FR)x
≤ = tan- 1¢ 350 N

300 N
≤ = 49.4�� Ans.

Moment Summation.  Since the couple moment is a free vector, it can 
act at any point on the member. Referring to Fig. 4–38a, we have

	 a+  (MR)O =  �MO + �M

    (MR)O = (500 N) 14
52(2.5 m) -  (500 N) 13

52(1 m)

   - (750 N)(1.25 m) + 200 N # m

              = -37.5 N # m = 37.5 N # m b� Ans.

This clockwise moment is shown in Fig. 4–38b.
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The structural member is subjected to a couple moment M and forces 
F1 and F2 in Fig. 4–39a. Replace this system by an equivalent resultant 
force and couple moment acting at its base, point O.

SOLUTION (VECTOR ANALYSIS)
The three-dimensional aspects of the problem can be simplified by using 
a Cartesian vector analysis. Expressing the forces and couple moment as 
Cartesian vectors, we have

 F1 = {-800k} N

 F2 = (300 N)uCB

 = (300 N)a rCB

rCB
b

 = 300 NJ {-0.15i + 0.1j} m2(-0.15 m)2 + (0.1 m)2
R = {-249.6i + 166.4j} N

M = -500 14
52j + 50013

52k = {-400j + 300k} N # m

Force Summation.

FR = �F;	  FR = F1 + F2 = -800k - 249.6i + 166.4j

	  = {-250i + 166j - 800k} N� Ans.

Moment Summation.

(MR)o   
=  �M + �MO

 (MR)
O

= M + rC * F1 + rB * F2

(MR)o = (-400j + 300k) + (1k) * (-800k) + 3 i j k
-0.15 0.1 1

-249.6 166.4 0

3
	  = (-400j + 300k) + (0) + (-166.4i - 249.6j)

	  = {-166i - 650j + 300k} N # m� Ans.

The results are shown in Fig. 4–39b.

Example   4.16

F1 � 800 N
0.1 m

F2 � 300 N

0.15 m

rB

1 m

y

C

5
3

4

M � 500 N � m

O

x

(a)

z

rC

B

y
x

z

(MR)
O

FR

(b)

O

Fig. 4–39
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P4–5.  In each case, determine the x and y components of 
the resultant force and the resultant couple moment at 
point O.

400 N500 N

200 N
O

2 m 2 m2 m

(a)

3
4

5

300 N
500 N

200 N � m

2 m 2 m

(b)

3
4

5

O

500 N

100 N

500 N

O

2 m 2 m 2 m

(c)

3

4
5

3
4

5 3

4

500 N
500 N

O

2 m

2 m

(d)

2 m

5

200 N � m

Preliminary Problem

Prob. P4–5



	 4.7  Simplification of a Force and Couple System	 173

Problems

4

F4–25.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

A

3 ft 3 ft

4 ft

150 lb

200 lb

100 lb

Prob. F4–25

F4–26.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

3
4

5

50 N

200 N � m

30 N
40 N

A
B

3 m 3 m

Prob. F4–26

F4–27.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

900 N 30�

300 N�m

0.75 m 0.75 m 0.75 m 0.75 m

A

300 N

Prob. F4–27

F4–28.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

50 lb

100 lb

4
35

A

4
3

5

150 lb

3 ft 3 ft

1 ft

Prob. F4–28

F4–29.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point O.

x

z

y

O

A

B

2 m1 m
1.5 m

F1 � {�300i � 150j � 200k} N

F2 � {�450k} N

Prob. F4–29

F4–30.  Replace the loading system by an equivalent 
resultant force and couple moment acting at point O.

0.5 m 0.4 m

z

y

x

F2 � 200 N

F1 � 100 N

0.3 m

Mc � 75 N�m

O

Prob. F4–30

FUNDAMENTAL PROBLEMS
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Fundamental Problems

4

4–97.  Replace the force system by an equivalent resultant 
force and couple moment at point O.

4–98.  Replace the force system by an equivalent resultant 
force and couple moment at point P.

y

x
O

600 N

60�

2.5 m 2 m

0.75 m0.75 m

1 m

5
12

13

455 N

P

Probs. 4–97/98

4–99.  Replace the force system acting on the beam by an 
equivalent force and couple moment at point A.

*4–100.  Replace the force system acting on the beam by 
an equivalent force and couple moment at point B.

2.5 kN 1.5 kN

3 kN

A B

4 m

3
4

5

2 m 2 m

30�

Probs. 4–99/100

4–101.  Replace the loading system acting on the beam by 
an equivalent resultant force and couple moment at point O.

30�

y

x

450 N

O

200 N

0.2 m 200 N  � m

2 m1.5 m 1.5 m

Prob. 4–101

4–102.  Replace the loading system acting on the post by an 
equivalent resultant force and couple moment at point A.

4–103.  Replace the loading system acting on the post by an 
equivalent resultant force and couple moment at point B.

3 m

500 N
30�

60�1500 N � m

5 m 2 m

650 N
300 N

BA

Probs. 4–102/103

PROBLEMS
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4

4–106.	 The forces F1 = {-4i + 2j - 3k} kN and F2 =   
{3i - 4j - 2k} kN act on the end of the beam. Replace 
these forces by an equivalent force and couple moment 
acting at point O.

y

z

x

F1 150 mm
150 mm

F2

250 mm
O

4 m

Prob. 4–106

4–107.  A biomechanical model of the lumbar region of 
the human trunk is shown. The forces acting in the four 
muscle groups consist of FR = 35 N for the rectus, 
FO = 45 N for the oblique, FL = 23 N for the lumbar 
latissimus dorsi, and FE = 32 N for the erector spinae. These 
loadings are symmetric with respect to the y–z plane. 
Replace this system of parallel forces by an equivalent force 
and couple moment acting at the spine, point O. Express the 
results in Cartesian vector form.

75 mm

45 mm 50 mm 40 mm
30 mm

15 mm

z

x y

FR

FO FL

FE

FR

FE FL

FO

O

Prob. 4–107

*4–104.  Replace the force system acting on the post by a 
resultant force and couple moment at point O.

O

150 lb

300 lb

200 lb

3
4

5

2 ft

2 ft

2 ft

30�

Prob. 4–104

4–105.  Replace the force system acting on the frame by an 
equivalent resultant force and couple moment acting at 
point A.

1 m

0.5 m 0.3 m

0.5 m

500 N

300 N

400 N

A

30�

Prob. 4–105
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4

4–110.  Replace the force of F = 80 N acting on the pipe 
assembly by an equivalent resultant force and couple 
moment at point A.

400 mm

y300 mm

200 mm

250 mm200 mm

30

40

F  80 N

B

A

z

Prob. 4–110

4–111.  The belt passing over the pulley is subjected to 
forces F1 and F2, each having a magnitude of 40 N. F1 acts in 
the -k direction. Replace these forces by an equivalent force 
and couple moment at point A. Express the result in Cartesian 
vector form. Set u = 0� so that F2 acts in the - j direction.

*4–112.  The belt passing over the pulley is subjected to 
two forces F1 and F2, each having a magnitude of 40 N. F1 
acts in the -k direction. Replace these forces by an 
equivalent force and couple moment at point A. Express 
the result in Cartesian vector form. Take u = 45�.

x

y

z

300 mm

r � 80 mm

A

F1

F2

u

Probs. 4–111/112

*4–108.  Replace the force system by an equivalent 
resultant force and couple moment at point O. Take 
F3 = {-200i + 500j - 300k} N.

y

O

z

x
2 m

F2 = 200 N

F1 = 300 N

1.5 m

1.5 m

F3

Prob. 4–108

4–109.  Replace the loading by an equivalent resultant 
force and couple moment at point O.

0.8 m

0.5 m

0.7 m

x

y

O

z

F  = {–2 i + 5 j – 3 k} kN

F  � {8 i – 2 k} kN 1

2

Prob. 4–109
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4

4.8  �Further Simplification of a Force and 
Couple System

In the preceding section, we developed a way to reduce a force and couple 
moment system acting on a rigid body into an equivalent resultant force 
FR acting at a specific point O and a resultant couple moment (MR)O. The 
force system can be further reduced to an equivalent single resultant force 
provided the lines of action of FR and (MR)O are perpendicular to each 
other. Because of this condition, concurrent, coplanar, and parallel force 
systems can be further simplified.

Concurrent Force System.  Since a concurrent force system is 
one in which the lines of action of all the forces intersect at a common 
point O, Fig. 4–40a, then the force system produces no moment about 
this point. As a result, the equivalent system can be represented by a 
single resultant force FR = �F acting at O, Fig. 4–40b.

Coplanar Force System.  In the case of a coplanar force system, 
the lines of action of all the forces lie in the same plane,  
Fig. 4–41a, and so the resultant force FR = �F of this system also lies 
in  this plane. Furthermore, the moment of each of the forces about 
any point O is directed perpendicular to this plane. Thus, the resultant 
moment (MR)O and resultant force FR will be mutually perpendicular, 
Fig.  4–41b. The resultant moment can be replaced by moving the 
resultant  force FR a perpendicular or moment arm distance d away 
from  point O such that FR produces the same moment (MR)O about 
point O, Fig. 4–41c. This distance d can be determined from the scalar 
equation (MR)O = FRd = �MO or d = (MR)O>FR.

F2

F1

F4 F3

O

(a)

FR

O

(b)

�

F2

F1

F4 F3

O

(a)

FR

O

(b)

�

Fig. 4–40

(a) (b) (c)

O O d
(MR)O

FR

FR

F3

F4 F1

F2

� �

Fig. 4–41
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4 Parallel Force System.  The parallel force system shown in  
Fig. 4–42a consists of forces that are all parallel to the z axis. Thus, the 
resultant force FR = �F at point O must also be parallel to this axis,  
Fig. 4–42b. The moment produced by each force lies in the plane of the 
plate, and so the resultant couple moment, (MR)O, will also lie in this plane, 
along the moment axis a since FR and (MR)O are mutually perpendicular. 
As a result, the force system can be further reduced to an equivalent 
single resultant force FR, acting through point P located on the 
perpendicular b axis, Fig. 4–42c. The distance d along this axis from point 
O requires (MR)O = FRd = �MO or d = �MO>FR.

z

O

(a)

z

a O

b
b

(b)

z

O

d

(c)

a

P

F1 F2

F3

FR � �F

FR � �F

(MR)O

� �

Fig. 4–42

O

FR

The four cable forces are all concurrent at 
point O on this bridge tower. Consequently 
they produce no resultant moment there, only 
a resultant force FR. Note that the designers 
have positioned the cables so that FR is 
directed along the bridge tower directly to the 
support, so that it does not cause any bending 
of the tower. (© Russell C. Hibbeler)

Procedure for Analysis

The technique used to reduce a coplanar or parallel force system to 
a single resultant force follows a similar procedure outlined in the 
previous section.

	 •	 Establish the x, y, z, axes and locate the resultant force FR an 
arbitrary distance away from the origin of the coordinates.

Force Summation.
	 •	 The resultant force is equal to the sum of all the forces in the system.

	 •	 For a coplanar force system, resolve each force into its x and y 
components. Positive components are directed along the positive 
x and y axes, and negative components are directed along the 
negative x and y axes.

Moment Summation.
	 •	 The moment of the resultant force about point O is equal to the 

sum of all the couple moments in the system plus the moments of 
all the forces in the system about O.

	 •	 This moment condition is used to find the location of the resultant 
force from point O.
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4
Reduction to a Wrench.  In general, a three-dimensional force and 
couple moment system will have an equivalent resultant force FR acting at 
point O and a resultant couple moment (MR)O that are not perpendicular to 
one another, as shown in Fig. 4–43a. Although a force system such as this 
cannot be further reduced to an equivalent single resultant force, the 
resultant couple moment (MR)O can be resolved into components parallel 
and perpendicular to the line of action of FR, Fig.  4–43a. If this appears 
difficult to do in three dimensions, use the dot product to get M|| = (MR) # uFR

 
and then M# = MR - M||. The perpendicular component M#can be 
replaced if we move FR to point P, a distance d from point O along the b axis, 
Fig. 4–43b. As shown, this axis is perpendicular to both the a axis and the line 
of action of FR. The location of P can be determined from d = M# >FR. 
Finally, because M|| is a free vector, it can be moved to point P, Fig. 4–43c. 
This combination of a resultant force FR and collinear couple moment M|| 
will tend to translate and rotate the body about its axis and is referred to as 
a wrench or screw. A wrench is the simplest system that can represent any 
general force and couple moment system acting on a body.

Important Point

	 •	 A concurrent, coplanar, or parallel force system can always be 
reduced to a single resultant force acting at a specific point P. For 
any other type of force system, the simplest reduction is a wrench, 
which consists of resultant force and collinear couple moment 
acting at a specific point P.

W1 W2

d1
d2

O O
WR

d

Here the weights of the traffic lights are replaced by their resultant force W R = W 1 + W 2 
which acts at a distance d = (W 1d1 + W 2d2)>  W R from O. Both systems are equivalent. 
(© Russell C. Hibbeler) (a)

b
a

M

M

FR

O

(MR)O

z

(b)

P
d

O

FR

z

M

b

a

(c)

b
P

O

FR

z

M

a

�
�

(a)

b
a

M

M

FR

O

(MR)O

z

(b)

P
d

O

FR

z

M

b

a

(c)

b
P

O

FR

z

M

a

�
�

(a)

b
a

M

M

FR

O

(MR)O

z

(b)

P
d

O

FR

z

M

b

a

(c)

b
P

O

FR

z

M

a

�
�

Fig. 4–43
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4

Replace the force and couple moment system acting on the beam in 
Fig. 4–44a by an equivalent resultant force, and find where its line of 
action intersects the beam, measured from point O.

(b)

d

O

FR

(FR)x � 4.80 kN(FR)y � 2.40 kN
u

(a)

O

4 kN

15 kN�m

8 kN

3
45

1.5 m 1.5 m 1.5 m 1.5 m

0.5 m

y

x

Fig. 4–44

SOLUTION

Force Summation.  Summing the force components,

S
+ (FR)x = �Fx;    (FR)x =  8 kN13

52 = 4.80 kN S

+ c (FR)y = �Fy;    (FR)y = -4 kN + 8 kN14
52 = 2.40 kNc

From Fig. 4–44b, the magnitude of FR is

	  FR = 2(4.80 kN)2 + (2.40 kN)2 = 5.37 kN� Ans.

The angle u is

	  u = tan- 1¢ 2.40 kN

4.80 kN
≤ = 26.6�� Ans.

Moment Summation.  We must equate the moment of FR about 
point O in Fig. 4–44b to the sum of the moments of the force and 
couple moment system about point O in Fig. 4–44a. Since the line of 
action of (FR)x acts through point O, only (FR)y produces a moment 
about this point. Thus,

a+  (MR)O = �MO;     2.40 kN(d) = -(4 kN)(1.5 m) - 15 kN # m

- 38 kN13
52 4 (0.5 m) + 38 kN14

52 4 (4.5 m)

	 d = 2.25 m� Ans.

example   4.17
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4

S
+ (FR)

x
= �Fx;  (FR)

x
= -250 lb13

52 -  175 lb = -325 lb = 325 lb d

+ c (FR)
y

= �Fy;  (FR)
y

= -250 lb14
52 -  60 lb = -260 lb = 260 lbT

The jib crane shown in Fig. 4–45a is subjected to three coplanar forces. 
Replace this loading by an equivalent resultant force and specify 
where the resultant’s line of action intersects the column AB and 
boom BC.

SOLUTION
Force Summation.  Resolving the 250-lb force into x and y 
components and summing the force components yields

6 ft

y

x

5 ft

175 lb
60 lb

(a)

250 lb

5 4
3

3 ft 5 ft 3 ft

B
C

A

y

(b)

x

x

FR

FR

y

C

A

260 lb

325 lb

260 lb

325 lb
B

u

Fig. 4–45

example   4.18

As shown by the vector addition in Fig. 4–45b,

	  FR = 2(325 lb)2 + (260 lb)2 = 416 lb� Ans.

	  u = tan- 1¢ 260 lb

325 lb
≤ = 38.7� d� Ans.

Moment Summation.  Moments will be summed about point A. 
Assuming the line of action of FR intersects AB at a distance y from A, 
Fig. 4–45b, we have

a + (MR)
A

= �MA;	 325 lb (y) + 260 lb (0)

= 175 lb (5 ft) - 60 lb (3 ft) + 250 lb13
52(11 ft) - 250 lb14

52(8 ft)

	 y = 2.29 ft � Ans.

By the principle of transmissibility, FR can be placed at a distance x 
where it intersects BC, Fig. 4–45b. In this case we have

a + (MR)
A

= �MA;	 325 lb (11 ft) - 260 lb (x)

= 175 lb (5 ft) - 60 lb (3 ft) + 250 lb13
52(11 ft) - 250 lb14

52(8 ft) 

	 x = 10.9 ft � Ans.
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4

The slab in Fig. 4–46a is subjected to four parallel forces. Determine 
the magnitude and direction of a resultant force equivalent to the 
given force system, and locate its point of application on the slab.

y

x

O

FR

z

�

�

(b)

x
P(x, y)

y

y

x

B
2 m

O

600 N

500 N

z

100 N
5 m 5 m

400 N

C

8 m

�

�

(a)
Fig. 4–46

SOLUTION (SCALAR ANALYSIS)
Force Summation.  From Fig. 4–46a, the resultant force is

+ cFR = �F;	  FR = -600 N + 100 N - 400 N - 500 N

	  = -1400 N = 1400 NT � Ans.

Moment Summation.  We require the moment about the x axis of 
the resultant force, Fig. 4–46b, to be equal to the sum of the moments 
about the x axis of all the forces in the system, Fig. 4–46a. The moment 
arms are determined from the y coordinates, since these coordinates 
represent the perpendicular distances from the x axis to the lines of 
action of the forces. Using the right-hand rule, we have

(MR)x = �Mx;

-(1400 N)y = 600 N(0) + 100 N(5 m) - 400 N(10 m) + 500 N(0)

 -1400y = -3500   y = 2.50 m� Ans.

In a similar manner, a moment equation can be written about the  
y axis using moment arms defined by the x coordinates of each force.

(MR)y = �My;

 (1400 N)x = 600 N(8 m) - 100 N(6 m) + 400 N(0) + 500 N(0)

 1400x = 4200

	 x = 3 m� Ans.

NOTE: A force of FR = 1400 N placed at point P(3.00 m, 2.50 m) on 
the slab, Fig. 4–46b, is therefore equivalent to the parallel force system 
acting on the slab in Fig. 4–46a.

example   4.19
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4

Replace the force system in Fig. 4–47a by an equivalent resultant 
force and specify its point of application on the pedestal.

SOLUTION
Force Summation.  Here we will demonstrate a vector analysis. 
Summing forces,

FR = �F;  FR = FA + FB + FC

	  = {-300k} lb + {-500k} lb + {100k} lb

	  = {-700k} lb � Ans.

Location.  Moments will be summed about point O. The resultant 
force FR is assumed to act through point P (x, y, 0), Fig. 4–47b. Thus

(MR)O = �MO;

rP * FR = (rA * FA) + (rB * FB) + (rC * FC)

(xi + yj) * ( -700k) = [(4i) * (-300k)] 

+ [(-4i + 2j) * (-500k)] + [(-4j) * (100k)]

-700x(i * k) - 700y (j * k) = -1200(i * k) + 2000(i * k)

- 1000( j * k) - 400( j * k)

	  700xj - 700yi = 1200j - 2000j - 1000i - 400i

Equating the i and j components,

	 -700y = -1400 	 (1)

	 y = 2 in. � Ans.

	 700x = -800 	 (2)

	 x = -1.14 in. � Ans.

The negative sign indicates that the x coordinate of point P is 
negative.

NOTE: It is also possible to establish Eq. 1 and 2 directly by summing 
moments about the x and y axes. Using the right-hand rule, we have

(MR)x = �Mx; 	  -700y = -100 lb(4 in.) - 500 lb(2 in.)

(MR)y = �My; 	  700x = 300 lb(4 in.) - 500 lb(4 in.)

x y

z

(a)

FB � 500 lb
FA � 300 lb

FC � 100 lb 2 in.

4 in.4 in.

4 in.

B
O

A

C

rB

rA

rC

x y

z

(b)

FR � {�700k} lb

rP

O

P
y

x

Fig. 4–47

example   4.20
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4

P4–6.  In each case, determine the x and y components of 
the resultant force and specify the distance where this force 
acts from point O.

200 N
260 N

O

(a)

2 m 2 m 2 m

(b)

400 N
500 N

O

2 m 2 m

5

3

4

(c)

O

2 m 2 m 2 m

5

500 N

3
4

500 N

3
4

5
600 N � m

Prob. P4–6

P4–7.  In each case, determine the resultant force and 
specify its coordinates x and y where it acts on the x–y plane.

z

y

x

200 N 

100 N 

2 m 

2 m 

200 N 

(a)

1 m 

1 m 

z

y

x

100 N 

200 N 

2 m 

2 m 

100 N 

(b)

1 m 

z

y

x

200 N 
400 N 

4 m 

100 N 

(c)

2 m 

2 m 

300 N 

Prob. P4–7

Preliminary Problems
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4

F4–31.  Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the beam measured from O.

500 lb 500 lb
250 lb

O x

y

3 ft 3 ft 3 ft 3 ft � Prob. F4–31

F4–32.  Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the member measured from A.

30�

200 lb

50 lb

100 lb

3 ft 3 ft 3 ft

4
3

5

A

4
4

9
5

4
4
9
5

F4–33.  Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the horizontal segment of the member 
measured from A.

2 m 2 m 2 m
2 m

A
B

20 kN

15 kN

4
3

5

F4–34.  Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the member AB measured from A.

A

5 kN
6 kN

8 kN
4

3

5

1.5 m

3 m

0.5 m

0.5 m

0.5 m B

y

x
� Prob. F4–34

F4–35.  Replace the loading shown by an equivalent single 
resultant force and specify the x and y coordinates of its 
line of action.

z

x

y

100 N

400 N

500 N

4 m

4 m
3 m

� Prob. F4–35

F4–36.  Replace the loading shown by an equivalent single 
resultant force and specify the x and y coordinates of its 
line of action.

2 m

3 m2 m

3 m

3 m

1 m

1 m

z

y

x

200 N

200 N

100 N
100 N

FUNDAMENTAL PROBLEMS

Prob. F4–32

Prob. F4–33
Prob. F4–36
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4

4–117.  Replace the loading acting on the beam by a single 
resultant force. Specify where the force acts, measured  
from end A.

4–118.  Replace the loading acting on the beam by a  
single resultant force. Specify where the force acts, 
measured from B.

2 m

300 N 30�

60�

1500 N�m
4 m 3 m

450 N
700 N

A
B

Probs. 4–117/118

4–119.  Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
vertical line along member AB, measured from A.

1.5 m

0.5 m 0.5 m

200 N200 N
400 N

600 N

A

B

C

Prob. 4–119

4–113.  The weights of the various components of the truck 
are shown. Replace this system of forces by an equivalent 
resultant force and specify its location measured from B.

4–114.  The weights of the various components of the truck 
are shown. Replace this system of forces by an equivalent 
resultant force and specify its location measured from  
point A.

14 ft 6 ft
2 ft3 ft

AB 3500 lb 5500 lb 1750 lb

Probs. 4–113/114

4–115.  Replace the three forces acting on the shaft by a 
single resultant force. Specify where the force acts, measured 
from end A.

*4–116.  Replace the three forces acting on the shaft by a 
single resultant force. Specify where the force acts, measured 
from end B.

200 lb

3
4

5

500 lb
260 lb

5

12 13

A B

5 ft 3 ft 2 ft 4 ft

Probs. 4–115/116

Problems
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4

*4–124.  Replace the parallel force system acting on the 
plate by a resultant force and specify its location on the  
x-z plane.

1 m

1 m

1 m

0.5 m

0.5 m

5 kN

3 kN

x

y

z

2 kN

Prob. 4–124

4–125.  Replace the force and couple system acting on the 
frame by an equivalent resultant force and specify where 
the resultant’s line of action intersects member AB, 
measured from A.

4–126.  Replace the force and couple system acting on the 
frame by an equivalent resultant force and specify where 
the resultant’s line of action intersects member BC, 
measured from B.

3 ft
30�

4 ft

35

4

2 ft

150 lb

50 lb

500 lb � ft

C B

A

Probs. 4–125/126

*4–120.  Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
vertical line along member AB, measured from A.

4–121.  Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
horizontal line along member CB, measured from end C.

1 m

B

A

y

0.5 m
1 m

0.5 m

400 N

600 N

5
4

3

400 N

900 N

1.5 m

x

5

4
3

Probs. 4–120/121

4–122.  Replace the force system acting on the post by a 
resultant force, and specify where its line of action intersects 
the post AB measured from point A.

4–123.  Replace the force system acting on the post by a 
resultant force, and specify where its line of action intersects 
the post AB measured from point B.

250 N
500 N

0.2 m

0.5 m

3
4

5

300 N

1 m

30�

1 m

1 m

A

B

Probs. 4–122/123
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4–130.  The building slab is subjected to four parallel 
column loadings. Determine the equivalent resultant force 
and specify its location (x, y) on the slab. Take F1 = 8 kN 
and F2 = 9 kN.

4–131.  The building slab is subjected to four parallel 
column loadings. Determine F1 and F2 if the resultant force 
acts through point (12 m, 10 m).

y
x

6 kN 

12 kN 

6 m

4 m

16 m12 m

8 m

z

F1 F2

Probs. 4–130/131

*4–132.  If FA = 40 kN and FB = 35 kN, determine the 
magnitude of the resultant force and specify the location of 
its point of application (x, y) on the slab.

4–133.  If the resultant force is required to act at the center 
of the slab, determine the magnitude of the column loadings 
FA and FB and the magnitude of the resultant force.

2.5 m

2.5 m

0.75 m

0.75 m

0.75 m

3 m
3 m

0.75 m 90 kN

30 kN

20 kN

x

y

z

FA

FB

Probs. 4–132/133

4–127.  If FA = 7 kN and FB = 5 kN, represent the force 
system acting on the corbels by a resultant force, and specify 
its location on the x–y plane.

*4–128.  Determine the magnitudes of FA and FB so that 
the resultant force passes through point O of the column.

750 mm

z

x y

650 mm

100 mm

150 mm

600 mm

700 mm

100 mm

150 mm

8 kN

6 kN

FA

FB 

O

Probs. 4–127/128

4–129.  The tube supports the four parallel forces. Determine 
the magnitudes of forces FC and FD acting at C and D so 
that  the equivalent resultant force of the force system acts 
through the midpoint O of the tube.

x

z

A

D

C

y
zB

O400 mm

400 mm

500 N

200 mm
200 mm

600 N

FC

FD

Prob. 4–129
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*4–136.  Replace the five forces acting on the plate by a 
wrench. Specify the magnitude of the force and couple 
moment for the wrench and the point P(x, z) where the 
wrench intersects the x–z plane.

y
x

z

4 m

400 N

800 N

300 N600 N

200 N

4 m

2 m

2 m

Prob. 4–136

4–137.  Replace the three forces acting on the plate by a 
wrench. Specify the magnitude of the force and couple 
moment for the wrench and the point P(x, y) where the 
wrench intersects the plate.

5 m
3 m y

y x

x
P

A

C

B

z

FA � {400i} N

FC � {200j} N

FB � {  300k} N

Prob. 4–137

4–134.  Replace the two wrenches and the force, acting 
on the pipe assembly, by an equivalent resultant force and 
couple moment at point O.

A BO

z

200 N

180 N�m

C y

x

45�

100 N

100 N�m

300 N

0.6 m 0.8 m0.5 m

Prob. 4–134

4–135.  Replace the force system by a wrench and specify 
the magnitude of the force and couple moment of the wrench 
and the point where the wrench intersects the x–z plane.

z

O

x

y
0.5 m

3 m

200 N

400 N

2 m

200 N

5

3
4

Prob. 4–135
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4.9  �Reduction of a Simple Distributed 
Loading

Sometimes, a body may be subjected to a loading that is distributed over 
its surface. For example, the pressure of the wind on the face of a sign, the 
pressure of water within a tank, or the weight of sand on the floor of a 
storage container, are all distributed loadings. The pressure exerted at 
each point on the surface indicates the intensity of the loading. It is 
measured using pascals Pa (or N>m2) in SI units or lb>ft2 in the  
U.S. Customary system.

Loading Along a Single Axis.  The most common type of 
distributed loading encountered in engineering practice can be 
represented along a single axis.* For example, consider the beam (or 
plate) in Fig. 4–48a that has a constant width and is subjected to a 
pressure loading that varies only along the x axis. This loading can be 
described by the function p = p(x ) N>m2. It contains only one variable 
x, and for this reason, we can also represent it as a coplanar distributed 
load. To do so, we multiply the loading function by the width b m of 
the beam, so that w (x ) = p(x )b N>m, Fig. 4–48b. Using the methods of 
Sec. 4.8, we can replace this coplanar parallel force system with a single 
equivalent resultant force FR acting at a specific location on the beam, 
Fig. 4–48c.

Magnitude of Resultant Force.  From Eq. 4–17 (FR = �F ), the 
magnitude of FR is equivalent to the sum of all the forces in the system. 
In this case integration must be used since there is an infinite number of 
parallel forces dF acting on the beam, Fig. 4–48b. Since dF is acting on an 
element of length dx, and w(x) is a force per unit length, then 
dF = w(x) dx = dA . In other words, the magnitude of dF is determined 
from the colored differential area dA under the loading curve. For the 
entire length L,

+ TFR = �F;	 FR = LL
w(x) dx = LA

dA = A � (4–19)

Therefore, the magnitude of the resultant force is equal to the area A under 
the loading diagram, Fig. 4–48c.

*The more general case of a surface loading acting on a body is considered in Sec. 9.5.

x

w

O

C A

L
x

FR

(c)

Fig. 4–48

p

L

p � p(x)

x

(a)

C

x

FR

b

x

w

O

L
x

dx

dF � dA
w � w(x)

(b)
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Location of Resultant Force.  Applying Eq. 4–17 (MRO
= �MO), 

the location x of the line of action of FR can be determined by equating 
the moments of the force resultant and the parallel force distribution 
about point O (the y axis). Since dF produces a moment of x dF = xw(x) dx 
about O, Fig. 4–48b, then for the entire length, Fig. 4–48c,

a+  (MR)O = �MO;	 -xFR = - LL
xw(x) dx

Solving for x, using Eq. 4–19, we have

	 x =
LL

xw(x) dx

LL
w(x) dx

=
LA

x dA

LA
 dA

	 (4–20)

This coordinate x, locates the geometric center or centroid of the area 
under the distributed loading. In other words, the resultant force has a line 
of action which passes through the centroid C (geometric center) of the area 
under the loading diagram, Fig. 4–48c. Detailed treatment of the integration 
techniques for finding the location of the centroid for areas is given in 
Chapter 9. In many cases, however, the distributed-loading diagram is in 
the shape of a rectangle, triangle, or some other simple geometric form. 
The centroid location for such common shapes does not have to be 
determined from the above equation but can be obtained directly from the 
tabulation given on the inside back cover.

Once x is determined, FR by symmetry passes through point (x, 0) on the 
surface of the beam, Fig. 4–48a. Therefore, in this case the resultant force has a 
magnitude equal to the volume under the loading curve p = p(x) and a line of 
action which passes through the centroid (geometric center) of this volume.

Important Points

	 •	 Coplanar distributed loadings are defined by using a loading 
function w = w(x) that indicates the intensity of the loading 
along the length of a member. This intensity is measured in N>m 
or lb>ft.

	 •	 The external effects caused by a coplanar distributed load acting 
on a body can be represented by a single resultant force.

	 •	 This resultant force is equivalent to the area under the loading 
diagram, and has a line of action that passes through the centroid 
or geometric center of this area. The pile of brick creates an approximate 

triangular distributed loading on the board. 
(© Russell C. Hibbeler)

x

w

O

C A

L
x

FR

(c)

Fig. 4–48 (Repeated)

x

w

O

L
x

dx

dF � dA
w � w(x)

(b)

p

L

p � p(x)

x

(a)

C

x

FR

b
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Determine the magnitude and location of the equivalent resultant 
force acting on the shaft in Fig. 4–49a.

SOLUTION
Since w = w(x) is given, this problem will be solved by integration.

The differential element has an area dA = w dx = 60x2 dx. Applying 
Eq. 4–19,

+ TFR = �F;

 FR = LA
 dA = L

2 m

0
60x2 dx = 60a x3

3
b 2

0

2 m

= 60a 23

3
-

03

3
b

 = 160 N 	 Ans.

The location x of FR measured from O, Fig. 4–49b, is determined from 
Eq. 4–20.

x =
LA

x dA

LA
 dA

=
L

2 m 

0
x(60x2) dx

160 N
=

60¢ x4

4
≤ 2

0

2 m

160 N
=

60¢ 24

4
-

04

4
≤

160 N

= 1.5 m� Ans.

NOTE: These results can be checked by using the table on the inside 
back cover, where it is shown that the formula for an exparabolic area 
of length a, height b, and shape shown in Fig. 4–49a, is

A =
ab

3
=

2 m(240 N>m)

3
= 160 N and x =

3

4
 a =

3

4
 (2 m) = 1.5 m

example   4.21

w � (60 x2)N/m

(a)

dA � w dx

2 m
x dx

O
x

240 N/mw

(b)

O
x

w

C

x � 1.5 m

FR � 160 N

Fig. 4–49 
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example   4.22

A distributed loading of p = (800x ) Pa acts over the top surface of 
the beam shown in Fig. 4–50a. Determine the magnitude and location 
of the equivalent resultant force.

SOLUTION
Since the loading intensity is uniform along the width of the beam 
(the y axis), the loading can be viewed in two dimensions as shown in 
Fig. 4–50b. Here

	  w = (800x N>m2)(0.2 m)

	  = (160x) N>m
At x = 9 m, note that w = 1440 N>m. Although we may again apply 
Eqs. 4–19 and 4–20 as in the previous example, it is simpler to use the 
table on the inside back cover.

The magnitude of the resultant force is equivalent to the area of the 
triangle.

	 FR =
1
2(9 m)(1440 N>m) = 6480 N = 6.48 kN� Ans.

The line of action of FR passes through the centroid C of this triangle. 
Hence,

	 x = 9 m -
1
3(9 m) = 6 m� Ans.

The results are shown in Fig. 4–50c.

NOTE: We may also view the resultant FR as acting through the centroid 
of the volume of the loading diagram p = p(x) in Fig. 4–50a. Hence FR 
intersects the x–y plane at the point (6 m, 0). Furthermore, the 
magnitude of FR is equal to the volume under the loading diagram; i.e.,

	 FR = V =
1
2(7200 N>m2)(9 m)(0.2 m) = 6.48 kN� Ans. Fig. 4–50

w � 160x N/m

(b)

9 m

x

w 1440 N/m

x

C

FR � 6.48 kN

3 mx � 6 m

(c)
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The granular material exerts the distributed loading on the beam as 
shown in Fig. 4–51a. Determine the magnitude and location of the 
equivalent resultant of this load.

SOLUTION
The area of the loading diagram is a trapezoid, and therefore the 
solution can be obtained directly from the area and centroid formulas 
for a trapezoid listed on the inside back cover. Since these formulas are 
not easily remembered, instead we will solve this problem by using 
“composite” areas. Here we will divide the trapezoidal loading into a 
rectangular and triangular loading as shown in Fig. 4–51b. The 
magnitude of the force represented by each of these loadings is equal 
to its associated area,

	  F1 =
1
2(9 ft)(50 lb>ft) = 225 lb

	  F2 = (9 ft)(50 lb>ft) = 450 lb

The lines of action of these parallel forces act through the respective 
centroids of their associated areas and therefore intersect the beam at

	  x1 =
1
3(9 ft) = 3 ft

	  x2 =
1
2(9 ft) = 4.5 ft

The two parallel forces F1 and F2 can be reduced to a single resultant 
FR. The magnitude of FR is

+ TFR = �F;	 FR = 225 + 450 = 675 lb	 Ans.

We can find the location of FR with reference to point A, Figs. 4–51b 
and 4–51c. We require

c+  (MR)A = �MA;   x(675) = 3(225) + 4.5(450)

 x = 4 ft� Ans.

NOTE: The trapezoidal area in Fig. 4–51a can also be divided into two 
triangular areas as shown in Fig. 4–51d. In this case

	  F3 =
1
2(9 ft)(100 lb>ft) = 450 lb

	  F4 =
1
2(9 ft)(50 lb>ft) = 225 lb

and

	  x3 =
1
3(9 ft) = 3 ft

	  x4 = 9 ft -  13(9 ft) = 6 ft

Using these results, show that again FR = 675 lb and x = 4 ft.

example   4.23

Fig. 4–51

100 lb/ft

50 lb/ft

9 ft

BA

(a)

9 ft

B
A

(b)

50 lb/ft

50 lb/ft

F1 F2

x1
x2

B
A

(c)

FR

x

F3 F4

50 lb/ft

x3

9 ft
x4

(d)

100 lb/ft
A
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Problems

4

F4–37.  Determine the resultant force and specify where it 
acts on the beam measured from A.

6 kN/m
9 kN/m

3 kN/m

3 m1.5 m 1.5 m

A B

Prob. F4–37

F4–38.  Determine the resultant force and specify where it 
acts on the beam measured from A.

A B

6 ft 8 ft

150 lb/ft

Prob. F4–38

F4–39.  Determine the resultant force and specify where it 
acts on the beam measured from A.

6 kN/m

6 m3 m

A
B

Prob. F4–39

F4–40.  Determine the resultant force and specify where it 
acts on the beam measured from A.

BA

6 ft 3 ft 3 ft

500 lb200 lb/ft

150 lb/ft

Prob. F4–40

F4–41.  Determine the resultant force and specify where it 
acts on the beam measured from A.

6 kN/m

3 kN/m

1.5 m4.5 m

A
B

Prob. F4–41

F4–42.  Determine the resultant force and specify where it 
acts on the beam measured from A.

4 m

w � 2.5x3

160 N/m

w

A
x

Prob. F4–42

FUNDAMENTAL PROBLEMS
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Fundamental Problems

4

4–138.  Replace the loading by an equivalent resultant 
force and couple moment acting at point O.

9 ft

9 ft

O

50 lb/ft

50 lb/ft

Prob. 4–138

4–139.  Replace the distributed loading with an equivalent 
resultant force, and specify its location on the beam 
measured from point O.

O

3 m 1.5 m

3 kN/m

Prob. 4–139

*4–140.  Replace the loading by an equivalent resultant force 
and specify its location on the beam, measured from point A.

BA
x

2 kN/m

5 kN/m

w

4 m 2 m

Prob. 4–140

Problems

4–141.  Currently eighty-five percent of all neck injuries 
are caused by rear-end car collisions. To alleviate this 
problem, an automobile seat restraint has been developed 
that provides additional pressure contact with the cranium. 
During dynamic tests the distribution of load on the 
cranium has been plotted and shown to be parabolic. 
Determine the equivalent resultant force and its location, 
measured from point A.

A

w

B

x

w � 12(1 � 2x2) lb/ft

0.5 ft
12 lb/ft

18 lb/ft

Prob. 4–141

4–142.  Replace the distributed loading by an equivalent 
resultant force, and specify its location on the beam, 
measured from the pin at A.

3 m3 m

A B

2 kN/m

4 kN/m

Prob. 4–142
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4–143.  Replace this loading by an equivalent resultant 
force and specify its location, measured from point O.

1.5 m2 m

6 kN/m

4 kN/m

O

Prob. 4–143

*4–144.  The distribution of soil loading on the bottom of 
a building slab is shown. Replace this loading by an 
equivalent resultant force and specify its location, measured 
from point O.

12 ft 9 ft

100 lb/ft50 lb/ft

300 lb/ft

O

Prob. 4–144

4–145.  Replace the loading by an equivalent resultant 
force and couple moment acting at point O.

1.5 m 0.75 m 0.75 m

5 kN/m

8 kN/m

O

Prob. 4–145

4–146.  Replace the distributed loading by an equivalent 
resultant force and couple moment acting at point A.

A

3 m 3 m

6 kN/m 6 kN/m

3 kN/m

B

Prob. 4–146

4–147.  Determine the length b of the triangular load and 
its position a on the beam such that the equivalent resultant 
force is zero and the resultant couple moment is 8 kN # m 
clockwise.

a

9 m

4 kN/m

A

b

2.5 kN/m

Prob. 4–147
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*4–148.  The form is used to cast a concrete wall having a 
width of 5 m. Determine the equivalent resultant force the 
wet concrete exerts on the form AB if the pressure 
distribution due to the concrete can be approximated as 
shown. Specify the location of the resultant force, measured 
from point B.

A

B

4 m

8 kPa

z

p

� (4    ) kPap z 2
1

Prob. 4–148

4–149.  If the soil exerts a trapezoidal distribution of load 
on the bottom of the footing, determine the intensities w1 
and w2 of this distribution needed to support the column 
loadings.

3.5 m2.5 m
1 m 1 m

60 kN
80 kN

50 kN

w1

w2

Prob. 4–149

4–150.  Replace the loading by an equivalent force and 
couple moment acting at point O.

O

7.5 m 4.5 m

500 kN�m

6 kN/m 15 kN

Prob. 4–150

4–151.  Replace the loading by a single resultant force, and 
specify the location of the force measured from point O.

O

7.5 m 4.5 m

500 kN�m

6 kN/m 15 kN

Prob. 4–151

*4–152.  Replace the loading by an equivalent resultant 
force and couple moment acting at point A.

4–153.  Replace the loading by a single resultant force, and 
specify its location on the beam measured from point A.

A B

3 m

400 N/m

3 m

Probs. 4–152/153
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4–154.  Replace the distributed loading by an equivalent 
resultant force and specify where its line of action intersects 
a horizontal line along member AB, measured from A.

4–155.  Replace the distributed loading by an equivalent 
resultant force and specify where its line of action intersects 
a vertical line along member BC, measured from C.

4 m

3 kN/m

2 kN/m

3 m

A
B

C

Probs. 4–154/155

*4–156.  Determine the length b of the triangular load and 
its position a on the beam such that the equivalent resultant 
force is zero and the resultant couple moment is 8 kN # m 
clockwise.

4 m

ba

6 kN/m

2 kN/mA

Prob. 4–156

4–157.  Determine the equivalent resultant force and 
couple moment at point O.

w

w � (   x3 ) kN/m

9 kN/m

1
3

x
O

3 m

Prob. 4–157

4–158.  Determine the magnitude of the equivalent 
resultant force and its location, measured from point O.

O

w

6 ft

4 lb/ft

8.90 lb/ft

x

w � (4 � 2   x ) lb/ft

Prob. 4–158
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4

4–161.  Replace the loading by an equivalent resultant 
force and couple moment acting at point O.

L

O x

w

w � w0 cos      x2L
p( (

Prob. 4–161

4–162.  Wet concrete exerts a pressure distribution along 
the wall of the form. Determine the resultant force of this 
distribution and specify the height h where the bracing strut 
should be placed so that it lies through the line of action of 
the resultant force. The wall has a width of 5 m.

4 m

h

� (4     ) kPap
1/2z

8 kPa

z

p

Prob. 4–162

4–159.  The distributed load acts on the shaft as shown. 
Determine the magnitude of the equivalent resultant force 
and specify its location, measured from the support, A.

10 lb/ft

28 lb/ft

A B

w

x

18 lb/ftw � (2x¤ � 8x � 18) lb/ft

1 ft 2 ft 2 ft

Prob. 4–159

*4–160.  Replace the distributed loading with an equivalent 
resultant force, and specify its location on the beam 
measured from point A.

100 lb/ft

15 ft

370 lb/ft

w

A

B
x

w � (x2 � 3x � 100) lb/ft

Prob. 4–160
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Moment of Force—Scalar Definition

A force produces a turning effect or 
moment about a point O that does not 
lie on its line of action. In scalar form, 
the moment magnitude is the product of 
the force and the moment arm or 
perpendicular distance from point O to 
the line of action of the force.

The direction of the moment is defined 
using the right-hand rule. MO always 
acts along an axis perpendicular to the 
plane containing F and d, and passes 
through the point O.

Rather than finding d, it is normally 
easier to resolve the force into its x and 
y components, determine the moment of 
each component about the point, and 
then sum the results. This is called the 
principle of moments.

MO = Fd

MO = Fd = Fxy - Fyx

O

Moment axis

d
F

MO

F
Fy

y

y

O

d x

x

Fx

Moment of a Force—Vector Definition

Since three-dimensional geometry is 
generally more difficult to visualize, the 
vector cross product should be used 
to  determine the moment. Here 
MO = r * F, where r is a position 
vector that extends from point O to 
any point A, B, or C on the line of action 
of F.

If the position vector r and force F are 
expressed as Cartesian vectors, then the 
cross product results from the expansion 
of a determinant.

MO = rA * F = rB * F = rC * F

MO = r * F = 3  i j k
rx ry rz

Fx Fy Fz

 3

z

x

y

F

O

A

B

C

rA

rB

MO

rC

 CHAPTER REVIEW
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4

Moment about an Axis

If the moment of a force F is to be 
determined about an arbitrary axis a, 
then for a scalar solution the moment 
arm, or shortest distance da from the line 
of action of the force to the axis must be 
used. This distance is perpendicular to 
both the axis and the force line of action.

Note that when the line of action of F 
intersects the axis, then the moment of F 
about the axis is zero. Also, when the 
line of action of F is parallel to the axis, 
the moment of F about the axis is zero.

In three dimensions, the scalar triple 
product should be used. Here ua is the 
unit vector that specifies the direction of 
the axis, and r is a position vector that is 
directed from any point on the axis to 
any point on the line of action of the 
force. If Ma is calculated as a negative 
scalar, then the sense of direction of Ma 
is opposite to ua.

Ma = Fda

Ma = ua
# (r * F) = 3 uax

uay
uaz

rx ry rz

Fx Fy Fz

3

a da

Ma F

r

Ma

ua

a

a¿

Axis of projection

F

Couple Moment

A couple consists of two equal but 
opposite forces that act a perpendicular 
distance d apart. Couples tend to 
produce a rotation without translation.

The magnitude of the couple moment is 
M = Fd, and its direction is established 
using the right-hand rule.

If the vector cross product is used to 
determine the moment of a couple, then 
r extends from any point on the line of 
action of one of the forces to any point 
on the line of action of the other force F 
that is used in the cross product.

 M = Fd

 M = r * F

�F

F
d

B
A

F

�Fr
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Simplification of a Force and 
Couple System

Any system of forces and couples can be 
reduced to a single resultant force and 
resultant couple moment acting at a 
point. The resultant force is the sum of 
all the forces in the system,  FR = �F, 
and the resultant couple moment is 
equal to the sum of all the moments of 
the forces about the point and couple 
moments.  MRO

= �MO + �M.

Further simplification to a single resultant 
force is possible provided the force system 
is concurrent, coplanar, or parallel. To 
find  the location of the resultant force 
from a point, it is necessary to equate the 
moment of the resultant force about the 
point to the moment of the forces and 
couples in the system about the same  
point.

If the resultant force and couple moment 
at a point are not perpendicular to one 
another, then this system can be reduced 
to a wrench, which consists of the resultant 
force and collinear couple moment.

O
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r1 O�

FR

MRO
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Coplanar Distributed Loading

A simple distributed loading can be 
represented by its resultant force, which 
is equivalent to the area under the 
loading curve. This resultant has a line of 
action that passes through the centroid 
or geometric center of the area or 
volume under the loading diagram.
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Review Problems

R4–1.  The boom has a length of 30 ft, a weight of 800 lb, 
and mass center at G. If the maximum moment that can be 
developed by a motor at A is M = 20(103) lb # ft, determine 
the maximum load W, having a mass center at G�, that can 
be lifted.

2 ft

14 ft G

16 ft
800 lb

A M

G'

W
30�

Prob. R4–1

R4–2.  Replace the force F having a magnitude of F = 50 lb 
and acting at point A by an equivalent force and couple 
moment at point C.

C

B

A

F
30 ft

y10 ft15 ft

20 ft

10 ft

x

z

Prob. R4–2

R4–3.  The hood of the automobile is supported by the 
strut AB, which exerts a force of F = 24 lb on the hood. 
Determine the moment of this force about the hinged axis y.

2 ft
4 ft2 ft

4 ft

x

z

y

B

A

F

Prob. R4–3

R4–4.  Friction on the concrete surface creates a couple 
moment of MO = 100 N # m on the blades of the trowel. 
Determine the magnitude of the couple forces so that the 
resultant couple moment on the trowel is zero. The forces 
lie in the horizontal plane and act perpendicular to the 
handle of the trowel.

750 mm

1.25 mm

F

F

MO

–

Prob. R4–4



4

	R eview Problems	 205

R4–7.  The building slab is subjected to four parallel 
column loadings. Determine the equivalent resultant force 
and specify its location (x, y) on the slab. Take F1 = 30 kN, 
F2 = 40 kN.

y
x

20 kN

3 m

2 m

8 m 6 m

4 m

50 kN F1

F2

z

Prob. R4–7

R4–8.  Replace the distributed loading by an equivalent 
resultant force, and specify its location on the beam, 
measured from the pin at C.

C
A B

15 ft 15 ft

30�

800 lb/ft

Prob. R4–8

R4–5.  Replace the force and couple system by an 
equivalent force and couple moment at point P.

y

xO

5

1213

6 kN 4 kN

60�

5 m
4 m

4 m

3 m

3 m
8 kN�m

A

P

Prob. R4–5

R4–6.  Replace the force system acting on the frame by a 
resultant force, and specify where its line of action intersects 
member AB, measured from point A.

300 lb

200 lb

250 lb

4
35

A

B

2 ft

2.5 ft

4 ft

3 ft

45�

Prob. R4–6



It is important to be able to determine the forces in the cables used to support 
this boom to ensure that it does not fail. In this chapter we will study how to 

apply equilibrium methods to determine the forces acting on the supports  
of a rigid body such as this.

Chapter 5

 (© YuryZap/Shutterstock)



Equilibrium of a  
Rigid Body

CHAPTER OBJECTIVES

n	 To develop the equations of equilibrium for a rigid body.

n	 To introduce the concept of the free-body diagram for a rigid body.

n	 To show how to solve rigid-body equilibrium problems using the 
equations of equilibrium.

5.1  Conditions for Rigid-Body Equilibrium

In this section, we will develop both the necessary and sufficient conditions 
for the equilibrium of the rigid body in Fig. 5–1a. As shown, this body is 
subjected to an external force and couple moment system that is the result 
of the effects of gravitational, electrical, magnetic, or contact forces caused 
by adjacent bodies. The internal forces caused by interactions between 
particles within the body are not shown in this figure because these forces 
occur in equal but opposite collinear pairs and hence will cancel out, a 
consequence of Newton’s third law.

F1

M2

M1

F2

F3

F4

O

(a)

Fig. 5–1
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Using the methods of the previous chapter, the force and couple 
moment system acting on a body can be reduced to an equivalent 
resultant force and resultant couple moment at any arbitrary point O on 
or off the body, Fig. 5–1b. If this resultant force and couple moment are 
both equal to zero, then the body is said to be in equilibrium. 
Mathematically, the equilibrium of a body is expressed as

	 FR = �F = 0	
(5–1)

(MR)O = �MO = 0

The first of these equations states that the sum of the forces acting on the 
body is equal to zero. The second equation states that the sum of the 
moments of all the forces in the system about point O, added to all the 
couple moments, is equal to zero. These two equations are not only 
necessary for equilibrium, they are also sufficient. To show this, consider 
summing moments about some other point, such as point A in Fig. 5–1c. 
We require

�MA = r * FR + (MR)O = 0

Since r � 0, this equation is satisfied if Eqs. 5–1 are satisfied, namely 
FR = 0 and (MR)O = 0.

When applying the equations of equilibrium, we will assume that the 
body remains rigid. In reality, however, all bodies deform when 
subjected to loads. Although this is the case, most engineering materials 
such as steel and concrete are very rigid and so their deformation is 
usually very small. Therefore, when applying the equations of 
equilibrium, we can generally assume that the body will remain rigid 
and not deform under the applied load without introducing any 
significant error. This way the direction of the applied forces and their 
moment arms with respect to a fixed reference remain the same both 
before and after the body is loaded.

EQUILIBRIUM IN TWO DIMENSIONS

In the first part of the chapter, we will consider the case where the force 
system acting on a rigid body lies in or may be projected onto a single 
plane and, furthermore, any couple moments acting on the body are 
directed perpendicular to this plane. This type of force and couple system 
is often referred to as a two-dimensional or coplanar force system. For 
example, the airplane in Fig. 5–2 has a plane of symmetry through its 
center axis, and so the loads acting on the airplane are symmetrical with 
respect to this plane. Thus, each of the two wing tires will support the same 
load T, which is represented on the side (two-dimensional) view of the 
plane as 2T.

R

W

2T

G

Fig. 5–2

F1

M2

M1

F2

F3

F4

O

(a)

FR � 0

(MR)O � 0

O

(b)

Fig. 5–1 (cont.)

FR � 0

(MR)O � 0

O

A

r

(c)
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5.2  Free-Body Diagrams

Successful application of the equations of equilibrium requires a complete 
specification of all the known and unknown external forces that act on 
the body. The best way to account for these forces is to draw a free-body 
diagram. This diagram is a sketch of the outlined shape of the body, which 
represents it as being isolated or “free” from its surroundings, i.e., a “free 
body.” On this sketch it is necessary to show all the forces and couple 
moments that the surroundings exert on the body so that these effects can 
be accounted for when the equations of equilibrium are applied. A 
thorough understanding of how to draw a free-body diagram is of primary 
importance for solving problems in mechanics.

Support Reactions.  Before presenting a formal procedure as to 
how to draw a free-body diagram, we will first consider the various types 
of reactions that occur at supports and points of contact between bodies 
subjected to coplanar force systems. As a general rule,

	•	 A support prevents the translation of a body in a given direction by 
exerting a force on the body in the opposite direction.

	•	 A support prevents the rotation of a body in a given direction by 
exerting a couple moment on the body in the opposite direction.

For example, let us consider three ways in which a horizontal member, 
such as a beam, is supported at its end. One method consists of a roller or 
cylinder, Fig. 5–3a. Since this support only prevents the beam from 
translating in the vertical direction, the roller will only exert a force on 
the beam in this direction, Fig. 5–3b.

The beam can be supported in a more restrictive manner by using a pin, 
Fig. 5–3c. The pin passes through a hole in the beam and two leaves which 
are fixed to the ground. Here the pin can prevent translation of the beam 
in any direction f, Fig. 5–3d, and so the pin must exert a force F on the 
beam in the opposite direction. For purposes of analysis, it is generally 
easier to represent this resultant force F by its two rectangular components 
Fx and Fy, Fig. 5–3e. If Fx and Fy are known, then F and f can be calculated.

The most restrictive way to support the beam would be to use a fixed 
support as shown in Fig. 5–3f. This support will prevent both translation 
and rotation of the beam. To do this a force and couple moment must be 
developed on the beam at its point of connection, Fig. 5–3g. As in the 
case of the pin, the force is usually represented by its rectangular 
components Fx and Fy.

Table 5–1 lists other common types of supports for bodies subjected to 
coplanar force systems. (In all cases the angle u is assumed to be known.) 
Carefully study each of the symbols used to represent these supports and 
the types of reactions they exert on their contacting members. Fig. 5–3

(a)

roller

(b)

F

(c)

pin

pin
member

leaves

or

Fy

Fx

F

(e)(d)

f

(f)

fixed support

Fy

Fx

M

(g)
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(3)

Types of Connection Reaction Number of Unknowns

One unknown. The reaction is a tension force which acts
away from the member in the direction of the cable.

One unknown. The reaction is a force which acts along
the axis of the link.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the slot.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the rod.

continued

(1)

cable

F

(2)

weightless link
F

roller F

or

(6)

roller or pin in
confined smooth slot

(4)

rocker

(5)

smooth contacting
 surface

F

F

F

(7)

or

or
F

F

F

TABLE 5–1 Supports for Rigid Bodies Subjected to Two-Dimensional Force Systems

member pin connected
to collar on smooth rod

u

u u
u

uu

u u

u

u

u

u

u u u

u

u
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Typical examples of actual supports are shown in the following sequence of photos. The numbers refer to the 
connection types in Table 5–1.

Types of Connection Reaction Number of Unknowns

Two unknowns. The reactions are two components of
force, or the magnitude and direction   of the resultant
force. Note that    and    are not necessarily equal [usually
not, unless the rod shown is a link as in (2)].

Three unknowns. The reactions are the couple moment 
and the two force components, or the couple moment and 
the magnitude and direction     of the resultant force.

Two  unknowns. The reactions are the couple moment 
and the force which acts perpendicular to the rod.

F

Fy

M

or

Fx

F

fixed support

Fy

Fx

F

or

M M

f

f

f

u

TABLE 5–1 Continued

member fixed connected
 to collar on smooth rod

smooth pin or hinge

(8)

(9)

(10)

u f

f

The cable exerts a force on the bracket 
in the direction of the cable. (1)

Typical pin support for a beam. (8) 
(© Russell C. Hibbeler)

The rocker support for this 
bridge girder allows horizontal 
movement so the bridge is free 
to expand and contract due to 
a change in temperature. (4)  
(© Russell C. Hibbeler)

This concrete girder 
rests on the ledge that 
is assumed to act as  
a smooth contacting 
surface. (5) (© Russell 
C. Hibbeler)

The floor beams of this 
building are welded 
together and thus form 
fixed connections. (10) 
(© Russell C. Hibbeler)

(©
 R

us
se

ll 
C

. H
ib

be
le

r)
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Internal Forces.  As stated in Sec. 5.1, the internal forces that act 
between adjacent particles in a body always occur in collinear pairs such 
that they have the same magnitude and act in opposite directions (Newton’s 
third law). Since these forces cancel each other, they will not create an 
external effect on the body. It is for this reason that the internal forces should 
not be included on the free-body diagram if the entire body is to be 
considered. For example, the engine shown in Fig. 5–4a has a free-body 
diagram shown in Fig. 5–4b. The internal forces between all its connected 
parts, such as the screws and bolts, will cancel out because they form equal 
and opposite collinear pairs. Only the external forces T1 and T2, exerted by 
the chains and the engine weight W, are shown on the free-body diagram.

(a) (b)

W

T2 T1

G

Fig. 5–4

Weight and the Center of Gravity.  When a body is within a 
gravitational field, then each of its particles has a specified weight. It was 
shown in Sec. 4.8 that such a system of forces can be reduced to a single 
resultant force acting through a specified point. We refer to this force 
resultant as the weight W of the body and to the location of its point of 
application as the center of gravity. The methods used for its determination 
will be developed in Chapter 9.

In the examples and problems that follow, if the weight of the body is 
important for the analysis, this force will be reported in the problem 
statement. Also, when the body is uniform or made from the same 
material, the center of gravity will be located at the body’s geometric 
center or centroid; however, if the body consists of a nonuniform 
distribution of material, or has an unusual shape, then the location of its 
center of gravity G will be given.

Idealized Models.  When an engineer performs a force analysis of 
any object, he or she considers a corresponding analytical or idealized 
model that gives results that approximate as closely as possible the  
actual situation. To do this, careful choices have to be made so that 
selection of the type of supports, the material behavior, and the object’s 
dimensions can be justified. This way one can feel confident that any  
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design or analysis will yield results which can be trusted. In complex 
cases this process may require developing several different models of the 
object that must be analyzed. In any case, this selection process requires 
both skill and experience.

The following two cases illustrate what is required to develop a proper 
model. In Fig. 5–5a, the steel beam is to be used to support the three roof 
joists of a building. For a force analysis it is reasonable to assume the 
material (steel) is rigid since only very small deflections will occur when 
the beam is loaded. A bolted connection at A will allow for any slight 
rotation that occurs here when the load is applied, and so a pin can be 
considered for this support. At B a roller can be considered since this 
support offers no resistance to horizontal movement. Building code is 
used to specify the roof loading A so that the joist loads F can be 
calculated. These forces will be larger than any actual loading on the 
beam since they account for extreme loading cases and for dynamic or 
vibrational effects. Finally, the weight of the beam is generally neglected 
when it is small compared to the load the beam supports. The idealized 
model of the beam is therefore shown with average dimensions a, b, c, 
and d in Fig. 5–5b.

As a second case, consider the lift boom in Fig. 5–6a. By inspection, it is 
supported by a pin at A and by the hydraulic cylinder BC, which can be 
approximated as a weightless link. The material can be assumed rigid, 
and with its density known, the weight of the boom and the location of its 
center of gravity G are determined. When a design loading P is specified, 
the idealized model shown in Fig. 5–6b can be used for a force analysis. 
Average dimensions (not shown) are used to specify the location of the 
loads and the supports.

Idealized models of specific objects will be given in some of the 
examples throughout the text. It should be realized, however, that each 
case represents the reduction of a practical situation using simplifying 
assumptions like the ones illustrated here.Example  5.3 

(a)

BA

F F F

A B

(b)

a b c d

Fig. 5–5 (© Russell C. Hibbeler)

(a)

A

C

B

Fig. 5–6 (© Russell C. Hibbeler)

(b)

B

C

G

A

P
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Important Points

	 •	 No equilibrium problem should be solved without first drawing 
the free-body diagram, so as to account for all the forces and 
couple moments that act on the body.

	 •	 If a support prevents translation of a body in a particular direction, 
then the support, when it is removed, exerts a force on the body 
in that direction.

	 •	 If rotation is prevented, then the support, when it is removed, 
exerts a couple moment on the body.

	 •	 Study Table 5–1.

	 •	 Internal forces are never shown on the free-body diagram since they 
occur in equal but opposite collinear pairs and therefore cancel out.

	 •	 The weight of a body is an external force, and its effect is 
represented by a single resultant force acting through the body’s 
center of gravity G.

	 •	 Couple moments can be placed anywhere on the free-body 
diagram since they are free vectors. Forces can act at any point 
along their lines of action since they are sliding vectors.

Procedure for Analysis

To construct a free-body diagram for a rigid body or any group of bodies  
considered as a single system, the following steps should be performed:

Draw Outlined Shape.
Imagine the body to be isolated or cut “free” from its constraints and 
connections and draw (sketch) its outlined shape. Be sure to 
remove all the supports from the body.

Show All Forces and Couple Moments.
Identify all the known and unknown external forces and couple 
moments that act on the body. Those generally encountered are due to 
(1) applied loadings, (2) reactions occurring at the supports or at points 
of contact with other bodies (see Table 5–1), and (3) the weight of the 
body. To account for all these effects, it may help to trace over the 
boundary, carefully noting each force or couple moment acting on it.

Identify Each Loading and Give Dimensions.
The forces and couple moments that are known should be labeled with 
their proper magnitudes and directions. Letters are used to represent 
the magnitudes and direction angles of forces and couple moments that 
are unknown. Establish an x, y coordinate system so that these 
unknowns, Ax, Ay, etc., can be identified. Finally, indicate the dimensions 
of the body necessary for calculating the moments of forces.
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Draw the free-body diagram of the uniform beam shown in Fig. 5–7a. 
The beam has a mass of 100 kg.

example    5.1 

(a)

2 m
1200 N

6 m

A

SOLUTION
The free-body diagram of the beam is shown in Fig. 5–7b. Since the 
support at A is fixed, the wall exerts three reactions on the beam, 
denoted as Ax, Ay, and MA . The magnitudes of these reactions are 
unknown, and their sense has been assumed. The weight of the beam, 
W = 100(9.81) N = 981 N, acts through the beam’s center of gravity G, 
which is 3 m from A since the beam is uniform.

Fig. 5–7

Ay

Ax

2 m
1200 N

3 m

A

981 N

MA

G

Effect of applied
force acting on beam

Effect of gravity (weight)
acting on beam

Effect of fixed
support acting
on beam

(b)

y

x
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Draw the free-body diagram of the foot lever shown in Fig. 5–8a.  
The operator applies a vertical force to the pedal so that the spring is 
stretched 1.5 in. and the force on the link at B is 20 lb.

example    5.2 

F

30 lb

5 in.

1.5 in.

1 in.

A

B

20 lb

Ay

Ax

(c)

F

5 in.

1.5 in.

1 in.

A

B

k � 20 lb/in.

(b)

A

B

(a)

Fig. 5–8 (© Russell C. Hibbeler)

SOLUTION
By inspection of the photo the lever is loosely bolted to the frame at A 
and so this bolt acts as a pin. (See (8) in Table 5–1.) Although not 
shown here the link at B is pinned at both ends and so it is like (2) in 
Table 5–1. After making the proper measurements, the idealized 
model of the lever is shown in Fig. 5–8b. From this, the free-body 
diagram is shown in Fig. 5–8c. Since the pin at A is removed, it exerts 
force components Ax and Ay on the lever. The link exerts a force of 
20  lb, acting in the direction of the link. In addition the spring also 
exerts a horizontal force on the lever. If the stiffness is measured and 
found to be k = 20 lb>in., then since the stretch s = 1.5 in., using 
Eq.  3–2, Fs = ks = 20 lb>in. (1.5 in.) = 30 lb. Finally, the operator’s 
shoe applies a vertical force of F on the pedal. The dimensions of the 
lever are also shown on the free-body diagram, since this information 
will be useful when calculating the moments of the forces. As usual, 
the senses of the unknown forces at A have been assumed. The correct 
senses will become apparent after solving the equilibrium equations.
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Two smooth pipes, each having a mass of 300 kg, are supported by the 
forked tines of the tractor in Fig. 5–9a. Draw the free-body diagrams 
for each pipe and both pipes together.

example    5.3

(a) (b)

30�

A

B

0.35 m

0.35 m
30�

A
30�

30�

Effect of gravity
(weight) acting on A

Effect of sloped
fork acting on A

Effect of B acting on A

Effect of sloped
blade acting on A

T

F

R

2943 N

(c)

Fig. 5–9

30�

B

30�

P

R 2943 N

(d)

30�

A

30�

T

F

2943 N

(e)

30�

B

P

2943 N

SOLUTION
The idealized model from which we must draw the free-body  
diagrams is shown in Fig. 5–9b. Here the pipes are identified, the 
dimensions have been added, and the physical situation reduced to its 
simplest form.

Removing the surfaces of contact, the free-body diagram for pipe A is 
shown in Fig. 5–9c. Its weight is W = 300(9.81) N = 2943 N. Assuming 
all contacting surfaces are smooth, the reactive forces T, F, R act in a 
direction normal to the tangent at their surfaces of contact.

The free-body diagram of the isolated pipe B is shown in Fig. 5–9d. 
Can you identify each of the three forces acting on this pipe? In 
particular, note that R, representing the force of A on B, Fig. 5–9d, is 
equal and opposite to R representing the force of B on A, Fig. 5–9c. 
This is a consequence of Newton’s third law of motion.

The free-body diagram of both pipes combined (“system”) is shown 
in Fig. 5–9e. Here the contact force R, which acts between A and B, is 
considered as an internal force and hence is not shown on the  
free-body diagram. That is, it represents a pair of equal but opposite 
collinear forces which cancel each other.

(© Russell C. Hibbeler)
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Draw the free-body diagram of the unloaded platform that is 
suspended off the edge of the oil rig shown in Fig. 5–10a. The platform 
has a mass of 200 kg.

(a)

Fig. 5–10 (© Russell C. Hibbeler)

SOLUTION
The idealized model of the platform will be considered in two 
dimensions because by observation the loading and the dimensions 
are all symmetrical about a vertical plane passing through its center, 
Fig. 5–10b. The connection at A is considered to be a pin, and the cable 
supports the platform at B. The direction of the cable and average 
dimensions of the platform are listed, and the center of gravity G has 
been determined. It is from this model that we have drawn the  
free-body diagram shown in Fig. 5–10c. The platform’s weight is 
200(9.81) = 1962 N. The supports have been removed, and the force 
components Ax and Ay along with the cable force T represent the 
reactions that both pins and both cables exert on the platform,  
Fig. 5–10a. As a result, half their magnitudes are developed on each 
side of the platform.

example    5.4 

1.40 m

1 m

70�

0.8 m

(b)

A
G

B

1.40 m

1 m

70�

0.8 m

1962 N

(c)

Ax

Ay

G

A

T
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Problems

5–1.  Draw the free-body diagram for the following 
problems.

a) The cantilevered beam in Prob. 5–10.

b) The beam in Prob. 5–11.

c) The beam in Prob. 5–12.

d) The beam in Prob. 5–14.

5–2.  Draw the free-body diagram for the following 
problems.

a) The truss in Prob. 5–15.

b) The beam in Prob. 5–16.

c) The man and load in Prob. 5–17.

d) The beam in Prob. 5–18.

5–3.  Draw the free-body diagram for the following 
problems.

a) The man and beam in Prob. 5–19.

b) The rod in Prob. 5–20.

c) The rod in Prob. 5–21.

d) The beam in Prob. 5–22.

*5–4.  Draw the free-body diagram for the following 
problems.

a) The beam in Prob. 5–25.

b) The crane and boom in Prob. 5–26.

c) The bar in Prob. 5–27.

d) The rod in Prob. 5–28.

5–5.  Draw the free-body diagram for the following 
problems.

a) The boom in Prob. 5–32.

b) The jib crane in Prob. 5–33.

c) The smooth pipe in Prob. 5–35.

d) The beam in Prob. 5–36.

5–6.  Draw the free-body diagram for the following 
problems.

a) The jib crane in Prob. 5–37.

b) The bar in Prob. 5–39.

c) The bulkhead in Prob. 5–41.

d) The boom in Prob. 5–42.

5–7.  Draw the free-body diagram for the following 
problems.

a) The rod in Prob. 5–44.

b) The hand truck and load when it is lifted in Prob. 5–45.

c) The beam in Prob. 5–47.

d) The cantilever footing in Prob. 5–51.

*5–8.  Draw the free-body diagram for the following 
problems.

a) The beam in Prob. 5–52.

b) The boy and diving board in Prob. 5–53.

c) The rod in Prob. 5–54.

d) The rod in Prob. 5–56.

5–9.  Draw the free-body diagram for the following 
problems.

a) The beam in Prob. 5–57.

b) The rod in Prob. 5–59.

c) The bar in Prob. 5–60.



220 	 Chapter 5  E  quil ibr ium of a Rig id Body

5

5.3  Equations of Equilibrium

In Sec. 5.1 we developed the two equations which are both necessary and 
sufficient for the equilibrium of a rigid body, namely, �F = 0 and 
�MO = 0. When the body is subjected to a system of forces, which all lie 
in the x–y plane, then the forces can be resolved into their x and y 
components. Consequently, the conditions for equilibrium in two 
dimensions are

	
�Fx =   0

�Fy =   0

�MO = 0

	 (5–2)

Here �Fx and �Fy represent, respectively, the algebraic sums of the x and y  
components of all the forces acting on the body, and �MO represents 
the algebraic sum of the couple moments and the moments of all the 
force components about the z axis, which is perpendicular to the x–y 
plane and passes through the arbitrary point O.

Alternative Sets of Equilibrium Equations.  Although  
Eqs. 5–2 are most often used for solving coplanar equilibrium problems, 
two alternative sets of three independent equilibrium equations may also 
be used. One such set is

	
�Fx =   0

�MA =   0

�MB = 0

	 (5–3)

When using these equations it is required that a line passing through 
points A and B is not parallel to the y axis. To prove that Eqs. 5–3 provide 
the conditions for equilibrium, consider the free-body diagram of the 
plate shown in Fig. 5–11a. Using the methods of Sec. 4.7, all the forces 
on  the free-body diagram may be replaced by an equivalent resultant 
force  FR = �F, acting at point A, and a resultant couple moment 
1MR2A = �MA, Fig. 5–11b. If �MA = 0 is satisfied, it is necessary that 
1MR2A = 0. Furthermore, in order that FR satisfy �Fx = 0, it must have 
no component along the x axis, and therefore FR must be parallel to the  
y axis, Fig. 5–11c. Finally, if it is required that �MB = 0, where B does not 
lie on the line of action of FR, then FR = 0. Since Eqs. 5–3 show that both 
of these resultants are zero, indeed the body in Fig. 5–11a must be in 
equilibrium.

B

A

C

(a)

F4

F3

F1

F2

x

y

Fig. 5–11

A

(MR)
A

FR

(b)

B C

(c)

A

FR

B C
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A second alternative set of equilibrium equations is

	
�MA =   0

�MB =   0

�MC = 0

 	 (5–4)

Here it is necessary that points A, B, and C do not lie on the same line. To 
prove that these equations, when satisfied, ensure equilibrium, consider 
again the free-body diagram in Fig. 5–11b. If �MA = 0 is to be satisfied, then 
1MR2A = 0. �MC = 0 is satisfied if the line of action of FR passes through 
point C as shown in Fig. 5–11c. Finally, if we require �MB = 0, it is necessary 
that FR = 0, and so the plate in Fig. 5–11a must then be in equilibrium.

Procedure for Analysis

Coplanar force equilibrium problems for a rigid body can be solved 
using the following procedure.

Free-Body Diagram.
	 •	 Establish the x, y coordinate axes in any suitable orientation.

	 •	 Remove all supports and draw an outlined shape of the body.

	 •	 Show all the forces and couple moments acting on the body.

	 •	 Label all the loadings and specify their directions relative to the x 
or y axis. The sense of a force or couple moment having an 
unknown magnitude but known line of action can be assumed.

	 •	 Indicate the dimensions of the body necessary for computing the 
moments of forces.

Equations of Equilibrium.
	 •	 Apply the moment equation of equilibrium, �MO = 0, about a 

point (O) that lies at the intersection of the lines of action of two 
unknown forces. In this way, the moments of these unknowns are 
zero about O, and a direct solution for the third unknown can be 
determined.

	 •	 When applying the force equilibrium equations, �Fx = 0 and 
�Fy = 0, orient the x and y axes along lines that will provide the 
simplest resolution of the forces into their x and y components.

	 •	 If the solution of the equilibrium equations yields a negative 
scalar for a force or couple moment magnitude, this indicates that 
the sense is opposite to that which was assumed on the free-body 
diagram.
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Example   5.5 

Determine the horizontal and vertical components of reaction on the 
beam caused by the pin at B and the rocker at A as shown in Fig. 5–12a. 
Neglect the weight of the beam.

(a)

600 N

D

100 N

A B

200 N

2 m 3 m 2 m

0.2 m

By

2 m

600 sin 45�  N

3 m 2 m

A
B

200 N

600 cos 45�  N

Ay

Bx
x

y

(b)

100 N

0.2 m

D

SOLUTION
Free-Body Diagram.  The supports are removed, and the free-body 
diagram of the beam is shown in Fig. 5–12b. (See Example 5.1.) For 
simplicity, the 600-N force is represented by its x and y components as 
shown in Fig. 5–12b.

Equations of Equilibrium.  Summing forces in the x direction yields

S+ �Fx = 0;   600 cos 45� N - Bx = 0

	 Bx = 424 N � Ans.

A direct solution for Ay can be obtained by applying the moment 
equation �MB = 0 about point B.

a+ �MB = 0;  100 N (2 m) + (600 sin 45� N)(5 m)

- (600 cos 45� N)(0.2 m) - A y(7 m) = 0

A y = 319 N � Ans.

Summing forces in the y direction, using this result, gives

+ c �Fy = 0;  319 N - 600 sin 45� N - 100 N - 200 N + By = 0

By = 405 N � Ans.

NOTE: Remember, the support forces in Fig. 5–12b are the result of 
pins that act on the beam. The opposite forces act on the pins. For 
example, Fig. 5–12c shows the equilibrium of the pin at A and the 
rocker.

Fig. 5–12

319 N

319 N

(c)

A

319 N

319 N
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Example   5.6 

The cord shown in Fig. 5–13a supports a force of 100 lb and wraps 
over the frictionless pulley. Determine the tension in the cord at C and 
the horizontal and vertical components of reaction at pin A.

100 lb

0.5 ft

� 30�

C

(a)

A

u

T100 lb

30�

p

Ax

Ay

A

(b)

p

Ax

Ay

A

T100 lb

0.5 ft

� 30�

(c)

x

y

u

SOLUTION
Free-Body Diagrams.  The free-body diagrams of the cord and 
pulley are shown in Fig. 5–13b. Note that the principle of action, equal 
but opposite reaction must be carefully observed when drawing each 
of these diagrams: the cord exerts an unknown load distribution p on 
the pulley at the contact surface, whereas the pulley exerts an equal but 
opposite effect on the cord. For the solution, however, it is simpler to 
combine the free-body diagrams of the pulley and this portion of the 
cord, so that the distributed load becomes internal to this “system” and 
is therefore eliminated from the analysis, Fig. 5–13c.

Equations of Equilibrium.  Summing moments about point A to 
eliminate Ax and Ay, Fig. 5–13c, we have

a+ �MA = 0;  100 lb (0.5 ft) - T  (0.5 ft) = 0 

T = 100 lb � Ans.

Using this result,

S+ �Fx = 0;  -A x + 100 sin 30� lb = 0

A x = 50.0 lb � Ans.

+ c �Fy = 0;  A y - 100 lb - 100 cos 30� lb = 0

A y = 187 lb � Ans.

NOTE: From the moment equation, it is seen that the tension remains 
constant as the cord passes over the pulley. (This of course is true for any 
angle u at which the cord is directed and for any radius r of the pulley.)

Fig. 5–13



224 	 Chapter 5  E  quil ibr ium of a Rig id Body

5

Example   5.7 

The member shown in Fig. 5–14a is pin connected at A and rests 
against a smooth support at B. Determine the horizontal and vertical 
components of reaction at the pin A.

SOLUTION
Free-Body Diagram.  As shown in Fig. 5–14b, the supports are 
removed and the reaction NB is perpendicular to the member at B. Also, 
horizontal and vertical components of reaction are represented at A. The 
resultant of the distributed loading is 1

2 (1.5  m)(80 N>m) = 60 N. It acts 
through the centroid of the triangle, 1 m from A as shown.

Equations of Equilibrium.  Summing moments about A, we obtain 
a direct solution for NB,

a+ �MA = 0; -90 N # m - 60 N(1 m) + NB(0.75 m) = 0 

NB = 200 N
Using this result,

S+ �Fx = 0;      A x - 200 sin 30� N = 0

A x = 100 N � Ans.

+ c �Fy = 0;    A y - 200 cos 30� N - 60 N = 0

A y = 233 N � Ans.

0.75 m

1.5 m

A

B

(a)

80 N/m

30�

90 N � m

NB

0.75 m
1 m

60 N

A

Ax

Ay

(b)

x

y

30�

30�

90 N � m

Fig. 5–14
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Example   5.8 

The box wrench in Fig. 5–15a is used to tighten the bolt at A. If the 
wrench does not turn when the load is applied to the handle, determine 
the torque or moment applied to the bolt and the force of the wrench 
on the bolt.

SOLUTION
Free-Body Diagram.  The free-body diagram for the wrench is 
shown in Fig. 5–15b. Since the bolt acts as a “fixed support,” when it is 
removed, it exerts force components Ax and Ay and a moment MA  on 
the wrench at A.

Equations of Equilibrium.

S
+

�Fx = 0;      A x - 521 5
132 N + 30 cos 60� N = 0

A x = 5.00 N � Ans.

+ c �Fy = 0;      A y - 52112
132 N - 30 sin 60� N = 0

A y = 74.0 N � Ans.

a+ �MA = 0;  MA - 352112
132N4  (0.3 m) - (30 sin 60� N)(0.7 m) = 0

 	 MA = 32.6 N # m � Ans.

Note that MA  must be included in this moment summation. This couple 
moment is a free vector and represents the twisting resistance of the 
bolt on the wrench. By Newton’s third law, the wrench exerts an equal 
but opposite moment or torque on the bolt. Furthermore, the resultant 
force on the wrench is

	 FA = 2(5.00)2 + (74.0)2 = 74.1 N� Ans.

NOTE: Although only three independent equilibrium equations can be 
written for a rigid body, it is a good practice to check the calculations 
using a fourth equilibrium equation. For example, the above 
computations may be verified in part by summing moments about 
point C:

a+ �MC = 0;  352112
132N4  (0.4 m) + 32.6 N # m - 74.0 N(0.7 m) = 0

19.2 N # m + 32.6 N # m - 51.8 N # m = 0

300 mm 400 mm

13 12

5

B C
60�

52 N 30 N
(a)

A

C

0.3 m 0.4 m

13 12
5

60�

52 N 30 N

(b)

Ay

MA

Ax
y

x

Fig. 5–15
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Example   5.9 

Determine the horizontal and vertical components of reaction on the 
member at the pin A, and the normal reaction at the roller B in Fig. 5–16a.

SOLUTION
Free-Body Diagram.  All the supports are removed and so the  
free-body diagram is shown in Fig. 5–16b. The pin at A exerts two 
components of reaction on the member, Ax and Ay.

3 ft

A

B

3 ft

2 ft

(a)

30�

750 lb

A

B

2 ft

3 ft 3 ft

750 lb

Ax

Ay

NB
30�

y

x

(b)

Equations of Equilibrium.  The reaction NB can be obtained directly 
by summing moments about point A, since Ax and Ay produce no 
moment about A.

a+ �MA =  0;

	 [NB cos 30�](6 ft) - [NB sin 30�](2 ft) - 750 lb(3 ft) = 0

 	 NB = 536.2 lb = 536 lb � Ans.

Using this result,

 S
+ � Fx = 0;	 A x - (536.2 lb) sin 30� = 0

	  A x = 268 lb � Ans.

+  c �Fy = 0;	 A y + (536.2 lb) cos 30� - 750 lb = 0

 	 A y = 286 lb � Ans.

Details of the equilibrium of the pin at A are shown in Fig. 5–16c.

Fig. 5–16

286 lb

268 lb

268 lb

286 lb

member
on pin

support
on pin

(c)
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The uniform smooth rod shown in Fig. 5–17a is subjected to a force 
and couple moment. If the rod is supported at A by a smooth wall and 
at B and C either at the top or bottom by rollers, determine the 
reactions at these supports. Neglect the weight of the rod.

Example   5.10 

(a)

A

2 m

300 N

4 m

2 m

C

B

2 m

(b)

2 m

300 N

4000 N � m

4 m

2 m
30�

30�

Cy¿

By¿

30� 30�

Ax

y y¿

x

x¿

30�

Fig. 5–17

SOLUTION
Free-Body Diagram.  Removing the supports as shown in Fig. 5–17b, 
all the reactions act normal to the surfaces of contact since these surfaces 
are smooth. The reactions at B and C are shown acting in the positive y� 
direction. This assumes that only the rollers located on the bottom of the 
rod are used for support.

Equations of Equilibrium.  Using the x, y coordinate system in  
Fig. 5–17b, we have

S
+

�Fx = 0;	 Cy� sin 30� + By� sin 30� - A x = 0� (1)

+  c �Fy = 0;	 -300 N + Cy� cos 30� + By� cos 30� = 0� (2)

a+ �MA = 0;	 -By�(2 m) + 4000 N # m - Cy�(6 m)

	 + (300 cos 30� N)(8 m) = 0� (3)

When writing the moment equation, it should be noted that the line of 
action of the force component 300 sin 30° N passes through point A, 
and therefore this force is not included in the moment equation.

Solving Eqs. 2 and 3 simultaneously, we obtain

	  By� = -1000.0 N = -1 kN � Ans.

	  Cy� = 1346.4 N = 1.35 kN � Ans.

Since By� is a negative scalar, the sense of By� is opposite to that shown on 
the free-body diagram in Fig. 5–17b. Therefore, the top roller at B serves 
as the support rather than the bottom one. Retaining the negative sign 
for By� (Why?) and substituting the results into Eq. 1, we obtain

1346.4 sin 30� N + (-1000.0 sin 30� N) - A x = 0

	 A x = 173 N � Ans.
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The uniform truck ramp shown in Fig. 5–18a has a weight of 400 lb 
and is pinned to the body of the truck at each side and held in the 
position shown by the two side cables. Determine the tension in the 
cables.

SOLUTION
The idealized model of the ramp, which indicates all necessary 
dimensions and supports, is shown in Fig. 5–18b. Here the center of 
gravity is located at the midpoint since the ramp is considered to be 
uniform.

Free-Body Diagram.  Removing the supports from the idealized 
model, the ramp’s free-body diagram is shown in Fig. 5–18c.

Equations of Equilibrium.  Summing moments about point A will 
yield a direct solution for the cable tension. Using the principle of 
moments, there are several ways of determining the moment of T 
about A. If we use x and y components, with T applied at B, we have

a+ �MA = 0;    -T cos 20�(7 sin 30� ft) + T sin 20�(7 cos 30� ft)

 + 400 lb (5 cos 30� ft) = 0

T = 1425 lb

We can also determine the moment of T about A by resolving it into 
components along and perpendicular to the ramp at B. Then the 
moment of the component along the ramp will be zero about A, so that

a+ �MA = 0;    -T sin 10�(7 ft) + 400 lb (5 cos 30� ft) = 0

T = 1425 lb

Since there are two cables supporting the ramp,

	 T � =
T

2
= 712 lb 	 Ans.

NOTE: As an exercise, show that A x = 1339 lb and A y = 887 lb.

Example   5.11 

(c)

G

B

A

Ay

Ax

T

30�

2 ft
10�

20�

5 ft
400 lb

x

y

Fig. 5–18

(a)

(b)

G

B

A
30�

20�

2 ft

5 ft

(© Russell C. Hibbeler)
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Example   5.12 

A

B

(a)

1.5 m 1.5 m

1 m

45�

900 N

500 N � m

A

B

Ax

MA

900 N

NB

45�500 N � m

1 m

1.5 m 1.5 m

y

x

(b)

Fig. 5–19

SOLUTION
Free-Body Diagram.  Removing the supports, the free-body diagram 
of the member is shown in Fig. 5–19b. The collar exerts a horizontal 
force Ax and moment MA  on the member. The reaction NB of the roller 
on the member is vertical.

Equations of Equilibrium.  The forces A x and NB can be determined 
directly from the force equations of equilibrium.

S
+

� Fx = 0;	 A x = 0 � Ans.

+ c �Fy = 0;	 NB - 900 N = 0

 	 NB = 900 N � Ans.

The moment MA  can be determined by summing moments either 
about point A or point B.

a+ �MA =  0;

MA - 900 N(1.5 m) - 500 N # m + 900 N [3 m + (1 m) cos 45�] = 0

	 MA = -1486 N # m = 1.49 kN # mb� Ans.

or

a+ �MB = 0;  MA + 900 N [1.5 m + (1 m) cos 45�] - 500 N # m = 0

 	 MA = -1486 N # m = 1.49 kN # mb� Ans.

The negative sign indicates that MA  has the opposite sense of rotation 
to that shown on the free-body diagram.

Determine the support reactions on the member in Fig. 5–19a. The 
collar at A is fixed to the member and can slide vertically along the 
vertical shaft.
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5.4  Two- and Three-Force Members

The solutions to some equilibrium problems can be simplified by 
recognizing members that are subjected to only two or three forces.

Two-Force Members.  As the name implies, a two-force member 
has forces applied at only two points on the member. An example of a 
two-force member is shown in Fig. 5–20a. To satisfy force equilibrium,  
FA and FB must be equal in magnitude, FA = FB = F, but opposite in 
direction (�F = 0), Fig. 5–20b. Furthermore, moment equilibrium requires 
that FA and FB share the same line of action, which can only happen if they 
are directed along the line joining points A and B (�MA = 0 or �MB = 0),  
Fig. 5–20c. Therefore, for any two-force member to be in equilibrium, the 
two forces acting on the member must have the same magnitude, act in 
opposite directions, and have the same line of action, directed along the line 
joining the two points where these forces act.

A

B

The hydraulic cylinder AB is a typical 
example of a two-force member since 
it is pin connected at its ends and, 
provided its weight is neglected, only 
the pin forces act on this member.  
(© Russell C. Hibbeler)

Fig. 5–20

B

FB

(a)

A FA

(b)

Two-force member

A FA � F

FB � F

B

A

FB � F

(c)

B

FA � F

Three-Force Members.  If a member is subjected to only three 
forces, it is called a three-force member. Moment equilibrium can be 
satisfied only if the three forces form a concurrent or parallel force 
system. To illustrate, consider the member subjected to the three forces 
F1, F2, and F3, shown in Fig. 5–21a. If the lines of action of F1 and F2 
intersect at point O, then the line of action of F3 must also pass through 
point O so that the forces satisfy �MO = 0. As a special case, if the three 
forces are all parallel, Fig. 5–21b, the location of the point of intersection, 
O, will approach infinity.

F3
F1

O

F1
F3

Three-force member

F2 F2

(b)(a)

Fig. 5–21

FB

FA
FC

B
A C

The link used for this railroad car brake 
is a three-force member. Since the force 
FB in the tie rod at B and FC from the 
link at C are parallel, then for equilibrium 
the resultant force FA at the pin A must 
also be parallel with these two forces. 
(© Russell C. Hibbeler)

FA
B

W

O

A
FB

The boom and bucket on this lift is a 
three-force member, provided its weight 
is neglected. Here the lines of action of 
the weight of the worker, W, and the force 
of the two-force member (hydraulic 
cylinder) at B, FB, intersect at O. For 
moment equilibrium, the resultant force 
at the pin A, FA, must also be directed 
towards O. (© Russell C. Hibbeler)
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F

F

B

D

(b)

0.2 m
B

A

C

0.5 m

0.5 m

F

O

0.1 m

(c)

0.4 m

FA

400 N

u

Fig. 5–22

0.5 m

0.2 m

B

A

D

C

0.1 m

0.2 m

(a)

400 N
The lever ABC is pin supported at A and connected to a short link BD 
as shown in Fig. 5–22a. If the weight of the members is negligible, 
determine the force of the pin on the lever at A.

SOLUTION
Free-Body Diagrams.  As shown in Fig. 5–22b, the short link BD is 
a two-force member, so the resultant forces from the pins D and B must 
be equal, opposite, and collinear. Although the magnitude of the force 
is unknown, the line of action is known since it passes through B and D.

Lever ABC is a three-force member, and therefore, in order to 
satisfy moment equilibrium, the three nonparallel forces acting on it 
must be concurrent at O, Fig. 5–22c. In particular, note that the force F 
on the lever at B is equal but opposite to the force F acting at B on the 
link. Why? The distance CO must be 0.5 m since the lines of action of 
F and the 400-N force are known.

Equations of Equilibrium.  By requiring the force system to be 
concurrent at O, since �MO = 0, the angle u which defines the line of 
action of FA  can be determined from trigonometry,

u = tan-1a 0.7

0.4
b = 60.3�

Using the x, y axes and applying the force equilibrium equations,

 S
+

�Fx = 0;  FA cos 60.3� - F cos 45� + 400 N = 0

 + c �Fy = 0;  FA sin 60.3� - F sin 45� = 0

Solving, we get

	  FA = 1.07 kN 	 Ans.

 F = 1.32 kN

NOTE: We can also solve this problem by representing the force at A 
by its two components Ax and Ay and applying �MA = 0, �Fx = 0, 
�Fy = 0 to the lever. Once A x and A y are determined, we can get FA  
and u.

Example   5.13 
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P5–1.  Draw the free-body diagram of each object.

(a)

500 N

A B

3 m 2 m

5

4
3

(b)

A

B

2 m

3 m

600 N � m

(c)

A

B

3 m 3 m

400 N/m

(d)

A

B

4 m

500 N

4

3

5

30�

3 m

(e)

A B

2 m 2 m

200 N/m

A

(f)

B

2 m

400 N

1 m

30�

C

	 Preliminary Problems

Prob. P5–1
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	 FUNDAMENTAL PROBLEMS

F5–4.  Determine the components of reaction at the fixed 
support A. Neglect the thickness of the beam.

60�

30�

3 m
1 m 1 m 1 m 400 N

200 N 200 N 200 N

A

Prob. F5–4

F5–5.  The 25-kg bar has a center of mass at G. If it is 
supported by a smooth peg at C, a roller at A, and cord AB, 
determine the reactions at these supports.

A

B
G

C

D

30� 15�

0.5 m

0.2 m

0.3 m

Prob. F5–5

F5–6.  Determine the reactions at the smooth contact 
points A, B, and C on the bar.

0.4 m

250 N

0.2 m

0.15 m

30�
A

B

C

30�

Prob. F5–6

All problem solutions must include an FBD.

F5–1.  Determine the horizontal and vertical components 
of reaction at the supports. Neglect the thickness of the 
beam.

B
A

5 ft 5 ft 5 ft

500 lb

600 lb � ft4
3

5

Prob. F5–1

F5–2.  Determine the horizontal and vertical components 
of reaction at the pin A and the reaction on the beam at C.

1.5 m

C

B

A

1.5 m 1.5 m

D

4 kN

Prob. F5–2

F5–3.  The truss is supported by a pin at A and a roller at B. 
Determine the support reactions.

A

B

2 m
5 kN

10 kN

2 m

4 m

4 m

45�

Prob. F5–3
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Problems

5–13.  Determine the reactions at the supports.

3 m 3 m

A B

900 N/m

600 N/m    

Prob. 5–13

5–14.  Determine the reactions at the supports.

B

A

3 m

800 N/m

3 m

1 m

Prob. 5–14

5–15.  Determine the reactions at the supports.

A B

2 m 2 m 2 m

2 m

6 kN

5 kN

8 kN

Prob. 5–15

All problem solutions must include an FBD.

5–10.  Determine the components of the support reactions 
at the fixed support A on the cantilevered beam.

1.5 m

1.5 m

30�

30�

4 kN

6 kN

A
1.5 m

Prob. 5–10

5–11.  Determine the reactions at the supports.

400 N/m

3 m

3

4

5

3 m

A
B

Prob. 5–11

*5–12.  Determine the horizontal and vertical components 
of reaction at the pin A and the reaction of the rocker B on 
the beam.

6 m

A B

4 kN

2 m

30�

Prob. 5–12



	 5.4 T wo- and Three-Force Members	 235

5

5–19.  The man has a weight W and stands at the center of 
the plank. If the planes at A and B are smooth, determine 
the tension in the cord in terms of W and u.

A

B

L
uf

Prob. 5–19

*5–20.  A uniform glass rod having a length L is placed in 
the smooth hemispherical bowl having a radius r. Determine 
the angle of inclination u for equilibrium.

B
r

A

u

Prob. 5–20

5–21.  The uniform rod AB has a mass of 40 kg. Determine 
the force in the cable when the rod is in the position shown. 
There is a smooth collar at A.

A

60�

3 m

C
B

Prob. 5–21

*5–16.  Determine the tension in the cable and the 
horizontal and vertical components of reaction of the pin A. 
The pulley at D is frictionless and the cylinder weighs 80 lb.

BA

D

C

5 ft 5 ft

2

1

3 ft

Prob. 5–16

5–17.  The man attempts to support the load of boards 
having a weight W and a center of gravity at G. If he is 
standing on a smooth floor, determine the smallest angle u 
at which he can hold them up in the position shown. Neglect 
his weight.

A B

G
4 ft

4 ft

3 ft0.5 ft

u

Prob. 5–17

5–18.  Determine the components of reaction at the 
supports A and B on the rod.

A
B

P

L––
2

L––
2

Prob. 5–18
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5–25.  Determine the reactions on the bent rod which is 
supported by a smooth surface at B and by a collar at A, 
which is fixed to the rod and is free to slide over the fixed 
inclined rod.

3 ft3 ft

3

45

100 lb

200 lb � ft

2 ft

B 12
5

13

A

Prob. 5–25

5–26.  The mobile crane is symmetrically supported by two 
outriggers at A and two at B in order to relieve the 
suspension of the truck upon which it rests and to provide 
greater stability. If the crane boom and truck have a mass of 
18 Mg and center of mass at G1, and the boom has a mass 
of 1.8 Mg and a center of mass at G2, determine the vertical 
reactions at each of the four outriggers as a function of the 
boom angle u when the boom is supporting a load having a 
mass of 1.2 Mg. Plot the results measured from u = 0° to the 
critical angle where tipping starts to occur.

G2

G1

A B

1 m

6.25 m

1 m2 m

6 m

Prob. 5–26

5–22.  If the intensity of the distributed load acting on the 
beam is w = 3 kN>m, determine the reactions at the roller A 
and pin B.

5–23.  If the roller at A and the pin at B can support a load 
up to 4 kN and 8 kN, respectively, determine the maximum 
intensity of the distributed load w, measured in kN>m, so 
that failure of the supports does not occur.

A

B

w

3 m

30�

4 m

Probs. 5–22/23

*5–24.  The relay regulates voltage and current. Determine 
the force in the spring CD, which has a stiffness of k = 120 N>m,  
so that it will allow the armature to make contact at A 
in figure (a) with a vertical force of 0.4 N. Also, determine the 
force in the spring when the coil is energized and attracts 
the armature to E, figure (b), thereby breaking contact at A.

50 mm50 mm 30 mm

(a) (b)

D
D

kk

CC BB EA
A

10�

Prob. 5–24
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5–29.  Determine the force P needed to pull the 50-kg 
roller over the smooth step. Take u = 30°.

5–30.  Determine the magnitude and direction u of the 
minimum force P needed to pull the 50-kg roller over the 
smooth step.

A

B

P

300 mm
50 mm 

u

Probs. 5–29/30

5–31.  The operation of the fuel pump for an automobile 
depends on the reciprocating action of the rocker arm ABC, 
which is pinned at B and is spring loaded at A and D. When 
the smooth cam C is in the position shown, determine the 
horizontal and vertical components of force at the pin and 
the force along the spring DF for equilibrium. The vertical 
force acting on the rocker arm at A is FA = 60 N, and at C it 
is FC = 125 N.

50 mm

FA � 60 N

10 mm

C
D

B
A

F

E

20 mm

FC � 125 N

30�

Prob. 5–31

5–27.  Determine the reactions acting on the smooth 
uniform bar, which has a mass of 20 kg.

4 m

30ºA

B

60º

Prob. 5–27

*5–28.  A linear torsional spring deforms such that an 
applied couple moment M is related to the spring’s rotation u 
in radians by the equation M = (20 u) N # m. If such a spring 
is attached to the end of a pin-connected uniform 10-kg rod, 
determine the angle u for equilibrium. The spring is 
undeformed when u = 0°.

A

0.5 m

u
M � (20 u) N � m

Prob. 5–28
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5–35.  The smooth pipe rests against the opening at the 
points of contact A, B, and C. Determine the reactions at 
these points needed to support the force of 300 N. Neglect 
the pipe’s thickness in the calculation.

30�

30�

300 N

B

A

C

0.5 m 0.5 m

0.26 m

0.15 m

Prob. 5–35

*5–36.  The beam of negligible weight is supported 
horizontally by two springs. If the beam is horizontal and 
the springs are unstretched when the load is removed, 
determine the angle of tilt of the beam when the load is 
applied.

3 m 3 m

A

kA kB

B

C D

600 N/m 
 = 1 kN/m  = 1.5 kN/m 

Prob. 5–36

*5–32.  Determine the magnitude of force at the pin A and 
in the cable BC needed to support the 500-lb load. Neglect 
the weight of the boom AB.

35�22�

8 ft

C

B

A

Prob. 5–32

5–33.  The dimensions of a jib crane, which is manufactured 
by the Basick Co., are given in the figure. If the crane has a 
mass of 800 kg and a center of mass at G, and the maximum 
rated force at its end is F = 15 kN, determine the reactions 
at  its bearings. The bearing at A is a journal bearing and 
supports only a horizontal force, whereas the bearing at B is 
a thrust bearing that supports both horizontal and vertical 
components.

5–34.  The dimensions of a jib crane, which is manufactured 
by the Basick Co., are given in the figure. The crane has a 
mass of 800 kg and a center of mass at G. The bearing at A 
is a journal bearing and can support a horizontal force, 
whereas the bearing at B is a thrust bearing that supports 
both horizontal and vertical components. Determine the 
maximum load F that can be suspended from its end if the 
selected bearings at A and B can sustain a maximum 
resultant load of 24 kN and 34 kN, respectively.

F

G

A

3 m

2 m

B

0.75 m

Probs. 5–33/34
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5–41.  The bulk head AD is subjected to both water and  
soil-backfill pressures. Assuming AD is “pinned” to the ground 
at A, determine the horizontal and vertical reactions there and 
also the required tension in the ground anchor BC necessary 
for equilibrium. The bulk head has a mass of 800 kg.

6 m

310 kN/m118 kN/m

0.5 m

C F

A

B

D

4 m

Prob. 5–41

5–42.  The boom supports the two vertical loads. Neglect 
the size of the collars at D and B and the thickness of the 
boom, and compute the horizontal and vertical components 
of force at the pin A and the force in cable CB. Set 
F1 = 800 N and F2 = 350 N.

5–43.  The boom is intended to support two vertical loads, 
F1 and F2. If the cable CB can sustain a maximum load of 
1500 N before it fails, determine the critical loads if 
F1 = 2F2. Also, what is the magnitude of the maximum 
reaction at pin A?

1.5 m

30�

3

C

B

F1

F2

D

A

4

5

1 m

Probs. 5–42/43

5–37.  The cantilevered jib crane is used to support the 
load  of 780 lb. If x = 5 ft, determine the reactions at 
the supports. Note that the supports are collars that allow 
the crane to rotate freely about the vertical axis. The collar 
at B supports a force in the vertical direction, whereas the 
one at A does not.

5–38.  The cantilevered jib crane is used to support the 
load of 780 lb. If the trolley T can be placed anywhere 
between 1.5 ft … x … 7.5 ft, determine the maximum 
magnitude of reaction at the supports A and B. Note that 
the supports are collars that allow the crane to rotate freely 
about the vertical axis. The collar at B supports a force in 
the vertical direction, whereas the one at A does not.

8 ft

4 ft

780 lb

x

T

B

A

Probs. 5–37/38

5–39.  The bar of negligible weight is supported by two 
springs, each having a stiffness k = 100 N>m. If the springs 
are originally unstretched, and the force is vertical as shown, 
determine the angle u the bar makes with the horizontal, 
when the 30-N force is applied to the bar.

*5–40.  Determine the stiffness k of each spring so that 
the 30-N force causes the bar to tip u = 15° when the force is 
applied. Originally the bar is horizontal and the springs are 
unstretched. Neglect the weight of the bar.

2 m1 m

A

BC

30 N
k

k

Probs. 5–39/40
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5–47.  Determine the reactions at the pin A and the tension 
in cord BC. Set F = 40 kN. Neglect the thickness of the beam.

*5–48.  If rope BC will fail when the tension becomes 50 kN, 
determine the greatest vertical load F that can be applied to 
the beam at B. What is the magnitude of the reaction at A 
for this loading? Neglect the thickness of the beam.

C

A

F26 kN

13 12

5

5
3

4

B

4 m2 m

Probs. 5–47/48

5–49.  The rigid metal strip of negligible weight is used as 
part of an electromagnetic switch. If the stiffness of the 
springs at A and B is k = 5 N>m and the strip is originally 
horizontal when the springs are unstretched, determine the 
smallest force F needed to close the contact gap at C.

50 mm 50 mm

10 mm
A

B

C

k

k

F

Prob. 5–49

*5–44.  The 10-kg uniform rod is pinned at end A. If it is 
also subjected to a couple moment of 50 N # m, determine 
the smallest angle u for equilibrium. The spring is 
unstretched when u = 0, and has a stiffness of k = 60 N>m.

0.5 m

2 m

50 N � m

k � 60 N/m

B

A

u

Prob. 5–44

5–45.  The man uses the hand truck to move material up the 
step. If the truck and its contents have a mass of 50 kg with 
center of gravity at G, determine the normal reaction on both 
wheels and the magnitude and direction of the minimum 
force required at the grip B needed to lift the load.

A

B

60�

0.4 m

0.5 m

0.4 m

0.4 m

0.1 m

0.2 m G

Prob. 5–45

5–46.  Three uniform books, each having a weight W and 
length a, are stacked as shown. Determine the maximum 
distance d that the top book can extend out from the bottom 
one so the stack does not topple over.

a d

Prob. 5–46
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*5–52.  The uniform beam has a weight W and length l 
and is supported by a pin at A and a cable BC. Determine 
the horizontal and vertical components of reaction at A 
and the tension in the cable necessary to hold the beam in 
the position shown.

f

C

B
A

l

Prob. 5–52

5–53.  A boy stands out at the end of the diving board, which 
is supported by two springs A and B, each having a stiffness 
of k = 15 kN>m. In the position shown the board is horizontal. 
If the boy has a mass of 40 kg, determine the angle of tilt 
which the board makes with the horizontal after he jumps off. 
Neglect the weight of the board and assume it is rigid.

BA

1 m 3 m

Prob. 5–53

5–50.  The rigid metal strip of negligible weight is used as 
part of an electromagnetic switch. Determine the maximum 
stiffness k of the springs at A and B so that the contact at C 
closes when the vertical force developed there is F = 0.5 N. 
Originally the strip is horizontal as shown.

50 mm 50 mm

10 mm
A

B

C

k

k

F

Prob. 5–50

5–51.  The cantilever footing is used to support a wall near 
its edge A so that it causes a uniform soil pressure under the 
footing. Determine the uniform distribution loads, wA and 
wB, measured in lb>ft at pads A and B, necessary to support 
the wall forces of 8000 lb and 20 000 lb.

wA

A B

wB

8 ft2 ft 3 ft

1.5 ft

8000 lb

20 000 lb

0.25 ft

Prob. 5–51
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*5–56.  The uniform rod of length L and weight W is 
supported on the smooth planes. Determine its position u 
for equilibrium. Neglect the thickness of the rod.

L

u

f
c

Prob. 5–56

5–57.  The beam is subjected to the two concentrated loads. 
Assuming that the foundation exerts a linearly varying load 
distribution on its bottom, determine the load intensities 
w1 and w2 for equilibrium if P = 500 lb and L = 12 ft.

P 2P

w2

w1

L––
3

L––
3

L––
3

Prob. 5–57

5–54.  The 30-N uniform rod has a length of l = 1 m.  
If s = 1.5 m, determine the distance h of placement at the 
end A along the smooth wall for equilibrium.

h

s

C

B

A

l

Prob. 5–54

5–55.  The uniform rod has a length l and weight W. It is 
supported at one end A by a smooth wall and the other end 
by a cord of length s which is attached to the wall as shown. 
Determine the placement h for equilibrium.

h

s

C

B

A

l

Prob. 5–55
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*5–60.  Determine the distance d for placement of the load P 
for equilibrium of the smooth bar in the position u as shown. 
Neglect the weight of the bar.

P

d

a

u

Prob. 5–60

5–61.  If d = 1 m, and u = 30°, determine the normal 
reaction at the smooth supports and the required distance a 
for the placement of the roller if P = 600 N. Neglect the 
weight of the bar.

P

d

a

u

Prob. 5–61

5–58.  The beam is subjected to the two concentrated 
loads.  Assuming that the foundation exerts a linearly 
varying load distribution on its bottom, determine the load 
intensities w1 and w2 for equilibrium in terms of the 
parameters shown.

P 2P

w2

w1

L––
3

L––
3

L––
3

Prob. 5–58

5–59.  The rod supports a weight of 200 lb and is pinned at its 
end A. If it is also subjected to a couple moment of  
100 lb  #  ft, determine the angle u for equilibrium. The spring 
has an unstretched length of 2 ft and a stiffness of k = 50 lb>ft.

3 ft
3 ft

2 ft100 lb � ft
k � 50 lb/ft

B

A u

Prob. 5–59
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C5–3.    Like all aircraft, this jet plane rests on three wheels. 
Why not use an additional wheel at the tail for better 
support? (Can you think of any other reason for not 
including this wheel?) If there was a fourth tail wheel, draw 
a free-body diagram of the plane from a side (2 D) view, and 
show why one would not be able to determine all the wheel 
reactions using the equations of equilibrium.

Prob. C5–3 (© Russell C. Hibbeler)

C5–4.     Where is the best place to arrange most of the logs 
in the wheelbarrow so that it minimizes the amount of force 
on the backbone of the person transporting the load? Do an 
equilibrium analysis to explain your answer.

Prob. C5–4 (© Russell C. Hibbeler)

C5–1.    The tie rod is used to support this overhang at the 
entrance of a building. If it is pin connected to the building 
wall at A and to the center of the overhang B, determine if 
the force in the rod will increase, decrease, or remain the 
same if (a) the support at A is moved to a lower position D, 
and (b) the support at B is moved to the outer position C. 
Explain your answer with an equilibrium analysis, using 
dimensions and loads. Assume the overhang is pin supported 
from the building wall.

C
B

D

A

Prob. C5–1 (© Russell C. Hibbeler)

C5–2.    The man attempts to pull the four wheeler up the 
incline and onto the trailer. From the position shown, is it 
more effective to pull on the rope at A, or would it be better 
to pull on the rope at B? Draw a free-body diagram for each 
case, and do an equilibrium analysis to explain your answer.
Use appropriate numerical values to do your calculations.

A

B

Prob. C5–2 (© Russell C. Hibbeler)

Conceptual Problems
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EQUILIBRIUM IN THREE DIMENSIONS

5.5  Free-Body Diagrams

The first step in solving three-dimensional equilibrium problems, as in the 
case of two dimensions, is to draw a free-body diagram. Before we can do 
this, however, it is first necessary to discuss the types of reactions that can 
occur at the supports.

Support Reactions.  The reactive forces and couple moments 
acting at various types of supports and connections, when the members 
are viewed in three dimensions, are listed in Table 5–2. It is important to 
recognize the symbols used to represent each of these supports and to 
understand clearly how the forces and couple moments are developed. 
As in the two-dimensional case:

	•	 A force is developed by a support that restricts the translation of its 
attached member.

	•	 A couple moment is developed when rotation of the attached 
member is prevented.

For example, in Table 5–2, item (4), the ball-and-socket joint prevents 
any translation of the connecting member; therefore, a force must act on 
the member at the point of connection. This force has three components 
having unknown magnitudes, Fx, Fy, Fz. Provided these components 
are known, one can obtain the magnitude of force,  F = 2F x

2 + F y
2 + F z

2, 
and the force’s orientation defined by its coordinate direction angles  
a, b, g, Eqs. 2–5.* Since the connecting member is allowed to rotate freely 
about any axis, no couple moment is resisted by a ball-and-socket joint.

It should be noted that the single bearing supports in items (5) and (7), 
the single pin (8), and the single hinge (9) are shown to resist both force 
and couple-moment components. If, however, these supports are used in 
conjunction with other bearings, pins, or hinges to hold a rigid body in 
equilibrium and the supports are properly aligned when connected to the 
body, then the force reactions at these supports alone are adequate for 
supporting the body. In other words, the couple moments become 
redundant and are not shown on the free-body diagram. The reason for 
this should become clear after studying the examples which follow.

* The three unknowns may also be represented as an unknown force magnitude F and 
two unknown coordinate direction angles. The third direction angle is obtained using the 
identity cos2 a + cos2 b + cos2 g = 1, Eq. 2–8
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Types of Connection Reaction Number of Unknowns

continued

One unknown. The reaction is a force which acts away 
from the member in the known direction of the cable.

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact.

Three unknowns. The reactions are three rectangular 
force components.

Four unknowns. The reactions are two force and two 
couple-moment components which act perpendicular to 
the shaft.  Note: The couple moments are generally not 
applied if the body is supported elsewhere. See the 
examples.

F

F

F

Fz

FyFx

single journal bearing

Fz

Fx

Mz

Mx

(1)

cable

(2)

(3)

roller

ball and socket

(4)

(5)

smooth surface support

TABLE 5–2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems
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Reaction Number of Unknowns

Five unknowns. The reactions are two force and three 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Six unknowns. The reactions are three force and three 
couple-moment components.

Fz

Fx

Mz

Mx

Fy

Fz

Fx

Mz

Mx
My

Fz

Mz

Fx

Fy My

Mz

Fx

Fy

Mx

Fz

Mz

Fx
MyMx

Fy

Fz

Types of Connection

TABLE 5–2 Continued

single hinge

fixed support

single thrust bearing

single journal bearing
with square shaft

single smooth pin

(7)

(6)

(8)

(10)

(9)
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Typical examples of actual supports that are referenced to Table 5–2 are 
shown in the following sequence of photos.

This ball-and-socket joint provides a 
connection for the housing of an earth 
grader to its frame. (4) (© Russell C. 
Hibbeler)

The journal bearings support the ends of 
the shaft. (5) (© Russell C. Hibbeler)

This thrust bearing is used to support the 
drive shaft on a machine. (7) (© Russell 
C. Hibbeler)

This pin is used to support the end of the 
strut used on a tractor. (8) (© Russell  
C. Hibbeler)

Free-Body Diagrams.  The general procedure for establishing the 
free-body diagram of a rigid body has been outlined in Sec. 5.2. Essentially 
it requires first “isolating” the body by drawing its outlined shape. This is 
followed by a careful labeling of all the forces and couple moments with 
reference to an established x, y, z coordinate system. As a general rule, it 
is suggested to show the unknown components of reaction as acting on 
the free-body diagram in the positive sense. In this way, if any negative 
values are obtained, they will indicate that the components act in the 
negative coordinate directions.
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45 N � m

500 N

Properly aligned journal
bearings at A, B, C.

A

B

C

45 N � m

500 N

The force reactions developed by
the bearings are sufficient for
equilibrium since they prevent the
shaft from rotating about each of the 
coordinate axes. No couple moments
at each bearing are developed.

Bz

Bx

Cx

Cy

x
yAy

Az

z

Example  5.14 

Consider the two rods and plate, along with their associated free-body 
diagrams, shown in Fig. 5–23. The x, y, z axes are established on the 
diagram and the unknown reaction components are indicated in the 
positive sense. The weight is neglected.

SOLUTION

C

Pin at A and cable BC.

A

B300 lb

200 lb � ft

Moment components are developed
by the pin on the rod to prevent
rotation about the x and z axes.

x

B300 lb

y

Az

z

MAz

MAx

Ax

Ay

T

400 lb

A

B

C

Properly aligned journal bearing
at A and hinge at C. Roller at B.

Ax

400 lb

Bz

z

yx

Az

Cx

Cz

Cy

Only force reactions are developed by
the bearing and hinge on the plate to
prevent rotation about each coordinate axis.
No moments are developed at the hinge.

Fig. 5–23
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5.6  Equations of Equilibrium

As stated in Sec. 5.1, the conditions for equilibrium of a rigid body 
subjected to a three-dimensional force system require that both the 
resultant force and resultant couple moment acting on the body be equal 
to zero.

Vector Equations of Equilibrium.  The two conditions for 
equilibrium of a rigid body may be expressed mathematically in vector 
form as

	
�F = 0

�MO = 0
	 (5–5)

where �F is the vector sum of all the external forces acting on the body 
and �MO is the sum of the couple moments and the moments of all the 
forces about any point O located either on or off the body.

Scalar Equations of Equilibrium.  If all the external forces and 
couple moments are expressed in Cartesian vector form and substituted 
into Eqs. 5–5, we have

 �F = �Fxi + �Fyj + �Fzk = 0

 �MO = �Mxi + �Myj + �Mzk = 0

Since the i, j, and k components are independent from one another, the 
above equations are satisfied provided

	
�Fx = 0

�Fy = 0

�Fz = 0

	 (5–6a)

and

	
�Mx = 0

�My = 0

�Mz = 0

	 (5–6b)

These six scalar equilibrium equations may be used to solve for at most 
six unknowns shown on the free-body diagram. Equations 5–6a require 
the sum of the external force components acting in the x, y, and z 
directions to be zero, and Eqs. 5–6b require the sum of the moment 
components about the x, y, and z axes to be zero.
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5.7  Constraints and Statical Determinacy

To ensure the equilibrium of a rigid body, it is not only necessary to satisfy 
the equations of equilibrium, but the body must also be properly held or 
constrained by its supports. Some bodies may have more supports than 
are necessary for equilibrium, whereas others may not have enough or the 
supports may be arranged in a particular manner that could cause the 
body to move. Each of these cases will now be discussed.

Redundant Constraints.  When a body has redundant supports, 
that is, more supports than are necessary to hold it in equilibrium, it 
becomes  statically indeterminate. Statically indeterminate means that 
there will be more unknown loadings on the body than equations of 
equilibrium available for their solution. For example, the beam in Fig. 5–24a 
and the pipe assembly in Fig. 5–24b, shown together with their free-body 
diagrams, are both statically indeterminate because of additional 
(or redundant) support reactions. For the beam there are five unknowns, 
MA, A x, A y, By, and Cy, for which only three equilibrium equations can be 
written (�Fx = 0, �Fy = 0, and �MO = 0, Eq. 5–2). The pipe assembly 
has eight unknowns, for which only six equilibrium equations can be 
written, Eqs. 5–6.

The additional equations needed to solve statically indeterminate 
problems of the type shown in Fig. 5–24 are generally obtained from the 
deformation conditions at the points of support. These equations involve 
the physical properties of the body which are studied in subjects dealing 
with the mechanics of deformation, such as “mechanics of materials.”*

500 N

B C

A

2 kN � m

500 N

2 kN � m

Ax

Ay

MA
By Cy

(a)

x

y

Fig. 5–24

* See R. C. Hibbeler, Mechanics of Materials, 8th edition, Pearson Education/Prentice 
Hall, Inc.

B

A

400 N

200 N

400 N

200 N

Ay

Az

ByBx

Mx My

Bz

Mz

(b)

y

z

x
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Improper Constraints.  Having the same number of unknown 
reactive forces as available equations of equilibrium does not always 
guarantee that a body will be stable when subjected to a particular 
loading. For example, the pin support at A and the roller support at B for 
the beam in Fig. 5–25a are placed in such a way that the lines of action of 
the reactive forces are concurrent at point A. Consequently, the applied 
loading P will cause the beam to rotate slightly about A, and so the beam 
is improperly constrained, �MA �  0.

In three dimensions, a body will be improperly constrained if the lines of 
action of all the reactive forces intersect a common axis. For example, the 
reactive forces at the ball-and-socket supports at A and B in Fig. 5–25b  
all intersect the axis passing through A and B. Since the moments of these 
forces about A and B are all zero, then the loading P will rotate the 
member about the AB axis, �MAB �  0.

A
B

FB

Ay

Ax

A

PP

(a)

A

Az
Bz

Ax BxAy

By

z

x

B

y

A

z

x

B

y

PP

(b)

Fig. 5–25
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Another way in which improper constraining leads to instability occurs 
when the reactive forces are all parallel. Two- and three-dimensional 
examples of this are shown in Fig. 5–26. In both cases, the summation of 
forces along the x axis will not equal zero.

In some cases, a body may have fewer reactive forces than equations of 
equilibrium that must be satisfied. The body then becomes only partially 
constrained. For example, consider member AB in Fig. 5–27a with its 
corresponding free-body diagram in Fig. 5–27b. Here �Fy = 0 will not 
be satisfied for the loading conditions and therefore equilibrium will not 
be maintained.

To summarize these points, a body is considered improperly constrained 
if all the reactive forces intersect at a common point or pass through a 
common axis, or if all the reactive forces are parallel. In engineering 
practice, these situations should be avoided at all times since they will 
cause an unstable condition.

A

FA

AB

FB

PP

(a)

y

x

Fig. 5–26

FB

100 N

A

B

C

100 N

FA

FC

x

(b)

z

y

A B

(a)

100 N

FB

(b)

FA

100 N

Fig. 5–27

Stability is always an important concern 
when operating a crane, not only when 
lifting a load, but also when moving it about. 
(© Russell C. Hibbeler)
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Important Points
	 •	 Always draw the free-body diagram first when solving any 

equilibrium problem.

	 •	 If a support prevents translation of a body in a specific direction, 
then the support exerts a force on the body in that direction.

	 •	 If a support prevents rotation about an axis, then the support 
exerts a couple moment on the body about the axis.

	 •	 If a body is subjected to more unknown reactions than available 
equations of equilibrium, then the problem is statically indeterminate.

	 •	 A stable body requires that the lines of action of the reactive forces 
do not intersect a common axis and are not parallel to one another.

Procedure for Analysis
Three-dimensional equilibrium problems for a rigid body can be 
solved using the following procedure.
Free-Body Diagram.

	 •	 Draw an outlined shape of the body.
	 •	 Show all the forces and couple moments acting on the body.
	 •	 Establish the origin of the x, y, z axes at a convenient point and 

orient the axes so that they are parallel to as many of the external 
forces and moments as possible.

	 •	 Label all the loadings and specify their directions. In general, 
show all the unknown components having a positive sense along 
the x, y, z axes.

	 •	 Indicate the dimensions of the body necessary for computing the 
moments of forces.

Equations of Equilibrium.
	 •	 If the x, y, z force and moment components seem easy to 

determine, then apply the six scalar equations of equilibrium; 
otherwise use the vector equations.

	 •	 It is not necessary that the set of axes chosen for force summation 
coincide with the set of axes chosen for moment summation. 
Actually, an axis in any arbitrary direction may be chosen for 
summing forces and moments.

	 •	 Choose the direction of an axis for moment summation such that 
it intersects the lines of action of as many unknown forces as 
possible. Realize that the moments of forces passing through 
points on this axis and the moments of forces which are parallel 
to the axis will then be zero.

	 •	 If the solution of the equilibrium equations yields a negative 
scalar for a force or couple moment magnitude, it indicates that 
the sense is opposite to that assumed on the free-body diagram.
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The homogeneous plate shown in Fig. 5–28a has a mass of 100 kg and is 
subjected to a force and couple moment along its edges. If it is supported 
in the horizontal plane by a roller at A, a ball-and-socket joint at B, and 
a cord at C, determine the components of reaction at these supports.

SOLUTION (SCALAR ANALYSIS)

Free-Body Diagram.  There are five unknown reactions acting on 
the plate, as shown in Fig. 5–28b. Each of these reactions is assumed to 
act in a positive coordinate direction.

Equations of Equilibrium.  Since the three-dimensional geometry 
is rather simple, a scalar analysis provides a direct solution to this 
problem. A force summation along each axis yields

�Fx = 0;    Bx = 0 � Ans.

�Fy = 0;    By = 0 � Ans.

�Fz = 0;    A z + Bz + TC - 300 N - 981 N = 0� (1)

Recall that the moment of a force about an axis is equal to the product 
of the force magnitude and the perpendicular distance (moment arm) 
from the line of action of the force to the axis. Also, forces that are 
parallel to an axis or pass through it create no moment about the axis. 
Hence, summing moments about the positive x and y axes, we have

�Mx = 0;    TC (2 m) - 981 N(1 m) + Bz(2 m) = 0� (2)

�My = 0;    300 N(1.5 m) + 981 N(1.5 m) - Bz(3 m) - A z (3 m)

	 - 200 N # m = 0� (3)

The components of the force at B can be eliminated if moments are 
summed about the x � and y � axes. We obtain

�Mx� = 0;    981 N(1 m) + 300 N(2 m) - A z(2 m) = 0� (4)

�My� = 0;    -300 N(1.5 m) - 981 N(1.5 m) - 200 N # m

	 + TC (3 m) = 0� (5)

Solving Eqs. 1 through 3 or the more convenient Eqs. 1, 4, and 5 yields

	 A z = 790 N Bz = -217 N TC = 707 N � Ans.

The negative sign indicates that Bz  acts downward.

NOTE: The solution of this problem does not require a summation of 
moments about the z axis. The plate is partially constrained since the 
supports cannot prevent it from turning about the z axis if a force is 
applied to it in the x–y plane.

example  5.15

A

B

C

200 N � m

1.5 m

2 m
3 m

(a)

300 N

200 N � m

1.5 m

1.5 m
y

y¿x¿�

1 m

1 m
Az

Bz

Bx By

z

z¿

981 N TC

(b)

300 N

x

Fig. 5–28
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Determine the components of reaction that the ball-and-socket joint 
at A, the smooth journal bearing at B, and the roller support at C 
exert on the rod assembly in Fig. 5–29a.

example  5.16

x

y

z

A

B

C
D

0.4 m

0.4 m

(a)

0.6 m

900 N

0.4 m
0.4 m

A

x

y

z

0.4 m

0.4 m

(b)

0.6 m
0.4 m

0.4 m
FC

Bz

Az Bx

Ax

Ay

900 N

Fig. 5–29

SOLUTION (SCALAR ANALYSIS)
Free-Body Diagram.  As shown on the free-body diagram, Fig. 5–29b, 
the reactive forces of the supports will prevent the assembly from 
rotating about each coordinate axis, and so the journal bearing at B only 
exerts reactive forces on the member. No couple moments are required.

Equations of Equilibrium.  Because all the forces are either horizontal 
or vertical, it is convenient to use a scalar analysis. A direct solution for 
A y can be obtained by summing forces along the y axis.

�Fy = 0;        A y = 0 � Ans.

The force FC can be determined directly by summing moments about 
the y axis.

�My = 0;      FC (0.6 m) - 900 N(0.4 m) = 0

	 FC = 600 N � Ans.

Using this result, Bz can be determined by summing moments about 
the x axis.

�Mx = 0;      Bz(0.8 m) + 600 N(1.2 m) - 900 N(0.4 m) = 0

	 Bz = -450 N � Ans.

The negative sign indicates that Bz acts downward. The force Bx can 
be found by summing moments about the z axis.

�Mz = 0;      -Bx(0.8 m) = 0 Bx = 0 � Ans.

Thus,

�Fx = 0;        A x + 0 = 0  A x = 0 � Ans.

Finally, using the results of Bz and FC.

�Fz =  0;      A z + (-450 N) + 600 N - 900 N = 0
	 A z = 750 N � Ans.



example  2.1

	 5.7  Constraints and Statical Determinacy	 257

5

example  5.17

The boom is used to support the 75-lb flowerpot in Fig. 5–30a. 
Determine the tension developed in wires AB and AC.

SOLUTION (VECTOR ANALYSIS)
Free-Body Diagram.  The free-body diagram of the boom is shown 
in Fig. 5–30b.

Equations of Equilibrium.  Here the cable forces are directed at 
angles with the coordinate axes, so we will use a vector analysis.

 FAB = FABa
rAB

rAB
b = FABa

52i - 6j + 3k6  ft2(2 ft)2 + (-6 ft)2 + (3 ft)2
b

 =
 2 
7  FABi -

 6 
7  FAB  j +

 3 
7  FABk

 FAC = FACa
rAC

rAC
b = FACa

5-2i - 6j + 3k6  ft2(-2 ft)2 + (-6 ft)2 + (3 ft)2
b

 = -
 2 
7  FAC i -

 6 
7  FAC j +

 3 
7  FAC k

We can eliminate the force reaction at O by writing the moment 
equation of equilibrium about point O.

�MO = 0;          rA * (FAB + FAC + W) = 0

 (6j) * c a  2 
7  FABi -

 6 
7  FAB  j +

 3 
7  FABkb + a -

 2 
7  FACi -

 6 
7  FAC j +

 3 
7  FACkb + (-75k) d = 0

 a  18 
7  FAB +

 18 
7  FAC - 450b i + a -

 12 
7  FAB +

 12 
7  FACbk = 0

�Mx = 0;       18 
7 FAB +

 18 
7 FAC - 450 = 0� (1)

�My = 0;	 0 = 0

�Mz = 0;      -
 12 
7 FAB +

 12 
7 FAC = 0� (2)

Solving Eqs. (1) and (2) simultaneously,

	 FAB = FAC = 87.5 lb � Ans.

x
y

O
A

z

6 ft

(a)

3 ft

2 ft
2 ft

B

C

Fig. 5–30

B

A

(b)

6 ft

x y

O

z

3 ft

2 ft

2 ft

W � 75 lb

Oz

Oy
Ox

C

rA

FAB
FAC
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1.5 m

2 m

200 N

1.5 m

2 m

E

A

B

D

C

(a)

1 m

Rod AB shown in Fig. 5–31a is subjected to the 200-N force. Determine 
the reactions at the ball-and-socket joint A and the tension in the 
cables BD and BE. The collar at C is fixed to the rod.

SOLUTION (VECTOR ANALYSIS)
Free-Body Diagram.  Fig. 5–31b.

Equations of Equilibrium.  Representing each force on the free-body 
diagram in Cartesian vector form, we have

 FA = A xi + A y  j + A zk

 TE = TEi

 TD = TD j

 F = 5-200k6  N

Applying the force equation of equilibrium.

�F = 0;	  FA + TE + TD + F = 0

 (A x + TE)i + (A y + TD)j + (A z - 200)k = 0

�Fx = 0;	 A x + TE = 0� (1)
�Fy = 0;	 A y + TD = 0� (2)

�Fz = 0;	 A z - 200 = 0� (3)

Summing moments about point A yields

�MA = 0;	 rC * F + rB * (TE + TD) = 0

Since rC =
1
2 rB, then

(0.5i + 1j - 1k) * (-200k) + (1i + 2j - 2k) * (TEi + TD j) = 0

Expanding and rearranging terms gives

(2TD - 200)i + (-2TE + 100)j + (TD - 2TE)k = 0

�Mx = 0;	 2TD - 200 = 0� (4)

�My = 0;	 -2TE + 100 = 0� (5)
�Mz = 0;	 TD - 2TE = 0� (6)

Solving Eqs. 1 through 5, we get

	  TD = 100 N � Ans.
	  TE = 50 N � Ans.

	  A x = -50 N � Ans.

	  A y = -100 N � Ans.

	  A z = 200 N � Ans.

NOTE: The negative sign indicates that Ax and Ay have a sense which 
is opposite to that shown on the free-body diagram, Fig. 5–31b. Also, 
notice that Eqs. 1–6 can be set up directly using a scalar analysis.

200 N

y

B

C

x

z

rB

rC

TD

TE

Az

A Ay

Ax

(b)

example  5.18

Fig. 5–31
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example  5.19

The bent rod in Fig. 5–32a is supported at A by a journal bearing, at D 
by a ball-and-socket joint, and at B by means of cable BC. Using only 
one equilibrium equation, obtain a direct solution for the tension in 
cable BC. The bearing at A is capable of exerting force components 
only in the z and y directions since it is properly aligned on the shaft. 
In other words, no couple moments are required at this support.

SOLUTION (VECTOR ANALYSIS)

Free-Body Diagram.  As shown in Fig. 5–32b, there are six unknowns.

Equations of Equilibrium.  The cable tension TB may be obtained 
directly by summing moments about an axis that passes through points 
D and A. Why? The direction of this axis is defined by the unit vector 
u, where

 u =
rDA

rDA
= -

122
 i -

122
 j

 = -0.7071i - 0.7071j

Hence, the sum of the moments about this axis is zero provided

�MDA = u # �(r * F) = 0

Here r represents a position vector drawn from any point on the axis 
DA to any point on the line of action of force F (see Eq. 4–11). With 
reference to Fig. 5–32b, we can therefore write

u # (rB * TB + rE * W) = 0

 (-0.7071i - 0.7071j) # 3 (-1j) * (TBk)

	 + (-0.5j) * (-981k)4 = 0

(-0.7071i - 0.7071j) # [(-TB + 490.5)i] = 0

-0.7071(-TB + 490.5) + 0 + 0 = 0

	 TB = 490.5 N � Ans.

Note: Since the moment arms from the axis to TB and W are easy to 
obtain, we can also determine this result using a scalar analysis. As 
shown in Fig. 5–32b,

�MDA = 0; TB  (1 m sin 45� ) - 981 N(0.5 m sin 45� ) = 0

	 TB = 490.5 N � Ans.

0.5 m

0.5 m

x

z

y

E

B

A

D

100 kg

C

(a)

1 m

TB

x

z

y

B

A

D

Az

Ay

Dy

Dz
Dx

rE

rB

W � 981 N

u

(b)

45�

0.5 m

0.5 m

Fig. 5–32
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P5–2.  Draw the free-body diagram of each object.

2 m

1 m

0.5 m

B

A

C

300 N

(a)

z

y
x

2 m1 m

3 m

1 m

500 N

B
C

A

(b)

z

y

x

2 m 2 m 

2 m 

(c)

400 N 

A

B

z

y

x

Prob. P5–2

P5–3.  In each case, write the moment equations about the  
x, y, and z axes.

z

y

x
3 m 

4 m 

600 N 

(a)

2 m 

400 N 
300 N 

Az

A

C

B

Bz

By

Bx

CxCz

1 m

2 m

(b)

2 m

1 m

2 m

y

x

300 N 

z

Bz

By

Ax

Az

Cz

Cy

1.5 m

800 N � m2 m

1 m

(c)

Bz

Bx

Ax

Az

CyCz

z

y

x

Prob. P5–3

Preliminary Problems
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All problem solutions must include an FBD.

F5–7.  The uniform plate has a weight of 500 lb. Determine 
the tension in each of the supporting cables.

z
A

B C

y

x

200 lb

3 ft

2 ft

2 ft

Prob. F5–7

F5–8.  Determine the reactions at the roller support A, the 
ball-and-socket joint D, and the tension in cable BC for 
the plate.

x y
D

B

C

A

z

0.4 m 0.5 m

600 N900 N

0.3 m0.4 m

0.1 m

0.2 m

Prob. F5–8

F5–9.  The rod is supported by smooth journal bearings at 
A, B, and C and is subjected to the two forces. Determine 
the reactions at these supports.

z

x
y

A

B
D

C

600N 400 N
0.6 m

0.6 m 0.6 m

0.4 m

Prob. F5–9

F5–10.  Determine the support reactions at the smooth 
journal bearings A, B, and C of the pipe assembly.

z

x

y

0.6 m

0.6 m
0.6 m

450 N
0.4 m A

B

C

Prob. F5–10

F5–11.  Determine the force developed in the short 
link BD, and the tension in the cords CE and CF, and the 
reactions of the ball-and-socket joint A on the block.

x
3 m

9 kN6 kN

1.5 m

4 m

C

A

B

E

y

z

D
F

Prob. F5–11

F5–12.  Determine the components of reaction that the 
thrust bearing A and cable BC exert on the bar.

F � 80 lb

x

y

z

B
D

C
A

1.5 ft
1.5 ft6 ft

Prob. F5–12

FUNDAMENTAL PROBLEMS
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All problem solutions must include an FBD.

5–62.  The uniform load has a mass of 600 kg and is lifted 
using a uniform 30-kg strongback beam BAC and four ropes 
as shown. Determine the tension in each rope and the force  
that must be applied at A.

2 m

1.5 m

1.25 m

1.5 m

1.25 m

F

A
B C

Prob. 5–62

5–63.  Due to an unequal distribution of fuel in the wing 
tanks, the centers of gravity for the airplane fuselage A and 
wings B and C are located as shown. If these components 
have weights W A = 45 000 lb, W B = 8000 lb, and 
W C = 6000 lb, determine the normal reactions of the 
wheels D, E, and F on the ground.

8 ft
20 ft

A
BD

E

F

8 ft
6 ft

6 ft

4 ft

3 ft

z

x

y

C

Prob. 5–63

*5–64.  Determine the components of reaction at the fixed 
support A. The 400 N, 500 N, and 600 N forces are parallel to 
the x, y, and z axes, respectively.

y

400 N

600 N

500 N

1 m

0.5 m

0.75 m

z

x

A

0.75 m

Prob. 5–64

5–65.  The 50-lb mulching machine has a center of gravity 
at G. Determine the vertical reactions at the wheels C 
and B and the smooth contact point A.

x

y

z

G

1.25 ft
1.25 ft

1.5 ft
2 ft

4 ft

C

BA

Prob. 5–65

PROBLEMS
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5–66.  The smooth uniform rod AB is supported by a ball-
and-socket joint at A, the wall at B, and cable BC. Determine 
the components of reaction at A, the tension in the cable, 
and the normal reaction at B if the rod has a mass of 20 kg.

y

z

x

A

B

1 m

2 m

0.5 m

1.5 m

C

Prob. 5–66

5–67.  The uniform concrete slab has a mass of 2400 kg. 
Determine the tension in each of the three parallel 
supporting cables when the slab is held in the horizontal 
plane as shown.

x

A

C

B

TC

TB

TA

y

z

2 m
1 m1 m

2 m
0.5 m

15 kN

Prob. 5–67

*5–68.  The 100-lb door has its center of gravity at G. 
Determine the components of reaction at hinges A and B if 
hinge B resists only forces in the x and y directions and  
A resists forces in the x, y, z directions.

A

B

G

z

yx

18 in.

24 in.

24 in.

30�

18 in.

Prob. 5–68

5–69.  Determine the tension in each cable and the 
components of reaction at D needed to support the load.

C

z

B

x

y

3 m

2 m

6 m

400 N

30�

A

D

Prob. 5–69
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5–70.  The stiff-leg derrick used on ships is supported by a 
ball-and-socket joint at D and two cables BA and BC. The 
cables are attached to a smooth collar ring at B, which allows 
rotation of the derrick about z axis. If the derrick supports a 
crate having a mass of 200 kg, determine the tension in the 
cables and the x, y, z components of reaction at D.

z

y

x

3 m

B

D

7.5 m

4 m

6 m

6 m

2 m

A

C

1 m

Prob. 5–70

5–71.  Determine the components of reaction at the ball-
and-socket joint A and the tension in each cable necessary 
for equilibrium of the rod.

z

x

y

A

D

E

C

3 m

600 N

3 m

3 m

2 m

2 m

B

Prob. 5–71

*5–72.  Determine the components of reaction at the ball-
and-socket joint A and the tension in the supporting cables 
DB and DC.

y

1.5 m

800 N/m
1 m

1.5 m

3 m

1 m

1.5 m

1.5 m

3 m

B

z

C

A

D

x

Prob. 5–72

5–73.  The bent rod is supported at A, B, and C by smooth 
journal bearings. Determine the components of reaction at 
the bearings if the rod is subjected to the force F = 800 N. 
The bearings are in proper alignment and exert only force 
reactions on the rod.

z

y

2 m

2 m

0.75 m1 m

F

30�

60�

C

A

B

x

Prob. 5–73
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5–74.  The bent rod is supported at A, B, and C by smooth 
journal bearings. Determine the magnitude of F which will 
cause the positive x component of reaction at the bearing C 
to be Cx = 50 N. The bearings are in proper alignment and 
exert only force reactions on the rod.

z

y

2 m

2 m

0.75 m1 m

F

30�

60�

C

A

B

x

Prob. 5–74

5–75.  Member AB is supported by a cable BC and at A by 
a square rod which fits loosely through the square hole in 
the collar fixed to the member as shown. Determine the 
components of reaction at A and the tension in the cable 
needed to hold the rod in equilibrium.

B

1.5 m

400 N

200 N

1 m

3 m

C

z

x

y

A

Prob. 5–75

*5–76.  The member is supported by a pin at A and 
cable BC. Determine the components of reaction at these 
supports if the cylinder has a mass of 40 kg.

C

0.5 m

z

A

B

D

x

3 m

1 m

1 m

1 m

y

Prob. 5–76

5–77.  The member is supported by a square rod which 
fits loosely through the smooth square hole of the attached 
collar at A and by a roller at B. Determine the components 
of reaction at these supports when the member is subjected 
to the loading shown.

y

z

x
A

B
1 m 2 m

2 m

300 N

400 N

500 N

C

Prob. 5–77
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5–78.  The bent rod is supported at A, B, and C by smooth 
journal bearings. Compute the x, y, z components of 
reaction  at the bearings if the rod is subjected to forces 
F1 = 300 lb and F2 = 250 lb. F1 lies in the y–z plane. The 
bearings are in proper alignment and exert only force 
reactions on the rod.

z

y3 ft

5 ft

F2

45�

30�

45�

F1

C
4 ft

1 ft

A

2 ft

B

x

Prob. 5–78

5–79.  The bent rod is supported at A, B, and C by smooth 
journal bearings. Determine the magnitude of F2 which will 
cause the reaction Cy at the bearing C to be equal to zero. 
The bearings are in proper alignment and exert only force 
reactions on the rod. Set F1 = 300 lb.

z

y3 ft

5 ft

F2

45�

30�

45�

F1

C
4 ft

1 ft

A

2 ft

B

x

Prob. 5–79

*5–80.  The bar AB is supported by two smooth collars. 
At A the connection is with a ball-and-socket joint and at B 
it is a rigid attachment. If a 50-lb load is applied to the bar, 
determine the x, y, z components of reaction at A and B.

z

y

x

50 lb

A

C

B

D

E

F

6 ft

3 ft

4 ft

5 ft

6 ft

Prob. 5–80

5–81.  The rod has a weight of 6 lb>ft. If it is supported by 
a ball-and-socket joint at C and a journal bearing at D, 
determine the x, y, z components of reaction at these 
supports and the moment M that must be applied along the 
axis of the rod to hold it in the position shown.

z

y

A

D

C
M

0.5 ft

1 ft

B
1 ft

x

60�

45�

Prob. 5–81
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5–82.  The sign has a mass of 100 kg with center of mass 
at G. Determine the x, y, z components of reaction at the 
ball-and-socket joint A and the tension in wires BC and BD.

x yB

1 m

z

1 m

D

C
1 m

A

2 m1 m

2 m

G

Prob. 5–82

5–83.  Both pulleys are fixed to the shaft and as the shaft 
turns with constant angular velocity, the power of pulley A 
is transmitted to pulley B. Determine the horizontal tension 
T in the belt on pulley B and the x, y, z components of 
reaction at the journal bearing C and thrust bearing D if 
u = 0�. The bearings are in proper alignment and exert only 
force reactions on the shaft.

300 mm

250 mm

150 mm

80 mm

200 mm

T

50 N

z

y

A

BC

D

x

80 N
65 N

u

Prob. 5–83

*5–84.  Both pulleys are fixed to the shaft and as the shaft 
turns with constant angular velocity, the power of pulley A 
is transmitted to pulley B. Determine the horizontal tension 
T in the belt on pulley B and the x, y, z components of 
reaction at the journal bearing C and thrust bearing D if 
u = 45�. The bearings are in proper alignment and exert 
only force reactions on the shaft.

300 mm

250 mm

150 mm

80 mm

200 mm

T

50 N

z

y

A

BC

D

x

80 N
65 N

u

Prob. 5–84

5–85.  Member AB is supported by a cable BC and at A by 
a square rod which fits loosely through the square hole at 
the end joint of the member as shown. Determine the 
components of reaction at A and the tension in the cable 
needed to hold the 800-lb cylinder in equilibrium.

B

3 ft

6 ft

2 ft

C

z

x

y

A

Prob. 5–85
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5

Equilibrium

A body in equilibrium is at rest or can translate 
with constant velocity.

 �F = 0

 �M = 0

F3 y

x

z

F4

F1F2

O

CHAPTER REVIEW

Two Dimensions

Before analyzing the equilibrium of a body, it is 
first necessary to draw its free-body diagram. 
This is an outlined shape of the body, which 
shows all the forces and couple moments that 
act on it.

Couple moments can be placed anywhere on a 
free-body diagram since they are free vectors. 
Forces can act at any point along their line of 
action since they are sliding vectors.

Angles used to resolve forces, and dimensions 
used to take moments of the forces, should also 
be shown on the free-body diagram.

Some common types of supports and their 
reactions are shown below in two dimensions.

Remember that a support will exert a force on 
the body in a particular direction if it prevents 
translation of the body in that direction, and it 
will exert a couple moment on the body if it 
prevents rotation.

The three scalar equations of equilibrium can be 
applied when solving problems in two 
dimensions, since the geometry is easy to 
visualize.

 �Fx = 0

 �Fy = 0
 �MO = 0

A

B

C

500 N�m

30�

Ax FBC

Ay

500 N�m

30�

y

x

1 m

1 m

2 m

2 m

roller

u

F

u

smooth pin or hinge

u

Fy

Fx

fixed support

Fy

Fx

M
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For the most direct solution, try to sum forces along 
an axis that will eliminate as many unknown forces 
as possible. Sum moments about a point A that 
passes through the line of action of as many 
unknown forces as possible.

�Fx = 0;

  Ax - P2 = 0 Ax = P2

�MA = 0;

  P2d2 + By  dB - P1d1 = 0

  By =
P1d1 - P2d2

dB
By

d1

P1

P2

d2

Ay

Ax A

dB

Three Dimensions

Some common types of supports and their 
reactions are shown here in three dimensions.

roller

F

ball and socket

Fz

FyFx

fixed support

Fz

Mz

Fx
MyMx

Fy

In three dimensions, it is often advantageous to use a 
Cartesian vector analysis when applying the 
equations of equilibrium. To do this, first express 
each known and unknown force and couple moment 
shown on the free-body diagram as a Cartesian 
vector. Then set the force summation equal to zero. 
Take moments about a point O that lies on the line 
of action of as many unknown force components as 
possible. From point O direct position vectors to 
each force, and then use the cross product to 
determine the moment of each force.

The six scalar equations of equilibrium are 
established by setting the respective i, j, and k 
components of these force and moment summations 
equal to zero.

 �F = 0

 �MO = 0

500 N

Statically indeterminate,
five reactions, three
equilibrium equations

2 kN � m

600 N

100 N

Proper constraint, statically determinate

200 N

45�

Determinacy and Stability

If a body is supported by a minimum number of 
constraints to ensure equilibrium, then it is 
statically determinate. If it has more constraints 
than required, then it is statically indeterminate.

To properly constrain the body, the reactions must 
not all be parallel to one another or concurrent.

 �Fx = 0

 �Fy = 0

 �Fz = 0

 �Mx = 0

 �My = 0

 �Mz = 0
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Review Problems
All problem solutions must include an FBD.

R5–1.  If the roller at B can sustain a maximum load of 
3 kN, determine the largest magnitude of each of the three 
forces F that can be supported by the truss.

A

B

2 m 2 m 2 m

45�

2 m

FFF

Prob. R5–1

R5–2.  Determine the reactions at the supports A and B for 
equilibrium of the beam.

4 m

200 N/m

400 N/m

A
B

3 m

Prob. R5–2

R5–3.  Determine the normal reaction at the roller A and 
horizontal and vertical components at pin B for equilibrium 
of the member.

0.4 m

60�

0.8 m

10 kN

0.6 m0.6 m

6 kN

A

B

Prob. R5–3

R5–4.  Determine the horizontal and vertical components 
of reaction at the pin at A and the reaction of the roller at B 
on the lever.

A
B

F � 50 lb

20 in. 18 in.

14 in. 30�

Prob. R5–4
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R5–5.  Determine the x, y, z components of reaction at the 
fixed wall A. The 150-N force is parallel to the z axis and the 
200-N force is parallel to the y axis.

A

2 m
1 m

150 N

200 N

2.5 m

z

yx

2 m

Prob. R5–5

R5–6.  A vertical force of 80 lb acts on the crankshaft. 
Determine the horizontal equilibrium force P that must be 
applied to the handle and the x, y, z components of reaction 
at the journal bearing A and thrust bearing B. The bearings 
are properly aligned and exert only force reactions on 
the shaft.

14 in.

14 in.

6 in.

8 in.

4 in.

80 lb
y

x

P

B
10 in.

A

z

Prob. R5–6

R5–7.  Determine the x, y, z components of reaction at the 
ball supports B and C and the ball-and-socket A (not 
shown) for the uniformly loaded plate.

z

y

2 lb/ft2

4 ft

A

B

C

x

2 ft

2 ft

1 ft

Prob. R5–7

R5–8.  Determine the x and z components of reaction at 
the journal bearing A and the tension in cords BC and BD 
necessary for equilibrium of the rod.

3 m

3 mA

C

D

B

4 m

y

F1 � {�800k} N

F2 � {350 j} N

6 m

2 m

x

z

Prob. R5–8



Chapter 6

In order to design the many parts of this boom assembly it is required that we 
know the forces that they must support. In this chapter we will show how to 

analyze such structures using the equations of equilibrium.

(© Tim Scrivener/Alamy)



Structural Analysis

CHAPTER OBJECTIVES

n	 To show how to determine the forces in the members of a truss 
using the method of joints and the method of sections.

n	 To analyze the forces acting on the members of frames and 
machines composed of pin-connected members.

6.1  Simple Trusses

A truss is a structure composed of slender members joined together at 
their end points. The members commonly used in construction consist 
of  wooden struts or metal bars. In particular, planar trusses lie in a 
single plane and are often used to support roofs and bridges. The truss 
shown in Fig. 6–1a is an example of a typical roof-supporting truss. In 
this  figure, the roof load is transmitted to the truss at the joints by 
means of a series of purlins. Since this loading acts in the same plane 
as the truss, Fig. 6–1b, the analysis of the forces developed in the truss 
members will be two-dimensional.

(a)

A

Purlin

(b)

Roof truss

Fig. 6–1
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(a)

Floor beam

Stringer
Deck

A

(b)

Bridge truss

Fig. 6–2

In the case of a bridge, such as shown in Fig. 6–2a, the load on the deck 
is first transmitted to stringers, then to floor beams, and finally to the 
joints of the two supporting side trusses. Like the roof truss, the bridge 
truss loading is also coplanar, Fig. 6–2b.

When bridge or roof trusses extend over large distances, a rocker or roller 
is commonly used for supporting one end, for example, joint A in Figs. 6–1a 
and 6–2a. This type of support allows freedom for expansion or contraction 
of the members due to a change in temperature or application of loads.

Assumptions for Design.  To design both the members and the 
connections of a truss, it is necessary first to determine the force 
developed in each member when the truss is subjected to a given loading. 
To do this we will make two important assumptions:

•		 All loadings are applied at the joints. In most situations, such as 
for bridge and roof trusses, this assumption is true. Frequently the 
weight of the members is neglected because the force supported by 
each member is usually much larger than its weight. However, if the 
weight is to be included in the analysis, it is generally satisfactory to 
apply it as a vertical force, with half of its magnitude applied at each 
end of the member.

•		 The members are joined together by smooth pins. The joint connections 
are usually formed by bolting or welding the ends of the members to a 
common plate, called a gusset plate, as shown in Fig. 6–3a, or by simply 
passing a large bolt or pin through each of the members, Fig. 6–3b. We 
can assume these connections act as pins provided the center lines of 
the joining members are concurrent, as in Fig. 6–3.

(a)

Gusset
plate

(b)

Fig. 6–3
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T C

T C

CompressionTension
(b)(a)

Fig. 6–4

The use of metal gusset plates in the 
construction of these Warren trusses is 
clearly evident. (© Russell C. Hibbeler)

A B

C

P

Fig. 6–5

A

C
D

B

P

Fig. 6–6

Because of these two assumptions, each truss member will act as a two-
force member, and therefore the force acting at each end of the member 
will be directed along the axis of the member. If the force tends to elongate 
the member, it is a tensile force (T), Fig. 6–4a; whereas if it tends to shorten 
the member, it is a compressive force (C), Fig. 6–4b. In the actual design of 
a truss it is important to state whether the nature of the force is tensile or 
compressive. Often, compression members must be made thicker than 
tension members because of the buckling or column effect that occurs 
when a member is in compression.

Simple Truss.  If three members are pin connected at their ends, 
they form a triangular truss that will be rigid, Fig. 6–5. Attaching two 
more members and connecting these members to a new joint D forms a 
larger truss, Fig. 6–6. This procedure can be repeated as many times as 
desired to form an even larger truss. If a truss can be constructed by 
expanding the basic triangular truss in this way, it is called a simple truss.
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6.2  The Method of Joints

In order to analyze or design a truss, it is necessary to determine the force 
in each of its members. One way to do this is to use the method of joints. 
This method is based on the fact that if the entire truss is in equilibrium, 
then each of its joints is also in equilibrium. Therefore, if the free-body 
diagram of each joint is drawn, the force equilibrium equations can then be 
used to obtain the member forces acting on each joint. Since the members 
of a plane truss are straight two-force members lying in a single plane, each 
joint is subjected to a force system that is coplanar and concurrent. As a 
result, only �Fx = 0 and �Fy = 0 need to be satisfied for equilibrium.

For example, consider the pin at joint B of the truss in Fig. 6–7a. 
Three forces act on the pin, namely, the 500-N force and the forces exerted 
by members BA and BC. The free-body diagram of the pin is shown in  
Fig. 6–7b. Here, FBA is “pulling” on the pin, which means that member BA 
is in tension; whereas FBC is “pushing” on the pin, and consequently 
member BC is in compression. These effects are clearly demonstrated by 
isolating the joint with small segments of the member connected to the 
pin, Fig. 6–7c. The pushing or pulling on these small segments indicates the 
effect of the member being either in compression or tension.

When using the method of joints, always start at a joint having at least 
one known force and at most two unknown forces, as in Fig. 6–7b. In this 
way, application of �Fx = 0 and �Fy = 0 yields two algebraic equations 
which can be solved for the two unknowns. When applying these 
equations, the correct sense of an unknown member force can be 
determined using one of two possible methods.

•		 The correct sense of direction of an unknown member force can, in 
many cases, be determined “by inspection.” For example, FBC in 
Fig. 6–7b must push on the pin (compression) since its horizontal 
component, FBC sin 45�, must balance the 500-N force (�Fx = 0). 
Likewise, FBA  is a tensile force since it balances the vertical 
component, FBC cos 45� (�Fy = 0). In more complicated cases, the 
sense of an unknown member force can be assumed; then, after 
applying the equilibrium equations, the assumed sense can be 
verified from the numerical results. A positive answer indicates 
that the sense is correct, whereas a negative answer indicates that 
the sense shown on the free-body diagram must be reversed.

•		 Always assume the unknown member forces acting on the joint’s 
free-body diagram to be in tension; i.e., the forces “pull” on the pin. 
If this is done, then numerical solution of the equilibrium equations 
will yield positive scalars for members in tension and negative scalars 
for members in compression. Once an unknown member force is 
found, use its correct magnitude and sense (T or C) on subsequent 
joint free-body diagrams.

B

2 m

500 N

A C

45�

2 m

(a)

B

45�

500 N

FBC (compression)FBA(tension)

(b)

FBA(tension)

B

45�

500 N

FBC (compression)

(c)

Fig. 6–7

The forces in the members of this simple 
roof truss can be determined using the 
method of joints. (© Russell C. Hibbeler) 
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Important Points

	 •	 Simple trusses are composed of triangular elements. The members 
are assumed to be pin connected at their ends and loads applied 
at the joints.

	 •	 If a truss is in equilibrium, then each of its joints is in equilibrium. 
The internal forces in the members become external forces when 
the free-body diagram of each joint of the truss is drawn. A force 
pulling on a joint is caused by tension in a member, and a force 
pushing on a joint is caused by compression.

Procedure for Analysis

The following procedure provides a means for analyzing a truss 
using the method of joints.

	 •	 Draw the free-body diagram of a joint having at least one known 
force and at most two unknown forces. (If this joint is at one of 
the supports, then it may be necessary first to calculate the 
external reactions at the support.)

	 •	 Use one of the two methods described above for establishing the 
sense of an unknown force.

	 •	 Orient the x and y axes such that the forces on the free-body 
diagram can be easily resolved into their x and y components and 
then apply the two force equilibrium equations �Fx = 0 and 
�Fy = 0. Solve for the two unknown member forces and verify 
their correct sense.

	 •	 Using the calculated results, continue to analyze each of the other 
joints. Remember that a member in compression “pushes” on the 
joint and a member in tension “pulls” on the joint. Also, be sure to 
choose a joint having at most two unknowns and at least one 
known force.
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Example   6.1

Determine the force in each member of the truss shown in Fig. 6–8a 
and indicate whether the members are in tension or compression.

SOLUTION
Since we should have no more than two unknown forces at the joint 
and at least one known force acting there, we will begin our analysis at 
joint B.

Joint B.  The free-body diagram of the joint at B is shown in Fig. 6–8b. 
Applying the equations of equilibrium, we have

S+ �Fx = 0;	 500 N - FBC sin 45� = 0	 FBC = 707.1 N (C)� Ans.

+ c �Fy = 0;	 FBC cos 45� - FBA = 0	 FBA = 500 N (T)� Ans.

Since the force in member BC has been calculated, we can proceed to 
analyze joint C to determine the force in member CA and the support 
reaction at the rocker.

Joint C.  From the free-body diagram of joint C, Fig. 6–8c, we have

S+ �Fx = 0;	 -FCA + 707.1 cos 45� N = 0	 FCA = 500 N (T)� Ans.

+ c �Fy = 0; 	 Cy - 707.1 sin 45� N = 0 	 Cy = 500 N� Ans.

Joint A.  Although it is not necessary, we can determine the 
components of the support reactions at joint A using the results of FCA  
and FBA . From the free-body diagram, Fig. 6–8d, we have

S+ �Fx = 0;	 500 N - A x = 0	 A x = 500 N

+ c �Fy = 0;	 500 N - A y = 0	 A y = 500 N

NOTE: The results of the analysis are summarized in Fig. 6–8e. Note 
that the free-body diagram of each joint (or pin) shows the effects of 
all the connected members and external forces applied to the joint, 
whereas the free-body diagram of each member shows only the effects 
of the end joints on the member.

Fig. 6–8

B

2 m

2 m

500 N

A C

(a)

45�

(b)

B

45�

500 N

FBCFBA

(c)

45�
707.1 N

FCA
C

Cy

(d)

A

FBA � 500 N

FCA � 500 N

Ay

Ax

(e)

B

45�

500 N

A 45�500 N

500 N

500 N

500 N
500 N

C

707.1 N

707.1 N

500 N500 N

Tension

Com
pressionTe

ns
io

n
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Example   6.2

Determine the forces acting in all the members of the truss shown in 
Fig. 6–9a.

SOLUTION
By inspection, there are more than two unknowns at each joint. 
Consequently, the support reactions on the truss must first be determined. 
Show that they have been correctly calculated on the free-body diagram 
in Fig. 6–9b. We can now begin the analysis at joint C. Why?

Joint C.  From the free-body diagram, Fig. 6–9c,

S+ �Fx = 0;	 -FCD cos 30� + FCB sin 45� = 0 

+ c �Fy = 0;	 1.5 kN + FCD sin 30� - FCB cos 45� = 0

These two equations must be solved simultaneously for each of the 
two unknowns. Note, however, that a direct solution for one of the 
unknown forces may be obtained by applying a force summation 
along an axis that is perpendicular to the direction of the other 
unknown force. For example, summing forces along the y� axis, which 
is perpendicular to the direction of FCD, Fig. 6–9d, yields a direct 
solution for FCB.

+ Q�Fy� = 0;	 1.5 cos 30�  kN - FCB sin 15� = 0

FCB = 5.019 kN = 5.02 kN (C)� Ans.

Then,

+ R�Fx� = 0;

	 -FCD + 5.019 cos 15� - 1.5 sin 30� = 0;     FCD = 4.10 kN  (T)� Ans.

Joint D.  We can now proceed to analyze joint D. The free-body 
diagram is shown in Fig. 6–9e.

S+ �Fx = 0;	 -FDA cos 30� + 4.10 cos 30�  kN = 0

	 FDA = 4.10 kN (T)� Ans.

+ c �Fy = 0;	 FDB - 2(4.10 sin 30�  kN) = 0

	 FDB = 4.10 kN (T)� Ans.

NOTE: The force in the last member, BA, can be obtained from joint B 
or joint A. As an exercise, draw the free-body diagram of joint B, sum 
the forces in the horizontal direction, and show that FBA = 0.776 kN (C). Fig. 6–9

2 m 2 m

D

B

C
A

2 m

3 kN

(a)

45�

30�30�

2 m 2 m

2 m

3 kN

(b)

3 kN

1.5 kN1.5 kN

x

FCB
FCD

1.5 kN

C

45�

30�

y

15�

(c)

x¿

FCB

FCD

1.5 kN

C

30�

y¿
15�

(d)

(e)

y

x

FDB

FDA 4.10 kN

30�30� D
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Determine the force in each member of the truss shown in Fig. 6–10a. 
Indicate whether the members are in tension or compression.

4 m

(a)

3 m

400 N

B
C

D
A

3 m

600 N

4 m

(b)

400 N

C

A

6 m
600 N

3 m

Ay

Cy

Cx

Fig. 6–10

3

45

x

y

FAB

FAD

600 N

(c)

A

SOLUTION
Support Reactions.  No joint can be analyzed until the support 
reactions are determined, because each joint has at least three 
unknown forces acting on it. A free-body diagram of the entire truss is 
given in Fig. 6–10b. Applying the equations of equilibrium, we have

 	 S+ �Fx = 0;	 600 N - Cx = 0	 Cx = 600 N 

	a+ �MC = 0;	 -Ay(6 m) + 400 N(3 m) + 600 N(4 m) = 0 

	 Ay = 600 N

	 + c �Fy = 0; 	 600 N - 400 N - Cy = 0	 Cy = 200 N

The analysis can now start at either joint A or C. The choice is arbitrary 
since there are one known and two unknown member forces acting on 
the pin at each of these joints.

Joint A.  (Fig. 6–10c). As shown on the free-body diagram, FAB is 
assumed to be compressive and FAD is tensile. Applying the equations 
of equilibrium, we have

+ c �Fy = 0;	 600 N -
4
5 FAB = 0	 FAB = 750 N (C)� Ans.

S+ �Fx = 0;	 FAD -
3
5(750 N) = 0	 FAD = 450 N (T)� Ans.

Example   6.3
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*The proper sense could have been determined by inspection, prior to applying �Fx = 0.

Joint D.  (Fig. 6–10d). Using the result for FAD and summing forces in 
the horizontal direction, Fig. 6–10d, we have

S+ �Fx = 0; 	 -450 N +
3
5 FDB + 600 N = 0	 FDB = -250 N

The negative sign indicates that FDB acts in the opposite sense to that 
shown in Fig. 6–10d.* Hence,

 	 FDB = 250 N (T)� Ans.

To determine FDC, we can either correct the sense of FDB on the free-
body diagram, and then apply �Fy = 0, or apply this equation and 
retain the negative sign for FDB, i.e.,

+ c �Fy = 0;	 -FDC -
4
5(-250 N) = 0	 FDC = 200 N (C)� Ans.

Joint C.  (Fig. 6–10e).

S+ �Fx = 0;	 FCB - 600 N = 0	 FCB = 600 N (C)� Ans.

+ c �Fy = 0;	 200 N - 200 N K 0 (check)

NOTE: The analysis is summarized in Fig. 6–10f, which shows the free-
body diagram for each joint and member.

3

4 5

x

y

FDB

600 N

(d)

FDC

D450 N

(f)

750 N 250 N

600 N

400 N

Compression 600 N

200 N

600 N

200 N

Tension

C
om

pressionCom
pr

es
sio

n

750 N

450 N

600 N

A
Tension

450 N

250 N 200 N

600 N
D

C
B

x

y

200 N

(e)

C 600 N

200 N

FCB

Fig. 6–10 (cont.)
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6.3  Zero-Force Members

Truss analysis using the method of joints is greatly simplified if we can first 
identify those members which support no loading. These zero-force 
members are used to increase the stability of the truss during construction 
and to provide added support if the loading is changed.

The zero-force members of a truss can generally be found by inspection of 
each of the joints. For example, consider the truss shown in Fig. 6–11a. If a 
free-body diagram of the pin at joint A is drawn, Fig. 6–11b, it is seen that 
members AB and AF are zero-force members. (We could not have come to 
this conclusion if we had considered the free-body diagrams of joints F or B 
simply because there are five unknowns at each of these joints.) In a similar 
manner, consider the free-body diagram of joint D, Fig. 6–11c. Here again it 
is seen that DC and DE are zero-force members. From these observations, 
we can conclude that if only two non-collinear members form a truss joint 
and no external load or support reaction is applied to the joint, the two 
members must be zero-force members. The load on the truss in Fig. 6–11a is 
therefore supported by only five members as shown in Fig. 6–11d.

(a)

D

C

EF

A

P

u

B

FAB

y

x

FAF

A

(b)

�

�

�Fx � 0;  FAB � 0

�Fy � 0;  FAF � 0

FDC y

x

FDE

D

(c)

� �Fy � 0; FDC sin u = 0;   FDC � 0 since sin u � 0
�Fx � 0; FDE � 0 � 0;   FDE � 0�

u

(d)

B

C

EF

P

Fig. 6–11
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Now consider the truss shown in Fig. 6–12a. The free-body diagram of 
the pin at joint D is shown in Fig. 6–12b. By orienting the y axis along 
members DC and DE and the x axis along member DA, it is seen that 
DA  is a zero-force member. Note that this is also the case for member 
CA, Fig. 6–12c. In general then, if three members form a truss joint for 
which two of the members are collinear, the third member is a zero-force 
member provided no external force or support reaction has a component 
that acts along this member. The truss shown in Fig. 6–12d is therefore 
suitable for supporting the load P.

(a)

E

A

D

C

B

P

u

D

FDE

(b)

� �Fx � 0;
�Fy � 0;

FDA

FDC

yx

�

FDA � 0
FDC � FDE

FCD

C

FCB

FCA

yx

�

�

u

(c)

�Fx � 0;    FCA sin u = 0;    FCA � 0 since sin u � 0;
�Fy � 0;    FCB � FCD

(d)

EP

B

A

Fig. 6–12

Important Point

	 •	 Zero-force members support no load; however, they are necessary 
for stability, and are available when additional loadings are 
applied to the joints of the truss. These members can usually be 
identified by inspection. They occur at joints where only two 
members are connected and no external load acts along either 
member. Also, at joints having two collinear members, a third 
member will be a zero-force member if no external force 
components act along this member.
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Using the method of joints, determine all the zero-force members of 
the Fink roof truss shown in Fig. 6–13a. Assume all joints are pin 
connected.

SOLUTION
Look for joint geometries that have three members for which two are 
collinear. We have

Joint G.  (Fig. 6–13b).

+ c �Fy = 0;	 FGC = 0� Ans.

Realize that we could not conclude that GC is a zero-force member by 
considering joint C, where there are five unknowns. The fact that GC 
is a zero-force member means that the 5-kN load at C must be 
supported by members CB, CH, CF, and CD.

Joint D.  (Fig. 6–13c).

+ b�Fx = 0;	 FDF = 0� Ans.

Joint F.  (Fig. 6–13d).

+ c �Fy = 0;	 FFC cos u = 0 Since u � 90�,	 FFC = 0� Ans.

NOTE: If joint B is analyzed, Fig. 6–13e,

+ R�Fx = 0;	 2 kN - FBH = 0	 FBH = 2 kN (C)

Also, FHC must satisfy �Fy = 0, Fig. 6–13f, and therefore HC is not a  
zero-force member.

C

A E

5 kN

2 kN

D

FGH

B

(a)

(b)

y

x
G

FGC

FGFFGH

(c)

D

FDC

FDF

FDE

y

x

(d)

y

x
F FFEFFG

0FFC

u

(e)

B FBH

FBC

FBA

2 kN

x

y

(f)

y

x
H FHGFHA

2 kN

FHC

Fig. 6–13

Example   6.4
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P6–2.  Identify the zero-force members in each truss.

A
B D

E

3 m

800 N
300

(a)

3 m

3 m3 m

FGH

C

A
B D

E

2 m

500 N

(b)

4 m

700 N

2 m2 m

C

F

G

Prob. P6–2

P6–1.  In each case, calculate the support reactions and 
then draw the free-body diagrams of joints A, B, and C of 
the truss.

A
B C

E D

2 m 2 m

400 N

(a)

2 m

A
B

C

E

F D

2 m 2 m

600 N

30 30 30 30

(b)

Prob. P6–1

Preliminary Problems
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All problem solutions must include FBDs.

F6–1.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

4 ft 4 ft

4 ft

A
B

C

D

450 lb

Prob. F6–1

F6–2.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

D

A

C

B

2 ft 2 ft

300 lb

3 ft

Prob. F6–2

F6–3.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

B
A

D C

4 ft

3 ft

800 lb

200 lb

Prob. F6–3

F6–4.  Determine the greatest load P that can be applied 
to the truss so that none of the members are subjected to a 
force exceeding either 2 kN in tension or 1.5 kN in 
compression.

A B

P

C

3 m

60� 60�

Prob. F6–4

F6–5.  Identify the zero-force members in the truss.

A B

C
DE

1.5 m

2 m2 m

3 kN

Prob. F6–5

F6–6.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

B

D

C

E

600 lb

450 lb

3 ft 3 ft

30�A

Prob. F6–6

FUNDAMENTAL PROBLEMS
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*6–4.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

2 kip

1.5 kip
4 ft

10 ft 10 ft 10 ft

3 kip

3 kip

10 ft

A B

I

H

G

F

C D
E

8 ft

Prob. 6–4

6–5.  Determine the force in each member of the truss, and 
state if the members are in tension or compression. Set u = 0�.

6–6.  Determine the force in each member of the truss, and 
state if the members are in tension or compression. Set u = 30�.

A C

B

D

2 m

4 kN

3 kN

2 m

1.5 m

u

Probs. 6–5/6

6–7.  Determine the force in each member of the truss and 
state if the members are in tension or compression.

E

D

CB

F
A 5 m

3 m

5 kN

4 kN

3 m 3 m 3 m

Prob. 6–7

All problem solutions must include FBDs.

6–1.  Determine the force in each member of the truss and 
state if the members are in tension or compression. Set  
P1 = 20 kN, P2 = 10 kN.

6–2.  Determine the force in each member of the truss and 
state if the members are in tension or compression. Set  
P1 = 45 kN, P2 = 30 kN.

C B

A

D

1.5 m

2 m

P1

P2

Probs. 6–1/2

6–3.  Determine the force in each member of the truss. 
State if the members are in tension or compression.

3 ft 3 ft 3 ft

12
5

13

130 lb

A B

C
E

D

F

4 ft 4 ft

Prob. 6–3

Problems
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6–11.  Determine the force in each member of the Pratt 
truss, and state if the members are in tension or compression.

A

B C D E F
G

H

I

J

K

L

2 m

2 m

2 m 2 m

10 kN 10 kN
20 kN

2 m 2 m 2 m

2 m

2 m

Prob. 6–11

*6–12.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

500 lb

3 ft

500 lb

C

B

A F

E

D

9 ft

6 ft

6 ft

3 ft 3 ft

Prob. 6–12

*6–8.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

B

E

D

A

C

600 N

900 N

4 m

4 m

6 m

Prob. 6–8

6–9.  Determine the force in each member of the truss and 
state if the members are in tension or compression. Set  
P1 = 3 kN, P2 = 6 kN.

6–10.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 6 kN, P2 = 9 kN.

A
D

E

B C

P1 P2

4 m 4 m4 m

6 m

Probs. 6–9/10
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6–18.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 10 kN, P2 = 8 kN.

6–19.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 8 kN, P2 = 12 kN.

1 m 1 m2 m

2 m

A

F EG

B C D

P1 P2

Probs. 6–18/19

*6–20.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 9 kN, P2 = 15 kN.

6–21.  Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 = 30 kN, P2 = 15 kN.

3 m

A
B

C

DF E

3 m

4 m

P1

P2

Probs. 6–20/21

6–13.  Determine the force in each member of the truss in 
terms of the load P and state if the members are in tension 
or compression.

6–14.  Members AB and BC can each support a maximum 
compressive force of 800 lb, and members AD, DC, and BD 
can support a maximum tensile force of 1500 lb. If a = 10 ft, 
determine the greatest load P the truss can support.

6–15.  Members AB and BC can each support a maximum 
compressive force of 800 lb, and members AD, DC, and BD 
can support a maximum tensile force of 2000 lb. If a = 6 ft, 
determine the greatest load P the truss can support.

B

D
A

C
a a

a

a

3—
4

1—
4

Probs. 6–13/14/15

*6–16.  Determine the force in each member of the truss. 
State whether the members are in tension or compression. 
Set P = 8 kN.

6–17.  If the maximum force that any member can support 
is 8 kN in tension and 6 kN in compression, determine the 
maximum force P that can be supported at joint D.

60�60�

4 m 4 m

B

E
D

C

A

4 m

P

Probs. 6–16/17
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*6–24.  The maximum allowable tensile force in the 
members of the truss is (Ft)max = 5 kN, and the maximum 
allowable compressive force is (Fc)max = 3 kN. Determine 
the maximum magnitude of load P that can be applied to 
the truss. Take d = 2 m.

d

A C

B

D

E

d

P

d

d/2

d/2

Prob. 6–24

6–25.  Determine the force in each member of the truss in 
terms of the external loading and state if the members are 
in tension or compression. Take P = 2 kN.

6–26.  The maximum allowable tensile force in the 
members of the truss is (Ft)max = 5 kN, and the maximum 
allowable compressive force is (Fc)max = 3 kN. Determine 
the maximum magnitude P of the two loads that can be 
applied to the truss.

A B

CD
2 m

2 m

2 m

2 m

P P

30�

Probs. 6–25/26

6–22.  Determine the force in each member of the double 
scissors truss in terms of the load P and state if the members 
are in tension or compression.

A
DFE

P P

B C

L/3

L/3L/3L/3

Prob. 6–22

6–23.  Determine the force in each member of the truss in 
terms of the load P and state if the members are in tension 
or compression.

d

A C

B

D

E

d

P

d

d/2

d/2

Prob. 6–23
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6.4  The Method of Sections

When we need to find the force in only a few members of a truss, we can 
analyze the truss using the method of sections. It is based on the principle 
that if the truss is in equilibrium then any segment of the truss is also in 
equilibrium. For example, consider the two truss members shown on the left 
in Fig. 6–14. If the forces within the members are to be determined, then an 
imaginary section, indicated by the blue line, can be used to cut each member 
into two parts and thereby “expose” each internal force as “external” to the 
free-body diagrams shown on the right. Clearly, it can be seen that equilibrium 
requires that the member in tension (T) be subjected to a “pull,” whereas 
the member in compression (C) is subjected to a “push.”

The method of sections can also be used to “cut” or section the members 
of an entire truss. If the section passes through the truss and the free-body 
diagram of either of its two parts is drawn, we can then apply the equations 
of equilibrium to that part to determine the member forces at the “cut 
section.” Since only three independent equilibrium equations (�Fx = 0, 
�Fy = 0, �MO = 0) can be applied to the free-body diagram of any 
segment, then we should try to select a section that, in general, passes 
through not more than three members in which the forces are unknown. 
For example, consider the truss in Fig. 6–15a. If the forces in members BC, 
GC, and GF are to be determined, then section aa would be appropriate. 
The free-body diagrams of the two segments are shown in Figs. 6–15b and 
6–15c. Note that the line of action of each member force is specified from 
the geometry of the truss, since the force in a member is along its axis. Also, 
the member forces acting on one part of the truss are equal but opposite to 
those acting on the other part—Newton’s third law. Members BC and GC 
are assumed to be in tension since they are subjected to a “pull,” whereas 
GF in compression since it is subjected to a “push.”

The three unknown member forces FBC, FGC, and FGF can be obtained by 
applying the three equilibrium equations to the free-body diagram in 
Fig. 6–15b. If, however, the free-body diagram in Fig. 6–15c is considered, 
the three support reactions Dx, Dy and Ex will have to be known, because 
only three equations of equilibrium are available. (This, of course, is done in 
the usual manner by considering a free-body diagram of the entire truss.)

Tension

T

T

T

Internal
tensile
forces

T

T

T

C

Compression

C

Internal
compressive
forces

C

C

C

C

Fig. 6–14

B

2 m

1000 N

2 m 2 m

C D

G F E
A

2 m

a

a

Fig. 6–15
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When applying the equilibrium equations, we should carefully consider 
ways of writing the equations so as to yield a direct solution for each of 
the unknowns, rather than having to solve simultaneous equations. For 
example, using the truss segment in Fig. 6–15b and summing moments 
about C would yield a direct solution for FGF since FBC and FGC create 
zero moment about C. Likewise, FBC can be directly obtained by summing 
moments about G. Finally, FGC can be found directly from a force 
summation in the vertical direction since FGF and FBC have no vertical 
components. This ability to determine directly the force in a particular 
truss member is one of the main advantages of using the method of 
sections.*

As in the method of joints, there are two ways in which we can 
determine the correct sense of an unknown member force:

•		 The correct sense of an unknown member force can in many cases 
be determined “by inspection.” For example, FBC is a tensile force as 
represented in Fig. 6–15b since moment equilibrium about G 
requires that FBC create a moment opposite to that of the 1000-N 
force. Also, FGC is tensile since its vertical component must balance 
the 1000-N force which acts downward. In more complicated cases, 
the sense of an unknown member force may be assumed. If the 
solution yields a negative scalar, it indicates that the force’s sense is 
opposite to that shown on the free-body diagram.

•		 Always assume that the unknown member forces at the cut section 
are tensile forces, i.e., “pulling” on the member. By doing this, the 
numerical solution of the equilibrium equations will yield positive 
scalars for members in tension and negative scalars for members in 
compression.

The forces in selected members of 
this Pratt truss can readily be deter
mined using the method of sections. 
(© Russell C. Hibbeler)

*Notice that if the method of joints were used to determine, say, the force in member 
GC, it would be necessary to analyze joints A, B, and G in sequence.

2 m

1000 N

2 m

2 m

CFBC

45�

FGC

G

(b)

FGF

  (c)

2 m

2 m

45�

C

Dy

Dx

Ex

FGC

FBC

FGF

G

Fig. 6–15 (cont.)
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Simple trusses are often used 
in the construction of large 
cranes in order to reduce the 
weight of the boom and tower. 
(© Russell C. Hibbeler)

Important Point

	 •	 If a truss is in equilibrium, then each of its segments is in 
equilibrium. The internal forces in the members become external 
forces when the free-body diagram of a segment of the truss is 
drawn. A force pulling on a member causes tension in the 
member, and a force pushing on a member causes compression.

Procedure for Analysis

The forces in the members of a truss may be determined by the 
method of sections using the following procedure.

Free-Body Diagram.
	 •	 Make a decision on how to “cut” or section the truss through the 

members where forces are to be determined.

	 •	 Before isolating the appropriate section, it may first be necessary 
to determine the truss’s support reactions. If this is done then the 
three equilibrium equations will be available to solve for member 
forces at the section.

	 •	 Draw the free-body diagram of that segment of the sectioned 
truss which has the least number of forces acting on it.

	 •	 Use one of the two methods described above for establishing the 
sense of the unknown member forces.

Equations of Equilibrium.
	 •	 Moments should be summed about a point that lies at the 

intersection of the lines of action of two unknown forces, so that 
the third unknown force can be determined directly from the 
moment equation.

	 •	 If two of the unknown forces are parallel, forces may be summed 
perpendicular to the direction of these unknowns to determine 
directly the third unknown force.
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Example   6.5

Determine the force in members GE, GC, and BC of the truss shown 
in Fig. 6–16a. Indicate whether the members are in tension or 
compression.

SOLUTION
Section aa in Fig. 6–16a has been chosen since it cuts through the three 
members whose forces are to be determined. In order to use the 
method of sections, however, it is first necessary to determine  
the external reactions at A or D. Why? A free-body diagram of  
the entire truss is shown in Fig. 6–16b. Applying the equations of 
equilibrium, we have

S+ �Fx = 0;	 400 N - A x = 0	 A x = 400 N 

a+ �MA = 0;	 -1200 N(8 m) - 400 N(3 m) + Dy(12 m) = 0 

	 Dy = 900 N

+ c �Fy = 0;	 A y - 1200 N + 900 N = 0	 A y = 300 N

Free-Body Diagram.  For the analysis the free-body diagram of the 
left portion of the sectioned truss will be used, since it involves the least 
number of forces, Fig. 6–16c.

Equations of Equilibrium.  Summing moments about point G 
eliminates FGE and FGC and yields a direct solution for FBC.

a+ �MG = 0; -300 N(4 m) - 400 N(3 m) + FBC (3 m) = 0 

	 FBC = 800 N (T)� Ans.

In the same manner, by summing moments about point C we obtain 
a direct solution for FGE.

a+ �MC = 0; -300 N(8 m) + FGE (3 m) = 0

	 FGE = 800 N (C)� Ans.

Since FBC and FGE have no vertical components, summing forces in 
the y direction directly yields FGC, i.e.,

+ c �Fy = 0;    300 N -
3
5 FGC = 0

	 FGC = 500 N (T)� Ans.

NOTE: Here it is possible to tell, by inspection, the proper direction for 
each unknown member force. For example, �MC = 0 requires FGE to 
be compressive because it must balance the moment of the 300-N 
force about C.

3 m

4 m

400 N
G

4 m

E

B C
DA

a

a

1200 N

(a)

4 m

3 m

8 m

400 N

DA

1200 N

(b)

Ax

Ay Dy
4 m

3 m

4 m
400 N

A

(c)

FGE

FGC

FBC

3
4

5

G

300 N

C

4 m

Fig. 6–16
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Example   6.6

Determine the force in member CF of the truss shown in Fig. 6–17a. 
Indicate whether the member is in tension or compression. Assume 
each member is pin connected.

SOLUTION
Free-Body Diagram.  Section aa in Fig. 6–17a will be used since this 
section will “expose” the internal force in member CF as “external” on 
the free-body diagram of either the right or left portion of the truss. It 
is first necessary, however, to determine the support reactions on either 
the left or right side. Verify the results shown on the free-body diagram 
in Fig. 6–17b.

The free-body diagram of the right portion of the truss, which is the 
easiest to analyze, is shown in Fig. 6–17c. There are three unknowns, 
FFG, FCF, and FCD.

Equations of Equilibrium.  We will apply the moment equation 
about point O in order to eliminate the two unknowns FFG and FCD. 
The location of point O measured from E can be determined from 
proportional triangles, i.e., 4>(4 + x) = 6>(8 + x), x = 4 m. Or, 
stated in another manner, the slope of member GF has a drop of 2 m 
to a horizontal distance of 4 m. Since FD is 4 m, Fig. 6–17c, then from 
D to O the distance must be 8 m.

An easy way to determine the moment of FCF about point O is to 
use the principle of transmissibility and slide FCF to point C, and 
then resolve FCF into its two rectangular components. We have

a+ �MO = 0;

	 -FCF sin 45�(12 m) + (3 kN)(8 m) - (4.75 kN)(4 m) = 0

	 FCF = 0.589 kN (C)� Ans.

4 m 4 m

4 m

2 m

3 kN

(c)

4.75 kN

D E

F

x

6 m

45�

CFCF cos 45�

FCF sin 45�

FCF

FFG

FCD

O

G

G

H F

EA

B C

D

3 kN5 kN

4 m

2 m

(a)

a

a
4 m 4 m4 m 4 m

4 m

5 kN 3 kN

(b)

8 m

3.25 kN 4.75 kN

4 m

Fig. 6–17
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Example   6.7

Determine the force in member EB of the roof truss shown in Fig. 6–18a. 
Indicate whether the member is in tension or compression.

SOLUTION
Free-Body Diagrams.  By the method of sections, any imaginary 
section that cuts through EB, Fig. 6–18a, will also have to cut through 
three other members for which the forces are unknown. For example, 
section aa cuts through ED, EB, FB, and AB. If a free-body diagram of 
the left side of this section is considered, Fig. 6–18b, it is possible to 
obtain FED by summing moments about B to eliminate the other three 
unknowns; however, FEB cannot be determined from the remaining two 
equilibrium equations. One possible way of obtaining FEB is first to 
determine FED from section aa, then use this result on section bb,  
Fig.  6–18a, which is shown in Fig. 6–18c. Here the force system is 
concurrent and our sectioned free-body diagram is the same as the 
free-body diagram for the joint at E.

Equations of Equilibrium.  In order to determine the moment of 
FED about point B, Fig. 6–18b, we will use the principle of transmissibility 
and slide the force to point C and then resolve it into its rectangular 
components as shown. Therefore,

a+ �MB = 0;  1000 N(4 m) + 3000 N(2 m) - 4000 N(4 m)

	 + FED sin 30�(4 m) = 0

	 FED = 3000 N (C)

Considering now the free-body diagram of section bb, Fig. 6–18c, we have

S+ �Fx = 0;	 FEF cos 30� - 3000 cos 30� N = 0

	 FEF = 3000 N (C)

+ c �Fy = 0;	 2(3000 sin 30� N) - 1000 N - FEB = 0

	 FEB = 2000 N ( T )� Ans.

1000 N

1000 N

1000 N3000 N

A

B

C

D

E

F

a

a
bb

(a)

4000 N 2000 N

30�

2 m 2 m 2 m 2 m

1000 N

E

30�

y

x

FEB

FEF FED � 3000 N

(c)

30�

1000 N

1000 N

3000 N

B

C

E

4000 N FED sin 30�

30�

2 m 2 m 4 m

A FED cos 30�

FAB

FEB

FED

30�

(b)

FFB

Fig. 6–18
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F6–10.  Determine the force in members EF, CF, and BC 
of the truss. State if the members are in tension or 
compression.

A
B C

D

E

F

G

30� 30�

6 ft 6 ft 6 ft

300 lb300 lb

f

Prob. F6–10

F6–11.  Determine the force in members GF, GD, and CD 
of the truss. State if the members are in tension or 
compression.

A

B C D
E

F

G

H

2 m

2 m

1 m

2 m 2 m 2 m

10 kN
25 kN 15 kN

f

Prob. F6–11

F6–12.  Determine the force in members DC, HI, and JI of 
the truss. State if the members are in tension or compression. 
Suggestion: Use the sections shown.

B

t
ss

t
C

A

D

I
K

H

EFG

1600 lb
1200 lb

9 ft

6 ft

6 ft

6 ft

12 ft

9 ft6 ft

6 ft6 ft

J

Prob. F6–12

FUNDAMENTAL PROBLEMS

F6–7.  Determine the force in members BC, CF, and FE. 
State if the members are in tension or compression.

A DCB

G F E

4 ft

4 ft 4 ft 4 ft

600 lb 600 lb
800 lb

Prob. F6–7

F6–8.  Determine the force in members LK, KC, and CD 
of the Pratt truss. State if the members are in tension or 
compression.

B C D
A

E F
G

HIJKL

2 m

3 m

2 m

20 kN 30 kN 40 kN

2 m 2 m 2 m 2 m

f

Prob. F6–8

F6–9.  Determine the force in members KJ, KD, and CD 
of the Pratt truss. State if the members are in tension or 
compression.

B C D
A

E F
G

HIJKL

2 m

3 m

2 m

20 kN 30 kN 40 kN

2 m 2 m 2 m 2 m

f

Prob. F6–9

All problem solutions must include FBDs.
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All problem solutions must include FBDs.

6–27.  Determine the force in members DC, HC, and HI of 
the truss, and state if the members are in tension or 
compression.

*6–28.  Determine the force in members ED, EH, and GH 
of the truss, and state if the members are in tension or 
compression.

A

C

G

E D

H
F

I
B

2 m 2 m 2 m

1.5 m

50 kN
40 kN

40 kN

30 kN

1.5 m

1.5 m

Probs. 6–27/28

6–29.  Determine the force in members HG, HE and DE 
of the truss, and state if the members are in tension or 
compression.

6–30.  Determine the force in members CD, HI, and CH of 
the truss, and state if the members are in tension or 
compression.

A
B C D E F

GHIJK

4 ft

3 ft 3 ft3 ft3 ft3 ft

1500 lb1500 lb1500 lb1500 lb1500 lb

Probs. 6–29/30

6–31.  Determine the force in members CD, CJ, KJ, and 
DJ of the truss which serves to support the deck of a bridge. 
State if these members are in tension or compression.

*6–32.  Determine the force in members EI and JI of the 
truss which serves to support the deck of a bridge. State if 
these members are in tension or compression.

A G

HIJKL

FEDCB

4000 lb
8000 lb 5000 lb

9 ft 9 ft 9 ft 9 ft 9 ft 9 ft

12 ft

Probs. 6–31/32

6–33.  The Howe truss is subjected to the loading shown. 
Determine the force in members GF, CD, and GC, and 
state if the members are in tension or compression.

6–34.  The Howe truss is subjected to the loading shown. 
Determine the force in members GH, BC, and BG of the 
truss and state if the members are in tension or compression.

3 m

2 kN

5 kN

5 kN

2 m 2 m 2 m 2 m

A

B C D

F

G

H

E

2 kN

5 kN

Probs. 6–33/34

PROBLEMS
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6–39.  Determine the force in members BC, HC, and HG. 
After the truss is sectioned use a single equation of 
equilibrium for the calculation of each force. State if these 
members are in tension or compression.

*6–40.  Determine the force in members CD, CF, and CG 
and state if these members are in tension or compression.

A C D

H 

G

F 

4 kN

3 m

2 m

5 m5 m5 m 5 m

B E

4 kN
5 kN

3 kN
2 kN

Probs. 6–39/40

6–41.  Determine the force developed in members FE, EB, 
and BC of the truss and state if these members are in 
tension or compression.

11 kN

B

A D

C

F E

22 kN

2 m 1.5 m

2 m

2 m

Prob. 6–41

6–35.  Determine the force in members EF, CF, and BC, 
and state if the members are in tension or compression.

*6–36.  Determine the force in members AF, BF, and BC, 
and state if the members are in tension or compression.

2 m

1.5 m

2 m

F

A

8 kN

4 kN E D

C

B

Probs. 6–35/36

6–37.  Determine the force in members EF, BE, BC and 
BF of the truss and state if these members are in tension or 
compression. Set P1 = 9 kN, P2 = 12 kN, and P3 = 6 kN.

6–38.  Determine the force in members BC, BE, and EF  
of the truss and state if these members are in tension  
or compression. Set P1 = 6 kN, P2 = 9 kN, and P3 = 12 kN.

F E

B
A

D

C

3 m

3 m 3 m 3 m

P1 P2

P3

Probs. 6–37/38
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6–46.  Determine the force in members BC, CH, GH, and 
CG of the truss and state if the members are in tension or 
compression.

A
C D

H 

G

F 

8 kN

3 m

2 m

4 m4 m4 m 4 m
B

E

4 kN 5 kN

Prob. 6–46

6–47.  Determine the force in members CD, CJ, and KJ 
and state if these members are in tension or compression.

6 kN

A

B C D E

G

I

H

F

12 m, 6 @ 2 m

J

K

L

6 kN

6 kN

6 kN

6 kN

3 m

Prob. 6–47

*6–48.  Determine the force in members JK, CJ, and CD of 
the truss, and state if the members are in tension or compression.

6–49.  Determine the force in members HI, FI, and EF of the 
truss, and state if the members are in tension or compression.

A
B C D FE

G

H

IJ

L

K

6 kN8 kN
5 kN4 kN

3 m

2 m 2 m 2 m 2 m 2 m 2 m

Probs. 6–48/49

6–42.  Determine the force in members BC, HC, and HG. 
State if these members are in tension or compression.

6–43.  Determine the force in members CD, CJ, GJ, and 
CG and state if these members are in tension or compression.

6 kN

12 kN

9 kN

4 kN 6 kN

1.5 m 1.5 m

2 m

1 m 1 m

1.5 m 1.5 m

A E
B

H

G

J

C D

Probs. 6–42/43

*6–44.  Determine the force in members BE, EF, and CB, 
and state if the members are in tension or compression.

6–45.  Determine the force in members BF, BG, and AB, 
and state if the members are in tension or compression.

4 m

4 m

4 m

4 m

B

A

C

F

G

E

D

10 kN

10 kN

5 kN

5 kN

Probs. 6–44/45
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*6.5  Space Trusses

A space truss consists of members joined together at their ends to form a 
stable three-dimensional structure. The simplest form of a space truss is a 
tetrahedron, formed by connecting six members together, as shown in 
Fig. 6–19. Any additional members added to this basic element would be 
redundant in supporting the force P. A simple space truss can be built from 
this basic tetrahedral element by adding three additional members and a 
joint, and continuing in this manner to form a system of multiconnected 
tetrahedrons.

Assumptions for Design.  The members of a space truss may be 
treated as two-force members provided the external loading is applied at 
the joints and the joints consist of ball-and-socket connections. These 
assumptions are justified if the welded or bolted connections of the 
joined members intersect at a common point and the weight of the 
members can be neglected. In cases where the weight of a member is to 
be included in the analysis, it is generally satisfactory to apply it as a 
vertical force, half of its magnitude applied at each end of the member.

P

Fig. 6–19

Typical roof-supporting space 
truss. Notice the use of ball-and-
socket joints for the connections.  
(© Russell C. Hibbeler) 

For economic reasons, large electrical 
transmission towers are often constructed 
using space trusses. (© Russell C. Hibbeler)

Procedure for Analysis

Either the method of joints or the method of sections can be used to 
determine the forces developed in the members of a simple space truss.

Method of Joints.
If the forces in all the members of the truss are to be determined, 
then the method of joints is most suitable for the analysis. Here it is 
necessary to apply the three equilibrium equations �Fx = 0, 
�Fy = 0, �Fz = 0 to the forces acting at each joint. Remember that 
the solution of many simultaneous equations can be avoided if the 
force analysis begins at a joint having at least one known force and at 
most three unknown forces. Also, if the three-dimensional geometry 
of the force system at the joint is hard to visualize, it is recommended 
that a Cartesian vector analysis be used for the solution.

Method of Sections.
If only a few member forces are to be determined, the method of 
sections can be used. When an imaginary section is passed through a 
truss and the truss is separated into two parts, the force system acting 
on one of the segments must satisfy the six equilibrium equations: 
�Fx = 0, �Fy = 0, �Fz = 0, �Mx = 0, �My = 0, �Mz = 0 
(Eqs.  5–6). By proper choice of the section and axes for summing 
forces and moments, many of the unknown member forces in a space 
truss can be computed directly, using a single equilibrium equation.
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Determine the forces acting in the members of the space truss shown 
in Fig. 6–20a. Indicate whether the members are in tension or 
compression.

Solution
Since there are one known force and three unknown forces acting at 
joint A, the force analysis of the truss will begin at this joint.

Joint A.  (Fig. 6–20b). Expressing each force acting on the free-body 
diagram of joint A as a Cartesian vector, we have

P = {-4j} kN,        FAB = FAB  

j,  FAC = -FAC k,

FAE = FAEa
rAE

rAE
b = FAE (0.577i + 0.577j - 0.577k)

For equilibrium,

�F = 0;      P + FAB + FAC + FAE = 0

-4j + FAB j - FAC k + 0.577FAE i + 0.577FAE j - 0.577FAE k = 0

�Fx = 0;	 0.577FAE = 0

�Fy = 0;	 -4 + FAB + 0.577FAE = 0

�Fz = 0; 	  -FAC - 0.577FAE = 0

	  FAC = FAE = 0	 Ans.

	 FAB = 4 kN (T)� Ans.

Since FAB is known, joint B can be analyzed next.

Joint B.   (Fig. 6–20c).

�Fx = 0;	 FBE
112

= 0

�Fy = 0;	 -4 + FCB
112

= 0

�Fz = 0; 	 -2 + FBD - FBE 
112

+ FCB 
112

= 0

FBE = 0,	 FCB = 5.65 kN (C)	 FBD = 2 kN (T)	 Ans.

The scalar equations of equilibrium can now be applied to the forces 
acting on the free-body diagrams of joints D and C. Show that 

	 FDE = FDC = FCE = 0	 Ans.

Example   6.8

(a)

2 m

2 m

P � 4 kN

2 kN
z

y

x

A

B

C

D

E

2 m

x

y

z

P � 4 kN

FAC

FAE

FABA

(b)

x

y

z

FAB � 4 kN 1

1

FBE

FBD

2 kN

(c)

FCB

1

1

B

Fig. 6–20
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*6–52.  Determine the force in each member of the space truss 
and state if the members are in tension or compression. The 
truss is supported by ball-and-socket joints at A, B, C, and D.

G

A

 6 kN

4 kN

B

C

E y

z

x

D 2 m

4 m

4 m

2 m

Prob. 6–52

6–53.  The space truss supports a force  
F = {-500i + 600j + 400k} lb. Determine the force in each 
member, and state if the members are in tension or 
compression.

6–54.  The space truss supports a force  
F = {600i + 450j - 750k} lb. Determine the force in each 
member, and state if the members are in tension or 
compression.

A

B

C

D

x

y

z

F

8 ft

6 ft
6 ft

6 ft

Probs. 6–53/54

All problem solutions must include FBDs.

6–50.  Determine the force developed in each member of 
the space truss and state if the members are in tension or 
compression. The crate has a weight of 150 lb.

x
y

z

A

B

C

D

6 ft

6 ft
6 ft

6 ft

Prob. 6–50

6–51.  Determine the force in each member of the space truss 
and state if the members are in tension or compression. Hint: 
The support reaction at E acts along member EB. Why?

y

x

D
A

6 kN

C

B
E

z

5 m

2 m

4 m

3 m

3 m

Prob. 6–51

Problems
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6–57.  The space truss is supported by a ball-and-socket 
joint at D and short links at C and E. Determine the force in 
each member and state if the members are in tension or 
compression. Take F1 = {-500k} lb and F2 = {400j} lb.

6–58.  The space truss is supported by a ball-and-socket joint 
at D and short links at C and E. Determine the force in each 
member and state if the members are in tension or compression. 
Take F1 = {200i + 300j - 500k} lb and F2 = {400j} lb.

3 ft4 ft

3 ft

x

y

z

C

D

E
A

B

F

F2

F1

Probs. 6–57/58
6–59.  Determine the force in each member of the space 
truss and state if the members are in tension or compression. 
The truss is supported by ball-and-socket joints at A, B, and E. 
Set F = {800j} N. Hint: The support reaction at E acts along 
member EC. Why?

*6–60.  Determine the force in each member of the space 
truss and state if the members are in tension or compression. 
The truss is supported by ball-and-socket joints at A, B, and E. 
Set F = {-200i + 400j} N. Hint: The support reaction at E 
acts along member EC. Why?

F

A

z

2 m

x

y

B

C

E

D

5 m

1 m

2 m
1.5 m

Probs. 6–59/60

6–55.  Determine the force in members EF, AF, and DF of 
the space truss and state if the members are in tension or 
compression. The truss is supported by short links at A, B, D, 
and E.

z

x y

3 m

3 m

4 kN

2 kN

3 kN

3 m

5 m

F

A

E

D

B

C

Prob. 6–55

*6–56.  The space truss is used to support the forces at 
joints B and D. Determine the force in each member and 
state if the members are in tension or compression.

C

D

E

F

B

A

12 kN

 20 kN

2 m

90�

3 m

2.5 m

1.5 m

Prob. 6–56
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6.6  Frames and Machines

Frames and machines are two types of structures which are often 
composed of pin-connected multiforce members, i.e., members that are 
subjected to more than two forces. Frames are used to support loads, 
whereas machines contain moving parts and are designed to transmit and 
alter the effect of forces. Provided a frame or machine contains no more 
supports or members than are necessary to prevent its collapse, the forces 
acting at the joints and supports can be determined by applying the 
equations of equilibrium to each of its members. Once these forces are 
obtained, it is then possible to design the size of the members, connections, 
and supports using the theory of mechanics of materials and an appropriate 
engineering design code.

Free-Body Diagrams.  In order to determine the forces acting at 
the joints and supports of a frame or machine, the structure must be 
disassembled and the free-body diagrams of its parts must be drawn. The 
following important points must be observed:

	•	 Isolate each part by drawing its outlined shape. Then show all the 
forces and/or couple moments that act on the part. Make sure to 
label or identify each known and unknown force and couple moment 
with reference to an established x, y coordinate system. Also, 
indicate any dimensions used for taking moments. Most often the 
equations of equilibrium are easier to apply if the forces are 
represented by their rectangular components. As usual, the sense of 
an unknown force or couple moment can be assumed.

	•	 Identify all the two-force members in the structure and represent 
their free-body diagrams as having two equal but opposite collinear 
forces acting at their points of application. (See Sec. 5.4.) By 
recognizing the two-force members, we can avoid solving an 
unnecessary number of equilibrium equations.

	•	 Forces common to any two contacting members act with equal 
magnitudes but opposite sense on the respective members. If the 
two members are treated as a “system” of connected members, then 
these forces are “internal” and are not shown on the free-body 
diagram of the system; however, if the free-body diagram of each 
member is drawn, the forces are “external” and must be shown as 
equal in magnitude and opposite in direction on each of the two 
free-body diagrams.

The following examples graphically illustrate how to draw the free-
body diagrams of a dismembered frame or machine. In all cases, the 
weight of the members is neglected.

This crane is a typical example of a 
framework. (© Russell C. Hibbeler)

Common tools such as these pliers act as 
simple machines. Here the applied force on 
the handles creates a much larger force at 
the jaws. (© Russell C. Hibbeler)
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Example   6.9

For the frame shown in Fig. 6–21a, draw the free-body diagram of  
(a) each member, (b) the pins at B and A, and (c) the two members 
connected together.

PB

A C

(a)

M

P

(b)

M

Bx

By By

Ax

Ay Cy

Cx

Bx

Bx

By

Bx

By

(c)

Effect of 
member BC
on the pin

Effect of 
member AB
on the pin

B

Pin B

Ax

Ay

Ax

Ax

Pin A

Effect of
member AB

on pin
2

2

Ay

2Ay

2

(d)

Fig. 6–21

P

M

Ax

Ay Cy

Cx

(e)

SOLUTION
Part (a).  By inspection, members BA and BC are not two-force 
members. Instead, as shown on the free-body diagrams, Fig. 6–21b, BC 
is subjected to a force from each of the pins at B and C and the external 
force P. Likewise, AB is subjected to a force from each of the pins at 
A  and B and the external couple moment M. The pin forces are 
represented by their x and y components.

Part (b).  The pin at B is subjected to only two forces, i.e., the force of 
member BC and the force of member AB. For equilibrium these forces 
(or their respective components) must be equal but opposite, Fig. 6–21c. 
Realize that Newton’s third law is applied between the pin and its 
connected members, i.e., the effect of the pin on the two members, 
Fig. 6–21b, and the equal but opposite effect of the two members on 
the pin, Fig. 6–21c. In the same manner, there are three forces on pin A, 
Fig. 6–21d, caused by the force components of member AB and each 
of the two pin leafs.

Part (c).  The free-body diagram of both members connected 
together, yet removed from the supporting pins at A and C, is shown 
in Fig. 6–21e. The force components Bx and By are not shown on this 
diagram since they are internal forces (Fig. 6–21b) and therefore cancel 
out. Also, to be consistent when later applying the equilibrium 
equations, the unknown force components at A and C must act in the 
same sense as those shown in Fig. 6–21b.
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Example   6.10

A constant tension in the conveyor belt is maintained by using the 
device shown in Fig. 6–22a. Draw the free-body diagrams of the frame 
and the cylinder (or pulley) that the belt surrounds. The suspended 
block has a weight of W.

(a)

Fig. 6–22 (© Russell C. Hibbeler)

TT

B

(b)

A

u

T

Bx

By

Bx
Ax

By

Ay

T

(c)

(d)

W

u

SOLUTION
The idealized model of the device is shown in Fig. 6–22b. Here the 
angle u is assumed to be known. From this model, the free-body 
diagrams of the pulley and frame are shown in Figs. 6–22c and 6–22d, 
respectively. Note that the force components Bx and By that the pin at 
B exerts on the pulley must be equal but opposite to the ones acting 
on the frame. See Fig. 6–21c of Example 6.9.
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Example   6.11

For the frame shown in Fig. 6–23a, draw the free-body diagrams of 
(a)  the entire frame including the pulleys and cords, (b) the frame 
without the pulleys and cords, and (c) each of the pulleys.

C

A
B

75 lb

(a)

D

 

Fig. 6–23

SOLUTION
Part (a).  When the entire frame including the pulleys and cords is 
considered, the interactions at the points where the pulleys and cords are 
connected to the frame become pairs of internal forces which cancel each 
other and therefore are not shown on the free-body diagram, Fig. 6–23b.

Part (b).  When the cords and pulleys are removed, their effect on the 
frame must be shown, Fig. 6–23c.

Part (c).  The force components Bx, By, Cx, Cy of the pins on the 
pulleys, Fig. 6–23d, are equal but opposite to the force components 
exerted by the pins on the frame, Fig. 6–23c. See Example 6.9.

75 lb

(b)

Ay

Ax

T

75 lb

By

Bx

Cx

Cy

T

T

(c)

(d)

Ax

Ay

75 lb
T

Bx

Cy

CxBy

75 lb
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Example   6.12

Draw the free-body diagrams of the members of the backhoe, shown 
in the photo, Fig. 6–24a. The bucket and its contents have a weight W.

SOLUTION
The idealized model of the assembly is shown in Fig. 6–24b. By 
inspection, members AB, BC, BE, and HI are all two-force members 
since they are pin connected at their end points and no other forces 
act on them. The free-body diagrams of the bucket and the stick are 
shown in Fig. 6–24c. Note that pin C is subjected to only two forces, 
whereas the pin at B is subjected to three forces, Fig. 6–24d. The free-
body diagram of the entire assembly is shown in Fig. 6–24e.

(a)

Fig. 6–24 (© Russell C. Hibbeler)

A

B

E

C

(b)

D

F

H

I

G

(c)

Dy

Dy

FBA

Fx

Fy

FBC

FBE

FHI

DxDx

W

C

FBC

FBC 	    

B
FBC

FBE

FBA

(d) (e)

Fx

Fy

FHI

W
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Before proceeding, it is highly recommended that you cover the solutions 
of these examples and attempt to draw the requested free-body diagrams. 
When doing so, make sure the work is neat and that all the forces and 
couple moments are properly labeled. 

Example   6.13

Draw the free-body diagram of each part of the smooth piston and 
link mechanism used to crush recycled cans, Fig. 6–25a.

C

F � 800 N

A

B

D

E

75�

90�

30�

(a)

Fig. 6–25

SOLUTION
By inspection, member AB is a two-force member. The free-body 
diagrams of the three parts are shown in Fig. 6–25b. Since the pins at B 
and D connect only two parts together, the forces there are shown as 
equal but opposite on the separate free-body diagrams of their 
connected members. In particular, four components of force act on 
the piston: Dx and Dy represent the effect of the pin (or lever EBD), 
Nw is the resultant force of the wall support, and P is the resultant 
compressive force caused by the can C. The directional sense of each 
of the unknown forces is assumed, and the correct sense will be 
established after the equations of equilibrium are applied.

NOTE: A free-body diagram of the entire assembly is shown in Fig. 6–25c. 
Here the forces between the components are internal and are not shown 
on the free-body diagram.

F � 800 N

E

75�

D
Dx

Dy

A

B

BFAB

FAB

FAB

30�

Dx P
D

Nw

Dy

(b)

F � 800 N

75�

30�

P

FAB

Nw

(c)
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Procedure for Analysis

The joint reactions on frames or machines (structures) composed of 
multiforce members can be determined using the following 
procedure.

Free-Body Diagram.

	 •	 Draw the free-body diagram of the entire frame or machine, a 
portion of it, or each of its members. The choice should be made 
so that it leads to the most direct solution of the problem.

	 •	 Identify the two-force members. Remember that regardless of 
their shape, they have equal but opposite collinear forces acting 
at their ends.

	 •	 When the free-body diagram of a group of members of a frame or 
machine is drawn, the forces between the connected parts of this 
group are internal forces and are not shown on the free-body 
diagram of the group.

	 •	 Forces common to two members which are in contact act with 
equal magnitude but opposite sense on the respective free-body 
diagrams of the members.

	 •	 In many cases it is possible to tell by inspection the proper sense 
of the unknown forces acting on a member; however, if this seems 
difficult, the sense can be assumed.

	 •	 Remember that once the free-body diagram is drawn, a couple 
moment is a free vector and can act at any point on the diagram. 
Also, a force is a sliding vector and can act at any point along its 
line of action.

Equations of Equilibrium.

	 •	 Count the number of unknowns and compare it to the total 
number of equilibrium equations that are available. In two 
dimensions, there are three equilibrium equations that can be 
written for each member.

	 •	 Sum moments about a point that lies at the intersection of the 
lines of action of as many of the unknown forces as possible.

	 •	 If the solution of a force or couple moment magnitude is found to 
be negative, it means the sense of the force is the reverse of that 
shown on the free-body diagram.
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Example   6.14

Determine the tension in the cables and also the force P required to 
support the 600-N force using the frictionless pulley system shown in 
Fig. 6–26a.

Fig. 6–26

A

P B

C

600 N

(a)

A

B

C

R

T
P P

P P

T

P P
P

(b)

600 N

SOLUTION
Free-Body Diagram.  A free-body diagram of each pulley including 
its pin and a portion of the contacting cable is shown in Fig. 6–26b. 
Since the cable is continuous, it has a constant tension P acting 
throughout its length. The link connection between pulleys B and C is 
a two-force member, and therefore it has an unknown tension T acting 
on it. Notice that the principle of action, equal but opposite reaction 
must be carefully observed for forces P and T when the separate free-
body diagrams are drawn.

Equations of Equilibrium.  The three unknowns are obtained as 
follows:

Pulley A

+ c �Fy = 0;	 3P - 600 N = 0	 P = 200 N	 Ans.

Pulley B

+ c �Fy = 0;	 T - 2P = 0	 T = 400 N	 Ans.

Pulley C

+ c �Fy = 0;	 R - 2P - T = 0	 R = 800 N	 Ans.
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Example   6.15

A 500-kg elevator car in Fig. 6–27a is being hoisted by motor A using 
the pulley system shown. If the car is traveling with a constant speed, 
determine the force developed in the two cables. Neglect the mass of 
the cable and pulleys.

DE

C

B

AF

(a)

SOLUTION
Free-Body Diagram.  We can solve this problem using the free-body 
diagrams of the elevator car and pulley C, Fig. 6–27b. The tensile forces 
developed in the cables are denoted as T1 and T2.

Equations of Equilibrium.  For pulley C,

+ c �Fy = 0;    T2 - 2T1 = 0    or    T2 = 2T1	 (1)

For the elevator car,

+ c �Fy = 0;	 3T1 + 2T2 - 500(9.81) N = 0	 (2)

Substituting Eq. (1) into Eq. (2) yields

3T1 + 2(2T1) - 500(9.81) N = 0

	 T1 = 700.71 N = 701 N	 Ans.

Substituting this result into Eq. (1),

	 T2 = 2(700.71) N = 1401 N = 1.40 kN 	 Ans.

Fig. 6–27

(b)

T1

N1

N4N2

N3

T1 T1

T2 T2

500 (9.81) N

C

T1 T1

T2
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Example   6.16

Determine the horizontal and vertical components of force which the 
pin at C exerts on member BC of the frame in Fig. 6–28a.

SOLUTION I
Free-Body Diagrams.  By inspection it can be seen that AB is a two-
force member. The free-body diagrams are shown in Fig. 6–28b.

Equations of Equilibrium.  The three unknowns can be determined 
by applying the three equations of equilibrium to member BC.

a+ �MC = 0;  2000 N(2 m) - (FAB sin 60�)(4 m) = 0  FAB = 1154.7 N

S+ �Fx = 0;  1154.7 cos 60� N - Cx = 0 Cx = 577 N	 Ans.

+ c �Fy = 0;  1154.7 sin 60� N - 2000 N + Cy = 0	

Cy = 1000 N                      Ans.

SOLUTION II
Free-Body Diagrams.  If one does not recognize that AB is a two-
force member, then more work is involved in solving this problem. The 
free-body diagrams are shown in Fig. 6–28c.

Equations of Equilibrium.  The six unknowns are determined by 
applying the three equations of equilibrium to each member.

Member AB

a+ �MA = 0;  Bx(3 sin 60� m) - By(3 cos 60� m) = 0	 (1)

S+ �Fx = 0;  A x - Bx = 0� (2)

+ c �Fy = 0;  A y - By = 0� (3)

Member BC

a+ �MC = 0;  2000 N(2 m) - By(4 m) = 0	 (4)

S+ �Fx = 0;  Bx - Cx = 0� (5)

+ c �Fy = 0;  By - 2000 N + Cy = 0� (6)

The results for Cx and Cy can be determined by solving these equations 
in the following sequence: 4, 1, 5, then 6. The results are

 By = 1000 N

 Bx = 577 N

	  Cx = 577 N � Ans.

	  Cy = 1000 N� Ans.

By comparison, Solution I is simpler since the requirement that FAB in 
Fig. 6–28b be equal, opposite, and collinear at the ends of member AB 
automatically satisfies Eqs. 1, 2, and 3 above and therefore eliminates the 
need to write these equations. As a result, save yourself some time and effort 
by always identifying the two-force members before starting the analysis!

A

B

C

2000 N

2 m2 m
3 m

60�

(a)

2 m2 m
60�

FAB
Cy

Cx

FAB

FAB

2000 N

(b)

B

2 m2 m Cy

Cx
C

By

Bx

2000 N

By

Bx

Ay

AAx

(c)

3 m

60�

Fig. 6–28
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Example   6.17

The compound beam shown in Fig. 6–29a is pin connected at B. 
Determine the components of reaction at its supports. Neglect its 
weight and thickness.

SOLUTION
Free-Body Diagrams.  By inspection, if we consider a free-body 
diagram of the entire beam ABC, there will be three unknown reactions 
at A and one at C. These four unknowns cannot all be obtained from 
the three available equations of equilibrium, and so for the solution it 
will become necessary to dismember the beam into its two segments, 
as shown in Fig. 6–29b.

Equations of Equilibrium.  The six unknowns are determined as 
follows:

Segment BC

d+ �Fx = 0;	 Bx = 0

a+ �MB = 0;	 -8 kN(1 m) + Cy(2 m) = 0

+ c �Fy = 0;	 By - 8 kN + Cy = 0

Segment AB

S+ �Fx = 0;	 A x - (10 kN)13
52 + Bx = 0

a+ �MA = 0;	 MA - (10 kN)14
52(2 m) - By(4 m) = 0

+ c �Fy = 0;	 A y - (10 kN)14
52 - By = 0

Solving each of these equations successively, using previously 
calculated results, we obtain

A x = 6 kN      A y = 12 kN      MA = 32 kN # m� Ans.

Bx = 0          By = 4 kN

Cy = 4 kN � Ans.

B
C

4 kN/m
3

45

2 m2 m 2 m

(a)

A

10 kN

Fig. 6–29

2 m

4 m

3

45

10 kN

B

2 m

1 m

A

Ay

Ax

MA

By

Bx Bx

By Cy

8 kN

(b)
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Example   6.18

The two planks in Fig. 6–30a are connected together by cable BC and 
a smooth spacer DE. Determine the reactions at the smooth supports 
A and F, and also find the force developed in the cable and spacer.

SOLUTION
Free-Body Diagrams.  The free-body diagram of each plank is shown 
in Fig. 6–30b. It is important to apply Newton’s third law to the 
interaction forces FBC and FDE as shown.

Equations of Equilibrium.  For plank AD,

a+ �MA = 0;	 FDE (6 ft) - FBC (4 ft) - 100 lb (2 ft) = 0

For plank CF,

a+ �MF = 0;	 FDE(4 ft) - FBC (6 ft) + 200 lb (2 ft) = 0

Solving simultaneously,

	 FDE = 140 lb    FBC = 160 lb	 Ans.

Using these results, for plank AD,

+ c �Fy = 0;	 NA + 140 lb - 160 lb - 100 lb = 0

	 NA = 120 lb� Ans.

And for plank CF,

+ c �Fy = 0;	 NF + 160 lb - 140 lb - 200 lb = 0

	 NF = 180 lb� Ans.

NOTE: Draw the free-body diagram of the system of both planks and 
apply �MA = 0 to determine NF. Then use the free-body diagram of 
CEF to determine FDE and FBC.

F
D

E

B

C

A

2 ft 2 ft 2 ft

100 lb
200 lb

2 ft 2 ft

(a)

D C FA

100 lb

(b)

2 ft 2 ft 2 ft 2 ft2 ft 2 ft

200 lb

NA
NF

FDE

FDE

FBC

FBC

Fig. 6–30
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Example   6.19

The 75-kg man in Fig. 6–31a attempts to lift the 40-kg uniform beam 
off the roller support at B. Determine the tension developed in the 
cable attached to B and the normal reaction of the man on the beam 
when this is about to occur.

SOLUTION
Free-Body Diagrams.  The tensile force in the cable will be denoted 
as T1. The free-body diagrams of the pulley E, the man, and the beam 
are shown in Fig. 6–31b. Since the man must lift the beam off the roller 
B then NB = 0. When drawing each of these diagrams, it is very 
important to apply Newton’s third law.

Equations of Equilibrium.  Using the free-body diagram of pulley E,

+ c �Fy = 0;    2T1 - T2 = 0  or  T2 = 2T1� (1)

Referring to the free-body diagram of the man using this result,

+ c �Fy = 0    Nm + 2T1 - 75(9.81) N = 0	 (2)

Summing moments about point A on the beam,

a+ �MA = 0;  T1(3 m) - Nm  (0.8 m) - [40(9.81) N] (1.5 m) = 0� (3)

Solving Eqs. 2 and 3 simultaneously for T1 and Nm, then using  Eq. (1) 
for T2, we obtain

T1 = 256 N    Nm = 224 N    T2 = 512 N� Ans.

SOLUTION II
A direct solution for T1 can be obtained by considering the beam, the 
man, and pulley E as a single system. The free-body diagram is shown 
in Fig. 6–31c. Thus,

 a+ �MA = 0;  2T1(0.8 m) - [75(9.81) N](0.8 m)

 -  [40(9.81) N](1.5 m) + T1(3 m) = 0

	 T1 = 256 N	 Ans.

With this result Eqs. 1 and 2 can then be used to find Nm and T2.

A B

CD

H

E
F

2.2 m

(a)
0.8 m

G

H
E

1.5 m

75 (9.81) N

40 (9.81) N

(b)

0.8 m 0.7 mAy NB � 0

Ax

Nm T1

T1T1
T2 � 2T1

T2

Nm

G

1.5 m

75 (9.81) N

40 (9.81) N

(c)

0.8 m 0.7 mAy NB � 0

Ax

T1

T1T1

Fig. 6–31
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Example   6.20

The smooth disk shown in Fig. 6–32a is pinned at D and has a weight 
of 20 lb. Neglecting the weights of the other members, determine the 
horizontal and vertical components of reaction at pins B and D.

3.5 ft

3 ft

D C

A

(a)

B

SOLUTION
Free-Body Diagrams.  The free-body diagrams of the entire frame 
and each of its members are shown in Fig. 6–32b.

Equations of Equilibrium.  The eight unknowns can of course be 
obtained by applying the eight equilibrium equations to each 
member—three to member AB, three to member BCD, and two to 
the disk. (Moment equilibrium is automatically satisfied for the disk.) 
If this is done, however, all the results can be obtained only from a 
simultaneous solution of some of the equations. (Try it and find out.) 
To avoid this situation, it is best first to determine the three support 
reactions on the entire frame; then, using these results, the remaining 
five equilibrium equations can be applied to two other parts in order 
to solve successively for the other unknowns.

Entire Frame
a+ �MA = 0;	  -20 lb (3 ft) + Cx(3.5 ft) = 0	 Cx = 17.1 lb

S+ �Fx = 0;	 A x - 17.1 lb = 0	 A x = 17.1 lb

+ c �Fy = 0;	 A y - 20 lb = 0	 A y = 20 lb

Member AB
    S+ �Fx = 0;	 17.1 lb - Bx = 0	 Bx = 17.1 lb� Ans.

a+ �MB = 0;	  -20 lb (6 ft) + ND(3 ft) = 0	 ND = 40 lb

    + c �Fy = 0;	  20 lb - 40 lb + By = 0	 By = 20 lb� Ans.

Disk

S+ �Fx = 0;	   Dx = 0� Ans.

+ c �Fy = 0;	   40 lb - 20 lb - Dy = 0	 Dy = 20 lb� Ans.Fig. 6–32

3.5 ft

3 ft
Ay

Ax

20 lb

Cx

3.5 ft

3 ft
CxDx

Dy

By

Bx

3 ft

(b)

3 ft

ND

By

Bx

ND

Dy

Dx

20 lb

20 lb

17.1 lb
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Example   6.21

The frame in Fig. 6–33a supports the 50-kg cylinder. Determine the 
horizontal and vertical components of reaction at A and the force at C.

SOLUTION
Free-Body Diagrams.  The free-body diagram of pulley D, along 
with the cylinder and a portion of the cord (a system), is shown in 
Fig. 6–33b. Member BC is a two-force member as indicated by its free-
body diagram. The free-body diagram of member ABD is also shown.

Equations of Equilibrium.  We will begin by analyzing the equilibrium 
of the pulley. The moment equation of equilibrium is automatically 
satisfied with T = 50(9.81) N, and so

S+ �Fx = 0;	 Dx - 50(9.81) N = 0 Dx = 490.5 N

+ c �Fy = 0;	 Dy - 50(9.81) N = 0 Dy = 490.5 N� Ans.

Using these results, FBC can be determined by summing moments 
about point A on member ABD.

a+ �MA = 0; FBC (0.6 m) + 490.5 N(0.9 m) - 490.5 N(1.20 m) =  0

	 FBC = 245.25 N� Ans.

Now Ax and Ay can be determined by summing forces.

S+ �Fx = 0;	   Ax - 245.25 N - 490.5 N = 0 Ax = 736 N� Ans.

+ c �Fy = 0;	 Ay - 490.5 N = 0	 Ay = 490.5 N� Ans.

A

B

D

C

(a)

1.2 m

0.6 m

0.3 m

0.1 m

1.20 m

0.6 m

� 490.5 N

� 490.5 N

(b)

T �  50 (9.81) N

50 (9.81) N
Ax

Dx

FBC

FBC

FBC

Dx

Ay

Dy

Dy

 0.9 m

Fig. 6–33
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Example   6.22

800 N
800 N

800 N

800 N

FBC

FBC

FBAFBA

(b)

3 m

800 N

2 m

A
B

C

(a)

Determine the force the pins at A and B exert on the two-member 
frame shown in Fig. 6–34a.

SOLUTION I

Free-Body Diagrams.  By inspection AB and BC are two-force 
members. Their free-body diagrams, along with that of the pulley, are 
shown in Fig. 6–34b. In order to solve this problem we must also include 
the free-body diagram of the pin at B because this pin connects all three 
members together, Fig. 6–34c.

Equations of Equilibrium:  Apply the equations of force equilibrium 
to pin B.

S+ �Fx = 0;	 FBA - 800 N = 0;	 FBA = 800 N� Ans.

+ c �Fy = 0;	 FBC - 800 N = 0;	 FBC = 800 N� Ans.

Note: The free-body diagram of the pin at A, Fig. 6–34d, indicates 
how the force FAB is balanced by the force (FAB>2) exerted on the pin 
by each of the two pin leaves.

SOLUTION II
Free-Body Diagram.  If we realize that AB and BC are two-force 
members, then the free-body diagram of the entire frame produces an 
easier solution, Fig. 6–34e. The force equations of equilibrium are the 
same as those above. Note that moment equilibrium will be satisfied, 
regardless of the radius of the pulley.Fig. 6–34

A

2

FBA

FBA

2

FBA

Pin A

(d)

FBA

Pin B

FBC

800 N

800 N

(c)

3 m

800 N

2 m

B

800 N

FBC

FBA

(e)
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Preliminary Problems

P6–3.  In each case, identify any two-force members, and 
then draw the free-body diagrams of each member of the 
frame.

A B

C

1.5 m

1.5 m

200 N2 m 2 m

(a)

60 N � m 

Prob. P6–3

A

B

1 m

C

1.5 m
1 m 2 m

500 N

4

3

5

(c)

D

A B 1.5 m

200 N

(e)

2 m2 m

C

2 m

0.25 m

400 N

0.2 m

(f)

A B

2 m2 m

C

1.5 m

A
B

C

2 m6 m 2 m

800 N

(d)

200 N/m

A B

C

1 m

1 m

3 m

400 N/m

(b)
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FUNDAMENTAL PROBLEMS

F6–13.  Determine the force P needed to hold the 60-lb 
weight in equilibrium.

P

Prob. F6–13

F6–14.  Determine the horizontal and vertical components 
of reaction at pin C.

3 ft3 ft

400 lb
500 lb

3 ft3 ft

4 ft

B

A

C

Prob. F6–14

F6–15.  If a 100-N force is applied to the handles of the 
pliers, determine the clamping force exerted on the smooth 
pipe B and the magnitude of the resultant force that one of 
the members exerts on pin A.

250 mm

50 mm

100 N

100 N

45�

A

B

Prob. F6–15

F6–16.  Determine the horizontal and vertical components 
of reaction at pin C.

       

B

A

C

400 N

800 N � m
2 m1 m

1 m

1 m

Prob. F6–16

All problem solutions must include FBDs.
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F6–17.  Determine the normal force that the 100-lb plate A 
exerts on the 30-lb plate B.

4 ft

B

A

1 ft 1 ft

Prob. F6–17

F6–18.  Determine the force P needed to lift the load. Also, 
determine the proper placement x of the hook for 
equilibrium. Neglect the weight of the beam.

PB

C

A

0.9 m

100 mm 100 mm

100 mm

6 kN

x

Prob. F6–18

F6–19.  Determine the components of reaction at A and B.

A

B C

D

1.5 m

1.5 m2 m 2 m

800 N�m 600 N

45�

Prob. F6–19

F6–20.  Determine the reactions at D.

3 m3 m

10 kN
15 kN

3 m3 m

4 m

B

A

C

D 

Prob. F6–20
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F6–21.  Determine the components of reaction at A and C.

1.5 m1.5 m

3 m

400 N/ m

A

B

C

600 N

Prob. F6–21

F6–22.  Determine the components of reaction at C.

B

C

D

E

1.5 m 1.5 m 1.5 m 1.5 m

2 m

2 m
250 N

A

Prob. F6–22

F6–23.  Determine the components of reaction at E.

A

E

B

CD

5 kN

1.5 m 1.5 m

2 m

4 kN/m

Prob. F6–23

F6–24.  Determine the components of reaction at D and the 
components of reaction the pin at A exerts on member BA.

6 kN

A

B C

D

3 m

4 m

2 m

8 kN/m

Prob. F6–24
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All problem solutions must include FBDs. 6–63.  Determine the force P required to hold the 50-kg 
mass in equilibrium.

P

A

B

C

Prob. 6–63

*6–64.  Determine the force P required to hold the 150-kg 
crate in equilibrium.

P

A

B

C

Prob. 6–64

PROBLEMS

6–61.  Determine the force P required to hold the 100-lb 
weight in equilibrium.

P
A

B

C

D

Prob. 6–61

6–62.  In each case, determine the force P required to 
maintain equilibrium. The block weighs 100 lb.

P

(a) (b) (c)

P

P

Prob. 6–62



326 	 Chapter 6    Structural Analys is

6

*6–68.  The bridge frame consists of three segments which 
can be considered pinned at A, D, and E, rocker supported 
at C and F, and roller supported at B. Determine the 
horizontal and vertical components of reaction at all these 
supports due to the loading shown.

15 ft

20 ft

5 ft 5 ft

15 ft

2 kip/ft

30 ft

A

B

C F

D
E

Prob. 6–68

6–69.  Determine the reactions at supports A and B.

6 ft

500 lb/ ft
6 ft

8 ft

9 ft

700 lb/ ft

6 ft

A C

D

B

Prob. 6–69

6–70.  Determine the horizontal and vertical components 
of force at pins B and C. The suspended cylinder has a mass 
of 75 kg.

A

BC

1.5 m

0.3 m

2 m
0.5 m

Prob. 6–70

6–65.  Determine the horizontal and vertical components 
of force that pins A and B exert on the frame.

4 m

3 m

2 kN/m

A

C

B

Prob. 6–65

6–66.  Determine the horizontal and vertical components 
of force at pins A and D.

1.5 m

D

A B

C

E

1.5  m

0.3 m

12 kN

2 m

Prob. 6–66

6–67.  Determine the force that the smooth roller C exerts 
on member AB. Also, what are the horizontal and vertical 
components of reaction at pin A? Neglect the weight of the 
frame and roller.

C
0.5 ft

3 ft

A

60 lb�ft

4 ft

B

D

Prob. 6–67
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6–74.  The wall crane supports a load of 700 lb. Determine 
the horizontal and vertical components of reaction at the 
pins  A and D. Also, what is the force in the cable at the 
winch W?

6–75.  The wall crane supports a load of 700 lb. Determine 
the horizontal and vertical components of reaction at the pins 
A and D. Also, what is the force in the cable at the winch W? 
The jib ABC has a weight of 100 lb and member BD has a 
weight of 40 lb. Each member is uniform and has a center of 
gravity at its center.

4 ft

D

A B

C

E

W

4 ft

700 lb

60�

4 ft

Probs. 6–74/75

*6–76.  Determine the horizontal and vertical components 
of force which the pins at A and B exert on the frame.

400 N/m

1.5 m

2 m

3 m

3 m

1.5 m

A

F

E

D

B

C

Prob. 6–76

6–71.  Determine the reactions at the supports A, C, and E 
of the compound beam.

4 m 3 m3 m 6 m
2 m

A DB EC

3 kN/m
12 kN

Prob. 6–71

*6–72.  Determine the resultant force at pins A, B, and C 
on the three-member frame.

200 N/ m

60�

2 m

800 N

2 m

B

C

A

Prob. 6–72

6–73.  Determine the reactions at the supports at A, E, and 
B of the compound beam.

3 m

900 N/m 900 N/m

4 m3 m

A C D

B

3 m 3 m 

E

Prob. 6–73
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*6–80.  The toggle clamp is subjected to a force F at the 
handle. Determine the vertical clamping force acting at E.

1.5 a

1.5 a

60�

a/2

a/2

a/2E

C

D

F
B

A

Prob. 6–80

6–81.  The hoist supports the 125-kg engine. Determine the 
force the load creates in member DB and in member FB, 
which contains the hydraulic cylinder H.

C

D

EFG

H

2 m

1 m

1 m

2 m1 m

2 m

A B

Prob. 6–81

6–82.  A 5-lb force is applied to the handles of the vise grip. 
Determine the compressive force developed on the smooth 
bolt shank A at the jaws.

5 lb

5 lb

3 in.1 in.1.5 in.
20�

A

B

E
C

D

1 in.

0.75 in.

Prob. 6–82

6–77.  The two-member structure is connected at C by a 
pin, which is fixed to BDE and passes through the smooth 
slot in member AC. Determine the horizontal and vertical 
components of reaction at the supports.

3 ft 3 ft 2 ft

4 ft

A

B

C D
E

600 lb � ft

500 lb

Prob. 6–77

6–78.  The compound beam is pin supported at B and 
supported by rockers at A and C. There is a hinge (pin) at D. 
Determine the reactions at the supports.

C
DB

A

6 m 3 m

2 kN/m

3 m

Prob. 6–78

6–79.  When a force of 2 lb is applied to the handles of the 
brad squeezer, it pulls in the smooth rod AB. Determine the 
force P exerted on each of the smooth brads at C and D.

A

C

D

2 lb

1 in.

2 lb

2 in.

2 in.

0.25 in.

1.5 in.

1.5 in.

E

B

P

P

Prob. 6–79
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6–86.  The pumping unit is used to recover oil. When the 
walking beam ABC is horizontal, the force acting in the 
wireline at the well head is 250 lb. Determine the torque M 
which must be exerted by the motor in order to overcome this 
load. The horse-head C weighs 60 lb and has a center of gravity 
at GC. The walking beam ABC has a weight of 130 lb and a 
center of gravity at GB, and the counterweight has a weight of 
200 lb and a center of gravity at GW . The pitman, AD, is pin 
connected at its ends and has negligible weight.

GB

20�

250 lb

70�

5 ft

3 ft 2.5 ft

6 ft 1 ft

Gw

GC

D

A B

E

C

M

Prob. 6–86

6–87.  Determine the force that the jaws J of the metal 
cutters exert on the smooth cable C if 100-N forces are 
applied to the handles. The jaws are pinned at E and A,  
and D and B. There is also a pin at F.

F 15�

15�

15�

20 mm

20 mm

30 mm 80 mm

B

J

C

D

E A

15�

15�

400 mm

400 mm

100 N

100 N

Prob. 6–87

6–83.  Determine the force in members FD and DB of the 
frame. Also, find the horizontal and vertical components  
of reaction the pin at C exerts on member ABC and  
member EDC.

B
A

G
F

E

D

C

2 m6 kN

1 m

2 m 1 m

Prob. 6–83

*6–84.  Determine the force that the smooth 20-kg cylinder 
exerts on members AB and CDB. Also, what are the 
horizontal and vertical components of reaction at pin A?

C

1 m

1.5 m

A

2 m

BE

D

Prob. 6–84

6–85.  The three power lines exert the forces shown on the 
pin-connected members at joints B, C, and D, which in turn are 
pin connected to the poles AH and EG. Determine the force 
in the guy cable AI and the pin reaction at the support H.

125 ft

20 ft
A E

B

800 lb
800 lb 800 lb

I F

C D

H G

20 ft20 ft

40 ft40 ft

30 ft30 ft 30 ft 30 ft 50 ft50 ft

Prob. 6–85
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6–90.  The pipe cutter is clamped around the pipe P. If the 
wheel at A exerts a normal force of FA = 80 N on the pipe, 
determine the normal forces of wheels B and C on the pipe. 
Also compute the pin reaction on the wheel at C. The three 
wheels each have a radius of 7 mm and the pipe has an outer 
radius of 10 mm.

10 mm

10 mm

P

C

B
A

Prob. 6–90

6–91.  Determine the force created in the hydraulic 
cylinders EF and AD in order to hold the shovel in 
equilibrium. The shovel load has a mass of 1.25 Mg and a 
center of gravity at G. All joints are pin connected.

0.5 m

0.25 m
0.25 m

1.5 m

30�

10�

H

G

D

E

C

F

60�
2 m

A

Prob. 6–91

*6–88.  The machine shown is used for forming metal plates. 
It consists of two toggles ABC and DEF, which are operated 
by the hydraulic cylinder H. The toggles push the movable bar 
G forward, pressing the plate p into the cavity. If the force 
which the plate exerts on the head is P = 12 kN, determine the 
force F in the hydraulic cylinder when u = 30�.

200 mm
�F

F

P � 12 kN
H

F

C

G

A

D

E

B
p

200 mm

200 mm

200 mm

u � 30�

u � 30�

Prob. 6–88

6–89.  Determine the horizontal and vertical components 
of force which pin C exerts on member ABC. The 600-N 
load is applied to the pin. 

1.5 m

2 m 2 m

3 m

A

F

C

D

E

B

600 N

300 N

Prob. 6–89



	 6.6 F rames and Machines	 331

6

6–94.  Five coins are stacked in the smooth plastic 
container shown. If each coin weighs 0.0235 lb, determine 
the normal reactions of the bottom coin on the container at 
points A and B.

3

4

3

3

5

5

5

5

4

4

3

4

A

B

Prob. 6–94

6–95.  The nail cutter consists of the handle and the two 
cutting blades. Assuming the blades are pin connected at B 
and the surface at D is smooth, determine the normal force 
on the fingernail when a force of 1 lb is applied to the 
handles as shown. The pin AC slides through a smooth hole 
at A and is attached to the bottom member at C.

1.5 in.

A

D

C

B

1 lb

1 lb

0.25 in.0.25 in.

Prob. 6–95

*6–92.  Determine the horizontal and vertical components 
of force at pin B and the normal force the pin at C exerts on 
the smooth slot. Also, determine the moment and horizontal 
and vertical reactions of force at A. There is a pulley at E.

3 ft3 ft

4 ft

4 ft

AB

C

D E

50 lb

Prob. 6–92

6–93.  The constant moment of 50 N # m is applied to the 
crank shaft. Determine the compressive force P that is exerted 
on the piston for equilibrium as a function of u. Plot the results 
of P (vertical axis) versus u (horizontal axis) for 0� … u … 90�.

P

0.45 m

0.2 m

u

A

B

C

50 N � m

Prob. 6–93
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6–98.  The two-member frame is pin connected at E. The 
cable is attached to D, passes over the smooth peg at C, and 
supports the 500-N load. Determine the horizontal and 
vertical reactions at each pin.

0.5 m0.5 m

500 N500 N

1 m1 m 1 m1 m
0.5 m0.5 m 0.5 m0.5 m

AA
BB

CC

DD

EE

Prob. 6–98

6–99.  If the 300-kg drum has a center of mass at point G, 
determine the horizontal and vertical components of force 
acting at pin A and the reactions on the smooth pads C and D. 
The grip at B on member DAB resists both horizontal and 
vertical components of force at the rim of the drum.

P

390 mm

100 mm

60 mm
60 mm

600 mm

30�

B

A

C 

D G 

E 

Prob. 6–99

*6–96.  A man having a weight of 175 lb attempts to hold 
himself using one of the two methods shown. Determine 
the total force he must exert on bar AB in each case and the 
normal reaction he exerts on the platform at C. Neglect the 
weight of the platform.

C C

A B
A B

(a) (b)

Prob. 6–96

6–97.  A man having a weight of 175 lb attempts to hold 
himself using one of the two methods shown. Determine 
the total force he must exert on bar AB in each case and the 
normal reaction he exerts on the platform at C. The platform 
has a weight of 30 lb.

C C

A B
A B

(a) (b)

Prob. 6–97



	 6.6 F rames and Machines	 333

6

6–102.  If a force of F = 350 N is applied to the handle of the 
toggle clamp, determine the resulting clamping force at A.

275 mm30�

30�

235 mm

30 mm

30 mm

70 mm

F

C

E

B

D

A

Prob. 6–102

6–103.  Determine the horizontal and vertical components 
of force that the pins at A and B exert on the frame.

2 m

1 m

3 m3 m

2 m 2 m

3 m

2 kN

3 kN

4 kN

D E

C

A

B

Prob. 6–103

*6–100.  Operation of exhaust and intake valves in an 
automobile engine consists of the cam C, push rod DE, 
rocker arm EFG which is pinned at F, and a spring and 
valve,V. If the compression in the spring is 20 mm when the 
valve is open as shown, determine the normal force acting 
on the cam lobe at C. Assume the cam and bearings at H, I, 
and J are smooth. The spring has a stiffness of 300 N>m.

25 mm
40 mm

E

FG

H

I

J

V

D

C

Prob. 6–100

6–101.  If a clamping force of 300 N is required at A, 
determine the amount of force F that must be applied to the 
handle of the toggle clamp.

275 mm30�

30�

235 mm

30 mm

30 mm

70 mm

F

C

E

B

D

A

Prob. 6–101
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6–106.  If d = 0.75 ft and the spring has an unstretched 
length of 1 ft, determine the force F required for equilibrium.

d

d
A C

B

D

1 ft

1 ft

1 ft

1 ft

k � 150 lb/ft

F F

Prob. 6–106

6–107.  If a force of F = 50 lb is applied to the pads at A  
and C, determine the smallest dimension d required for 
equilibrium if the spring has an unstretched length of 1 ft.

d

d
A C

B

D

1 ft

1 ft

1 ft

1 ft

k � 150 lb/ft

F F

Prob. 6–107

*6–108.  The skid-steer loader has a mass of 1.18 Mg, and in 
the position shown the center of mass is at G1. If there is a 
300-kg stone in the bucket, with center of mass at G2, 
determine the reactions of each pair of wheels A and B on 
the ground and the force in the hydraulic cylinder CD and at 
the pin E. There is a similar linkage on each side of the loader.

1.5 m

1.25 m

A B

C
D

G1
G2

E

0.5 m

0.75 m

0.15 m

30�

Prob. 6–108

*6–104.  The hydraulic crane is used to lift the 1400-lb load. 
Determine the force in the hydraulic cylinder AB and the 
force in links AC and AD when the load is held in the 
position shown.

8 ft30�

120�

70�

1 ft

1 ft1 ft

B

A
D

C

7 ft

Prob. 6–104

6–105.  Determine force P on the cable if the spring is 
compressed 0.025 m when the mechanism is in the position 
shown. The spring has a stiffness of k = 6 kN>m.

P
150 mm

200 mm

200 mm

200 mm
800 mm

A

C

D

E

B

F

30�
k

Prob. 6–105
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*6–112.  The piston C moves vertically between the two 
smooth walls. If the spring has a stiffness of k = 15 lb>in., 
and is unstretched when u = 0�, determine the couple M 
that must be applied to AB to hold the mechanism in 
equilibrium when u = 30�.

u

A

M

B

8 in.

12 in.

C

k � 15 lb/in.

Prob. 6–112

6–113.  The platform scale consists of a combination of third 
and first class levers so that the load on one lever becomes the 
effort that moves the next lever. Through this arrangement, a 
small weight can balance a massive object. If x = 450 mm, 
determine the required mass of the counterweight S required 
to balance a 90-kg load, L.

6–114.  The platform scale consists of a combination of third 
and first class levers so that the load on one lever becomes the 
effort that moves the next lever. Through this arrangement, a 
small weight can balance a massive object. If x = 450 mm, and 
the mass of the counterweight S is 2 kg, determine the mass of 
the load L required to maintain the balance.

350 mm
150 mm

150 mm100 mm
250 mm

B
A

C D

E F

H

G

x

L

S

Probs. 6–113/114

6–109.  Determine the force P on the cable if the spring is 
compressed 0.5 in. when the mechanism is in the position 
shown. The spring has a stiffness of k = 800 lb>ft.

P

6 in.

24 in.

6 in. 6 in. 4 in.

A

C

D

E

B

30�

k

Prob. 6–109

6–110.  The spring has an unstretched length of 0.3 m. 
Determine the angle u for equilibrium if the uniform bars 
each have a mass of 20 kg.

6–111.  The spring has an unstretched length of 0.3 m. 
Determine the mass m of each uniform bar if each angle 
u = 30� for equilibrium.

2 m

k � 150 N/m

A

B

C

u

u

Probs. 6–110/111
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6–117.  The structure is subjected to the loading shown. 
Member AD is supported by a cable AB and roller at C and 
fits through a smooth circular hole at D. Member ED is 
supported by a roller at D and a pole that fits in a smooth 
snug circular hole at E. Determine the x, y, z components of 
reaction at E and the tension in cable AB.

z

C

A

D

B

E

0.3 m y

0.3 m

0.5 m

0.4 m

F � {�2.5k} kN

x

0.8 m

Prob. 6–117

6–118.  The three pin-connected members shown in the 
top view support a downward force of 60 lb at G. If only 
vertical forces are supported at the connections B, C, E and 
pad supports A, D, F, determine the reactions at each pad.

D

B
E

G

F

A

C

6 ft 6 ft

6 ft

2 ft

2 ft

4 ft

4 ft

Prob. 6–118

6–115.  The four-member “A” frame is supported at A  
and E by smooth collars and at G by a pin. All the other 
joints are ball-and-sockets. If the pin at G will fail when the 
resultant force there is 800 N, determine the largest vertical 
force P that can be supported by the frame. Also, what are 
the x, y, z force components which member BD exerts on 
members EDC and ABC? The collars at A and E and the 
pin at G only exert force components on the frame.

x

y

C

D

B
F

G

E

A

P � �Pk

z

300 mm

300 mm

600 mm

600 mm

600 mm

Prob. 6–115

*6–116.  The structure is subjected to the loadings shown. 
Member AB is supported by a ball-and-socket at A and 
smooth collar at B. Member CD is supported by a pin at C. 
Determine the x, y, z components of reaction at A and C.

2 m 3 m y

4 m

1.5 m

B

800 N � m

A

250 N

D
45�

60�

60�

z

x

C

Prob. 6–116
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Chapter Review

Simple Truss

A simple truss consists of triangular 
elements connected together by pinned 
joints. The forces within its members  can 
be determined by assuming the members 
are all two-force members, connected 
concurrently at each joint. The members 
are either in tension or compression, or 
carry no force.

Roof truss

Method of Joints

The method of joints states that if a 
truss is in equilibrium, then each of its 
joints is also in equilibrium. For a plane 
truss, the concurrent force system at 
each joint must satisfy force equilibrium.

To obtain a numerical solution for the 
forces in the members, select a joint 
that has a free-body diagram with at 
most two unknown forces and one 
known force. (This may require first 
finding the reactions at the supports.)

Once a member force is determined, use 
its value and apply it to an adjacent joint.

Remember that forces that are found to 
pull on the joint are tensile forces, and 
those that push on the joint are 
compressive forces.

To avoid a simultaneous solution of two 
equations, set one of the coordinate axes 
along the line of action of one of the 
unknown forces and sum forces 
perpendicular to this axis. This will allow 
a direct solution for the other unknown.

The analysis can also be simplified by 
first identifying all the zero-force 
members.

 �Fx = 0

 �Fy = 0

B
500 N

A C

45�

45�

B

45�

500 N

FBC (compression)FBA (tension)
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Method of Sections

The method of sections states that if a 
truss is in equilibrium, then each segment 
of the truss is also in equilibrium. Pass a 
section through the truss and the 
member whose force is to be determined. 
Then draw the free-body diagram of the 
sectioned part having the least number 
of forces on it.

B

2 m

1000 N

2 m 2 m

C D

G F E
A

2 m

a

a

Sectioned members subjected to pulling 
are in tension, and those that are 
subjected to pushing are in compression.

2 m

1000 N

2 m

2 m

CFBC

45�

FGC

G FGF

Three equations of equilibrium are 
available to determine the unknowns.

If possible, sum forces in a direction that 
is perpendicular to two of the three 
unknown forces. This will yield a direct 
solution for the third force.

Sum moments about the point where the 
lines of action of two of the three 
unknown forces intersect, so that the 
third unknown force can be determined 
directly.

 �Fx = 0
 �Fy = 0
 �MO = 0

+ c �Fy = 0
 -1000 N + FGC sin 45� = 0

FGC = 1.41 kN (T)

a+ �MC = 0
 1000 N(4 m) - FGF (2 m) = 0

FGF = 2 kN (C)
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Space Truss

A space truss is a three-dimensional truss 
built from tetrahedral elements, and is 
analyzed using the same methods as for 
plane trusses. The joints are assumed to 
be ball-and-socket connections.

P

Frames and Machines

Frames and machines are structures that 
contain one or more multiforce members, 
that is, members with three or more 
forces or couples acting on them. Frames 
are designed to support loads, and 
machines transmit and alter the effect of 
forces. A

B

C

2000 N

Two-force
member

Multi-force
member

The forces acting at the joints of a frame 
or machine can be determined by 
drawing the free-body diagrams of each 
of its members or parts. The principle of  
action–reaction should be carefully 
observed when indicating these forces 
on the free-body diagram of each 
adjacent member or pin. For a coplanar 
force system, there are three equilibrium 
equations available for each member.

To simplify the analysis, be sure to 
recognize all two-force members. They 
have equal but opposite collinear forces 
at their ends.

FAB
Cy

Cx

FAB

FAB

2000 N

Action–reaction

B
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Review Problems

All problem solutions must include FBDs.

R6–1.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

2 m

1.5 m

2 m

4 kN

F
A

8 kN 10 kN

3 kN

E

DCB

Prob. R6–1

R6–2.  Determine the force in each member of the truss 
and state if the members are in tension or compression.

A

B C
D

G E

10 ft

10 ft

10 ft 10 ft

1000 lb

Prob. R6–2

R6–3.  Determine the force in member GJ and GC of the 
truss and state if the members are in tension or compression.

1000 lb

1000 lb

1000 lb

1000 lb

30�

10 ft 10 ft 10 ft 10 ft

A E
B

H

G

J

C D

Prob. R6–3

R6–4.  Determine the force in members GF, FB, and BC 
of the Fink truss and state if the members are in tension or 
compression.

A
B

G E

F

10 ft 10 ft

800 lb

10 ft

D
C

800 lb

600 lb

30�60�30� 60�

Prob. R6–4
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R6–7.  Determine the horizontal and vertical components 
of force at pins A and C of the two-member frame.

3 m

3 m

600 N/ m

400 N/m

500 N/ m

A B

C

Prob. R6–7

R6–8.  Determine the resultant forces at pins B and C on 
member ABC of the four-member frame.

2 ft

150 lb/ft

4 ft

5 ft

5 ft2 ft

A

F E D

B C

Prob. R6–8

R6–5.  Determine the force in members AB, AD, and AC 
of the space truss and state if the members are in tension or 
compression.

1.5 ft

1.5 ft

2 ft

F � {�600k} lb

8 ft
x

y

z

B
A

C

D

Prob. R6–5

R6–6.  Determine the horizontal and vertical components of 
force that the pins A and B exert on the two-member frame.

1.5 m

400 N/m

60�

1 m

1 m

B

C

A

Prob. R6–6



Chapter 7

When external loads are placed upon these beams and columns, the loads within 
them must be determined if they are to be properly designed. In this chapter we 

will study how to determine these internal loadings.

(© Tony Freeman/Science Source)



Internal Forces

CHAPTER OBJECTIVES

n	 To use the method of sections to determine the internal loadings 
in a member at a specific point.

n	 To show how to obtain the internal shear and moment throughout 
a member and express the result graphically in the form of shear 
and moment diagrams.

n	 To analyze the forces and the shape of cables supporting various 
types of loadings.

7.1  �Internal Loadings Developed in 
Structural Members

To design a structural or mechanical member it is necessary to know the 
loading acting within the member in order to be sure the material can 
resist this loading. Internal loadings can be determined by using the 
method of sections. To illustrate this method, consider the cantilever beam 
in Fig. 7–1a. If the internal loadings acting on the cross section at point B 
are to be determined, we must pass an imaginary section a–a perpendicular 
to the axis of the beam through point B and then separate the beam into 
two segments. The internal loadings acting at B will then be exposed and 
become external on the free-body diagram of each segment, Fig. 7–1b.

A B

(a)

P1

P2a

a

�
(b)

VB VB

MB MB

MA

NB NBAx

Ay

B B

P1
P2

Fig. 7–1
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In each case, the link on the backhoe is 
a two-force member. In the top photo 
it is subjected to both bending and an 
axial load at its center. It is more 
efficient to make the member straight, 
as in the bottom photo; then only an 
axial force acts within the member.  
(© Russell C. Hibbeler)

(b)

VB VB

MB MB

MA

NB NBAx

Ay

B B

P1
P2

Fig. 7–1 (Repeated)

The force component NB that acts perpendicular to the cross section is 
termed the normal force. The force component VB that is tangent to the 
cross section is called the shear force, and the couple moment MB is 
referred to as the bending moment. The force components prevent the 
relative translation between the two segments, and the couple moment 
prevents the relative rotation. According to Newton’s third law, these 
loadings must act in opposite directions on each segment, as shown in  
Fig. 7–1b. They can be determined by applying the equations of equilibrium 
to the free-body diagram of either segment. In this case, however, the right 
segment is the better choice since it does not involve the unknown support 
reactions at A. A direct solution for NB is obtained by applying �Fx = 0, 
VB is obtained from �Fy = 0, and MB can be obtained by applying 
�MB = 0, since the moments of NB and VB about B are zero.

In two dimensions, we have shown that three internal loading resultants 
exist, Fig. 7–2a; however in three dimensions, a general resultant internal 
force and couple moment resultant will act at the section. The x, y, z 
components of these loadings are shown in Fig. 7–2b. Here Ny is the normal 
force, and Vx and Vz  are shear force components. My is a torsional or twisting 
moment, and Mx and Mz  are bending moment components. For most 
applications, these resultant loadings will act at the geometric center or 
centroid (C) of the section’s cross-sectional area. Although the magnitude 
for each loading generally will be different at various points along the axis 
of the member, the method of sections can always be used to determine 
their values.

(a)

V

N

M
Shear force

Normal force

Bending moment

C

Fig. 7–2 

y

z

Ny

Normal force

My

Torsional moment

Vx

Vz

Mx

x

C

Mz

Shear force components

Bending moment
components

(b)
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Sign Convention.  For problems in two dimensions engineers 
generally use a sign convention to report the three internal loadings  
N, V, and M. Although this sign convention can be arbitrarily assigned, the 
one that is widely accepted will be used here, Fig. 7–3. The normal force is 
said to be positive if it creates tension, a positive shear force will cause the 
beam segment on which it acts to rotate clockwise, and a positive bending 
moment will tend to bend the segment on which it acts in a concave upward 
manner. Loadings that are opposite to these are considered negative.

Positive shear

Positive normal force

Positive moment

M M

V

V

N

N

N

N

V

V

M M

Fig. 7–3

A

The designer of this shop crane 
realized the need for additional 
reinforcement around the joint at A 
in order to prevent severe internal 
bending of the joint when a large load 
is suspended from the chain hoist. 
(© Russell C. Hibbeler) 

Procedure for Analysis

The method of sections can be used to determine the internal loadings 
on the cross section of a member using the following procedure.

Support Reactions.
	 •	 Before the member is sectioned, it may first be necessary to 

determine its support reactions.

Free-Body Diagram.
	 •	 It is important to keep all distributed loadings, couple moments, 

and forces acting on the member in their exact locations, then pass 
an imaginary section through the member, perpendicular to its axis 
at the point where the internal loadings are to be determined.

	 •	 After the section is made, draw a free-body diagram of the 
segment that has the least number of loads on it, and indicate 
the  components of the internal force and couple moment 
resultants at the cross section acting in their positive directions in 
accordance with the established sign convention.

Equations of Equilibrium.
	 •	 Moments should be summed at the section. This way the normal 

and shear forces at the section are eliminated, and we can obtain 
a direct solution for the moment.

	 •	 If the solution of the equilibrium equations yields a negative 
scalar, the sense of the quantity is opposite to that shown on the 
free-body diagram.

	 	        Important Point

	 •	 There can be four types of resultant internal loads in a member. 
They are the normal and shear forces and the bending and torsional 
moments. These loadings generally vary from point to point. They 
can be determined using the method of sections.
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Example   7.1

Determine the normal force, shear force, and bending moment acting 
just to the left, point B, and just to the right, point C, of the 6-kN force 
on the beam in Fig. 7–4a.

Solution
Support Reactions.  The free-body diagram of the beam is shown in 
Fig. 7–4b. When determining the external reactions, realize that the 
9@kN # m couple moment is a free vector and therefore it can be placed 
anywhere on the free-body diagram of the entire beam. Here we will 
only determine Ay, since the left segments will be used for the analysis.

a+ �MD = 0;	     9 kN # m + (6 kN)(6 m) - A y(9 m) = 0

	 A y = 5 kN

Free-Body Diagrams.  The free-body diagrams of the left segments 
AB and AC of the beam are shown in Figs. 7–4c and 7–4d. In this case 
the 9@kN # m couple moment is not included on these diagrams since it 
must be kept in its original position until after the section is made and 
the appropriate segment is isolated.

Equations of Equilibrium.
Segment AB

	    S+ �Fx = 0;	 NB = 0 		  Ans.

	  + c �Fy = 0;	 5 kN - V B = 0	 V B = 5 kN	 Ans.

	a+ �MB = 0;	 -(5 kN)(3 m) + MB = 0	 MB = 15 kN # m 	 Ans.

Segment AC

	     S+ �Fx = 0;	 NC = 0		  Ans.

	    + c �Fy = 0;	 5 kN - 6 kN - V C = 0	 V C = -1 kN 	 Ans.

	a+ �MC = 0;	 -(5 kN)(3 m) + MC = 0	 MC = 15 kN # m 	 Ans.

Note: The negative sign indicates that VC acts in the opposite sense 
to that shown on the free-body diagram. Also, the moment arm for the 
5-kN force in both cases is approximately 3 m since B and C are 
“almost” coincident.

(a)

A

CB

D

3 m 6 m

9 kN�m

6 kN

 

Ay

A
D

(b)

3 m 6 m
Dy

9 kN�m

6 kN

Dx

A

(c)

3 m
VB

NB

MB

5 kN

B

5 kN

A

(d)

6 kN

3 m

C NC

MC

VC

Fig. 7–4



	 7.1  Internal Loadings Developed in Structural Members	 347

7

Example   7.2

Determine the normal force, shear force, and bending moment at C of 
the beam in Fig. 7–5a.

Solution
Free-Body Diagram.  It is not necessary to find the support reactions 
at A since segment BC of the beam can be used to determine the 
internal loadings at C. The intensity of the triangular distributed load 
at C is determined using similar triangles from the geometry shown in 
Fig. 7–5b, i.e.,

wC = (1200 N>m) a 1.5 m

3 m
b = 600 N>m

The distributed load acting on segment BC can now be replaced by its 
resultant force, and its location is indicated on the free-body diagram, 
Fig. 7–5c.

Equations of Equilibrium.

	 S+ �Fx = 0;	 NC = 0	 Ans.

	 + c �Fy = 0;	 V C -
1
2(600 N>m)(1.5 m) = 0

	  V C = 450 N 	 Ans.

	a+ �MC = 0;	 -MC -
1
2(600 N>m)(1.5 m)(0.5 m) = 0

	 MC = -225 N	 Ans.

The negative sign indicates that MC acts in the opposite sense to that 
shown on the free-body diagram.

B
CA

1.5 m 1.5 m

1200 N/m

(a)

Fig. 7–5 

1.5 m

(b)

1200 N/m

3 m

wC

(c)

VC

MC

NC

C B

0.5 m

600 N/m

(600 N/m)(1.5 m)1
2
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Example   7.3

Determine the normal force, shear force, and bending moment acting 
at point B of the two-member frame shown in Fig. 7–6a.

Solution
Support Reactions.  A free-body diagram of each member is shown 
in Fig. 7–6b. Since CD is a two-force member, the equations of 
equilibrium need to be applied only to member AC.

	a+ �MA = 0; 	 -400 lb (4 ft) + 13
52 FDC (8 ft) = 0 	 FDC = 333.3 lb

	    S+ �Fx = 0;	 -A x + 14
52(333.3 lb) = 0 	 A x = 266.7 lb

	   + c �Fy = 0;	 A y - 400 lb + 13
52(333.3 lb) = 0 	 A y = 200 lb

(a)

A

4 ft 4 ft

6 ft

D

B
C

50 lb/ft

 

200 lb

266.7 lb

2 ft 2 ft

200 lb
3

4

5

200 lb

2 ft2 ft

333.3 lb

C

(c)

VB

NB

MB

VB

NB

MB

BA B

(b)

4 ft

A C

4 ft

Ay

Ax

3
4

5

FDC

FDC

FDC

400 lb

Fig. 7–6

Free-Body Diagrams.  Passing an imaginary section perpendicular to 
the axis of member AC through point B yields the free-body diagrams 
of segments AB and BC shown in Fig. 7–6c. When constructing these 
diagrams it is important to keep the distributed loading where it is until 
after the section is made. Only then can it be replaced by a single 
resultant force.

Equations of Equilibrium.  Applying the equations of equilibrium 
to segment AB, we have

	 S+ �Fx = 0;	 NB - 266.7 lb = 0 	 NB = 267 lb 	 Ans.

	 + c �Fy = 0;	 200 lb - 200 lb - V B = 0 	 V B = 0 	 Ans.

	a+ �MB = 0;	  MB - 200 lb (4 ft) + 200 lb (2 ft) = 0

	 MB = 400 lb # ft 	 Ans.

NOTE: As an exercise, try to obtain these same results using segment BC.
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Example   7.4

Determine the normal force, shear force, and bending moment acting 
at point E of the frame loaded as shown in Fig. 7–7a.

Solution
Support Reactions.  By inspection, members AC and CD are two-
force members, Fig. 7–7b. In order to determine the internal loadings at 
E, we must first determine the force R acting at the end of member AC. 
To obtain it, we will analyze the equilibrium of the pin at C.

Summing forces in the vertical direction on the pin, Fig. 7–7b,  
we have

+ c �Fy = 0;    R sin 45� - 600 N = 0  R = 848.5 N

Free-Body Diagram.  The free-body diagram of segment CE is 
shown in Fig. 7–7c.

Equations of Equilibrium.

	 S+ �Fx = 0;	 848.5 cos 45� N - V E = 0 	 V E = 600 N � Ans.

	+ c �Fy = 0;	 -848.5 sin 45� N + NE = 0 	 NE = 600 N � Ans.

	a+ �ME = 0;	 848.5 cos 45� N(0.5 m) - ME = 0

	 ME = 300 N # m � Ans.

NOTE: These results indicate a poor design. Member AC should be 
straight (from A to C) so that bending within the member is eliminated. 
If AC were straight then the internal force would only create tension 
in the member.

(a)

1 m

1 m

1 m

A

E

D

B

C

600 N

0.5 m

0.5 m

 

D C

PP 45�

A

R

C

R

(b)

P
R

C
45�

600 N

VE

NE

ME

C

848.5 N

0.5 m
E

45�

(c)

Fig. 7–7



350 	 Chapter 7    Internal Forces

7

Example   7.5

The uniform sign shown in Fig. 7–8a has a mass of 650 kg and is 
supported on the fixed column. Design codes indicate that the 
expected maximum uniform wind loading that will occur in the area 
where it is located is 900 Pa. Determine the internal loadings at A.

Solution
The idealized model for the sign is shown in Fig. 7–8b. Here the 
necessary dimensions are indicated. We can consider the free-body 
diagram of a section above point A since it does not involve the 
support reactions.

Free-Body Diagram.  The sign has a weight of W = 650(9.81) N =  
6.376 kN,  and the wind creates a resultant force of 
Fw = 900 N>m2(6 m)(2.5 m) = 13.5 kN, which acts perpendicular to 
the face of the sign. These loadings are shown on the free-body diagram, 
Fig. 7–8c.

Equations of Equilibrium.  Since the problem is three dimensional, 
a vector analysis will be used.

�F = 0;	  FA - 13.5i - 6.376k = 0

	  FA = 513.5i + 6.38k6  kN 	 Ans.

�MA = 0;	 MA + r * (Fw + W) = 0

	 MA + 3  i j k
0 3 5.25

-13.5 0 -6.376

 3 = 0

	 MA = 519.1i + 70.9j - 40.5k6  kN # m 	 Ans.

NOTE: Here FAz
= {6.38k} kN represents the normal force, whereas 

FAx
= {

 

13.5i  } kN is the shear force. Also, the torsional moment is 
MAz

= {-40.5k} kN # m, and the bending moment is determined from 
its components MAx

= {19.1i} kN # m and MAy
= {70.9j} kN # m; 

i.e., (Mb)A = 2(MA)2   
x + (MA)2   

y = 73.4 kN # m .

(a)

A

 

A

6 m

2.5 m

4 m

4 m

(b)

3 m

(c)

5.25 m
6.376 kN13.5 kN

z

G

A y

x

FA

MA

r

Fig. 7–8

(©
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se

ll 
C
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     Preliminary Problems

P7–1.  In each case, calculate the reaction at A and then 
draw the free-body diagram of segment AB of the beam in 
order to determine the internal loading at B.

(a)

200 N � m 

1 m 1 m 2 m

A
B C

(b)

A
B

3 m 3 m

200 N/m

(c)

A
B C

2 m 2 m 3 m

300 N/m

D

(d)

B C D

4 m4 m

200 N/m

2 m 2 m

A E

(e)

A

B

C
D

400 N/m 

200 N/m 

2 m

2 m
4 m

(f)

A

B

CD

2 m

1 m

2 m 2 m

800 N � m 

Prob. P7–1
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F7–1.  Determine the normal force, shear force, and 
moment at point C.

A
B

C

15 kN
10 kN

1.5 m 1.5 m 1.5 m 1.5 m

Prob. F7–1 

F7–2.  Determine the normal force, shear force, and 
moment at point C.

A BC

30 kN � m

10 kN

1.5 m 1.5 m 1.5 m 1.5 m

Prob. F7–2 

F7–3.  Determine the normal force, shear force, and 
moment at point C.

A
B

C
4.5 ft 4.5 ft6 ft

3 kip/ft

Prob. F7–3 

F7–4.  Determine the normal force, shear force, and 
moment at point C.

A
B

C

12 kN 9 kN/m

1.5 m 1.5 m 1.5 m 1.5 m

Prob. F7–4 

F7–5.  Determine the normal force, shear force, and 
moment at point C.

A B
C

3 m3 m

9 kN/m

Prob. F7–5 

F7–6.  Determine the normal force, shear force, and 
moment at point C. Assume A is pinned and B is a roller.

A C B

3 m3 m

6 kN/m

Prob. F7–6 

Fundamental Problems

All problem solutions must include FBDs.
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7–1.    Determine the shear force and moment at points C 
and D.

6 ft

A
C D

E

B

6 ft
2 ft

4 ft 4 ft

300 lb200 lb
500 lb

Prob. 7–1 
7–2.    Determine the internal normal force and shear force, 
and the bending moment in the beam at points C and D. 
Assume the support at B is a roller. Point C is located just to 
the right of the 8-kip load.

40 kip�ft

8 ft8 ft 8 ft

8 kip

A
BC D

Prob. 7–2 
7–3.    Two beams are attached to the column such that 
structural connections transmit the loads shown. Determine 
the internal normal force, shear force, and moment acting in 
the column at a section passing horizontally through point A.

185 mm23 kN

16 kN

A

6 kN

6 kN

125 mm

250 mm
40 mm30 mm

Prob. 7–3 

*7–4.    The beam weighs 280 lb>ft. Determine the internal 
normal force, shear force, and moment at point C.

A

C

B

8 ft

3 ft

7 ft

6 ft

Prob. 7–4 

7–5.    The pliers are used to grip the tube at B. If a force of 
20 lb is applied to the handles, determine the internal shear 
force and moment a point C. Assume the jaws of the pliers 
exert only normal forces on the tube.

A

20 lb

20 lb

10 in. 40� 0.5 in.

1 in.

B

C

Prob. 7–5 

Problems

All problem solutions must include FBDs.
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7–6.    Determine the distance a as a fraction of the beam’s 
length L for locating the roller support so that the moment 
in the beam at B is zero.

L

A
B

C

a L/3

P P

Prob. 7–6 

7–7.    Determine the internal shear force and moment 
acting at point C in the beam.

6 ft 6 ft

4 kip/ft

A B
C

Prob. 7–7 

*7–8.    Determine the internal shear force and moment 
acting at point C in the beam.

A C B

500 lb/ ft

6 ft 6 ft3 ft 3 ft

900 lb � ft 900 lb � ft

Prob. 7–8 

7–9.    Determine the normal force, shear force, and moment 
at a section passing through point C. Take P = 8 kN.

0.75 m

C

P

A

B

0.5 m
0.1 m

0.75 m 0.75 m

Prob. 7–9

7–10.    The cable will fail when subjected to a tension of  
2 kN. Determine the largest vertical load P the frame will 
support and calculate the internal normal force, shear 
force, and moment at a section passing through point C for 
this loading.

0.75 m

C

P

A

B

0.5 m
0.1 m

0.75 m 0.75 m

Prob. 7–10

7–11.    Determine the internal normal force, shear force, 
and moment at points C and D of the beam.

15 ft 10 ft

5 ft12 ft

1213

5

690 lb
40 lb/ ft

60 lb/ ft

A
C B D

Prob. 7–11 
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*7–12.    Determine the distance a between the bearings in 
terms of the shaft’s length L so that the moment in the 
symmetric shaft is zero at its center.

L

a

w

Prob. 7–12

7–13.    Determine the internal normal force, shear force, and 
moment in the beam at sections passing through points D 
and E. Point D is located just to the left of the 5-kip load.

6 ft 4 ft 4 ft

B CD E

6 ft

5 kip

1.5 kip/ ft
6 kip � ft

A

Prob. 7–13 

7–14.    The shaft is supported by a journal bearing at A and 
a thrust bearing at B. Determine the normal force, shear 
force, and moment at a section passing through (a) point C, 
which is just to the right of the bearing at A, and (b) point D, 
which is just to the left of the 3000-lb force.

2500 lb

A

C D B

3000 lb
75 lb/ft

6 ft 12 ft
2 ft

Prob. 7–14 

7–15.    Determine the internal normal force, shear force, 
and moment at point C.

3 m3 m
C

A B

6 kN/m

Prob. 7–15 

*7–16.    Determine the internal normal force, shear force, 
and moment at point C of the beam.

3 m 3 m

400 N/m

200 N/m

A
C

B

Prob. 7–16 

7–17.    The cantilevered rack is used to support each end of 
a smooth pipe that has a total weight of 300 lb. Determine 
the normal force, shear force, and moment that act in the 
arm at its fixed support A along a vertical section.

6 in.

30�

A

B

C

Prob. 7–17 
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7–18.    Determine the internal normal force, shear force, 
and the moment at points C and D.

2 kN/m

3 m 3 m

B
D

6 m
45�

A

C2 m

Prob. 7–18 

7–19.    Determine the internal normal force, shear force, 
and moment at point C.

8 ft

3 ft

4 ft

150 lb/ ft

2 ft

0.5 ft

A
C

B

Prob. 7–19 

*7–20.    Rod AB is fixed to a smooth collar D, which slides 
freely along the vertical guide. Determine the internal 
normal force, shear force, and moment at point C, which is 
located just to the left of the 60-lb concentrated load.

15 lb/ft

60 lb

B

C

A
D 30�

3 ft 1.5 ft

Prob. 7–20 

7–21.    Determine the internal normal force, shear force, 
and moment at points E and F of the compound beam. 
Point E is located just to the left of 800 N force.

A

1 m

400 N/m
800 N 1200 N

2 m 1 m1.5 m 1.5 m

D
E FB C

54

3

1.5 m

Prob. 7–21 

7–22.    Determine the internal normal force, shear force, 
and moment at points D and E in the overhang beam. 
Point D is located just to the left of the roller support at B, 
where the couple moment acts.

2 kN/m

5 kN

3 m 1.5 m 3
4

5

A
D B E

C

6 kN � m

1.5 m

Prob. 7–22 

7–23.    Determine the internal normal force, shear force, 
and moment at point C.

3 m 2 m

1.5 m

1 m

0.2 m 400 N

A
C

B

Prob. 7–23 
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*7–24.    Determine the ratio of a>b for which the shear 
force will be zero at the midpoint C of the beam.

BCA

a b/2 b/2

w

a

A BC

Prob. 7–24 

7–25.    Determine the normal force, shear force, and 
moment in the beam at sections passing through points D  
and E. Point E is just to the right of the 3-kip load.

6 ft 4 ft

A

4 ft

B CD E

6 ft

3 kip

1.5 kip/ ft

Prob. 7–25 

7–26.    Determine the internal normal force, shear force, 
and bending moment at point C.

A
3 m 3 m

0.3 m

C
B

8 kN/ m
40 kN

3 m

60�

Prob. 7–26 

7–27.    Determine the internal normal force, shear force, 
and moment at point C.

A

C

E

D

B

1 m 1 m 2 m

1 m

800 N � m

200 N

Prob. 7–27 

*7–28.    Determine the internal normal force, shear force, 
and moment at points C and D in the simply supported 
beam. Point D is located just to the left of the 10-kN 
concentrated load.

A
C D

B

1.5 m

6 kN/m
10 kN

1.5 m 1.5 m 1.5 m

Prob. 7–28 
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7–29.    Determine the normal force, shear force, and 
moment acting at a section passing through point C.

7–30.    Determine the normal force, shear force, and 
moment acting at a section passing through point D.

800 lb

700 lb

600 lb
2 ft3 ft

1.5 ft

1.5 ft

1 ft

3 ftD

A B
C 30� 30�

Probs. 7–29/30 

7–31.    Determine the internal normal force, shear force, 
and moment acting at points D and E of the frame.

2 m

900 N  m

600 N

D

E

B

A

4 m
C

1.5 m

.    

Prob. 7–31 

*7–32.    Determine the internal normal force, shear force, 
and moment at point D.

A

D

E

C

B

6 kN

3 m

3 m

 

1 m

3 m

Prob. 7–32 

7–33.    Determine the internal normal force, shear force, 
and moment at point D of the two-member frame.

7–34.    Determine the internal normal force, shear force, 
and moment at point E.

1.5 m

1.5 m1.5 m

1.5 m

1.5 kN/m

2 kN/m A C

B

D

E

Probs. 7–33/34 
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7–35.    The strongback or lifting beam is used for materials 
handling. If the suspended load has a weight of 2 kN and a 
center of gravity of G, determine the placement d of the 
padeyes on the top of the beam so that there is no moment 
developed within the length AB of the beam. The lifting 
bridle has two legs that are positioned at 45°, as shown.

45� 45�

3 m 3 m

0.2 m
0.2 m

d d

E

A B

F

G

Prob. 7–35 

*7–36.    Determine the internal normal force, shear force, 
and moment acting at points B and C on the curved rod.

45�

30�

0.5 m

B

C

A

200 N

3

4
5

Prob. 7–36 

7–37.    Determine the internal normal force, shear force, 
and moment at point D of the two-member frame.

7–38.    Determine the internal normal force, shear force, 
and moment at point E of the two-member frame.

2 m
1.5 m

250 N/m

300 N/m

4 m

A

C

D

E

B

Probs. 7–37/38 

7–39.    The distributed loading w = w0 sin u, measured per 
unit length, acts on the curved rod. Determine the internal 
normal force, shear force, and moment in the rod at u = 45°.

*7–40.    Solve Prob. 7–39 for u = 120°.

u

r

w � w0 sin u

Probs. 7–39/40 



360 	 Chapter 7    Internal Forces

7

7–43.    Determine the x, y, z components of internal loading at 
a section passing through point B in the pipe assembly. Neglect 
the weight of the pipe. Take F1 =  5200i - 100j - 400k6N  
and F2 = 5300i - 500k6 N.

x

z

y

B

A

1 m

1.5 m F1

F2

1 m

Prob. 7–43

*7–44.    Determine the x, y, z components of internal 
loading at a section passing through point B in the pipe 
assembly. Neglect the weight of the pipe. Take  
F1 = 5100i - 200j - 300k6  N and F2 = 5100i + 500j6N.

x

z

y

B

A

1 m

1.5 m F1

F2

1 m

Prob. 7–44

7–41.    Determine the x, y, z components of force and 
moment at point C in the pipe assembly. Neglect the weight 
of the pipe. Take F1 = 5350i - 400j6  lb and 
F2 = 5-300j + 150k6  lb.

 F2

2 ft

1.5 ft y

z

x

C

B

3 ft

 F1

Prob. 7–41

7–42.    Determine the x, y, z components of force and 
moment at point C in the pipe assembly. Neglect the weight 
of the pipe. The load acting at (0, 3.5 ft, 3 ft) is 
F1 = {-24i - 10k} lb and M = {-30k} lb #  ft and at  
point (0, 3.5 ft, 0) F2 = {-80i} lb.

2 ft
x

z

y

3 ft

C

B

M

A

1.5 ft

F1

F2

Prob. 7–42 
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*7.2  �Shear and Moment Equations and 
Diagrams

Beams are structural members designed to support loadings applied 
perpendicular to their axes. In general, they are long and straight and have 
a constant cross-sectional area. They are often classified as to how they are 
supported. For example, a simply supported beam is pinned at one end and 
roller supported at the other, as in Fig. 7–9a, whereas a cantilevered beam 
is fixed at one end and free at the other. The actual design of a beam requires 
a detailed knowledge of the variation of the internal shear force V  
and bending moment M acting at each point along the axis of the beam.*

These variations of V and M along the beam’s axis can be obtained by 
using the method of sections discussed in Sec. 7.1. In this case, however, it 
is necessary to section the beam at an arbitrary distance x from one end 
and then apply the equations of equilibrium to the segment having the 
length x. Doing this we can then obtain V and M as functions of x.

In general, the internal shear and bending-moment functions will be 
discontinuous, or their slopes will be discontinuous, at points where a 
distributed load changes or where concentrated forces or couple 
moments are applied. Because of this, these functions must be determined 
for each segment of the beam located between any two discontinuities of 
loading. For example, segments having lengths x1, x2, and x3 will have to 
be used to describe the variation of V and M along the length of the 
beam in Fig. 7–9a. These functions will be valid only within regions  
from 0 to a for x1, from a to b for x2, and from b to L for x3. If the 
resulting functions of x are plotted, the graphs are termed the  
shear diagram and bending-moment diagram, Fig. 7–9b and Fig. 7–9c, 
respectively.7777

*The internal normal force is not considered for two reasons. In most cases, the loads 
applied to a beam act perpendicular to the beam’s axis and hence produce only an internal 
shear force and bending moment. And for design purposes, the beam’s resistance to shear, 
and particularly to bending, is more important than its ability to resist a normal force.

To save on material and thereby produce an 
efficient design, these beams, also called girders, 
have been tapered, since the internal moment 
in the beam will be larger at the supports, 
or  piers, than at the center of the span. 
(© Russell C. Hibbeler)

L
Pb

a

x3

x2

x1

w

(a)       

V

x

(b)

a b
L

      

M

x

(c)

ba L

Fig. 7–9
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Positive shear

Positive moment

Beam sign convention

M M

V

V

V

V

M M

Fig. 7–10 

Important Points

	 •	 Shear and moment diagrams for a beam provide graphical 
descriptions of how the internal shear and moment vary 
throughout the beam’s length.

	 •	 To obtain these diagrams, the method of sections is used to 
determine V and M as functions of x. These results are then 
plotted. If the load on the beam suddenly changes, then regions 
between each load must be selected to obtain each function of x.

Procedure for Analysis

The shear and bending-moment diagrams for a beam can be 
constructed using the following procedure.

Support Reactions.
	 •	 Determine all the reactive forces and couple moments acting on 

the beam and resolve all the forces into components acting 
perpendicular and parallel to the beam’s axis.

Shear and Moment Functions.
	 •	 Specify separate coordinates x having an origin at the beam’s left 

end and extending to regions of the beam between concentrated 
forces and/or couple moments, or where the distributed loading is 
continuous.

	 •	 Section the beam at each distance x and draw the free-body 
diagram of one of the segments. Be sure V and M are shown acting 
in their positive sense, in accordance with the sign convention given 
in Fig. 7–10.

	 •	 The shear V is obtained by summing forces perpendicular to the 
beam’s axis, and the moment M is obtained by summing moments 
about the sectioned end of the segment.

Shear and Moment Diagrams.
	 •	 Plot the shear diagram (V versus x) and the moment diagram  

(M versus x). If computed values of the functions describing V 
and M are positive, the values are plotted above the x axis, 
whereas negative values are plotted below the x axis.	The shelving arms must be designed to resist 

the internal loading in the arms caused by 
the lumber. (© Russell C. Hibbeler)
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Example   7.6

Draw the shear and moment diagrams for the shaft shown in Fig. 7–11a. 
The support at A is a thrust bearing and the support at C is a journal 
bearing.

Solution
Support Reactions.  The support reactions are shown on the shaft’s 
free-body diagram, Fig. 7–11d.

Shear and Moment Functions.  The shaft is sectioned at an arbitrary 
distance x from point A, extending within the region AB, and the free-
body diagram of the left segment is shown in Fig. 7–11b. The unknowns 
V and M are assumed to act in the positive sense on the right-hand face 
of the segment according to the established sign convention. Applying 
the equilibrium equations yields

+ c �Fy = 0;	  V = 2.5 kN	 (1)

a+ �M = 0;	  M = 2.5x kN # m	 (2)

A free-body diagram for a left segment of the shaft extending from A 
a distance x, within the region BC is shown in Fig. 7–11c. As always, 
V and M are shown acting in the positive sense. Hence,

+ c �Fy = 0;	 2.5 kN - 5 kN - V = 0

	 V = -2.5 kN	 (3)

a+ �M = 0;    	       M + 5 kN(x - 2 m) - 2.5 kN(x) = 0

	 M = (10 - 2.5x) kN # m	 (4)

Shear and Moment Diagrams.  When Eqs. 1 through 4 are plotted 
within the regions in which they are valid, the shear and moment 
diagrams shown in Fig. 7–11d are obtained. The shear diagram indicates 
that the internal shear force is always 2.5 kN (positive) within segment 
AB. Just to the right of point B, the shear force changes sign and 
remains at a constant value of -2.5 kN for segment BC. The moment 
diagram starts at zero, increases linearly to point B at x = 2 m, where 
Mmax = 2.5 kN(2 m) = 5 kN # m, and thereafter decreases back to zero.

NOTE: It is seen in Fig. 7–11d that the graphs of the shear and moment 
diagrams “jump” or changes abruptly where the concentrated force 
acts, i.e., at points A, B, and C. For this reason, as stated earlier, it is 
necessary to express both the shear and moment functions separately 
for regions between concentrated loads. It should be realized, however, 
that all loading discontinuities are mathematical, arising from the 
idealization of a concentrated force and couple moment. Physically, 
loads are always applied over a finite area, and if the actual load 
variation could be accounted for, the shear and moment diagrams 
would then be continuous over the shaft’s entire length.

2 m

5 kN

(a)

B
A C

2 m

x

2.5 kN

(b)

A M

V

0 � x � 2 m

2.5 kN

x

5 kN

M

V2 m
x � 2 m

A
B

(c)
2 m � x � 4 m

 

M � (10 � 2.5x)

2.5 kN 2.5 kN
V (kN)

V � 2.5

V � �2.5

x (m)

5 kN

CA

(d)

B

M � 2.5x

M (kN � m)

Mmax � 5

x (m)

2

2

4

4

Fig. 7–11
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Example   7.7

Draw the shear and moment diagrams for the beam shown in  
Fig. 7–12a.

Solution
Support Reactions.  The support reactions are shown on the beam’s 
free-body diagram, Fig. 7–12c.

Shear and Moment Functions.  A free-body diagram for a left 
segment of the beam having a length x is shown in Fig. 7–12b. Due to 
proportional triangles, the distributed loading acting at the end of this 
segment has an intensity of w>x = 6>9  or w = (2>3) x. It is replaced by 
a resultant force after the segment is isolated as a free-body diagram. 
The magnitude of the resultant force is equal to 1

2(x)12
3 x2  = 1

3 x2. This 
force acts through the centroid of the distributed loading area, a 
distance 1

3 x from the right end. Applying the two equations of 
equilibrium yields

+ c �Fy = 0;	 9 -
1

3
 x2 - V = 0	

	 V = a9 -
x2

3
b  kN	 (1)

a+ �M = 0;	 M +
1

3
 x2a x

3
b - 9x = 0

	 M = a9x -
x3

9
b  kN # m	 (2)

Shear and Moment Diagrams.  The shear and moment diagrams 
shown in Fig. 7–12c are obtained by plotting Eqs. 1 and 2.

The point of zero shear can be found using Eq. 1:

 V = 9 -
x2

3
= 0

 x = 5.20 m

NOTE: It will be shown in Sec. 7.3 that this value of x happens to 
represent the point on the beam where the maximum moment occurs. 
Using Eq. 2, we have

 Mmax = a9(5.20) -
(5.20)3

9
b  kN # m

 = 31.2 kN # m

(a)

9 m

6 kN/m

(b)

x

1
3 2

3

x
3

x2 kN
x kN/m

M

V

9 kN

6 kN/m

9 kN

18 kN
V (kN)

5.20 m
x (m)

V � 9 �

M (kN � m)

M � 9x �
Mmax � 31.2

(c)

9

�18

x2

3

x3

9

x (m)

9

95.20

Fig. 7–12 
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F7–10.    Determine the shear and moment as a function of 
x, and then draw the shear and moment diagrams.

x

BA

6 m

12 kN � m

Prob. F7–10

F7–11.    Determine the shear and moment as a function of 
x, where 0 … x 6 3 m and 3 m 6 x … 6 m, and then draw 
the shear and moment diagrams.

BA
C

x

3 m 3 m

30 kN � m

Prob. F7–11

F7–12.    Determine the shear and moment as a function of 
x, where  0 … x 6 3 m and 3 m 6 x … 6 m, and then draw 
the shear and moment diagrams.

BA
C

12 kN � m

4 kN

3 m3 m

x

Prob. F7–12

F7–7.    Determine the shear and moment as a function of x, 
and then draw the shear and moment diagrams.

3 m

x

6 kN

A

Prob. F7–7

F7–8.    Determine the shear and moment as a function of x, 
and then draw the shear and moment diagrams.

3 m

2 kN/m

15 kN�m

x
A

Prob. F7–8

F7–9.    Determine the shear and moment as a function of x, 
and then draw the shear and moment diagrams.

3 m

6 kN/m

Ax

Prob. F7–9

Fundamental Problems
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*7–48.    Draw the shear and moment diagrams for the 
cantilevered beam.

CA
B

5 ft

100 lb

800 lb�ft

5 ft

Prob. 7–48

7–49.    Draw the shear and moment diagrams of the beam 
(a) in terms of the parameters shown; (b) set M0 = 500 N #  m, 
L = 8 m.

7–50.    If L = 9 m, the beam will fail when the maximum 
shear force is V max = 5 kN or the maximum bending 
moment is Mmax = 2 kN # m. Determine the magnitude M0 
of the largest couple moments it will support.

L/3 L/3 L/3

M0 M0

Probs. 7–49/50

7–51.    Draw the shear and moment diagrams for the beam.

A
B C

a a

w

Prob. 7–51

7–45.    Draw the shear and moment diagrams for the shaft 
(a) in terms of the parameters shown; (b) set P = 9 kN, 
a = 2 m, L = 6 m. There is a thrust bearing at A and a 
journal bearing at B.

P

a

A B

L

Prob. 7–45

7–46.    Draw the shear and moment diagrams for the beam 
(a) in terms of the parameters shown; (b) set P = 800 lb, 
a = 5 ft, L = 12 ft.

a a

L

P P

Prob. 7–46

7–47.    Draw the shear and moment diagrams for the beam 
(a) in terms of the parameters shown; (b) set P = 600 lb, 
a = 5 ft, b = 7 ft.

A B

P

a b

Prob. 7–47

Problems
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*7–52.    Draw the shear and moment diagrams for the beam.

C

w

A
B

L

L––
2

Prob. 7–52

7–53.    Draw the shear and bending-moment diagrams for 
the beam.

C
A

B

20 ft 10 ft

50 lb/ft

200 lb�ft

Prob. 7–53

7–54.    The shaft is supported by a smooth thrust bearing at 
A and a smooth journal bearing at B. Draw the shear and 
moment diagrams for the shaft (a) in terms of the 
parameters shown; (b) set w = 500 lb>ft, L = 10 ft.

L

A B

w

Prob. 7–54

7–55.    Draw the shear and moment diagrams for the beam.

40 kN/m
20 kN

150 kN�m

A
B C

8 m 3 m

Prob. 7–55

*7–56.    Draw the shear and moment diagrams for the beam.

2 m

4 m

1.5 kN/m

A
B

C

Prob. 7–56

7–57.    Draw the shear and moment diagrams for the 
compound beam. The beam is pin connected at E and F.

A

L

w

B E F C
D

L––
3

L––
3

L––
3

L

Prob. 7–57

7–58.    Draw the shear and bending-moment diagrams for 
each of the two segments of the compound beam.

A

C D

150 lb/ft

B

10 ft 4 ft
2 ft 2 ft

Prob. 7–58

7–59.    Draw the shear and moment diagrams for the beam.

A
B C

9 ft 4.5 ft

30 lb/ ft

180 lb � ft

Prob. 7–59
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*7–60.    The shaft is supported by a smooth thrust bearing 
at A and a smooth journal bearing at B. Draw the shear and 
moment diagrams for the shaft.

B

300 lb/ft

6 ft

A

6 ft

Prob. 7–60

7–61.    Draw the shear and moment diagrams for the beam.

4 kip/ ft

20 kip 20 kip

15 ft

A B

30 ft 15 ft

Prob. 7–61

7–62.    The beam will fail when the maximum internal 
moment is Mmax. Determine the position x of the 
concentrated force P and its smallest magnitude that will 
cause failure.

L

x

P

Prob. 7–62

7–63.    Draw the shear and moment diagrams for the beam.

12 ft

A

12 ft

4 kip/ft

Prob. 7–63

*7–64.    Draw the shear and moment diagrams for the beam.

A
B C

6 ft 3 ft

3 kip/ ft
2 kip/ ft

Prob. 7–64

7–65.    Draw the shear and moment diagrams for the beam.

3 m

6 m

12 kN/m

A B
C

Prob. 7–65
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7–66.    Draw the shear and moment diagrams for the beam.

w

L

w––
2

A B

Prob. 7–66

7–67.    Determine the internal normal force, shear force, 
and moment in the curved rod as a function of u. The force 
P acts at the constant angle f.

P

r

u

f

Prob. 7–67

*7–68.    The quarter circular rod lies in the horizontal plane and 
supports a vertical force P at its end. Determine the magnitudes 
of the components of the internal shear force, moment, and 
torque acting in the rod as a function of the angle u.

90�

P

r

A

u

Prob. 7–68

7–69.    Express the internal shear and moment components 
acting in the rod as a function of y, where 0 … y … 4 ft.

y

z

x

y

4 ft 2 ft

4 lb/ft

Prob. 7–69
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*7.3  �Relations between Distributed 
Load, Shear, and Moment

If a beam is subjected to several concentrated forces, couple moments,  
and distributed loads, the method of constructing the shear and bending-
moment diagrams discussed in Sec. 7.2 may become quite tedious. In  
this section a simpler method for constructing these diagrams is 
discussed—a method based on differential relations that exist between 
the load, shear, and bending moment.

Distributed Load.  Consider the beam AD shown in Fig. 7–13a, 
which is subjected to an arbitrary load w = w(x) and a series of 
concentrated forces and couple moments. In the following discussion, the 
distributed load will be considered positive when the loading acts upward 
as shown. A free-body diagram for a small segment of the beam having a 
length �x is chosen at a point x along the beam which is not subjected to 
a concentrated force or couple moment, Fig. 7–13b. Hence any results 
obtained will not apply at these points of concentrated loading. The 
internal shear force and bending moment shown on the free-body 
diagram are assumed to act in the positive sense according to the 
established sign convention. Note that both the shear force and moment 
acting on the right-hand face must be increased by a small, finite amount 
in order to keep the segment in equilibrium. The distributed loading has 
been replaced by a resultant force �F = w(x) �x that acts at a fractional 
distance k(�x) from the right end, where 0 6 k 6 1 [for example, if w(x) 
is uniform, k =

1
2].

Relation between the Distributed Load and Shear.  If we 
apply the force equation of equilibrium to the segment, then

+ c �Fy = 0;     V + w(x)�x -  (V + �V ) = 0
 �V = w(x)�x

Dividing by �x, and letting �x S 0, we get

	  
dV

dx
= w(x)	

	   Slope of
shear diagram

 =  
Distributed load

intensity

� (7–1)

In order to design the beam used to 
support these power lines, it is 
important to first draw the shear and 
moment diagrams for the beam.  
(© Russell C. Hibbeler)

x

F1 F2
w

w � w (x)

x�

B

M0

C
x

DA

(a)

M

V

M
V

x�

�� M

F � w(x) �x�

w(x)

�� V

(b)

k (�x)

O

Fig. 7–13 
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If we rewrite the above equation in the form dV = w(x)dx and perform 
an integration between any two points B and C on the beam, we see that

       �V = Lw(x) dx

	  
Change in

shear
 =  

Area under
loading curve

	 (7–2)

Relation between the Shear and Moment.  If we apply the 
moment equation of equilibrium about point O on the free-body diagram 
in Fig. 7–13b, we get

a+ �MO = 0;   (M +  �M) -  [w(x)�x] k�x -  V�x -  M =  0
�M =  V�x + k w(x)�x2

Dividing both sides of this equation by �x, and letting �x S 0, yields

dM

dx
= V

	  
Slope of

moment diagram
 = Shear

	 (7–3)

In particular, notice that a maximum bending moment � M � max will 
occur at the point where the slope dM>dx = 0, since this is where the 
shear is equal to zero.

If Eq. 7–3 is rewritten in the form dM = 1  V dx and integrated between 
any two points B and C on the beam, we have

�M = LV dx

	  
Change in
moment

 =  
Area under

shear diagram

	 (7–4)

As stated previously, the above equations do not apply at points where 
a concentrated force or couple moment acts. These two special cases 
create discontinuities in the shear and moment diagrams, and as a result, 
each deserves separate treatment.

Force.  A free-body diagram of a small segment of the beam in 
Fig. 7–13a, taken from under one of the forces, is shown in Fig. 7–14a. 
Here force equilibrium requires

+ c �Fy = 0;	 �V = F	 (7–5)

Since the change in shear is positive, the shear diagram will “jump” 
upward when F acts upward on the beam. Likewise, the jump in shear 
(�V ) is downward when F acts downward.

V

M
V

x�

�� V

M � �M

(a)

F

Fig. 7–14 



372 	 Chapter 7    Internal Forces

7

Couple Moment.  If we remove a segment of the beam in Fig. 7–13a 
that is located at the couple moment M0, the free-body diagram shown in 
Fig. 7–14b results. In this case letting �x S 0, moment equilibrium requires

a+ �M = 0;	 �M = M0	 (7–6)

Thus, the change in moment is positive, or the moment diagram will 
“jump” upward if M0 is clockwise. Likewise, the jump �M is downward 
when M0 is counterclockwise.

The examples which follow illustrate application of the above equations 
when used to construct the shear and moment diagrams. After working 
through these examples, it is recommended that you also go back and 
solve Examples 7.6 and 7.7 using this method.

M

V

M
V

x�

�� M

�� V

(b)

M0

Fig. 7–14 (cont.)

This concrete beam is used to support the 
deck. Its size and the placement of steel 
reinforcement within it can be determined 
once the shear and moment diagrams have 
been established. (© Russell C. Hibbeler)

Important Points

	 •	 The slope of the shear diagram at a point is equal to the intensity 
of the distributed loading, where positive distributed loading is 
upward, i.e., dV>dx = w(x).

	 •	 The change in the shear �V  between two points is equal to the 
area under the distributed-loading curve between the points.

	 •	 If a concentrated force acts upward on the beam, the shear will 
jump upward by the same amount.

	 •	 The slope of the moment diagram at a point is equal to the shear, 
i.e., dM>dx = V .

	 •	 The change in the moment �M between two points is equal to 
the area under the shear diagram between the two points.

	 •	 If a clockwise couple moment acts on the beam, the shear will not 
be affected; however, the moment diagram will jump upward by 
the amount of the moment.

	 •	 Points of zero shear represent points of maximum or minimum 
moment since dM>dx = 0.

	 •	 Because two integrations of w = w(x) are involved to first 
determine the change in shear, �V = 1  w (x) dx, then to 
determine the change in moment, �M = 1  V dx, then if the 
loading curve w = w(x) is a polynomial of degree n, V = V(x) will 
be a curve of degree n + 1, and M = M(x) will be a curve of 
degree n + 2.
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Example   7.8

Draw the shear and moment diagrams for the cantilever 
beam in Fig. 7–15a.

2 kN
1.5 kN/m

(a)

A
B

2 m 2 m

Fig. 7–15 

Solution
The support reactions at the fixed support B are shown in 
Fig. 7–15b.

Shear Diagram.  The shear at end A is -2 kN. This value is 
plotted at x = 0, Fig. 7–15c. Notice how the shear diagram is 
constructed by following the slopes defined by the loading w. 
The shear at x = 4 m is -5 kN, the reaction on the beam. This 
value can be verified by finding the area under the 
distributed loading; i.e.,

V � x = 4 m = V � x = 2 m + �V = -2 kN - (1.5 kN>m)(2 m) = -5 kN

Moment Diagram.  The moment of zero at x = 0 is plotted 
in Fig. 7–15d. Construction of the moment diagram is based 
on knowing that its slope is equal to the shear at each point. 
The change of moment from x = 0 to x = 2 m is determined 
from the area under the shear diagram. Hence, the moment 
at x = 2 m is

M � x = 2 m = M � x = 0 + �M = 0 + [-2 kN(2 m)] = -4 kN # m

This same value can be determined from the method of 
sections, Fig. 7–15e.

(d)

(c)

2 4

�5

�2

By � 5 kN

MB � 11 kN�m

x (m)

V (kN)

2
0

4

�11

�4

x (m)

M (kN�m)

w � 0
V slope � 0

w � negative constant
V slope � negative constant

V � negative constant
M slope � negative constant

V � negative increasing
M slope � negative increasing

2 kN
1.5 kN/m

(b)

2 m 2 m

(e)

2 m

V � 2 kN

M � 4 kN�m

2 kN
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Draw the shear and moment diagrams for the overhang 
beam in  Fig. 7–16a.

4 kN/m

4 m 2 m

(a)

A
B

Fig. 7–16 

Example   7.9

�2

8

4 6

4

0 x (m)

V (kN)

6

�8

0 x (m)

M (kN�m)

w � 0
V slope � 0

V � positive decreasing
M slope � positive decreasing

V � negative constant
M slope � negative constant

w � negative constant
V slope � negative constant

(d)

(c)

(b)

4 kN/m

4 m 2 m

A
B

Ay � 2 kN By � 10 kN

Solution
The support reactions are shown in Fig. 7–16b.

Shear Diagram.  The shear of -2 kN at end A of the beam 
is plotted at x = 0, Fig. 7–16c. The slopes are determined 
from the loading and from this the shear diagram is 
constructed, as indicated in the figure. In particular, notice 
the positive jump of 10 kN at x = 4 m due to the force By, as 
indicated in the figure. 

Moment Diagram.  The moment of zero at x = 0 is plotted, 
Fig. 7–16d, then following the behavior of the slope found 
from the shear diagram, the moment diagram is constructed. 
The moment at x = 4 m is found from the area under the 
shear diagram.

M � x = 4 m = M � x = 0 + �M = 0 + [-2 kN(4 m)] = -8 kN # m

We can also obtain this value by using the method of 
sections, as shown in Fig. 7–16e.

4 m

2 kN

A

(e)

V � 2 kN

M � 8 kN�m
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Example   7.10

The shaft in Fig. 7–17a is supported by a thrust bearing at A 
and a journal bearing at B. Draw the shear and moment 
diagrams.

BA

12 ft

(a)

120 lb/ft

Fig. 7–17 

Solution
The support reactions are shown in Fig. 7–17b.

Shear Diagram.  As shown in Fig. 7–17c, the shear at x = 0 is +240. 
Following the slope defined by the loading, the shear diagram is 
constructed, where at B its value is -480 lb. Since the shear changes 
sign, the point where V = 0 must be located. To do this we will use 
the method of sections. The free-body diagram of the left segment 
of the shaft, sectioned at an arbitrary position x within the region 
0 … x 6 12 ft, is shown in Fig. 7–17e. Notice that the intensity of the 
distributed load at x is w = 10x, which has been found by proportional 
triangles, i.e., 120>12 = w>x. 

Thus, for V = 0,

+ c �Fy = 0;	  240 lb -1
2(10x)x = 0

	 x = 6.93 ft

Moment Diagram.  The moment diagram starts at 0 since 
there is no moment at A, then it is constructed based on the 
slope as determined from the shear diagram. The maximum 
moment occurs at x = 6.93 ft, where the shear is equal to zero, 
since dM>dx = V = 0,  Fig. 7–17e,

a+ �M = 0; 
Mmax +

1
2 [(10)(6.93)] 6.93 11

3 (6.93)2 - 240(6.93) = 0

	 Mmax = 1109 lb # ft

Finally, notice how integration, first of the loading w which is 
linear, produces a shear diagram which is parabolic, and then a 
moment diagram which is cubic.

x (ft)

126.93

6.93 12

240

� 480

V (lb)

x (ft)

0

0

M (lb�ft)

V � negative increasing
M slope � negative increasing

V �positive decreasing
M slope � positive decreasing

(d)

(c)

Ay � 240 lb By � 480 lb(b)

linear

parabolic

cubic

1109

BA

12 ft

120 lb/ft

w � negative increasing
V slope � negative increasing

A

x

(e)

Ay � 240 lb

x
3

10 x

[       ] x1
2 10 x

V

M



376 	 Chapter 7    Internal Forces

Fundamental Problems

F7–16.    Draw the shear and moment diagrams for the beam.

BA

6 kN/m

1.5 m 3 m

6 kN/m

1.5 m

Prob. F7–16

F7–17.    Draw the shear and moment diagrams for the beam.

A
B

3 m

6 kN/m 6 kN/m

3 m

Prob. F7–17

F7–18.    Draw the shear and moment diagrams for the beam.

A
B

3 m

9 kN/m

3 m

Prob. F7–18

F7–13.    Draw the shear and moment diagrams for the beam.

1 m1 m1 m

8 kN
6 kN4 kN

A

Prob. F7–13

F7–14.    Draw the shear and moment diagrams for the beam.

6 kN
8 kN/m

1.5 m 1.5 m

A

Prob. F7–14

F7–15.    Draw the shear and moment diagrams for the beam.

BA

2 m 2 m 2 m

6 kN
12 kN

Prob. F7–15

7
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7–73.    Draw the shear and moment diagrams for the 
simply-supported beam.

w0

2w0

L/2 L/2

A B

Prob. 7–73

7–74.    Draw the shear and moment diagrams for the beam. 
The supports at A and B are a thrust bearing and journal 
bearing, respectively.

0.5 m 0.5 m1 m

1200 N/m

A

300 N

600 N

B

Prob. 7–74

7–75.    Draw the shear and moment diagrams for the beam.

A B C
2 m

250 N/m

500 N

3 m

2 m

Prob. 7–75

Problems

7–70.    Draw the shear and moment diagrams for the beam.

1 m1 m1 m 1 m

800 N
600 N

A B

1200 N � m

Prob. 7–70

7–71.    Draw the shear and moment diagrams for the beam.

1 m 2 m 1 m

600 N 600 N

A B

Prob. 7–71

*7–72.    Draw the shear and moment diagrams for the 
beam. The support at A offers no resistance to vertical load.

L

A B

w0

Prob. 7–72
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*7–76.    Draw the shear and moment diagrams for the beam.

2 m 1 m 1 m

15 kN

A B

10 kN/m

20 kN � m

2 m

Prob. 7–76

7–77.    Draw the shear and moment diagrams for the beam.

2 kip/ ft

10 ft

A B

20 ft 10 ft

50 kip � ft50 kip � ft

Prob. 7–77

7–78.    Draw the shear and moment diagrams for the beam.

2 m 1 m 2 m

8 kN

A B

15 kN/m
20 kN�m

3 m

Prob. 7–78

7–79.    Draw the shear and moment diagrams for the shaft. The 
support at A is a journal bearing and at B it is a thrust bearing.

1 ft 4 ft 1 ft

100 lb/ft

A 300 lb�ft

200 lb

B

Prob. 7–79

*7–80.    Draw the shear and moment diagrams for the beam.

4 ft 2 ft 3 ft

400 lb/ ft 900 lb � ft

A B
C

Prob. 7–80

7–81.    The beam consists of three segments pin connected at 
B and E. Draw the shear and moment diagrams for the beam.

4.5 m 2 m 2 m 2 m 4 m

9 kN/m

A
B

C D
E

F

Prob. 7–81
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7–82.    Draw the shear and moment diagrams for the beam. 
The supports at A and B are a thrust and journal bearing, 
respectively.

A B

200 N/m

6 m
600 N � m 300 N � m

Prob. 7–82

7–83.    Draw the shear and moment diagrams for the beam.

9 kN/m 9 kN/m

A B

3 m 3 m

Prob. 7–83

*7–84.    Draw the shear and moment diagrams for the beam.

3 m 3 m

3 kN/m

6 kN/m

A
B

C

Prob. 7–84

7–85.    Draw the shear and moment diagrams for the beam.

6 ft3 ft 3 ft

600 lb/ ft

B A

Prob. 7–85

7–86.    Draw the shear and moment diagrams for the beam.

3 m

3 kN/m

6 kN/m

A

Prob. 7–86

7–87.    Draw the shear and moment diagrams for the beam.

3 m 1.5 m

2 kN/m

4 kN/m

A
B

Prob. 7–87
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*7–88.    Draw the shear and moment diagrams for the beam.

1.5 m1.5 m

3 kN
6 kN/m

A B

Prob. 7–88

7–89.    Draw the shear and moment diagrams for the beam.

6 ft

400 lb/ ft 400 lb/ ft
1500 lb

6 ft 4 ft

A

B

Prob. 7–89

7–90.    Draw the shear and moment diagrams for the beam.

3 m

9 kN/m

6 kN � m

B
A

Prob. 7–90

7–91.    Draw the shear and moment diagrams for the beam.

12 kN/m

A
B C

6 m 3 m

6 kN

Prob. 7–91

*7–92.    Draw the shear and moment diagrams for the beam.

1.5 m

6 kN/m6 kN/m

1.5 m
A B

C

Prob. 7–92

7–93.    Draw the shear and moment diagrams for the beam.

15 ft

1 kip/ft

/ft

A

Prob. 7–93
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Each of the cable segments remains 
approximately straight as they sup
port the weight of these traffic lights. 
(© Russell C. Hibbeler)

*As will be shown in the following example, the eight equilibrium equations also can be 
written for the entire cable, or any part thereof. But no more than eight independent 
equations are available.

yC
h

P1

B

P2

A

L1 L2 L3

yD

D
C

Fig. 7–18

*7.4  Cables

Flexible cables and chains combine strength with lightness and often are 
used in structures for support and to transmit loads from one member to 
another. When used to support suspension bridges and trolley wheels, 
cables form the main load-carrying element of the structure. In the force 
analysis of such systems, the weight of the cable itself may be neglected 
because it is often small compared to the load it carries. On the other 
hand, when cables are used as transmission lines and guys for radio 
antennas and derricks, the cable weight may become important and must 
be included in the structural analysis.

Three cases will be considered in the analysis that follows. In each case 
we will make the assumption that the cable is perfectly flexible and 
inextensible. Due to its flexibility, the cable offers no resistance to bending, 
and therefore, the tensile force acting in the cable is always tangent to the 
cable at points along its length. Being inextensible, the cable has a constant 
length both before and after the load is applied. As a result, once the load 
is applied, the geometry of the cable remains unchanged, and the cable or 
a segment of it can be treated as a rigid body.

Cable Subjected to Concentrated Loads.  When a cable 
of negligible weight supports several concentrated loads, the cable 
takes the form of several straight-line segments, each of which is 
subjected to a constant tensile force. Consider, for example, the cable 
shown in Fig. 7–18, where the distances h, L1, L2, and L3 and the loads P1 
and P2 are known. The problem here is to determine the nine unknowns 
consisting of the tension in each of the three segments, the four 
components of reaction at A and B, and the two sags yC and yD at 
points C and D. For the solution we can write two equations of force 
equilibrium at each of points A, B, C, and D. This results in a total of 
eight equations.* To complete the solution, we need to know something 
about the geometry of the cable in order to obtain the necessary ninth 
equation. For example, if the cable’s total length L is specified, then the 
Pythagorean theorem can be used to relate each of the three segmental 
lengths, written in terms of h, yC, yD, L1, L2, and L3, to the total length L. 
Unfortunately, this type of problem cannot be solved easily by hand. 
Another possibility, however, is to specify one of the sags, either yC or 
yD, instead of the cable length. By doing this, the equilibrium equations 
are then sufficient for obtaining the unknown forces and the remaining 
sag. Once the sag at each point of loading is obtained, the length of the 
cable can then be determined by trigonometry. The following example 
illustrates a procedure for performing the equilibrium analysis for a 
problem of this type.
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E

15 kN

4 kN

3 kN

3 m 2 m
5 m 8 m

(b)

Ex

Ey

Ax

Ay

4 kN

3 m
5 m

(c)

Ax

C

12 m

TBC

12 kN

uBC

Fig. 7–19

Determine the tension in each segment of the cable shown in Fig. 7–19a.

A

12 m

C
B

yB

D

15 kN

4 kN

3 kN

E

3 m 2 m
5 m 8 m

(a)

yD

Example   7.11

Solution
By inspection, there are four unknown external reactions (Ax, Ay, Ex, 
and Ey) and four unknown cable tensions, one in each cable segment. 
These eight unknowns along with the two unknown sags yB and yD can 
be determined from ten available equilibrium equations. One method 
is to apply the force equations of equilibrium (�Fx = 0, �Fy = 0) to 
each of the five points A through E. Here, however, we will take a 
more direct approach.

Consider the free-body diagram for the entire cable, Fig. 7–19b. Thus,

S+ �Fx = 0;	 -Ax + Ex = 0

a+ �ME = 0;

-Ay(18 m) + 4 kN (15 m) + 15 kN (10 m) + 3 kN (2 m) = 0

	 Ay = 12 kN

+ c �Fy = 0;	 12 kN - 4 kN - 15 kN - 3 kN + Ey = 0

	 Ey = 10 kN

Since the sag yC = 12 m is known, we will now consider the leftmost 
section, which cuts cable BC, Fig. 7–19c.

a+ �MC = 0; Ax(12 m) - 12 kN (8 m) + 4 kN (5 m) = 0

	 Ax = Ex = 6.33 kN

S+ �Fx = 0;	 TBC cos uBC - 6.33 kN = 0

+ c �Fy = 0;	 12 kN - 4 kN - TBC sin uBC = 0

Thus,

	  uBC = 51.6�

	  TBC = 10.2 kN 	 Ans.
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Proceeding now to analyze the equilibrium of points A, C, and E in 
sequence, we have

Point A.  (Fig. 7–19d).

S+ �Fx = 0;	 TAB cos uAB - 6.33 kN = 0

+ c �Fy = 0;	 -TAB  sin uAB + 12 kN = 0

	  uAB = 62.2�

	  TAB = 13.6 kN 	 Ans.

Point C.  (Fig. 7–19e).

S+ �Fx = 0;	 TCD cos uCD - 10.2 cos 51.6� kN = 0

+ c �Fy = 0;	 TCD sin uCD + 10.2 sin 51.6� kN - 15 kN = 0

	  uCD = 47.9�

	  TCD = 9.44 kN 	 Ans.

Point E.  (Fig. 7–19f).

S+ �Fx = 0;	 6.33 kN - TED cos uED = 0

+ c �Fy = 0;	 10 kN - TED sin uED = 0

	  uED = 57.7�

	  TED = 11.8 kN 	 Ans.

NOTE: By comparison, the maximum cable tension is in segment AB 
since this segment has the greatest slope (u) and it is required that for 
any cable segment the horizontal component T cos u = Ax = Ex  
(a constant). Also, since the slope angles that the cable segments make 
with the horizontal have now been determined, it is possible to 
determine the sags yB and yD, Fig. 7–19a, using trigonometry.

uAB
A

12 kN

6.33 kN

TAB

(d)

10 kN

6.33 kN

TED

E

(f)

uED

TCD

51.6

10.2 kN

15 kN

(e)

C

uCD

Fig. 7–19 (cont.)
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A

(a)

B

w � w(x)

�xx

y

x

Fig. 7–20

Cable Subjected to a Distributed Load.  Let us now consider 
the weightless cable shown in Fig. 7–20a, which is subjected to a distributed 
loading w = w(x) that is measured in the x direction. The free-body 
diagram of a small segment of the cable having a length �s is shown in 
Fig. 7–20b. Since the tensile force changes in both magnitude and direction 
along the cable’s length, we will denote this change on the free-body 
diagram by �T. Finally, the distributed load is represented by its resultant 
force w(x)(�x), which acts at a fractional distance k(�x) from point O, 
where 0 6 k 6 1. Applying the equations of equilibrium, we have

      S+ �Fx = 0;	  -T cos u + (T + �T ) cos(u + �u) = 0 

   + c �Fy = 0;	 -T sin u - w(x)(�x) + (T + �T ) sin(u + �u) = 0

a+ �MO = 0;	 w(x)(�x)k(�x) - T cos u �y + T sin u �x = 0

Dividing each of these equations by �x and taking the limit as �x S 0, 
and therefore �y S 0, �u S 0, and �T S 0, we obtain

	  
d(T cos u)

dx
= 0 � (7–7)

	  
d(T sin u)

dx
- w(x) = 0 � (7–8)

	  
dy

dx
= tan u� (7–9)

The cable and suspenders are used to 
support the uniform load of a gas pipe 
which crosses the river. (© Russell C. 
Hibbeler)
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Integrating Eq. 7–7, we have

	 T cos u = constant = FH	 (7–10)

where FH represents the horizontal component of tensile force at any 
point along the cable.

Integrating Eq. 7–8 gives

	   T sin u = Lw(x) dx		  (7–11)

Dividing Eq. 7–11 by Eq. 7–10 eliminates T. Then, using Eq. 7–9, we 
can obtain the slope of the cable.

        tan u =
dy

dx
=

1

FH
 Lw(x) dx

Performing a second integration yields

	 y =
1

FH
 L aLw(x) dx b  dx 	 (7–12)

This equation is used to determine the curve for the cable, y = f(x). The 
horizontal force component FH and the additional two constants, say  
C1 and C2, resulting from the integration are determined by applying the 
boundary conditions for the curve.
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(b)

T � �T

w(x)(�s)
(�x)k

O

T

��u

u

u

�x

�s

�y

Fig. 7–20 (cont.)

The cables of the suspension bridge exert 
very large forces on the tower and the 
foundation block which have to be accounted 
for in their design. (© Russell C. Hibbeler)
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The cable of a suspension bridge supports half of the uniform road 
surface between the two towers at A and B, Fig. 7–21a. If this 
distributed loading is w0, determine the maximum force developed in 
the cable and the cable’s required length. The span length L and sag h 
are known.

Example   7.12

L

y

xO

h

BA

w0

(a)

Fig. 7–21

Solution
We can determine the unknowns in the problem by first finding the 
equation of the curve that defines the shape of the cable using Eq. 7–12. 
For reasons of symmetry, the origin of coordinates has been placed at 
the cable’s center. Noting that w(x) = w0, we have

y =
1

FH
 L aLw0 dxb  dx

Performing the two integrations gives

	 y =
1

FH
 aw0 x

2

2
+ C1x + C2b 	 (1)

The constants of integration may be determined using the boundary 
conditions y = 0 at x = 0 and dy>dx = 0 at x = 0. Substituting into 
Eq. 1 and its derivative yields C1 = C2 = 0. The equation of the curve 
then becomes

	 y =
w0

2FH
 x2	 (2)
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This is the equation of a parabola. The constant FH may be obtained 
using the boundary condition y = h at x = L>2. Thus,

	 FH =
w0L

2

8h
	 (3)

Therefore, Eq. 2 becomes

	 y =
4h

L2  x2	 (4)

Since FH is known, the tension in the cable may now be determined 
using Eq. 7–10, written as T = FH>cos u. For 0 … u 6 p>2, the 
maximum tension will occur when u is maximum, i.e., at point B, 
Fig. 7–21a. From Eq. 2, the slope at this point is

dy

dx
`
x = L>2

= tan umax =
w0

FH
 x `

x = L>2
or

	 umax = tan-1aw0L

2FH
b 	 (5)

Therefore,

	 Tmax =
FH

cos(umax)
	 (6)

Using the triangular relationship shown in Fig. 7–21b, which is based 
on Eq. 5, Eq. 6 may be written as

Tmax =
24FH

2 + w0
2 L2

2
Substituting Eq. 3 into the above equation yields

	 Tmax =
w0L

2
 B1 + a L

4h
b

2

	 Ans.

For a differential segment of cable length ds, we can write

	 ds = 2(dx)2 + (dy)2 = B1 + a dy

dx
b

2

 dx	

Hence, the total length of the cable can be determined by integration. 
Using Eq. 4, we have

	 � = Lds = 2L
L>2

0 B1 + a 8h

L2xb
2

 dx	 (7)

Integrating yields

	 � =
L

2
 cB1 + a 4h

L
b

2

+
L

4h
 sinh-1a 4h

L
b d 	 Ans.

w0L

2FH

4FH
2  � w0

2  L
2

(b)

umax

Fig. 7–21 (cont.)
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Cable Subjected to Its Own Weight.  When the weight of a 
cable becomes important in the force analysis, the loading function along 
the cable will be a function of the arc length s rather than the projected 
length x. To analyze this problem, we will consider a generalized loading 
function w = w(s) acting along the cable, as shown in Fig. 7–22a. The free-
body diagram for a small segment �s of the cable is shown in Fig. 7–22b. 
Applying the equilibrium equations to the force system on this diagram, 
one obtains relationships identical to those given by Eqs. 7–7 through 7–9, 
but with s replacing x in Eqs. 7–7 and 7–8. Therefore, we can show that

	  T cos u = FH

	  T sin u = Lw(s) ds 	 (7–13)

	        
dy

dx
=

1

FH
 Lw(s) ds	 (7–14)

To perform a direct integration of Eq. 7–14, it is necessary to replace 
dy >dx by ds>dx. Since

ds = 2dx2 + dy2

then

dy

dx
= B a ds

dx
b

2

- 1

s�

y

x

s

(a)

B

w � w(s)

A

Fig. 7–22
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Therefore,

ds

dx
= c 1 +

1

FH
2 aLw(s) dsb

2

d
1>2

Separating the variables and integrating we obtain

                   	    x = L  
ds

c 1 +
1

FH
2 aLw(s) dsb

2

d
1>2 	

(7–15)

The two constants of integration, say C1 and C2, are found using the 
boundary conditions for the curve.

(b)

T � �T

u � �u

w(s)(�s)
k (�x)

O

T

�y

�s

�x

u

Fig. 7–22 (cont.) 

Electrical transmission towers must be designed 
to support the weights of the suspended power 
lines. The weight and length of the cables can 
be determined since they each form a 
catenary curve. (© Russell C. Hibbeler)
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Determine the deflection curve, the length, and the maximum tension 
in the uniform cable shown in Fig. 7–23. The cable has a weight per 
unit length of w0 = 5 N>m.

Solution
For reasons of symmetry, the origin of coordinates is located at the 
center of the cable. The deflection curve is expressed as y = f (x). We 
can determine it by first applying Eq. 7–15, where w(s) = w0.

x = L  
ds

c 1 + (1>FH
2)aLw0 dsb

2

d
1>2

Integrating the term under the integral sign in the denominator,  we have

x = L  
ds

[1 + (1>FH
2)(w0s + C1)

2]1>2

Substituting u = (1>FH)(w0s + C1) so that du = (w0>FH) ds, a second 
integration yields

x =
FH

w0
 (sinh-1 u + C2)

or

	 x =
FH

w0
 e sinh-1 c 1

FH
 (w0s + C1) d + C2 f 	 (1)

To evaluate the constants note that, from Eq. 7–14,

dy

dx
=

1

FH
 Lw0 ds or 

dy

dx
=

1

FH
 (w0s + C1)

Since dy>dx = 0 at s = 0, then C1 = 0. Thus,

	
dy

dx
=

w0s

FH
	 (2)

The constant C2 may be evaluated by using the condition s = 0 at 
x = 0 in Eq. 1, in which case C2 = 0. To obtain the deflection curve, 
solve for s in Eq. 1, which yields

	 s =
FH

w0
 sinhaw0

FH
 xb 	 (3)

Now substitute into Eq. 2, in which case

dy

dx
= sinhaw0

FH
 xb

Example   7.13

y

x
s

L � 20 m

h � 6 m

umax

Fig. 7–23
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Hence,

y =
FH

w0
 coshaw0

FH
 xb + C3

If the boundary condition y = 0 at x = 0 is applied, the constant 
C3 = -FH>w0, and therefore the deflection curve becomes

	 y =
FH

w0
 c coshaw0

FH
 xb - 1 d 	 (4)

This equation defines the shape of a catenary curve. The constant FH 
is obtained by using the boundary condition that y = h at x = L>2, in 
which case

	 h =
FH

w0
 c coshaw0L

2FH
b - 1 d 	 (5)

Since w0 = 5 N>m, h = 6 m, and L = 20 m, Eqs. 4 and 5 become

	  y =
FH

5 N>m c cosha 5 N>m
FH

 xb - 1 d 	 (6)

	  6 m =
FH

5 N>m c cosha 50 N

FH
b - 1 d 	 (7)

Equation 7 can be solved for FH by using a trial-and-error procedure. 
The result is

FH = 45.9 N

and therefore the deflection curve, Eq. 6, becomes

	 y = 9.19[cosh(0.109x) - 1] m	 Ans.

Using Eq. 3, with x = 10 m, the half-length of the cable is

�

2
=

45.9 N

5 N>m sinh c 5 N>m
45.9 N

 (10 m) d = 12.1 m

Hence,

	 � = 24.2 m 	 Ans.

Since T = FH>cos u, the maximum tension occurs when u is 
maximum, i.e., at s = �>2 = 12.1 m. Using Eq. 2 yields

 
dy

dx
2
s = 12.1 m

= tan umax =
5 N>m(12.1 m)

45.9 N
= 1.32

 umax = 52.8�

And so,

	 Tmax =
FH

cos umax
=

45.9 N

cos 52.8�
= 75.9 N	 Ans.
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Problems

7–94.  The cable supports the three loads shown. 
Determine the sags yB and yD of B and D. Take P1 = 800 N, 
P2 = 500 N.

7–95.  The cable supports the three loads shown. 
Determine the magnitude of P1 if P2 = 600 N and yB = 3 m. 
Also find sag yD.

1 m

3 m 6 m 6 m 3 m

A
E

B

C
D

yB yD
4 m

P2 P2

P1

Probs. 7–94/95

*7–96.  Determine the tension in each segment of the 
cable and the cable’s total length.

4 ft 5 ft

A

3 ft

B

7 ft

4 ft

C

D

50 lb

100 lb

Prob. 7–96

7–97.  The cable supports the loading shown. Determine 
the distance xB  the force at B acts from A. Set P = 800 N.

7–98.  The cable supports the loading shown. Determine 
the magnitude of the horizontal force P so that xB = 5 m.

4 m

1 m

2 m

600 N
D

C

B

A

xB

6 m

P

Probs. 7–97/98

7–99.  The cable supports the three loads shown. 
Determine the sags yB and yD of points B and D. Take  
P1 = 400 lb, P2 = 250 lb.

*7–100.  The cable supports the three loads shown. 
Determine the magnitude of P1 if P2 = 300 lb and yB = 8 ft. 
Also find the sag yD.

4 ft

12 ft 20 ft 15 ft 12 ft

A
E

B

C

D

yB yD
14 ft

P2 P2

P1

Probs. 7–99/100

7
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7–101.  Determine the force P needed to hold the cable  
in the position shown, i.e., so segment BC remains 
horizontal. Also, compute the sag yB and the maximum 
tension in the cable.

4 m 3 m 2 m6 m

4 kN P

6 kN

yB
3 m

A

B C

D

E

Prob. 7–101

7–102.  Determine the maximum uniform loading w, 
measured in lb>ft, that the cable can support if it is capable 
of sustaining a maximum tension of 3000 lb before it will 
break.

7–103.  The cable is subjected to a uniform loading of 
w = 250 lb>ft. Determine the maximum and minimum 
tension in the cable.

50 ft

6 ft

w

Probs. 7–102/103

*7–104.  The cable AB is subjected to a uniform loading of 
200 N>m. If the weight of the cable is neglected and the 
slope angles at points A and B are 30° and 60°, respectively, 
determine the curve that defines the cable shape and the 
maximum tension developed in the cable.

15 m
200 N/m

y

x
A

B

60�

30�

Prob. 7–104

7–105.  If x = 2 ft and the crate weighs 300 lb, which cable 
segment AB, BC, or CD has the greatest tension? What is 
this force and what is the sag yB?

7–106.  If yB = 1.5 ft, determine the largest weight of the 
crate and its placement x so that neither cable segment AB, 
BC, or CD is subjected to a tension that exceeds 200 lb.

3 ft 3 ft

3 ft

2 ft

A D

B

x

C

yB

Probs. 7–105/106
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7–107.  The cable supports a girder which weighs 850 lb>ft. 
Determine the tension in the cable at points A, B, and C.

100 ft
A

C

B

40 ft

20 ft

Prob. 7–107

*7–108.  The cable is subjected to a uniform loading of  
w = 200 lb>ft. Determine the maximum and minimum 
tension in the cable.

100 ft

20 ft

y

x

A B

200 lb/ ft

Prob. 7–108

7–109.  If the pipe has a mass per unit length of 1500 kg>m, 
determine the maximum tension developed in the cable.

7–110.  If the pipe has a mass per unit length of 1500 kg>m, 
determine the minimum tension developed in the cable.

30 m

3 m
A B

Probs. 7–109/110

7–111.  Determine the maximum tension developed in the 
cable if it is subjected to the triangular distributed load.

20 ft

20 ft

15�

300 lb/ ft

y

x
A

B

Prob. 7–111

*7–112.  The cable will break when the maximum tension 
reaches Tmax = 10 kN. Determine the minimum sag h if it 
supports the uniform distributed load of w = 600 N>m.

h

25 m

600 N/m

Prob. 7–112

7–113.  The cable is subjected to the parabolic loading  
w = 150(1 - (x>50)2) lb>ft, where x is in ft. Determine the 
equation y = f(x) which defines the cable shape AB and the 
maximum tension in the cable.

100 ft

20 ft

y

x

A B

150 lb/ ft

Prob. 7–113
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7–114.  The power transmission cable weighs 10 lb>ft. If 
the resultant horizontal force on tower BD is required to be 
zero, determine the sag h of cable BC.

7–115.  The power transmission cable weighs 10 lb>ft. If 
h  = 10 ft, determine the resultant horizontal and vertical 
forces the cables exert on tower BD.

A B
h

C

D

300 ft

10 ft

200 ft

Probs. 7–114/115

*7–116.  The man picks up the 52-ft chain and holds it just 
high enough so it is completely off the ground. The chain 
has points of attachment A and B that are 50 ft apart. If the 
chain has a weight of 3 lb>ft, and the man weighs 150 lb, 
determine the force he exerts on the ground. Also, how 
high h must he lift the chain? Hint: The slopes at A and B 
are zero.

A B

h

25 ft 25 ft

Prob. 7–116

7–117.  The cable has a mass of 0.5 kg>m and is 25 m long. 
Determine the vertical and horizontal components of force 
it exerts on the top of the tower.

30�B

A

15 m

Prob. 7–117

7–118.  A 50-ft cable is suspended between two points a 
distance of 15 ft apart and at the same elevation. If the 
minimum tension in the cable is 200 lb, determine the total 
weight of the cable and the maximum tension developed in 
the cable.

7–119.  Show that the deflection curve of the cable 
discussed in Example 7.13 reduces to Eq. 4 in Example 7.12 
when the hyperbolic cosine function is expanded in terms of 
a series and only the first two terms are retained. (The 
answer indicates that the catenary may be replaced by a 
parabola in the analysis of problems in which the sag is 
small. In this case, the cable weight is assumed to be 
uniformly distributed along the horizontal.)

*7–120.  A telephone line (cable) stretches between two 
points which are 150 ft apart and at the same elevation. The 
line sags 5 ft and the cable has a weight of 0.3 lb>ft. 
Determine the length of the cable and the maximum 
tension in the cable.

7–121.  A cable has a weight of 2 lb>ft. If it can span 100 ft 
and has a sag of 12 ft, determine the length of the cable. The 
ends of the cable are supported from the same elevation.

7–122.  A cable has a weight of 3 lb>ft and is supported at 
points that are 500 ft apart and at the same elevation. If it 
has a length of 600 ft, determine the sag.

7–123.  A cable has a weight of 5 lb>ft. If it can span 300 ft 
and has a sag of 15 ft, determine the length of the cable. The 
ends of the cable are supported at the same elevation.

*7–124.  The 10 kg>m cable is suspended between the 
supports A and B. If the cable can sustain a maximum 
tension of 1.5 kN and the maximum sag is 3 m, determine 
the maximum distance L between the supports.

A B

L

3 m

Prob. 7–124
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Internal Loadings

If a coplanar force system acts on a 
member, then in general a resultant 
internal normal force N, shear force V, 
and bending moment M will act at any 
cross section along the member. For 
two-dimensional problems the positive 
directions of these loadings are shown 
in the figure.

The resultant internal normal force, 
shear force, and bending moment are 
determined using the method of 
sections. To find them, the member is 
sectioned at the point C where the 
internal loadings are to be determined. 
A free-body diagram of one of the 
sectioned parts is then drawn and the 
internal loadings are shown in their 
positive directions.

The resultant normal force is determined 
by summing forces normal to the cross 
section. The resultant shear force is 
found by summing forces tangent to the 
cross section, and the resultant bending 
moment is found by summing moments 
about the geometric center or centroid 
of the cross-sectional area.

If the member is subjected to a three-
dimensional loading, then, in general, a 
torsional moment will also act on the 
cross section. It can be determined by 
summing moments about an axis that is 
perpendicular to the cross section and 
passes through its centroid.

V

N

M
Shear force

Normal force

Bending moment

C

B

Ay

Ax

By

A
C

F1 F2

A

Ay

Ax

VC

B

By

C
NC

MC

VC

C
NC

MC

F1

F2

A

Ay

Ax

VC

B

By

C
NC

MC

VC

C
NC

MC

F1

F2

    �Fx = 0

    �Fy = 0

 �MC = 0

Chapter Review

y

z

Ny

Normal force

My

Torsional moment

Vx

Vz

Mx

x

C

Mz

Shear force components

Bending moment
components

7
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Shear and Moment Diagrams

To construct the shear and moment 
diagrams for a member, it is necessary to 
section the member at an arbitrary point, 
located a distance x from the left end. 

If the external loading consists of 
changes in the distributed load, or a 
series of concentrated forces and couple 
moments act on the member, then 
different expressions for V and M must 
be determined within regions between 
any load discontinuities.

w

x1

M

Oy

Ox

V

The unknown shear and moment are 
indicated on the cross section in the 
positive direction according to the 
established sign convention, and then 
the internal shear and moment are 
determined as functions of x.

O

L
Pb

a

x3

x2

x1

w

M

x
ba L

Each of the functions of the shear 
and moment is then plotted to create 
the shear and moment diagrams.

V

x
a b

L
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Relations between Shear and Moment

It is possible to plot the shear and 
moment diagrams quickly by using 
differential relationships that exist 
between the distributed loading w, V 
and M.

The slope of the shear diagram is equal 
to the distributed loading at any point. 
The slope is positive if the distributed 
load acts upward, and vice-versa.

The slope of the moment diagram is 
equal to the shear at any point. The slope 
is positive if the shear is positive, or vice-
versa.

The change in shear between any two 
points is equal to the area under the 
distributed loading between the points.

The change in the moment is equal to the 
area under the shear diagram between 
the points.

Cables

When a flexible and inextensible cable is 
subjected to a series of concentrated 
forces, then the analysis of the cable can 
be performed by using the equations of 
equilibrium applied to free-body 
diagrams of either segments or points of 
application of the loading.

If external distributed loads or the weight 
of the cable are to be considered, then the 
shape of the cable must be determined by 
first analyzing the forces on a differential 
segment of the cable and then integrating 
this result. The two constants, say C1 and 
C2, resulting from the integration are 
determined by applying the boundary 
conditions for the cable.

 
dV

dx
= w

 
dM

dx
= V

�V = Lw dx

�M = LV dx

P1
P2

y =
1

FH
 L aLw(x) dxb  dx

Distributed load

x = L  
ds

c 1 +
1

FH
2  aLw(s) dsb

2

d
1>2

Cable weight



Problems

All problem solutions must include FBDs.

R7–1.  Determine the internal normal force, shear force, 
and moment at points D and E of the frame.

E

4 ft

1 ft

8 ft
3 ft

D

F

C

A
30�

150 lb

B

Prob. R7–1

R7–2.  Determine the normal force, shear force, and 
moment at points B and C of the beam.

5 m5 m 3 m

2 kN/m
1 kN/m

7.5 kN

40 kN�m

6 kN

1 m

A D
B

C

Prob. R7–2

R7–3.  Draw the shear and moment diagrams for the beam.

9 ft

A B

9 ft

8 kip/ft 8 kip/ft

9 ft 9 ft

Prob. R7–3

R7–4.  Draw the shear and moment diagrams for the beam.

5 m

2 kN/m

5 kN�m

B
A

Prob. R7–4

R7–5.  Draw the shear and moment diagrams for the beam.

5 m 5 m

2 kN/m

A

50 kN � m

B
C

Prob. R7–5

R7–6.  A chain is suspended between points at the same 
elevation and spaced a distance of 60 ft apart. If it has a 
weight per unit length of 0.5 lb>ft and the sag is 3 ft, 
determine the maximum tension in the chain.

     Review Problems
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Chapter 8

The effective design of this brake requires that it resist the frictional forces 
developed between it and the wheel. In this chapter we will study dry friction, 

and show how to analyze friction forces for various engineering applications.

(© Pavel Polkovnikov/Shutterstock)



CHAPTER OBJECTIVES

n	 To introduce the concept of dry friction and show how to analyze 
the equilibrium of rigid bodies subjected to this force.

n	 To present specific applications of frictional force analysis on 
wedges, screws, belts, and bearings.

n	 To investigate the concept of rolling resistance.

8.1  Characteristics of Dry Friction

Friction is a force that resists the movement of two contacting surfaces 
that slide relative to one another. This force always acts tangent to the 
surface at the points of contact and is directed so as to oppose the possible 
or existing motion between the surfaces.

In this chapter, we will study the effects of dry friction, which is 
sometimes called Coulomb friction since its characteristics were studied 
extensively by the French physicist Charles-Augustin de Coulomb 
in  1781. Dry friction occurs between the contacting surfaces of bodies 
when there is no lubricating fluid.*

Friction

*Another type of friction, called fluid friction, is studied in fluid mechanics.

The heat generated by the abrasive 
action of friction can be noticed 
when using this grinder to sharpen a 
metal blade. (© Russell C. Hibbeler) 
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Theory of Dry Friction.  The theory of dry friction can be 
explained by considering the effects caused by pulling horizontally on a 
block of uniform weight W which is resting on a rough horizontal surface 
that is nonrigid or deformable, Fig. 8–1a. The upper portion of the block, 
however, can be considered rigid. As shown on the free-body diagram of 
the block, Fig. 8–1b, the floor exerts an uneven distribution of both 
normal force �Nn and frictional force �Fn along the contacting surface. 
For equilibrium, the normal forces must act upward to balance the 
block’s weight W, and the frictional forces act to the left to prevent the 
applied force P from moving the block to the right. Close examination of 
the contacting surfaces between the floor and block reveals how these 
frictional and normal forces develop, Fig. 8–1c. It can be seen that many 
microscopic irregularities exist between the two surfaces and, as a result, 
reactive forces �Rn are developed at each point of contact.* As shown, 
each reactive force contributes both a frictional component �Fn and a 
normal component �Nn.

Equilibrium.  The effect of the distributed normal and frictional 
loadings is indicated by their resultants N and F on the free-body diagram, 
Fig. 8–1d. Notice that N acts a distance x to the right of the line of action 
of W, Fig. 8–1d. This location, which coincides with the centroid or 
geometric center of the normal force distribution in Fig. 8–1b, is necessary 
in order to balance the “tipping effect” caused by P. For example, if P is 
applied at a height h from the surface, Fig. 8–1d, then moment equilibrium 
about point O is satisfied if Wx = Ph or x = Ph>W .

P

W

(a)
    

P

W

(b)

�Nn

�Fn

     

(c)

�F1

�N1

�N2

�R1

�R2

�F2 �Fn

�Rn

�Nn      

P

W

(d)

a/2 a/2

h
F

O

Nx

Resultant normal
and frictional forces

Fig. 8–1

A

B

C

Regardless of the weight of the rake or 
shovel that is suspended, the device has 
been designed so that the small roller 
holds the handle in equilibrium due to 
frictional forces that develop at the points 
of contact, A, B, C. (© Russell C. Hibbeler)

*Besides mechanical interactions as explained here, which is referred to as a classical 
approach, a detailed treatment of the nature of frictional forces must also include the 
effects of temperature, density, cleanliness, and atomic or molecular attraction between the 
contacting surfaces. See J. Krim, Scientific American, October, 1996.
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Impending Motion.  In cases where the surfaces of contact are 
rather “slippery,” the frictional force F may not be great enough to 
balance P, and consequently the block will tend to slip. In other words, as 
P is slowly increased, F correspondingly increases until it attains a certain 
maximum value Fs, called the limiting static frictional force, Fig. 8–1e. 
When this value is reached, the block is in unstable equilibrium since any 
further increase in P will cause the block to move. Experimentally, it has 
been determined that this limiting static frictional force Fs is directly 
proportional to the resultant normal force N. Expressed mathematically,

	 Fs = ms N 	 (8–1)

where the constant of proportionality, ms (mu “sub” s), is called the 
coefficient of static friction.

Thus, when the block is on the verge of sliding, the normal force N and 
frictional force Fs combine to create a resultant Rs, Fig. 8–1e. The angle fs 
(phi “sub” s) that Rs makes with N is called the angle of static friction. 
From the figure,

fs = tan-1aFs

N
b = tan-1ams N

N
b = tan-1 ms

Typical values for ms are given in Table 8–1. Note that these values can 
vary since experimental testing was done under variable conditions of 
roughness and cleanliness of the contacting surfaces. For applications, 
therefore, it is important that both caution and judgment be exercised 
when selecting a coefficient of friction for a given set of conditions. 
When  a more accurate calculation of Fs is required, the coefficient of 
friction should be determined directly by an experiment that involves 
the two materials to be used.

W

(e)

N
x

Fs

Rs

Impending
motion

P

Equilibrium

h

fs

Some objects, such as this barrel, may not be 
on the verge of slipping, and therefore the 
friction force F must be determined 
strictly  from the equations of equilibrium. 
(© Russell C. Hibbeler)

Table 8–1  Typical Values for Ms

Contact 
Materials

Coefficient of 
Static Friction (ms)

Metal on ice 0.03–0.05

Wood on wood 0.30–0.70

Leather on wood 0.20–0.50

Leather on metal 0.30–0.60

Copper on copper 0.74–1.21

Fig. 8–1 (cont.)

F

W
T

N
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Motion.  If the magnitude of P acting on the block is increased so that 
it becomes slightly greater than Fs, the frictional force at the contacting 
surface will drop to a smaller value Fk, called the kinetic frictional force. 
The block will begin to slide with increasing speed, Fig. 8–2a. As this 
occurs, the block will “ride” on top of these peaks at the points of contact, 
as shown in Fig. 8–2b. The continued breakdown of the surface is the 
dominant mechanism creating kinetic friction.

Experiments with sliding blocks indicate that the magnitude of the 
kinetic friction force is directly proportional to the magnitude of the 
resultant normal force, expressed mathematically as

	 Fk = mk  N 	 (8–2)

Here the constant of proportionality, mk, is called the coefficient of 
kinetic friction. Typical values for mk are approximately 25 percent 
smaller than those listed in Table 8–1 for ms.

As shown in Fig. 8–2a, in this case, the resultant force at the surface of 
contact, Rk, has a line of action defined by fk. This angle is referred to as 
the angle of kinetic friction, where

fk = tan-1aFk

N
b = tan-1amk  N

N
b = tan-1 mk

By comparison, fs Ú fk.

	

P

W

(a)

N

Fk

Motion

Rk

fk � (b)

�F1

�N1

�N2
�R2

�R1

�F2 �Fn

�Rn

�Nn

Fig. 8–2
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The above effects regarding friction can be summarized by referring to 
the graph in Fig. 8–3, which shows the variation of the frictional force F 
versus the applied load P. Here the frictional force is categorized in three 
different ways:

	•	 F is a static frictional force if equilibrium is maintained.

	•	 F is a limiting static frictional force Fs when it reaches a maximum 
value needed to maintain equilibrium.

	•	 F is a kinetic frictional force Fk when sliding occurs at the contacting 
surface.

Notice also from the graph that for very large values of P or for high 
speeds, aerodynamic effects will cause Fk and likewise mk to begin to 
decrease.

Characteristics of Dry Friction.  As a result of experiments that 
pertain to the foregoing discussion, we can state the following rules 
which apply to bodies subjected to dry friction.

	•	 The frictional force acts tangent to the contacting surfaces in a 
direction opposed to the motion or tendency for motion of one 
surface relative to another.

	•	 The maximum static frictional force Fs that can be developed is 
independent of the area of contact, provided the normal pressure is 
not very low nor great enough to severely deform or crush the 
contacting surfaces of the bodies.

	•	 The maximum static frictional force is generally greater than the 
kinetic frictional force for any two surfaces of contact. However, if 
one of the bodies is moving with a very low velocity over the surface 
of another, Fk becomes approximately equal to Fs, i.e., ms � mk.

	•	 When slipping at the surface of contact is about to occur, the 
maximum static frictional force is proportional to the normal force, 
such that Fs = ms N.

	•	 When slipping at the surface of contact is occurring, the kinetic 
frictional force is proportional to the normal force, such that 
Fk = mk  N.

F

Fs

Fk

P

No motion Motion

F � P

45�

Fig. 8–3
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8.2  Problems Involving Dry Friction

If a rigid body is in equilibrium when it is subjected to a system of 
forces that includes the effect of friction, the force system must satisfy not 
only the equations of equilibrium but also the laws that govern the 
frictional forces.

Types of Friction Problems.  In general, there are three types of 
static problems involving dry friction. They can easily be classified once 
free-body diagrams are drawn and the total number of unknowns are 
identified and compared with the total number of available equilibrium 
equations.

No Apparent Impending Motion.  Problems in this category are 
strictly equilibrium problems, which require the number of unknowns to 
be equal to the number of available equilibrium equations. Once the 
frictional forces are determined from the solution, however, their 
numerical values must be checked to be sure they satisfy the inequality 
F … ms N; otherwise, slipping will occur and the body will not remain in 
equilibrium. A problem of this type is shown in Fig. 8–4a. Here we must 
determine the frictional forces at A and C to check if the equilibrium 
position of the two-member frame can be maintained. If the bars are 
uniform and have known weights of 100 N each, then the free-body 
diagrams are as shown in Fig. 8–4b. There are six unknown force 
components which can be determined strictly from the six equilibrium 
equations (three for each member). Once FA, NA, FC, and NC are 
determined, then the bars will remain in equilibrium provided FA … 0.3NA  
and FC … 0.5NC are satisfied.

Impending Motion at All Points of Contact.  In this case the total 
number of unknowns will equal the total number of available equilibrium 
equations plus the total number of available frictional equations, F = mN. 
When motion is impending at the points of contact, then Fs = ms N; 
whereas if the body is slipping, then Fk = mk  N. For example, consider the 
problem of finding the smallest angle u at which the 100-N bar in Fig. 8–5a 
can be placed against the wall without slipping. The free-body diagram is 
shown in Fig. 8–5b. Here the five unknowns are determined from the three 
equilibrium equations and two static frictional equations which apply at 
both points of contact, so that FA = 0.3NA  and FB = 0.4NB.

(a)

B

mC � 0.5mA � 0.3

A C

(b)

Bx

By

By

Bx

100 N 100 N

FA
FC

NA NC

Fig. 8–4

A

B
mB � 0.4

mA � 0.3

u

(a)

NB

NA

FB

FA

(b)

100 N
u

Fig. 8–5
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Impending Motion at Some Points of Contact.  Here the 
number of unknowns will be less than the number of available equilibrium 
equations plus the number of available frictional equations or conditional 
equations for tipping. As a result, several possibilities for motion or 
impending motion will exist and the problem will involve a determination 
of the kind of motion which actually occurs. For example, consider the 
two-member frame in Fig. 8–6a. In this problem we wish to determine the 
horizontal force P needed to cause movement. If each member has a 
weight of 100 N, then the free-body diagrams are as shown in Fig. 8–6b. 
There are seven unknowns. For a unique solution we must satisfy the six 
equilibrium equations (three for each member) and only one of two 
possible static frictional equations. This means that as P increases it will 
either cause slipping at A and no slipping at C, so that FA = 0.3NA  and 
FC … 0.5NC; or slipping occurs at C and no slipping at A, in which case 
FC = 0.5NC and FA … 0.3NA. The actual situation can be determined by 
calculating P for each case and then choosing the case for which P is 
smaller. If in both cases the same value for P is calculated, which would be 
highly improbable, then slipping at both points occurs simultaneously; 
i.e., the seven unknowns would satisfy eight equations.

Equilibrium Versus Frictional Equations.  Whenever we 
solve a problem such as the one in Fig. 8–4, where the friction force F 
is to be an “equilibrium force” and satisfies the inequality F 6 ms N , 
then we can assume the sense of direction of F on the free-body 
diagram. The correct sense is made known after solving the equations 
of equilibrium for F. If F is a negative scalar the sense of F is the 
reverse of that which was assumed. This convenience of assuming the 
sense of F is possible because the equilibrium equations equate to 
zero the components of vectors acting in the same direction. However, 
in cases where the frictional equation F = mN  is used in the solution 
of a problem, as in the case shown in Fig. 8–5, then the convenience of 
assuming the sense of F is lost, since the frictional equation relates 
only the magnitudes of two perpendicular vectors. Consequently, F 
must always be shown acting with its correct sense on the free-body 
diagram, whenever the frictional equation is used for the solution of 
a problem.

P

(a)

A

B

mC � 0.5mA � 0.3

C

By

Bx

100 N

P

(b)

FC

NC

By

Bx

100 N
FA

NA

Fig. 8–6



408 	 Chapter 8    Fr ict ion

8

Important Points

	 •	 Friction is a tangential force that resists the movement of one 
surface relative to another.

	 •	 If no sliding occurs, the maximum value for the friction force is 
equal to the product of the coefficient of static friction and the 
normal force at the surface.

	 •	 If sliding occurs at a slow speed, then the friction force is the 
product of the coefficient of kinetic friction and the normal force 
at the surface.

	 •	 There are three types of static friction problems. Each of these 
problems is analyzed by first drawing the necessary free-body 
diagrams, and then applying the equations of equilibrium, 
while satisfying the conditions of friction or the possibility of 
tipping.

Depending upon where the man pushes 
on the crate, it will either tip or slip. 
(© Russell C. Hibbeler) 
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Procedure for Analysis

Equilibrium problems involving dry friction can be solved using the 
following procedure.

Free-Body Diagrams.
	 •	 Draw the necessary free-body diagrams, and unless it is stated in 

the problem that impending motion or slipping occurs, always 
show the frictional forces as unknowns (i.e., do not assume 
F = mN).

	 •	 Determine the number of unknowns and compare this with the 
number of available equilibrium equations.

	 •	 If there are more unknowns than equations of equilibrium, it will 
be necessary to apply the frictional equation at some, if not all, 
points of contact to obtain the extra equations needed for a 
complete solution.

	 •	 If the equation F = mN is to be used, it will be necessary to show 
F acting in the correct sense of direction on the free-body 
diagram.

Equations of Equilibrium and Friction.
	 •	 Apply the equations of equilibrium and the necessary frictional 

equations (or conditional equations if tipping is possible) and 
solve for the unknowns.

	 •	 If the problem involves a three-dimensional force system such 
that it becomes difficult to obtain the force components or the 
necessary moment arms, apply the equations of equilibrium using 
Cartesian vectors.



410 	 Chapter 8    Fr ict ion

8

The uniform crate shown in Fig. 8–7a has a mass of 20 kg. If a force 
P = 80 N is applied to the crate, determine if it remains in equilibrium. 
The coefficient of static friction is ms = 0.3.

0.8 m
P � 80 N

0.2 m

30�

(a)

Fig. 8–7

SOLUTION
Free-Body Diagram.  As shown in Fig. 8–7b, the resultant normal 
force NC must act a distance x from the crate’s center line in order to 
counteract the tipping effect caused by P. There are three unknowns, 
F, NC, and x, which can be  determined strictly from the three equations 
of equilibrium.

Equations of Equilibrium.

S+ �Fx = 0;	 80 cos 30� N - F = 0

+ c �Fy = 0;	 -80 sin 30� N + NC - 196.2 N = 0

  a+ �MO = 0;   80 sin 30� N(0.4 m) -  80 cos 30� N(0.2 m) +  NC (x) = 0

Solving, 

 F = 69.3 N

 NC = 236.2 N

 x = -0.00908 m = -9.08 mm

Since x is negative it indicates the resultant normal force acts (slightly) 
to the left of the crate’s center line. No tipping will occur since 
x 6 0.4 m. Also, the maximum frictional force which can be developed 
at the surface of contact is Fmax = ms NC = 0.3(236.2 N) = 70.9 N. 
Since F = 69.3 N 6 70.9 N, the crate will not slip, although it is very 
close to doing so.

P � 80 N

0.2 m

30�

(b)

196.2 N

0.4 m 0.4 m

NC

x

F
O

example   8.1
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(a)

u � 25�
2.5 ft

G

1.5 ft
1.5 ft

(b)

(c)

2.5 ft

G

O

x

1.5 ft
1.5 ft

W 25�

N

F

Fig. 8–8

It is observed that when the bed of the dump truck is raised to an 
angle of u = 25� the vending machines will begin to slide off the bed, 
Fig. 8–8a. Determine the static coefficient of friction between a 
vending machine and the surface of the truckbed.

example   8.2

SOLUTION
An idealized model of a vending machine resting on the truckbed is 
shown in Fig. 8–8b. The dimensions have been measured and the 
center of gravity has been located. We will assume that the vending 
machine weighs W.

Free-Body Diagram.  As shown in Fig. 8–8c, the dimension x is used 
to locate the position of the resultant normal force N. There are four 
unknowns, N, F, ms, and x.

Equations of Equilibrium.

  + R�Fx = 0;	 W  sin 25� - F = 0� (1)

  + Q�Fy = 0;	 N - W  cos 25� = 0� (2)

a+ �MO = 0;  -W  sin 25�(2.5 ft) + W  cos 25�(x) = 0� (3)

Since slipping impends at u = 25�, using Eqs. 1 and 2, we have

 Fs = ms N;	  W  sin 25� = ms(W  cos 25�)

	  ms = tan 25� = 0.466� Ans.

The angle of u = 25� is referred to as the angle of repose, and by 
comparison, it is equal to the angle of static friction, u = fs. Notice 
from the calculation that u is independent of the weight of the vending 
machine, and so knowing u provides a convenient method for 
determining the coefficient of static friction.

NOTE: From Eq. 3, we find x = 1.17 ft. Since 1.17 ft 6 1.5 ft, indeed 
the vending machine will slip before it can tip as observed in Fig. 8–8a.

(© Russell C. Hibbeler)



412 	 Chapter 8    Fr ict ion

8

The uniform 10-kg ladder in Fig. 8–9a rests against the smooth wall 
at B, and the end A rests on the rough horizontal plane for which the 
coefficient of static friction is ms = 0.3. Determine the angle of 
inclination u of the ladder and the normal reaction at B if the ladder is 
on the verge of slipping.

4 m

B

A

(a)

u

Fig. 8–9

example   8.3

A

(b)

NB

NA

FA

 (4 m) sin u

 (2 m) cos u  (2 m) cos u

10(9.81) N

u

SOLUTION
Free-Body Diagram.  As shown on the free-body diagram, Fig. 8–9b, 
the frictional force FA must act to the right since impending motion at A 
is to the left.

Equations of Equilibrium and Friction.  Since the ladder is on the 
verge of slipping, then FA = msNA = 0.3NA . By inspection, NA  can be 
obtained directly.

+ c �Fy = 0;	 NA - 10(9.81) N = 0� NA = 98.1 N

Using this result, FA = 0.3(98.1 N) = 29.43 N. Now NB can be found.

S+ �Fx = 0;	 29.43 N - NB = 0

	 NB = 29.43 N = 29.4 N� Ans.

Finally, the angle u can be determined by summing moments about 
point A.

a+ �MA = 0;	 (29.43 N)(4 m) sin u - [10(9.81) N](2 m) cos u = 0

	
sin u

cos u
 = tan u = 1.6667

	 u = 59.04� = 59.0� 	 Ans.
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0.75 m

0.25 m
P

B

(c)

C

400 N

NC

FC

FB

Fig. 8–10

200 N/m

0.75 m

B

P

4 m

0.25 m
C

A

(a)

Beam AB is subjected to a uniform load of 200 N>m and is supported 
at B by post BC, Fig. 8–10a. If the coefficients of static friction at B 
and C are mB = 0.2 and mC = 0.5, determine the force P needed to 
pull the post out from under the beam. Neglect the weight of the 
members and the thickness of the beam.

example   8.4

SOLUTION
Free-Body Diagrams.  The free-body diagram of the beam is shown 
in Fig. 8–10b. Applying �MA = 0, we obtain NB = 400 N. This result 
is shown on the free-body diagram of the post, Fig. 8–10c. Referring to 
this member, the four unknowns FB, P, FC, and NC are determined from 
the three equations of equilibrium and one frictional equation applied 
either at B or C.

Equations of Equilibrium and Friction.

S+ �Fx = 0;	 P - FB - FC = 0� (1)

+ c �Fy = 0;	 NC - 400 N = 0� (2)

a+ �MC = 0;	 -P(0.25 m) + FB(1 m) = 0� (3)

(Post Slips at B and Rotates about C.)  This requires FC … mCNC and

FB = mBNB;	 FB = 0.2(400 N) = 80 N

Using this result and solving Eqs. 1 through 3, we obtain

 P = 320 N

 FC = 240 N

 NC = 400 N

Since FC = 240 N 7 mCNC = 0.5(400 N) = 200 N, slipping at C 
occurs. Thus the other case of movement must be investigated.

(Post Slips at C and Rotates about B.)  Here FB … mBNB and

FC = mCNC;	 FC = 0.5NC� (4)

Solving Eqs. 1 through 4 yields
	 P = 267 N� Ans.

 NC = 400 N
 FC = 200 N
 FB = 66.7 N

Obviously, this case occurs first since it requires a smaller value for P.

800 N

2 m

(b)

Ax

Ay

A
2 m

NB � 400 N

FB
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A

C
B

(a)

P

30�

C

y

x

(b)

P

FAC

FA

NA

FBC

3(9.81) N
FAC � 1.155P

FBC � 0.5774P

FB

NB

9(9.81) N

30�

30�

Fig. 8–11

Blocks A and B have a mass of 3 kg and 9 kg, respectively, and are 
connected to the weightless links shown in Fig. 8–11a. Determine the 
largest vertical force P that can be applied at the pin C without causing 
any movement. The coefficient of static friction between the blocks 
and the contacting surfaces is ms = 0.3.

SOLUTION
Free-Body Diagram.  The links are two-force members and so the 
free-body diagrams of pin C and blocks A and B are shown in  Fig. 8–11b. 
Since the horizontal component of FAC tends to move block A to the 
left, FA must act to the right. Similarly, FB must act to the left to oppose 
the tendency of motion of block B to the right, caused by FBC. There 
are seven unknowns and six available force equilibrium equations, two 
for the pin and two for each block, so that only one frictional 
equation is needed.

Equations of Equilibrium and Friction.  The force in links AC and 
BC can be related to P by considering the equilibrium of pin C.

+ c �Fy = 0;	 FAC cos 30� -  P = 0;	 FAC = 1.155P

S+ �Fx = 0;	 1.155P sin 30� -  FBC = 0;	 FBC = 0.5774P

Using the result for FAC, for block A,

S+ �Fx = 0;	 FA  -  1.155P sin 30� = 0;	 FA = 0.5774P� (1)

+ c �Fy = 0;	 NA  -  1.155P cos 30� -  3(9.81 N) = 0;

	 NA = P +  29.43 N� (2)

Using the result for FBC, for block B,

S+ �Fx = 0;	 (0.5774P) - FB = 0;	 FB = 0.5774P� (3)

+ c �Fy = 0;	 NB - 9(9.81) N = 0;	 NB = 88.29 N

Movement of the system may be caused by the initial slipping of either 
block A or block B. If we assume that block A slips first, then

	 FA = ms NA = 0.3NA � (4)

Substituting Eqs. 1 and 2 into Eq. 4,

	  0.5774P = 0.3(P + 29.43)

	  P = 31.8 N� Ans.

Substituting this result into Eq. 3, we obtain FB = 18.4 N. Since the 
maximum static frictional force at B is (FB)max = msNB =  
0.3(88.29 N) = 26.5 N 7 FB, block B will not slip. Thus, the above 
assumption is correct. Notice that if the inequality were not satisfied, 
we would have to assume slipping of block B and then solve for P.

example   8.5
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P8–3.  Determine the force P to move block B.

A

B

C

P

W � 200 N 

ms � 0.2

ms � 0.1

W � 100 N 

W � 100 N 

ms � 0.2

Prob. P8–3

P8–4.  Determine the force P needed to cause impending 
motion of the block.

(a)

1 m

2 m

P

W � 200 N 

ms � 0.3

(b)

1 m

1 m

P

W � 100 N 

ms � 0.4

Prob. P8–4

P8–1.  Determine the friction force at the surface of contact.

W � 200 N  

(a)

ms � 0.3
mk � 0.2

500 N

4
3

5

 

(b)

W � 40 N 

ms � 0.9
mk � 0.6

100 N

4
3

5

Prob. P8–1

P8–2.  Determine M to cause impending motion of 
the cylinder.

1 m

A

BM

Smooth

W � 100 N 

ms � 0.1

Prob. P8–2

Preliminary Problems
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All problem solutions must include FBDs.

F8–1.  Determine the friction developed between the 50-kg 
crate and the ground if a) P = 200 N, and b) P = 400 N. The 
coefficients of static and kinetic friction between the crate 
and the ground are ms = 0.3 and mk = 0.2.

4
3

5
P

Prob. F8–1

F8–2.  Determine the minimum force P to prevent the 
30-kg rod AB from sliding. The contact surface at B is 
smooth, whereas the coefficient of static friction between 
the rod and the wall at A is ms = 0.2.

 3 m

A

BP

4 m

Prob. F8–2

F8–3.  Determine the maximum force P that can be applied 
without causing the two 50-kg crates to move. The coefficient 
of static friction between each crate and the ground is 
ms = 0.25.

BA

30�

P

Prob. F8–3

F8–4.  If the coefficient of static friction at contact points A 
and B is ms = 0.3, determine the maximum force P that can 
be applied without causing the 100-kg spool to move.

P

0.6 m
0.9 m

B

A

Prob. F8–4

F8–5.  Determine the maximum force P that can be 
applied without causing movement of the 250-lb crate that 
has a center of gravity at G. The coefficient of static friction 
at the floor is ms = 0.4.

1.5 ft 1.5 ft

2.5 ft

3.5 ft
4.5 ft

P

A

G

Prob. F8–5

FUNDAMENTAL PROBLEMS
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F8–6.  Determine the minimum coefficient of static friction 
between the uniform 50-kg spool and the wall so that the 
spool does not slip.

A

B

0.6 m

0.3 m

60�

Prob. F8–6

F8–7.  Blocks A, B, and C have weights of 50 N, 25 N, and 
15 N, respectively. Determine the smallest horizontal force P 
that will cause impending motion. The coefficient of static 
friction between A and B is ms = 0.3, between B and C, 
m=s = 0.4, and between block C and the ground, m==s = 0.35.

P

A

B

C

D

Prob. F8–7

F8–8.  If the coefficient of static friction at all contacting 
surfaces is ms, determine the inclination u at which the 
identical blocks, each of weight W, begin to slide.

A

B

u

Prob. F8–8

F8–9.  Blocks A and B have a mass of 7 kg and 10 kg, 
respectively. Using the coefficients of static friction 
indicated, determine the largest force P which can be 
applied to the cord without causing motion. There are 
pulleys at C and D.

400 mm

300 mm

A

D

C P

mAB � 0.3

mA � 0.1

B

Prob. F8–9
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8–3.  The mine car and its contents have a total mass of 
6 Mg and a center of gravity at G. If the coefficient of static 
friction between the wheels and the tracks is ms = 0.4 when 
the wheels are locked, find the normal force acting on the 
front wheels at B and the rear wheels at A when the brakes 
at both A and B are locked. Does the car move?

0.15 mA

G

B

0.9 m

0.6 m

10 kN

1.5 m

Prob. 8–3

*8–4.  The winch on the truck is used to hoist the garbage 
bin onto the bed of the truck. If the loaded bin has a weight 
of 8500 lb and center of gravity at G, determine the force in 
the cable needed to begin the lift. The coefficients of static 
friction at A and B are mA = 0.3 and mB = 0.2, respectively. 
Neglect the height of the support at A.

G

12 ft10 ft BA

30� 

Prob. 8–4

All problem solutions must include FBDs.

8–1.  Determine the maximum force P the connection can 
support so that no slipping occurs between the plates. There 
are four bolts used for the connection and each is tightened 
so that it is subjected to a tension of 4 kN. The coefficient of 
static friction between the plates is ms = 0.4.

P
P
2
P
2

Prob. 8–1

8–2.  The tractor exerts a towing force T = 400 lb. 
Determine the normal reactions at each of the two front 
and two rear tires and the tractive frictional force F on each 
rear tire needed to pull the load forward at constant velocity. 
The tractor has a weight of 7500 lb and a center of gravity 
located at GT. An additinal weight of 600 lb is added to its 
front having a center of gravity at GA. Take ms = 0.4. 
The front wheels are free to roll.

4 ft
3 ft

5 ft

2.5 ft
A

C B

T

F

GA

GT

Prob. 8–2

Problems
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*8–8.  The block brake consists of a pin-connected lever 
and friction block at B. The coefficient of static friction 
between the wheel and the lever is ms = 0.3, and a torque of 
5 N # m is applied to the wheel. Determine if the brake can 
hold the wheel stationary when the force applied to the 
lever is (a) P = 30 N, (b) P = 70 N.

200 mm

50 mm

400 mm

P
150 mm

O

B

A

5 N�m

Prob. 8–8

8–9.  The pipe of weight W is to be pulled up the inclined 
plane of slope a using a force P. If P acts at an angle f, show 
that for slipping P = W sin(a + u)>cos(f - u), where u is 
the angle of static friction; u = tan-1 ms.

8–10.  Determine the angle f at which the applied force P 
should act on the pipe so that the magnitude of P is as small 
as possible for pulling the pipe up the incline. What is the 
corresponding value of P? The pipe weighs W and the slope 
a is known. Express the answer in terms of the angle of 
kinetic friction, u = tan-1 mk.

P

f

a

Probs. 8–9/10

8–5.  The automobile has a mass of 2 Mg and center of 
mass at G. Determine the towing force F required to move 
the car if the back brakes are locked, and the front wheels 
are free to roll. Take ms = 0.3.

8–6.  The automobile has a mass of 2 Mg and center of 
mass at G. Determine the towing force F required to move 
the car. Both the front and rear brakes are locked. 
Take ms = 0.3.

F

0.75 m

30�

0.3 m 0.6 m
G

A

C

B
1.50 m1 m

Probs. 8–5/6

8–7.  The block brake consists of a pin-connected lever and 
friction block at B. The coefficient of static friction between 
the wheel and the lever is ms = 0.3, and a torque of 5 N # m 
is applied to the wheel. Determine if the brake can hold the 
wheel stationary when the force applied to the lever is 
(a) P = 30 N, (b) P = 70 N.

200 mm

50 mm

400 mm

P
150 mm

O

B

A

5 N�m

Prob. 8–7
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8–13.  If a torque of M = 300 N # m is applied to the 
flywheel, determine the force that must be developed in the 
hydraulic cylinder CD to prevent the flywheel from rotating. 
The coefficient of static friction between the friction pad 
at B and the flywheel is ms = 0.4.

30�

0.6 m

60 mm

0.3 m M � 300 N�m

A

D

B
C

1 m

O

Prob. 8–13

8–14.  The car has a mass of 1.6 Mg and center of mass at G. 
If the coefficient of static friction between the shoulder of the 
road and the tires is ms = 0.4, determine the greatest slope u 
the shoulder can have without causing the car to slip or tip 
over if the car travels along the shoulder at constant velocity.

A

B
G

5 ft

2.5 ft

u

Prob. 8–14

8–11.  Determine the maximum weight W the man can lift 
with constant velocity using the pulley system, without and 
then with the “leading block” or pulley at A. The man has a 
weight of 200 lb and the coefficient of static friction between 
his feet and the ground is ms = 0.6.

(a)

45�
C

B

C

B

(b)

w

A

w

Prob. 8–11

*8–12.  The block brake is used to stop the wheel from 
rotating when the wheel is subjected to a couple moment M0. 
If the coefficient of static friction between the wheel and the 
block is ms, determine the smallest force P that should 
be applied.

O
M0

P
a

c

b

r

C

Prob. 8–12
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8–18.  The spool of wire having a weight of 300 lb rests on 
the ground at B and against the wall at A. Determine the 
force P required to begin pulling the wire horizontally off 
the spool. The coefficient of static friction between the 
spool and its points of contact is ms = 0.25.

8–19.  The spool of wire having a weight of 300 lb rests on 
the ground at B and against the wall at A. Determine the 
normal force acting on the spool at A if P = 300 lb. 
The coefficient of static friction between the spool and the 
ground at B is ms = 0.35. The wall at A is smooth.

A

B

O

3 ft

1 ft
P

Probs. 8–18/19

*8–20.  The ring has a mass of 0.5 kg and is resting on the 
surface of the table. In an effort to move the ring a normal 
force P from the finger is exerted on it. If this force is directed 
towards the ring’s center O as shown, determine its magnitude 
when the ring is on the verge of slipping at A. The coefficient 
of static friction at A is mA = 0.2 and at B, mB = 0.3.

75 mm

O

B

P

60�

A

Prob. 8–20

8–15.  The log has a coefficient of state friction of ms = 0.3 
with the ground and a weight of 40 lb>ft. If a man can pull 
on the rope with a maximum force of 80 lb, determine the 
greatest length l of log he can drag.

Prob. 8–15

*8–16.  The 180-lb man climbs up the ladder and stops at the 
position shown after he senses that the ladder is on the verge 
of slipping. Determine the inclination u of the ladder if the 
coefficient of static friction between the friction pad A and the 
ground is ms = 0.4. Assume the wall at B is smooth. The center 
of gravity for the man is at G. Neglect the weight of the ladder.

8–17.  The 180-lb man climbs up the ladder and stops at the 
position shown after he senses that the ladder is on the verge 
of slipping. Determine the coefficient of static friction 
between the friction pad at A and ground if the inclination of 
the ladder is u = 60� and the wall at B is smooth. The center 
of gravity for the man is at G. Neglect the weight of the ladder.

G

A

10 ft

3 ft

u

B

Probs. 8–16/17
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8–23.  The beam is supported by a pin at A and a roller at B 
which has negligible weight and a radius of 15 mm. If the 
coefficient of static friction is mB = mC = 0.3, determine 
the largest angle u of the incline so that the roller does not 
slip for any force P applied to the beam.

A

2 m 2 m

P

B

C
u

Prob. 8–23

*8–24.  The uniform thin pole has a weight of 30 lb and a 
length of 26 ft. If it is placed against the smooth wall and on 
the rough floor in the position d = 10 ft, will it remain in 
this position when it is released? The coefficient of static 
friction is ms = 0.3.

8–25.  The uniform pole has a weight of 30 lb and a length 
of 26 ft. Determine the maximum distance d it can be placed 
from the smooth wall and not slip. The coefficient of static 
friction between the floor and the pole is ms = 0.3.

A

d

B

26 ft

Probs. 8–24/25

8–21.  A man attempts to support a stack of books 
horizontally by applying a compressive force of F = 120 N 
to the ends of the stack with his hands. If each book has a 
mass of 0.95 kg, determine the greatest number of books 
that can be supported in the stack. The coefficient of static 
friction between his hands and a book is (ms)h = 0.6 and 
between any two books (ms)b = 0.4.

F � 120 NF � 120 N

Prob. 8–21

8–22.  The tongs are used to lift the 150-kg crate, whose 
center of mass is at G. Determine the least coefficient of 
static friction at the pivot blocks so that the crate can be lifted.

275 mm

300 mm

30�

500 mm

500 mm

A

C D

F

H

E

B

P

G

Prob. 8–22
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8–29.  The friction pawl is pinned at A and rests against the 
wheel at B. It allows freedom of movement when the wheel 
is rotating counterclockwise about C. Clockwise rotation is 
prevented due to friction of the pawl which tends to bind 
the wheel. If (ms)B =  0.6, determine the design angle u 
which will prevent clockwise motion for any value of 
applied moment M. Hint: Neglect the weight of the pawl so 
that it becomes a two-force member.

u

M

B

C

20�

A

Prob. 8–29

8–30.  Two blocks A and B have a weight of 10 lb and 6 lb, 
respectively. They are resting on the incline for which the 
coefficients of static friction are mA = 0.15 and mB = 0.25. 
Determine the incline angle u for which both blocks begin 
to slide. Also find the required stretch or compression in the 
connecting spring for this to occur. The spring has a stiffness 
of k = 2 lb>ft.
8–31.  Two blocks A and B have a weight of 10 lb and 6 lb, 
respectively. They are resting on the incline for which the 
coefficients of static friction are mA = 0.15 and mB = 0.25. 
Determine the angle u which will cause motion of one of 
the blocks. What is the friction force under each of the 
blocks when this occurs? The spring has a stiffness of 
k = 2 lb>ft and is originally unstretched.

u

A

Bk � 2 lb/ft

Probs. 8–30/31

8–26.  The block brake is used to stop the wheel from 
rotating when the wheel is subjected to a couple moment 
M0 = 360 N # m. If the coefficient of static friction between 
the wheel and the block is ms = 0.6, determine the smallest 
force P that should be applied.

8–27.  Solve Prob. 8–26 if the couple moment M0 is applied 
counterclockwise.

O

0.05 m

0.3 m

P
1 m

0.4 m

CC

M0

B

Probs. 8–26/27

*8–28.  A worker walks up the sloped roof that is defined 
by the curve y = (5e0.01x) ft, where x is in feet. Determine 
how high h he can go without slipping. The coefficient of 
static friction is ms = 0.6.

y

x

5 ft

h

Prob. 8–28
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*8–36.  Determine the minimum force P needed to push 
the tube E up the incline. The force acts parallel to the 
plane, and the coefficients of static friction at the contacting 
surfaces are mA = 0.2, mB = 0.3, and mC = 0.4. The 100-kg 
roller and 40-kg tube each have a radius of 150 mm.

A

E

B

C

30�P

Prob. 8–36

8–37.  The coefficients of static and kinetic friction between 
the drum and brake bar are ms = 0.4 and mk = 0.3, 
respectively. If M = 50 N # m and P = 85 N, determine the 
horizontal and vertical components of reaction at the pin O. 
Neglect the weight and thickness of the brake. The drum has 
a mass of 25 kg.

8–38.  The coefficient of static friction between the drum 
and brake bar is ms = 0.4. If the moment M = 35 N # m, 
determine the smallest force P that needs to be applied to 
the brake bar in order to prevent the drum from rotating. 
Also determine the corresponding horizontal and vertical 
components of reaction at pin O. Neglect the weight and 
thickness of the brake bar. The drum has a mass of 25 kg.

A

M

P

B
O 125 mm

700 mm

500 mm

300 mm

Probs. 8–37/38

*8–32.  Determine the smallest force P that must be 
applied in order to cause the 150-lb uniform crate to move. 
The coefficent of static friction between the crate and the 
floor is ms = 0.5.

8–33.  The man having a weight of 200 lb pushes 
horizontally on the crate. If the coefficient of static friction 
between the 450-lb crate and the floor is ms = 0.3 and 
between his shoes and the floor is m�s = 0.6, determine if he 
can move the crate.

3 ft

2 ft

P

Probs. 8–32/33

8–34.  The uniform hoop of weight W is subjected to the 
horizontal force P. Determine the coefficient of static 
friction between the hoop and the surface of A and B if the 
hoop is on the verge of rotating.

8–35.  Determine the maximum horizontal force P that 
can be applied to the 30-lb hoop without causing it to rotate. 
The coefficient of static friction between the hoop and the 
surfaces A and B is ms = 0.2. Take r = 300 mm.

r

A

B

P

B

A

Probs. 8–34/35
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8–41.  If the coefficient of static friction at A and B is 
ms = 0.6, determine the maximum angle u so that the frame 
remains in equilbrium, regardless of the mass of the cylinder. 
Neglect the mass of the rods.

C

L L

A B

uu

Prob. 8–41
8–42.  The 100-kg disk rests on a surface for which mB = 0.2. 
Determine the smallest vertical force P that can be applied 
tangentially to the disk which will cause motion to impend.

0.5 m

B

A

P

Prob. 8–42
8–43.  Investigate whether the equilibrium can be 
maintained. The uniform block has a mass of 500 kg, and 
the coefficient of static friction is ms = 0.3.

A

800 mm

200 mm3

4
5

600 mmB

Prob. 8–43

8–39.  Determine the smallest coefficient of static friction 
at both A and B needed to hold the uniform 100-lb bar 
in  equilibrium. Neglect the thickness of the bar. 
Take mA = mB = m.

13 ft

3 ft

B

A

5 ft

Prob. 8–39

*8–40.  If u = 30�, determine the minimum coefficient of 
static friction at A and B so that equilibrium of the 
supporting frame is maintained regardless of the mass of 
the cylinder. Neglect the mass of the rods.

C

L L

A B

uu

Prob. 8–40
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8–46.  The beam AB has a negligible mass and thickness 
and is subjected to a triangular distributed loading. It is 
supported at one end by a pin and at the other end by a post 
having a mass of 50 kg and negligible thickness. Determine 
the two coefficients of static friction at B and at C so that 
when the magnitude of the applied force is increased to  
P = 150 N, the post slips at both B and C simultaneously.

2 m
400 mm

800 N/m

C

B

300 mm

A
P

4
35

Prob. 8–46

8–47.  Crates A and B weigh 200 lb and 150 lb, respectively. 
They are connected together with a cable and placed on the 
inclined plane. If the angle u is gradually increased, 
determine u when the crates begin to slide. The coefficients 
of static friction between the crates and the plane are 
mA = 0.25 and mB = 0.35.

B

A
C

D

u

Prob. 8–47

*8–44.  The homogenous semicylinder has a mass of 20 kg 
and mass center at G. If force P is applied at the edge, and 
r = 300 mm, determine the angle u at which the semicylinder 
is on the verge of slipping. The coefficient of static friction 
between the plane and the cylinder is ms = 0.3. Also, what is 
the corresponding force P for this case?

Gu

P

r

4r
3p

Prob. 8–44

8–45.  The beam AB has a negligible mass and thickness 
and is subjected to a triangular distributed loading. It is 
supported at one end by a pin and at the other end by a post 
having a mass of 50 kg and negligible thickness. Determine 
the minimum force P needed to move the post. The 
coefficients of static friction at B and C are mB = 0.4 and 
mC = 0.2, respectively.

2 m
400 mm

800 N/m

C

B

300 mm

A
P

4
35

Prob. 8–45
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8–51.  Beam AB has a negligible mass and thickness, and 
supports the 200-kg uniform block. It is pinned at A and 
rests on the top of a post, having a mass of 20 kg and 
negligible thickness. Determine the minimum force P 
needed to move the post. The coefficients of static friction 
at B and C are mB = 0.4 and mC = 0.2, respectively.

*8–52.  Beam AB has a negligible mass and thickness, and 
supports the 200-kg uniform block. It is pinned at A and 
rests on the top of a post, having a mass of 20 kg and 
negligible thickness. Determine the two coefficients of static 
friction at B and at C so that when the magnitude of the 
applied force is increased to P = 300 N, the post slips at 
both B and C simultaneously.

1.5 m 1.5 m

C

B

0.75 m

1 m

A P

4
35

Probs. 8–51/52

8–53.  Determine the smallest couple moment that can be 
applied to the 150-lb wheel that will cause impending 
motion. The uniform concrete block has a weight of 300 lb. 
The coefficients of static friction are mA = 0.2, mB = 0.3, 
and between the concrete block and the floor, m = 0.4.

1 ft

5 ft
B

A

1.5 ft

M

Prob. 8–53

*8–48.  Two blocks A and B, each having a mass of 5 kg, 
are connected by the linkage shown. If the coefficient of 
static friction  at the contacting surfaces is ms = 0.5, 
determine the largest force P that can be applied to pin C of 
the linkage without causing the blocks to move. Neglect the 
weight of the links.

P

30�
30�

30�

A

C
B

Prob. 8–48

8–49.  The uniform crate has a mass of 150 kg. If the 
coefficient of static friction between the crate and the floor 
is ms = 0.2, determine whether the 85-kg man can move the 
crate. The coefficient of static friction between his shoes and 
the floor is m�s = 0.4. Assume the man only exerts a 
horizontal force on the crate.

8–50.  The uniform crate has a mass of 150 kg. If the coefficient 
of static friction between the crate and the floor is ms = 0.2, 
determine the smallest mass of the man so he can move the 
crate. The coefficient of static friction between his shoes and 
the floor is m�s = 0.45. Assume the man exerts only a 
horizontal force on the crate. 

2.4 m

1.2 m

1.6 m

Probs. 8–49/50
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*8–56.  The disk has a weight W and lies on a plane that 
has a coefficient of static friction m. Determine the 
maximum height h to which the plane can be lifted without 
causing the disk to slip.

z

x

y

2a

a
h

Prob. 8–56

8–57.  The man has a weight of 200 lb, and the coefficient 
of static friction between his shoes and the floor is ms = 0.5. 
Determine where he should position his center of gravity G 
at d in order to exert the maximum horizontal force on the 
door. What is this force?

d

3 ft

G

Prob. 8–57

8–54.  Determine the greatest angle u so that the ladder 
does not slip when it supports the 75-kg man in the position 
shown. The surface is rather slippery, where the coefficient 
of static friction at A and B is ms = 0.3.

A B

C

G

2.5 m

0.25 m

2.5 m

u

Prob. 8–54

8–55.  The wheel weighs 20 lb and rests on a surface for 
which mB = 0.2. A cord wrapped around it is attached to 
the top of the 30-lb homogeneous block. If the coefficient of 
static friction at D is mD = 0.3, determine the smallest 
vertical force that can be applied tangentially to the wheel 
which will cause motion to impend.

1.5 ft

1.5 ft

C

DB

A

P

3 ft

Prob. 8–55
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C8–1.  Draw the free-body diagrams of each of the two 
members of this friction tong used to lift the 100-kg block.

C8–1 (© Russell C. Hibbeler)

C8–2.  Show how to find the force needed to move the top 
block. Use reasonable data and use an equilibrium analysis 
to explain your answer.

C8–2 (© Russell C. Hibbeler)

C8–3.  The rope is used to tow the refrigerator. Is it best to 
pull slightly up on the rope as shown, pull horizontally, or 
pull somewhat downwards? Also, is it best to attach the 
rope at a high position as shown, or at a lower position? Do 
an equilibrium analysis to explain your answer.

C8–4.  The rope is used to tow the refrigerator. In order to 
prevent yourself from slipping while towing, is it best to pull 
up as shown, pull horizontally, or pull downwards on the 
rope? Do an equilibrium analysis to explain your answer.

C8–3/4 (© Russell C. Hibbeler)

C8–5.  Explain how to find the maximum force this man 
can exert on the vehicle. Use reasonable data and use an 
equilibrium analysis to explain your answer.

C8–5 (© Russell C. Hibbeler)

CONCEPTUAL PROBLEMS
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8.3  Wedges

A wedge is a simple machine that is often used to transform an applied 
force into much larger forces, directed at approximately right angles to 
the applied force. Wedges also can be used to slightly move or adjust 
heavy loads.

Consider, for example, the wedge shown in Fig. 8–12a, which is used to 
lift the block by applying a force to the wedge. Free-body diagrams of the 
block and wedge are shown in Fig. 8–12b. Here we have excluded the 
weight of the wedge since it is usually small compared to the weight W of 
the block. Also, note that the frictional forces F1 and F2 must oppose the 
motion of the wedge. Likewise, the frictional force F3 of the wall on the 
block must act downward so as to oppose the block’s upward motion. 
The locations of the resultant normal forces are not important in the 
force analysis since neither the block nor wedge will “tip.” Hence the 
moment equilibrium equations will not be considered. There are seven 
unknowns, consisting of the applied force P, needed to cause motion of 
the wedge, and six normal and frictional forces. The seven available 
equations consist of four force equilibrium equations, �Fx = 0, �Fy = 0 
applied to the wedge and block, and three frictional equations, F = mN, 
applied at each surface of contact.

If the block is to be lowered, then the frictional forces will all act in a 
sense opposite to that shown in Fig. 8–12b. Provided the coefficient of 
friction is very small or the wedge angle u is large, then the applied 
force P must act to the right to hold the block. Otherwise, P may have a 
reverse sense of direction in order to pull on the wedge to remove it. If P 
is not applied and friction forces hold the block in place, then the wedge is 
referred to as self-locking.

Wedges are often used to adjust the 
elevation of structural or mechanical parts. 
Also, they provide stability for objects 
such as this pipe. (© Russell C. Hibbeler)

(a)

Impending
 

motion

P

W

u

Fig. 8–12

F3

N3

(b)

W

F2

N2

P

F2

N2

F1

N1

u
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The uniform stone in Fig. 8–13a has a mass of 500 kg and is held in the 
horizontal position using a wedge at B. If the coefficient of static 
friction is ms = 0.3 at the surfaces of contact, determine the minimum 
force P needed to remove the wedge. Assume that the stone does not 
slip at A.

(a)

P

7�

BA

C

1 m

FA

0.3NB

P

7�

0.5 m

(b)

0.5 m

NBNA

7�

7� 7�

NC

NB

0.3NB

0.3NC

4905 N

A

Impending
motion

Fig. 8–13 

Solution
The minimum force P requires F = msN at the surfaces of contact with 
the wedge. The free-body diagrams of the stone and wedge are shown 
in Fig. 8–13b. On the wedge the friction force opposes the impending 
motion, and on the stone at A, FA … msNA, since slipping does not occur 
there. There are five unknowns. Three equilibrium equations for the 
stone and two for the wedge are available for solution. From the 
free-body diagram of the stone,

a+ �MA = 0; -4905 N(0.5 m) + (NB cos 7� N)(1 m)

 + (0.3NB sin 7� N)(1 m) = 0
NB = 2383.1 N

Using this result for the wedge, we have

+ c �Fy = 0;  NC - 2383.1 cos 7� N - 0.3(2383.1 sin 7� N) = 0

NC = 2452.5 N

S+ �Fx = 0;  2383.1 sin 7� N - 0.3(2383.1 cos 7� N) +

 P - 0.3(2452.5 N) = 0

P = 1154.9 N = 1.15 kN� Ans.

NOTE: Since P is positive, indeed the wedge must be pulled out. If P 
were zero, the wedge would remain in place (self-locking) and the 
frictional forces developed at B and C would satisfy FB 6 msNB and 
FC 6 msNC.

example   8.6
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r

l
A

B

2pr

r

A

B

l

(b)

B

A
u

(a)

Fig. 8–14 

8.4  Frictional Forces on Screws

In most cases, screws are used as fasteners; however, in many types of 
machines they are incorporated to transmit power or motion from one 
part of the machine to another. A square-threaded screw is commonly 
used for the latter purpose, especially when large forces are applied along 
its axis. In this section, we will analyze the forces acting on square-threaded 
screws. The analysis of other types of screws, such as the V-thread, is based 
on these same principles.

For analysis, a square-threaded screw, as in Fig. 8–14, can be considered 
a cylinder having an inclined square ridge or thread wrapped around it. If 
we unwind the thread by one revolution, as shown in Fig. 8–14b, the slope 
or the lead angle u is determined from u = tan-1(l>2pr). Here l and 2pr 
are the vertical and horizontal distances between A and B, where r is the 
mean radius of the thread. The distance l is called the lead of the screw 
and it is equivalent to the distance the screw advances when it turns one 
revolution.

Upward Impending Motion.  Let us now consider the case of 
the square-threaded screw jack in Fig. 8–15 that is subjected to upward 
impending motion caused by the applied torsional moment *M. A free-
body diagram of the entire unraveled thread h in contact with the jack can 
be represented as a block, as shown in Fig. 8–16a. The force W is the 
vertical force acting on the thread or the axial force applied to the shaft, 
Fig. 8–15, and M>r is the resultant horizontal force produced by the 
couple moment M about the axis of the shaft. The reaction R of the 
groove on the thread has both frictional and normal components, where 
F = ms N. The angle of static friction is fs = tan-1(F>N) = tan-1ms. 
Applying the force equations of equilibrium along the horizontal and 
vertical axes, we have

 S
+

�Fx = 0;	  M>r - R sin (u + fs) = 0

+ c �Fy = 0;	  R cos (u + fs) - W = 0

Eliminating R from these equations, we obtain

	 M = rW tan (u + fs) � (8–3)

*For applications, M is developed by applying a horizontal force P at a right angle to the 

end of a lever that would be fixed to the screw.

Square-threaded screws find 
applications on valves, jacks, 
and vises, where particularly 
large forces must be developed 
along the axis of the screw.  
(© Russell C. Hibbeler)
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Self-Locking Screw.  A screw is said to be self-locking if it remains 
in place under any axial load W when the moment M is removed. For this 
to occur, the direction of the frictional force must be reversed so that R 
acts on the other side of N. Here the angle of static friction fs becomes 
greater than or equal to u, Fig. 8–16d. If fs = u, Fig. 8–16b, then R will act 
vertically to balance W, and the screw will be on the verge of winding 
downward.

Downward Impending Motion,  (U + Fs). If the screw is not 
self-locking, it is necessary to apply a moment M� to prevent the screw 
from winding downward. Here, a horizontal force M�>r is required to 
push against the thread to prevent it from sliding down the plane, 
Fig. 8–16c. Using the same procedure as before, the magnitude of the 
moment M� required to prevent this unwinding is

	 M� = rW tan (u - fs) � (8–4)

Downward Impending Motion,  (Fs + U). If a screw is self-
locking, a couple moment M� must be applied to the screw in the opposite 
direction to wind the screw downward (fs 7  u). This causes a reverse 
horizontal force M�>r that pushes the thread down as indicated in  
Fig. 8–16d. In this case, we obtain

	 M� = rW tan (fs - u) � (8–5)

If motion of the screw occurs, Eqs. 8–3, 8–4, and 8–5 can be applied by 
simply replacing fs with fk.

W

h

r

M

Fig. 8–15 

W

Upward screw motion

N

F

R

(a)

n

M/r

u

u

fs

W

Self-locking screw (u � fs)
(on the verge of rotating downward)

R

(b)

n

u

fs � u

W

Downward screw motion (u � fs)

M¿/ r

n

(c)

R
fs

u

u

W

Downward screw motion (u � fs)

(d)

M–/ r

R

n

u

u

fs

Fig. 8–16 
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Example   8.7

The turnbuckle shown in Fig. 8–17 has a square thread with a mean 
radius of 5 mm and a lead of 2 mm. If the coefficient of static friction 
between the screw and the turnbuckle is ms = 0.25, determine the 
moment M that must be applied to draw the end screws closer 
together.

M

2 kN

2 kN(© Russell C. Hibbeler)

Fig. 8–17 

Solution
The moment can be obtained by applying Eq. 8–3. Since friction at 
two screws must be overcome, this requires

	 M = 2[rW tan(u + fs)]� (1)

Here W = 2000 N, fs = tan-1ms = tan-1(0.25) = 14.04�, r = 5 mm, 
and  u = tan-1(l>2pr) = tan-1(2 mm>[2p(5 mm)]) = 3.64�. Substi
tuting these values into Eq. 1 and solving gives

	  M = 2[(2000 N)(5 mm) tan(14.04� + 3.64�)]�

	  = 6374.7 N # mm = 6.37 N # m � Ans.

NOTE: When the moment is removed, the turnbuckle will be  
self-locking; i.e., it will not unscrew since fs 7 u.
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8–58.  Determine the largest angle u that will cause the 
wedge to be self-locking regardless of the magnitude of 
horizontal force P applied to the blocks. The coefficient of 
static friction between the wedge and the blocks is ms = 0.3. 
Neglect the weight of the wedge.

P P
u

Prob. 8–58

8–59.  If the beam AD is loaded as shown, determine the 
horizontal force P which must be applied to the wedge in 
order to remove it from under the beam. The coefficients of 
static friction at the wedge’s top and bottom surfaces are 
mCA = 0.25 and mCB = 0.35, respectively. If P = 0, is the 
wedge self-locking? Neglect the weight and size of the 
wedge and the thickness of the beam.

3 m

A
P

10�

4 kN/m

C
B

4 m

D

Prob. 8–59

*8–60.  The wedge is used to level the member. Determine 
the horizontal force P that must be applied to begin to 
push  the wedge forward. The coefficient of static friction 
between the wedge and the two surfaces of contact is 
ms = 0.2. Neglect the weight of the wedge.

2 m

1 m

500 N/m

A

B

C

P

5�

Prob. 8–60

8–61.  The two blocks used in a measuring device have 
negligible weight. If the spring is compressed 5 in. when in 
the position shown, determine the smallest axial force P 
which the adjustment screw must exert on B in order to 
start the movement of B downward. The end of the screw is  
smooth and the coefficient of static friction at all other 
points of contact is ms = 0.3.

60�

45�

k = 20 lb/ in.

B

A

P

Prob. 8–61

8–62.  If P = 250 N, determine the required minimum 
compression in the spring so that the wedge will not move 
to the right. Neglect the weight of A and B. The coefficient 
of static friction for all contacting surfaces is ms = 0.35. 
Neglect friction at the rollers.

8–63.  Determine the minimum applied force P required to 
move wedge A to the right. The spring is compressed a 
distance of 175 mm. Neglect the weight of A and B. The 
coefficient of static friction for all contacting surfaces is 
ms = 0.35. Neglect friction at the rollers.

k � 15 kN/m

A
P

B

10�

Probs. 8–62/63

PROBLEMS
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*8–64.  If the coefficient of static friction between all the 
surfaces of contact is ms, determine the force P that must be 
applied to the wedge in order to lift the block having a 
weight W.

P
A

C

B

a

Prob. 8–64

8–65.  Determine the smallest force P needed to lift the 
3000-lb load. The coefficient of static friction between A 
and C and between B and D is ms = 0.3, and between A and 
B m�s = 0.4. Neglect the weight of each wedge.

8–66.  Determine the reversed horizontal force −P needed 
to pull out wedge A. The coefficient of static friction between 
A and C and between B and D is ms = 0.2, and between A 
and B m�s = 0.1. Neglect the weight of each wedge.

3000 lb

15P
A

B
D

C

Probs. 8–65/66

8–67.  If the clamping force at G is 900 N, determine the 
horizontal force F that must be applied perpendicular to the 
handle of the lever at E. The mean diameter and lead of both 
single square-threaded screws at C and D are 25 mm and 
5 mm, respectively. The coefficient of static friction is ms = 0.3.

*8–68.  If a horizontal force of F = 50 N is applied 
perpendicular to the handle of the lever at E, determine the 
clamping force developed at G. The mean diameter and lead 
of the single square-threaded screw at C and D are 25 mm and 
5 mm, respectively. The coefficient of static friction is ms = 0.3.

200 mm

E

D

CG

200 mm

125 mm

B

A

Probs. 8–67/68

8–69.  The column is used to support the upper floor. If a 
force F = 80 N is applied perpendicular to the handle to 
tighten the screw, determine the compressive force in the 
column. The square-threaded screw on the jack has a 
coefficient of static friction of ms = 0.4, mean diameter of 
25 mm, and a lead of 3 mm.

8–70.  If the force F is removed from the handle of the jack 
in Prob. 8–69, determine if the screw is self-locking.

0.5 m

F

Probs. 8–69/70
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8–71.  If couple forces of F = 10 lb are applied perpendicular 
to the lever of the clamp at A and B, determine the clamping 
force on the boards. The single square-threaded screw of the 
clamp has a mean diameter of 1 in. and a lead of 0.25 in. The 
coefficient of static friction is ms = 0.3.

*8–72.  If the clamping force on the boards is 600 lb, 
determine the required magnitude of the couple forces that 
must be applied perpendicular to the lever AB of the clamp 
at A and B in order to loosen the screw. The single square-
threaded screw has a mean diameter of 1 in. and a lead of 
0.25 in. The coefficient of static friction is ms = 0.3.

6 in.6 in.

BA

Probs. 8–71/72

8–73.  Prove that the lead l must be less than 2prms for the 
jack screw shown in Fig. 8–15 to be “self-locking.”

8–74.  The square-threaded bolt is used to join two plates 
together. If the bolt has a mean diameter of d = 20 mm and 
a lead of l = 3 mm, determine the smallest torque M required 
to loosen the bolt if the tension in the bolt is T = 40  kN. 
The coefficient of static friction between the threads and the 
bolt is ms = 0.15.

M

d

Prob. 8–74

8–75.  The shaft has a square-threaded screw with a lead of 
8 mm and a mean radius of 15 mm. If it is in contact with a 
plate gear having a mean radius of 30 mm, determine the 
resisting torque M on the plate gear which can be overcome 
if a torque of 7 N # m is applied to the shaft. The coefficient 
of static friction at the screw is mB = 0.2. Neglect friction of 
the bearings located at A and B.

15 mm

M

30 mm

B

A

7 N�m

Prob. 8–75

*8–76.  If couple forces of F = 35 N are applied to the 
handle of the machinist’s vise, determine the compressive 
force developed in the block. Neglect friction at the bearing A. 
The guide at B is smooth. The single square-threaded screw 
has a mean radius of 6 mm and a lead of 8 mm, and the 
coefficient of static friction is ms = 0.27.

125 mm

125 mm

�F

F

A B

Prob. 8–76
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8–77.  The square-threaded screw has a mean diameter of 
20 mm and a lead of 4 mm. If the weight of the plate A is 
5  lb, determine the smallest coefficient of static friction 
between the screw and the plate so that the plate does not 
travel down the screw when the plate is suspended as shown.

A

Prob. 8–77

8–78.  The device is used to pull the battery cable terminal 
C from the post of a battery. If the required pulling force is 
85 lb, determine the torque M that must be applied to the 
handle on the screw to tighten it. The screw has square 
threads, a mean diameter of 0.2 in., a lead of 0.08 in., and the 
coefficient of static friction is ms = 0.5.

C

A

B

M

Prob. 8–78

8–79.  Determine the clamping force on the board A if 
the screw is tightened with a torque of M = 8 N # m. The 
square-threaded screw has a mean radius of 10 mm and a 
lead of 3 mm, and the coefficient of static friction is 
ms = 0.35.

*8–80.  If the required clamping force at the board A is to 
be 2 kN, determine the torque M that must be applied to the  
screw to tighten it down. The square-threaded screw has a 
mean radius of 10 mm and a lead of 3 mm, and the coefficient 
of static friction is ms = 0.35.

M

A

Probs. 8–79/80

8–81.  If a horizontal force of P = 100 N is applied 
perpendicular to the handle of the lever at A, determine 
the compressive force F exerted on the material. Each 
single square-threaded screw has a mean diameter of 
25  mm and a lead of 7.5 mm. The coefficient of static 
friction at all contacting surfaces of the wedges is 
ms = 0.2, and the  coefficient of static friction at the screw 
is m�s = 0.15.

8–82.  Determine the horizontal force P that must be 
applied perpendicular to the handle of the lever at A in 
order to develop a compressive force of 12 kN on the 
material. Each single square-threaded screw has a mean 
diameter of 25 mm and a lead of 7.5 mm. The coefficient of 
static friction at all contacting surfaces of the wedges is 
ms = 0.2, and the coefficient of static friction at the screw is 
ms� = 0.15.

A

B

250 mm15� 15�C

Probs. 8–81/82
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8.5  Frictional Forces on Flat Belts

Whenever belt drives or band brakes are designed, it is necessary to 
determine the frictional forces developed between the belt and its 
contacting surface. In this section we will analyze the frictional forces 
acting on a flat belt, although the analysis of other types of belts, such as 
the V-belt, is based on similar principles.

Consider the flat belt shown in Fig. 8–18a, which passes over a fixed 
curved surface. The total angle of belt-to-surface contact in radians is b, 
and the coefficient of friction between the two surfaces is m. We wish to 
determine the tension T2 in the belt, which is needed to pull the belt 
counterclockwise over the surface, and thereby overcome both the 
frictional forces at the surface of contact and the tension T1 in the other 
end of the belt. Obviously, T2 7 T1.

Frictional Analysis.  A free-body diagram of the belt segment in 
contact with the surface is shown in Fig. 8–18b. As shown, the normal and 
frictional forces, acting at different points along the belt, will vary both in 
magnitude and direction. Due to this unknown distribution, the analysis 
of the problem will first require a study of the forces acting on a 
differential element of the belt.

A free-body diagram of an element having a length ds is shown in 
Fig.  8–18c. Assuming either impending motion or motion of the belt, 
the magnitude of the frictional force dF = m dN. This force opposes the 
sliding motion of the belt, and so it will increase the magnitude of the 
tensile force acting in the belt by dT. Applying the two force equations 
of equilibrium, we have

R + �Fx = 0;   T cosa du

2
b + m dN - (T + dT ) cosa du

2
b = 0

+ Q�Fy = 0;  dN - (T + dT ) sina du

2
b - T sina du

2
b = 0

Since du is of infinitesimal size, sin(du>2) = du>2 and cos(du>2) = 1. 
Also, the product of the two infinitesimals dT and du>2 may be neglected 
when compared to infinitesimals of the first order. As a result, these two 
equations become

m dN = dT

and

dN = T du

Eliminating dN yields

dT

T
= m du

Motion or impending
motion of belt relative
to surface

(a)

r

T2

T1

b

u

(b)

T1

T2 u

dF � m dN
ds

(c)

T � dT

T

y

dN

x

du
2

du
2

du
2

du
2

Fig. 8–18
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Motion or impending
motion of belt relative
to surface

(a)

r

T2

T1

b

u

Fig. 8–18 (Repeated)

Flat or V-belts are often used to transmit 
the torque developed by a motor to a 
wheel attached to a pump, fan, or blower.   
(© Russell C. Hibbeler)

Integrating this equation between all the points of contact that the belt 
makes with the drum, and noting that T = T1 at u = 0 and T = T2 at 
u = b, yields

 L
T2

T1

 
dT

T
= mL

b

0
du

 ln 
T2

T1
= mb

Solving for T2, we obtain

	 T2 = T1e
mb � (8–6)

where

T2, T1 = belt tensions; T1 opposes the direction of motion (or 
impending motion) of the belt measured relative to the 
surface, while T2 acts in the direction of the relative belt 
motion (or impending motion); because of friction, 
T2 7 T1

m = coefficient of static or kinetic friction between the belt 
and the surface of contact

b = angle of belt-to-surface contact, measured in radians

e = 2.718c, base of the natural logarithm

Note that T2 is independent of the radius of the drum, and instead it is 
a function of the angle of belt to surface contact, b. As a result, this 
equation is valid for flat belts passing over any curved contacting surface.
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example   8.8

The maximum tension that can be developed in the cord shown in  
Fig. 8–19a is 500 N. If the pulley at A is free to rotate and the coefficient 
of static friction at the fixed drums B and C is ms = 0.25, determine 
the largest mass of the cylinder that can be lifted by the cord.

T

A

(a)

CB
D

45� 45�

SOLUTION
Lifting the cylinder, which has a weight W = mg, causes the cord to 
move counterclockwise over the drums at B and C; hence, the 
maximum tension T2 in the cord occurs at D. Thus, F = T2 = 500 N. A 
section of the cord passing over the drum at B is shown in  
Fig. 8–19b. Since 180� = p rad the angle of contact between the drum 
and the cord is b = (135�>180�)p = 3p>4 rad. Using Eq. 8–6, we have

T2 = T1e
msb;       500 N = T1e

0.25[(3>4)p]

Hence,

T1 =
500 N

e0.25[(3>4)p]
=

500 N

1.80
= 277.4 N

Since the pulley at A is free to rotate, equilibrium requires that the 
tension in the cord remains the same on both sides of the pulley.

The section of the cord passing over the drum at C is shown in  
Fig. 8–19c. The weight W 6 277.4 N. Why? Applying Eq. 8–6, we obtain

T2 = T1e
msb;    277.4 N = We0.25[(3>4)p]

 W = 153.9 N

so that

 m =
W
g

=
153.9 N

9.81 m>s2

	  = 15.7 kg � Ans.

135�

Impending
motion

B

500 N
T1

(b)

W � mg

277.4 N

135�

Impending
motion

(c)

C

Fig. 8–19
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8–83.  A cylinder having a mass of 250 kg is to be supported 
by the cord that wraps over the pipe. Determine the smallest 
vertical force F needed to support the load if the cord passes 
(a) once over the pipe, b = 180�, and (b) two times over the 
pipe, b = 540�. Take ms = 0.2.

*8–84.  A cylinder having a mass of 250 kg is to be supported 
by the cord that wraps over the pipe. Determine the largest 
vertical force F that can be applied to the cord without moving 
the cylinder. The cord passes (a) once over the pipe, b = 180�, 
and (b) two times over the pipe, b = 540�. Take ms = 0.2.

F

Probs. 8–83/84
8–85.  A 180-lb farmer tries to restrain the cow from escaping 
by wrapping the rope two turns around the tree trunk as shown. 
If the cow exerts a force of 250 lb on the rope, determine if the 
farmer can successfully restrain the cow. The coefficient of 
static friction between the rope and the tree trunk is ms = 0.15, 
and between the farmer’s shoes and the ground m�s = 0.3.

Prob. 8–85

8–86.  The 100-lb boy at A is suspended from the cable 
that passes over the quarter circular cliff rock. Determine if 
it is possible for the 185-lb woman to hoist him up; and if 
this is possible, what smallest force must she exert on the 
horizontal cable? The coefficient of static friction between 
the cable and the rock is ms = 0.2, and between the shoes of 
the woman and the ground m�s = 0.8.

A

Prob. 8–86

8–87.  The 100-lb boy at A is suspended from the cable 
that passes over the quarter circular cliff rock. What 
horizontal force must the woman at A exert on the cable in 
order to let the boy descend at constant velocity? The 
coefficients of static and kinetic friction between the cable 
and the rock are ms = 0.4 and mk = 0.35, respectively.

A

Prob. 8–87

Problems



	 8.5  Frictional Forces on Flat Belts	 443

8

8–90.  The smooth beam is being hoisted using a rope that 
is wrapped around the beam and passes through a ring at A 
as shown. If the end of the rope is subjected to a tension T 
and the coefficient of static friction between the rope and 
ring is ms = 0.3, determine the smallest angle of u for 
equilibrium.

u

A

T

Prob. 8–90

8–91.  The boat has a weight of 500 lb and is held in 
position off the side of a ship by the spars at A and B. A man 
having a weight of 130 lb gets in the boat, wraps a rope 
around an overhead boom at C, and ties it to the end of the 
boat as shown. If the boat is disconnected from the spars, 
determine the minimum number of half turns the rope must 
make around the boom so that the boat can be safely 
lowered into the water at constant velocity. Also, what is the 
normal force between the boat and the man? The coefficient 
of kinetic friction between the rope and the  boom is 
ms = 0.15. Hint: The problem requires that the normal force 
between the man’s feet and the boat be as small as possible.

A

C

B

Prob. 8–91

*8–88.  The uniform concrete pipe has a weight of 800 lb 
and is unloaded slowly from the truck bed using the rope 
and skids shown. If the coefficient of kinetic friction 
between the rope and pipe is mk =  0.3, determine the force 
the worker must exert on the rope to lower the pipe at 
constant speed. There is a pulley at B, and the pipe does not 
slip on the skids. The lower portion of the rope is parallel to 
the skids.

15�

B

30�

Prob. 8–88

8–89.  A cable is attached to the 20-kg plate B, passes over 
a fixed peg at C, and is attached to the block at A. Using the 
coefficients of static friction shown, determine the smallest 
mass of block A so that it will prevent sliding motion of B 
down the plane.

30�
B

A
mA � 0.2

mC � 0.3
C

mB � 0.3

Prob. 8–89
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*8–96.  Determine the maximum and the minimum values 
of weight W which may be applied without causing the 50-lb 
block to slip. The coefficient of static friction between the 
block and the plane is ms = 0.2, and between the rope and 
the drum D is m=s = 0.3.

�

Prob. 8–96

8–97.  Granular material, having a density of 1.5 Mg>m3, is 
transported on a conveyor belt that slides over the fixed 
surface, having a coefficient of kinetic friction of mk = 0.3. 
Operation of the belt is provided by a motor that supplies a 
torque M to wheel A. The wheel at B is free to turn, and the 
coefficient of static friction between the wheel at A and the 
belt is mA = 0.4. If the belt is subjected to a pretension of 
300 N when no load is on the belt, determine the greatest 
volume V of material that is permitted on the belt at any 
time without allowing the belt to stop. What is the torque M 
required to drive the belt when it is subjected to this 
maximum load?

100 mm
100 mm

B A

M

mk � 0.3 mA � 0.4

Prob. 8–97

*8–92.  Determine the force P that must be applied to the 
handle of the lever so that the wheel is on the verge of 
turning if M = 300 N # m. The coefficient of static friction 
between the belt and the wheel is ms = 0.3.

8–93.  If a force of P = 30 N is applied to the handle of the 
lever, determine the largest couple moment M that can be 
resisted so that the wheel does not turn. The coefficient of 
static friction between the belt and the wheel is ms = 0.3.

700 mm60 mm

25 mm

C

300 mm

B

M

A

D

P

Probs. 8–92/93

8–94.  A minimum force of P = 50 lb is required to hold  
the cylinder from slipping against the belt and the wall. 
Determine the weight of the cylinder if the coefficient of 
friction between the belt and cylinder is ms = 0.3 and 
slipping does not occur at the wall.

8–95.   The cylinder weighs 10 lb and is held in equilibrium 
by the belt and wall. If slipping does not occur at the wall, 
determine the minimum vertical force P which must be 
applied to the belt for equilibrium. The coefficient of static  
friction between the belt and the cylinder is ms = 0.25.

P

B A

0.1 ft

30�

O

Probs. 8–94/95
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*8–100.  Blocks A and B have a mass of 7 kg and 10 kg, 
respectively. Using the coefficients of static friction 
indicated, determine the largest vertical force P which can 
be applied to the cord without causing motion.

P

300 mm

400 mm

A
C

D

B

mC � 0.4

mB � 0.4

mA � 0.3

mD � 0.1

Prob. 8–100

8–101.  The uniform bar AB is supported by a rope that 
passes over a frictionless pulley at C and a fixed peg at D. If 
the coefficient of static friction between the rope and the 
peg is mD = 0.3, determine the smallest distance x from the 
end of the bar at which a 20-N force may be placed and not 
cause the bar to move.

1 m

20 N

A

x

C D

B

Prob. 8–101

8–98.  Show that the frictional relationship between the 
belt tensions, the coefficient of friction m, and the angular 
contacts a and b for the V-belt is T2 = T1e

mb>sin(a>2).

T2 T1

Impending
motion a

b

Prob. 8–98

8–99.  The wheel is subjected to a torque of M = 50 N # m. 
If the coefficient of kinetic friction between the band brake 
and the rim of the wheel is mk = 0.3, determine the smallest 
horizontal force P that must be applied to the lever to stop 
the wheel.

25 mm
50 mm

400 mm

100 mm

M

C

A

B

P

150 mm

Prob. 8–99
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8–105.  A 10-kg cylinder D, which is attached to a small 
pulley B, is placed on the cord as shown. Determine the 
largest angles u so that the cord does not slip over the peg 
at  C. The cylinder at E also has a mass of 10 kg, and the 
coefficient of static friction between the cord and the peg 
is ms = 0.1.

A

B

D

E

Cu u

Prob. 8–105

8–106.	 A conveyer belt is used to transfer granular 
material and the frictional resistance on the top of the belt 
is F = 500 N. Determine the smallest stretch of the spring 
attached to the moveable axle of the idle pulley B so that 
the belt does not slip at the drive pulley A when the 
torque M is applied. What minimum torque M is required to 
keep the belt moving? The coefficient of static friction 
between the belt and the wheel at A is ms = 0.2.

0.1 m
0.1 m

F � 500 N

k � 4 kN/m
A

BM

Prob. 8–106

8–102.  The belt on the portable dryer wraps around the 
drum D, idler pulley A, and motor pulley B. If the motor 
can develop a maximum torque of M = 0.80 N # m, 
determine the smallest spring tension required to hold the 
belt from slipping. The coefficient of static friction between 
the belt and the drum and motor pulley is ms = 0.3.

50 mm

20 mm

A

B

C

D

50 mm

45�

30�
M � 0.8 N�m

Prob. 8–102

8–103.  Blocks A and B weigh 50 lb and 30 lb, respectively. 
Using the coefficients of static friction indicated, determine 
the greatest weight of block D without causing motion.

A

B

C
D

m � 0.5

mBA � 0.6

mAC � 0.4

20�

Prob. 8–103

*8–104.  The 20-kg motor has a center of gravity at G and 
is pin connected at C to maintain a tension in the drive belt. 
Determine the smallest counterclockwise twist or torque M 
that must be supplied by the motor to turn the disk B if 
wheel A locks and causes the belt to slip over the disk. No 
slipping occurs at A. The coefficient of static friction 
between the belt and the disk is ms = 0.3.

50 mm

M

50 mm

150 mm

100 mm

B

C

A G

Prob. 8–104
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*8.6  �Frictional Forces on Collar Bearings, 
Pivot Bearings, and Disks

Pivot and collar bearings are commonly used in machines to support an 
axial load on a rotating shaft. Typical examples are shown in Fig. 8–20. 
Provided these bearings are not lubricated, or are only partially lubricated, 
the laws of dry friction may be applied to determine the moment needed 
to turn the shaft when it supports an axial force.

R

Pivot bearing

(a)

M

P

    
Collar bearing

(b)

R1

R2

M

P

Fig. 8–20

Frictional Analysis.  The collar bearing on the shaft shown in Fig. 8–21 
is subjected to an axial force P and has a total bearing or contact area 
p(R2

2 - R1
2). Provided the bearing is new and evenly supported, then the 

normal pressure p on the bearing will be uniformly distributed over this 
area.  Since �Fz = 0, then p, measured as a force per unit area, is 
p = P>p(R2

2 - R1
2).

The moment needed to cause impending rotation of the shaft can be 
determined from moment equilibrium about the z axis. A differential 
area element dA = (r du)(dr), shown in Fig. 8–21, is subjected to both a 
normal force dN = p dA  and an associated frictional force,

dF = ms dN = ms p dA =
msP

p(R2
2 - R1

2)
 dA

z

r
R1R2

dF

dN
dAp

M

P

u

Fig. 8–21
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The normal force does not create a moment about the z axis of the 
shaft; however, the frictional force does; namely, dM = r dF. Integration 
is needed to compute the applied moment M needed to overcome all the 
frictional forces. Therefore, for impending rotational motion,

�Mz = 0;      M - LA
r dF = 0

Substituting for dF and dA and integrating over the entire bearing area 
yields

M =L
R2

R1 L
2p

0
rc msP

p(R2
2 - R1

2)
d (r du dr) =

msP

p(R2
2 - R1

2)
 L

R2

R1

r2 drL
2p

0
du

or

	 M =
2

3
 msPa

R2
3 - R1

3

R2
2 - R1

2 b � (8–7)

The moment developed at the end of the shaft, when it is rotating at 
constant speed, can be found by substituting mk for ms in Eq. 8–7.

In the case of a pivot bearing, Fig. 8–20a, then R2 = R and R1 = 0, and 
Eq. 8–7 reduces to

	 M =
2

3
 msPR� (8–8)

Remember that Eqs. 8–7 and 8–8 apply only for bearing surfaces 
subjected to constant pressure. If the pressure is not uniform, a variation 
of the pressure as a function of the bearing area must be determined 
before integrating to obtain the moment. The following example 
illustrates this concept.

z

p

M
R1

R2

P

Fig. 8–21 (Repeated)

The motor that turns the disk of this 
sanding machine develops a torque that 
must overcome the frictional forces 
acting on the disk. (© Russell C. Hibbeler)
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The uniform bar shown in Fig. 8–22a has a weight of 4 lb. If it is 
assumed that the normal pressure acting at the contacting surface 
varies linearly along the length of the bar as shown, determine the 
couple moment M required to rotate the bar. Assume that the bar’s 
width is negligible in comparison to its length. The coefficient of static 
friction is equal to ms = 0.3.

SOLUTION
A free-body diagram of the bar is shown in Fig. 8–22b. The intensity 
w0 of the distributed load at the center (x = 0) is determined from 
vertical force equilibrium, Fig. 8–22a.

+ c �Fz = 0;  -4 lb + 2 c 1
2

 a2 ftbw0 d = 0  w0 = 2 lb>ft

Since w = 0 at x = 2 ft, the distributed load expressed as a function 
of x is

w = (2 lb>ft)a1 -
x

2 ft
b = 2 - x

The magnitude of the normal force acting on a differential segment of 
area having a length dx is therefore

dN = w dx = (2 - x)dx

The magnitude of the frictional force acting on the same element of 
area is

dF = ms dN = 0.3(2 - x)dx

Hence, the moment created by this force about the z axis is

dM = x dF = 0.3(2x - x2)dx

The summation of moments about the z axis of the bar is determined 
by integration, which yields

�Mz = 0;   M - 2L
2

0
 (0.3)(2x - x2) dx = 0

 M = 0.6ax2 -
x3

3
b 2

0

2

 M = 0.8 lb # ft � Ans.

2 f t

2 f t

z

M

w0 y

(a)

w � w(x)ax

4 lb

z

(b)

y

x

�x

dF

dx
dN

dN
dx

dF

M

x

4 lb

Fig. 8–22

example   8.9
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8.7  Frictional Forces on Journal Bearings

When a shaft or axle is subjected to lateral loads, a journal bearing is 
commonly used for support. Provided the bearing is not lubricated, or is 
only partially lubricated, a reasonable analysis of the frictional resistance 
on the bearing can be based on the laws of dry friction.

Frictional Analysis.  A typical journal-bearing support is shown in 
Fig. 8–23a. As the shaft rotates, the contact point moves up the wall of the 
bearing to some point A where slipping occurs. If the vertical load acting 
at the end of the shaft is P, then the bearing reactive force R acting at A 
will be equal and opposite to P, Fig. 8–23b. The moment needed to 
maintain constant rotation of the shaft can be found by summing 
moments about the z axis of the shaft; i.e.,

�Mz = 0;	 M - (R sin fk)r = 0

or

	 M = Rr sin fk� (8–9)

where fk  is the angle of kinetic friction defined by tan fk =
F>N = mkN >N = mk. In Fig. 8–23c, it is seen that r sin fk = rf. The dashed 
circle with radius rf is called the friction circle, and as the shaft rotates, the 
reaction R will always be tangent to it. If the bearing is partially lubricated, 
mk is small, and therefore sin fk � tan fk � mk. Under these conditions, 
a reasonable approximation to the moment needed to overcome the 
frictional resistance becomes

	 M � Rrmk� (8–10)

Notice that to minimize friction the bearing radius r should be as small as 
possible. In practice, however, this type of journal bearing is not suitable 
for long service since friction between the shaft and bearing will eventually 
wear down the surfaces. Instead, designers will incorporate “ball bearings” 
or “rollers” in journal bearings to minimize frictional losses.

Unwinding the cable from this spool 
requires overcoming friction from the 
supporting shaft. (© Russell C. Hibbeler)

A

z
Rotation

(a)

Fig. 8–23

M

P

r
A fk
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R

F
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M

P

r

R
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example   8.10

The 100-mm-diameter pulley shown in Fig. 8–24a fits loosely on a 
10-mm-diameter shaft for which the coefficient of static friction is 
ms = 0.4. Determine the minimum tension T in the belt needed to (a) 
raise the 100-kg block and (b) lower the block. Assume that no slipping 
occurs between the belt and pulley and neglect the weight of the pulley.

50 mm

r � 5 mm

100 kg T (a)

SOLUTION
Part (a).  A free-body diagram of the pulley is shown in Fig. 8–24b. 
When the pulley is subjected to belt tensions of 981 N each, it makes 
contact with the shaft at point P1. As the tension T is increased, the 
contact point will move around the shaft to point P2 before motion 
impends. From the figure, the friction circle has a radius rf = r sin fs. 
Using the simplification that sin fs � tan fs � ms then rf � rms =

(5 mm)(0.4) = 2 mm, so that summing moments about P2 gives

a+ �MP2
= 0;  981 N(52 mm) - T(48 mm) = 0

	 T = 1063 N = 1.06 k N � Ans.

If a more exact analysis is used, then fs = tan-1 0.4 = 21.8�. Thus, the 
radius of the friction circle would be rf = r sin fs = 5 sin 21.8� =

1.86 mm. Therefore,

a+ �MP2
= 0;

	 981 N(50 mm + 1.86 mm) - T(50 mm - 1.86 mm) = 0
	 T = 1057 N = 1.06 kN � Ans.

Part (b).  When the block is lowered, the resultant force R acting on 
the shaft passes through point as shown in Fig. 8–24c. Summing 
moments about this point yields

a+ �MP3
= 0;   981 N(48 mm) - T(52 mm) = 0

	 T =  906 N	 Ans.

NOTE: Using the approximate analysis, the difference between raising 
and lowering the block is thus 157 N.

Impending
motion

52 mm 48 mm

981 N
R

T

P1 P2

rf

(b)

fs

52 mm48 mm

981 N
R

T

P3

rf

fs

(c)

Impending
motion

Fig. 8–24
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*8.8  Rolling Resistance

When a rigid cylinder rolls at constant velocity along a rigid surface, the 
normal force exerted by the surface on the cylinder acts perpendicular to 
the tangent at the point of contact, as shown in Fig. 8–25a. Actually, 
however, no materials are perfectly rigid, and therefore the reaction of the 
surface on the cylinder consists of a distribution of normal pressure. For 
example, consider the cylinder to be made of a very hard material, and the 
surface on which it rolls to be relatively soft. Due to its weight, the cylinder 
compresses the surface underneath it, Fig. 8–25b. As the cylinder rolls, the 
surface material in front of the cylinder retards the motion since it is being 
deformed, whereas the material in the rear is restored from the deformed 
state and therefore tends to push the cylinder forward. The normal 
pressures acting on the cylinder in this manner are represented in  
Fig. 8–25b by their resultant forces Nd and Nr. The magnitude of the force 
of deformation, Nd, and its horizontal component is always greater than 
that of restoration, Nr, and consequently a horizontal driving force P must 
be applied to the cylinder to maintain the motion. Fig. 8–25b.*

Rolling resistance is caused primarily by this effect, although it is also, 
to a lesser degree, the result of surface adhesion and relative micro-
sliding between the surfaces of contact. Because the actual force P 
needed to overcome these effects is difficult to determine, a simplified 
method will be developed here to explain one way engineers have 
analyzed this phenomenon. To do this, we will consider the resultant of 
the entire normal pressure, N = Nd + Nr , acting on the cylinder,  
Fig. 8–25c. As shown in Fig. 8–25d, this force acts at an angle u with the 
vertical. To keep the cylinder in equilibrium, i.e., rolling at a constant 
rate, it is necessary that N be concurrent with the driving force P and the 
weight W. Summing moments about point A gives Wa = P (r cos u). 
Since  the deformations are generally very small in relation to the 
cylinder’s radius, cos u � 1; hence,

Wa � Pr

or

	 P �
Wa

r
	 (8–11)

The distance a is termed the coefficient of rolling resistance, which has 
the dimension of length. For instance, a � 0.5 mm for a wheel rolling on 
a rail, both of which are made of mild steel. For hardened steel ball 

*Actually, the deformation force Nd causes energy to be stored in the material as its 
magnitude is increased, whereas the restoration force Nr, as its magnitude is decreased, allows 
some of this energy to be released. The remaining energy is lost since it is used to heat up 
the surface, and if the cylinder’s weight is very large, it accounts for permanent deformation 
of the surface. Work must be done by the horizontal force P to make up for this loss.

(a)

r

W

O

N

Rigid surface of contact

Nd

(b)

W

Soft surface of contact

P

Nr

N
Nd

Nr

(c)

(d)

r

W

P

A

a
u

N

Fig. 8–25
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bearings on steel, a � 0.1 mm. Experimentally, though, this factor is 
difficult to measure, since it depends on such parameters as the rate of 
rotation of the cylinder, the elastic properties of the contacting surfaces, 
and the surface finish. For this reason, little reliance is placed on the data 
for determining a. The analysis presented here does, however, indicate 
why a heavy load (W) offers greater resistance to motion (P) than a light 
load under the same conditions. Furthermore, since Wa>r is generally 
very small compared to mkW , the force needed to roll a cylinder over the 
surface will be much less than that needed to slide it across the surface. It 
is for this reason that a roller or ball bearings are often used to minimize 
the frictional resistance between moving parts.

example   8.11

A 10-kg steel wheel shown in Fig. 8–26a has a radius of 100 mm and 
rests on an inclined plane made of soft wood. If u is increased so that 
the wheel begins to roll down the incline with constant velocity when 
u = 1.2�, determine the coefficient of rolling resistance.

(a)

100 mm

u

(b)

1.2�

98.1 N

98.1 cos 1.2� N

98.1 sin 1.2� N

100 mm

1.2�

O

N

A a

Fig. 8–26
SOLUTION
As shown on the free-body diagram, Fig. 8–26b, when the wheel has 
impending motion, the normal reaction N acts at point A defined by the 
dimension a. Resolving the weight into components parallel and 
perpendicular to the incline, and summing moments about point A, yields

a+ �MA = 0;

	 -(98.1 cos 1.2� N)(a) + (98.1 sin 1.2� N)(100 cos 1.2� mm) = 0

Solving, we obtain

	 a = 2.09 mm 	 Ans.

Rolling resistance of railroad wheels on the 
rails is small since steel is very stiff. By 
comparison, the rolling resistance of the 
wheels of a tractor in a wet field is very large. 
(© Russell C. Hibbeler)
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8–110.  The double-collar bearing is subjected to an axial 
force P = 4 kN. Assuming that collar A supports 0.75P and 
collar B supports 0.25P, both with a uniform distribution of 
pressure, determine the maximum frictional moment M that 
may be resisted by the bearing. Take ms = 0.2 for both collars.

A

B

30 mm

10 mm

20 mm

P

M

Prob. 8–110

8–111.  The double-collar bearing is subjected to an axial 
force P = 16 kN. Assuming that collar A supports 0.75P 
and collar B supports 0.25P, both with a uniform distribution 
of pressure, determine the smallest torque M that must be 
applied to overcome friction. Take ms = 0.2 for both collars.

P 

30 mm

50 mm

A

B

M

75 mm

100 mm

Prob. 8–111

8–107.  The collar bearing uniformly supports an axial 
force of P = 5 kN. If the coefficient of static friction is 
ms = 0.3, determine the smallest torque M required to 
overcome friction.

*8–108.  The collar bearing uniformly supports an axial 
force of P = 8 kN. If a torque of M = 200 N # m is applied to 
the shaft and causes it to rotate at constant velocity, determine 
the coefficient of kinetic friction at the surface of contact.

200 mm

150 mm

P

M

Probs. 8–107/108

8–109.  The floor-polishing machine rotates at a constant 
angular velocity. If it has a weight of 80 lb, determine the 
couple forces F the operator must apply to the handles to 
hold the machine stationary. The coefficient of kinetic 
friction between the floor and brush is mk = 0.3. Assume 
the brush exerts a uniform pressure on the floor.

2 ft

1.5 ft

Prob. 8–109

Problems
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8–114.  The 4-in.-diameter shaft is held in the hole such 
that the normal pressure acting around the shaft varies 
linearly with its depth as shown. Determine the frictional 
torque that must be overcome to rotate the shaft. Take 
ms = 0.2.

M

6 in.

60 lb/ in2

Prob. 8–114

8–115.  The plate clutch consists of a flat plate A that slides 
over the rotating shaft S. The shaft is fixed to the driving 
plate gear B. If the gear C, which is in mesh with B, is 
subjected to a torque of M = 0.8 N # m, determine the 
smallest force P, that must be applied via the control arm, to 
stop the rotation. The coefficient of static friction between 
the plates A and D is ms = 0.4. Assume the bearing pressure 
between A and D to be uniform.

E

200 mm

F

A

D

P

100 mm

125 mm

150 mm

30 mm

S

B

M � 0.8 N�m

C

150 mm

Prob. 8–115

*8–112.  The pivot bearing is subjected to a pressure 
distribution at its surface of contact which varies as shown. 
If the coefficient of static friction is m, determine the 
torque M required to overcome friction if the shaft supports 
an axial force P.

P

M

2Rp � p0
rcos

r

R

p0
p 

Prob. 8–112

8–113.  The conical bearing is subjected to a constant 
pressure distribution at its surface of contact. If the 
coefficient of static friction is ms, determine the torque M 
required to overcome friction if the shaft supports an axial 
force P.

P

M

R

u

Prob. 8–113
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8–119.  A disk having an outer diameter of 120 mm fits 
loosely over a fixed shaft having a diameter of 30 mm. If the 
coefficient of static friction between the disk and the shaft is 
ms = 0.15 and the disk has a mass of 50 kg, determine the 
smallest vertical force F acting on the rim which must be 
applied to the disk to cause it to slip over the shaft.

Prob. 8–119

*8–120.  The 4-lb pulley has a diameter of 1 ft and the axle 
has a diameter of 1 in. If the coefficient of kinetic friction 
between the axle and the pulley is mk = 0.20, determine the 
vertical force P on the rope required to lift the 20-lb block 
at constant velocity.

8–121.  Solve Prob. 8–120 if the force P is applied 
horizontally to the left.

6 in.

P

Probs. 8–120/121

*8–116.  The collar fits loosely around a fixed shaft that has 
a radius of 2 in. If the coefficient of kinetic friction between 
the shaft and the collar is mk = 0.3, determine the force P 
on the horizontal segment of the belt so that the collar 
rotates counterclockwise with a constant angular velocity. 
Assume that the belt does not slip on the collar; rather, the 
collar slips on the shaft. Neglect the weight and thickness of 
the belt and collar. The radius, measured from the center of 
the collar to the mean thickness of the belt, is 2.25 in.

8–117.  The collar fits loosely around a fixed shaft that has 
a radius of 2 in. If the coefficient of kinetic friction between 
the shaft and the collar is mk = 0.3, determine the force P 
on the horizontal segment of the belt so that the collar 
rotates clockwise with a constant angular velocity. Assume 
that the belt does not slip on the collar; rather, the collar 
slips on the shaft. Neglect the weight and thickness of the 
belt and collar. The radius, measured from the center of the 
collar to the mean thickness of the belt, is 2.25 in.

20 lb

P

2 in.

2.25 in.

Probs. 8–116/117
8–118.  The pivot bearing is subjected to a parabolic 
pressure distribution at its surface of contact. If the 
coefficient of static friction is mk, determine the torque M 
required to overcome friction and turn the shaft if it 
supports an axial force P.

P

p0
p � p0 (1�     ) r2––R2

R

r

M

Prob. 8–118



8

8–125.  The 5-kg skateboard rolls down the 5° slope at 
constant speed. If the coefficient of kinetic friction between 
the 12.5-mm-diameter axles and the wheels is mk = 0.3, 
determine the radius of the wheels. Neglect rolling 
resistance of the wheels on the surface. The center of mass 
for the skateboard is at G.

250 mm

75 mm

300 mm

G

5�

Prob. 8–125

8–126.  The bell crank fits loosely into a 0.5-in-diameter pin. 
Determine the required force P which is just sufficient to 
rotate the bell crank clockwise. The coefficient of static 
friction between the pin and the bell crank is ms = 0.3.

P

10 in.

12 in.50 lb

45�

Prob. 8–126

8–127.  The bell crank fits loosely into a 0.5-in-diameter 
pin. If P = 41 lb, the bell crank is then on the verge of 
rotating counterclockwise. Determine the coefficient of 
static friction between the pin and the bell crank.

P

10 in.

12 in.50 lb

45�

Prob. 8–127

8–122.  Determine the tension T in the belt needed to 
overcome the tension of 200 lb created on the other side. 
Also, what are the normal and frictional components of 
force developed on the collar bushing? The coefficient of 
static friction is ms = 0.21.

8–123.  If a tension force T = 215 lb is required to pull the 
200-lb force around the collar bushing, determine the 
coefficient of static friction at the contacting surface. The 
belt does not slip on the collar.

200 lb

1.125 in.

2 in.

T

Probs. 8–122/123

*8–124.  The uniform disk fits loosely over a fixed shaft 
having a diameter of 40 mm. If the coefficient of static 
friction between the disk and the shaft is ms = 0.15, 
determine the smallest vertical force P, acting on the rim, 
which must be applied to the disk to cause it to slip on the 
shaft. The disk has a mass of 20 kg.

150 mm

40 mm

P

Prob. 8–124
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8–131.  The cylinder is subjected to a load that has a weight W. 
If the coefficients of rolling resistance for the cylinder’s top and 
bottom surfaces are aA  and aB, respectively, show that a 
horizontal force having a magnitude of P = [W (aA + aB )]>2r 
is required to move the load and thereby roll the cylinder 
forward. Neglect the weight of the cylinder.

W

P

r

A

B

Prob. 8–131

*8–132.  The 1.4-Mg machine is to be moved over a level 
surface using a series of rollers for which the coefficient of 
rolling resistance is 0.5 mm at the ground and 0.2 mm at the 
bottom surface of the machine. Determine the appropriate 
diameter of the rollers so that the machine can be pushed 
forward with a horizontal force of P = 250 N. Hint: Use the 
result of Prob. 8–131.

P

Prob. 8–132

*8–128.  The vehicle has a weight of 2600 lb and center of 
gravity at G. Determine the horizontal force P that must be 
applied to overcome the rolling resistance of the wheels. 
The coefficient of rolling resistance is 0.5 in. The tires have a 
diameter of 2.75 ft.

G

5 ft

P

2 ft

2.5 ft

Prob. 8–128

8–129.  The tractor has a weight of 16 000 lb and the 
coefficient of rolling resistance is a = 2 in. Determine the 
force P needed to overcome rolling resistance at all four 
wheels and push it forward.

3 ft
6 ft

2 ft

2 ft

GP

Prob. 8–129

8–130.  The handcart has wheels with a diameter of 6 in. If 
a crate having a weight of 1500 lb is placed on the cart, 
determine the force P that must be applied to the handle to 
overcome the rolling resistance. The coefficient of rolling 
resistance is 0.04 in. Neglect the weight of the cart.

P
5

4
3

Prob. 8–130
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Chapter Review

Dry Friction

Frictional forces exist between two rough surfaces of 
contact. These forces act on a body so as to oppose its 
motion or tendency of motion.

A static frictional force approaches a maximum value 
of Fs = msN, where ms is the coefficient of static friction. 
In this case, motion between the contacting surfaces is 
impending.

If slipping occurs, then the friction force remains 
essentially constant and equal to Fk = mkN. Here mk is 
the coefficient of kinetic friction.

The solution of a problem involving friction requires 
first drawing the free-body diagram of the body. If the 
unknowns cannot be determined strictly from the 
equations of equilibrium, and the possibility of 
slipping occurs, then the friction equation should be 
applied at the appropriate points of contact in order to 
complete the solution.

It may also be possible for slender objects, like crates, 
to tip over, and this situation should also be 
investigated.

P

W

Rough surface

        

W

N

F

P

W

N

N

Fs � ms N

Fk � mk N

Motion

motion

Impending

P

P

W

P

W

N
F

Impending slipping
F � msN              

P

W

N

F

Tipping
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Wedges

Wedges are inclined planes used to 
increase the application of a force. The 
two force equilibrium equations are 
used to relate the forces acting on the 
wedge.

An applied force P must push on the 
wedge to move it to the right.

If the coefficients of friction between the 
surfaces are large enough, then P can be 
removed, and the wedge will be self-
locking and remain in place.

�Fx = 0

�Fy = 0

Impending
 motion

P

W

u

F3

N3

W

F2

N2

P

F2

N2

F1 N1

u

Screws

Square-threaded screws are used to 
move heavy loads. They represent an 
inclined plane, wrapped around a 
cylinder.

The moment needed to turn a screw 
depends upon the coefficient of friction 
and the screw’s lead angle u.

If the coefficient of friction between the 
surfaces is large enough, then the screw 
will support the load without tending to 
turn, i.e., it will be self-locking.

M = rW  tan(u + fs)

Upward Impending Screw Motion

M � = rW  tan(u - fs)

Downward Impending Screw 
Motion

u 7 fs

M � = rW  tan(fs - u)

Downward Screw Motion

fs 7 u

W

r

M

Flat Belts

The force needed to move a flat belt 
over a rough curved surface depends 
only on the angle of belt contact, b, and 
the coefficient of friction.

T2 = T1e
mb

T2 7 T1

Motion or impending
motion of belt relative
to surface

� r

T2

T1

u
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Collar Bearings and Disks

The frictional analysis of a collar 
bearing or disk requires looking at a 
differential element of the contact area. 
The normal force acting on this element 
is determined from force equilibrium 
along the shaft, and the moment needed 
to turn the shaft at a constant rate is 
determined from moment equilibrium 
about the shaft’s axis.

If the pressure on the surface of a collar 
bearing is uniform, then integration 
gives the result shown.

M =
2

3
 msPa

R2
3 - R1

3

R2
2 - R1

2 b

z

p

M
R1

R2

P

Journal Bearings

When a moment is applied to a shaft in 
a nonlubricated or partially lubricated 
journal bearing, the shaft will tend to 
roll up the side of the bearing until 
slipping occurs. This defines the radius 
of a friction circle, and from it the 
moment needed to turn the shaft can be 
determined.

M = Rr sin fk	
A

zRotation

	

M

P

r
fk

NF

A

Rolling Resistance

The resistance of a wheel to rolling over 
a surface is caused by localized 
deformation of the two materials in 
contact. This causes the resultant normal 
force acting on the rolling body to be 
inclined so that it provides a component 
that acts in the opposite direction of the 
applied force P causing the motion. This 
effect is characterized using the 
coefficient of rolling resistance, a, which 
is determined from experiment.

P �
Wa

r

r

W

P

a

N
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R8–3.  A 35-kg disk rests on an inclined surface for which 
ms = 0.2. Determine the maximum vertical force P that 
may be applied to bar AB without causing the disk to slip 
at C. Neglect the mass of the bar.

600 mm

P

B

300 mm200 mm

200 mm
A

C

30�

Prob. R8–3

R8–4.  The cam is subjected to a couple moment of 5 N # m. 
Determine the minimum force P that should be applied to 
the follower in order to hold the cam in the position shown. 
The coefficient of static friction between the cam and the 
follower is m = 0.4. The guide at A is smooth.

P

A B

O

60 mm

10 mm

5 N�m

Prob. R8–4

All problem solutions must include FBDs.

R8–1.  The uniform 20-lb ladder rests on the rough floor for 
which the coefficient of static friction is ms = 0.4 and against 
the smooth wall at B. Determine the horizontal force P the 
man must exert on the ladder in order to cause it to move.

A

B

8 ft

5 ft

5 ft

6 ft

P

Prob. R8–1
R8–2.  The uniform 60-kg crate C rests uniformly on a 
10-kg dolly D. If the front casters of the dolly at A are 
locked to prevent rolling while the casters at B are free to 
roll, determine the maximum force P that may be applied 
without causing motion of the crate. The coefficient of static 
friction between the casters and the floor is mf = 0.35 and 
between the dolly and the crate, md = 0.5.

A

D

P

0.25 m

0.8 m

1.5 m

1.5 m

0.6 m

0.25 m

C

B

Prob. R8–2

Review Problems
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R8–7.  The uniform 50-lb beam is supported by the rope 
that is attached to the end of the beam, wraps over the 
rough peg, and is then connected to the 100-lb block. If 
the coefficient of static friction between the beam and the 
block, and between the rope and the peg, is ms = 0.4, 
determine the maximum distance that the block can be 
placed from A and still remain in equilibrium. Assume the 
block will not tip.

10 ft

1 ft

d

A

Prob. R8–7

R8–8.  The hand cart has wheels with a diameter of 80 mm. 
If a crate having a mass of 500 kg is placed on the cart so 
that each wheel carries an equal load, determine the 
horizontal force P that must be applied to the handle to 
overcome the rolling resistance. The coefficient of rolling 
resistance is 2 mm. Neglect the mass of the cart.

P

Prob. R8–8

R8–5.  The three stone blocks have weights of W A = 600 lb, 
W B = 150 lb, and W C = 500 lb. Determine the smallest 
horizontal force P that must be applied to block C in order 
to move this block. The coefficient of static friction between 
the blocks is ms = 0.3, and between the floor and each 
block  ms

= = 0.5.

A B C
45�

P

Prob. R8–5

R8–6.  The jacking mechanism consists of a link that has a 
square-threaded screw with a mean diameter of 0.5 in. and a 
lead of 0.20 in., and the coefficient of static friction is 
ms = 0.4. Determine the torque M that should be applied to 
the screw to start lifting the 6000-lb load acting at the end of 
member ABC.

D

B

C

A

7.5 in.

10 in.

15 in.20 in. 10 in.

6000 lb

M

Prob. R8–6
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When a tank of any shape is designed, it is important to be able to 
determine its center of gravity, calculate its volume and surface area, 

and determine the forces of the liquids they contain. These topics  
will be covered in this chapter.

Chapter 9

(© Heather Reeder/Shutterstock)



9.1  �Center of Gravity, Center of Mass, 
and the Centroid of a Body

Knowing the resultant or total weight of a body and its location is 
important when considering the effect this force produces on the body. 
The point of location is called the center of gravity, and in this section we 
will show how to find it for an irregularly shaped body. We will then 
extend this method to show how to find the body’s center of mass, and its 
geometric center or centroid.

Center of Gravity.  A body is composed of an infinite number of 
particles of differential size, and so if the body is located within a 
gravitational field, then each of these particles will have a weight dW. 
These weights will form a parallel force system, and the resultant of this 
system is the total weight of the body, which passes through a single point 
called the center of gravity, G*.

CHAPTER OBJECTIVES

n	 To discuss the concept of the center of gravity, center of mass, 
and the centroid.

n	 To show how to determine the location of the center of gravity 
and centroid for a body of arbitrary shape and one composed of 
composite parts.

n	 To use the theorems of Pappus and Guldinus for finding the 
surface area and volume for a body having axial symmetry.

n	 To present a method for finding the resultant of a general 
distributed loading and to show how it applies to finding the 
resultant force of a pressure loading caused by a fluid.

Center of Gravity  
and Centroid

*In a strict sense this is true as long as the gravity field is assumed to have the same 
magnitude and direction everywhere. Although the actual force of gravity is directed toward 
the center of the earth, and this force varies with its distance from the center, for most 
engineering applications we can assume the gravity field has the same magnitude and 
direction everywhere.
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y

x

x
~x

dW

W

G

(a)

G

dW
W

(c)

~z

z

y
~x

x~y

y

z

x

y

~y

W

x

~x
x

y

dW

G

(b)

To show how to determine the location of the center of gravity, consider 
the rod in Fig. 9–1a, where the segment having the weight dW is located 
at the arbitrary position �x . Using the methods outlined in Sec. 4.8, the total 
weight of the rod is the sum of the weights of all of its particles, that is

+ TFR = �Fz; 	 W = LdW

The location of the center of gravity, measured from the y axis, is 
determined by equating the moment of W about the y axis, Fig. 9–1b, to 
the sum of the moments of the weights of all its particles about this same 
axis. Therefore,

(MR)y = �My;	 xW = L x�dW

 x =
L x� dW

L  dW
 

In a similar manner, if the body represents a plate, Fig. 9–1b, then a 
moment balance about the x and y axes would be required to determine 
the location (x, y) of point G. Finally we can generalize this idea to a 
three-dimensional body, Fig. 9–1c, and perform a moment balance about 
all three axes to locate G for any rotated position of the axes. This results 
in the following equations.

x =
L x� dW

L  dW
  y =

L y� dW

L  dW
  z =

L z� dW

L  dW
� (9–1)

where

x, y, z are the coordinates of the center of gravity G.
�x, �y, �z  are the coordinates of an arbitrary particle in the body.

Fig. 9–1
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Center of Mass of a Body.  In order to study the dynamic 
response or accelerated motion of a body, it becomes important to locate 
the body’s center of mass Cm, Fig. 9–2. This location can be determined 
by substituting dW = g dm into Eqs. 9–1. Provided g is constant, it cancels 
out, and so

x =
L x� dm

L  dm
  y =

L y� dm

L  dm
  z =

L z� dm

L  dm
� (9–2)

Centroid of a Volume.  If the body in Fig. 9–3 is made from a 
homogeneous material, then its density r (rho) will be constant. Therefore, 
a differential element of volume dV has a mass dm = r dV . Substituting 
this into Eqs. 9–2 and canceling out r, we obtain formulas that locate the 
centroid C or geometric center of the body; namely

x =
LV

x� dV

LV
dV
  y =

LV
y� dV

LV
dV
  z =

LV
z� dV

LV
dV

� (9–3)

These equations represent a balance of the moments of the volume of 
the body. Therefore, if the volume possesses two planes of symmetry, 
then its centroid must lie along the line of intersection of these two 
planes. For example, the cone in Fig. 9–4 has a centroid that lies on the 
y  axis so that x = z = 0. The location y can be found using a single 
integration by choosing a differential element represented by a thin disk 
having a thickness dy and radius r = z. Its volume is  
dV = pr2 dy = pz2 dy and its centroid is at x� = 0, y� = y, z� = 0.

dm Cm

~z

z

y
~x

x~y

y

z

x

Fig. 9–2

C

dV

x

y

z

x

~y

y
~x

~zz

Fig. 9–3

z

y

x

y

y � y

dy

r � z

(0, y, 0) C

~

Fig. 9–4
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y y

xx

y

dx

dy

x

x � x

y � y

x �

(x, y)

(x, y)

y � y
2

x
2

(b) (c)

y � f(x)

y

x
x

y

(a)

y � f(x)
y � f(x)

C

~

~

~

~

Fig. 9–5

Centroid of an Area.  If an area lies in the x–y plane and is 
bounded by the curve y = f (x), as shown in Fig. 9–5a, then its centroid 
will be in this plane and can be determined from integrals similar to  
Eqs. 9–3, namely,

     x =
LA

x� dA

LA
dA
 y =

LA
y� dA

LA
dA

	 	 (9–4)

These integrals can be evaluated by performing a single integration if we use 
a rectangular strip for the differential area element. For example, if a vertical 
strip is used, Fig. 9–5b, the area of the element is dA = y dx, and its centroid 
is located at x� = x and y� = y >2. If we consider a horizontal strip, Fig. 9–5c, 
then dA = x dy, and its centroid is located at x� = x >2 and y� = y.

Centroid of a Line.  If a line segment (or rod) lies within the x–y 
plane and it can be described by a thin curve y = f (x), Fig. 9–6a, then its 
centroid is determined from

	 x =
LL

x� dL

LL
dL
 y =

LL
y� dL

LL
dL

	 (9–5)

Integration must be used to determine 
the location of the center of gravity of 
this lamp post due to the curvature of 
the member. (© Russell C. Hibbeler)
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Here, the length of the differential element is given by the Pythagorean 
theorem, dL = 2(dx)2 + (dy)2, which can also be written in the form

 dL = B a dx

dx
b

2

dx2 + a dy

dx
b

2

dx2

dl  = ¢B1 + a dy

dx
b

2

 ≤ dx

or

 dL = B a dx

dy
b

2

dy2 + a dy

dy
b

2

dy2

dl  = ¢B a dx

dy
b

2

+ 1 ≤ dy

Either one of these expressions can be used; however, for application, 
the one that will result in a simpler integration should be selected. For 
example, consider the rod in Fig. 9–6b, defined by y = 2x2. The length 
of the element is  dL = 21 + (dy>dx)2 dx, and since dy>dx = 4x,  
then  dL = 21 + (4x)2 dx. The centroid for this element is located at 
x� = x and y� = y.

C

dL

dL dy
dx

x

y

y

~

~

x

O

y

x

(a)

y

x

2 m

1 m

x � x

y � y dx

dy

y � 2x2

~

~

(b)

Fig. 9–6

Important Points

	 •	 The centroid represents the geometric center of a body. This point 
coincides with the center of mass or the center of gravity only if 
the material composing the body is uniform or homogeneous.

	 •	 Formulas used to locate the center of gravity or the centroid 
simply represent a balance between the sum of moments of all 
the parts of the system and the moment of the “resultant” for the 
system.

	 •	 In some cases the centroid is located at a point that is not on  
the object, as in the case of a ring, where the centroid is at its 
center. Also, this point will lie on any axis of symmetry for the  
body, Fig. 9–7.

C

y

x

Fig. 9–7
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Procedure for Analysis

The center of gravity or centroid of an object or shape can be 
determined by single integrations using the following procedure.

Differential Element.
	 •	 Select an appropriate coordinate system, specify the coordinate 

axes, and then choose a differential element for integration.

	 •	 For lines the element is represented by a differential line segment 
of length dL.

	 •	 For areas the element is generally a rectangle of area dA, having a 
finite length and differential width.

	 •	 For volumes the element can be a circular disk of volume dV, 
having a finite radius and differential thickness.

	 •	 Locate the element so that it touches the arbitrary point (x, y, z) 
on the curve that defines the boundary of the shape.

Size and Moment Arms.
	 •	 Express the length dL, area dA, or volume dV of the element in 

terms of the coordinates describing the curve.

	 •	 Express the moment arms x�, y�, z�  for the centroid or center of 
gravity of the element in terms of the coordinates describing the 
curve.

Integrations.
	 •	 Substitute the formulations for x�, y�, z�  and dL, dA, or dV into the 

appropriate equations (Eqs. 9–1 through 9–5).

	 •	 Express the function in the integrand in terms of the same variable 
as the differential thickness of the element.

	 •	 The limits of the integral are defined from the two extreme 
locations of the element’s differential thickness, so that when the 
elements are “summed” or the integration performed, the entire 
region is covered.
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Locate the centroid of the rod bent into the shape of a parabolic arc as 
shown in Fig. 9–8.

Solution
Differential Element.  The differential element is shown in Fig. 9–8. 
It is located on the curve at the arbitrary point (x, y).

Area and Moment Arms.  The differential element of length dL 
can be expressed in terms of the differentials dx and dy using the 
Pythagorean theorem.

 dL = 2(dx)2 + (dy)2 = B adx

dy
b

2

+ 1 dy

Since x = y2,   then dx >dy = 2y.. Therefore, expressing dL in terms  
of y and dy, we have

dL = 2(2y)2 + 1 dy

As shown in Fig. 9–8, the centroid of the element is located at x� = x, 
y� = y.

Integrations.  Applying Eq. 9–5 and using the integration formula 
to evaluate the integrals, we get

 x =
LL

x� dL

LL
dL

=
L

1 m

0
x24y2 + 1 dy

L
1 m

0
24y2 + 1 dy

=
L

1 m

0
y224y2 + 1 dy

L
1 m

0
24y2 + 1 dy

 =
0.6063

1.479
= 0.410 m 	 Ans.

 y =
LL

y� dL

LL
dL

=
L

1 m

0
y24y2 + 1 dy

L
1 m

0
24y2 + 1 dy

=
0.8484

1.479
= 0.574 m 	 Ans.

NOTE: These results for C seem reasonable when they are plotted on 
Fig. 9–8.

1 m

~

C(x, y)

y

dL

1 m

x

y � y

x � x

O

x � y2

(x, y)~ ~

~

Fig. 9–8 

Example   9.1
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Locate the centroid of the circular wire segment shown in Fig. 9–9.

y

x

d

~

~

C(x, y )

(R, u)

O

R

u

u

Fig. 9–9 

Solution
Polar coordinates will be used to solve this problem since the arc is 
circular.

Differential Element.  A differential circular arc is selected as 
shown in the figure. This element lies on the curve at (R, u).

Length and Moment Arm.  The length of the differential element 
is dL = R du,  and its centroid is located at x� = R  cos  u and 
y� = R  sin u.

Integrations.  Applying Eqs. 9–5 and integrating with respect to u, 
we obtain

 x =
LL

x� dL

LL
dL

=
L

p>2

0
(R cos u)R du

L
p>2

0
R du

=

R2L
p>2

0
 cos u du

R L
p>2

0
du

=
2R
p

	 Ans.

 y =
LL

y� dL

LL
dL

=
L

p>2

0
(R sin u)R du

L
p>2

0
R du

=

R2L
p>2

0
 sin u du

R L
p>2

0
du

=
2R
p

	 Ans.

NOTE: As expected, the two coordinates are numerically the same due 
to the symmetry of the wire.

Example   9.2
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Determine the distance y measured from the x axis to the centroid of 
the area of the triangle shown in Fig. 9–10.

y

x

y

h

dy

y �     (b � x)

b

x

(x, y)

(x, y)
~ ~

h
b

Fig. 9–10 

Solution
Differential Element.  Consider a rectangular element having a 
thickness dy, and located in an arbitrary position so that it intersects 
the boundary at (x, y), Fig. 9–10.

Area and Moment Arms.  The area of the element is dA = x dy 

=  
b

h
 (h - y) dy, and its centroid is located a distance y� = y from the 

x axis.

Integration.  Applying the second of Eqs. 9–4 and integrating with 
respect to y yields

 y =
LA

y� dA

LA
dA

=
L

h

0
y c  

b

h
 (h - y) dy d

L
h

0
 
b

h
 (h - y) dy

=

1
6 bh2

1
2 bh

	 =
h

3
	 Ans.

NOTE: This result is valid for any shape of triangle. It states that the 
centroid is located at one-third the height, measured from the base of 
the triangle.

Example   9.3
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Locate the centroid for the area of a quarter circle shown in Fig. 9–11.

y

x

du

R du

~

y �     R sin u~

R
R, u

u

R
3

2
3

2
3

x �     R cos u

Fig. 9–11 

Solution
Differential Element.  Polar coordinates will be used, since the 
boundary is circular. We choose the element in the shape of a triangle, 
Fig. 9–11. (Actually the shape is a circular sector; however, neglecting 
higher-order differentials, the element becomes triangular.) The 
element intersects the curve at point (R, u).

Area and Moment Arms.  The area of the element is 

dA =
1
2(R)(R du) =

R2

2
 du 

and using the results of Example 9.3, the centroid of the (triangular) 
element is located at x� =

2
3 R cos u, y� =

2
3 R sin u.

Integrations.  Applying Eqs. 9–4 and integrating with respect to u, 
we obtain

Example	  9.4

 x =
LA

x� dA

LA
dA

=
L

p>2

0
a 2

3
 R cos ub  

R2

2
 du

L
p>2

0
 
R2

2
 du

 =

a 2

3
 RbL

p>2

0
 cos u du

L
p>2

0
du

=
4R

3p
	 Ans.

 y =
LA

y� dA

LA
dA

=
L

p>2

0
a 2

3
 R sin ub  

R2

2
 du

L
p>2

0
 
R2

2
 du

 =

a 2

3
 RbL

p>2

0
 sin u du

L
p>2

0
du

=
4R

3p
	 Ans.
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example    9.5

Locate the centroid of the area shown in Fig. 9–12a.

Solution I

Differential Element.  A differential element of thickness dx is 
shown in Fig. 9–12a. The element intersects the curve at the arbitrary 
point (x, y), and so it has a height y.
Area and Moment Arms.  The area of the element is dA = y dx,, 
and its centroid is located at x� = x, y� = y >2.
Integrations.  Applying Eqs. 9–4 and integrating with respect to x yields

1 m
dy

1 m

y

x

y

(b)

(x, y)~~

(x, y)

x

y � x2

(1 � x)

 x =
LA

x� dA

LA
dA

=
L

1 m

0
xy dx

L
1 m

0
y dx

=
L

1 m

0
x3 dx

L
1 m

0
x2 dx

=
0.250

0.333
= 0.75 m             Ans.

 y =
LA

y� dA

LA
dA

=
L

1 m

0
(y >2)y dx

L
1 m

0
y dx

 = 
L

1 m

0
(x2>2)x2 dx

L
1 m

0
x2 dx

=
0.100

0.333
= 0.3 m Ans.

Solution II
Differential Element.  The differential element of thickness dy is 
shown in Fig. 9–12b. The element intersects the curve at the arbitrary 
point (x, y), and so it has a length (1 - x).

Area and Moment Arms.  The area of the element is  dA = (1 - x) dy, 
and its centroid is located at

x� = x + a 1 - x

2
b =

1 + x

2
, y� = y

Integrations.  Applying Eqs. 9–4 and integrating with respect to y, 
we obtain

 x =
LA

x� dA

LA
dA

=
L

1 m

0
[(1 + x)>2](1 - x) dy

L
1 m

0
(1 - x) dy

= 

1

2
 L

1 m

0
(1 - y) dy

L
1 m

0
(1 - 1y) dy

=
0.250

0.333
= 0.75 m� Ans.

 y =
LA

y� dA

LA
dA

=
L

1 m

0
y(1 - x) dy

L
1 m

0
(1 - x) dy

=
L

1 m

0
(y - y3>2) dy

L
1 m

0
(1 - 1y) dy

=
0.100

0.333
= 0.3 m	 Ans.

NOTE: Plot these results and notice that they seem reasonable. Also, 
for this problem, elements of thickness dx offer a simpler solution.

Fig. 9–12

y � x2

1 m

dx
1 m

y

x

y

(a)

(x, y)~~

(x, y)

x
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example    9.6

Locate the centroid of the semi-elliptical area shown in Fig. 9–13a.

 y =
LA

y� dA

LA
dA

=
L

1 ft

0
y(2x dy)

L
1 ft

0
2x dy

 =
L

1 ft

0
4y31 -  y2 dy

L
1 ft

0
431 -  y2 dy

=
4>3
p

 ft =  0.424 ft   Ans.

1 ft

2 ft

y

2 ft

y

x

(a)

x � x

y �
y
2

2 ft2 ft

dx

y

y

x

(b)

(�x, y)

dy

xx y � y

 �     � 1x2
y2

4

 �     � 1x2
y2

4
~

~
~

Fig. 9–13 

Solution I
Differential Element.  The rectangular differential element parallel 
to the y axis shown shaded in Fig. 9–13a will be considered. This 
element has a thickness of dx and a height of y.

Area and Moment Arms.  Thus, the area is dA = y dx, and its 
centroid is located at x� = x and y� = y >2.

Integration.  Since the area is symmetrical about the y axis,

	 x = 0	 Ans.

Applying the second of Eqs. 9–4 with  y = B1 -
x2

4
, we have

 y =
LA

y� dA

LA
dA

=
L

2 ft

- 2 ft

y

2
 (y dx)

L
2 ft

- 2 ft
y dx

=

1

2 L
2 ft

- 2 ft
a1 -

x2

4
bdx

L
2 ft

- 2 ftB1 -
x2

4
 dx

=
4>3
p

 = 0.424 ft 	 Ans.

Solution II
Differential Element.  The shaded rectangular differential element 
of thickness dy and width 2x, parallel to the x axis, will be considered, 
Fig. 9–13b.

Area and Moment Arms.  The area is dA = 2x dy , and its centroid 
is at x� = 0 and y� = y.

Integration.  Applying the second of Eqs. 9–4, with x = 231 - y2, 
we have
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example    9.7

Locate the y centroid for the paraboloid of revolution, shown in  
Fig. 9–14.

100 mm

dy
y

z

z

x

~y � y
z2 � 100y

100 mm

~(0, y, 0)

r

(0, y, z)

Fig. 9–14 

Solution
Differential Element.  An element having the shape of a thin disk is 
chosen. This element has a thickness dy, it intersects the generating 
curve at the arbitrary point (0, y, z), and so its radius is r = z.

Volume and Moment Arm.  The volume of the element is  
dV = (pz2) dy, and its centroid is located at y� = y.

Integration.  Applying the second of Eqs. 9–3 and integrating with 
respect to y yields.

y =
LV

y� dV

LV
dV

=
L

100 mm

0
y(pz2) dy

L
100 mm

0
(pz2) dy

=

100pL
100 mm

0
y2 dy

100pL
100 mm

0
y dy

= 66.7 mm      Ans.
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example    9.8

Determine the location of the center of mass of the cylinder shown 
in Fig. 9–15 if its density varies directly with the distance from its base, 
i.e., r = 200z kg>m3.

y

dz

z

1 m

x

0.5 m

z

(0,0, z)~

Fig. 9–15 

Solution
For reasons of material symmetry,

	 x = y = 0 	 Ans.

Differential Element.  A disk element of radius 0.5 m and thickness 
dz is chosen for integration, Fig. 9–15, since the density of the entire 
element is constant for a given value of z. The element is located along 
the z axis at the arbitrary point (0, 0, z).

Volume and Moment Arm.  The volume of the element is  
dV =  p(0.5)2 dz, and its centroid is located at z� = z.

Integrations.  Using the third of Eqs. 9–2 with dm = r dV and 
integrating with respect to z, noting that r = 200z,  we have

	  z =
LV

z�r dV

LV
r dV

=
L

1 m

0
z(200z)3p(0.5)2 dz 4

L
1 m

0
(200z)p(0.5)2 dz

	

	               =
L

1 m

0
z2 dz

L
1 m

0
z dz

= 0.667 m 	�  Ans.



	 9.1  Center of Gravity, Center of Mass, and the Centroid of a Body	 479

9

P9–1.  In each case, use the element shown and specify 
�x, �y , and dA.

(a)

x

y

1 m

1 m

y2  � x

Preliminary Problem

(b)

x

y

1 m

1 m

y2  � x

(c)

x

y

1 m

1 m
y � x2

(d)

x

y

1 m

1 m

y � x2

Prob. P9–1
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F9–4.  Locate the center of mass x of the straight rod if its 
mass per unit length is given by m = m0(1 + x2>L2).

y

x

L

Prob. F9–4

F9–5.  Locate the centroid y of the homogeneous solid 
formed by revolving the shaded area about the y axis.

y

x

1 m

0.5 m

z
z2 �     y1

4

Prob. F9–5

F9–6.  Locate the centroid z  of the homogeneous solid 
formed by revolving the shaded area about the z axis.

x

z

z �      (12 � 8y)1––
3

2 ft

1.5 ft

2 ft

y

Prob. F9–6

FUNDAMENTAL PROBLEMS

F9–1.  Determine the centroid (x, y ) of the shaded area.

y

x

y � x3

1 m

1 m

Prob. F9–1

F9–2.  Determine the centroid (x, y ) of the shaded area.

y

x

1 m

1 m

y � x3

Prob. F9–2

F9–3.  Determine the centroid y of the shaded area.

y

x

2 m

1 m1 m

y � 2x2

Prob. F9–3
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9–1.  Locate the center of mass of the homogeneous rod 
bent into the shape of a circular arc.

y

x

30�

300 mm

30�

Prob. 9–1

9–2.  Determine the location (x, y) of the centroid of the wire.

y

x

y � x 

2

2 ft

4 ft

Prob. 9–2

9–3.  Locate the center of gravity x  of the homogeneous 
rod. If the rod has a weight per unit length of 100 N>m, 
determine the vertical reaction at A and the x and y 
components of reaction at the pin B.

*9–4.  Locate the center of gravity y  of the homogeneous rod.

A

B

x

1 m

1 m

y � x2

y

Probs. 9–3/4

9–5.  Determine the distance y  to the center of gravity of 
the homogeneous rod.

y

y � 2x3

x

2 m

1 m

Prob. 9–5

9–6.  Locate the centroid y of the area.
y

x
2 m

1 m

y � 1 �     x21–
4

Prob. 9–6

PROBLEMS
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9–7.  Locate the centroid x of the parabolic area.

b
x

y

h

y � ax2

Prob. 9–7

*9–8.  Locate the centroid of the shaded area.

y

x
L 

a

y � a cos
L
px

2
L 
2

Prob. 9–8

9–9.  Locate the centroid x of the shaded area.

9–10.  Locate the centroid y of the shaded area.

y

x
4 m

4 m

x2y � 1
4

Probs. 9–9/10

9–11.  Locate the centroid x of the area.

*9–12.  Locate the centroid y of the area.

b
x

y

h

y �     x2h—
b2

Probs. 9–11/12

9–13.  Locate the centroid x of the area.

9–14.  Locate the centroid y of the area.
y

x
8 m

4 m

y � 4 �       x2 1––
 16

Probs. 9–13/14

9–15.  Locate the centroid x of the shaded area. Solve the 
problem by evaluating the integrals using Simpson’s rule.

*9–16.  Locate the centroid y of the shaded area. Solve the 
problem by evaluating the integrals using Simpson’s rule.

y = 0.5ex2

y

x

1 m

Probs. 9–15/16
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9–17.  Locate the centroid y of the area.

y

y � x

x

8 in.

4 in.

2––
3

Prob. 9–17

9–18.  Locate the centroid x of the area.

9–19.  Locate the centroid y of the area.

y

x
a

y � h �      xn

h

h—
an

Probs. 9–18/19

*9–20.  Locate the centroid y of the shaded area.

y

x

a

y �      xn

h

h—
an

Prob. 9–20

9–21.  Locate the centroid x of the shaded area.

9–22.  Locate the centroid y of the shaded area.

y

x

16 ft

4 ft

4 ft

y � (4 � x  )2
1
2

Probs. 9–21/22

9–23.  Locate the centroid x of the shaded area.

*9–24.  Locate the centroid y of the shaded area.

h

a
x

y

y� �   x2�h
h
a2

Probs. 9–23/24

9–25.  The plate has a thickness of 0.25 ft and a specific 
weight of g = 180 lb>ft3. Determine the location of its 
center of gravity. Also, find the tension in each of the cords 
used to support it.

16 ft
16 ft

A

x

B

z

C

y

y    � x   � 4
1
2

1
2

Prob. 9–25
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9–26.  Locate the centroid x of the shaded area.

9–27.  Locate the centroid y of the shaded area.

y

x

4 ft

4 ft
x2y � 1

4

Probs. 9–26/27

*9–28.  Locate the centroid x of the shaded area.

9–29.  Locate the centroid y of the shaded area.

y

x

100 mm

100 mm

y �

y � x

1
100 x2

Probs. 9–28/29

9–30.  Locate the centroid x of the shaded area.

9–31.  Locate the centroid y of the shaded area.

y

x

h

a

y �     xh––a
y � (    )(x�b)

b

h
a�b

Probs. 9–30/31

*9–32.  Locate the centroid x of the area.

9–33.  Locate the centroid y of the area.

p

y

x
a

a

y � a sin  xa

Probs. 9–32/33

9–34.  The steel plate is 0.3 m thick and has a density of 
7850 kg>m3. Determine the location of its center of mass. 
Also find the reactions at the pin and roller support.

A

B

x

y

y � �x

y2 � 2x

2 m

2 m

2 m

Prob. 9–34

9–35.  Locate the centroid x of the shaded area.

*9–36.  Locate the centroid y of the shaded area.

y

x
a

y � h �      xn

h

h—
an

y � h �      x
h—a

Probs. 9–35/36
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9–37.  Locate the centroid x of the circular sector.

y

x
C

r

x

a

a

Prob. 9–37

9–38.  Determine the location r of the centroid C for the 
loop of the lemniscate, r2 = 2a2cos 2u, ( -45� … u … 45�).

O

C

_
r

r

r2 � 2a2 cos 2u

u

Prob. 9–38

9–39.  Locate the center of gravity of the volume. The 
material is homogeneous.

z

y

y2 � 2z
2 m

2 m

Prob. 9–39

*9–40.  Locate the centroid y of the paraboloid.

y

z2 � 4y

4 m

4 m

z

Prob. 9–40

9–41.  Locate the centroid z  of the frustum of the  
right-circular cone.

z

x y

h

r

R

Prob. 9–41
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9–42.  Determine the centroid y of the solid.

y

x

z

z �      (y � 1)
y
––
6

3 ft

1 ft

Prob. 9–42

9–43.  Locate the centroid of the quarter-cone.

y

z

x

h

a

Prob. 9–43

*9–44.  The hemisphere of radius r is made from a stack of 
very thin plates such that the density varies with height, 
r = kz, where k is a constant. Determine its mass and the 
distance z to the center of mass G.

z

y

z

G

x

_
r

Prob. 9–44

9–45.  Locate the centroid z of the volume.

z

y

y2 � 0.5z

1 m

2 m

x

Prob. 9–45

9–46.  Locate the centroid of the ellipsoid of revolution.

z

x

b

y

a

    �     � 1y2
—
b2

z2
—
a2

Prob. 9–46
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9–47.  Locate the center of gravity z of the solid.

16 in.

8 in.

x

y

z

z � 4y
2––
3

Prob. 9–47

*9–48.  Locate the center of gravity y of the volume. The 
material is homogeneous.

y

4 in.

10 in.

z

10 in.

1 in.

 z �        y21
100

Prob. 9–48

9–49.  Locate the centroid z of the spherical segment.

z

x

y

a

z

1—
2

C

a

z2 � a2 � y2

Prob. 9–49

9–50.  Determine the location z  of the centroid for the 
tetrahedron. Suggestion: Use a triangular “plate” element 
parallel to the x–y plane and of thickness dz.

y

z

x

a

b

c

Prob. 9–50
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A stress analysis of this angle requires that 
the centroid of its cross-sectional area be 
located. (© Russell C. Hibbeler)

9.2  Composite Bodies

A composite body consists of a series of connected “simpler” shaped 
bodies, which may be rectangular, triangular, semicircular, etc. Such a 
body can often be sectioned or divided into its composite parts and, 
provided the weight and location of the center of gravity of each of these 
parts are known, we can then eliminate the need for integration to 
determine the center of gravity for the entire body. The method for doing 
this follows the same procedure outlined in Sec. 9.1. Formulas analogous 
to Eqs. 9–1 result; however, rather than account for an infinite number of 
differential weights, we have instead a finite number of weights. Therefore,

	 x =
� x�W

�W
 y =

� y�W

�W
 z =

� z�W

�W
	 (9–6)

Here

x, y, z represent the coordinates of the center of gravity G of the 
composite body.

x�, y�, z� represent the coordinates of the center of gravity of each 
composite part of the body.

�W is the sum of the weights of all the composite parts of the 
body, or simply the total weight of the body.

When the body has a constant density or specific weight, the center of 
gravity coincides with the centroid of the body. The centroid for composite 
lines, areas, and volumes can be found using relations analogous to Eqs. 9–6; 
however, the W’s are replaced by L’s, A’s, and V’s, respectively. Centroids 
for common shapes of lines, areas, shells, and volumes that often make up a 
composite body are given in the table on the inside back cover.

G

In order to determine the force required 
to tip over this concrete barrier it is  
first necessary to determine the location 
of its center of gravity G. Due to symmetry, 
G will lie on the vertical axis of symmetry. 
(© Russell C. Hibbeler)
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Procedure for Analysis

The location of the center of gravity of a body or the centroid of a 
composite geometrical object represented by a line, area, or volume 
can be determined using the following procedure.

Composite Parts.
	 •	 Using a sketch, divide the body or object into a finite number of 

composite parts that have simpler shapes.

	 •	 If a composite body has a hole, or a geometric region having no 
material, then consider the composite body without the hole and 
consider the hole as an additional composite part having negative 
weight or size.

Moment Arms.
	 •	 Establish the coordinate axes on the sketch and determine the 

coordinates x�, y�, z�  of the center of gravity or centroid of each part.

Summations.

	 •	 Determine x, y, z by applying the center of gravity equations, 
Eqs. 9–6, or the analogous centroid equations.

	 •	 If an object is symmetrical about an axis, the centroid of the object 
lies on this axis.

If desired, the calculations can be arranged in tabular form, as 
indicated in the following three examples.

The center of gravity of this water tank can be 
determined by dividing it into composite parts 
and applying Eqs. 9–6. (© Russell C. Hibbeler)
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Locate the centroid of the wire shown in Fig. 9–16a.

Solution
Composite Parts.  The wire is divided into three segments as shown 
in Fig. 9–16b.

Moment Arms.  The location of the centroid for each segment is 
determined and indicated in the figure. In particular, the centroid of 
segment 1  is determined either by integration or by using the table 
on the inside back cover.

Summations.  For convenience, the calculations can be tabulated as 
follows:

Example   9.9

(b)

� 38.2 mm
20 mm

10 mm

60 mm

20 mm

(2) (60)
 

 p

y

x

2

3

1

z

40 mm

20 mm

(a)

y

z

x

60 mm

Segment L (mm) x� (mm) y� (mm) z� (mm) x�L (mm2) y�L (mm2)  z�L (mm2)

1 p(60) = 188.5 60 -38.2 0 11 310 -7200 0

2 40   0 20 0 0 800 0

3 20   0 40 -10 0 800 -200

 �L = 248.5    � x�L = 11 310 � y�L = -5600 � z�L = -200

Thus,

	  x =
� x�L

�L
=

11 310

248.5
= 45.5 mm 	 Ans.

	  y =
� y�L

�L
=

-5600

248.5
= -22.5 mm	 Ans.

	  z =
� z�L

�L
=

-200

248.5
= -0.805 mm	 Ans.

Fig. 9–16 
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Locate the centroid of the plate area shown in Fig. 9–17a.

(a)

y

x

1 ft
2 ft

2 ft

1 ft

3 ft

Fig. 9–17 

Solution
Composite Parts.  The plate is divided into three segments as shown 
in Fig. 9–17b. Here the area of the small rectangle 3  is considered 
“negative” since it must be subtracted from the larger one 2 .

Moment Arms.  The centroid of each segment is located as indicated 
in the figure. Note that the x�  coordinates of 2  and 3  are negative.

Summations.  Taking the data from Fig. 9–17b, the calculations are 
tabulated as follows:

Segment A (ft2) x� (ft) y� (ft) x�A (ft3) y�A (ft3)

1 1
2(3)(3) = 4.5 1 1 4.5 4.5

2 (3)(3) = 9 -1.5 1.5 -13.5 13.5

3 -(2)(1) = -2 -2.5 2 5 -4

  �A = 11.5   � x�A = -4 � y�A = 14

Thus,

	  x =
� x�A

�A
=

-4

11.5
= -0.348 ft	 Ans.

	  y =
� y�A

�A
=

14

11.5
= 1.22 ft	 Ans.

NOTE: If these results are plotted in Fig. 9–17a, the location of point C 
seems reasonable.

Example   9.10

(b)

y

x

2.5 ft

2 ft

3

y

x
1 ft

1.5 ft 1 ft

1.5 ft
1

2
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Locate the center of mass of the assembly shown in Fig. 9–18a. The 
conical frustum has a density of rc = 8 Mg>m3, and the hemisphere 
has a density of rh = 4 Mg>m3. There is a 25-mm-radius cylindrical 
hole in the center of the frustum.

Solution
Composite Parts.  The assembly can be thought of as consisting of 
four segments as shown in Fig. 9–18b. For the calculations, 3  and 4  
must be considered as “negative” segments in order that the four 
segments, when added together, yield the total composite shape shown 
in Fig. 9–18a.

Moment Arm.  Using the table on the inside back cover, the 
computations for the centroid z�  of each piece are shown in the figure.

Summations.  Because of symmetry, note that

	 x = y = 0	 Ans.

Since W = mg, and g is constant, the third of Eqs. 9–6 becomes 
z = � z�m>�m. The mass of each piece can be computed from m = rV  
and used for the calculations. Also, 1 Mg>m3 = 10-6 kg>mm3, so that

Example   9.11

Segment m (kg) z� (mm) z�m (kg # mm)

1 8(10-6)11
32p(50)2(200) = 4.189 50 209.440

2 4(10-6)12
32p(50)3 = 1.047 -18.75 -19.635

3 -8(10-6)11
32p(25)2(100) = -0.524 100 + 25 = 125 -65.450

4 -8(10-6)p(25)2(100) = -1.571 50 -78.540

 �m = 3.142  � z�m = 45.815

(a)

50 mm

100 mm

25 mm

50 mm

x

y

z

Fig. 9–18 

200 mm

50 mm

50 mm

� 50 mm200 mm
4

1

2

(50) �  18.75 mm8
3

� 25 mm
4

100 mm

25 mm 100 mm

100 mm

50 mm

(b)

3
25 mm

4

Thus,	 z� =
� z�m

�m
=

45.815

3.142
= 14.6 mm  	 Ans.
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F9–10.  Locate the centroid (x, y ) of the cross-sectional 
area.

x

y

4 in.

3 in.

C y

0.5 in.

0.5 in.

x

Prob. F9–10

F9–11.   Locate the center of mass (x, y, z ) of the  
homogeneous solid block. 

y

x

z

6 ft

2 ft
4 ft

5 ft2 ft

3 ft

Prob. F9–11

F9–12.  Determine the center of mass (x, y, z ) of the 
homogeneous solid block.

y

x

z

1.8 m

1.5 m

1.5 m

0.5 m

0.5 m 2 m

Prob. F9–12

F9–7.  Locate the centroid (x, y, z ) of the wire bent in the 
shape shown.

x

z

400 mm

600 mm

300 mm

y

Prob. F9–7

F9–8.  Locate the centroid y of the beam’s cross-sectional 
area.

y

x

25 mm

50 mm

300 mm

25 mm

150 mm 150 mm

Prob. F9–8

F9–9.  Locate the centroid y of the beam’s cross-sectional area.

y

x

400 mm

50 mm 50 mm

C 200 mm

50 mm

Prob. F9–9

FUNDAMENTAL PROBLEMS
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9–51.  The truss is made from five members, each having a 
length of 4 m and a mass of 7 kg>m. If the mass of the gusset 
plates at the joints and the thickness of the members can be 
neglected, determine the distance d to where the hoisting 
cable must be attached, so that the truss does not tip (rotate) 
when it is lifted.

x

y

4 m

4 m4 m

4 m

4 m

60�

C
B
d

A D

Prob. 9–51

*9–52.  Determine the location (x, y, z) of the centroid of 
the homogeneous rod.

x

y

z

600 mm

200 mm

100 mm

30�

Prob. 9–52

9–53.  A rack is made from roll-formed sheet steel and has 
the cross section shown. Determine the location (x, y) of the 
centroid of the cross section. The dimensions are indicated 
at the center thickness of each segment.

y

x

30 mm

15 mm 15 mm

80 mm

50 mm

Prob. 9–53

9–54.  Locate the centroid (x, y) of the metal cross section. 
Neglect the thickness of the material and slight bends at 
the corners.

50 mm

x

150 mm

100 mm 100 mm50 mm 50 mm

y

Prob. 9–54

Problems
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9–55.  Locate the center of gravity (x, y, z) of the 
homogeneous wire.

z

y

x

400 mm

300 mm

Prob. 9–55

*9–56.  The steel and aluminum plate assembly is bolted 
together and fastened to the wall. Each plate has a constant 
width in the z direction of 200 mm and thickness of 20 mm. 
If the density of A and B is rs = 7.85 Mg>m3, and for C, 
ral = 2.71 Mg>m3, determine the location x of the center of 
mass. Neglect the size of the bolts.

300 mm

200 mm
100 mm

A

B
C

x

y

Prob. 9–56

9–57.  Locate the center of gravity G(x, y) of the streetlight. 
Neglect the thickness of each segment. The mass per unit 
length of each segment is as follows: rAB = 12 kg>m, 
rBC = 8 kg>m, rCD = 5 kg>m, and rDE = 2 kg>m.

1 m

1 m

1 m90�

1 m
C

B

A

D E

y

x

1.5 m

3 m

4 m

G (x, y)

Prob. 9–57

9–58.  Determine the location y  of the centroidal axis x9x  
of the beam’s cross-sectional area. Neglect the size of the 
corner welds at A and B for the calculation.

50 mm

A

C

B

15 mm

15 mm

150 mm

150 mm

_
x

_
x

_
y

Prob. 9–58
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9–59.  Locate the centroid (x, y) of the shaded area.

y

x

6 in.

6 in.

6 in.

6 in.

Prob. 9–59

*9–60.  Locate the centroid y for the beam’s cross-sectional 
area.

120 mm

120 mm

240 mm

240 mm
240 mm

x   

y

Prob. 9–60

9–61.  Determine the location y of the centroid C of the 
beam having the cross-sectional area shown.

A

C

B

15 mm

15 mm

15 mm

150 mm

150 mm

100 mm

y

xx

Prob. 9–61

9–62.  Locate the centroid (x, y) of the shaded area.
y

6 in.

3 in.

6 in.

6 in.
x

Prob. 9–62

9–63.  Determine the location y of the centroid of the 
beam’s cross-sectional area. Neglect the size of the corner 
welds at A and B for the calculation.

35 mm

50 mm

110 mm

15 mm

_
y

C

A

B

Prob. 9–63

*9–64.  Locate the centroid (x, y) of the shaded area.

x

y

3 in.1 in.

3 in.3 in.

Prob. 9–64
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9–65.  Determine the location (x, y) of the centroid C of 
the area.

x

y

1.5 in.

1.5 in.

1.5 in.

1.5 in.

1.5 in.

Prob. 9–65

9–66.  Determine the location y of the centroid C for a 
beam having the cross-sectional area shown. The beam is 
symmetric with respect to the y axis.

2 in. 2 in.1 in. 1 in.

1 in.

3 in.

y

x

C

y

Prob. 9–66

9–67.  Locate the centroid y of the cross-sectional area of 
the beam constructed from a channel and a plate. Assume 
all corners are square and neglect the size of the weld at A.

y

70 mm

20 mm

10 mm

350 mm

325 mm

C

A

325 mm

Prob. 9–67

*9–68.  A triangular plate made of homogeneous material has a 
constant thickness that is very small. If it is folded over as shown, 
determine the location y of the plate’s center of gravity G.

_
z

_
y

G

1 in.

1 in.

3 in.

3 in.

z

1 in.

1 in.

y

x

6 in.

3 in.

3 in.

Prob. 9–68

9–69.  A triangular plate made of homogeneous material 
has a constant thickness that is very small. If it is folded over 
as shown, determine the location z  of the plate’s center of 
gravity G.

_
z

_
y

G

1 in.

1 in.

3 in.

3 in.

z

1 in.

1 in.

y

x

6 in.

3 in.

3 in.

Prob. 9–69
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9–70.  Locate the center of mass z  of the forked level 
which is made from a homogeneous material and has the 
dimensions shown.

3 in.
2 in.

G

0.5 in.

2.5 in.

0.5 in.
z

x y

z

Prob. 9–70
9–71.  Determine the location x of the centroid C of the 
shaded area that is part of a circle having a radius r.

y

x
C

r

_
x

a

a

Prob. 9–71
*9–72.  A toy skyrocket consists of a solid conical top, 
ri = 600 kg>m3, a hollow cylinder, rc = 400 kg>m3, and a 
stick having a circular cross section, rs = 300 kg>m3. 
Determine the length of the stick, x, so that the center of 
gravity G of the skyrocket is located along line aa.

xa

a

G

100 mm5 mm
3 mm

10 mm

20 mm

Prob. 9–72

9–73.  Locate the centroid y for the cross-sectional area of 
the angle.

aa
–y

t t

C

Prob. 9–73

9–74.  Determine the location (x, y) of the center of gravity 
of the three-wheeler. The location of the center of gravity of 
each component and its weight are tabulated in the figure. If 
the three-wheeler is symmetrical with respect to the x–y 
plane, determine the normal reaction each of its wheels 
exerts on the ground.

1.
2.
3.
4.

Rear wheels
Mechanical components
Frame
Front wheel

18 lb
85 lb

120 lb
8 lb

y

A B
x

2 ft1.50 ft 1.30 ft1 ft

2.30 ft 1.40 ft
0.80 ft

14

3

2

Prob. 9–74
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9–75.  Locate the center of mass (x, y, z) of the 
homogeneous block assembly.

y

z

x 150 mm

250 mm

200 mm

150 mm
150 mm100 mm

Prob. 9–75

*9–76.  The sheet metal part has the dimensions shown. 
Determine the location (x, y, z) of its centroid.

9–77.  The sheet metal part has a weight per unit area of 
2 lb>ft2 and is supported by the smooth rod and the cord at 
C. If the cord is cut, the part will rotate about the y axis until 
it reaches equilibrium. Determine the equilibrium angle of 
tilt, measured downward from the negative x axis, that AD 
makes with the -x axis.

y

z

x

A

D

B

C

3 in.

4 in.

6 in.

Probs. 9–76/77

9–78.  The wooden table is made from a square board 
having a weight of 15 lb. Each of the legs weighs 2 lb and is 
3 ft long. Determine how high its center of gravity is from 
the floor. Also, what is the angle, measured from the 
horizontal, through which its top surface can be tilted on 
two of its legs before it begins to overturn? Neglect the 
thickness of each leg.

4 ft

3 ft

4 ft

Prob. 9–78

9–79.  The buoy is made from two homogeneous cones 
each having a radius of 1.5 ft. If h = 1.2 ft, find the distance 
z  to the buoy’s center of gravity G.

*9–80.  The buoy is made from two homogeneous cones 
each having a radius of 1.5 ft. If it is required that the buoy’s 
center of gravity G be located at z = 0.5 ft, determine the 
height h of the top cone.

h

G
4 ft

1.5 ft

_
z

Probs. 9–79/80
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9–81.  The assembly is made from a steel hemisphere, 
rst = 7.80 Mg>m3, and an aluminum cylinder, 
ral = 2.70 Mg>m3. Determine the mass center of the 
assembly if the height of the cylinder is h = 200 mm.

9–82.  The assembly is made from a steel hemisphere, 
rst = 7.80 Mg>m3, and an aluminum cylinder, 
ral = 2.70 Mg>m3. Determine the height h of the cylinder so 
that the mass center of the assembly is located at z  = 160 mm.

160 mm

h

z

y

x

80 mm

z
_

G

Probs. 9–81/82
9–83.  The car rests on four scales and in this position the 
scale readings of both the front and rear tires are shown by 
FA and FB. When the rear wheels are elevated to a height of 
3 ft above the front scales, the new readings of the front 
wheels are also recorded. Use this data to compute the 
location x and y to the center of gravity G of the car. The 
tires each have a diameter of 1.98 ft.

FA � 1129 lb � 1168 lb � 2297 lb

FA � 1269 lb � 1307 lb � 2576 lb

FB � 975 lb � 984 lb � 1959 lb

A
_
x

B

9.40 ft

3.0 ft

G
_
y

B G

A

Prob. 9–83

*9–84.  Determine the distance h to which a 100-mm-diameter 
hole must be bored into the base of the cone so that the center 
of mass of the resulting shape is located at z = 115 mm. The 
material has a density of 8 Mg>m3.

z

y

x

C

150 mm
50 mm

h

500 mm

_
z

Prob. 9–84

9–85.  Determine the distance z to the centroid of the 
shape that consists of a cone with a hole of height h = 50 mm 
bored into its base.

z

y

x

C

150 mm
50 mm

h

500 mm

_
z

Prob. 9–85
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9–86.  Locate the center of mass z   of the assembly. The 
cylinder and the cone are made from materials having 
densities of 5 Mg>m3 and 9 Mg>m3, respectively.

z

x

0.8 m

0.6 m0.4 m

0.2 m

y

Prob. 9–86

9–87.  Major floor loadings in a shop are caused by the 
weights of the objects shown. Each force acts through its 
respective center of gravity G. Locate the center of gravity 
(x, y) of all these components.

z

y

G2

G4G3

G1

x

600 lb
9 ft

7 ft

12 ft

6 ft

8 ft
4 ft 3 ft

5 ft

1500 lb

450 lb

280 lb

Prob. 9–87

*9–88.  The assembly consists of a 20-in. wooden dowel 
rod and a tight-fitting steel collar. Determine the distance x 
to its center of gravity if the specific weights of the materials 
are gw = 150 lb>ft3 and gst = 490 lb>ft3. The radii of the 
dowel and collar are shown.

x

5 in.
5 in.

10 in.
G

2 in.

1 in.

_
x

Prob. 9–88

9–89.  The composite plate is made from both steel (A) 
and brass (B) segments. Determine the mass and location 
(x, y, z) of its mass center G. Take rst = 7.85 Mg>m3 and 
rbr = 8.74 Mg>m3.

y

x

z

G

B

A
225 mm

150 mm

150 mm

30 mm

Prob. 9–89
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*9.3  Theorems of Pappus and Guldinus

The two theorems of Pappus and Guldinus are used to find the surface 
area and volume of any body of revolution. They were first developed 
by Pappus of Alexandria during the fourth century a.d. and then restated 
at a later time by the Swiss mathematician Paul Guldin or Guldinus 
(1577–1643).

2   rp

r

L

C

dL

dA

r

Fig. 9–19

Surface Area.  If we revolve a plane curve about an axis that does 
not intersect the curve we will generate a surface area of revolution. For 
example, the surface area in Fig. 9–19 is formed by revolving the curve of 
length L about the horizontal axis. To determine this surface area, we will 
first consider the differential line element of length dL. If this element is 
revolved 2p radians about the axis, a ring having a surface area of 
dA = 2pr dL will be generated. Thus, the surface area of the entire body 
is A = 2p1r dL. Since 1r dL = rL (Eq. 9–5), then A = 2prL. If the 
curve is revolved only through an angle u (radians), then

	 A = urL 	 (9–7)

where

A = surface area of revolution

u = angle of revolution measured in radians, u … 2p

r = perpendicular distance from the axis of revolution to 
the centroid of the generating curve

L = length of the generating curve

Therefore the first theorem of Pappus and Guldinus states that the 
area of a surface of revolution equals the product of the length of the 
generating curve and the distance traveled by the centroid of the curve in 
generating the surface area.

The amount of material used on this 
storage building can be estimated by 
using the first theorem of Pappus and 
Guldinus to determine its surface area. 
(© Russell C. Hibbeler)
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Volume.  A volume can be generated by revolving a plane area about 
an axis that does not intersect the area. For example, if we revolve the 
shaded area A in Fig. 9–20 about the horizontal axis, it generates the 
volume shown. This volume can be determined by first revolving  
the differential element of area dA 2p radians about the axis, so that a 
ring having the volume dV = 2pr dA  is generated. The entire volume is 
then V = 2p1r  dA. However, 1r  dA = r  A, Eq. 9–4, so that V = 2prA. 
If the area is only revolved through an angle u (radians), then

	 V = ur A 	 (9–8)

where

V = volume of revolution

u = angle of revolution measured in radians, u … 2p

r = perpendicular distance from the axis of revolution to 
the centroid of the generating area

A = generating area

Therefore the second theorem of Pappus and Guldinus states that the 
volume of a body of revolution equals the product of the generating area 
and the distance traveled by the centroid of the area in generating the 
volume.

Composite Shapes.  We may also apply the above two theorems 
to lines or areas that are composed of a series of composite parts. In this 
case the total surface area or volume generated is the addition of  
the surface areas or volumes generated by each of the composite parts. If 
the perpendicular distance from the axis of revolution to the centroid of 
each composite part is r�, then

	 A = u�( r�L)	 (9–9)

and

	 V = u�(r�A )	 (9–10)

Application of the above theorems is illustrated numerically in the 
following examples.

dA

2   r

C
A

rr

p

Fig. 9–20

The volume of fertilizer contained within 
this silo can be determined using the 
second theorem of Pappus and Guldinus. 
(© Russell C. Hibbeler)
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Example   9.12

Show that the surface area of a sphere is A = 4pR2 and its volume is 
V =

4
3 pR3.

y

x

R

C

2R

(a)

p

(b)

y

x

R C

4R
3p

Fig. 9–21

SOLUTION
Surface Area.   The surface area of the sphere in Fig. 9–21a is 
generated by revolving a semicircular arc about the x axis. Using the 
table on the inside back cover, it is seen that the centroid of this arc is 
located at a distance r = 2R >p from the axis of revolution (x axis). 
Since the centroid moves through an angle of u = 2p rad to generate 
the sphere, then applying Eq. 9–7 we have

A = urL;	 A = 2pa 2R
p
bpR = 4pR2� Ans.

Volume.  The volume of the sphere is generated by revolving the 
semicircular area in Fig. 9–21b about the x axis. Using the table on the 
inside back cover to locate the centroid of the area, i.e., r = 4R >3p, 
and applying Eq. 9–8, we have

V = urA ;	 V = 2pa 4R

3p
b a 1

2
 pR2b =

4

3
 pR3� Ans.
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Determine the surface area and volume of the full solid in Fig. 9–22a.

Example   9.13

1 in.

2 in.

1 in.

(c)

z

3 in.

2.5 in. � (    )(1 in.) � 3.1667 in.2
3

1 in.

1 in.

2 in.

(a)

2.5 in.

z

(b)

z
1 in.

3.5 in.
3 in.

2.5 in.

1 in.

2 in.

Fig. 9–22 

Solution
Surface Area.  The surface area is generated by revolving the four 
line segments shown in Fig. 9–22b 2p radians about the z axis. The 
distances from the centroid of each segment to the z axis are also 
shown in the figure. Applying Eq. 9–7 yields

A  = 2p�rL = 2p[(2.5 in.)(2 in.) + (3 in.)¢3(1 in.)2 + (1 in.)2≤
	 + (3.5 in.)(3 in.) + (3 in.)(1 in.)]

	 = 143 in2� Ans.

Volume.  The volume of the solid is generated by revolving the two 
area segments shown in Fig. 9–22c 2p radians about the z axis. The 
distances from the centroid of each segment to the z axis are also 
shown in the figure. Applying Eq. 9–10, we have

 V = 2p�rA = 2p5 (3.1667 in.) c 1
2

 (1 in.)(1 in.) d  +  (3 in.)[(2 in.)(1 in.)6
	  = 47.6 in3� Ans.
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FUNDAMENTAL PROBLEMS

F9–13.  Determine the surface area and volume of the solid 
formed by revolving the shaded area 360� about the z axis.

z

1.5 m

2 m

2 m

Prob. F9–13

F9–14.  Determine the surface area and volume of the solid 
formed by revolving the shaded area 360� about the z axis.

1.2 m

0.9 m1.5 m

1.5 m

z

Prob. F9–14

F9–15.  Determine the surface area and volume of the solid 
formed by revolving the shaded area 360� about the z axis.

z

18 in.

15 in.

20 in.

30 in.

Prob. F9–15

F9–16.  Determine the surface area and volume of the solid 
formed by revolving the shaded area 360� about the z axis.

z

2 m

1.5 m

1.5 m

Prob. F9–16
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Problems

9–90.  Determine the volume of the silo which consists of 
a cylinder and hemispherical cap. Neglect the thickness of 
the plates.

10 ft 10 ft

10 ft

80 ft

Prob. 9–90

9–91.  Determine the outside surface area of the storage tank.

*9–92.  Determine the volume of the storage tank.

15 ft

4 ft

30 ft

Probs. 9–91/92

9–93.  Determine the surface area of the concrete seawall, 
excluding its bottom.

9–94.  A circular seawall is made of concrete. Determine 
the total weight of the wall if the concrete has a specific 
weight of gc = 150 lb>ft3.

50�

30 ft

15 ft

8 ft

60 ft

Probs. 9–93/94

9–95.  A ring is generated by rotating the quarter circular 
area about the x axis. Determine its volume.

*9–96.  A ring is generated by rotating the quarter circular 
area about the x axis. Determine its surface area.

a

x

2a

Probs. 9–95/96



508 	 Chapter 9    Center of Gravity and Centroid

9

9–101.  The water-supply tank has a hemispherical bottom 
and cylindrical sides. Determine the weight of water in the 
tank when it is filled to the top at C. Take gw = 62.4 lb>ft3.
9–102.  Determine the number of gallons of paint needed 
to paint the outside surface of the water-supply tank, which 
consists of a hemispherical bottom, cylindrical sides, and 
conical top. Each gallon of paint can cover 250 ft2.

6 ft

8 ft

C

6 ft

9–103.  Determine the surface area and the volume of the 
ring formed by rotating the square about the vertical axis.

b

a

a

45�

*9–104.  Determine the surface area of the ring. The cross 
section is circular as shown.

8 in.

4 in.

9–97.  Determine the volume of concrete needed to 
construct the curb.

9–98.  Determine the surface area of the curb. Do not 
include the area of the ends in the calculation.

30� 4 m

150 mm
150 mm

100 mm

150 mm

Probs. 9–97/98

9–99.  A ring is formed by rotating the area 360° about the 
x – x axes. Determine its surface area.

*9–100.  A ring is formed by rotating the area 360° about 
the x – x axes. Determine its volume.

50 mm
30 mm 30 mm

80 mm

100 mm
x x

Probs. 9–99/100

Probs. 9–101/102

Prob. 9–103

Prob. 9–104
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9–107.  The suspension bunker is made from plates which 
are curved to the natural shape which a completely flexible 
membrane would take if subjected to a full load of coal. This 
curve may be approximated by a parabola, y = 0.2x2. 
Determine the weight of coal which the bunker would 
contain when completely filled. Coal has a specific weight of 
g = 50 lb>ft3, and assume there is a 20% loss in volume due 
to air voids. Solve the problem by integration to determine 
the cross-sectional area of ABC; then use the second 
theorem of Pappus–Guldinus to find the volume.

y

x

10 ft

20 ft

Ay � 0.2x2

C

B

Prob. 9–107

*9–108.  Determine the height h to which liquid should be 
poured into the cup so that it contacts three-fourths the 
surface area on the inside of the cup. Neglect the cup’s 
thickness for the calculation.

160 mm

h

40 mm

Prob. 9–108

9–105.  The heat exchanger radiates thermal energy at 
the rate of 2500 kJ>h for each square meter of its surface 
area. Determine how many joules (J) are radiated within a 
5-hour period.

0.75 m

1.5 m0.75 m

0.5 m

0.75 m

1 m

0.5 m

Prob. 9–105

9–106.  Determine the interior surface area of the brake 
piston. It consists of a full circular part. Its cross section is 
shown in the figure.

30 mm 20 mm40 mm

40 mm

60 mm

80 mm

20 mm

Prob. 9–106
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*9–112.  The water tank has a paraboloid-shaped roof. If 
one liter of paint can cover 3 m2 of the tank, determine the 
number of liters required to coat the roof.

x

y

2.5 m

12 m

y �      (144 � x2)1––
96

Prob. 9–112

9–113.  Determine the volume of material needed to make 
the casting.

6 in. 4 in.6 in.

2 in.

Side View Front View

Prob. 9–113

9–114.  Determine the height h to which liquid should be 
poured into the cup so that it contacts half the surface area 
on the inside of the cup. Neglect the cup’s thickness for the 
calculation.

50 mm

10 mm

h

30 mm

Prob. 9–114

9–109.  Determine the surface area of the roof of the structure 
if it is formed by rotating the parabola about the y axis.

16 m

y

x

16 m

 y � 16 � (x2/16)

Prob. 9–109

9–110.  A steel wheel has a diameter of 840 mm and a cross 
section as shown in the figure. Determine the total mass of 
the wheel if r = 5 Mg>m3.

30 mm

30 mm

80 mm

Section A–A

100 mm

250 mm
420 mm

840 mm

60 mm

A

A

Prob. 9–110

9–111.  Half the cross section of the steel housing is shown 
in the figure. There are six 10-mm-diameter bolt holes 
around its rim. Determine its mass. The density of steel 
is 7.85 Mg>m3. The housing is a full circular part.

20 mm
40 mm

10 mm

10 mm

10 mm

10 mm

30 mm

30 mm

Prob. 9–111
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*9.4  �Resultant of a General Distributed 
Loading

In Sec. 4.9, we discussed the method used to simplify a two-dimensional 
distributed loading to a single resultant force acting at a specific point. In 
this section we will generalize this method to include flat surfaces that 
have an arbitrary shape and are subjected to a variable load distribution. 
Consider, for example, the flat plate shown in Fig. 9–23a, which is subjected 
to the loading defined by p = p(x, y) Pa, where 1 Pa (pascal) = 1 N>m2. 
Knowing this function, we can determine the resultant force FR acting on 
the plate and its location (x, y), Fig. 9–23b.

Magnitude of Resultant Force.  The force dF acting on the 
differential area dA  m2 of the plate, located at the arbitrary point (x, y), 
has a magnitude of dF = [p(x, y) N>m2](dA  m2) = [p(x, y) dA ] N. Notice 
that p(x, y) dA = dV , the colored differential volume element shown in 
Fig. 9–23a. The magnitude of FR is the sum of the differential forces acting 
over the plate’s entire surface area A. Thus:

FR = �F;	 FR = LA
p(x, y) dA = LV

dV = V � (9–11)

This result indicates that the magnitude of the resultant force is equal to 
the total volume under the distributed-loading diagram.

Location of Resultant Force.  The location (x, y) of FR is 
determined by setting the moments of FR equal to the moments of all the 
differential forces dF about the respective y and x axes: From Figs. 9–23a 
and 9–23b, using Eq. 9–11, this results in

x =
LA

xp(x, y) dA

LA
p(x, y) dA

=
LV

x dV

LV
dV
 y =

LA
yp(x, y) dA

LA
p(x, y) dA

=
LV

y dV

LV
dV

	 (9–12)

Hence, the line of action of the resultant force passes through the 
geometric center or centroid of the volume under the distributed-loading 
diagram.

x y

y
x

(a)

dF

p

p � p(x, y)

dA dV

x y

yx

(b)

FR

The resultant of a wind loading that is 
distributed on the front or side walls  
of this building must be calculated 
using integration in order to design the 
framework that holds the building 
together. (© Russell C. Hibbeler)

Fig. 9–23
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*9.5  Fluid Pressure

According to Pascal’s law, a fluid at rest creates a pressure p at a point that 
is the same in all directions. The magnitude of p, measured as a force per 
unit area, depends on the specific weight g or mass density r of the fluid 
and the depth z of the point from the fluid surface.*  The relationship can 
be expressed mathematically as

	 p = gz = rgz � (9–13)

where g is the acceleration due to gravity. This equation is valid only for 
fluids that are assumed incompressible, as in the case of most liquids. 
Gases are compressible fluids, and since their density changes significantly 
with both pressure and temperature, Eq. 9–13 cannot be used.

To illustrate how Eq. 9–13 is applied, consider the submerged plate 
shown in Fig. 9–24. Three points on the plate have been specified. Since 
point B is at depth z1 from the liquid surface, the pressure at this point has 
a magnitude p1 = gz1.  Likewise, points C and D are both at depth z2; 
hence, p2 = gz2.  In all cases, the pressure acts normal to the surface area 
dA located at the specified point.

Using Eq. 9–13 and the results of Sec. 9.4, it is possible to determine 
the resultant force caused by a liquid and specify its location on the 
surface of a submerged plate. Three different shapes of plates will now be 
considered.

*In particular, for water g = 62.4 lb>ft3, or g = rg = 9810 N>m3 since r = 1000 kg>m3 
and g = 9.81 m>s2.

z
y

x

b
dA dA

C
z2

z1

Liquid surface

dA

p1

p2
p2

D

B

Fig. 9–24
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Flat Plate of Constant Width.  A flat rectangular plate of 
constant width, which is submerged in a liquid having a specific weight g, 
is shown in Fig. 9–25a. Since pressure varies linearly with depth, Eq. 9–13, 
the distribution of pressure over the plate’s surface is represented by a 
trapezoidal volume having an intensity of p1 = gz1 at depth z1 and 
p2 = gz2 at depth z2. As noted in Sec. 9.4, the magnitude of the resultant 
force FR is equal to the volume of this loading diagram and FR has a line 
of action that passes through the volume’s centroid C. Hence, FR does not 
act at the centroid of the plate; rather, it acts at point P, called the center 
of pressure.

Since the plate has a constant width, the loading distribution may also 
be viewed in two dimensions, Fig. 9–25b. Here the loading intensity is 
measured as force> length and varies linearly from w1 = bp1 = bgz1 to 
w2 = bp2 = bgz2. The magnitude of FR in this case equals the trapezoidal 
area, and FR has a line of action that passes through the area’s centroid C. 
For numerical applications, the area and location of the centroid for a 
trapezoid are tabulated on the inside back cover.

The walls of the tank must be designed 
to support the pressure loading of the 
liquid that is contained within it. 
(© Russell C. Hibbeler)

x

Liquid surface

z2

z1

C
Pp2 � gz2

p1 � gz1

(a)

y
FR

z

L

b
2 b

2

Liquid surface
y

w2 � bp2

z

P
L

(b)

FR C

y¿

w1 � bp1
z2

z1

Fig. 9–25
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Curved Plate of Constant Width.  When a submerged plate 
of constant width is curved, the pressure acting normal to the plate 
continually changes both its magnitude and direction, and therefore 
calculation of the magnitude of FR and its location P is more difficult 
than for a flat plate. Three- and two-dimensional views of the loading 
distribution are shown in Figs. 9–26a and 9–26b, respectively. Although 
integration can be used to solve this problem, a simpler method exists. 
This method requires separate calculations for the horizontal and vertical 
components of FR.

For example, the distributed loading acting on the plate can be 
represented by the equivalent loading shown in Fig. 9–26c. Here the plate 
supports the weight of liquid W f  contained within the block BDA. This 
force has a magnitude W f = (gb)(areaBDA)  and acts through the centroid 
of BDA. In addition, there are the pressure distributions caused by the 
liquid acting along the vertical and horizontal sides of the block. Along 
the vertical side AD, the force FAD has a magnitude equal to the area of 
the trapezoid. It acts through the centroid CAD of this area. The distributed 
loading along the horizontal side AB is constant since all points lying in 
this plane are at the same depth from the surface of the liquid. The 
magnitude of FAB is simply the area of the rectangle. This force acts 
through the centroid CAB or at the midpoint of AB. Summing these three 
forces yields FR = �F = FAD + FAB + Wf.  Finally, the location of the 
center of pressure P on the plate is determined by applying MR = �M, 
which states that the moment of the resultant force about a convenient 
reference point such as D or B, in Fig. 9–26b, is equal to the sum of the 
moments of the three forces in Fig. 9–26c about this same point.

B

CAB

FAB

A
z1

z2

y

w1 � bp1

z

CAD

FAD

w1 � bp2

WfCBDA

Liquid surface

D

(c)

y

p1 � gz1

Liquid surface

z

xz1

Lz2

FR

p2 � gz2

b

C
P

(a)

Liquid surface
y

w2 � bp2
C

FR

w1 � bp1

B

z

P

D

(b)

Fig. 9–26
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The resultant force of the water pressure 
and its location on the elliptical back plate 
of this tank truck must be determined by 
integration. (© Russell C. Hibbeler)

Flat Plate of Variable Width.  The pressure distribution acting 
on the surface of a submerged plate having a variable width is shown in 
Fig. 9–27. If we consider the force dF acting on the differential area strip 
dA, parallel to the x axis, then its magnitude is dF = p dA. Since the 
depth of dA is z, the pressure on the element is p = gz. Therefore, 
dF = (gz)dA  and so the resultant force becomes

FR = 1  dF = g 1z dA

If the depth to the centroid C� of the area is z , Fig. 9–27, then, 1z dA = zA. 
Substituting, we have

	 FR = gzA � (9–14)

In other words, the magnitude of the resultant force acting on any flat 
plate is equal to the product of the area A of the plate and the pressure 
p = gz at the depth of the area’s centroid C�. As discussed in Sec. 9.4, this 
force is also equivalent to the volume under the pressure distribution. 
Realize that its line of action passes through the centroid C of this volume 
and intersects the plate at the center of pressure P, Fig. 9–27. Notice that 
the location of C� does not coincide with the location of P.

y
x

y¿

Liquid surfacez

FR

p � gz

dy¿

dA

dF

C ¿P

x
z

C

Fig. 9–27
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Example   9.14

Determine the magnitude and location of the resultant hydrostatic force 
acting on the submerged rectangular plate AB shown in Fig. 9–28a.  
The plate has a width of 1.5 m; rw = 1000 kg>m3.

Solution I
The water pressures at depths A and B are

 pA = rwgzA = (1000 kg>m3)(9.81 m>s2)(2 m) = 19.62 kPa

 pB = rwgzB = (1000 kg>m3)(9.81 m>s2)(5 m) = 49.05 kPa

Since the plate has a constant width, the pressure loading can be 
viewed in two dimensions, as shown in Fig. 9–28b. The intensities of 
the load at A and B are

 wA = bpA = (1.5 m)(19.62 kPa) = 29.43 kN>m
 wB = bpB = (1.5 m)(49.05 kPa) = 73.58 kN>m

From the table on the inside back cover, the magnitude of the resultant 
force FR created by this distributed load is

FR = area of a trapezoid =
1
2(3)(29.4 + 73.6) = 154.5 kN� Ans.

This force acts through the centroid of this area,

	 h =
1

3
 a 2(29.43) + 73.58

29.43 + 73.58
b (3) = 1.29 m	 Ans.

measured upward from B, Fig. 9–31b.

Solution II
The same results can be obtained by considering two components of 
FR, defined by the triangle and rectangle shown in Fig. 9–28c. Each 
force acts through its associated centroid and has a magnitude of

 FRe = (29.43 kN>m)(3 m) = 88.3 kN

 Ft =
1
2(44.15 kN>m)(3 m) = 66.2 kN

Hence,

	 FR = FRe + Ft = 88.3 + 66.2 = 154.5 kN� Ans.

The location of FR is determined by summing moments about B,  
Figs. 9–28b and c, i.e.,

c+(MR)B = �MB; (154.5)h = 88.3(1.5) + 66.2(1)

	  h = 1.29 m� Ans.

NOTE: Using Eq. 9–14, the resultant force can be calculated as 
FR = gzA = (9810 N>m3)(3.5 m)(3 m)(1.5 m) = 154.5 kN.

2 m

3 m

1.5 m

A

B

(a)

(c)

2 m

3 m

A

B

Ft
1 m

44.15 kN/m
29.43 kN/m

FRe

1.5 m

Fig. 9–28 

(b)

2 m

3 m

A

B

h

FR

wB � 73.58 kN/m

wA � 29.43 kN/m
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Example   9.15

Determine the magnitude of the resultant hydrostatic force acting on 
the surface of a seawall shaped in the form of a parabola, as shown 
in Fig. 9–29a. The wall is 5 m long; rw = 1020 kg>m3.

3 m

1 m

(a)

Fh

wB � 150.1 kN/m

C

Fv

A

B

(b)

Fig. 9–29 

Solution
The horizontal and vertical components of the resultant force will be 
calculated, Fig. 9–29b. Since

 pB = rwgzB = (1020 kg>m3)(9.81 m>s2)(3 m) = 30.02 kPa

then

 wB = bpB = 5 m(30.02 kPa) = 150.1 kN>m

Thus,

 Fh =
1
2(3 m)(150.1 kN>m) = 225.1 kN

The area of the parabolic section ABC can be determined using the 
formula for a parabolic area A =

1
3 ab. Hence, the weight of water 

within this 5-m-long region is

	      Fv = (rwgb)(areaABC)

	  = (1020 kg>m3)(9.81 m>s2)(5 m)31
3(1 m)(3 m)4 = 50.0 kN	

The resultant force is therefore

 FR = 2Fh
2 + Fy

2 = 2(225.1 kN)2 + (50.0 kN)2

	  = 231 kN 	 Ans.
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Determine the magnitude and location of the resultant force acting on 
the triangular end plates of the water trough shown in Fig. 9–30a; 
rw = 1000 kg>m3.

Example    9.16

0.5 m

y
x

z

1 m

z

dz
A

B

(b)

O

2x

dF

1 m

1 m

(a)

E

Fig. 9–30 

Solution
The pressure distribution acting on the end plate E is shown in Fig. 9–30b. 
The magnitude of the resultant force is equal to the volume of this loading 
distribution. We will solve the problem by integration. Choosing the 
differential volume element shown in the figure, we have

dF = dV = p dA = rwgz(2x dz) = 19 620zx dz

The equation of line AB is

x = 0.5(1 - z)

Hence, substituting and integrating with respect to z from z = 0 to 
z = 1 m yields

 F = V = LV
dV = L

1 m

0
(19 620)z[0.5(1 - z)] dz

	  = 9810L
1 m

0
(z - z2) dz = 1635 N = 1.64 kN 	 Ans.

This resultant passes through the centroid of the volume. Because of 
symmetry,

	 x = 0	 Ans.

Since z� = z for the volume element, then

 z =
LV

z� dV

LV
dV

=
L

1 m

0
z(19 620)z[0.5(1 - z)] dz

1635
=

9810L
1 m

0
(z2 - z3) dz

1635

   = 0.5 m  	 Ans.

NOTE: We can also determine the resultant force by applying Eq. 9–14,  
FR = gzA = 19810 N>m3211

32(1 m)312(1 m)(1 m)4 = 1.64 kN.
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F9–17.  Determine the magnitude of the hydrostatic force 
acting per meter length of the wall. Water has a density of 
r = 1 Mg>m3.

6 m

Prob. F9–17

F9–18.  Determine the magnitude of the hydrostatic force 
acting on gate AB, which has a width of 4 ft. The specific 
weight of water is g = 62.4 lb>ft3.

A B

4 ft

3 ft

Prob. F9–18

F9–19.  Determine the magnitude of the hydrostatic force 
acting on gate AB, which has a width of 1.5 m. Water has a 
density of r = 1 Mg>m3.

B

A

2 m

1.5 m

Prob. F9–19

F9–20.  Determine the magnitude of the hydrostatic force 
acting on gate AB, which has a width of 2 m. Water has a 
density of r = 1 Mg>m3.

B

A

2 m

3 m

Prob. F9–20

F9–21.  Determine the magnitude of the hydrostatic force 
acting on gate AB, which has a width of 2 ft. The specific 
weight of water is g = 62.4 lb>ft3.

B

A

3 ft

4 ft

6 ft

Prob. F9–21

FUNDAMENTAL PROBLEMS
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9–118.  The rectangular plate is subjected to a distributed 
load over its entire surface. The load is defined by  
the expression p = p0 sin (px >a) sin (py >b),where p0 
represents the pressure acting at the center of the plate. 
Determine the magnitude and location of the resultant 
force acting on the plate.

x
b

a

p0

y

p

Prob. 9–118

9–119.  A wind loading creates a positive pressure on one 
side of the chimney and a negative (suction) pressure on 
the other side, as shown. If this pressure loading acts 
uniformly along the chimney’s length, determine the 
magnitude of the resultant force created by the wind.

p � p0 cos u

p

l

u

Prob. 9–119

9–115.  The pressure loading on the plate varies uniformly 
along each of its edges. Determine the magnitude of the 
resultant force and the coordinates (x, y) of the point where 
the line of action of the force intersects the plate. Hint:  
The equation defining the boundary of the load has the form  
p = ax + by + c, where the constants a, b, and c have to be 
determined.

x

p

y

10 ft
5 ft

40 lb/ft

20 lb/ft30 lb/ft

10 lb/ft

Prob. 9–115

*9–116.  The load over the plate varies linearly along the 
sides of the plate such that p =  (12 - 6x + 4y) kPa. 
Determine the magnitude of the resultant force and the 
coordinates (x, y ) of the point where the line of action of 
the force intersects the plate.

p

1.5 m

2 m
y

x
18 kPa

12 kPa

6 kPa

Prob. 9–116

9–117.  The load over the plate varies linearly along the 
sides of the plate such that p =

2
3 [x(4 - y)] kPa. Determine 

the resultant force and its position (x, y) on the plate.
p

3 m

4 m

y

x

8 kPa

Prob. 9–117

Problems
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9–123.  The factor of safety for tipping of the concrete dam is 
defined as the ratio of the stabilizing moment due to the dam’s 
weight divided by the overturning moment about O due to 
the water pressure. Determine this factor if the concrete has a 
density of rconc = 2.5 Mg>m3 and for water rw = 1 Mg>m3.

y
1 m

x

4 m

6 m

O

Prob. 9–123

*9–124.  The concrete dam in the shape of a quarter circle. 
Determine the magnitude of the resultant hydrostatic force 
that acts on the dam per meter of length. The density of 
water is rw = 1 Mg>m3.

3 m

Prob. 9–124

9–125.  The tank is used to store a liquid having a density 
of 80 lb>ft3. If it is filled to the top, determine the magnitude 
of force the liquid exerts on each of its two sides ABDC  
and BDFE.

4 ft

6 ft

12 ft

3 ft

B

A

C

D

F

E

Prob. 9–125

*9–120.  When the tide water A subsides, the tide gate 
automatically swings open to drain the marsh B. For the 
condition of high tide shown, determine the horizontal 
reactions developed at the hinge C and stop block D. The 
length of the gate is 6 m and its height is 4 m.  rw = 1.0 Mg>m3.

A
B

C

D

3 m
2 m

4 m

Prob. 9–120
9–121.  The tank is filled with water to a depth of d = 4 m. 
Determine the resultant force the water exerts on side A and 
side B of the tank. If oil instead of water is placed in the tank, 
to what depth d should it reach so that it creates the same 
resultant forces? ro = 900 kg>m3 and rw = 1000 kg>m3.

d
BA

3 m 2 m

Prob. 9–121
9–122.  The concrete “gravity” dam is held in place by its 
own weight. If the density of concrete is rc = 2.5 Mg>m3, 
and water has a density of rw = 1.0 Mg>m3, determine the 
smallest dimension d that will prevent the dam from 
overturning about its end A.

A

d

1 m

6 m

d – 1

Prob. 9–122
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*9–128.  The tank is filled with a liquid that has a density of 
900 kg>m3. Determine the resultant force that it exerts on 
the elliptical end plate, and the location of the center of 
pressure, measured from the x axis.

0.5 m

1 m

0.5 m

1 m

x

y

4 y2 + x2 = 1

Prob. 9–128

9–129.  Determine the magnitude of the resultant force 
acting on the gate ABC due to hydrostatic pressure. The 
gate has a width of 1.5 m. rw = 1.0 Mg>m3.

B

C

2 m

60�

A

1.25 m

1.5 m

Prob. 9–129

9–130.  The semicircular drainage pipe is filled with water. 
Determine the resultant horizontal and vertical force 
components that the water exerts on the side AB of the 
pipe per foot of pipe length; gw = 62.4 lb>ft3.

B

2 ft

A

Prob. 9–130

9–126.   The parabolic plate is subjected to a fluid pressure 
that varies linearly from 0 at its top to 100 lb>ft at its bottom B. 
Determine the magnitude of the resultant force and its 
location on the plate.

2 ft 2 ft

4 ft

y � x2

y

x

B

Prob. 9–126

9–127.  The 2-m-wide rectangular gate is pinned at its 
center A and is prevented from rotating by the block at B. 
Determine the reactions at these supports due to hydrostatic 
pressure. rw = 1.0 Mg>m3.

6 m

1.5 m

A

B
1.5 m

Prob. 9–127
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Chapter Review

Center of Gravity and Centroid

The center of gravity G represents a point 
where the weight of the body can be 
considered concentrated. The distance 
from an axis to this point can be 
determined from a balance of moments, 
which requires that the moment of the 
weight of all the particles of the body 
about this axis must equal the moment of 
the entire weight of the body about  
the axis.

The center of mass will coincide with 
the center of gravity provided the 
acceleration of gravity is constant.

The centroid is the location of the 
geometric center for the body. It is 
determined in a similar manner, using a 
moment balance of geometric elements 
such as line, area, or volume segments. 
For bodies having a continuous shape, 
moments are summed (integrated) 
using differential elements.

The center of mass will coincide with 
the centroid provided the material is 
homogeneous, i.e., the density of the 
material is the same throughout. The 
centroid will always lie on an axis of 
symmetry.

 x =
L x� dW

LdW

 y =
L y� dW

LdW

 z =
L z� dW

LdW

 x =
LL

x� dL

LL
dL
 y =

LL
y� dL

LL
dL
 z =

LL
z� dL

LL
dL

 x =
LA

x� dA

LA
dA
 y =

LA
y� dA

LA
dA
 z =

LA
z� dA

LA
dA

 x =
LV

x� dV

LV
dV
 y =

LV
y� dV

LA
dV
 z =

LV
z� dV

LV
dV

GdV

~z

z

y
~x

x~y

y

z

x

W

dW

C

y

x
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Composite Body

If the body is a composite of several 
shapes, each having a known location 
for its center of gravity or centroid, then 
the location of the center of gravity or 
centroid of the body can be determined 
from a discrete summation using its 
composite parts.

Theorems of Pappus and Guldinus

The theorems of Pappus and Guldinus 
can be used to determine the surface 
area and volume of a body of revolution.

The surface area equals the product of  
the length of the generating curve and the 
distance traveled by the centroid of the 
curve needed to generate the area.

The volume of the body equals the 
product of the generating area and the 
distance traveled by the centroid of this 
area needed to generate the volume. 

x

y

z
x =

�x�W

�W

y =
�y�W

�W

z =
� z�W

�W

A = urL

V = urA
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General Distributed Loading

The magnitude of the resultant force is 
equal to the total volume under the 
distributed-loading diagram. The line of 
action of the resultant force passes 
through the geometric center or centroid 
of this volume.

FR = LA
p(x, y) dA = LV

dV

x =
LV

x dV

LV
dV

y =
LV

y dV

LV
dV

Fluid Pressure

The pressure developed by a liquid at a 
point on a submerged surface depends 
upon the depth of the point and the 
density of the liquid in accordance with 
Pascal’s law, p = rgh = gh. This pressure 
will create a linear distribution of loading 
on a flat vertical or inclined surface.

P

FR

x y

y
x

dF

p

dVdA

p � p(x, y)

If the surface is horizontal, then the 
loading will be uniform.

In any case, the resultants of these 
loadings can be determined by finding 
the volume under the loading curve or 
using FR = gz A, where z is the depth to 
the centroid of the plate’s area. The line 
of action of the resultant force passes 
through the centroid of the volume of 
the loading diagram and acts at a point P 
on the plate called the center of pressure.
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R9–1.  Locate the centroid x of the area.

R9–2.  Locate the centroid y of the area.

y

x

a

b

xy � c2    

Probs. R9–1/2

R9–3.  Locate the centroid z  of the hemisphere.

y

z

x

a

y2 � z2 � a2

Prob. R9–3

R9–4.  Locate the centroid of the rod.

z

4 ft

2 ft

x
A

4 ft

y

Prob. R9–4

R9–5.  Locate the centroid y of the beam’s cross-sectional 
area.

100 mm

25 mm

25 mm

x

25 mm

y

50 mm 50 mm

y

75 mm75 mm

C

Prob. R9–5

Review Problems
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R9–6.  A circular V-belt has an inner radius of 600 mm and 
a cross-sectional area as shown. Determine the surface area 
of the belt.

R9–7.  A circular V-belt has an inner radius of 600 mm and 
a cross-sectional area as shown. Determine the volume of 
material required to make the belt.

75 mm

50 mm
25 mm 25 mm

600 mm

Probs. R9–6/7

R9–8.  The rectangular bin is filled with coal, which creates 
a pressure distribution along wall A that varies as shown, 
i.e., p = 4z1/3  lb>ft2,   where z is in feet. Determine the 
resultant force created by the coal, and its location, 
measured from the top surface of the coal.

8 ft

3 ft

z

A

z

p � 4z1/3

Prob. R9–8

R9–9.  The gate AB is 8 m wide. Determine the horizontal 
and vertical components of force acting on the pin at B  
and the vertical reaction at the smooth support A; 
rw = 1.0 Mg>m3.

5 m

4 m

3 m

A

B

Prob. R9–9

R9–10.  Determine the magnitude of the resultant 
hydrostatic force acting per foot of length on the seawall; 
gw = 62.4 lb>ft3.

2 ft

8 ft

y

x
y � �2x2

Prob. R9–10
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The design of these structural members requires calculation of their cross-
sectional moment of inertia. In this chapter we will discuss how this is done.

Chapter 10

(© Michael N. Paras/AGE Fotostock/Alamy)



10.1  �Definition of Moments of Inertia 
for Areas

Whenever a distributed load acts perpendicular to an area and its intensity 
varies linearly, the calculation of the moment of the loading about an axis 
will involve an integral of the form 1y2dA . For example, consider the plate 
in Fig. 10–1, which is submerged in a fluid and subjected to the pressure p. 
As discussed in Sec. 9.5, this pressure varies linearly with depth, such that 
p = gy, where g is the specific weight of the fluid. Thus, the force acting 
on the differential area dA  of the plate is dF = p dA = (gy)dA . 
The moment of this force about the x axis is therefore dM = y dF = gy2dA , 
and so integrating dM over the entire area of the plate yields M = g1y2dA . 
The integral 1y2dA  is sometimes referred to as the “second moment” of 
the area about an axis (the x axis), but more often it is called the moment 
of inertia of the area. The word “inertia” is used here since the formulation 
is similar to the mass moment of inertia, 1y2dm , which is a dynamical 
property described in Sec. 10.8. Although for an area this integral has no 
physical meaning, it often arises in formulas used in fluid mechanics, 
mechanics of materials, structural mechanics, and mechanical design, and 
so the engineer needs to be familiar with the methods used to determine  
the moment of inertia.

Moments of Inertia

CHAPTER OBJECTIVES

n	 To develop a method for determining the moment of inertia for 
an area.

n	 To introduce the product of inertia and show how to determine 
the maximum and minimum moments of inertia for an area.

n	 To discuss the mass moment of inertia.

y

x

z

y

dF

dAp � gy

Fig. 10–1
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O
x

y

y

x

r

dA

A

Fig. 10–2

O
x

y

d

dx

dy

x¿

y�

x¿

y¿
dA

C

Fig. 10–3

Moment of Inertia.  By definition, the moments of inertia of a 
differential area dA about the x and y axes are dIx = y2 dA  and 
dIy = x2 dA , respectively, Fig. 10–2. For the entire area A the moments of 
inertia are determined by integration; i.e.,

	
Ix = LA

y2 dA

Iy = LA
x2 dA

	 (10–1)

We can also formulate this quantity for dA about the “pole” O or z axis, 
Fig. 10–2. This is referred to as the polar moment of inertia. It is defined 
as dJO = r2 dA , where r is the perpendicular distance from the pole  
(z axis) to the element dA. For the entire area the polar moment of inertia is

	  JO = LA
r2 dA = Ix + Iy

	 (10–2)

This relation between JO and Ix, Iy is possible since r2 = x2 + y2,  
Fig. 10–2.

From the above formulations it is seen that Ix, Iy, and JO will always be 
positive since they involve the product of distance squared and area. 
Furthermore, the units for moment of inertia involve length raised to the 
fourth power, e.g., m4, mm4, or ft4, in.4.

10.2  Parallel-Axis Theorem for an Area

The parallel-axis theorem can be used to find the moment of inertia of an 
area about any axis that is parallel to an axis passing through the centroid 
and about which the moment of inertia is known. To develop this theorem, 
we will consider finding the moment of inertia of the shaded area shown 
in Fig. 10–3 about the x axis. To start, we choose a differential element dA 
located at an arbitrary distance y � from the centroidal x � axis. If the distance 
between the parallel x and x � axis is dy, then the moment of inertia of dA 
about the x axis is dIx = (y � + dy)

2 dA . For the entire area,

 Ix = LA
(y � + dy)

2 dA

 = LA
y �2 dA + 2dy LA

y � dA + dy
2LA

dA
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The first integral represents the moment of inertia of the area about the 
centroidal axis, Ix�. The second integral is zero since the x � axis passes 
through the area’s centroid C; i.e., 1y � dA = y �1dA = 0 since y � = 0. 
Since the third integral represents the total area A, the final result is 
therefore

	 Ix = Ix� + Ady
2 � (10–3)

A similar expression can be written for Iy; i.e.,

	 Iy = Iy� + Adx
2 � (10–4)

And finally, for the polar moment of inertia, since JC = Ix� + Iy� and 
d2 = d2

x +  d2
y, we have

	 JO = JC + Ad2 � (10–5)

The form of each of these three equations states that the moment of 
inertia for an area about an axis is equal to its moment of inertia about a 
parallel axis passing through the area’s centroid plus the product of the 
area and the square of the perpendicular distance between the axes.

10.3  Radius of Gyration of an Area

The radius of gyration of an area about an axis has units of length and is 
a quantity that is often used for the design of columns in structural 
mechanics. Provided the areas and moments of inertia are known, the radii 
of gyration are determined from the formulas

	 kx = DIx

A

	 ky = DIy

A
� (10–6)

	 kO = DJO

A

The form of these equations is easily remembered since it is similar to 
that for finding the moment of inertia for a differential area about an 
axis. For example, Ix = kx

2A ; whereas for a differential area, dIx = y2 dA .

In order to predict the strength and 
deflection of this beam, it is necessary to 
calculate the moment of inertia of the 
beam’s cross-sectional area. (© Russell 
C. Hibbeler)
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y

(a)

y

x

dy

x

(x, y)

y � f(x)

dA

x

(b)

y

x

y

dx

(x, y)

dA

y � f(x)

Fig. 10–4

Important Points

	 •	 The moment of inertia is a geometric property of an area that is 
used to determine the strength of a structural member or the 
location of a resultant pressure force acting on a plate submerged 
in a fluid. It is sometimes referred to as the second moment of the 
area about an axis, because the distance from the axis to each area 
element is squared.

	 •	 If the moment of inertia of an area is known about its centroidal 
axis, then the moment of inertia about a corresponding parallel 
axis can be determined using the parallel-axis theorem.

Procedure for Analysis

In most cases the moment of inertia can be determined using a 
single integration. The following procedure shows two ways in which 
this can be done.

	 •	 If the curve defining the boundary of the area is expressed as 
y = f(x), then select a rectangular differential element such that 
it has a finite length and differential width.

	 •	 The element should be located so that it intersects the curve at 
the arbitrary point (x, y).

Case 1.
	 •	 Orient the element so that its length is parallel to the axis about 

which the moment of inertia is computed. This situation occurs 
when the rectangular element shown in Fig. 10–4a is used to 
determine Ix for the area. Here the entire element is at a distance y 
from the x axis since it has a thickness dy. Thus Ix = 1y

2
dA . To find 

Iy, the element is oriented as shown in Fig. 10–4b. This element lies 
at the same distance x from the y axis so that Iy = 1x

2
dA .

Case 2.
	 •	 The length of the element can be oriented perpendicular to the 

axis about which the moment of inertia is computed; however, 
Eq. 10–1 does not apply since all points on the element will not lie 
at the same moment-arm distance from the axis. For example, if 
the rectangular element in Fig. 10–4a is used to determine Iy, it 
will first be necessary to calculate the moment of inertia of the 
element about an axis parallel to the y axis that passes through 
the element’s centroid, and then determine the moment of inertia 
of the element about the y axis using the parallel-axis theorem. 
Integration of this result will yield Iy. See Examples 10.2 and 10.3.



	 10.3 R adius of Gyration of an Area	 533

10

example    10.1

Determine the moment of inertia for the rectangular area shown in 
Fig. 10–5 with respect to (a) the centroidal x � axis, (b) the axis xb 
passing through the base of the rectangle, and (c) the pole or z � axis 
perpendicular to the x �9y � plane and passing through the centroid C.

SOLUTION (CASE 1)
Part (a).  The differential element shown in Fig. 10–5 is chosen for 
integration. Because of its location and orientation, the entire element 
is at a distance y � from the x � axis. Here it is necessary to integrate from 
y � = -h>2 to y � = h>2. Since dA = b dy �, then

	  Ix� = LA
y=2 dA = L

h>2

-h>2
y=2(b dy �) = bL

h>2

-h>2
y=2 dy=

	  Ix� =
1

12
 bh3 � Ans.

Part (b).  The moment of inertia about an axis passing through the 
base of the rectangle can be obtained by using the above result of 
part (a) and applying the parallel-axis theorem, Eq. 10–3.

	  Ixb
= Ix� + Ady

2

	  =
1

12
 bh3 + bha h

2
b

2

=
1

3
 bh3 � Ans.

Part (c).  To obtain the polar moment of inertia about point C, we 
must first obtain Iy�, which may be found by interchanging the 
dimensions b and h in the result of part (a), i.e.,

Iy� =
1

12
 hb3

Using Eq. 10–2, the polar moment of inertia about C is therefore

	 JC = Ix� + Iy� =
1

12
 bh(h2 + b2) � Ans.

x¿

y¿

y¿

xb

C

dy¿

b
2

b
2

h
2

h
2

Fig. 10–5
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Determine the moment of inertia for the shaded area shown in  
Fig. 10–6a about the x axis.

SOLUTION I (CASE 1)
A differential element of area that is parallel to the x axis, as shown in 
Fig. 10–6a, is chosen for integration. Since this element has a thickness 
dy and intersects the curve at the arbitrary point (x, y), its area is 
dA = (100 - x) dy. Furthermore, the element lies at the same distance y 
from the x axis. Hence, integrating with respect to y, from y = 0 to 
y = 200 mm, yields

 Ix = LA
y2 dA = L

200 mm

0
y2(100 - x) dy

 = L
200 mm

0
y2a100 -

y2

400
b  dy = L

200 mm

0
a100y2 -

y4

400
b  dy  

 = 107(106) mm4 � Ans.

SOLUTION II (CASE 2)
A differential element parallel to the y axis, as shown in Fig. 10–6b, is 
chosen for integration. It intersects the curve at the arbitrary point  
(x, y). In this case, all points of the element do not lie at the same 
distance from the x axis, and therefore the parallel-axis theorem must 
be used to determine the moment of inertia of the element with respect 
to this axis. For a rectangle having a base b and height h, the moment 
of inertia about its centroidal axis has been determined in part (a) of 
Example 10.1. There it was found that Ix� =

1
12 bh3. For the differential 

element shown in Fig. 10–6b, b = dx and h = y, and thus dIx� =
1

12 dx y3. 
Since the centroid of the element is y� = y >2 from the x axis, the 
moment of inertia of the element about this axis is

dIx = dIx� + dA  y�2 =
1

12
 dx y3 + y dx a y

2
b

2

=
1

3
 y3 dx

(This result can also be concluded from part (b) of Example 10.1.) 
Integrating with respect to x, from x = 0 to x = 100 mm, yields

 Ix = LdIx = L
100 mm

0
 
1

3
 y3 dx = L

100 mm

0
 
1

3
 (400x)3>2 dx

 = 107(106) mm4 � Ans.

example   10.2

x

y

200 mm

100 mm

y

x
dy

y2 � 400x

(a)

(100 – x)

Fig. 10–6

x

y

200 mm

x

y

100 mm

dx

x¿

y2 � 400x

(b)

y �~ y
––
2



	 10.3 R adius of Gyration of an Area	 535

10

Determine the moment of inertia with respect to the x axis for the 
circular area shown in Fig. 10–7a.

x

y

y

x�x

dy

(�x, y)
(x, y)

x2 � y2 � a2

(a)

O

a

SOLUTION I (CASE 1)
Using the differential element shown in Fig. 10–7a, since dA = 2x dy, 
we have

 Ix = LA
y2 dA = LA

y2(2x) dy

	    = L
a

-a
y2122a2 - y22 dy =

pa4

4
 � Ans.

SOLUTION II (CASE 2)
When the differential element shown in Fig. 10–7b is chosen, the 
centroid for the element happens to lie on the x axis, and since 
Ix� =

1
12 bh3 for a rectangle, we have

	  dIx =
1

12
 dx(2y)3

	  =
2

3
 y3 dx

Integrating with respect to x yields

	 Ix = L
a

-a
 
2

3
 (a2 - x2)3>2 dx =

pa4

4
 � Ans.

NOTE: By comparison, Solution I requires much less computation. 
Therefore, if an integral using a particular element appears difficult to 
evaluate, try solving the problem using an element oriented in the 
other direction.

example   10.3

Fig. 10–7

O
x

y

a

(x, y)

(x, �y)
dx

y

�y

(b)

(x, y)~ ~

x2 � y2 � a2
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FUNDAMENTAL PROBLEMS

F10–1.  Determine the moment of inertia of the shaded 
area about the x axis.

y

x

1 m

1 m

y3 � x2

Prob. F10–1

F10–2.  Determine the moment of inertia of the shaded 
area about the x axis.

y

x

1 m

1 m

y3 � x2

Prob. F10–2

F10–3.  Determine the moment of inertia of the shaded 
area about the y axis.

y

x

1 m

1 m

y3 � x2

Prob. F10–3

F10–4.  Determine the moment of inertia of the shaded 
area about the y axis.

y

x

1 m

1 m

y3 � x2

Prob. F10–4
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Problems

10–5.  Determine the moment of inertia for the shaded 
area about the x axis.

10–6.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x

y �x1/2

1 m

1 m

Probs. 10–5/6

10–7.  Determine the moment of inertia for the shaded 
area about the x axis.

*10–8.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x

2 m

1 m

y2 � 1 � 0.5x

Probs. 10–7/8

10–1.  Determine the moment of inertia about the x axis.

10–2.  Determine the moment of inertia about the y axis.

y

x

a

b
y �      xn

an
b

Probs. 10–1/2

10–3.  Determine the moment of inertia for the shaded 
area about the x axis.

*10–4.  Determine the moment of inertia for the shaded 
area about the y axis.

100 mm

200 mm

y

x

y �      x21
50

Probs. 10–3/4
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10–13.  Determine the moment of inertia about the x axis.

10–14.  Determine the moment of inertia about the y axis.

y

x

2 m

1 m

x2 � 4y2 � 4

Probs. 10–13/14

10–15.  Determine the moment of inertia for the shaded 
area about the x axis.

y

x

16 in.

4 in.
y2 � x

Prob. 10–15

*10–16.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x

16 in.

4 in.
y2 � x

Prob. 10–16

10–9.  Determine the moment of inertia of the area about 
the x axis. Solve the problem in two ways, using rectangular 
differential elements: (a) having a thickness dx and  
(b) having a thickness of dy.

y

x

y � 2.5 � 0.1x2

5 ft

2.5 ft

Prob. 10–9

10–10.  Determine the moment of inertia of the area about 
the x axis.

b
x

y

y2 � — x

h

h2

b

Prob. 10–10

10–11.  Determine the moment of inertia for the shaded 
area about the x axis.

*10–12.  Determine the moment of inertia for the shaded 
area about the y axis.

y �      x3

y

8 m

4 m

x

1
8

Probs. 10–11/12
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10–21.  Determine the moment of inertia for the shaded 
area about the x axis.

10–22.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x
2 m

2 m

y2 � 2x

y � x

Probs. 10–21/22

10–23.  Determine the moment of inertia for the shaded 
area about the x axis.

b

x

y

a

y2 � —xb2

a

y �— x2b
a2      

Prob. 10–23

*10–24.  Determine the moment of inertia for the shaded 
area about the y axis.

b

x

y

a

y2 � —xb2

a

y �— x2b
a2      

Prob. 10–24

10–17.  Determine the moment of inertia for the shaded 
area about the x axis.

y

x

h

b

y �       x3  h
b3

Prob. 10–17

10–18.  Determine the moment of inertia for the shaded 
area about the y axis.

y

x

h

b

y �       x3  h
b3

Prob. 10–18

10–19.  Determine the moment of inertia for the shaded 
area about the x axis.

*10–20.  Determine the moment of inertia for the shaded 
area about the y axis.

y

y2 � 1 � x

x

1 m

1 m

1 m

Probs. 10–19/20
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10.4  �Moments of Inertia for  
Composite Areas

A composite area consists of a series of connected “simpler” parts or 
shapes, such as rectangles, triangles, and circles. Provided the moment of 
inertia of each of these parts is known or can be determined about a 
common axis, then the moment of inertia for the composite area about 
this axis equals the algebraic sum of the moments of inertia of all its parts.

For design or analysis of this T-beam, 
engineers must be able to locate the 
centroid of its cross-sectional area, 
and then find the moment of inertia 
of this area about the centroidal axis. 
(© Russell C. Hibbeler)

Procedure for Analysis

The moment of inertia for a composite area about a reference axis 
can be determined using the following procedure.

Composite Parts.
	 •	 Using a sketch, divide the area into its composite parts and 

indicate the perpendicular distance from the centroid of each 
part to the reference axis.

Parallel-Axis Theorem.
	 •	 If the centroidal axis for each part does not coincide with the 

reference axis, the parallel-axis theorem, I = I + Ad2, should be 
used to determine the moment of inertia of the part about the 
reference axis. For the calculation of I, use the table on the inside 
back cover.

Summation.
	 •	 The moment of inertia of the entire area about the reference axis 

is determined by summing the results of its composite parts about 
this axis.

	 •	 If a composite part has an empty region (hole), its moment of 
inertia is found by subtracting the moment of inertia of this region 
from the moment of inertia of the entire part including the region.
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example   10.4

Determine the moment of inertia of the area shown in Fig. 10–8a about 
the x axis.

x

100 mm

75 mm

75 mm

25 mm

–

(b)

x

100 mm

75 mm

75 mm

25 mm

(a)

Fig. 10–8

SOLUTION
Composite Parts.  The area can be obtained by subtracting the circle 
from the rectangle shown in Fig. 10–8b. The centroid of each area is 
located in the figure.
Parallel-Axis Theorem.  The moments of inertia about the x axis 
are  determined using the parallel-axis theorem and the geometric 
properties formulae for circular and rectangular areas Ix =

1
4pr4;

Ix =
1

12bh3, found on the inside back cover.

Circle

 Ix = Ix = + Ady
2

 =
1

4
 p(25)4 + p(25)2(75)2 = 11.4(106) mm4

Rectangle

 Ix = Ix = + Ady
2

 =
1

12
 (100)(150)3 + (100)(150)(75)2 = 112.5(106) mm4

Summation.  The moment of inertia for the area is therefore

 Ix = -11.4(106) + 112.5(106)

 = 101(106) mm4 � Ans.
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example   10.5

Determine the moments of inertia for the cross-sectional area of the 
member shown in Fig. 10–9a about the x and y centroidal axes.

SOLUTION
Composite Parts.  The cross section can be subdivided into the three 
rectangular areas A, B, and D shown in Fig. 10–9b. For the calculation, 
the centroid of each of these rectangles is located in the figure.

Parallel-Axis Theorem.  From the table on the inside back cover, or 
Example 10.1, the moment of inertia of a rectangle about its centroidal 
axis is I =

1
12 bh3. Hence, using the parallel-axis theorem for rectangles A 

and D, the calculations are as follows:

Rectangles A and D

 Ix = Ix� + Ady
2 =

1

12
 (100)(300)3 + (100)(300)(200)2

 = 1.425(109) mm4

 Iy = Iy� + Adx
2 =

1

12
 (300)(100)3 + (100)(300)(250)2

 = 1.90(109) mm4

Rectangle B

 Ix =
1

12
 (600)(100)3 = 0.05(109) mm4

 Iy =
1

12
 (100)(600)3 = 1.80(109) mm4

Summation.  The moments of inertia for the entire cross section 
are thus

 Ix =  2[1.425(109)] + 0.05(109)

 = 2.90(109) mm4 � Ans.

 Iy = 2[1.90(109)] + 1.80(109)

 = 5.60(109) mm4 � Ans.

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C

Fig. 10–9

100 mm

100 mm

x

y

300 mm

300 mm
200 mm

250 mm

200 mm

(b)

A

B

D

250 mm
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F10–5.  Determine the moment of inertia of the beam’s 
cross-sectional area about the centroidal x and y axes.

200 mm

150 mm 150 mm

200 mm

50 mm

50 mm

x

y

Prob. F10–5

F10–6.  Determine the moment of inertia of the beam’s 
cross-sectional area about the centroidal x and y axes.

300 mm

200 mm

30 mm 30 mm

30 mm

30 mm

x

y

Prob. F10–6

F10–7.  Determine the moment of inertia of the  
cross-sectional area of the channel with respect to the y axis.

x

y

50 mm

50 mm

300 mm

50 mm

200 mm

Prob. F10–7

F10–8.  Determine the moment of inertia of the cross-
sectional area of the T-beam with respect to the x � axis 
passing through the centroid of the cross section.

30 mm

150 mm

150 mm

30 mm

y

x¿

Prob. F10–8

FUNDAMENTAL PROBLEMS
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10–25.  Determine the moment of inertia of the composite 
area about the x axis.

10–26.  Determine the moment of inertia of the composite 
area about the y axis.

y

x

6 in.

3 in.

3 in.

3 in.

Probs. 10–25/26

10–27.  The polar moment of inertia for the area is  
 JC = 642 (106) mm4, about the z� axis passing through the 
centroid C. The moment of inertia about the y� axis is  
264 (106) mm4, and the moment of inertia about the x axis is 
938 (106) mm4. Determine the area A.

y

200 mm

C x¿

x

¿

Prob. 10–27

*10–28.  Determine the location y of the centroid of the 
channel’s cross-sectional area and then calculate the 
moment of inertia of the area about this axis.

50 mm

50 mm

x

–y

50 mm

350 mm

250 mm

Prob. 10–28

10–29.  Determine y, which locates the centroidal axis x � 
for the cross-sectional area of the T-beam, and then find the 
moments of inertia Ix� and Iy�.

75 mm

x¿

y¿

C

75 mm

150 mm

20 mm

20 mm
y

Prob. 10–29

PROBLEMS
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10–34.  Determine the moment of inertia of the beam’s 
cross-sectional area about the y axis.

10–35.  Determine y, which locates the centroidal axis x � 
for the cross-sectional area of the T-beam, and then find the 
moment of inertia about the x � axis.

C

x

y

x¿

_
y

x¿

250 mm

50 mm

150 mm
150 mm

25 mm
25 mm

Probs. 10–34/35

*10–36.  Determine the moment of inertia about the x axis.

10–37.  Determine the moment of inertia about the y axis.

150 mm150 mm

y

xC

200 mm

200 mm

20 mm

20 mm

20 mm

Probs. 10–36/37

10–30.  Determine the moment of inertia for the beam’s 
cross-sectional area about the x axis.

10–31.  Determine the moment of inertia for the beam’s 
cross-sectional area about the y axis.

8 in.

y

x
10 in.

3 in.

1 in.

1 in.

1 in.

Probs. 10–30/31

*10–32.  Determine the moment of inertia Ix of the shaded 
area about the x axis.

10–33.  Determine the moment of inertia Ix of the shaded 
area about the y axis.

O
x

150 mm

150 mm100 mm 100 mm

75 mm150 mm

y

Probs. 10–32/33



546 	 Chapter 10    Moments of Inert ia

10

10–42.  Determine the moment of inertia of the beam’s 
cross-sectional area about the x axis.

10–43.  Determine the moment of inertia of the beam’s 
cross-sectional area about the y axis.

*10–44.  Determine the distance y to the centroid C of the 
beam’s cross-sectional area and then compute the moment 
of inertia Ix� about the x � axis.

10–45.  Determine the distance x to the centroid C of the 
beam’s cross-sectional area and then compute the moment 
of inertia Iy� about the y � axis.

170 mm30 mm

30 mm

70 mm

140 mm

30 mm

30 mm

y

x

x¿

y¿

_
x

C

_
y

Probs. 10–42/43/44/45

10–46.  Determine the moment of inertia for the shaded 
area about the x axis.

10–47.  Determine the moment of inertia for the shaded 
area about the y axis.

x

y

3 in. 3 in.

6 in.

3 in.

3 in.

3 in.
2 in.

Probs. 10–46/47

10–38.  Determine the moment of inertia of the shaded 
area about the x axis.

10–39.  Determine the moment of inertia of the shaded 
area about the y axis.

x
6 in.

3 in.

6 in.

y

6 in.

Probs. 10–38/39

*10–40.  Determine the distance y to the centroid of the 
beam’s cross-sectional area; then find the moment of inertia 
about the centroidal x � axis.

10–41.  Determine the moment of inertia for the beam’s 
cross-sectional area about the y axis.

y

x

3 in.
1 in.

1 in.

4 in.

1 in.

y¿

x ¿C

y

3 in.

Probs. 10–40/41
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10–51.  Determine the moment of inertia for the beam’s 
cross-sectional area about the x � axis passing through the 
centroid C of the cross section.

x¿

100 mm
100 mm

200 mm

200 mm

C

25 mm

25 mm

45�

45� 45�

45�

Prob. 10–51

*10–52.  Determine the moment of inertia of the area 
about the x axis.

10–53.  Determine the moment of inertia of the area about 
the y axis.

y

x

3 in. 3 in.

6 in.

4 in.
2 in.

Probs. 10–52/53

*10–48.  Determine the moment of inertia of the 
parallelogram about the x � axis, which passes through the 
centroid C of the area.

y

b
x

C
a

y¿

x¿

u

Prob. 10–48

10–49.  Determine the moment of inertia of the 
parallelogram about the y � axis, which passes through the 
centroid C of the area.

y

b
x

C
a

y¿

x¿

u

Prob. 10–49

10–50.  Locate the centroid y of the cross section and 
determine the moment of inertia of the section about the 
x � axis.

0.2 m

0.05 m

0.4 m

0.2 m 0.2 m 0.2 m
0.3 m

x¿
–y

Prob. 10–50
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*10.5  Product of Inertia for an Area

It will be shown in the next section that the property of an area, called the 
product of inertia, is required in order to determine the maximum and 
minimum moments of inertia for the area. These maximum and minimum 
values are important properties needed for designing structural and 
mechanical members such as beams, columns, and shafts.

The product of inertia of the area in Fig. 10–10 with respect to the 
x and y axes is defined as

	 Ixy = LA
xy dA 	 (10–7)

If the element of area chosen has a differential size in two directions, as 
shown in Fig. 10–10, a double integration must be performed to evaluate 
Ixy. Most often, however, it is easier to choose an element having a 
differential size or thickness in only one direction in which case the 
evaluation requires only a single integration (see Example 10.6).

Like the moment of inertia, the product of inertia has units of length 
raised to the fourth power, e.g., m4, mm4 or ft4, in4. However, since x or y 
may be negative, the product of inertia may either be positive, negative, or 
zero, depending on the location and orientation of the coordinate axes. 
For example, the product of inertia Ixy for an area will be zero if either the 
x or y axis is an axis of symmetry for the area, as in Fig. 10–11. Here every 
element dA located at point (x, y) has a corresponding element dA 
located at (x, -y). Since the products of inertia for these elements are, 
respectively, xy dA and -xy dA , the algebraic sum or integration of all the 
elements that are chosen in this way will cancel each other. Consequently, 
the product of inertia for the total area becomes zero. It also follows from 
the definition of Ixy that the “sign” of this quantity depends on the 
quadrant where the area is located. As shown in Fig. 10–12, if the area is 
rotated from one quadrant to another, the sign of Ixy will change.

x

y

x

y
�y

dA

dA

Fig. 10–11

x

y

x

y

A

dA

Fig. 10–10

The effectiveness of this beam to resist 
bending can be determined once its 
moments of inertia and its product of 
inertia are known. (© Russell C. Hibbeler)
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x

y

yy

�x x

�x

�y �y

xIxy � � xy dA

Ixy � � xy dAIxy �  xy dA

Ixy �  xy dA

Fig. 10–12

Parallel-Axis Theorem.  Consider the shaded area shown in  
Fig. 10–13, where x � and y � represent a set of axes passing through the 
centroid of the area, and x and y represent a corresponding set of parallel 
axes. Since the product of inertia of dA with respect to the x and y axes is 
dIxy = (x � + dx) (y � + dy) dA , then for the entire area,

 Ixy = LA
(x � + dx)(y � + dy) dA

 = LA
x �y � dA + dx LA

y � dA + dy LA
x � dA + dxdy LA

dA

The first term on the right represents the product of inertia for the area 
with respect to the centroidal axes, Ix�y�. The integrals in the second and 
third terms are zero since the moments of the area are taken about the 
centroidal axis. Realizing that the fourth integral represents the entire 
area A, the parallel-axis theorem for the product of inertia becomes

	 Ixy = Ix�y� + Adxdy � (10–8)

It is important that the algebraic signs for dx and dy be maintained 
when applying this equation.

x

y

x¿

y¿

dx

dy

C

dA y¿

x¿

Fig. 10–13
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example   10.6

Determine the product of inertia Ixy for the triangle shown in  
Fig. 10–14a.

SOLUTION I
A differential element that has a thickness dx, as shown in Fig. 10–14b, 
has an area dA = y dx. The product of inertia of this element with 
respect to the x and y axes is determined using the parallel-axis 
theorem.

dIxy = dIx�y� + dA  x� y�

where x�  and y�  locate the centroid of the element or the origin of the 
x �, y � axes. (See Fig. 10–13.) Since dIx�y� = 0, due to symmetry, and 
x� = x, y� = y >2, then

 dIxy = 0 + (y dx)x a y

2
b = a h

b
 x dx bx a h

2b
 x b

 =
h2

2b2 x3 dx

Integrating with respect to x from x = 0 to x = b yields

	 Ixy =
h2

2b2 L
b

0
x3 dx =

b2h2

8
 	 Ans.

SOLUTION II
The differential element that has a thickness dy, as shown in  
Fig. 10–14c, can also be used. Its area is dA = (b - x) dy. The centroid 
is located at point x� = x + (b - x)>2 = (b + x)>2, y� = y, so the 
product of inertia of the element becomes

 dIxy = dIx�y� + dA  x �y�

 = 0 + (b - x) dy a b + x

2
by

 = ab -
b

h
 y bdy c b + (b>h)y

2
d y =

1

2
 y ab2 -

b2

h2 y2b  dy

Integrating with respect to y from y = 0 to y = h yields

	 Ixy =
1

2
 L

h

0
y ab2 -

b2

h2 y2b  dy =
b2h2

8
 � Ans.

x

y

h

b

(a)

Fig. 10–14

x

y

h

b

(x, y)

dx

y

(b)

(x, y)~ ~

y � xh
b

x

y

h

b

(x, y)

dy

y(b � x)

x

(c)

(x, y)~ ~

y � xh
b
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example   10.7

Determine the product of inertia for the cross-sectional area of the 
member shown in Fig. 10–15a, about the x and y centroidal axes.

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C

100 mm

100 mm

x

y

300 mm

300 mm
200 mm

250 mm

200 mm

(b)

A

B

D

250 mm

Fig. 10–15

SOLUTION
As in Example 10.5, the cross section can be subdivided into three 
composite rectangular areas A, B, and D, Fig. 10–15b. The coordinates 
for the centroid of each of these rectangles are shown in the figure. 
Due to symmetry, the product of inertia of each rectangle is zero about 
a set of x �, y � axes that passes through the centroid of each rectangle. 
Using the parallel-axis theorem, we have

Rectangle A

 Ixy = Ix�y� + Adxdy

	  = 0 + (300)(100)(-250)(200) = -1.50(109) mm4

Rectangle B

 Ixy = Ix�y� + Adxdy

 = 0 + 0 = 0

Rectangle D

 Ixy = Ix�y� + Adxdy

 = 0 + (300)(100)(250)(-200) = -1.50(109) mm4

The product of inertia for the entire cross section is therefore

	 Ixy = -1.50(109) + 0 - 1.50(109) = -3.00(109) mm4	 Ans.

NOTE: This negative result is due to the fact that rectangles A and D 
have centroids located with negative x and negative y coordinates, 
respectively.
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*10.6  �Moments of Inertia for an Area 
about Inclined Axes

In structural and mechanical design, it is sometimes necessary to calculate 
the moments and product of inertia Iu, Iv, and Iuv for an area with respect 
to a set of inclined u and v axes when the values for u, Ix, Iy, and Ixy are 
known. To do this we will use transformation equations which relate the 
x, y and u, v coordinates. From Fig. 10–16, these equations are

 u = x cos u + y sin u

 v = y cos u - x sin u

With these equations, the moments and product of inertia of dA about 
the u and v axes become

 dIu = v2 dA = (y cos u - x sin u)2 dA

 dIv = u2  dA = (x cos u + y sin u)2  dA

 dIuv = uv dA = (x cos u + y sin u)(y cos u - x sin u) dA

Expanding each expression and integrating, realizing that Ix = 1y2 dA, 
Iy = 1x2 dA, and Ixy = 1xy dA,  we obtain

 Iu = Ix cos2 u + Iy sin2 u - 2Ixy sin u cos u

 Iv = Ix sin2  u + Iy cos2  u + 2Ixy sin u cos u

 Iuv = Ix sin u cos u - Iy sin u cos u + Ixy(cos2  u - sin2  u)

Using the trigonometric identities sin 2u = 2 sin u cos u and  
cos 2u =  cos2 u - sin2 u we can simplify the above expressions, in which case

	

     Iu =
Ix + Iy

2
+

Ix - Iy

2
 cos 2u - Ixy sin 2u

     Iv =
Ix + Iy

2
-

Ix - Iy

2
 cos 2u + Ixy sin 2u

 Iuv =
Ix - Iy

2
 sin 2u + Ixy cos 2u

	 (10–9)

Notice that if the first and second equations are added together, we can 
show that the polar moment of inertia about the z axis passing through 
point O is, as expected, independent of the orientation of the u and v  
axes; i.e.,

JO = Iu + Iv = Ix + Iy

v

v

x

y

O

u

A

dA

x

y

x cos
u

y cos

y sin

x sin

Fig. 10–16
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Principal Moments of Inertia.  Equations 10–9 show that Iu, Iv, 
and Iuv depend on the angle of inclination, u, of the u, v axes. We will now 
determine the orientation of these axes about which the moments of 
inertia for the area are maximum and minimum. This particular set of axes 
is called the principal axes of the area, and the corresponding moments of 
inertia with respect to these axes are called the principal moments of 
inertia. In general, there is a set of principal axes for every chosen origin O. 
However, for structural and mechanical design, the origin O is located at 
the centroid of the area.

The angle which defines the orientation of the principal axes can be 
found by differentiating the first of Eqs. 10–9 with respect to u and setting 
the result equal to zero. Thus,

dIu

du
= -2a

Ix - Iy

2
b  sin 2u - 2Ixy cos 2u = 0

Therefore, at u = up,

	 tan 2up =
-Ixy

(Ix - Iy)>2 	 (10–10)

The two roots up1
 and up2

 of this equation are 90° apart, and so they each 
specify the inclination of one of the principal axes. In order to substitute 
them into Eq. 10–9, we must first find the sine and cosine of 2up1

 and 2up2
. 

This can be done using these ratios from the triangles shown in Fig. 10–17, 
which are based on Eq. 10–10.

Substituting each of the sine and cosine ratios into the first or second 
of Eqs. 10–9 and simplifying, we obtain

	 Imax
min

=
Ix + Iy

2
{ Ca Ix - Iy

2
b

2

+ Ix y
2 	 (10–11)

Depending on the sign chosen, this result gives the maximum or minimum 
moment of inertia for the area. Furthermore, if the above trigonometric 
relations for up1

 and up2
 are substituted into the third of Eqs. 10–9, it can 

be shown that Iuv = 0; that is, the product of inertia with respect to the 
principal axes is zero. Since it was indicated in Sec. 10.6 that the product 
of inertia is zero with respect to any symmetrical axis, it therefore follows 
that any symmetrical axis represents a principal axis of inertia for the area.

2up2

2up1

Ix � Iy

2( )

Ix � Iy

2( )�

�Ixy

Ixy

Ix � Iy

2( )2

� I2
xy

Fig. 10–17
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x

y

(b)

C

u

v
up1

 � 57.1�

up2
 � �32.9�

Fig. 10–18

example   10.8

Determine the principal moments of inertia and the orientation of 
the principal axes for the cross-sectional area of the member shown in 
Fig. 10–18a with respect to an axis passing through the centroid.

SOLUTION
The moments and product of inertia of the cross section with respect 
to the x, y axes have been determined in Examples 10.5 and 10.7. 
The results are

Ix = 2.90(109) mm4 Iy = 5.60(109) mm4 Ixy = -3.00(109) mm4

Using Eq. 10–10, the angles of inclination of the principal axes u and 
v are

 tan 2up =
-Ixy

(Ix - Iy)>2 =
-[-3.00(109)]

[2.90(109) - 5.60(109)]>2 = -2.22

	  2up = -65.8� and 114.2�

Thus, by inspection of Fig. 10–18b,

	 up2
= -32.9� and up1

= 57.1�	 Ans.

The principal moments of inertia with respect to these axes are 
determined from Eq. 10–11. Hence,

	  I max
min =

Ix + Iy

2
{ Ca Ix - Iy

2
b

2

+ Ixy
2

	  =
2.90(109) + 5.60(109)

2

	  { C c 2.90(109) - 5.60(109)

2
d

2

+ [-3.00(109)]2

	  I 
min
max = 4.25(109) { 3.29(109)

or

	 Imax = 7.54(109) mm4 Imin = 0.960(109) mm4 	 Ans.

NOTE: The maximum moment of inertia, Imax = 7.54(109) mm4, occurs 
with respect to the u axis since by inspection most of the cross-sectional 
area is farthest away from this axis. Or, stated in another manner, Imax 
occurs about the u axis since this axis is located within {45� of the 
y  axis, which has the larger value of I  (Iy 7 Ix). Also, this can be 
concluded by substituting the data with u = 57.1� into the first of 
Eqs.  10–9 and solving for Iu.

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C
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*10.7  �Mohr’s Circle for Moments  
of Inertia

Equations 10–9 to 10–11 have a graphical solution that is convenient to use 
and generally easy to remember. Squaring the first and third of Eqs. 10–9 
and adding, it is found that

a Iu -
Ix + Iy

2
b

2

+ Iuv
2 = a Ix - Iy

2
b

2

+ Ixy
2

Here Ix, Iy, and Ixy are known constants. Thus, the above equation may be 
written in compact form as

(Iu - a)2 + Iuv
2 = R2

When this equation is plotted on a set of axes that represent the 
respective moment of inertia and the product of inertia, as shown in 
Fig. 10–19, the resulting graph represents a circle of radius

 R = Ca Ix - Iy

2
b

2

+ Ixy
2

and having its center located at point (a, 0), where a = (Ix + Iy)>2. The 
circle so constructed is called Mohr’s circle, named after the German 
engineer Otto Mohr (1835–1918).

x

y

u

v

up1

Axis for minor principal
moment of inertia, Imin

Axis for major principal
moment of inertia, Imax

(a)

P

Fig. 10–19

I
O

Imax

Imin

A

(b)

2up1 Ixy

Ixy

Ix

R �
Ix � Iy

2

2

� I2
xy

Ix � Iy

2

Ix � Iy

2
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Fig. 10–19 (Repeated)

Procedure for Analysis

The main purpose in using Mohr’s circle here is to have a convenient 
means for finding the principal moments of inertia for an area. The 
following procedure provides a method for doing this.

Determine Ix, Iy, and Ixy.

	 •	 Establish the x, y axes and determine Ix, Iy, and Ixy, Fig. 10–19a.

Construct the Circle.

	 •	 Construct a rectangular coordinate system such that the 
horizontal axis represents the moment of inertia I, and the 
vertical axis represents the product of inertia Ixy, Fig. 10–19b.

	 •	 Determine the center of the circle, O, which is located at a distance 
(Ix + Iy)>2 from the origin, and plot the reference point A 
having  coordinates (Ix, Ixy). Remember, Ix is always positive, 
whereas Ixy can be either positive or negative.

	 •	 Connect the reference point A with the center of the circle and 
determine the distance OA by trigonometry. This distance 
represents the radius of the circle, Fig. 10–19b. Finally, draw 
the circle.

Principal Moments of Inertia.
	 •	 The points where the circle intersects the I axis give the values 

of the principal moments of inertia Imin and Imax. Notice that, 
as expected, the product of inertia will be zero at these points, 
Fig. 10–19b.

Principal Axes.
	 •	 To find the orientation of the major principal axis, use trigonometry 

to find the angle 2up1
, measured from the radius OA to the positive 

I axis, Fig. 10–19b. This angle represents twice the angle from the 
x axis to the axis of maximum moment of inertia Imax, Fig. 10–19a. 
Both the angle on the circle, 2up1

, and the angle up1
 must be 

measured in the same sense, as shown in Fig. 10–19. The axis for 
minimum moment of inertia Imin is perpendicular to the axis 
for Imax.

x

y

u

v

up1

Axis for minor principal
moment of inertia, Imin

Axis for major principal
moment of inertia, Imax

(a)

P

I
O

Imax

Imin

A

(b)

2up1 Ixy

Ixy

Ix

R �
Ix � Iy

2

2

� I2
xy

Ix � Iy

2

Ix � Iy

2

Using trigonometry, the above procedure can be verified to be in 
accordance with the equations developed in Sec. 10.6.
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O

(c)

A (2.90, �3.00)

Imin � 0.960

Imax � 7.54

2up
1

3.29

Ixy (109) mm4

I (109) mm4

Fig. 10–20

Ixy (109) mm4

I (109) mm4
O

(b)

4.25

2.90
1.35

�3.00

A (2.90, �3.00)

B

Using Mohr’s circle, determine the principal moments of inertia and 
the orientation of the major principal axes for the cross-sectional area 
of the member shown in Fig. 10–20a, with respect to an axis passing 
through the centroid.

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C

x

y

C

u

v
up1

 � 57.1�

(d)

SOLUTION
Determine Ix, Iy, Ixy. The moments and product of inertia have been 
determined in Examples 10.5 and 10.7 with respect to the  
x, y axes shown in Fig. 10–20a. The results are Ix = 2.90(109) mm4, 
Iy = 5.60(109) mm4, and Ixy = -3.00(109) mm4.

Construct the Circle. The I and Ixy axes are shown in Fig. 10–20b. 
The  center of the circle, O, lies at a distance (Ix + Iy)>2 =  
(2.90 +  5.60)>2 = 4.25 from the origin. When the reference point 
A (Ix, Ixy) or A (2.90,-3.00) is connected to point O, the radius OA is 
determined from the triangle OBA using the Pythagorean theorem.

	  OA = 2(1.35)2 + (-3.00)2 = 3.29

The circle is constructed in Fig. 10–20c.
Principal Moments of Inertia.  The circle intersects the I axis at 
points (7.54, 0) and (0.960, 0). Hence,

	  Imax = (4.25 + 3.29)109 = 7.54(109) mm4 	 Ans.

	  Imin = (4.25 - 3.29)109 = 0.960(109) mm4 	 Ans.

Principal Axes.   As shown in Fig. 10–20c, the angle 2up1
 is determined 

from the circle by measuring counterclockwise from OA to the 
direction of the positive I axis. Hence,

2up1
= 180� - sin-1a � BA �

� OA �
b = 180� - sin-1a 3.00

3.29
b = 114.2�

The principal axis for Imax = 7.54(109) mm4 is therefore oriented at an 
angle up1

= 57.1�, measured counterclockwise, from the positive x axis 
to the positive u axis. The v axis is perpendicular to this axis. The results 
are shown in Fig. 10–20d.

example   10.9
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10–54.  Determine the product of inertia of the thin strip of 
area with respect to the x and y axes. The strip is oriented at 
an angle u from the x axis. Assume that t V l.

u

y

x

l

t

Prob. 10–54

10–55.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

y �      x31
9

3 in.
x

3 in.

y

Prob. 10–55

*10–56.  Determine the product of inertia for the shaded 
portion of the parabola with respect to the x and y axes.

200 mm

100 mm

x

y

y � x21
50

Prob. 10–56

Problems

10–57.  Determine the product of inertia of the shaded 
area with respect to the x and y axes, and then use the 
parallel-axis theorem to find the product of inertia of the 
area with respect to the centroidal x � and y � axes.

y2 � x

2 m

y y¿

x

4 m

C
x¿

Prob. 10–57

10–58.  Determine the product of inertia for the parabolic 
area with respect to the x and y axes.

y

x

a

b

y � x1/2b
a1/2

Prob. 10–58

10–59.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

x

y

O
a

a

y � (a2 – x2 )2
11

Prob. 10–59
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*10–60.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

2 in.

2 in.

y

x

x2 + y2 � 4

Prob. 10–60

10–61.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

x

y

2 in.

y � 0.25x 2
1 in.

Prob. 10–61

10–62.  Determine the product of inertia for the beam’s 
cross-sectional area with respect to the x and y axes.

8 in.

y

x
12 in.

3 in.
1 in.

1 in.

1 in.

Prob. 10–62

10–63.  Determine the moments of inertia of the shaded 
area with respect to the u and v axes.

y

x

v
u

0.5 in.

0.5 in.
0.5 in.

1 in. 4 in.

5 in.
30�

Prob. 10–63

*10–64.  Determine the product of inertia for the beam’s 
cross-sectional area with respect to the u and v axes.

150 mm

150 mm

y

x

u

C

200 mm
20 mm

20 mm

20�

v

Prob. 10–64
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10–65.  Determine the product of inertia for the shaded 
area with respect to the x and y axes.

y

x

4 in.

2 in.

1 in.

2 in.2 in.

Prob. 10–65

10–66.  Determine the product of inertia of the cross-
sectional area with respect to the x and y axes.

400 mm

100 mm

20 mm

20 mm

400 mm

x

y

100 mm

20 mm

C

Prob. 10–66

10–67.  Determine the location (x , y ) to the centroid C of 
the angle’s cross-sectional area, and then compute the 
product of inertia with respect to the x � and y � axes.

150 mm 18 mm

150 mm 

18 mm

y y¿

C x¿

x
y

x

Prob. 10–67

*10–68.  Determine the distance y  to the centroid of the 
area and then calculate the moments of inertia Iu  and Iv  of 
the channel’s cross-sectional area. The u and v axes have 
their origin at the centroid C. For the calculation, assume all 
corners to be square.

150 mm150 mm

y

x

u

50 mm

10 mm

10 mm10 mm

y–
20�C

v

Prob. 10–68
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10–69.  Determine the moments of inertia Iu, Iv and the 
product of inertia Iuv for the beam’s cross-sectional area. 
Take u = 45°.

y

x

v u

16 in.

O
8 in.

2 in. 2 in.
8 in. 2 in.

u

Prob. 10–69

10–70.  Determine the moments of inertia Iu, Iv and the 
product of inertia Iuv for the rectangular area. The u and v 
axes pass through the centroid C.

10–71.  Solve Prob. 10–70 using Mohr’s circle. Hint: To 
solve, find the coordinates of the point P(Iu, Iuv) on the 
circle, measured counterclockwise from the radial line OA. 
(See Fig. 10–19.) The point Q(Iv, -Iuv) is on the opposite 
side of the circle.

x

u

v

y

30 mm

120 mm

C

30�

Probs. 10–70/71

*10–72.  Determine the directions of the principal axes 
having an origin at point O, and the principal moments of 
inertia for the triangular area about the axes.

10–73.  Solve Prob. 10–72 using Mohr’s circle.

9 in.

6 in.

O

y

x

Probs. 10–72/73

10–74.  Determine the orientation of the principal axes 
having an origin at point C, and the principal moments of 
inertia of the cross section about these axes.

10–75.  Solve Prob. 10–74 using Mohr’s circle.

x

10 mm

10 mm

100 mm

100 mm

80 mm

80 mm

y

C

Probs. 10–74/75
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*10–80.  Determine the moments and product of inertia 
for the shaded area with respect to the u and v axes.

10–81.  Solve Prob. 10–80 using Mohr’s circle.

y

x

v

u
10 mm

10 mm

10 mm

20 mm
120 mm

120 mm

60�

Probs. 10–80/81

10–82.  Determine the directions of the principal axes with 
origin located at point O, and the principal moments of 
inertia for the area about these axes.

10–83.  Solve Prob. 10–82 using Mohr’s circle.

y

x

4 in.

2 in.

1 in.

2 in.2 in.

O

Probs. 10–82/83

*10–76.  Determine the orientation of the principal axes 
having an origin at point O, and the principal moments of 
inertia for the rectangular area about these axes.

10–77.  Solve Prob. 10–76 using Mohr’s circle.

O x

y

3 in.

6 in.

Probs. 10–76/77

10–78.  The area of the cross section of an airplane wing 
has the following properties about the x and y axes passing 
through the centroid C: Ix = 450 in4, Iy = 1730 in4, 
Ixy = 138 in4. Determine the orientation of the principal 
axes and the principal moments of inertia.

10–79.  Solve Prob. 10–78 using Mohr’s circle.

y

x
C

Probs. 10–78/79
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10.8  Mass Moment of Inertia

The mass moment of inertia of a body is a measure of the body’s resistance 
to angular acceleration. Since it is used in dynamics to study rotational 
motion, methods for its calculation will now be discussed.*

Consider the rigid body shown in Fig. 10–21. We define the mass 
moment of inertia of the body about the z axis as

	 I = Lm
r    2 dm	 (10–12)

Here r is the perpendicular distance from the axis to the arbitrary 
element dm. Since the formulation involves r, the value of I is unique for 
each axis about which it is computed. The axis which is generally chosen, 
however, passes through the body’s mass center G. Common units used 
for its measurement are kg # m2 or slug # ft2.

If the body consists of material having a density r, then dm = r dV , 
Fig. 10–22a. Substituting this into Eq. 10–12, the body’s moment of inertia 
is then computed using volume elements for integration; i.e.,

	 I = LV
r   2r dV 	 (10–13)

For most applications, r will be a constant, and so this term may be 
factored out of the integral, and the integration is then purely a function 
of geometry.

	 I = rLV
r   2 dV 	 (10–14)

z

y

x

dm � rdV

(x, y, z)

(a)

Fig. 10–22

*Another property of the body, which measures the symmetry of the body’s mass with 
respect to a coordinate system, is the mass product of inertia. This property most often 
applies to the three-dimensional motion of a body and is discussed in Engineering 
Mechanics: Dynamics (Chapter 21).

r

dm

z

Fig. 10–21
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y

z

(x, y)

(b)

z

x

y dy

	 (c)

z

y

x

z

(x,y)

dzy

Fig. 10–22  (cont’d)

Procedure for Analysis

If a body is symmetrical with respect to an axis, as in Fig. 10–22, then 
its mass moment of inertia about the axis can be determined by using 
a single integration. Shell and disk elements are used for this purpose.

Shell Element.
	 •	 If a shell element having a height z, radius y, and thickness dy  

is chosen for integration, Fig. 10–22b, then its volume is 
dV = (2py)(z) dy.

	 •	 This element can be used in Eq. 10–13 or 10–14 for determining 
the moment of inertia Iz of the body about the z axis since the 
entire element, due to its “thinness,” lies at the same perpendicular 
distance r = y from the z axis (see Example 10.10).

Disk Element.
	 •	 If a disk element having a radius y and a thickness dz is chosen 

for integration, Fig. 10–22c, then its volume is dV = (py2) dz.

	 •	 In this case the element is finite in the radial direction, and 
consequently its points do not all lie at the same radial distance r 
from the z axis. As a result, Eqs. 10–13 or 10–14 cannot be used to 
determine Iz. Instead, to perform the integration using this 
element, it is first necessary to determine the moment of inertia 
of the element about the z axis and then integrate this result (see 
Example 10.11).
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Determine the mass moment of inertia of the cylinder shown in  
Fig. 10–23a about the z axis. The density of the material, r, is constant.

	

y

z

x

R

O

(a)

h
2

h
2

	

z

r
dr

y

x

(b)

O

h
2

h
2

Fig. 10–23 

Solution
Shell Element.  This problem will be solved using the shell element 
in Fig. 10–23b and thus only a single integration is required. The  
volume of the element is dV = (2pr)(h) dr, and so its mass is 
dm = r dV = r(2phr dr). Since the entire element lies at the same 
distance r from the z axis, the moment of inertia of the element is

dIz = r2 dm = r2phr3 dr

Integrating over the entire cylinder yields

Iz = Lm
r2 dm = r2phL

R

0
r3 dr =

rp

2
 R4h

Since the mass of the cylinder is

m = Lm
dm = r2phL

R

0
r dr = rphR2

then

	 Iz =
1

2
 mR2 	 Ans.

Example   10.10
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If the density of the solid in Fig. 10–24a is 5 slug>ft3, determine the mass 
moment of inertia about the y axis.

x

1 ft

y2 � x

(a)

y

	

y

1 ft

x
1 ft

y

dy

(x, y)

(b)

Fig. 10–24 

Solution
Disk Element.  The moment of inertia will be determined using this 
disk element, as shown in Fig. 10–24b. Here the element intersects the 
curve at the arbitrary point (x, y) and has a mass

dm = r dV = r(px2) dy

Although all points on the element are not located at the same 
distance from the y axis, it is still possible to determine the moment of 
inertia dIy of the element about the y axis. In the previous example it 
was shown that the moment of inertia of a homogeneous cylinder 
about its longitudinal axis is I =

1
2 mR2, where m and R are the mass 

and radius of the cylinder. Since the height of the cylinder is not 
involved in this formula, we can also use this result for a disk. Thus, for 
the disk element in Fig. 10–24b, we have

dIy =
1

2
 (dm)x2 =

1

2
 [r(px2) dy]x2

Substituting x = y2, r = 5 slug>ft3, and integrating with respect to y, 
from y = 0 to y = 1 ft, yields the moment of inertia for the entire solid.

	 Iy =
5p

2
 L

1 ft

0
x4 dy =

5p

2
 L

1 ft

0
y8 dy = 0.873 slug # ft2	 Ans.

Example   10.11
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Parallel-Axis Theorem.  If the moment of inertia of the body 
about an axis passing through the body’s mass center is known, then the 
moment of inertia about any other parallel axis can be determined by 
using the parallel-axis theorem. To derive this theorem, consider the body 
shown in Fig. 10–25. The z� axis passes through the mass center G, 
whereas the corresponding parallel z axis lies at a constant distance d 
away. Selecting the differential element of mass dm, which is located at 
point (x�, y�), and using the Pythagorean theorem, r2 = (d + x�)2 + y�2, 
the moment of inertia of the body about the z axis is

	  I = Lm
r2 dm = Lm

[(d + x�)2 + y�2] dm

	  = Lm
(x�2 + y�2) dm + 2dLm

x� dm + d2Lm
dm

Since r�2 = x�2 + y�2, the first integral represents IG. The second integral 
is equal to zero, since the z� axis passes through the body’s mass center, 
i.e., 1x� dm = x1dm = 0 since x = 0. Finally, the third integral is the 
total mass m of the body. Hence, the moment of inertia about the z axis 
becomes

	 I = IG + md2 	 (10–15)

where

 IG = moment of inertia about the z� axis passing through the mass 
center G

 m = mass of the body

 d = distance between the parallel axes

y¿

x¿

z z¿

y¿r¿

x¿d

r

dm

A G

Fig. 10–25 
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Radius of Gyration.  Occasionally, the moment of inertia of a body 
about a specified axis is reported in handbooks using the radius of 
gyration, k. This value has units of length, and when it and the body’s mass m 
are known, the moment of inertia can be determined from the equation

	 I = mk2 or k = A I
m

	 (10–16)

Note the similarity between the definition of k in this formula and r in 
the equation dI = r2 dm, which defines the moment of inertia of a 
differential element of mass dm of the body about an axis.

Composite Bodies.  If a body is constructed from a number of 
simple shapes such as disks, spheres, and rods, the moment of inertia of 
the body about any axis z can be determined by adding algebraically the 
moments of inertia of all the composite shapes calculated about the same 
axis. Algebraic addition is necessary since a composite part must be 
considered as a negative quantity if it has already been included within 
another part—as in the case of a “hole” subtracted from a solid plate. 
Also, the parallel-axis theorem is needed for the calculations if the center 
of mass of each composite part does not lie on the z axis. For calculations, 
a table of some simple shapes is given on the inside back cover.

This flywheel, which operates a metal 
cutter, has a large moment of inertia 
about its center. Once it begins 
rotating it is difficult to stop it and 
therefore a uniform motion can be 
effectively transferred to the cutting 
blade. (© Russell C. Hibbeler)
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If the plate shown in Fig. 10–26a has a density of 8000 kg>m3 and a 
thickness of 10 mm, determine its mass moment of inertia about an axis 
perpendicular to the page and passing through the pin at O.

Example   10.12

O

0.25 m
0.125 m

G

(a)

Thickness 0.01 m

	

0.25 m

G G– 0.125 m

(b)

Fig. 10–26 

Solution
The plate consists of two composite parts, the 250-mm-radius disk 
minus a 125-mm-radius disk, Fig. 10–26b. The moment of inertia  
about O can be determined by finding the moment of inertia of each 
of these parts about O and then algebraically adding the results. The 
calculations are performed by using the parallel-axis theorem in 
conjunction with the mass moment of inertia formula for a circular 
disk, IG =

1
2 mr2, as found on the inside back cover.

Disk.  The moment of inertia of a disk about an axis perpendicular 
to the plane of the disk and passing through G is IG =

1
2 mr2. The mass 

center of both disks is 0.25 m from point O. Thus,

	  md = rdVd = 8000 kg>m3 [p(0.25 m)2(0.01 m)] = 15.71 kg

	  (IO)d =
1
2 mdrd

2 + mdd
2

	  =
1
2(15.71 kg)(0.25 m)2 + (15.71 kg)(0.25 m)2

	  = 1.473 kg # m2

Hole.  For the smaller disk (hole), we have

	  mh = rhVh = 8000 kg>m3 [p(0.125 m)2(0.01 m)] = 3.93 kg

	  (IO)h =
1
2 mhrh

2 + mhd
2

	  =
1
2(3.93 kg)(0.125 m)2 + (3.93 kg)(0.25 m)2

	  = 0.276 kg # m2

The moment of inertia of the plate about the pin is therefore

	  IO = (IO)d - (IO)h 	

	  = 1.473 kg # m2 - 0.276 kg # m2	

	  = 1.20 kg # m2 	 Ans.
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Example   10.13

The pendulum in Fig. 10–27 consists of two thin rods each having a 
weight of 10 lb. Determine the pendulum’s mass moment of inertia 
about an axis passing through (a) the pin at O, and (b) the mass center G 
of the pendulum.

SOLUTION
Part (a). Using the table on the inside back cover, the moment of 
inertia of rod OA about an axis perpendicular to the page and passing 
through the end point O of the rod is IO =

1
3 ml2. Hence,

(IOA)O =
1

3
 ml2 =

1

3
 a 10 lb

32.2 ft>s2 b (2 ft)2 = 0.414 slug # ft2

Realize that this same value may be determined using IG =
1

12 ml2 and 
the parallel-axis theorem; i.e.,

 (IOA)O =
1

12
 ml2 + md2 =

1

12
 a 10 lb

32.2 ft>s2 b (2 ft)2 +
10 lb

32.2 ft>s2 (1 ft)2

 = 0.414 slug # ft2

For rod BC we have

 (IBC)O =
1

12
 ml2 + md2 =

1

12
 a 10 lb

32.2 ft>s2 b (2 ft)2 +
10 lb

32.2 ft>s2 (2 ft)2

 = 1.346 slug # ft2

The moment of inertia of the pendulum about O is therefore

	 IO = 0.414 + 1.346 = 1.76 slug # ft2	 Ans.

Part (b).  The mass center G will be located relative to the pin at O. 
Assuming this distance to be y, Fig. 10–27, and using the formula for 
determining the mass center, we have

y =
�y�m

�m
=

1(10>32.2) + 2(10>32.2)

(10>32.2) + (10>32.2)
= 1.50 ft

The moment of inertia IG may be computed in the same manner as IO, 
which requires successive applications of the parallel-axis theorem in 
order to transfer the moments of inertia of rods OA and BC to G. 
A more direct solution, however, involves applying the parallel-axis 
theorem using the result for IO determined above; i.e.,

IO = IG + md2;     1.76 slug # ft2 = IG + a 20 lb

32.2 ft>s2 b (1.50 ft)2

	  IG = 0.362 slug # ft2 	 Ans.

2 ft

y–

O

G

A
B C

1 ft 1 ft

Fig. 10–27
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*10–84.  Determine the moment of inertia of the thin ring 
about the z axis. The ring has a mass m.

x

y

R

Prob. 10–84

10–85.  Determine the moment of inertia of the ellipsoid 
with respect to the x axis and express the result in terms of 
the mass m of the ellipsoid. The material has a constant 
density r.

y

x

y

b

x

a
��

a

b

Prob. 10–85

10–86.  Determine the radius of gyration kx of the 
paraboloid. The density of the material is r = 5 Mg>m3.

y

x

100 mm

y2 � 50 x

200 mm

Prob. 10–86

10–87.  The paraboloid is formed by revolving the shaded 
area around the x axis. Determine the moment of inertia about 
the x axis and express the result in terms of the total mass m of 
the paraboloid. The material has a constant density r.

	

y

x

a

 a2
–
h xy2 =

h 	 Prob. 10–87

*10–88.  Determine the moment of inertia of the homogenous 
triangular prism with respect to the y axis. Express the result 
in terms of the mass m of the prism. Hint: For integration, 
use thin plate elements parallel to the x–y plane having a 
thickness of dz.

	

x

y

z

�h
a (x � a)z �

h

ab

	 Prob. 10–88

10–89.  Determine the moment of inertia of the semiellipsoid 
with respect to the x axis and express the result in terms of 
the mass m of the semiellipsoid. The material has a constant 
density r.

	

y

x

b

y2

–
b2

x2

–
a2 � 1�

a 	 Prob. 10–89

Problems
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10–90.  Determine the radius of gyration kx of the solid 
formed by revolving the shaded area about x axis. The 
density of the material is r.

y

x

h

a

yn�      x
a
hn

Prob. 10–90

10–91.  The concrete shape is formed by rotating the 
shaded area about the y axis. Determine the moment of 
inertia Iy. The specific weight of concrete is g = 150 lb>ft3.

y

x

8 in.

6 in. 4 in.

2––
9 x2y �

Prob. 10–91

*10–92.  Determine the moment of inertia Ix of the sphere 
and express the result in terms of the total mass m of the 
sphere. The sphere has a constant density r.

x

y

r

x2 � y2 � r2

Prob. 10–92

10–93.  The right circular cone is formed by revolving the 
shaded area around the x axis. Determine the moment of 
inertia Ix and express the result in terms of the total mass m 
of the cone. The cone has a constant density r.

y

x

r

 r–
h xy �

h

Prob. 10–93

10–94.  Determine the mass moment of inertia Iy of the 
solid formed by revolving the shaded area around the y axis. 
The total mass of the solid is 1500 kg.

y

x

z

4 m

2 mz2 �      y31––
16

O

Prob. 10–94
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10–95.  The slender rods have a mass of 4 kg>m. Determine 
the moment of inertia of the assembly about an axis 
perpendicular to the page and passing through point A.

A

100 mm 100 mm

200 mm

Prob. 10–95

*10–96.  The pendulum consists of a 8-kg circular disk A, a 
2-kg circular disk B, and a 4-kg slender rod. Determine the 
radius of gyration of the pendulum about an axis 
perpendicular to the page and passing through point O.

O

0.5 m1 m
0.4 m 0.2 m

A
B

Prob. 10–96

10–97.  Determine the moment of inertia Iz of the frustum 
of the cone which has a conical depression. The material has 
a density of 200 kg>m3.

z

0.8 m
0.6 m

0.2 m

0.4 m

Prob. 10–97

10–98.  The pendulum consists of the 3-kg slender rod and 
the 5-kg thin plate. Determine the location y of the center 
of mass G of the pendulum; then find the mass moment of 
inertia of the pendulum about an axis perpendicular to the 
page and passing through G.

G

2 m

1 m

0.5 m

O

–y

Prob. 10–98
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10–102.  Determine the mass moment of inertia of the 
assembly about the z axis. The density of the material is  
7.85 Mg>m3.

z

yx

450 mm

300 mm

300 mm

100 mm

Prob. 10–102

10–103.  Each of the three slender rods has a mass m. 
Determine the moment of inertia of the assembly about an 
axis that is perpendicular to the page and passes through 
the center point O.

O

a

aa

Prob. 10–103

10–99.  Determine the mass moment of inertia of the thin 
plate about an axis perpendicular to the page and passing 
through point O. The material has a mass per unit area of  
20 kg>m2.

400 mm

150 mm

400 mm

O

50 mm

50 mm
150 mm

150 mm 150 mm

Prob. 10–99

*10–100.  The pendulum consists of a plate having a weight 
of 12 lb and a slender rod having a weight of 4 lb. Determine 
the radius of gyration of the pendulum about an axis 
perpendicular to the page and passing through point O.

O

2 ft3 ft

1 ft

1 ft

Prob. 10–100

10–101.  If the large ring, small ring and each of the spokes 
weigh 100 lb, 15 lb, and 20 lb, respectively, determine the 
mass moment of inertia of the wheel about an axis 
perpendicular to the page and passing through point A.

A

O

1 ft

4 ft

Prob. 10–101
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*10–108.  The pendulum consists of two slender rods AB 
and OC which have a mass of 3 kg>m. The thin plate has a 
mass of 12 kg>m2. Determine the location y  of the center of 
mass G of the pendulum, then calculate the moment of 
inertia of the pendulum about an axis perpendicular to the 
page and passing through G.

A B

0.1 m

0.3 m

C

G

O

1.5 m

y–

0.4 m 0.4 m

Prob. 10–108

10–109.  Determine the moment of inertia Iz of the frustum 
of the cone which has a conical depression. The material has 
a density of 200 kg>m3.

z

200 mm

800 mm

600 mm

400 mm

Prob. 10–109

*10–104.  The thin plate has a mass per unit area of 10 kg>m2. 
Determine its mass moment of inertia about the y axis.

10–105.  The thin plate has a mass per unit area of 10 kg>m2. 
Determine its mass moment of inertia about the z axis.

200 mm

200 mm

200 mm

200 mm

200 mm

200 mm

200 mm

200 mm

z

y
x

100 mm

100 mm

Probs. 10–104/105

10–106.  Determine the moment of inertia of the assembly 
about an axis that is perpendicular to the page and passes 
through the center of mass G. The material has a specific 
weight of g = 90 lb>ft3.
10–107.  Determine the moment of inertia of the assembly 
about an axis that is perpendicular to the page and passes 
through point O. The material has a specific weight of 
g = 90 lb>ft3.

O

1 ft

2 ft

0.5 ft

G

0.25 ft

1 ft

Probs. 10–106/107
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Chapter Review

Area Moment of Inertia

The area moment of inertia represents 
the second moment of the area about an 
axis. It is frequently used in formulas 
related to the strength and stability of 
structural members or mechanical 
elements.

If the area shape is irregular but can  
be described mathematically, then a 
differential element must be selected 
and integration over the entire area 
must be performed to determine the 
moment of inertia.

Product of Inertia

The product of inertia of an area is used in 
formulas to determine the orientation of 
an axis about which the moment of inertia 
for the area is a maximum or minimum.

If the product of inertia for an area is 
known with respect to its centroidal x�, y� 
axes, then its value can be determined with 
respect to any x, y axes using the parallel-
axis theorem for the product of inertia.

x

y

y

x

dx

y � f(x)

dA

Iy = LA
x2 dA

Parallel-Axis Theorem

If the moment of inertia for an area is 
known about a centroidal axis, then its 
moment of inertia about a parallel axis 
can be determined using the parallel-
axis theorem.

d

C

A

I

I

x x

–

Composite Area

If an area is a composite of common 
shapes, as found on the inside back cover, 
then its moment of inertia is equal to the 
algebraic sum of the moments of inertia 
of each of its parts.

O
x

y

d

dx

dy

x¿

y�

x¿

y¿
dA

C

Ixy = LA
xy dA

Ixy = Ix�y� + Adxdy

I = I + Ad2
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Principal Moments of Inertia

Provided the moments of inertia, Ix and 
Iy, and the product of inertia, Ixy, are 
known, then the transformation formulas, 
or Mohr’s circle, can be used to determine 
the maximum and minimum or principal 
moments of inertia for the area, as well as 
finding the orientation of the principal 
axes of inertia.

Imax 
min 

=
Ix + Iy

2
{ Ca Ix - Iy

2
b

2

+ Ixy
2

tan 2up =
- Ixy

(Ix - Iy)>2

Mass Moment of Inertia

The mass moment of inertia is a property 
of a body that measures its resistance to a 
change in its rotation. It is defined as the 
“second moment” of the mass elements 
of the body about an axis.

For homogeneous bodies having axial 
symmetry, the mass moment of inertia 
can be determined by a single integration, 
using a disk or shell element.

The mass moment of inertia of a 
composite body is determined by using 
tabular values of its composite shapes, 
found on the inside back cover, along 
with the parallel-axis theorem.

I = Lm
r2 dm

r

dm

z

I = rLV
r2 dV

z

y

x

z

(x,y)

dzy

I = IG + md2

y

z

(x, y)

z

x

y dy
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R10–1.  Determine the moment of inertia for the shaded 
area about the x axis.

y

x

4 in.

2 in.y �      x3
32
1

Prob. R10–1

R10–2.  Determine the moment of inertia for the shaded 
area about the x axis.

y

4y � 4 � x2

1 ft

x
2 ft

Prob. R10–2

R10–3.  Determine the area moment of inertia of the 
shaded area about the y axis.

y

4y � 4 � x2

1 ft

x
2 ft

Prob. R10–3

R10–4.  Determine the area moment of inertia of the area 
about the x axis. Then, using the parallel-axis theorem, find 
the area moment of inertia about the x � axis that passes 
through the centroid C of the area. y = 120 mm.

1–––
200

200 mm

200 mm

y

x

x¿
–y

C

y �      x2

Prob. R10–4

Review Problems  
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R10–7.  Determine the area moment of inertia of the 
beam’s cross-sectional area about the x axis which passes 
through the centroid C.

x

y

d
2

d
2

d
2

d
2 60�

60�
C

Prob. R10–7

R10–8.  Determine the mass moment of inertia Ix  of the 
body and express the result in terms of the total mass m of 
the body. The density is constant.

y

x

2b

b–a x � by �

a

z

b

Prob. R10–8

R10–5.  Determine the area moment of inertia of the 
triangular area about (a) the x axis, and (b) the centroidal  
x � axis.

y

x

x¿
h

b

Ch–3

Prob. R10–5

R10–6.  Determine the product of inertia of the shaded 
area with respect to the x and y axes.

y � x3

y

1 m

1 m

x

Prob. R10–6



Equilibrium and stability of this scissors lift as a function of its position 
can be determined using the methods of work and energy, which are 

explained in this chapter. 

Chapter 11

(© John Kershaw/Alamy)



11.1  Definition of Work

The principle of virtual work was proposed by the Swiss mathematician 
Jean Bernoulli in the eighteenth century. It provides an alternative method 
for solving problems involving the equilibrium of a particle, a rigid body, 
or a system of connected rigid bodies. Before we discuss this principle, 
however, we must first define the work produced by a force and by a 
couple moment.

Work of a Force.  A force does work when it undergoes a displacement 
in the direction of its line of action. Consider, for example, the force F in  
Fig. 11–1a that undergoes a differential displacement dr. If u is the angle 
between the force and the displacement, then the component of F in  

Virtual Work

CHAPTER OBJECTIVES

n	 To introduce the principle of virtual work and show how it applies 
to finding the equilibrium configuration of a system of pin-
connected members.

n	 To establish the potential-energy function and use the potential-
energy method to investigate the type of equilibrium or stability 
of a rigid body or system of pin-connected members.
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the direction of the displacement is F cos u. And so the work produced  
by F is

dU = F dr cos u

Notice that this expression is also the product of the force F and the 
component of displacement in the direction of the force, dr cos u,  
Fig. 11–1b. If we use the definition of the dot product (Eq. 2–11) the 
work can also be written as

dU = F # dr

As the above equations indicate, work is a scalar, and like other scalar 
quantities, it has a magnitude that can either be positive or negative.

In the SI system, the unit of work is a joule (J), which is the work 
produced by a 1-N force that displaces through a distance of 1 m in the 
direction of the force (1 J = 1 N # m). The unit of work in the FPS system 
is the foot-pound (ft # lb), which is the work produced by a 1-lb force 
that displaces through a distance of 1 ft in the direction of  
the force.

The moment of a force has this same combination of units; however, 
the concepts of moment and work are in no way related. A moment is a 
vector quantity, whereas work is a scalar.

Work of a Couple Moment.  The rotation of a couple moment 
also produces work. Consider the rigid body in Fig. 11–2, which is acted 
upon by the couple forces F and –F that produce a couple moment M 
having a magnitude M = Fr. When the body undergoes the differential 
displacement shown, points A  and B move drA  and drB to their final 
positions A� and B�, respectively. Since drB = drA + dr�, this movement 
can be thought of as a translation drA , where A and B move to A�  
and B �, and a rotation about A�, where the body rotates through the angle 
du about A. The couple forces do no work during the translation drA  
because each force undergoes the same amount of displacement  
in opposite directions, thus canceling out the work. During  
rotation, however, F is displaced dr� = r du, and so it does work 
dU = F dr� = F r du. Since M = Fr, the work of the couple moment M 
is therefore

dU = Mdu

If M and du have the same sense, the work is positive; however, if they 
have the opposite sense, the work will be negative.

F

dr
F cos

(a)

u
u

F

–F A
A¿

B–
dr¿

drA

drA

drB
B¿

B

r du

Fig. 11–2

F

dr

dr cos u

(b)

u

Fig. 11–1
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Virtual Work.  The definitions of the work of a force and a couple 
have been presented in terms of actual movements expressed by 
differential displacements having magnitudes of dr and du. Consider 
now an imaginary or virtual movement of a body in static equilibrium, 
which indicates a displacement or rotation that is assumed and does not 
actually exist. These movements are first-order differential quantities 
and will be denoted by the symbols dr and du (delta r and delta u), 
respectively. The virtual work done by a force having a virtual 
displacement dr is

	 dU = F cos u dr 	 (11–1)

Similarly, when a couple undergoes a virtual rotation du in the plane of 
the couple forces, the virtual work is

	 dU = M du 	 (11–2)

11.2  Principle of Virtual Work

The principle of virtual work states that if a body is in equilibrium, then 
the algebraic sum of the virtual work done by all the forces and couple 
moments acting on the body is zero for any virtual displacement of the 
body. Thus,

	 dU = 0	 (11–3)

For example, consider the free-body diagram of the particle (ball) that 
rests on the floor, Fig. 11–3. If we “imagine” the ball to be displaced 
downwards a virtual amount dy, then the weight does positive virtual 
work, W  dy, and the normal force does negative virtual work, -N dy. For 
equilibrium the total virtual work must be zero, so that 
dU = W  dy - N dy = (W  -  N) dy = 0. Since dy � 0, then N = W  as 
required by applying �Fy = 0.

W

N

dy

Fig. 11–3
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In a similar manner, we can also apply the virtual-work equation 
dU = 0 to a rigid body subjected to a coplanar force system. Here, 
separate virtual translations in the x and y directions, and a virtual 
rotation about an axis perpendicular to the x–y plane that passes through 
an arbitrary point O, will correspond to the three equilibrium equations, 
�Fx = 0, �Fy = 0, and �MO = 0. When writing these equations, it is not 
necessary to include the work done by the internal forces acting within 
the body since a rigid body does not deform when subjected to an 
external loading, and furthermore, when the body moves through a 
virtual displacement, the internal forces occur in equal but opposite 
collinear pairs, so that the corresponding work done by each pair of 
forces will cancel.

To demonstrate an application, consider the simply supported beam in 
Fig. 11–4a. When the beam is given a virtual rotation du about point B, 
Fig. 11–4b, the only forces that do work are P and Ay. Since dy = l du  
and dy � = (l>2) du, the virtual work equation for this case is 
dU = A y(l du) - P(l>2) du = (A yl - Pl>2) du = 0. Since du � 0, then 
A y = P>2. Excluding du, notice that the terms in parentheses actually 
represent the application of �MB = 0.

As seen from the above two examples, no added advantage is gained 
by solving particle and rigid-body equilibrium problems using the 
principle of virtual work. This is because for each application of the 
virtual-work equation, the virtual displacement, common to every term, 
factors out, leaving an equation that could have been obtained in a more 
direct manner by simply applying an equation of equilibrium.

A

(a)

B

P

l––
2

l––
2

(b)

By

Ay

Bx

P

du

l––
2

l––
2

dy

dy¿

Fig. 11–4
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11.3  �Principle of Virtual Work for a 
System of Connected Rigid Bodies

The method of virtual work is particularly effective for solving equilibrium 
problems that involve a system of several connected rigid bodies, such as 
the ones shown in Fig. 11–5.

Each of these systems is said to have only one degree of freedom since 
the arrangement of the links can be completely specified using only one 
coordinate u. In other words, with this single coordinate and the length of 
the members, we can locate the position of the forces F and P.

In this text, we will only consider the application of the principle of 
virtual work to systems containing one degree of freedom.* Because 
they are less complicated, they will serve as a way to approach the 
solution of more complex problems involving systems with many degrees 
of freedom. The procedure for solving problems involving a system of 
frictionless connected rigid bodies follows.

F

l

l

P

F

l l

P

uu

u u

Fig. 11–5

*This method of applying the principle of virtual work is sometimes called the method 
of virtual displacements because a virtual displacement is applied, resulting in the calculation 
of a real force. Although it is not used here, we can also apply the principle of virtual work 
as a method of virtual forces. This method is often used to apply a virtual force and then 
determine the displacements of points on deformable bodies. See R. C. Hibbeler, Mechanics 
of Materials, 8th edition, Pearson/Prentice Hall, 2011.

Important Points

	 •	 A force does work when it moves through a displacement in the 
direction of the force. A couple moment does work when it moves 
through a collinear rotation. Specifically, positive work is done 
when the force or couple moment and its displacement have the 
same sense of direction.

	 •	 The principle of virtual work is generally used to determine the 
equilibrium configuration for a system of multiple connected 
members.

	 •	 A virtual displacement is imaginary; i.e., it does not really happen. 
It is a differential displacement that is given in the positive 
direction of a position coordinate.

	 •	 Forces or couple moments that do not virtually displace do no 
virtual work.

A

B

This scissors lift has one degree of 
freedom. Without the need for 
dismembering the mechanism, the 
force in the hydraulic cylinder AB 
required to provide the lift can be 
determined directly by using the 
principle of virtual work. (© Russell 
C. Hibbeler)
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Procedure for Analysis

Free-Body Diagram.

	 •	 Draw the free-body diagram of the entire system of connected 
bodies and define the coordinate q.

	 •	 Sketch the “deflected position” of the system on the free- 
body diagram when the system undergoes a positive virtual 
displacement dq.

Virtual Displacements.

	 •	 Indicate position coordinates s, each measured from a fixed point 
on the free-body diagram. These coordinates are directed to the 
forces that do work.

	 •	 Each of these coordinate axes should be parallel to the line of 
action of the force to which it is directed, so that the virtual work 
along the coordinate axis can be calculated.

	 •	 Relate each of the position coordinates s to the coordinate q; 
then differentiate these expressions in order to express each 
virtual displacement ds in terms of dq.

Virtual-Work Equation.

	 •	 Write the virtual-work equation for the system assuming that, 
whether possible or not, each position coordinate s undergoes a 
positive virtual displacement ds. If a force or couple moment is in 
the same direction as the positive virtual displacement, the work 
is positive. Otherwise, it is negative.

	 •	 Express the work of each force and couple moment in the 
equation in terms of dq.

	 •	 Factor out this common displacement from all the terms, and 
solve for the unknown force, couple moment, or equilibrium 
position q.
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Example   11.1

1 m1 m

D

u

B F � 25 N

C

(a)

Determine the angle u for equilibrium of the two-member linkage 
shown in Fig. 11–6a. Each member has a mass of 10 kg.

Solution
Free-Body Diagram.  The system has only one degree of freedom 
since the location of both links can be specified by the single coordinate, 
(q = ) u. As shown on the free-body diagram in Fig. 11–6 b, when u has 
a positive (clockwise) virtual rotation du, only the force F and the two 
98.1-N weights do work. (The reactive forces Dx and Dy are fixed, and 
By does not displace along its line of action.)

Virtual Displacements.  If the origin of coordinates is established at 
the fixed pin support D, then the position of F and W can be specified 
by the position coordinates xB and yw. In order to determine the work, 
note that, as required, these coordinates are parallel to the lines of 
action of their associated forces. Expressing these position coordinates 
in terms of u and taking the derivatives yields

 xB = 2(1 cos u) m  dxB = -2 sin u du m � (1)

 yw =
1
2(1 sin u) m   dyw = 0.5 cos u du m 	 (2)

It is seen by the signs of these equations, and indicated in Fig. 11–6b, that 
an increase in u (i.e., du) causes a decrease in xB and an increase in yw.

Virtual-Work Equation.  If the virtual displacements dxB and dyw 
were both positive, then the forces W and F would do positive work 
since the forces and their corresponding displacements would have the 
same sense. Hence, the virtual-work equation for the displacement du is

dU = 0;	 W dyw + W dyw + F dxB = 0	 (3)

Substituting Eqs. 1 and 2 into Eq. 3 in order to relate the virtual 
displacements to the common virtual displacement du yields

98.1(0.5 cos u du) + 98.1(0.5 cos u du) + 25(-2 sin u du) = 0

Notice that the “negative work” done by F (force in the opposite sense 
to displacement) has actually been accounted for in the above 
equation by the “negative sign” of Eq. 1. Factoring out the common 
displacement du and solving for u, noting that du � 0, yields

	  (98.1 cos u - 50 sin u) du = 0

	  u = tan-1 
98.1

50
= 63.0�	 Ans.

NOTE:  If this problem had been solved using the equations of equilibrium, 
it would be necessary to dismember the links and apply three scalar 
equations to each link. The principle of virtual work, by means of calculus, 
has eliminated this task so that the answer is obtained directly.

D B

F � 25 N

(b)

W � 98.1 NW � 98.1 N

ByDy

Dx

dxB

du

u
dywdyw

yw

xB

Fig. 11–6 
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Determine the required force P in Fig. 11–7a needed to maintain 
equilibrium of the scissors linkage when u = 60�. The spring is 
unstretched when u = 30�. Neglect the mass of the links.

Solution
Free-Body Diagram.  Only Fs and P do work when u undergoes a 
positive virtual displacement du, Fig. 11–7b. For the arbitrary position u, 
the spring is stretched (0.3 m) sin u - (0.3 m) sin 30�, so that

Fs = ks = 5000 N>m [(0.3 m) sin u - (0.3 m) sin 30�]

	 = (1500 sin u - 750) N

Virtual Displacements.  The position coordinates, xB and xD, 
measured from the fixed point A, are used to locate Fs and P. These 
coordinates are parallel to the line of action of their corresponding 
forces. Expressing xB and xD in terms of the angle u using trigonometry,

	  xB = (0.3 m) sin u

	  xD = 3[(0.3 m) sin u] = (0.9 m) sin u

Differentiating, we obtain the virtual displacements of points B and D.

	 dxB = 0.3 cos u du	 (1)

	 dxD = 0.9 cos u du	 (2)

Virtual-Work Equation.  Force P does positive work since it acts in 
the positive sense of its virtual displacement. The spring force Fs does 
negative work since it acts opposite to its positive virtual displacement. 
Thus, the virtual-work equation becomes

dU = 0; 	 -Fs dxB + PdxD = 0

	 -[1500 sin u - 750] (0.3 cos u du) + P (0.9 cos u du) = 0

	 [0.9P + 225 - 450 sin u] cos u du = 0

Since cos u du � 0, then this equation requires

	 P = 500 sin u - 250	

When u = 60�,

	 P = 500 sin 60� - 250 =  183 N 	 Ans.

Example   11.2

A

B

k � 5 kN/m

(a)

C

E

D

G
0.3 m

0.3 m0.3 m

0.3 m

u

u

P

B

(b)

Gx

Ax

Ay

Fs

xD

xB

dxD

dxB

P

u

du

Fig. 11–7 
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If the box in Fig. 11–8a has a mass of 10 kg, determine the couple 
moment M needed to maintain equilibrium when u = 60�. Neglect the 
mass of the members.

Example   11.3

D

CA

B

M

0.45 m

0.45 m

(a)

0.2 m
0.4 m

uu

	

0.45 m

C

b

A

M

(b)

yE

yE

Bx Dx

By Dy

10(9.81) N

udud

uu

d

Fig. 11–8 Solution
Free-Body Diagram.  When u undergoes a positive virtual 
displacement du, only the couple moment M and the weight of the box 
do work, Fig. 11–8b.

Virtual Displacements.  The position coordinate yE, measured from 
the fixed point B, locates the weight, 10(9.81) N. Here,

	 yE = (0.45 m) sin u + b	

where b is a constant distance. Differentiating this equation, we obtain

	 dyE = 0.45 m cos u du� (1)

Virtual-Work Equation.  The virtual-work equation becomes

dU = 0;	    M du - [10(9.81) N]dyE = 0	

Substituting Eq. 1 into this equation

	  M du - 10(9.81) N(0.45 m cos u du) = 0

	     du(M - 44.145 cos u) = 0

Since du � 0, then

	 M - 44.145 cos u = 0	

Since it is required that u = 60�, then

		             M = 44.145 cos 60� = 22.1 N # m	�  Ans.
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The mechanism in Fig. 11–9a supports the 50-lb cylinder. Determine 
the angle u for equilibrium if the spring has an unstretched length of  
2 ft when u = 0�. Neglect the mass of the members.

Solution
Free-Body Diagram.  When the mechanism undergoes a positive 
virtual displacement du, Fig. 11–9b, only Fs and the 50-lb force do work. 
Since the final length of the spring is 2(1 ft cos u), then

	 Fs = ks = (200 lb>ft)(2 ft - 2 ft cos u) = (400 - 400 cos u) lb	

Virtual Displacements.  The position coordinates xD and xE are 
established from the fixed point A to locate Fs at D and at E.  
The coordinate yB, also measured from A, specifies the position of the 
50-lb force at B. The coordinates can be expressed in terms of u using 
trigonometry.

	  xD = (1 ft) cos u

	  xE = 3[(1 ft) cos u] = (3 ft) cos u

	  yB = (2 ft) sin u

Differentiating, we obtain the virtual displacements of points D, E, 
and B as

	  dxD = -1 sin u du	 (1)

	  dxE = -3 sin u du	 (2)

	  dyB = 2 cos u du 	 (3)

Virtual-Work Equation.  The virtual-work equation is written as if 
all virtual displacements are positive, thus

dU = 0;	 Fs dxE + 50 dyB - Fs dxD = 0

(400 - 400 cos u)(-3 sin u du) + 50(2 cos u du)

- (400 - 400 cos u)(-1 sin u du) = 0

	  du(800 sin u cos u - 800 sin u + 100 cos u) = 0

Since du � 0, then

	 800 sin u cos u - 800 sin u + 100 cos u = 0	

Solving by trial and error,

u = 34.9� 		  Ans.

Example   11.4

C

D E
k � 200 lb/ft

B

A

1 ft

1 ft 1 ft

(a)

1 ft

u u

E
D

50 lb

(b)

Ax

Ay Cy

Fs Fs

xD

yB

xE

dxEdxD

dyB

u

du

Fig. 11–9 
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F11–1.  Determine the required magnitude of force P to 
maintain equilibrium of the linkage at u = 60�. Each link 
has a mass of 20 kg.

1.5 m
1.5 m

A

B

C
P

uu

Prob. F11–1

F11–2.  Determine the magnitude of force P required to 
hold the 50-kg smooth rod in equilibrium at u = 60�.

 5 m

Pu

A

B

Prob. F11–2

F11–3.  The linkage is subjected to a force of P = 2 kN. 
Determine the angle u for equilibrium. The spring is 
unstretched when u = 0�. Neglect the mass of the links.

D

k � 15 kN/m

A

B
C

0.6 m

0.6 m

0.6 m

P � 2 kN

uu

Prob. F11–3

F11–4.  The linkage is subjected to a force of P = 6 kN. 
Determine the angle u for equilibrium. The spring is 
unstretched at u = 60�. Neglect the mass of the links.

0.9 m

k � 20 kN/m

0.9 m

A

B

C

P � 6 kN

u

Prob. F11–4

F11–5.  Determine the angle u where the 50-kg bar is in 
equilibrium. The spring is unstretched at u = 60�.

 5 m

A

B

k � 600 N/mu

Prob. F11–5

F11–6.  The scissors linkage is subjected to a force of 
P = 150 N. Determine the angle u for equilibrium. The 
spring is unstretched at u = 0�. Neglect the mass of the links.

C

0.3 m

0.3 m

P � 150 N

A

B

k � 15 kN/m u

Prob. F11–6

       FUNDAMENTAL PROBLEMS
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11–1.  Use the method of virtual work to determine the 
tension in cable AC. The lamp weighs 10 lb.

B

A

C

45� 30�

Prob. 11–1

11–2.  The scissors jack supports a load P. Determine the 
axial force in the screw necessary for equilibrium when the 
jack is in the position u. Each of the four links has a length 
L and is pin connected at its center. Points B and D can 
move horizontally.

C D

A B

P

u

Prob. 11–2

11–3.  If a force of P = 5 lb is applied to the handle of the 
mechanism, determine the force the screw exerts on the cork 
of the bottle. The screw is attached to the pin at A and passes 
through the collar that is attached to the bottle neck at B.

3 in.

D

B

A

u � 30°

P � 5 lb

Prob. 11–3

*11–4.  The disk has a weight of 10 lb and is subjected to a 
vertical force  P = 8 lb and a couple moment M = 8 lb # ft. 
Determine the disk’s rotation u if the end of the spring 
wraps around the periphery of the disk as the disk turns. 
The spring is originally unstretched.

k � 12 lb/ft

P � 8 lb

M � 8 lb � ft

1.5 ft

Prob. 11–4

Problems
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11–5.  The punch press consists of the ram R, connecting 
rod AB, and a flywheel. If a torque of M = 75 N # m is 
applied to the flywheel, determine the force F applied at the 
ram to hold the rod in the position u = 60�.

11–6.  The flywheel is subjected to a torque of  
M = 75 N # m. Determine the horizontal compressive force 
F and plot the result of F (ordinate) versus the equilibrium 
position u (abscissa) for 0� … u … 180�.

F

200 mm

M

B
R

A

600 mm

u

Probs. 11–5/6

11–7.  When u = 20�, the 50-lb uniform block compresses 
the two vertical springs 4 in. If the uniform links AB and CD 
each weigh 10 lb, determine the magnitude of the applied 
couple moments M needed to maintain equilibrium when 
u = 20�.

u u

A

B D

C

M
M

1 ft

4 ft

1 ft

k � 2 lb/in.k � 2 lb/in.

1 ft

2 ft

Prob. 11–7

*11–8.  The bar is supported by the spring and smooth 
collar that allows the spring to be always perpendicular to 
the bar for any angle u. If the unstretched length of the 
spring is l0, determine the force P needed to hold the bar in 
the equilibrium position u. Neglect the weight of the bar.

C

A
B

k

l

P

a

u

Prob. 11–8

11–9.  The 4-ft members of the mechanism are pin 
connected at their centers. If vertical forces P1 = P2 = 30 lb 
act at C and E as shown, determine the angle u for 
equilibrium. The spring is unstretched when u = 45�. 
Neglect the weight of the members.

P1 P2

k � 200 lb/ft

E C

A D

B
2 ft

2 ft

2 ft

2 ft

u

Prob. 11–9
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11–10.  The thin rod of weight W rests against the smooth 
wall and floor. Determine the magnitude of force P needed 
to hold it in equilibrium for a given angle u.

A

l

B

P θ

Prob. 11–10

11–11.  If each of the three links of the mechanism have a 
mass of 4 kg, determine the angle u for equilibrium. The 
spring, which always remains vertical, is unstretched  
when u = 0�.

200 mm

200 mm

200 mm

C

D

A
M � 30 N � m

k � 3 kN/m

B

u

u

Prob. 11–11

*11–12.  The disk is subjected to a couple moment M. 
Determine the disk’s rotation u required for equilibrium. 
The end of the spring wraps around the periphery of the 
disk as the disk turns. The spring is originally unstretched.

k � 4 kN/m

M � 300 N � m

0.5 m

Prob. 11–12

11–13.  A 5-kg uniform serving table is supported on each 
side by pairs of two identical links, AB and CD, and 
springs  CE. If the bowl has a mass of 1 kg, determine the 
angle u where the table is in equilibrium. The springs each 
have a stiffness of k = 200 N>m and are unstretched when 
u = 90�. Neglect the mass of the links.

11–14.  A 5-kg uniform serving table is supported on each 
side by two pairs of identical links, AB and CD, and 
springs  CE. If the bowl has a mass of 1 kg and is in 
equilibrium when u = 45�, determine the stiffness k of each 
spring. The springs are unstretched when u = 90�. Neglect 
the mass of the links.

A C k

250 mm

250 mm 150 mm

150 mm

B
D

E

u u

Probs. 11–13/14
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11–15.  The service window at a fast-food restaurant 
consists of glass doors that open and close automatically 
using a motor which supplies a torque M to each door. The 
far ends, A and B, move along the horizontal guides. If a 
food tray becomes stuck between the doors as shown, 
determine the horizontal force the doors exert on the tray 
at the position u.

M A

a a a a

C B DM

u u

Prob. 11–15

*11–16.  The members of the mechanism are pin connected. 
If a vertical force of 800 N acts at A, determine the angle u 
for equilibrium. The spring is unstretched when u = 0�. 
Neglect the mass of the links.

1 m1 m

800 N

1 m
k � 6 kN/m

DB

A

u

Prob. 11–16

11–17.  When u = 30�, the 25-kg uniform block compresses 
the two horizontal springs 100 mm. Determine the 
magnitude of the applied couple moments M needed to 
maintain equilibrium. Take k = 3 kN>m and neglect the 
mass of the links.

A

B

D

C

M

M

300 mm

200 mm

100 mm

100 mm

50 mm

k 

k 

u

u

Prob. 11–17

11–18.  The “Nuremberg scissors” is subjected to a 
horizontal force of P = 600 N. Determine the angle u for 
equilibrium. The spring has a stiffness of k = 15 kN>m and 
is unstretched when u = 15�.

11–19.  The “Nuremberg scissors” is subjected to a 
horizontal force of P = 600 N. Determine the stiffness k of 
the spring for equilibrium when u = 60�. The spring is 
unstretched when u = 15�.

P 

200 mm

200 mm

A

C
D

E

B
k

u

Probs. 11–18/19
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11–23.  Determine the weight of block G required to 
balance the differential lever when the 20-lb load F is placed 
on the pan. The lever is in balance when the load and block 
are not on the lever. Take x = 12 in.

*11–24.  If the load F weighs 20 lb and the block G weighs 
2 lb, determine its position x for equilibrium of the 
differential lever. The lever is in balance when the load and 
block are not on the lever.

4 in. 4 in. x

A

B

C G

ED

2 in.

F

Probs. 11–23/24

11–25.  The dumpster has a weight W and a center of 
gravity at G. Determine the force in the hydraulic cylinder 
needed to hold it in the general position u.

b d
G

a

c

u

Prob. 11–25

*11–20.  The crankshaft is subjected to a torque of 
M = 50 N # m. Determine the horizontal compressive force F 
applied to the piston for equilibrium when u = 60�.

11–21.  The crankshaft is subjected to a torque of 
M = 50 N # m. Determine the horizontal compressive force F 
and plot the result of F (ordinate) versus u (abscissa) for 
0� … u … 90�.

100 mm
400 mm

F

M

u

Probs. 11–20/21

11–22.  The spring is unstretched when u = 0�. If P = 8 lb, 
determine the angle u for equilibrium. Due to the roller 
guide, the spring always remains vertical. Neglect the weight 
of the links.

4 ft

4 ft

2 ft

2 ft

k � 50 lb/ft

P

u

Prob. 11–22
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*11.4  Conservative Forces

When a force does work that depends only upon the initial and final 
positions of the force, and it is independent of the path it travels, then the 
force is referred to as a conservative force. The weight of a body and the 
force of a spring are two examples of conservative forces.

Weight.  Consider a block of weight W that travels along the path in 
Fig. 11–10a. When it is displaced up the path by an amount dr, then the 
work is dU = W # dr or dU = -W (dr cos u) = -Wdy, as shown in 
Fig. 11–10b. In this case, the work is negative since W acts in the opposite 
sense of dy. Thus, if the block moves from A  to B, through the vertical 
displacement h, the work is

U = - L
h

0
W  dy = -Wh

The weight of a body is therefore a conservative force, since the work 
done by the weight depends only on the vertical displacement of the 
body, and is independent of the path along which the body travels.

Spring Force.  Now consider the linearly elastic spring in Fig. 11–11, 
which undergoes a displacement ds. The work done by the spring force 
on the block is dU = -Fs ds = -ks ds. The work is negative because  
Fs acts in the opposite sense to that of ds. Thus, the work of Fs when the 
block is displaced from s = s1 to s = s2 is

U = - L
s2

s1

ks ds = - a1
2 ks2

2 -
1
2 ks1

2b

Here the work depends only on the spring’s initial and final positions,  
s1 and s2, measured from the spring’s unstretched position. Since this 
result is independent of the path taken by the block as it moves, then a 
spring force is also a conservative force.

y

hdr

A

B

W

s

W

(a)

Undeformed
    position

s
ds

Fs

Fig. 11–11

dr
dy � dr cos u

W

(b)

u

Fig. 11–10
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Friction.  In contrast to a conservative force, consider the force of 
friction exerted on a sliding body by a fixed surface. The work done by 
the frictional force depends on the path; the longer the path, the greater 
the work. Consequently, frictional forces are nonconservative, and most 
of the work done by them is dissipated from the body in the form of heat.

*11.5  Potential Energy

A conservative force can give the body the capacity to do work. This capacity, 
measured as potential energy, depends on the location or “position” of the 
body measured relative to a fixed reference position or datum.

Gravitational Potential Energy.  If a body is located a distance 
y above a fixed horizontal reference or datum as in Fig. 11–12, the weight 
of the body has positive gravitational potential energy Vg since W has the 
capacity of doing positive work when the body is moved back down to 
the datum. Likewise, if the body is located a distance y below the datum, 
Vg is negative since the weight does negative work when the body is 
moved back up to the datum. At the datum, Vg = 0.

Measuring y as positive upward, the gravitational potential energy of 
the body’s weight W is therefore

	 Vg = Wy 	 (11–4)

Elastic Potential Energy.  When a spring is either elongated or 
compressed by an amount s from its unstretched position (the datum), 
the energy stored in the spring is called elastic potential energy. It is 
determined from

	 Ve =
1
2 ks2 	 (11–5)

This energy is always a positive quantity since the spring force acting on 
the attached body does positive work on the body as the force returns the 
body to the spring’s unstretched position, Fig. 11–13.

Fs

Fs

s s

Undeformed
position

Undeformed
position

Ve� �    ks21
2

Fig. 11–13

�y

�y

Datum

Vg � � Wy

Vg � � Wy

Vg � 0

W

W

Fig. 11–12
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Potential Function.  In the general case, if a body is subjected to 
both gravitational and elastic forces, the potential energy or potential 
function V of the body can be expressed as the algebraic sum

	 V = Vg + Ve 	 (11–6)

where measurement of V depends on the location of the body with 
respect to a selected datum in accordance with Eqs. 11–4 and 11–5.

In particular, if a system of frictionless connected rigid bodies has a 
single degree of freedom, such that its vertical distance from the datum is 
defined by the coordinate q, then the potential function for the system 
can be expressed as V = V(q). The work done by all the weight and 
spring forces acting on the system in moving it from q1 to q2, is measured 
by the difference in V; i.e.,

	 U1- 2 = V(q1) - V(q2)	 (11–7)

For example, the potential function for a system consisting of a block of 
weight W supported by a spring, as in Fig. 11–14, can be expressed in 
terms of the coordinate (q = ) y, measured from a fixed datum located at 
the unstretched length of the spring. Here

 V = Vg + Ve

	  = -W  y +
1
2 k  y2	 (11–8)

If the block moves from y1 to y2, then applying Eq. 11–7 the work of  
W and Fs is 

U1- 2 = V( y1) - V( y2) = -W ( y1 - y2) +
1
2 k  y1

2 -
1
2 k  y2

2

y2

y1
y

Datum

W

k

(a)

Fig. 11–14
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*11.6  �Potential-Energy Criterion for 
Equilibrium

If a frictionless connected system has one degree of freedom, and its 
position is defined by the coordinate q, then if it displaces from q to 
q + dq, Eq. 11–7 becomes

dU = V (q) - V (q + dq)

or

dU = -dV

If the system is in equilibrium and undergoes a virtual displacement dq, 
rather than an actual displacement dq, then the above equation becomes 
dU = -dV . However, the principle of virtual work requires that dU = 0, 
and therefore, dV = 0, and so we can write dV = (dV >dq)dq = 0. Since 
dq � 0, this expression becomes

	
dV

dq
= 0 	 (11–9)

Hence, when a frictionless connected system of rigid bodies is in 
equilibrium, the first derivative of its potential function is zero. For 
example, using Eq. 11–8 we can determine the equilibrium position for 
the spring and block in Fig. 11–14a. We have

dV

d y
= -W + k  y = 0

Hence, the equilibrium position y = yeq is

yeq =
W

k

Of course, this same result can be obtained by applying �Fy = 0 to the 
forces acting on the free-body diagram of the block, Fig. 11–14b.

A
B

The counterweight at A  balances the 
weight of the deck B of this simple lift 
bridge. By applying the method of potential 
energy we can analyze the equilibrium 
state of the bridge. (© Russell C. Hibbeler)

y2

y1
y

Datum

W

k

(a)

W

Fs � kyeq

(b)

Fig. 11–14  (cont’d)
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*11.7  �Stability of Equilibrium 
Configuration

The potential function V of a system can also be used to investigate the 
stability of the equilibrium configuration, which is classified as stable, 
neutral, or unstable.

Stable Equilibrium.  A system is said to be in stable equilibrium if 
a system has a tendency to return to its original position when a small 
displacement is given to the system. The potential energy of the system in 
this case is at its minimum. A simple example is shown in Fig. 11–15a. 
When the disk is given a small displacement, its center of gravity G will 
always move (rotate) back to its equilibrium position, which is at the 
lowest point of its path. This is where the potential energy of the disk is at 
its minimum.

Neutral Equilibrium.  A system is said to be in neutral equilibrium 
if the system still remains in equilibrium when the system is given a small 
displacement away from its original position. In this case, the potential 
energy of the system is constant. Neutral equilibrium is shown in  
Fig. 11–15b, where a disk is pinned at G. Each time the disk is rotated, a 
new equilibrium position is established and the potential energy remains 
unchanged.

Unstable Equilibrium.  A system is said to be in unstable 
equilibrium if it has a tendency to be displaced farther away from its 
original equilibrium position when it is given a small displacement. The 
potential energy of the system in this case is a maximum. An unstable 
equilibrium position of the disk is shown in Fig. 11–15c. Here the disk will 
rotate away from its equilibrium position when its center of gravity is 
slightly displaced. At this highest point, its potential energy is at a maximum.

One-Degree-of-Freedom System.  If a system has only one 
degree of freedom, and its position is defined by the coordinate q, then the 
potential function V for the system in terms of q can be plotted, Fig. 11–16. 

During high winds and when going 
around a curve, these sugar-cane 
trucks can become unstable and tip 
over since their center of gravity is 
high off the road when they are fully 
loaded. (© Russell C. Hibbeler)

Stable equilibrium Unstable equilibriumNeutral equilibrium

(a) (b) (c)

G
G

G

Fig. 11–15
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Provided the system is in equilibrium, then dV >dq, which represents the 
slope of this function, must be equal to zero. An investigation of stability 
at  the equilibrium configuration therefore requires that the second 
derivative of the potential function be evaluated.

If d2V >dq2 is greater than zero, Fig. 11–16a, the potential energy of the 
system will be a minimum. This indicates that the equilibrium configuration 
is stable. Thus,

  
dV

dq
= 0,    

d 2V

dq2 7 0   stable equilibrium	 (11–10)

If d 2V >dq2 is less than zero, Fig. 11–16b, the potential energy of the 
system will be a maximum. This indicates an unstable equilibrium 
configuration. Thus,

  
dV

dq
= 0,    

d 2V

dq2 6 0   unstable equilibrium	 (11–11)

Finally, if d 2V >dq2 is equal to zero, it will be necessary to investigate the 
higher order derivatives to determine the stability. The equilibrium 
configuration will be stable if the first non-zero derivative is of an even 
order and it is positive. Likewise, the equilibrium will be unstable if this 
first non-zero derivative is odd or if it is even and negative. If all the higher 
order derivatives are zero, the system is said to be in neutral equilibrium, 
Fig. 11–16c. Thus,

	
dV

dq
=

d 2V

dq2  =
d 3V

dq3 = g = 0  neutral equilibrium	 (11–12)

This condition occurs only if the potential-energy function for the 
system is constant at or around the neighborhood of qeq.

V

q
qeq

d2V
dq2 � 0

Stable equilibrium

(a)

dV
dq

� 0

V

q
qeq

d2V
dq2 � 0

Unstable equilibrium

(b)

dV
dq

� 0

V

q
qeq

d2V
dq2 � 0

Neutral equilibrium

(c)

dV
dq

� 0

Fig. 11–16

Important Points

	 •	 A conservative force does work that is independent of the path 
through which the force moves. Examples include the weight and 
the spring force.

	 •	 Potential energy provides the body with the capacity to do work 
when the body moves relative to a fixed position or datum. 
Gravitational potential energy can be positive when the body is 
above a datum, and negative when the body is below the datum. 
Spring or elastic potential energy is always positive. It depends 
upon the stretch or compression of the spring.

	 •	 The sum of these two forms of potential energy represents the 
potential function. Equilibrium requires that the first derivative 
of the potential function be equal to zero. Stability at the 
equilibrium position is determined from the second derivative of 
the potential function.
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Procedure for Analysis

Using potential-energy methods, the equilibrium positions and the 
stability of a body or a system of connected bodies having a single 
degree of freedom can be obtained by applying the following 
procedure.

Potential Function.
	 •	 Sketch the system so that it is in the arbitrary position specified 

by the coordinate q.

	 •	 Establish a horizontal datum through a fixed point* and express 
the gravitational potential energy Vg in terms of the weight W of 
each member and its vertical distance y from the datum, Vg = Wy.

	 •	 Express the elastic potential energy Ve of the system in terms of 
the stretch or compression, s, of any connecting spring, Ve =

1
2 ks2.

	 •	 Formulate the potential function V = Vg + Ve and express the 
position coordinates y and s in terms of the single coordinate q.

Equilibrium Position.
	 •	 The equilibrium position of the system is determined by taking 

the first derivative of V and setting it equal to zero, dV>dq = 0.

Stability.
	 •	 Stability at the equilibrium position is determined by evaluating 

the second or higher-order derivatives of V.

	 •	 If the second derivative is greater than zero, the system is stable; 
if all derivatives are equal to zero, the system is in neutral 
equilibrium; and if the second derivative is less than zero, the 
system is unstable.

*The location of the datum is arbitrary, since only the changes or differentials  
of V are required for investigation of the equilibrium position and its stability.
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example    11.5

The uniform link shown in Fig. 11–17a has a mass of 10 kg. If the spring 
is unstretched when u = 0�, determine the angle u for equilibrium and 
investigate the stability at the equilibrium position.

SOLUTION
Potential Function.  The datum is established at the bottom of the 
link, Fig. 11–17b. When the link is located in the arbitrary position u, 
the spring increases its potential energy by stretching and the weight 
decreases its potential energy. Hence,

	 V = Ve + Vg =
1

2
 ks2 + Wy	

Since l = s + l cos u or s = l(1 - cos u), and y = (l>2) cos u, then 

	 V =
1

2
 kl2(1 - cos u)2 + W a l

2
 cos ub 	

Equilibrium Position.  The first derivative of V is

	
dV

du
= kl2(1 - cos u) sin u -

Wl

2
 sin u = 0	

or

	 l c kl(1 - cos u) -
W

2
d  sin u = 0	

This equation is satisfied provided

	 sin u = 0  u = 0�� Ans.

or

	 u = cos-1a1 -
W

2kl
b = cos-1 c 1 -

10(9.81)

2(200)(0.6)
d = 53.8�� Ans.

Stability.  The second derivative of V is

d2V

du2 = kl2(1 - cos u) cos u + kl2 sin u sin u -
Wl

2
 cos u

 = kl2(cos u - cos 2u) -
Wl

2
 cos u

Substituting values for the constants, with u = 0� and u = 53.8�, yields

 
d2V

du2
2
u= 0�

= 200(0.6)2(cos 0� - cos 0�) -
10(9.81)(0.6)

2
 cos 0�

 = -29.4 6 0  (unstable equilibrium at u = 0�)� Ans.

 
d2V

du2
2
u= 53.8�

= 200(0.6)2(cos 53.8� - cos 107.6�) -
10(9.81)(0.6)

2
 cos 53.8� 

= 46.9 7 0  (stable equilibrium at u = 53.8�)� Ans.

l � 0.6 m

A

k � 200 N/m

B

(a)

u

s

cos u

l—
2

l—
2

l

W

W

l—
2

k

Datum

(b)

F � ks

u

u

y �

Fig. 11–17
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example   11.6

If the spring AD in Fig. 11–18a has a stiffness of 18 kN>m and is unstretched  
when u = 60�, determine the angle u for equilibrium. The load has a 
mass of 1.5 Mg. Investigate the stability at the equilibrium position.

SOLUTION
Potential Energy.   The gravitational potential energy for the load 
with respect to the fixed datum, shown in Fig. 11–18b, is

Vg = mgy = 1500(9.81) N[(4 m) sin u + h] = 58 860 sin u + 14 715h

where h is a constant distance. From the geometry of the system, the 
elongation of the spring when the load is on the platform is 
s = (4 m) cos u - (4 m) cos 60� = (4 m) cos u - 2 m.

Thus, the elastic potential energy of the system is

Ve =
1
2 ks2 =

1
2(18 000 N>m)(4 m cos u - 2 m)2 = 9000(4 cos u - 2)2

The potential energy function for the system is therefore

V = Vg + Ve = 58 860 sin u + 14 715h + 9000(4 cos u - 2)2� (1)

Equilibrium.  When the system is in equilibrium,

dV

du
= 58 860 cos u + 18 000(4 cos u - 2)(-4 sin u) = 0

58 860 cos u - 288 000 sin u cos u + 144 000 sin u = 0

Since sin 2u =  2 sin u cos u,

	 58 860 cos u - 144 000 sin 2u + 144 000 sin u = 0	

Solving by trial and error,

	 u = 28.18� and u = 45.51� � Ans.

Stability.  Taking the second derivative of Eq. 1,

	
d2V

du2 = -58 860 sin u - 288 000 cos 2u + 144 000 cos u�

Substituting u = 28.18� yields

	
d2V

du2 = -60 402 6 0     Unstable � Ans.

And for u = 45.51�, 

	
d2V

du2 = 64 073 7 0     Stable � Ans.

(a)

2 m

2 m
A

C

E

B

D

G

k � 18 kN/m

uu

Fig. 11–18

2 m

2 m
A

C

E

B

D

G

k � 18 kN/m

(b)

4 m cos u

(4 m)sin u

h

y

Datum
uu
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example   11.7

The uniform block having a mass m rests on the top surface of the half 
cylinder, Fig. 11–19a. Show that this is a condition of unstable 
equilibrium if h 7 2R.

SOLUTION
Potential Function.  The datum is established at the base of the 
cylinder, Fig. 11–19b. If the block is displaced by an amount u from the 
equilibrium position, the potential function is

	  V = V e + V g

	  = 0 + mgy

From Fig. 11–19b,

	 y = aR +
h

2
b  cos u + Ru sin u	

Thus,

	 V = mg c aR +
h

2
b  cos u + Ru sin u d 	

Equilibrium Position.

	  
dV

du
= mg c - aR +

h

2
b  sin u + R sin u + Ru cos u d = 0

	  = mga -
h

2
 sin u + Ru cos ub = 0

Note that u = 0� satisfies this equation.

Stability.  Taking the second derivative of V yields

	
d2V

du2 = mga -
h

2
 cos u + R cos u - Ru sin ub 	

At u = 0�,

	
d2V

du2
2
u= 0�

= -mga h

2
- Rb 	

Since all the constants are positive, the block is in unstable equilibrium 
provided h 7 2R, because then d2V >du2 6 0.

hm

R

(a)

y

W � mg

R

(b)
) cos u(R �

Ru sin u
Ru

h—
2

h—
2

Datum

u

u

Fig. 11–19
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Problems

11–26.  The potential energy of a one-degree-of-freedom 
system is defined by V = (20x3 - 10x2 - 25x - 10) ft # lb, 
where x is in ft. Determine the equilibrium positions and 
investigate the stability for each position.

11–27.  If the potential function for a conservative one-
degree-of-freedom system is V  =  (12 sin 2u +15 cos u) J, 
where 0� 6 u 6 180�, determine the positions for equilibrium 
and investigate the stability at each of these positions.

*11–28.  If the potential function for a conservative one-
degree-of-freedom system is V = (8x  3 - 2x  2 - 10) J, 
where x is given in meters, determine the positions for 
equilibrium and investigate the stability at each of these 
positions.

11–29.  If the potential function for a conservative one-
degree-of-freedom system is V = (10 cos 2u + 25 sin u) J, 
where 0� 6 u 6 180�, determine the positions for equilibrium 
and investigate the stability at each of these positions.

11–30.  If the potential energy for a conservative one-
degree-of-freedom system is expressed by the relation 
V = (4x3 - x2 - 3x + 10) ft # lb, where x is given in feet, 
determine the equilibrium positions and investigate the 
stability at each position.

11–31.  The uniform link AB, has a mass of 3 kg and is pin 
connected at both of its ends. The rod BD, having negligible 
weight, passes through a swivel block at C. If the spring has 
a stiffness of k = 100 N>m and is unstretched when u = 0�, 
determine the angle u for equilibrium and investigate the 
stability at the equilibrium position. Neglect the size of the 
swivel block.

k � 100 N/m

400 mm

400 mm
D

C

B

A

u

Prob. 11–31

*11–32.  The spring of the scale has an unstretched length 
of a. Determine the angle u for equilibrium when a 
weight W is supported on the platform. Neglect the weight 
of the members. What value W would be required to keep 
the scale in neutral equilibrium when u = 0�?

u u

k

L

W

LL

L

a

Prob. 11–32

11–33.  The uniform bar has a mass of 80 kg. Determine 
the angle u for equilibrium and investigate the stability of 
the bar when it is in this position. The spring has an 
unstretched length when u = 90�.

4 m

k � 400 N/m

A

B

u

Prob. 11–33
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*11–36.  Determine the angle u for equilibrium and 
investigate the stability at this position. The bars each have 
a mass of 3 kg and the suspended block D has a mass of 
7 kg. Cord DC has a total length of 1 m.

500 mm

500 mm

A

D

C

500 mm

u u

Prob. 11–36

11–37.  Determine the angle u for equilibrium and 
investigate the stability at this position. The bars each have 
a mass of 10 kg and the spring has an unstretched length of 
100 mm.

500 mm

500 mm

A C

500 mm

k �1.5 kN/mu u

Prob. 11–37

11–34.  The uniform bar AD has a mass of 20 kg. If the 
attached spring is unstretched when u = 90�, determine the 
angle u for equilibrium. Note that the spring always remains 
in the vertical position due to the roller guide. Investigate 
the stability of the bar when it is in the equilibrium position.

D

1 m

0.5 m

k � 2 kN/m

C

B

A

u

Prob. 11–34

11–35.  The two bars each have a weight of 8 lb. Determine 
the required stiffness k of the spring so that the two bars are 
in equilibrium when u = 30�. The spring has an unstretched 
length of 1 ft.

2 ft

B

A C

2 ft

ku

Prob. 11–35
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*11–40.  A conical hole is drilled into the bottom of the 
cylinder, which is supported on the fulcrum at A. Determine 
the minimum distance d in order for it to remain in stable 
equilibrium.

d

A

r

h

Prob. 11–40

11–41.  The uniform rod has a mass of 100 kg. If the spring 
is unstretched when u = 60�, determine the angle u for 
equilibrium and investigate the stability at the equilibrium 
position. The spring is always in the horizontal position due 
to the roller guide at B.

2 m
k � 500 N/m

A

B

2 m

u

Prob. 11–41

11–38.  The two bars each have a mass of 8 kg. Determine 
the required stiffness k of the spring so that the two bars are 
in equilibrium when u = 60�. The spring has an unstretched 
length of 1 m. Investigate the stability of the system at the 
equilibrium position.

1.5 m

1.5 m

B

A

C

k

u

Prob. 11–38

11–39.  A spring with a torsional stiffness k is attached to 
the hinge at B. It is unstretched when the rod assembly is in 
the vertical position. Determine the weight W of the block 
that results in neutral equilibrium. Hint: Establish the 
potential energy function for a small angle u, i.e., 
approximate sin u � 0, and cos u � 1 - u2>2.

C

A

B
k

L
2

L
2

L
2

Prob. 11–39
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*11–44.  The small postal scale consists of a counterweight 
W1, connected to the members having negligible weight. 
Determine the weight W2 that is on the pan in terms of the 
angles u and f and the dimensions shown. All members are 
pin connected. 

W2

W1

b a

a
f

f

u

Prob. 11–44

11–45.  A 3-lb weight is attached to the end of rod ABC. If 
the rod is supported by a smooth slider block at C and  
rod BD, determine the angle u for equilibrium. Neglect the 
weight of the rods and the slider.

6 in.

10 in.
4 in.

A

B

C

D

u

Prob. 11–45

11–42.  Each bar has a mass per length of m0. Determine the 
angles u and f at which they are suspended in equilibrium. 
The contact at A is smooth, and both are pin connected at B.

B

3
2

2

u f
l

l

A

l

Prob. 11–42

11–43.  The truck has a mass of 20 Mg and a mass center  
at G. Determine the steepest grade u along which it can 
park without overturning and investigate the stability in this 
position.

G

u

3.5 m

1.5 m
1.5 m

Prob. 11–43
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*11–48.  The bent rod has a weight of 5 lb>ft. A pivot is 
attached at its center A and the rod is balanced as shown. 
Determine the length L of its vertical segments so that it 
remains in neutral equilibrium. Neglect the thickness of 
the rod.

8 in. 8 in.

2 in.

LL

A 

Prob. 11–48

11–49.  The triangular block of weight W rests on the 
smooth corners which are a distance a apart. If the block 
has three equal sides of length d, determine the angle u for 
equilibrium.

d

a

G 60�

60�

u

Prob. 11–49

11–46.  If the uniform rod OA has a mass of 12 kg, 
determine the mass m that will hold the rod in equilibrium 
when  u = 30�. Point C is coincident with B when OA is 
horizontal. Neglect the size of the pulley at B.

m

u

1 mA

C

O

B

3 m

Prob. 11–46

11–47.  The cylinder is made of two materials such that it 
has a mass of m and a center of gravity at point G. Show 
that when G lies above the centroid C of the cylinder, the 
equilibrium is unstable.

C

G
a

r

Prob. 11–47
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Chapter Review

Principle of Virtual Work

The forces on a body will do virtual 
work when the body undergoes an 
imaginary differential displacement or 
rotation.

For equilibrium, the sum of the virtual 
work done by all the forces acting on the 
body must be equal to zero for any virtual 
displacement. This is referred to as the 
principle of virtual work, and it is useful 
for finding the equilibrium configuration 
for a mechanism or a reactive force acting 
on a series of connected members.

If the system of connected members has 
one degree of freedom, then its position 
can be specified by one independent 
coordinate, such as u.

To apply the principle of virtual work, 
it  is first necessary to use position 
coordinates to locate all the forces and 
moments on the mechanism that will do 
work when the mechanism undergoes a 
virtual movement du.

The coordinates are related to the 
independent coordinate u and then these 
expressions are differentiated in order to 
relate the virtual coordinate displacements 
to the virtual displacement du.

Finally, the equation of virtual work is 
written for the mechanism in terms of 
the common virtual displacement du, 
and then it is set equal to zero. By 
factoring du out of the equation, it is 
then possible to determine either the 
unknown force or couple moment, or 
the equilibrium position u.

By

Ay

Bx

P

du
dy

dy¿

F

l

l

P

F

l l

P

uu

u u

dy, dy�9virtual displacements

du9virtual rotation

dU = 0
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Potential-Energy Criterion for Equilibrium

When a system is subjected only to con
servative forces, such as weight and spring 
forces, then the equilibrium configuration 
can be determined using the potential-energy 
function V for the system.

The potential-energy function is established 
by expressing the weight and spring potential 
energy for the system in terms of the 
independent coordinate q.

Once the potential-energy function is 
formulated, its first derivative is set equal 
to zero. The solution yields the equilibrium 
position qeq for the system.

The stability of the system can be investigated 
by taking the second derivative of V.

y2

y1
y

Datum

W

k

V = Vg + Ve = -Wy +
1
2 ky2

dV

dq
= 0

dV

dq
= 0, 

d2V

dq2 7 0 

dV

dq
= 0, 

d2V

dq2 6 0 

dV

dq
=

d2V

dq2 =
d3V

dq3 = g = 0 

	 Chapter Review	 613

stable equilibrium

unstable equilibrium

neutral equilibrium
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R11–3.  The punch press consists of the ram R, connecting 
rod AB, and a flywheel. If a torque of M = 50 N # m is 
applied to the flywheel, determine the force F applied at the 
ram to hold the rod in the position u = 60�.

u
F

0.1 m

M

B
R

A

0.4 m

Prob. R11–3

R11–4.  The uniform bar AB weighs 10 lb. If the attached 
spring is unstretched when u = 90�, use the method of 
virtual work and determine the angle u for equilibrium. 
Note that the spring always remains in the vertical position 
due to the roller guide.

4 ft

k � 5 lb/ft

A

B

4 ft

u

Prob. R11–4

R11–1.  The toggle joint is subjected to the load P. 
Determine the compressive force F it creates on the cylinder 
at A as a function of u.

F

P

L L

A

u

Prob. R11–1

R11–2.  The uniform links AB and BC each weigh 2 lb and 
the cylinder weighs 20 lb. Determine the horizontal force P 
required to hold the mechanism in the position when 
u = 45�. The spring has an unstretched length of 6 in.

P

10 in.

B

A
C

10 in.

k � 2 lb/in. u = 45�

Prob. R11–2

Review Problems  
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R11–7.  The uniform bar AB weighs 100 lb. If both springs 
DE and BC are unstretched when u = 90�, determine the 
angle u for equilibrium using the principle of potential 
energy. Investigate the stability at the equilibrium position. 
Both springs always act in the horizontal position because 
of the roller guides at C and E.

u

A

k � 2 lb/in.

k � 4 lb/in.

2 ft

4 ft
D

B
C

E

Prob. R11–7

R11–8.  The spring attached to the mechanism has an 
unstretched length when u = 90�. Determine the position u 
for equilibrium and investigate the stability of the 
mechanism at this position. Disk A is pin connected to the 
frame at B and has a weight of 20 lb. Neglect the weight of 
the bars.

u

u u

u

1.25 ft

1.25 ft

A
B

C

k � 16 lb/ft

Prob. R11–8

R11–5.  The spring has an unstretched length of 0.3 m. 
Determine the angle u for equilibrium if the uniform links 
each have a mass of 5 kg.

uu

0.1 m

0.6 m

C

A

B
D

E
k � 400 N/m

Prob. R11–5

R11–6.  Determine the angle u for equilibrium and 
investigate the stability of the mechanism in this position. 
The spring has a stiffness of k = 1.5 kN>m and is unstretched 
when u = 90�. The block A has a mass of 40 kg. Neglect the 
mass of the links.

F

450 mm

600 mm

C

B D

E

k
A

uu

Prob. R11–6



Mathematical Review 
and Expressions

Geometry and Trigonometry Review
The angles u in Fig.  A–1 are equal between the transverse and two 
parallel lines.

180� � u
u

u

u

uu

Fig. A–1

For a line and its normal, the angles u in Fig. A–2 are equal.

u
u

u

u

Fig. A–2

A
APPENDIX
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A

For the circle in Fig. A–3, s = ur, so that when u = 360� = 2p rad then 
the circumference is s = 2pr. Also, since 180� = p rad, then 
u (rad) = (p>180�)u�.  The area of the circle is A = pr 2.

s

r

r

u

Fig. A–3

a

b

c
A

B

C

Fig. A–4

The sides of a similar triangle can be obtained by proportion as in  

Fig. A–4, where 
a

A
=

b

B
=

c

C
.

For the right triangle in Fig. A–5, the Pythagorean theorem is

h = 2(o)2 + (a)2

The trigonometric functions are

 sin u =
o

h

 cos u =
a

h

 tan u =
o
a

This is easily remembered as “soh, cah, toa”, i.e., the sine is the opposite 
over the hypotenuse, etc. The other trigonometric functions follow 
from this.

 csc u =
1

sin u
 =

h
o

 sec u =
1

cos u
 =

h
a

 cot u =
1

tan u
 =

a
o

a (adjacent)

o (opposite)h (hypotenuse)

u

Fig. A–5
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A

Trigonometric Identities

sin2 u + cos2 u = 1

sin(u { f) = sin u cos f { cos u sin f

sin 2u = 2 sin u cos u

cos(u { f) = cos u cos f | sin u sin f

cos 2u = cos2 u - sin2 u

cos u = {A1 + cos 2u

2
, sin u = {A1 - cos 2u

2

tan u =
sin u

cos u

1 + tan2 u = sec2 u  1 + cot2 u = csc2 u

Quadratic Formula

If ax2 + bx + c = 0,  then x =
-b { 2b2 - 4ac

2a

Hyperbolic Functions

 sinh x =
ex - e-x

2
,

cosh x =
ex + e-x

2
,

tanh x  =
sinh x

cosh x

Power-Series Expansions

sin x = x -
x3

3!
+ g , cos x = 1 -

x2

2!
+ g

sinh x = x +
x3

3!
+ g , cosh x = 1 +

x2

2!
+ g

Derivatives

 
d

dx
 (un) = nun - 1 

du

dx
           

d

dx
 (sin u) = cos u 

du

dx

 
d

dx
 (uv) = u 

dv

dx
+ v 

du

dx
     

d

dx
 (cos u) = -sin u 

du

dx

 
d

dx
 a u

v
b =

v 
du

dx
- u 

dv

dx

v2
    

d

dx
 (tan u) = sec2 u 

du

dx

 
d

dx
 (cot u) = -csc2 u 

du

dx
   

d

dx
 (sinh u) = cosh u 

du

dx

 
d

dx
 (sec u) = tan u sec u 

du

dx
  

d

dx
 (cosh u) = sinh u 

du

dx

 
d

dx
 (csc u) = -csc u cot u 

du

dx
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A

Integrals

Lxn dx =
xn + 1

n + 1
+ C, n � -1

L  
dx

a + bx
=

1

b
 ln(a + bx) + C

L  
dx

a + bx2 =
1

22-ab
 ln c a + x2-ab

a - x2-ab
d + C, 

	 ab 6 0

L  
x dx

a + bx2 =
1

2b
 ln(bx2 + a) + C

L  
x2 dx

a + bx2 =
x

b
-

a

b2ab
 tan-1 

x2ab
a

+ C, ab 7 0

L2a + bx dx =
2

3b
 2(a + bx)3 + C

Lx2a + bx dx =
-2(2a - 3bx)2(a + bx)3

15b2 + C

Lx22a + bx dx =  

	
2(8a2 - 12abx + 15b2x2)2(a + bx)3

105b3 + C

L2a2 - x2 dx =
1

2
 c x2a2 - x2 + a2 sin-1 

x
a
d + C,

	 a 7 0

Lx2a2 - x2 dx = -
1

3
 2(a2 - x2)3 + C

Lx22a2 - x2 dx = -
x

4
 2(a2 - x2)3 

	 +
a2

8
 ax2a2 - x2 + a2 sin-1 

x
a
b + C, a 7 0

L2x2 { a2 dx =  

	
1

2
 c x2x2 { a2 { a2 ln1x + 2x2 { a22 d + C

Lx2x2 { a2 dx =
1

3
 2(x2 { a2)3 + C

Lx22x2 { a2 dx =
x

4
 2(x2 { a2)3 

|
a2

8
 x2x2 { a2 -

a4

8
 ln1x + 2x2 { a22 + C

L  
dx2a + bx

=
22a + bx

b
+ C

L  
x dx2x2 { a2

= 2x2 { a2 + C

L  
dx2a + bx + cx2

=
11c

 ln c2a + bx + cx2 +  

	 x1c +
b

21c
d + C, c 7 0

	 =
11-c

 sin-1a -2cx - b2b2 - 4ac
b + C, c 6 0

L  sin x dx = -cos x + C

L  cos x dx = sin x + C

Lx cos(ax) dx =
1

a2 cos(ax) +
x
a

 sin(ax) + C

Lx2 cos(ax) dx =
2x

a2  cos(ax) +
a2x2 - 2

a3  sin(ax) + C

Leax dx =
1
a

 eax + C

Lxeax dx =
eax

a2  (ax - 1) + C

L  sinh x dx = cosh x + C

L  cosh x dx = sinh x + C



F2–9.

 +S(FR)x = �Fx;

 (FR)x = -  (700 lb) cos 30� + 0 + 13
52 (600 lb)

 = -246.22 lb

 + c(FR)y = �Fy;

 (FR)y = - (700 lb) sin 30� - 400 lb - 14
52 (600 lb)

 = -1230 lb

 FR = 2(246.22 lb)2 + (1230 lb)2 = 1254 lb � Ans.

 f = tan-11 1230 lb
246.22 lb2 = 78.68�

 u = 180� + f = 180� + 78.68� = 259� � Ans.

F2–10.	  +S(FR)x = �Fx;

	  750 N = F cos u + 1 5
132(325 N) + (600 N)cos 45�

	  + c(FR)y = �Fy;

	 0 = F sin u + 112
132(325 N) - (600 N)sin 45�

	  tan u = 0.6190 u = 31.76� = 31.8�a� Ans.

	  F = 236 N� Ans.

F2–11.	  S
+ (FR)x = �Fx;

	  (80 lb) cos 45� = F cos u + 50 lb - 13
5290 lb

	  + c(FR)y = �Fy;

	 - (80 lb) sin 45� = F sin u - 14
52(90 lb)

	  tan u = 0.2547 u = 14.29� = 14.3�a� Ans.

	  F = 62.5 lb� Ans.

F2–12.	  (FR)x = 1514
52 + 0 + 1514

52 = 24 kN S

	  (FR)y = 1513
52 + 20 - 1513

52 = 20 kN c

	  FR = 31.2 kN � Ans.

	  u = 39.8� � Ans.

F2–13.	  Fx = 75 cos 30� sin 45� = 45.93 lb

	  Fy = 75 cos 30� cos 45� = 45.93 lb

	  Fz = -75 sin 30� = -37.5 lb

	  a = cos-1145.93
75 2 = 52.2� � Ans.

	  b = cos-1145.93
75 2 = 52.2� � Ans.

	  g = cos-11 - 37.5
75 2 = 120� � Ans.

Chapter 2
F2–1.	
 FR = 2(2 kN)2 + (6 kN)2 - 2(2 kN)(6 kN) cos 105�

 = 6.798 kN = 6.80 kN � Ans.

	  
sin f

6 kN
=

sin 105�

6.798 kN
 ,  f = 58.49�

	  u = 45� + f = 45� + 58.49� = 103�� Ans.

F2–2.	  FR = 22002 + 5002 - 2(200)(500) cos 140�

	  = 666 N � Ans.

F2–3.	  FR = 26002 + 8002 - 2(600)(800) cos 60�

	  = 721.11 N = 721 N � Ans.

	  
sin a

800
=

sin 60�

721.11
 ;  a = 73.90�

	  f = a - 30� = 73.90� - 30� = 43.9�� Ans.

F2–4.	
Fu

sin 45�
=

30

sin 105�
 ;  Fu = 22.0 lb� Ans.

	
Fv

sin 30�
=

30

sin 105�
 ;  Fv = 15.5 lb� Ans.

F2–5.	  
FAB

sin 105�
=

450

sin 30�
	  FAB = 869 lb � Ans.

	  
FAC

sin 45�
=

450

sin 30�
	  FAC = 636 lb � Ans.

F2–6.	  
F

sin 30�
=

6

sin 105�
  F = 3.11 kN� Ans.

	  
Fv

sin 45�
=

6

sin 105�
  Fv = 4.39 kN� Ans.

F2–7.	 (F1)x = 0  (F1)y = 300 N � Ans.

	  (F2)x = - (450 N) cos 45� = -318 N� Ans.

	  (F2)y = (450 N) sin 45� = 318 N� Ans.

	  (F3)x = 13
52600 N = 360 N� Ans.

	  (F3)y = 14
52600 N = 480 N� Ans.

F2–8.	  FRx = 300 + 400 cos 30� - 25014
52 = 446.4 N

	  FRy = 400 sin 30� + 25013
52 = 350 N

	  FR = 2(446.4)2 + 3502 = 567 N � Ans.

	  u = tan-1 350
446.4 = 38.1�a� Ans.

Fundamental Problems  
Partial Solutions And Answers 

620
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F2–22.	  F = FuAB = 900N1-
4
9i +

7
9j -

4
9k2

	  = 5-400i + 700j - 400k6  N � Ans.

F2–23.	  FB = FBuB

	  = (840 N)13
7i -

2
7j -

6
7k2

	  = 5360i - 240j - 720k6  N

	  FC = FCuC

	  = (420 N)12
7i +

3
7j -

6
7k2

	  = 5120i + 180j - 360k6  N

	  FR = 2(480 N)2 + (-60 N)2 + (-1080 N)2

	  = 1.18 kN � Ans.

F2–24.	  FB = FBuB

	  = (600 lb)1-
1
3i +

2
3j -

2
3k2

	  = 5-200i + 400j - 400k6  lb

	  FC = FCuC

	  = (490 lb)1-
6
7i +

3
7j -

2
7k2

	  = 5-420i + 210j - 140k6  lb

	  FR = FB + FC = 5-620i + 610j -  540k6  lb�Ans.

F2–25.	  uAO = -
1
3i +

2
3j -

2
3k

	  uF = -0.5345i + 0.8018j + 0.2673k

	  u = cos-1 (uAO 
# uF) = 57.7� � Ans.

F2–26.	  uAB = -
3
5j +

4
5k

	  uF =
4
5i -

3
5j

	  u = cos-1 (uAB 
# uF) = 68.9�� Ans.

F2–27.	  uOA =
12
13i +

5
13j

	  uOA
# j = uOA(1) cos u

	  cos u =
5
13; u = 67.4�� Ans.

F2–28.	  uOA =
12
13i +

5
13j

	  F = FuF = [650j] N

	  FOA = F # uOA = 250 N

	  FOA = FOA uOA = 5231i + 96.2j6  N� Ans.

F2–14.	 cos b =21 - cos2 120� - cos2 60� = {0.7071

	 Require b = 135�.

	  F = FuF = (500 N)(-0.5i - 0.7071j + 0.5k)

	  = 5-250i - 354j + 250k6  N � Ans.

F2–15.	  cos2a + cos2135� + cos2 120� = 1

	  a = 60�

	  F = FuF = (500 N)(0.5i - 0.7071j - 0.5k)

	  = 5250i - 354j - 250k6  N � Ans.

F2–16.	  Fz = (50 lb) sin 45� = 35.36 lb

	  F� = (50 lb) cos 45� = 35.36 lb

	  Fx = 13
52(35.36 lb) = 21.21 lb

	  Fy = 14
52(35.36 lb) = 28.28 lb

	  F = 5-21.2i + 28.3j + 35.4k6  lb� Ans.

F2–17.	  Fz = (750 N) sin 45� = 530.33 N

	  F� = (750 N) cos 45� = 530.33 N

	  Fx = (530.33 N) cos 60� = 265.2 N

	  Fy = (530.33 N) sin 60� = 459.3 N

	  F2 = 5265i -  459j + 530k6  N � Ans.

F2–18.	  F1 =  14
52(500 lb) j + 13

52(500 lb)k

	   =  5400j + 300k6  lb

	  F2 =  [(800 lb) cos 45�] cos 30� i

	  + [(800 lb) cos 45�] sin 30�j

	  + (800 lb) sin 45� (-k)

	   =  5489.90i + 282.84j - 565.69k6  lb

	  FR =  F1 + F2 = 5490i + 683j - 266k6  lb  � Ans.

F2–19.	  rAB = 5-6i + 6j + 3k6  m  � Ans.

	  rAB = 2(-6 m)2 + (6 m)2 + (3 m)2 = 9 m� Ans.

	  a = 132�, b = 48.2�, g = 70.5� � Ans.

F2–20.	  rAB = 5-4i + 2j + 4k6  ft � Ans.

	  rAB = 2(-4 ft)2 + (2 ft)2 + (4 ft)2 = 6 ft� Ans.

	  a = cos-11 - 4 ft
6 ft 2 = 131.8�

	  u = 180� - 131.8� = 48.2� � Ans.

F2–21.	  rAB = 52i + 3j - 6k6  m

	  FAB = FABuAB

	  = (630 N)12
7i +

3
7j -

6
7k2

	  = 5180i + 270j - 540k6  N  � Ans.
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F3–5.	  + c �Fy = 0; (392.4 N)sin 30� - mA(9.81) = 0

	  mA = 20 kg� Ans.

F3–6.	  + c �Fy = 0; TAB sin 15� - 10(9.81) N = 0

	  TAB = 379.03 N = 379 N� Ans.

	  +
S�Fx = 0; TBC - 379.03 N cos 15� = 0

	  TBC = 366.11 N = 366 N� Ans.

	  +
S�Fx = 0; TCD cos u - 366.11 N = 0

	  + c �Fy = 0; TCD sin u - 15(9.81) N = 0

	  TCD = 395 N� Ans.

	  u = 21.9�� Ans.

F3–7.	  �Fx = 0; 313
52F3413

52 + 600 N - F2 = 0	 (1)

	  �Fy = 0; 14
52F1 - 313

52F3414
52 = 0	 (2)

	  �Fz = 0; 14
52F3 + 13

52F1 - 900 N = 0	 (3)
	  F3 = 776 N� Ans.

	  F1 = 466 N� Ans.

	  F2 = 879 N� Ans.

F3–8.	  �Fz = 0; FAD14
52 - 900 = 0

	  FAD = 1125 N = 1.125 kN� Ans.

	  �Fy = 0; FAC14
52 - 112513

52 = 0

	  FAC = 843.75 N = 844 N� Ans.

	  �Fx = 0; FAB - 843.7513
52 = 0

	  FAB = 506.25 N = 506 N� Ans.

F3–9.	 FAD = FADa
rAD

rAD
b =

1
3FADi -

2
3FAD j +

2
3FAD k

	  �Fz = 0; 	 2
3FAD - 600 = 0

				   FAD = 900 N� Ans.

	  �Fy = 0;	 FAB cos 30� -
2
3 (900) = 0 

		  FAB = 692.82 N = 693 N� Ans.

	  �Fx = 0;	 1
3 (900) + 692.82 sin 30� - FAC = 0

			   FAC = 646.41 N = 646 N� Ans.

F3–10.	  FAC = FAC 5-cos 60� sin 30� i  

	     + cos 60� cos 30� j + sin 60� k6
	  = -0.25FAC i + 0.4330FAC j + 0.8660FAC k

	  FAD = FAD5cos 120� i + cos 120� j + cos 45� k6
	  = -0.5FAD i - 0.5FAD j + 0.7071FAD k

	  �Fy = 0; 0.4330FAC - 0.5FAD = 0

	  �Fz = 0; 0.8660FAC + 0.7071FAD - 300 = 0

	  FAD = 175.74 lb = 176 lb� Ans.

	  FAC = 202.92 lb = 203 lb� Ans.

	  �Fx = 0; FAB - 0.25(202.92) - 0.5(175.74) = 0

	  FAB = 138.60 lb = 139 lb� Ans.

F2–29.	  F = (400 N) 

54 i +  1 j -  6 k6m2(4 m)2 + (1 m)2 + (-6 m)2

	  = 5219.78i + 54.94j - 329.67k6  N

	  uAO =
5-4 j -  6 k6  m2(-4 m)2 + (-6 m)2

	  = -0.5547j - 0.8321k

	  (FAO)proj = F # uAO = 244 N � Ans.

F2–30.	  F = [(-600 lb) cos 60�] sin 30� i
	  + [(600 lb) cos 60�] cos 30� j
	  + [(600 lb) sin 60�] k
	  = 5-150i + 259.81j + 519.62k6  lb

	  uA = -
2
3i +

2
3j +

1
3k

	  (FA)par = F # uA = 446.41 lb = 446 lb� Ans.

	  (FA)per = 2(600 lb)2 - (446.41 lb)2

	  = 401 lb � Ans.

F2–31.	  F = 56 N13
7i -

6
7j +

2
7k2

	 = 524i - 48j + 16k6  N
 1FAO2} = F # uAO = 124i - 48j + 16k2 # 13

7 i -
6
7 j -

2
7k2

	 = 46.86 N =  46.9 N� Ans.

 1FAO2# = 2F2 - 1FAO2} = 215622 - 146.8622

	 = 30.7 N� Ans.

Chapter 3
F3–1.	  +

S �Fx = 0; 4
5FAC - FAB cos 30� = 0

	 + c �Fy = 0; 3
5FAC + FAB sin 30� - 550 = 0

	 FAB = 478 lb � Ans.

	 FAC = 518 lb � Ans.

F3–2.	  + c �Fy = 0; -2(1500) sin u + 700 = 0

	  u = 13.5�

	  LABC = 21 5 ft
cos 13.5�2 = 10.3 ft� Ans.

F3–3.	  S
+ �Fx = 0; T cos u -  T cos f = 0

	  f = u

	  + c �Fy = 0; 2T sin u - 49.05 N = 0

	  u = tan-110.15 m
0.2 m 2 = 36.87�

	  T = 40.9 N� Ans.

F3–4.	  + Q�Fx = 0; 4
5(Fsp) - 5(9.81) sin 45� = 0

	  Fsp = 43.35 N

	  Fsp = k(l - l0); 43.35 = 200(0.5 - l0)

	  l0 = 0.283 m� Ans.
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F4–8.	  a+ (MR)O = �Fd;

	 (MR)O = 313
52500 N4(0.425 m)

	  - 314
52500 N4(0.25 m)

	  - [(600 N) cos 60�](0.25 m)

	  - [(600 N) sin 60�](0.425 m)

	  = -268 N # m = 268 N # m b� Ans.

F4–9.	 a + (MR)O = �Fd;

	  (MR)O = (300 cos 30� lb)(6 ft + 6 sin 30� ft)

	   -  (300 sin 30� lb)(6 cos 30� ft)

	   + (200 lb)(6 cos 30� ft)

	  = 2.60 kip # ft � Ans.

F4–10.	 F = FuAB = 500 N14
5i -

3
5j2 = 5400i - 300j6  N

	  MO = rOA * F = 53j6  m * 5400i - 300j6  N

	  = 5-1200k6  N # m � Ans.

	 or

	  MO = rOB * F = 54i6  m * 5400i - 300j6  N

	  = 5-1200k6  N # m � Ans.

F4–11.	  F = FuBC

	  = 120 lbJ 54 i -  4 j -  2 k6  ft2(4 ft)2 + (-4 ft)2 + (-2 ft)2
R

	  = 580i - 80j - 40k6  lb

	  MO = rC * F = 3 i j k
5 0 0

80 -80 -40

3
	  = 5200j - 400k6  lb # ft � Ans.

	 or

	  MO = rB * F = 3 i j k
1 4 2

80 -80 -40

3
	  = 5200j - 400k6  lb # ft � Ans.

F4–12.	  FR = F1 + F2

	  = 5(100 - 200)i + (-120 + 250)j

	  + (75 + 100)k6  lb

	  = 5-100i + 130j + 175k6  lb

	  (MR)O = rA * FR = 3 i j k
4 5 3

-100 130 175

3
	  = 5485i - 1000j + 1020k6  lb # ft � Ans.

F3–11.	  FB = FBa
rAB

rAB
b

	  = FBJ 5-6i + 3j + 2k6  ft2(-6 ft)2 + (3 ft)2 + (2 ft)2
R

	  = -
6
7FBi +

3
7 FB j +

2
7 FB k

	  FC = FCa
rAC

rAC
b

	  = FCJ 5-6i - 2j + 3k6  ft2(-6 ft)2 + (-2 ft)2 + (3ft)2
R

	  = -
6
7 FC i -

2
7 FC   j +

3
7 FC k

	  FD = FDi

	  W = 5-150k6  lb

	  �Fx = 0; -
6
7 FB -

6
7 FC + FD = 0 	 (1)

	  �Fy = 0; 3
7 FB -

2
7 FC = 0 	 (2)

	  �Fz = 0; 2
7 FB +

3
7 FC - 150 = 0 	 (3)

	  FB = 162 lb � Ans.

	  FC = 1.5(162 lb) = 242 lb � Ans.

	  FD = 346.15 lb = 346 lb  � Ans.

Chapter 4
F4–1.	 a +MO = - 14

52(100 N)(2 m) -  13
52(100 N)(5 m)

	  = -460 N # m = 460 N # mb� Ans.

F4–2.	 a+MO = [(300 N) sin 30�][0.4 m + (0.3 m) cos 45�]
	   - [(300 N) cos 30�][(0.3 m) sin 45�]
	  = 36.7 N # m� Ans.

F4–3.	 a +MO = (600 lb)(4 ft + (3 ft)cos 45� - 1 ft)

	  = 3.07 kip # ft � Ans.

F4–4.	 c +MO = 50 sin 60� (0.1 + 0.2 cos 45� + 0.1)

	  - 50 cos 60�(0.2 sin 45�)

	  = 11.2 N # m � Ans.

F4–5.	 a +MO = 600 sin 50� (5) + 600 cos 50� (0.5)
	  = 2.49 kip # ft � Ans.

F4–6.	 a+MO = 500 sin 45� (3 + 3 cos 45�)

	  - 500 cos 45� (3 sin 45�)

	  = 1.06 kN # m � Ans.

F4–7.	 a+ (MR)O = �Fd;

	  (MR)O = - (600 N)(1 m)

	  + (500 N)[3 m + (2.5 m) cos 45�]

	  - (300 N)[(2.5 m) sin 45�]

	  = 1254 N # m = 1.25 kN # m �Ans.
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	 Fz =
3
515002 = 300 N

	  Mx = -320132 + 300122 = -360 N # m� Ans.

	  My = -240132 - 300 (-2) = -120 N # m� Ans.

 Mz = 240122 - 320 (2) = -160 N # m� Ans.

	 Vector Analysis

	  F = 5-240i + 320j + 300k6N

	  rOA = 5-2i + 2j + 3k6  m

	  Mx = i # 1rOA * F2 = -360 N # m

	  My = j # 1rOA * F2 = -120 N # m

	  Mz = k # 1rOA * F2 = -160 N # m

F4–19.	  c+MCR
= �MA = 400(3) - 400(5) + 300(5)

	 + 200(0.2) = 740 N # m � Ans.

	 Also,

	  c+MCR
= 300(5) - 400(2) + 200(0.2)

	  = 740 N # m � Ans.

F4–20.	 	 a+MCR
= 300(4) + 200(4) + 150(4)

	   = 2600 lb # ft � Ans.

F4–21.	  a+ (MB)R = �MB

	  -1.5 kN # m = (2 kN)(0.3 m) -  F(0.9 m)

	  F = 2.33 kN � Ans.

F4–22.	  a+MC = 1013
52(2) - 1014

52(4) = -20 kN # m

	  = 20 kN # mb� Ans.

F4–23.	  u1 =
r1

r1
=

{-2i + 2j + 3.5k} ft2(-2 ft)2 + (2 ft)2 + (3.5 ft)2

	  = -
2

4.5i +
2

4.5j +
3.5
4.5k

	  u2 = -k

	  u3 =
1.5
2.5i -

2
2.5j

	  (Mc)1 = (Mc)1u1

	  = (450 lb # ft)1- 2
4.5i +

2
4.5j +

3.5
4.5k2

	  = 5-200i + 200j + 350k6  lb # ft

	  (Mc)2 = (Mc)2u2 = (250 lb # ft)(-k)

	  = 5-250k6  lb # ft

	  (Mc)3 = (Mc)3 u3 = (300 lb # ft)11.5
2.5i -

2
2.5j2

	  = 5180i - 240j6  lb # ft

	  (Mc)R = �Mc;

	  (Mc)R = {-20i - 40j + 100k} lb # ft � Ans.

F4–13.	  Mx = i # (rOB *  F) = 3 1 0 0

0.3 0.4 -0.2

300 -200 150

3
	  = 20 N # m � Ans.

F4–14.	  uOA =
rA

rA
=

50.3i + 0.4j6  m2(0.3 m)2 + (0.4 m)2
     = 0.6 i + 0.8 j

	 MOA = uOA
# (rAB * F) = 3 0.6 0.8 0

0 0 -0.2

300 -200 150

3
	  = -72 N # m � Ans.

	 ` MOA ` = 72 N # m

F4–15.	 �Scalar Analysis
	 The magnitudes of the force components are

	 Fx = � 200 cos 120� � =  100 N

	 Fy = 200 cos 60� = 100 N

	 Fz = 200 cos 45� = 141.42 N

	  Mx = -Fy1z2 + Fz1y2
	  = - 1100 N2 10.25 m2 + 1141.42 N2 10.3 m2
	  = 17.4 N # m� Ans.

	 Vector Analysis

	 Mx = 3 1 0 0

0 0.3 0.25

-100 100 141.42

3 = 17.4 N # m� Ans.

F4–16.	  My = j # (rA * F) = 3 0 1 0

-3 -4 2

30 -20 50

3
	  = 210 N # m � Ans.

F4–17.	  uAB =
rAB

rAB
=

5-4i + 3j6ft2(-4 ft)2 + (3 ft)2
= -0.8i + 0.6j

	  MAB = uAB
# (rAC * F)

	  = 3 -0.8 0.6 0

0 0 2

50 -40 20

3  = -4 lb # ft

	  MAB = MABuAB = 53.2i - 2.4j6  lb # ft� Ans.

F4–18.	 Scalar Analysis

	 The magnitudes of the force components are
	 Fx = 13

52 34
515002 4 = 240 N

	 Fy =
4
5 34

515002 4 = 320 N
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F4–28.	  +S (FR)x = �Fx;

	  (FR)x = 15013
52 + 50 - 10014

52 = 60 lb S

	  + c(FR)y = �Fy;

	  (FR)y = -15014
52 - 10013

52
	  = -180 lb = 180 lb T

	  FR = 2602 + 1802 = 189.74 lb = 190 lb� Ans.

	  u = tan-11180
60 2 = 71.6� c� Ans.

	  a+ (MR)A = �MA;

	  (MR)A = 10014
52(1) - 10013

52(6) - 15014
52(3)

	 = -640 = 640 lb # ft b� Ans.

F4–29.	  FR = �F;

	  FR = F1 + F2

	  = (-300i + 150j + 200k) + (-450k)

	  = 5-300i + 150j - 250k6  N � Ans.

	  rOA = (2 - 0)j = 52j6  m

	  rOB = (-1.5-  0)i + (2 - 0)j + (1 - 0)k

	  = 5-1.5i + 2j + 1k6  m

	  (MR)O = �M;

	  (MR)O = rOB * F1 + rOA * F2

	  = 3 i j k
-1.5 2 1

-300 150 200

3 + 3 i j k
0 2 0

0 0 -450

3
	 = 5-650i + 375k6N # m� Ans.

F4–30.	  F1 = 5-100j6  N 	

	  F2 = (200 N)J 5-0.4i - 0.3k6  m2(-0.4 m)2 + (-0.3 m)2
R

	  = 5-160i - 120k6  N

	  Mc = 5-75i6  N # m

	  FR = {-160i - 100j - 120k} N �Ans.

	  (MR)O = (0.3k) *  (-100j)

	  + 3 i j k
0 0.5 0.3

-160 0 -120

3 + (-75i)

	  = {-105i - 48j + 80k} N # m� Ans.

F4–31.	  + TFR = �Fy; FR = 500 + 250 + 500

	  = 1250 lb � Ans.

		  c+FRx = �MO;

	  1250(x) = 500(3) + 250(6) + 500(9)

	  x = 6 ft � Ans.

F4–24.	  FB = 14
52(450 N)j - 13

52(450 N)k

	  = 5360j - 270k6  N

	  Mc = rAB * FB = 3 i j k
0.4 0 0

0 360 -270

3
	  = {108j + 144k} N # m � Ans.
	 Also,

	  Mc = (rA * FA) + (rB * FB)

	  = 3 i j k
0 0 0.3

0 -360 270

3 + 3 i j k
0.4 0 0.3

0 360 -270

3
	  = {108j + 144k} N # m � Ans.

F4–25.	  +d FRx = �Fx; FRx = 200 -
3
5 (100) = 140 lb

	  + TFRy = �Fy; FRy = 150 -
4
5 (100) = 70 lb

	  FR = 21402 + 702 = 157 lb � Ans.

	  u = tan-11 70
1402 = 26.6� d� Ans.

	  c+MAR
= �MA;

	  MAR
=

3
5(100)(4) -

4
5 (100)(6) + 150(3)

	  MRA
= 210 lb # ft � Ans.

F4–26.	  +S FRx = �Fx;    FRx =
4
5 (50) = 40 N

	  + TFRy = �Fy;    FRy = 40 + 30 +
3
5 (50)

	  = 100 N

	  FR = 2(40)2 + (100)2 = 108 N � Ans.

	  u = tan-11100
40 2 = 68.2� c� Ans.

	  c+MAR
= �MA;

	  MAR
= 30(3) +

3
5 (50)(6) + 200

	  = 470 N # m � Ans.

F4–27.	 S
+  (FR)x = �Fx;  

	  (FR)x = 900 sin 30� = 450 N S

	  + c(FR)y = �Fy;  

	  (FR)y = -900 cos 30� - 300

	  = -1079.42 N = 1079.42 N T

	  FR = 24502 + 1079.422

	  = 1169.47 N = 1.17 kN � Ans.

	  u = tan-111079.42
450 2 = 67.4� c� Ans.

		   a+ (MR)A = �MA;  

	  (MR)A = 300 - 900 cos30� (0.75) - 300(2.25)

	  = -959.57 N # m

	  = 960 N # m b � Ans.
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F4–32.	  S+ (FR)x = �Fx;

	  (FR)x = 10013
52+  50 sin 30� = 85 lb S

	  + c(FR)y = �Fy;

	  (FR)y = 200 + 50 cos 30� - 10014
52

	  = 163.30 lbc

	  FR = 2852 + 163.302 = 184 lb

	  u = tan-11163.30
85 2 = 62.5� a� Ans.

	  a+ (MR)A = �MA;

	  163.30(d) = 200(3) - 10014
52(6) + 50 cos 30�(9)

	  d = 3.12 ft � Ans.

F4–33.	  S+ (FR)x = �Fx;

	  (FR)x = 1514
52 = 12 kN S

	  + c(FR)y = �Fy;

	  (FR)y = -20 + 1513
52 = -11 kN = 11 kNT

	  FR = 2122 + 112 = 16.3 kN � Ans.

	  u = tan-1111
122 = 42.5� c� Ans.

		  a+ (MR)A = �MA;

	  -11(d) = -20(2) - 1514
52(2) + 1513

52(6)

	  d = 0.909 m� Ans.

F4–34.	  +S(FR)x = �Fx;

	  (FR)x = 13
52 5 kN - 8 kN

	  = -5 kN = 5 kN d

	  + c(FR)y = �Fy;

	  (FR)y = -6 kN - 14
52 5 kN

	  = -10 kN = 10 kNT

	  FR = 252 + 102 = 11.2 kN� Ans.

	  u = tan-1110 kN
5 kN 2 = 63.4� d� Ans.

		  a+ (MR)A = �MA;

	  5 kN(d) = 8 kN(3 m) - 6 kN(0.5 m)

	  - 314
525 kN4(2 m)

	  - 313
525 kN4(4 m)

	  d = 0.2 m� Ans.

F4–35.	  + TFR = �Fz; FR = 400 + 500 - 100

	  = 800 N  � Ans.

	  MRx = �Mx; -800y = -400(4) - 500(4)

	  y = 4.50 m� Ans.

	  MRy = �My; 800x = 500(4) - 100(3)

	  x = 2.125 m� Ans.

F4–36.	  + TFR = �Fz;

	  FR = 200 + 200 + 100 + 100

	  = 600 N � Ans.

		  a+MRx = �Mx;

	  -600y = 200(1) + 200(1) + 100(3) - 100(3)

	  y = -0.667 m� Ans.

		  c+MRy = �My;

	  600x = 100(3) + 100(3) + 200(2) - 200(3)

	  x = 0.667 m� Ans.

F4–37.	  + cFR = �Fy;

	  -FR = -6(1.5) - 9(3) - 3(1.5)

	  FR = 40.5 kNT � Ans.

		  a+ (MR)A = �MA;

	  -40.5(d) = 6(1.5)(0.75)

	  -  9(3)(1.5) - 3(1.5)(3.75)

	  d = 1.25 m� Ans.

F4–38.	  FR =
1
2 (6)(150) + 8(150) = 1650 lb � Ans.

	  c+MAR
= �MA;

	  1650d = 31
2 (6)(150)4(4) + [8(150)](10)

	  d = 8.36 ft� Ans.

F4–39.	  + cFR = �Fy;

	  -FR = -  12 (6)(3) -
1
2 (6)(6)

	  FR = 27 kNT � Ans.

		  a+ (MR)A = �MA;

	  -27(d) =
1
2(6)(3)(1) -

1
2(6)(6)(2)

	  d = 1 m � Ans.

F4–40.	  + TFR = �Fy;

	  FR =
1
2(50)(6) + 150(6) + 500

	  = 1550 lb � Ans.

	  c+MAR
= �MA;

	  1550d = 31
2(50)(6)4(4) + [150(6)](3) + 500(9)

	  d = 5.03 ft � Ans.

F4–41.	  + cFR = �Fy;

	  -FR = -  12(3)(4.5) - 3(6)

	  FR = 24.75 kNT � Ans.

		  a+ (MR)A = �MA;

	  -24.75(d) = -  12(3)(4.5)(1.5) - 3(6)(3)

	  d = 2.59 m � Ans.
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F5–5.	 a+ �MA = 0;

	 NC(0.7 m) - [25(9.81) N] (0.5 m) cos 30� = 0

	 NC = 151.71 N = 152 N� Ans.

	 +
S�Fx = 0;

	 TAB cos 15� - (151.71 N) cos 60� = 0

	 TAB = 78.53 N = 78.5 N� Ans.

	  + c �Fy = 0;

	 FA + (78.53 N) sin 15�

	 + (151.71 N) sin 60� - 25(9.81) N = 0

	 FA = 93.5 N� Ans.

F5–6.	 +
S�Fx = 0;

	 NC sin 30� - (250 N) sin 60� = 0

	  NC = 433.0 N = 433 N� Ans.

		 a+ �MB = 0;

	 -NA sin 30�(0.15 m) - 433.0 N(0.2 m)

	 + [(250 N) cos 30�](0.6 m) = 0

	 NA = 577.4 N = 577 N� Ans.

	 + c �Fy = 0;

	 NB -  577.4 N + (433.0 N)cos 30�

	 - (250 N) cos 60� = 0

	 NB = 327 N� Ans.

F5–7.	  �Fz = 0;

	 TA + TB + TC - 200 - 500 = 0

	  �Mx = 0;

	 TA(3) + TC(3) - 500(1.5) - 200(3) = 0

	  �My = 0;

	 -TB(4) - TC(4) + 500(2) + 200(2) = 0

	  TA = 350 lb, TB = 250 lb, TC = 100 lb� Ans.

F5–8.	 �My = 0;

	 600 N(0.2 m) + 900 N(0.6 m) - FA(1 m) = 0

	 FA = 660 N� Ans.

	 �Mx = 0;

	 Dz(0.8 m) - 600 N(0.5 m) - 900 N(0.1 m) = 0

	 Dz = 487.5 N� Ans.

	 �Fx = 0;	 Dx = 0� Ans.

	 �Fy = 0;	 Dy = 0� Ans.

	 �Fz = 0;

	 TBC + 660 N + 487.5 N - 900 N - 600 N = 0

	 TBC = 352.5 N� Ans.

F4–42.	  FR = Lw(x) dx = L
4

0
2.5x3 dx = 160 N

	  c+MAR
= �MA;

	  x =
Lxw(x) dx

Lw(x) dx
=

L
4

0
2.5x4 dx

160
= 3.20 m�Ans.

Chapter 5
F5–1.	  +S�Fx = 0; -Ax + 50013

52 = 0

	  Ax = 300 lb � Ans.

		  a+ �MA = 0; By(10) - 50014
52(5) - 600 = 0

	  By = 260 lb � Ans.

	  + c �Fy = 0;   Ay + 260 - 50014
52 = 0

	  Ay = 140 lb � Ans.

F5–2.	 a+ �MA = 0;

	 FCD sin 45�(1.5 m) - 4 kN(3 m) = 0

	 FCD = 11.31 kN = 11.3 kN� Ans.

	  +S�Fx = 0; Ax + (11.31 kN) cos 45� = 0

	  Ax = -8 kN = 8 kN d � Ans.

	  + c �Fy = 0;

	  Ay + (11.31 kN) sin 45� - 4 kN = 0

	  Ay = -4 kN = 4 kN T � Ans.

F5–3.	 a+ �MA = 0;

	 NB[6 m + (6 m) cos 45�]

	 -  10 kN[2 m + (6 m) cos 45�]

	 -  5 kN(4 m) = 0

	 NB = 8.047 kN = 8.05 kN� Ans.
	  +

S�Fx = 0;

	  (5 kN) cos 45� - Ax = 0

	  Ax = 3.54 kN� Ans.
	  + c �Fy = 0;

	  Ay + 8.047 kN - (5 kN) sin 45� - 10 kN = 0

	 Ay = 5.49 kN� Ans.

F5–4.	  +S�Fx = 0;  -Ax + 400 cos 30� = 0

	  Ax = 346 N� Ans.
	 + c �Fy = 0;

	  Ay - 200 - 200 - 200 - 400 sin 30� = 0

	 Ay = 800 N � Ans.
	  a+ �MA = 0;

	  MA - 200(2.5) - 200(3.5) - 200(4.5)

	 - 400 sin 30�(4.5) - 400 cos 30�(3 sin 60�) = 0

	  MA = 3.90 kN # m � Ans.
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F5–12.	  �Fx = 0;   Ax = 0 � Ans.

	  �Fy = 0;   Ay = 0 � Ans.

	  �Fz = 0;   Az + FBC - 80 = 0 	

	  �Mx = 0; (MA)x + 6FBC - 80(6) = 0 	

	  �My = 0; 3FBC - 80(1.5) = 0   FBC = 40 lb� Ans.

	  �Mz = 0; (MA)z = 0 � Ans.

	  Az = 40 lb  (MA)x = 240 lb # ft � Ans.

Chapter 6
F6–1.	 Joint A.

	  + c �Fy = 0;  225 lb - FAD sin 45� = 0

	  FAD = 318.20 lb = 318 lb (C)� Ans.

	  +
S�Fx = 0;  FAB - (318.20 lb) cos 45� = 0

	  FAB = 225 lb (T)� Ans.

	 Joint B.

	 +
S�Fx = 0;  FBC - 225 lb = 0

	 FBC = 225 lb (T)� Ans.

	 + c �Fy = 0;  FBD = 0      � Ans.

	 Joint D.

	 +
S�Fx = 0;

	 FCD cos 45� + (318.20 lb) cos 45� - 450 lb = 0

	 FCD = 318.20 lb = 318 lb (T)� Ans.

F6–2.	 Joint D.

	  + c �Fy = 0; 3
5 FCD - 300 = 0;

	  FCD = 500 lb (T)� Ans.

	  S+ �Fx = 0; -FAD +
4
5 (500) = 0

	  FAD = 400 lb (C) 	 Ans.

	 FBC = 500 lb (T), FAC = FAB = 0� Ans.

F6–3.	 Dx = 200 lb, Dy = 650 lb, By = 150 lb

	 Joint B.

 S+ �Fx = 0; FBA = 0� Ans.

 + c �Fy = 0; 150 - FBC = 0; FBC = 150 lb (C)	 Ans.

Joint A.

 S+ �Fx = 0; FAC14
52 = 0; FAC = 0	 Ans.

 + c �Fy = 0; FAD - 800 = 0; FAD = 800 lb (T)� Ans.

	Joint C.

 S+ �Fx = 0; -FCD + 200 = 0; FCD = 200 lb (T)	Ans.

F5–9.	 �Fy = 0;   400 N + Cy = 0;

	 Cy = -400 N� Ans.

	 �My = 0;   -Cx (0.4 m) - 600 N (0.6 m) = 0

	  Cx = -900 N � Ans.

	  �Mx = 0;   Bz (0.6 m) + 600 N (1.2 m)

	  + (-400 N)(0.4 m) = 0

	 Bz = -933.3 N� Ans.

	  �Mz = 0;

	  -Bx (0.6 m) - (-900 N)(1.2 m)

	 + (-400 N)(0.6 m) = 0

	  Bx = 1400 N� Ans.

	 �Fx = 0;  1400 N + (-900 N) + Ax = 0

	 Ax = -500 N� Ans.

	 �Fz =  0;   Az - 933.3 N + 600 N = 0

	  Az = 333.3 N� Ans.

F5–10.	 �Fx = 0;	  Bx = 0� Ans.

	 �Mz = 0; 

	 Cy(0.4 m + 0.6 m) = 0   Cy = 0� Ans.

	 �Fy = 0;   Ay + 0 = 0   Ay = 0� Ans.

	 �Mx = 0; Cz(0.6 m + 0.6 m) + Bz(0.6 m)

	 - 450 N(0.6 m + 0.6 m) = 0

	 1.2Cz + 0.6Bz - 540 = 0

	 �My = 0; -Cz(0.6 m + 0.4 m)

	 - Bz(0.6 m) + 450 N(0.6 m) = 0

	 -Cz - 0.6Bz + 270 = 0

	 Cz = 1350 N Bz = -1800 N� Ans.

	 �Fz = 0;

	 Az + 1350 N + (-1800 N) -  450 N = 0

	 Az = 900 N� Ans.

F5–11.	  �Fy = 0; Ay = 0 � Ans.

	  �Mx = 0; -9(3) + FCE(3) = 0

	  FCE = 9 kN � Ans.

	  �Mz = 0; FCF(3) - 6(3) = 0

	  FCF = 6 kN � Ans.

	  �My = 0; 9(4) - Az (4) - 6(1.5) = 0

	  Az = 6.75 kN � Ans.

	  �Fx = 0; Ax + 6 - 6 = 0 Ax = 0 � Ans.

	  �Fz = 0; FDB + 9 - 9 + 6.75 = 0

	  FDB = -6.75 kN � Ans.
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F6–8.	 a+ �MA = 0;	 Gy(12 m) - 20 kN(2 m) 

� - 30 kN(4 m) - 40 kN(6 m) = 0

	 Gy = 33.33 kN

	 + c �Fy = 0; FKC + 33.33 kN - 40 kN = 0

	  FKC = 6.67 kN (C)� Ans.

		 a+  �MK = 0;

	 33.33 kN(8 m) - 40 kN(2 m) - FCD(3 m) = 0

	 FCD = 62.22 kN = 62.2 kN (T)� Ans.

	 +
S�Fx = 0;  FLK - 62.22 kN = 0

	  FLK = 62.2 kN (C)� Ans.

F6–9.	 From the geometry of the truss, 

	 f = tan-1(3 m>2 m) = 56.31�.

	 a+ �MK = 0; 

	 33.33 kN(8 m) - 40 kN(2 m) - FCD(3 m) = 0

	  FCD = 62.2 kN (T)� Ans.

	  a+ �MD = 0; 33.33 kN(6 m) - FKJ(3 m) = 0

	  FKJ = 66.7 kN (C)� Ans.

	 + c �Fy = 0;

	 33.33 kN - 40 kN + FKD sin 56.31� = 0

	  FKD = 8.01 kN (T)� Ans.

F6–10.	 From the geometry of the truss,

	 tan f =
(9 ft) tan 30�

3 ft = 1.732 f = 60�

		 a+ �MC = 0; 

	 FEF sin 30�(6 ft) + 300 lb(6 ft) = 0

	  FEF = -600 lb = 600 lb (C)� Ans.

		 a+ �MD = 0; 

	 300 lb(6 ft) - FCF sin 60� (6 ft) = 0

	  FCF = 346.41 lb = 346 lb (T)� Ans.

		 a+ �MF = 0;

	 300 lb(9 ft) - 300 lb(3 ft) - FBC(9 ft)tan 30� = 0

	 FBC = 346.41 lb = 346 lb (T)� Ans.

F6–11.	 From the geometry of the truss, 
	 u = tan-1 (1 m>2 m) = 26.57� 
	 f = tan-1 (3 m>2 m) = 56.31�.

	� The location of O can be found using similar 
triangles.

	  
1 m

2 m
=

2 m

2 m + x

	  4 m = 2 m + x

	  x = 2 m

F6–4.	 Joint C.

	 + c �Fy = 0;  2F cos 30� - P = 0

	 FAC = FBC = F =
P

2 cos 30� = 0.5774P (C)

	 Joint B.

	 +
S�Fx = 0; 0.5774P cos 60� - FAB = 0

	  FAB = 0.2887P (T)

	  FAB = 0.2887P = 2 kN

	  P = 6.928 kN

	  FAC = FBC = 0.5774P = 1.5 kN

	  P = 2.598 kN

	 The smaller value of P is chosen,

	 P = 2.598 kN = 2.60 kN� Ans.

F6–5.	 FCB = 0 � Ans.

	 FCD = 0� Ans.

	 FAE = 0 � Ans.

	 FDE = 0� Ans.

F6–6.	 Joint C.

	  + c �Fy = 0;  259.81 lb - FCD sin 30� = 0

	  FCD = 519.62 lb = 520 lb (C)� Ans.

	 +
S�Fx = 0; (519.62 lb) cos 30� - FBC = 0

	 FBC = 450 lb (T)� Ans.

	 Joint D.

	  + Q�Fy� = 0; FBD cos 30� = 0 FBD = 0� Ans.

	  + R�Fx� = 0; FDE  -  519.62 lb = 0

	  FDE = 519.62 lb = 520 lb (C)� Ans.

	 Joint B.

	 c �Fy = 0; FBE sin f = 0 FBE = 0� Ans.

	 +
S�Fx = 0;  450 lb - FAB = 0

	 FAB = 450 lb (T) � Ans.

	 Joint A.

	  + c �Fy = 0;   340.19 lb - FAE = 0

	  FAE = 340 lb (C)� Ans.

F6–7.	  + c �Fy = 0; FCF sin 45� - 600 - 800 = 0

	  FCF = 1980 lb (T) �Ans.

		  a+ �MC = 0; FFE(4) - 800(4) = 0

	  FFE = 800 lb (T) �Ans.

		  a+ �MF = 0; FBC(4) - 600(4) - 800(8) = 0

	  FBC = 2200 lb (C) �Ans.
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F6–16.	 	a+ �MC = 0;

	  400(2) + 800 - FBA 1 3110
2(1)

� - FBA 1 1110
2(3) = 0

	 FBA = 843.27 N

	  S
+ �Fx = 0; Cx - 843.27 1 3110

2 = 0

	  Cx = 800 N� Ans.

	  + c �Fy = 0; Cy + 843.271 1110
2-  400 = 0

	  Cy = 133 N� Ans.

F6–17.	 Plate A:
	 + c �Fy = 0; 2T + NAB - 100 = 0

	 Plate B:
	 + c �Fy = 0; 2T - NAB - 30 = 0

	 T = 32.5 lb, NAB = 35 lb� Ans.

F6–18.	 Pulley C:
	 + c �Fy = 0; T - 2P = 0; T = 2P

	 Beam:
	  + c �Fy = 0; 2P + P - 6 = 0

	  P = 2 kN � Ans.

	  a+ �MA = 0; 2(1) - 6(x) = 0

	  x = 0.333 m � Ans.

F6–19.	 Member CD

	 a+ �MD = 0;  60011.52 - NC132 = 0

	 NC = 300 N

	 Member ABC

	 a+ �MA = 0; -800 + By122 - 1300  sin 45�2 4 = 0

	 By = 824.26 = 824 N� Ans.

	 +
S�Fx = 0; Ax - 300 cos 45� = 0;

	 Ax = 212 N� Ans.

	 + c �Fy = 0; -Ay + 824.26 - 300  sin 45� = 0;

	 Ay = 612 N� Ans.

F6–20.	 AB is a two-force member.
	 Member BC

	 a+ �Mc = 0;  15132 + 10162 - FBC14
52192 = 0

	 FBC = 14.58 kN

	 +
S�Fx = 0; 114.58213

52 - Cx = 0;

	 Cx = 8.75 kN

	 + c �Fy = 0; 114.58214
52 - 10 - 15 + Cy = 0;

	 Cy = 13.3 kN

	 Member CD

 +S�Fx = 0;  8.75 - Dx = 0;  Dx = 8.75 kN � Ans.

 + c �Fy = 0;  -13.3 + Dy = 0;  Dy = 13.3 kN � Ans.

 a+ �MD = 0;  -8.75142 + MD = 0;  MD = 35 kN # m� Ans.

		 a+ �MG = 0;

	 26.25 kN(4 m) - 15 kN(2 m) - FCD(3 m) = 0

	 FCD = 25 kN (T)� Ans.

	 a+ �MD = 0;

	 26.25 kN(2 m) - FGF cos 26.57�(2 m) = 0

	 FGF = 29.3 kN (C)� Ans.

		 a+ �MO = 0;  15 kN(4 m) - 26.25 kN(2 m)

�  - FGD sin 56.31�(4 m) = 0

	 FGD = 2.253 kN = 2.25 kN (T)� Ans.

F6–12.	  a+ �MH = 0;

	  FDC(12 ft) + 1200 lb(9 ft) - 1600 lb(21 ft) = 0

	  FDC = 1900 lb (C)� Ans.

		  a+ �MD = 0;

	  1200 lb(21 ft) - 1600 lb(9 ft) - FHI 

(12 ft) = 0

	  FHI = 900 lb (C)� Ans.

		  a+ �MC = 0;  FJI cos 45�(12 ft) + 1200 lb(21 ft)

� - 900 lb(12 ft) - 1600 lb(9 ft) = 0

	  FJI = 0� Ans.

F6–13.	  + c �Fy = 0; 3P - 60 = 0

	 P = 20 lb� Ans.

F6–14.	 a+ �MC = 0;

	 - 14
52(FAB)(9) + 400(6) + 500(3) = 0

	 FAB = 541.67 lb

	 S
+ �Fx = 0; -Cx +

3
5 (541.67) = 0

	  Cx = 325 lb� Ans.

	  + c �Fy = 0; Cy +
4
5 (541.67) - 400 - 500 = 0

	 Cy = 467 lb� Ans.

F6–15.	  a+ �MA = 0; 100 N(250 mm) - NB(50 mm) = 0

	 NB = 500 N� Ans.

	 S
+ �Fx = 0; (500 N) sin 45� - Ax = 0

	 Ax = 353.55 N

	  + c �Fy = 0; Ay - 100 N - (500 N) cos 45� = 0

	 Ay = 453.55 N

	  FA = 2(353.55 N)2 + (453.55 N)2

	  = 575 N � Ans.
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F6–24.	 AC and DC are two-force members.

	 Member BC

	 a+ �MC = 0; 3  12 (3)(8)4 112 - By132 = 0

	 By = 4 kN�
	 Member BA

	 a+ �MB = 0; 6122 - Ax142 = 0

	 Ax = 3 kN� Ans.

	 + c �Fy = 0; -4 kN + Ay = 0; Ay = 4 kN�Ans.

	 Entire Frame
� a+ �MA = 0; -6122 - 312132 182 4 122 + Dy132 = 0

	 Dy = 12 kN� Ans.

	 Since DC is a two-force member 1�MC = 02 then
	 Dx = 0� Ans.

Chapter 7
F7–1.	  a+ �MA = 0; By(6) - 10(1.5) - 15(4.5) = 0

	  By = 13.75 kN

	  S
+ �Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; VC + 13.75 - 15 = 0

	 VC = 1.25 kN� Ans.

	  a+ �MC = 0; 13.75(3) - 15(1.5) - MC = 0

	 MC = 18.75 kN # m� Ans.

F7–2.	  a+ �MB = 0; 30 - 10(1.5) - Ay(3) = 0

	 Ay = 5 kN

	 S
+ �Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; 5 - VC = 0

	  VC = 5 kN� Ans.

	  a+ �MC = 0; MC + 30 - 5(1.5) = 0

	  MC = -22.5 kN # m� Ans.

F7–3.	 S
+ �Fx = 0; Bx = 0

	  a+ �MA = 0; 3(6)(3) - By(9) = 0

	  By = 6 kip

	 S
+ �Fx = 0; NC = 0� Ans.

	  a+ c �Fy = 0; VC - 6 = 0

	  VC = 6 kip� Ans.

	  a+ �MC = 0; -MC - 6(4.5) = 0

	  MC = -27 kip # ft� Ans.

F7–4.	  a+ �MA = 0; By(6) - 12(1.5) - 9(3)(4.5) = 0

	  By = 23.25 kN

	 S
+ �Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; VC + 23.25 - 9(1.5) = 0

	  VC = -9.75 kN� Ans.

	 a+ �MC = 0;

	 23.25(1.5) - 9(1.5)(0.75) - MC = 0

	 MC = 24.75 kN # m� Ans.

F6–21.	 Entire frame

a+ �MA = 0; -600132 - 3400132 
4 11.52 + Cy132 = 0

	 Cy = 1200 N� Ans.

	 + c �Fy = 0; Ay - 400132 + 1200 = 0

	 Ay = 0� Ans.

	 +
S�Fx = 0; 600 - Ax - Cx = 0

	 Member AB

	 a+ �MB = 0; 40011.52 10.752 - Ax132 = 0

	 Ax = 150 N� Ans.

	 Cx = 450 N� Ans.

	� These same results can be obtained by considering 
members AB and BC.

F6–22.	 Entire frame

	 a+ �ME = 0; 250162 - Ay162 = 0

	 Ay = 250 N

	 +
S�Fx = 0; Ex = 0

	 + c �Fy = 0; 250 - 250 + Ey = 0; Ey = 0

	 Member BD

	 a+ �MD = 0; 25014.52 - By132 = 0;

	 By = 375 N

	 Member ABC

� a+ �MC = 0; -250132 + 37511.52 + Bx122 = 0

	 Bx = 93.75 N

	 +
S�Fx = 0; Cx - Bx = 0; Cx = 93.75 N� Ans.

	 + c �Fy = 0; 250 - 375 + Cy = 0; Cy = 125 N� Ans.

F6–23.	 AD, CB are two-force members.

	 Member AB

	 a+ �MA = 0; - 312132 142 411.52 + By132 = 0

	 By = 3 kN

	� Since BC is a two-force member Cy = By = 3 kN 
and Cx = 0 1�MB = 02.

	 Member EDC

	 a+ �ME = 0; FDA14
52 11.52 - 5132 - 3132 = 0

	 FDA = 20 kN

	 +
S�Fx = 0; Ex - 2013

52 = 0; Ex = 12 kN� Ans.

	 + c �Fy = 0; -Ey + 2014
52 - 5 - 3 = 0;

	 Ey = 8 kN� Ans.
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F7–9.	 + c �Fy = 0; - V -
1
2(2x)(x) = 0

	 V = - (x2) kN
	 a+ �MO = 0; M +

1
2(2x)(x)(x

3) = 0
	  M = - (1

3 x
3) kN # m

M (kN�m)

x (m)

�9 �9

V (kN)

x (m)
3 3

Fig. F7–9 

F7–10.	 + c �Fy = 0; - V - 2x = 0
	 V = -2 kN
	 a+ �MO = 0; M + 2x = 0
		   M = (-2x) kN # m

�2

V (kN)

x (m)

�12

M (kN�m)

x (m)
6 6

Fig. F7–10 

F7–11.	 Region 3 m … x 6 3 m
	 + c �Fy = 0; - V - 5 = 0   V = -5 kN
	 a+ �MO = 0; M + 5x = 0
		   M = (-5x) kN # m
	 Region 0 6 x … 6 m
	 + c �Fy = 0; V + 5 = 0   V = -5 kN
	 a+ �MO = 0; 5(6 - x ) - M = 0
		   M = 15(6 - x)2 kN # m

�5

V (kN)

x (m)

15

3

�15

M (kN�m)

x (m)
6 6

Fig. F7–11 

F7–5.	  a+ �MA = 0; By(6) -
1
2 (9)(6)(3) = 0

	  By = 13.5 kN

	 S
+ �Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; VC + 13.5 -
1
2 (9)(3) = 0

	  VC = 0� Ans.

	  a+ �MC = 0; 13.5(3) -
1
2 (9)(3)(1) - MC = 0

	  MC = 27 kN # m� Ans.

F7–6.	 a+ �MA = 0;

	 By(6) -
1
2 (6)(3)(2) - 6(3)(4.5) = 0

	 By = 16.5 kN

	 +
S�Fx = 0; NC = 0� Ans.

	  + c �Fy = 0; VC + 16.5 - 6(3) = 0

	  VC = 1.50 kN� Ans.

	  a+ �MC = 0; 16.5(3) - 6(3)(1.5) - MC = 0

	  MC = 22.5 kN # m� Ans.

F7–7.	 + c �Fy = 0; 6 - V = 0 V = 6 kN
	 a+ �MO = 0; M + 18 - 6x = 0
	  M = (6x - 18) kN # m

�3

6

V (kN)

x (m)

�18

M (kN�m)

x (m)
3

Fig. F7–7 

F7–8.	 + c �Fy = 0; - V - 2x = 0
	 V = (-2x) kN
	 a+ �MO = 0; M + 2x1x2 2 - 15 = 0
	  M = (15 - x2) kN # m

3

6
15

M (kN�m)

x (m)

�6

V (kN)

x (m)
3

Fig. F7–8 
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F7–16.

�9

V (kN)

x (m)
64.5

1.5

9

�6.75

M (kN�m)

x (m)
1.5 4.5 6

Fig. F7–16 

F7–17.
V (kN)

x (m)

�9

9
3 6

M (kN�m)

x (m)

9

3 6

Fig. F7–17 

F7–18.
V (kN)

x (m)

�13.5

13.5
3 6

M (kN�m)

x (m)

27

3 6

Fig. F7–18 

Chapter 8

F8–1.	 a)	  + c �Fy = 0; N - 50(9.81) - 20013
52 = 0

		   N = 610.5 N

		   +S�Fx = 0; F - 20014
52 = 0

		   F = 160 N

		  F 6 Fmax = ms N = 0.3(610.5) = 183.15 N, 

		  therefore F = 160 N� Ans.

	 b)	  + c �Fy = 0; N - 50(9.81) - 40013
52 = 0

		   N = 730.5 N

		   +S�Fx = 0; F - 40014
52 = 0

		   F = 320 N

		  F 7 Fmax = ms N = 0.3(730.5) = 219.15 N

		  Block slips

		  F = ms N = 0.2(730.5) = 146 N� Ans.

F7–12.	 Region 0 … x 6 3 m
	 + c �Fy = 0; V = 0
	 a+ �MO = 0; M - 12 = 0
		   M = 12 kN # m
	 Region 3 m 6 x … 6 m
	 + c �Fy = 0; V + 4 = 0      V = -4 kN
	 a+ �MO = 0; 4(6 - x ) - M = 0
		   M = 14(6 - x)2 kN # m

�4

V (kN)

x (m)

12

M (kN�m)

x (m)
3 6

3 6

Fig. F7–12 

F7–13.

1 2 3

�10
�4

�18

V (kN)

x (m)
1 2 3

�4

�14

�32

M (kN�m)

x (m)

Fig. F7–13 

F7–14.

3

18

V (kN)

x (m)
31.5

�27
�9

M (kN�m)

x (m)
1.5

6

Fig. F7–14 

F7–15.

�10

V (kN)

x (m)
2 4

6

8 16
20

M (kN�m)

x (m)
2 4 6

2

Fig. F7–15 



634 	 Part ial Solut ions And Answers

F8–7.	 �A will not move. Assume B is about to slip on C 
and A, and C is stationary.

	 +
S�Fx = 0; P - 0.31502 - 0.41752; P = 45 N

	� Assume C is about to slip and B does not slip on 
C, but is about to slip at A.

	 +
S�Fx = 0;  P - 0.31502 - 0.351902 = 0

	  P = 46.5 N 7 45 N

	  P = 45 N � Ans.

F8–8.	 �A is about to move down the plane and B moves 
upward.

	 Block A

	 + a�Fy = 0; N = W  cos u

	 + Q�Fx = 0; T + ms1W cos u2 - W  sin u = 0

	 T = W sin u - ms W cos u� (1)

	 Block B

	 + a�Fy = 0; N� = 2 W cos u

	 + Q�Fx = 0; 2T - msW cos u - ms12W  cos u2
� - W  sin u = 0
	 Using Eq.(1);

	 u =  tan -1 5ms� Ans.

F8–9.	 Assume B is about to slip on A, FB = 0.3 NB.

	 +
S�Fx = 0; P - 0.31102 19.812 = 0

P = 29.4 N

	 Assume B is about to tip on A, x = 0.

	 a+ �MO = 0; 1019.812 10.152 - P10.42 = 0

P = 36.8 N

	 Assume A is about to slip, FA = 0.1 NA.

	 +
S�Fx = 0 P - 0.13719.812 + 1019.812 

4 = 0

P = 16.7 N

	 Choose the smallest result. P = 16.7 N� Ans.

Chapter 9

F9–1.	 x =
LA

x� dA

LA
 dA

=

1

2 L
1 m

0
 y2/3 dy

L
1 m

0
y1/3dy

= 0.4 m� Ans.

	 y =
LA

 y� dA

LA
 dA

=
L

1 m

0
 y4/3 dy

L
1 m

0
y1/3dy

= 0.571 m� Ans.

F8–2.	 a+ �MB = 0;

	 NA(3) + 0.2NA(4) - 30(9.81)(2) = 0

	 NA = 154.89 N

	  +S�Fx = 0; P - 154.89 = 0

	  P = 154.89 N = 155 N� Ans.

F8–3.	 Crate A

	  + c �Fy = 0; NA - 50(9.81) = 0

	  NA = 490.5 N

	  S+ �Fx = 0; T - 0.25(490.5) = 0

	  T = 122.62 N

	 Crate B

	 + c �Fy = 0;   NB + P sin 30� - 50(9.81) = 0

	  NB = 490.5 - 0.5P

	 S
+ �Fx = 0;

	 P cos 30� - 0.25(490.5 - 0.5 P) - 122.62 = 0

	 P = 247 N� Ans.

F8–4.	 +
S�Fx = 0; NA - 0.3NB = 0

	 + c �Fy = 0;

	 NB + 0.3NA + P - 100(9.81) = 0

	 a+ �MO = 0;

	  P(0.6) - 0.3NB(0.9) - 0.3 NA(0.9) = 0

	 NA = 175.70 N   NB = 585.67 N

	 P = 343 N� Ans.

F8–5.	 If slipping occurs:

	 + c �Fy = 0; Nc - 250 lb = 0; Nc = 250 lb

	 S
+ �Fx = 0; P - 0.4(250) = 0; P = 100 lb

	 If tipping occurs:

	 a+ �MA = 0; -P(4.5) + 250(1.5) = 0

	 P = 83.3 lb � Ans.

F8–6.	
a+ �MA = 0; 490.510.62 - T cos 60�10.3  cos  60� + 0.62
	 - T sin 60� 10.3 sin 60�2 = 0

T = 490.5 N

�  +S�Fx = 0; 490.5 sin 60� - NA = 0; NA = 424.8 N

�  + c �Fy = 0; ms1424.82 + 490.5 cos 60� - 490.5 = 0

	 ms = 0.577� Ans.
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F9–8.	  y =
� y� A

�A
=

150[300(50)] + 325[50(300)]

300(50) + 50(300)

	  = 237.5 mm � Ans.

F9–9.	  y =
� y� A

�A
=

100[2(200)(50)] + 225[50(400)]

2(200)(50) + 50(400)

	  = 162.5 mm �Ans.

F9–10.	  x =
� x� A

�A
=

0.25[4(0.5)] + 1.75[0.5(2.5)]

4(0.5) + 0.5(2.5)

	  = 0.827 in. � Ans.

	  y =
� y� A

�A
=

2[4(0.5)] + 0.25[(0.5)(2.5)]

4(0.5) + (0.5)(2.5)

	  = 1.33 in. � Ans.

F9–11.	  x =
� x� V

�V
=

1[2(7)(6)] + 4[4(2)(3)]

2(7)(6) + 4(2)(3)

	  = 1.67 ft � Ans.

	  y =
� y� V

�V
=

3.5[2(7)(6)] + 1[4(2)(3)]

2(7)(6) + 4(2)(3)

	  = 2.94 ft � Ans.

	  z =
� z� V

�V
=

3[2(7)(6)] + 1.5[4(2)(3)]

2(7)(6) + 4(2)(3)

	  = 2.67 ft � Ans.

F9–12.	  x =
� x� V

�V

=

0.25[0.5(2.5)(1.8)] + 0.25J 1

2
(1.5)(1.8)(0.5) R + (1.0)J 1

2
(1.5)(1.8)(0.5) R

0.5(2.5)(1.8) +
1

2
 (1.5)(1.8)(0.5) +

1

2
(1.5)(1.8)(0.5)

	  = 0.391 m � Ans.

	  y =
� y� V

�V
=

5.00625

3.6
= 1.39 m� Ans.

	  z =
� z� V

�V
=

2.835

3.6
= 0.7875 m� Ans.

F9–13.	  A = 2p� r�L

	  = 2p30.75(1.5) + 1.5(2) + 0.752(1.5)2 + (2)24
	  = 37.7 m2 � Ans.

	  V = 2p� r�A

	  = 2p30.75(1.5)(2) + 0.511
22(1.5)(2)4

	  = 18.8 m3 � Ans.

F9–2.	  x =
LA

 x� dA

LA
 dA

=
L

1 m

0
 x(x3 dx)

L
1 m

0
 x3 dx

	  = 0.8 m � Ans.

	  y =
LA

 y� dA

LA
 dA

=
L

1 m

0

1

2
 x31x3 dx2

L
1 m

0
 x3 dx

	  = 0.286 m � Ans.

F9–3.	  y =
LA

 y� dA

 LA
 dA

=
L

2 m

0
 ya2a y1/222

b bdy

L
2 m

0
2a y1/222

bdy

	  = 1.2 m � Ans.

F9–4.	  x =
Lm

 x� dm 

Lm
dm

=
L

L

0
xJm0¢1 +

x2

L2 ≤dx R
L

L

0
m0¢1 +

x2

L2 ≤dx

	  =
9

16
 L � Ans.

F9–5.	  y =
LV

 y� dV

LV
 dV

=
L

1 m

0
 y¢p

4
 ydy≤

L
1 m

0
 
p

4
y dy

	  = 0.667 m � Ans.

F9–6.	  z =
LV

 z� dV

LV
 dV

=
L

2 ft

0
 z c 9p

64
 (4 - z)2 dz d

L
2 ft

0
 
9p

64
 (4 - z)2 dz

	  = 0.786 ft � Ans.

F9–7.	  x =
� x� L

 �L
=

150(300) + 300(600) + 300(400)

300 + 600 + 400

	  = 265 mm � Ans.

	  y =
� y� L

�L
=

0(300) + 300(600) + 600(400)

300 + 600 + 400

	  = 323 mm � Ans.

	  z =
� z� L

�L
=

0(300) + 0(600) + (-200)(400)

300 + 600 + 400

	  = -61.5 mm � Ans.
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Chapter 10
F10–1.

Ix = LA
 y2 dA = L

1 m

0
 y23 11 - y3/22dy4 = 0.111 m4 � Ans.

F10–2.

Ix = LA
 y2 dA = L

1 m

0
 y21y3/2 dy2 = 0.222 m4� Ans.

F10–3.

Iy = LA
 x2 dA = L

1 m

0
x21x2/32dx = 0.273 m4� Ans.

F10–4.

Iy = LA
 x2 dA = L

1 m

0
 x23(1 - x2/3) dx4 = 0.0606 m4� Ans.

F10–5.	  Ix = 3 1
12 (50)145032 + 04 + 3 1

12(300)15032 + 04
	  = 38311062 mm4 � Ans.

	  Iy = 3 1
12 (450)15032 + 04

	  + 23 1
12(50)115032 + (150)(50)(100)24

	  = 18311062 mm4   � Ans.

F10–6.	  Ix =
1
12 (360)120032 -

1
12 (300)114032

	  = 17111062 mm4 � Ans.

	  Iy =
1
12 (200)136032 -

1
12(140)130032

	  = 46311062 mm4 � Ans.

F10–7.	  Iy = 23 1
12(50)120032 + 04

	  + 3 1
12(300)15032 + 04

	  = 69.8 (106) mm4 � Ans.

F10–8.

	  y =
� y� A

�A
=

15(150)(30) + 105(30)(150)

150(30) + 30(150)
= 60 mm

	  Ix� = �(I + Ad2)

	  = 3 1
12 (150)(30)3 + (150)(30)(60 - 15)24

	  + 3 1
12(30)(150)3 + 30(150)(105 - 60)24

	  = 27.0 (106) mm4� Ans.

F9–14.	  A = 2p� r�L

�=  2p31.952(0.9)2 + (1.2)2 + 2.4(1.5) + 1.95(0.9) + 1.5(2.7)4
	  = 77.5 m2 � Ans.

	  V = 2p� r�A

	  = 2p31.811
22(0.9)(1.2) + 1.95(0.9)(1.5)4

	  = 22.6 m3 � Ans.

F9–15.	  A = 2p� r�L

�  = 2p37.5(15) + 15(18) + 22.52152 + 202 + 15(30)4
	  = 8765 in.2 � Ans.

	  V = 2p� r�A

	  = 2p37.5(15)(38) + 2011
22(15)(20)4

	  = 45 710 in.3 � Ans.

F9–16.	  A = 2p� r�L

	  = 2p32(1.5)
p 1p(1.5)

2 2 + 1.5(2) + 0.75(1.5)4
	  = 40.1 m2 � Ans.

	  V = 2p� r�A

	  = 2p34(1.5)
3p 1p11.522

4 2 + 0.75(1.5)(2)4
	  = 21.2 m3 � Ans.

F9–17.	  wb = rwghb = 1000(9.81)(6)(1)

	  = 58.86 kN>m
	  FR =

1
2 (58.76)(6) = 176.58 kN = 177 kN� Ans.

F9–18.	 wb = gw hb = 62.4 (4)(4) = 998.4 lb>ft
	 FR = 998.4(3) = 3.00 kip � Ans.

F9–19.	  wb = rwghBb = 1000(9.81)(2)(1.5)

	  = 29.43 kN>m
	  FR =

1
2 (29.43)12(1.5)2 + (2)22

	  = 36.8 kN � Ans.

F9–20.	  wA = rwghAb = 1000(9.81)(3)(2)

	  = 58.86 kN>m
	 wB = rwghBb = 1000(9.81)(5)(2)

	  = 98.1 kN>m
	  FR =

1
2 (58.86 + 98.1)(2) = 157 kN� Ans.

F9–21.	  wA = gwhA b = 62.4(6)(2) = 748.8 lb>ft
	  wB = gwhB b = 62.4(10)(2) = 1248 lb>ft
	  FR =

1
2 (748.8 + 1248)12(3)2 + (4)22

	  = 4.99 kip � Ans.
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	 611032(-0.9 sin u du)

	 -  3611032(cos u - 0.5)(-1.8 sin u du) = 0

	 sin u (64 800 cos u - 37 800)du = 0

	 sin u = 0   u = 0�� Ans.

64 800 cos u - 37 800 = 0 

	 u = 54.31� = 54.3�� Ans.

F11–5.	  yG = 2.5 sin u  dyG = 2.5 cos u du

	  xA = 5 cos u  dxC = -5 sin u du

	  dU = 0;            1-FspdxA2-WdyG = 0

	  (15 000 sin u cos u - 7500 sin u

	  - 1226.25 cos u)du = 0

	 u = 56.33� = 56.3�� Ans.

	 or u = 9.545� = 9.55�� Ans.

F11–6.	 Fsp = 15 000(0.6 - 0.6 cos u)

	  xC = 3[0.3 sin u]   dxC = 0.9 cos u du

	  yB = 2[0.3 cos u]   dyB = -0.6 sin u du

	 dU = 0;  PdxC + FspdyB = 0

	  (135 cos u - 5400 sin u + 5400 sin u cos u)du = 0

	 u = 20.9�� Ans.

Chapter 11

F11–1.	  yG = 0.75 sin u   dyG = 0.75 cos u du

	  xC = 2(1.5) cos u   dxC = -3 sin u du

	  dU = 0; 2WdyG + PdxC = 0

	 (294.3 cos u - 3P sin u)du = 0

	 P = 98.1 cot u � u= 60� = 56.6 N� Ans.

F11–2.	  xA = 5 cos u   dxA = -5 sin u du

	  yG = 2.5 sin u   dyG = 2.5 cos u du

	  dU = 0;   -PdxA + (-WdyG) = 0

	 (5P sin u - 1226.25 cos u)du = 0

	 P = 245.25 cot u � u= 60� = 142 N� Ans.

F11–3.	  xB = 0.6 sin u   dxB = 0.6 cos u du

	  yC = 0.6 cos u      dyC = -0.6 sin u du

	  dU = 0;   -FspdxB + (-PdyC) = 0

	  -911032 sin u (0.6 cos u du)

	 -  2000(-0.6 sin u du) = 0

	 sin u = 0  u = 0�� Ans.

	 -5400 cos u + 1200 = 0 

	 u = 77.16� = 77.2�� Ans.

F11–4.	  xB = 0.9 cos u  dxB = -0.9 sin u du

	  xC = 2(0.9 cos u)  dxC = -1.8 sin u du

	  dU = 0; PdxB + 1-Fsp dxC2 = 0



Preliminary Problems  
Statics Solutions
Chapter 2
2–1.

45� 120�

200 N

100 N

45�
120�
200 N

100 N
15�

60�
FR

FR

u

(a)

130� 130�

500 N

400 N

500 N
400 N

FRu

FR

130�

50�

(b)

300 N

450 N
20�

FR

20�

450 N

FR

u

(c)

2–2.

70�

110�

30�

200 N

Fv

Fu

u

v

200 N Fv

Fu

30�
110�

(a)

u

60�120�

60�

10�
v

(b)

400 N

400 N

Fu

Fu

Fv

10�

Fv

60�

(c)

110�

30�40�

600 N
Fu

Fv

40�
600 N Fu

110�

Fv

2–3.

FR

y

z

60j

50i

�10k

b

ga

x

(a)

FR

y

z

60k 

�40i 

�80j 

b

g

a

x

(b)

2–4.  a) F = 5-4i - 4j + 2k6  kN

		 F = 2(4)2 + (-4)2 + (2)2 = 6 kN

	 cos b =
-2

3

	 b) F = 520i + 20j - 10k6  N

	 F = 2(20)2 + (20)2 + (-10)2 = 30 N

	 cos b =
2

3

638
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2–5.

(a)

y
20�

600 N

z

x

45�

Fy

Fx

Fz

600 sin 45� N

	 Fx = (600 sin 45�) sin 20� N

	 Fy = (600 sin 45�) cos 20� N

	 Fz = 600 cos 45� N 

y

 (500 N) � 400 N

z

x

5

5

4

4
3

3

Fy

Fz

Fx

500 N

4
5

(b)

	 Fx = -
3

5
 (400) N

	 Fy =
4

5
 (400) N

	 Fz =
3

5
 (500) N

	

y

30�

800 N

z

x

(c)

60�

Fz

Fx

Fy

800 cos 60� N

	 Fx = 800 cos 60� cos 30� N

	 Fy = -800 cos 60� sin 30� N

	 Fz = 800 sin 60� N

2–6.  a)  rAB = 5-5i + 3j - 2k6  m

	 b)  rAB = 54i + 8j - 3k6  m

	 c)  rAB = 56i - 3j - 4k6  m

2–7.  a) F = 15 kNa -3

5
 i +

4

5
 jb = 5-9i + 12j6  kN

	 b) F = 600 Na2

3
 i +

2

3
 j -

1

3
 kb

	 = 5400i + 400j - 200k6  N

	 c) F = 300 Na -
2

3
 i +

2

3
 j -

1

3
 kb

	 = 5-200i + 200j - 100k6  N

2–8.  a) rA = 53k6  m,  rA = 3 m

	 rB = 52i + 2j - 1k6  m,  rB = 3 m

	 rA
# rB = 0(2) + 0(2) + (3)(-1) = -3 m2

	 rA
# rB = rArB cos u

	   -3 = 3(3) cos u

	 b) rA = 5-2i + 2j + 1k6  m,  rA = 3 m

	 rB = 51.5i - 2k6  m,  rB = 2.5 m

	 rA
# rB = (-2)(1.5) + 2(0) + (1)(-2) = -5 m2

	 rA
# rB = rArB cos u

	   -5 = 3(2.5) cos u



640	 Statics Solut ions

2–9.  a)

F = 300 Na2

3
 i +

2

3
 j -

1

3
 kb = 5200i + 200j - 100k6  N 

  ua = -
3

5
 i +

4

5
 j

	 Fa = F # u a = (200)a -
3

5
b + (200)a4

5
b + (-100)a0b

	 b)   F = 500 N a -
4

5
j +

3

5
 kb = 5-400j + 300k6  N

	 ua = -
1

3
 i +

2

3
j +

2

3
 k

	 Fa = F # u a = (0)a -
1

3
b + (-400)a2

3
b + (300)a2

3
b

Chapter 3

3–1.	

200 N

(a)

FAB FAC

4
3

5
30�

 

600 N

(b)

FAB

FAC

4
3

5

30�

 

500 N

(c)

FADFAB

45�30�

3–2.  a) �Fx = 0;  F cos 60� - Pa 112
b - 600a4

5
b = 0

	 �Fy = 0;  -F sin 60� - Pa 112
b + 600a3

5
b = 0

	 b) �Fx = 0;  Pa4

5
b - F sin 60� - 200 sin 15� = 0

	 �Fy = 0;  -Pa3

5
b - F cos 60� + 200 cos 15� = 0

	 c) �Fx = 0;

300 cos 40� + 450 cos 30� - P cos 30� + F sin 10� = 0

	 �Fy = 0;

-300 sin 40� + 450 sin 30� - P sin 30� - F cos 10� = 0

Chapter 4

4–1.  a) MO = 100 N(2 m) = 200 N # md

	 b) MO = -100 N(1 m) = 100 N # mb

	 c) MO = - a3

5
b(500 N)(2 m) = 600 N # mb

	 d) MO = a4

5
b(500 N)(3 m) = 1200 N # md

	 e) MO = - a3

5
b(100 N)(5 m) = 300 N # mb

	 f) MO = 100 N(0) = 0

	 g) MO = - a3

5
b(500 N)(2 m) + a4

5
b(500 N)(1 m)

	 = 200 N # mb

	 h) MO = - a3

5
b(500 N)(3 m - 1 m)

	 + a4

5
b(500 N)(1 m) = 200 N # mb

	 i) MO = a3

5
b(500 N)(1 m) - a4

5
b(500 N)(3 m)

		      = 900 N # mb

4–2.	 MP = 3 i j k
2 -3 0

-3 2 5

3 	 MP = 3 i j k
2 5 -1

2 -4 -3

3
	 MP = 3 i j k

5 -4 -1

-2 3 4

3
4–3.  a) Mx = - (100 N)(3 m) = -300 N # m

	 My = - (200 N)(2 m) = -400 N # m

	 Mz = - (300 N)(2 m) = -600 N # m

	 b) Mx = (50 N)(0.5 m) = 25 N # m

	 My = (400 N)(0.5 m) - (300 N)(3 m) = -700 N # m

	 Mz = (100 N)(3 m) = 300 N # m

	 c) Mx = (300 N)(2 m) - (100 N)(2 m) = 400 N # m

	 My = - (300 N)(1 m) + (50 N)(1 m)

	 + (400 N)(0.5 m) = 250 N # m

	  Mz = - (200 N)(1 m) = -200 N # m

4–4.  a)

	  Ma =
4 - 4

5
-

3

5
0

-5 2 0

6 2 3

4
=
4 - 4

5
-

3

5
0

-1 5 0

6 2 3

4
	 b)

	  Ma =
4 - 122

122
0

3 4 -2

2 -4 3

4
=
4 - 122

122
0

5 2 -2

2 -4 3

4
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	 c) Ma =
4 2

3
-

1

3

2

3

-5 -4 0

2 -4 3

4
=
4 2

3
-

1

3

2

3

-3 -5 2

2 -4 3

4
4–5.  a) +

S (FR)x = �Fx  ; 

	 (FR)x = - a4

5
b500 N + 200 N = -200 N

	 + c(FR)y = �Fy  ;

	 (FR)y = -
3

5
 (500 N) - 400 N = -700 N

	 a+  (MR)O = �MO; 

	 (MR)O = - a3

5
b(500 N)(2 m) - 400 N(4 m)

	 = -2200 N # m

	 b) +
S (FR)x = �Fx; 

	 (FR)x = a4

5
b(500 N) = 400 N

	 + c(FR)y = �Fy;

	 (FR)y = - (300 N) - a3

5
b(500 N) = -600 N

	 a+  (MR)O = �MO; 

	 (MR)O = - (300 N)(2 m) - a3

5
b(500 N)(4 m)

	 - 200 N # m = -2000 N # m

	 c) +
S (FR)x = �Fx;

	 (FR)x = a3

5
b(500 N) + 100 N = 400

	 + c(FR)y = �Fy;

	 (FR)y = - (500 N) - a4

5
b(500 N) = -900 N

	 a+  (MR)O = �MO; 

	 (MR)O = - (500 N)(2 m) - a4

5
b(500 N)(4 m)

	 + a3

5
b(500 N)(2 m) = -2000 N # m

	 d) +
S (FR)x = �Fx;

	 (FR)x = - a4

5
b(500 N) + a3

5
b(500 N) = -100 N

	 + c(FR)y = �Fy;

	 (FR)y = - a3

5
b(500 N) - a4

5
b(500 N) = -700 N

	 a+  (MR)O = �MO;

	 (MR)O = a4

5
b(500 N)(4 m) + a3

5
b(500 N)(2 m)

	 - a3

5
b(500 N)(4 m) + 200 N # m = 1200 N # m

4–6.  a) +
S (FR)x = �Fx;	 (FR)x = 0

	 + c(FR)y = �Fy; 

	 (FR)y = -200 N - 260 N = -460 N

	 a+  (FR)yd = �MO;

	 - (460 N)d = - (200 N)(2 m) - (260 N)(4 m)

	 d = 3.13 m

	� Note: Although 460 N acts downward, this is not 
why −(460 N)d is negative. It is because the moment 
of 460 N about O is negative.

	 b) +
S (FR)x = �Fx;

	 (FR)x = - a3

5
b(500 N) = -300 N

	 + c(FR)y = �Fy;

	 (FR)y = -400 N - a4

5
b(500 N) = -800 N

	 a+  (FR)yd = �MO;

 	 - (800 N)d = - (400 N)(2 m) - a4

5
b(500 N)(4 m)

	 d = 3 m

	 c) +
S (FR)x = �Fx;

	 (FR)x = a4

5
b(500 N) - a4

5
b(500 N) = 0

	 + c(FR)y = �Fy;

	 (FR)y = - a3

5
b(500 N) - a3

5
b(500 N) = -600 N

	 a+  (FR)yd = �MO;

	   - (600 N)d = - a3

5
b(500 N)(2 m) - a3

5
b(500 N)(4 m)

	 - 600 N # m
	 d = 4 m

4–7.  a) + TFR = �Fz; 

	 FR = 200 N + 100 N + 200 N = 500 N

	 (MR)x = �Mx; 
	 - (500 N)y = - (100 N)(2 m) - (200 N)(2 m)
	 y = 1.20 m

	 (MR)y = �My; 
	  (500 N)x = (100 N)(2 m) + (200 N)(1 m)

	 x = 0.80 m
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(d)

4 m
500 N

4

3

5

3 m
Ay

NB

Ax

30�

(e)

2 m 2 m

400 N

By

MA

Ax

30�

Cx

By

FA

Cy

2 m 1 m

(f)
5–2.	

2 m

1 m

0.5 m

300 N

(a)

Cy
Cx

Cz

Az

Bz

2 m
1 m

3 m

1 m

500 N

Bz

Cy

Ay

Cz

Bx

Ax

(b)

	 b) + TFR = �Fz;

	 FR = 100 N - 100 N + 200 N = 200 N

	 (MR)x = �Mx; 
	 - (200 N)y = (100 N)(1 m) + (100 N)(2 m)

	 - (200 N)(2 m)

	 y = 0.5 m

	 (MR)y = �My; 

	  (200 N)x = - (100 N)(2 m) + (100 N)(2 m)
	 x = 0

	 c) + TFR = �Fz; 
	 FR = 400 N + 300 N + 200 N + 100 N = 1000 N

	 (MR)x = �Mx;
	 - (1000 N)y = - (300 N)(4 m) - (100 N)(4 m)
	 y = 1.6 m

	 (MR)y = �My; 
	  (1000 N)x = (400 N)(2 m) + (300 N)(2 m)
	 - (200 N)(2 m) - (100 N)(2 m)
	 x = 0.8 m

Chapter 5

5–1.	

3 m 2 m

500 N

Ax

Ay

3
4

5
TB

(a)

(b)

3 m

600 N � m

Ax

Ay

Bx

2 m

2 m

1200 N

1 m
Ay

By

Bx

(c)
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	 b) Ay = 300 N, Cx = 0, Cy = 300 N

A

B

30�

30�30�

30�

300 N

300 N

600 N

FAB

FCB

FCD

FBD

FBC

FBE

FAB

FBF

FAF

6–2.	 a)

H

D

E
FHG � 0

FDE � 0
FEF � 0

FED  � 0FEC � 0
FHA � 0 FDC � 0

B

FBG � 0

0

FGF

FGA FGC � 0

FCF � 0

FCB FCD

0

FBA FBC

0

FFE

FFG FFD � 0

2 m2 m

2 m

400 N

Bz

Mx

Mz

Az

By

Bx

(c)

5–3.  a) �Mx = 0; 
	 - (400 N)(2 m) - (600 N)(5 m) + Bz  (5 m) = 0

	 �My = 0;  	 -Az(4 m) - Bz(4 m) = 0

	 �Mz = 0;  	 By(4 m) - Bx(5 m)
	 + (300 N)(5 m) = 0

	 b) �Mx = 0; 	 Az(4 m) + Cz(6 m) = 0

	 �My = 0;  	 Bz(1 m) - Cz(1 m) = 0

	 �Mz = 0;  	� -By(1 m) + (300 N)(2 m)
		�   - Ax(4 m) + Cy(1 m) = 0

	 c) �Mx = 0;  Bz(2 m) + Cz(3 m) - 800 N # m = 0

	 �My = 0;       -Cz(1.5 m) = 0

	 �Mz = 0;       -Bx(2 m) + Cy(1.5 m) = 0

Chapter 6

6–1.  a) Ay = 200 N, Dx = 0, Dy = 200 N

A

B

45�

45�

200 N

400 N

FAB

FBC

FCE FCD

FBC

FBE

FAB

FAE

C

b)
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2 m
3 m

2 m

800 N
600 N

3 m

Ay

Ax

MA

By

Bx

By

Bx

Cy

	 BC is a two-force member.

200 N

2 m2 m

3
4

200 N

200 N

200 N

200 N

200 NAy

Ax

FBC

FBC

FBC

	 BC is a two-force member.

	

400 N

2 m2 m

400 N

400 N

400 N

400 N

400 NAy

Ax

FBC
FBC

4
3 

4
3 

5

5

FBC

Chapter 7

7–1.	

100 N

1 m
NB

MB

VC

(a)

6–3.	 a)

4 m

1.5 m

1.5 m

200 N

60 N � m

Ax

Ay By

Cy

Bx

By

Cx

Bx

	 b) CB is a two-force member.

Ay

Ax

FCB

FCB

FCB

600 N

2 m 1 m

45�

45�

	 c) CD is a two-force member.

	

1.5 m

By

Bx

Ax

1 m

500 N

Ay

MA

By

4
35 4

35

3

54

FCD

Bx
FCD

FCD

1 m

	

d)

e)

f)
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600 N

2400 N � m 

150 N

2 m 1 m
NB

MB

VB

(b)

600 N

2 m

NB

MB

VB

600 N

(c)

(d)

400 N

1600 N � m 

2 m

NB

MB

VB

	

MB

800 N

400 N

800 N
1600 N � m 

NB

VB

2 m

(e) 	 (f)

200 N

NB

MB
VB

1 m

Chapter 8

8–1.	 a)

200 N

500 N

4
3 5

N
F¿

	 +
S �Fx = 0; 

	 a4

5
b(500 N) - F� = 0, F� = 400 N

	 + c �Fy = 0;

	 N - 200 N - a3

5
b(500 N) = 0, N = 500 N

	 Fmax = 0.3(500 N) = 150 N 6 400 N

	 Slipping	 F = mkN = 0.2(500 N) = 100 N� Ans.

100 N

4
3 5

N
F¿

40 N

	 +
S �Fx = 0; 

	
4

5
 (100 N) - F� = 0; F� = 80 N

	 + c �Fy = 0;

	 N - 40 N - a3

5
b(100 N) = 0; N = 100 N

	 Fmax = 0.9(100 N) = 90 N 7 80 N

	 F = F� = 80 N� Ans.

8–2.

100 N

1 m NB

M

FA

O

NA

	 Require	 FA = 0.1 NA

	 + c �Fy = 0; 	 NA - 100 N = 0

	 NA = 100 N

	 FA = 0.1(100 N) = 10 N

	 a+ �MO = 0;	 -M + (10 N)(1 m) = 0

	 M = 10 N # m�

b)
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	 FC = 0.1(400 N) = 40 N

	 +S �Fx = 0;	 P - 20 N - 40 N = 0

	 P = 60 N

	 Therefore,	 P = 60 N� Ans.

8–4.	
a)

2 m

0.5 m

P

200 N

N � 200 N
x

o
F

Assume slipping,	 F = 0.3(200 N) = 60 N

	 +S �Fx = 0;	 P - 60 N = 0;  P = 60 N

	 a+ �MO = 0;	 200 N(x) - (60 N)(2 m) = 0

	 x = 0.6 m 7 0.5 m

Block tips,	 x = 0.5 m

	 a+ �MO = 0	 (200 N)(0.5 m) - P(2 m) = 0

	 P = 50 N� Ans.

1 m

0.5 m

P
100 N

N � 100 N
x

F

Assume slipping,	  F = 0.4(100 N) = 40 N

	 +S �Fx = 0;	 P - 40 N = 0; P = 40 N

	 a+ �MO = 0;	 (100 N)(x) - (40 N)(1 m) = 0 

	 x = 0.4 m 6 0.5 m 

	 No tipping

	 P = 40 N� Ans.

8–3.	 a) Slipping must occur between A and B.

NA � 100 N

FA

TA

100 N

	 FA = 0.2(100 N) = 20 N

	 b) Assume B slips on C and C does not slip.

NB � 200 N

FB

P

100 N

20 N

100 N

	 FB = 0.2(200 N) = 40 N

	 +S �Fx = 0;	 P - 20 N - 40 N = 0

	 P = 60 N

	 c) Assume C slips and B does not slip on C.

P

400 N

FC

100 N

20 N

100 N

200 N

b)
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x

y

y

dy

x

	 x� =
x

2
=
1y

2
	 y� = y

	 dA = xdy = 1y dy

x

y

y

dx

x

1 m

	 x� = x

	 y� = y + a1 - y

2
b =

1 + y

2
=

1 + x2

2

	 dA = (1 - y)dx = (1 - x2)dx

Chapter 9

9–1.  a)

x

y

y

x

dx

	 x� = x

	 y� =
y

2
=
1x

2

	 dA = ydx = 1x dx

x

y

y

x

dy

1 m

	 x� = x + a1 - x

2
b =

1 + x

2
=

1 + y2

2

	 y� = y

	 dA = (1 - x)dy = (1 - y2)dy

b)

c)

d)



Review Problem Solutions

Chapter 2

R2–1.	 FR = 2(300)2 + (500)2 - 2(300)(500) cos 95�

	 = 605.1 = 605 N� Ans.

	
605.1

sin 95�
=

500

sin u

	 u = 55.40�

	 f = 55.40� + 30� = 85.4�� Ans.

R2–2.	
F1v

sin 30�
=

250

sin 105�
    F1v = 129 N� Ans.

	
F1u

sin 45�
=

250

sin 105�
    F1u = 183 N� Ans.

R2–3.	 FRx = F1x + F2x + F3x + F4x

	 FRx = -200 + 320 + 180 - 300 = 0

	 FRy = F1y + F2y + F3y + F4y

	 FRy = 0 - 240 + 240 + 0 = 0

	 Thus, FR = 0� Ans.

R2–4.	 cos2 30� + cos2 70� + cos2 g = 1

	 cos g = {0.3647

	 g = 68.61� or 111.39�

	 By inspection, g = 111.39�. 

	 F = 2505cos 30�i + cos 70�j + cos 111.39�61b

	    = 5217i + 85.5j - 91.2k61b� Ans.

R2–5.	 r = {50 sin 20�i + 50 cos 20�j - 35k} ft

	 r = 2(17.10)2 + (46.98)2 + (-35)2 = 61.03 ft

	 u =
r
r

= (0.280i +  0.770j - 0.573k) 

	 F = Fu = 598.1i + 269j - 201k6  lb� Ans.

R2–6.	 F1 = 600a4

5
bcos 30�(+ i) + 600a4

5
bsin 30�(- j)

� + 600a3

5
b(+k)

	 = 5415.69i - 240j + 360k6  N� Ans. 

	 F2 = 0i + 450 cos 45�(+ j) + 450 sin 45�(+k)

	 = 5318.20j + 318.20k6N� Ans.

R2–7.	 r1 = 5400i + 250k6mm;	 r1 = 471.70 mm

	 r2 = 550i + 300j6  mm;	 r2 = 304.14 mm

	 r1
# r2 = (400)(50) + 0(300) + 250(0) = 20 000

	 u = cos- 1a r1
# r2

r1r2
b = cos- 1a 20 000

(471.70)(304.14)
b

	   = 82.0�� Ans.

R2–8.	 FProj = F # uv = (2i + 4j + 10k) # a2

3
 i +

2

3
 j -

1

3
 kb

	 FProj = 0.667 kN

Chapter 3
R3–1.	 S+ �Fx = 0;	 FB - FA  cos 60� - 50a4

5
b = 0

	 + c �Fy = 0;	 -FA  sin 60� + 50a3

5
b = 0

	  FA = 34.6 lb 	  FB = 57.3 lb � Ans.

R3–2.	 S+ �Fx = 0;	 FAC cos 30� - FAB = 0� (1)

	 + c �Fy = 0;	 FAC sin 30� - W = 0� (2) 

Assuming cable AB reaches the maximum tension 
FAB = 450 lb.

From Eq. (1) FAC cos 30� - 450 = 0 

    FAC = 519.6 lb 7 480 lb� (No Good)
Assuming cable AC reaches the maximum tension 
FAC = 480 lb.

From Eq. (1) 480 cos 30� - FAB = 0

    FAB = 415.7 lb 6 450 lb� (OK)

From Eq. (2) 480 sin 30� - W = 0	 W = 240 lb
� Ans.

R3–3.	 S+ �Fx = 0;	 FAC sin 30� - FABa
3

5
b = 0 

		    FAC = 1.20FAB� (1) 

	 + c �Fy = 0;	 FAC cos 30� + FABa
4

5
b - W = 0

		    0.8660FAC + 0.8FAB = W � (2)

Since FAC 7 FAB, failure will occur first at cable AC 
with FAC = 50 lb. Then solving Eqs. (1) and (2) yields 

	 FAB = 41.67 lb

	 W = 76.6 lb� Ans.

648
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	  FAC = FACa
-1.5i + 2j - 6k2(-1.5)2 + 22 + (-6)2

b

	  = -0.2308FAC 

i + 0.3077FAC 

j - 0.9231FAC  k

	  FAD = FAD a -3i - 6j - 6k2(-3)2 + (-6)2 + (-6)2
b

	  = -0.3333FAD 

i - 0.6667FAD j - 0.6667FAD 

k

	 F = Fk 

    �F = 0;    FAB + FAC + FAD + F = 0 

	 (200 - 0.2308FAC - 0.3333FAD)i

	   + (300 + 0.3077FAC - 0.6667FAD)j

  + (-600 -  0.9231FAC -  0.6667FAD + F)k = 0

200 - 0.2308FAC - 0.3333FAD = 0

300 + 0.3077FAC - 0.6667FAD = 0

-600 - 0.9231FAC - 0.6667FAD + F = 0

	 FAC - 130 N    FAD = 510 N

	 F = 1060 N = 1.06 kN� Ans.

Chapter 4
R4–1.	 20(103) = 800(16 cos 30�) + W (30 cos 30� + 2)

	 W = 319 lb� Ans.

R4–2.	 FR = 50 lb £ (10i + 15j - 30k)2(10)2 + (15)2 + (-30)2
§

	 FR = 514.3i + 21.4j - 42.9k6  1b� Ans. 

	 (MR )C = rCB * F = 3 i j k
10 45 0

14.29 21.43 -42.86

3
	 = 5-1929i + 428.6j - 428.6k6  lb # ft � Ans.

R4–3.	 r = 54i6  ft

	 F = 24 lb a -2i + 2j + 4k2(-2)2 + (2)2 + (4)2
b

	 = 5-9.80i + 9.80j +  19.60k61b

	 My = 3 0 1 0

4 0 0

-9.80 9.80 19.60

3 = -78.4 lb # ft

	 My = 5-78.4j6  lb # ft� Ans.

R4–4.	 (Mc)R = �Mz;	 0 = 100 - 0.75F

	 	 F = 133 N� Ans.

R3–4.	 s1 =
60

40
= 1.5 ft

	 + c �Fy = 0;    F - 2a1

2
 Tb = 0 ;    F =  T

	 S+ �Fx = 0;	 -Fs + 2a23

2
bF = 0

	 	 Fs =  1.732F

Final stretch is 1.5 + 0.268 = 1.768 ft 

	                    40(1.768) = 1.732F 

	                 F = 40.8 lb � Ans.

R3–5.	 �Fx = 0;    -F1 sin 45� = 0    F1 = 0� Ans. 

	 �Fz = 0;    F2 sin 40� - 200 = 0

	 	 F2 = 311.14 lb = 311 lb� Ans.

Using the results F1 = 0 and F2 = 311.14 lb and 
then summing forces along the y axis, we have 
�Fy = 0;	 F3 - 311.14 cos 40� = 0

	 F3 = 238 lb� Ans.

R3–6.	  F1 = F15cos 60�i + sin 60�k6
	  = 50.5F1i + 0.8660F1k6  N

	  F2 = F2 b  
3

5
 i -

4

5
 jr  

	  = 50.6 F2i -  0.8 F2 j6  N

	  F3 = F35-cos 30�i - sin 30�j6
	  = 5-0.8660F3 i - 0.5F3 j6  N

	 �Fx = 0;	 0.5F1 + 0.6F2 - 0.8660F3 = 0

	 �Fy = 0;	 -0.8F2 - 0.5F3 + 800 sin 30� = 0 

	 �Fz = 0;	 0.8660F1 - 800 cos 30� = 0

	 F1 = 800 N    F2 = 147 N    F3 = 564 N� Ans.

R3–7.	 �Fx = 0;  FCA a 1210
b - FCBa 1210

b = 0

	 �Fy = 0;  -FCA a
3210
b - FCBa

3210
b

	 �Fz = 0;    -500 + FCDa4

5
b = 0

	 Solving:

	     FCD = 625 lb    FCA = FCB = 198 lb

R3–8.	  FAB = 700a 2i + 3j - 6k222 + 32 + (-6)2
b

	  = 5200i + 300j - 600k6  N

+ FCDa3

5
b = 0
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Chapter 5

R5–1. a

		  F = 0.3536 kN = 354 N� Ans.

R5–2.	 a+ �MA = 0; NB(7) - 1400(3.5) - 300(6) = 0

	 NB = 957.14 N = 957 N� Ans. 

         + c gFy = 0;   Ay - 1400 - 300 + 957 = 0   Ay = 743 N

	 S+ �Fx = 0;    Ax = 0� Ans.

R5–3.	 a+ �MA = 0;  10(0.6 + 1.2 cos 60�) + 6(0.4)

	 - NA(1.2 + 1.2 cos 60�) = 0

	 NA = 8.00 kN� Ans. 
+S �Fx = 0;  Bx - 6 cos 30� = 0;  Bx = 5.20 kN� Ans.

	 + c �Fy = 0;  By + 8.00 - 6 sin 30� - 10 = 0

	 By = 5.00 kN� Ans.

R5–4.	 a+ �MA = 0;  50 cos 30�(20) + 50 sin 30�(14)

	 - FB(18) = 0

	 FB = 67.56 lb = 67.6 lb� Ans. 
	 +S �Fx = 0;  Ax - 50 sin 30� = 0

	 Ax = 25 lb� Ans. 
	 + c �Fy = 0;  Ay - 50 cos 30� - 67.56 = 0

	 Ay = 110.86 lb = 111 lb� Ans.

R5–5.	 �Fx = 0;	 Ax = 0� Ans. 
	 �Fy = 0;	 Ay + 200 = 0

		  Ay = -200 N� Ans. 

	 �Fz = 0;	 Az - 150 = 0

		  Az = 150 N� Ans. 

	 �Mx = 0;	 -150(2) + 200(2) - (MA)x = 0

		  (MA )x = 100 N #  m� Ans. 

	 �My = 0;	 (MA )y = 0� Ans. 

	 �Mz = 0;	 200(2.5) - (MA)z = 0

		  (MA )z = 500 N # m� Ans.

R5–6.	

�My = 0;	 P(8) - 80(10) = 0	 P = 100 lb� Ans. 

�Mx = 0;	 Bz(28) - 80(14) = 0	 Bz = 40 lb� Ans. 

�Mz = 0;	 -Bx(28) - 100(10) = 0	 Bx = -35.7 lb� Ans. 

�Fx = 0;	 Ax + (-35.7) - 100 = 0	 Ax = 136 lb� Ans. 

�Fy = 0;	 By = 0� Ans. 

�Fz = 0;	 Az + 40 - 80 = 0	 Az = 40 lb� Ans.

R4–5.	 S+ �FRx = �Fx;     FRx = 6a 5

13
b - 4 cos 60�

		   = 0.30769 kN

	 + c �FRy = �Fy;     FRy = 6a12

13
b - 4 sin 60�

	 	  = 2.0744 kN

	 FR = 2(0.30769)2 + (2.0744)2 = 2.10 kN� Ans. 

	 u = tan- 1 c 2.0744

0.30769
d = 81.6� a� Ans. 

	 a+  MP = �MP;  MP = 8 - 6a12

13
b(7) + 6a 5

13
b(5)

	�  - 4 cos 60�(4) + 4 sin 60�(3)

		   MP = -16.8 kN # m

		   = 16.8 kN # mb� Ans.

R4–6.	 S+ �(FR)x = �Fx;  (FR)x = 200 cos 45� - 250a4

5
b  

	�  - 300 = -358.58 lb = 358.58 lb d

	 + c(FR)y = �Fy;  (FR)y = -200 sin 45� - 250a3

5
b  

	�  = -291.42 lb = 291.42 lbT

FR = 2(FR)x
2 + (FR)y

2 = 2358.582 + 291.422 

	 = 462.07 lb = 462 lb� Ans. 

u = tan-1 c
(FR)y

(FR)x
d = tan-1 c 291.42

358.58
d = 39.1� d� Ans. 

a+ (MR )A = �MA;  358.58(d) = 250a3

5
b(2.5) + 250a4

5
b(4)

	 + 300(4) - 200 cos 45�(6) - 200 sin 45�(3)

	 d = 3.07 ft� Ans.

R4–7.	 + cFR = �Fz;  FR = -20 - 50 - 30 - 40

	        = -140 kN = 140 kNT � Ans. 

	 (MR)x = �Mx;  -140y = -50(3) - 30(11) - 40(13)

	 y = 7.14 m� Ans. 

	 (MR)y = �My;  140x = 50(4) + 20(10) + 40(10)

	 x = 5.71 m� Ans.

R4–8.	 + TFR = �F;  FR = 12 000 + 6000 = 18 000 lb

	 FR = 18.0 kip� Ans. 

	 c+MRC = �MC;  18 000x = 12 000(7.5) + 6000(20)

	 x = 11.7 ft� Ans.

+ �MA = 0: F(6) + F(4) + F(2) - 3 cos 45�(2) = 0
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Joint D: 

    + c �Fy = 0;	 13.125 - 10 -
3

5
 FDF = 0

		  FDF = 5.21 kN (T)� Ans.

R6–2.	 Joint A:
+S �Fx = 0;	 FAB - FAG cos 45� = 0

	 + c �Fy = 0;	 333.3 - FAG sin 45� = 0
		  FAG = 471 lb (C)� Ans. 
		  FAB = 333.3 = 333 lb (T)� Ans.
Joint B: 

+S �Fx = 0;	 FBC = 333.3 = 333 lb (T)� Ans. 
   + c �Fy = 0;	 FGB = 0� Ans.

Joint D: 
+S �Fx = 0;	 -FDC + FDE cos 45� = 0� Ans. 

   + c �Fy = 0;	 666.7 - FDE sin 45� = 0
		  FDE = 942.9 lb = 943 lb (C)� Ans. 
		  FDC = 666.7 lb = 667 lb (T)� Ans.

Joint E: 
+S �Fx = 0;	 -942.9 sin 45� + FEG = 0

   + c �Fy = 0;	 -FEC + 942.9 cos 45� = 0
		  FEC = 666.7 lb = 667 lb (T)� Ans. 
		  FEG = 666.7 lb = 667 lb (C)� Ans.
Joint C: 
   + c �Fy = 0;	 FGC cos 45� + 666.7 - 1000 = 0
		  FGC = 471 lb (T)� Ans.

R6–3.	 a+ �MC = 0;	 -1000(10) + 1500(20)

		  - FGJ cos 30�(20 tan 30�) = 0

	 FGJ = 2.00 kip (C)� Ans. 

+ c �Fy = 0;	 -1000 + 2(2000 cos 60�) - FGC = 0

	 FGC = 1.00 kip (T)� Ans.

R6–4.	

+ c �Fy = 0;	 2Ay - 800 - 600 - 800 = 0	 Ay = 1100 lb

+S �Fx = 0; 	 Ax = 0

a+ �MB = 0;	 FGF sin 30�(10) + 800(10 - 10 cos2 30�)

		  - 1100(10) = 0

		  FGF = 1800 lb (C) = 1.80 kip (C)� Ans. 
a+ �MA = 0;	 FFB sin 60�(10) - 800(10 cos2 30�) = 0

		  FFB = 692.82 lb (T) = 693 lb (T)� Ans. 
a+ �MF = 0;	 FBC(15 tan 30�) + 800(15 - 10 cos2 30�)

		  - 1100(15) = 0

		  FBC = 1212.43 lb (T) = 1.21 kip (T)� Ans.

R5–7.	 W = (4 ft)(2 ft)(2 lb>ft2) = 16 lb

	 �Fx = 0;	 Ax = 0� Ans. 

	 �Fy = 0;	 Ay = 0� Ans. 

	 �Fz = 0;	 Az + Bz + Cz - 16 = 0

	 �Mx = 0;	 2Bz - 16(1) + Cz(1) = 0

	 �My = 0;	 -Bz(2) + 16(2) - Cz(4) = 0

		  Az + Bz + Cz = 5.33 lb� Ans.

R5–8.	

�Fx = 0;	 Ax = 0� Ans. 

�Fy = 0;	 350 - 0.6FBC + 0.6FBD = 0

�Fz = 0;	 Az - 800 + 0.8FBC + 0.8FBD = 0

�Mx = 0;	 (MA )x + 0.8FBD(6) + 0.8FBC(6) - 800(6) = 0

�My = 0;	 800(2) - 0.8FBC(2) - 0.8FBD(2) = 0

�Mz = 0;	 (MA )z - 0.6FBC(2) + 0.6FBD(2) = 0

	 FBD = 208 N� Ans. 

	  FBC = 792 N� Ans. 

	  Az = 0� Ans. 

	 (MA )x = 0� Ans. 

	 (MA )z = 700 N # m� Ans.

Chapter 6

R6–1.	 Joint B: 

+S �Fx = 0;	 FBC = 3 kN (C)� Ans. 
    + c �Fy = 0;	 FBA = 8 kN (C)� Ans.

Joint A: 

    + c �Fy = 0;	 8.875 - 8 -
3

5
 FAC =  0

		  FAC =  1.458 =  1.46 kN (C)� Ans. 

+S �Fx = 0;	 FAF - 3 -
4

5
 (1.458) = 0

		  FAF = 4.17 kN (T)� Ans.
Joint C: 

+S �Fx = 0;	 3 +
4

5
 (1.458) - FCD = 0

		  FCD = 4.167 = 4.17 kN (C)� Ans. 

    + c �Fy = 0;	 FCF - 4 +
3

5
 (1.458) = 0

		  FCF = 3.125 = 3.12 kN (C)� Ans.
Joint E: 

+S �Fx = 0;	 FEF = 0� Ans. 

    + c �Fy = 0;	 FED = 13.125 = 13.1 kN (C)� Ans.
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R6–8.	 a+ �MB = 0;	 FCD(7) -
4

5
 FBE(2) = 0

a+ �MA = 0;	 -150(7)(3.5) +
4

5
 FBE(5) - FCD(7) = 0

	 FBE = 1531 lb = 1.53 kip� Ans.
	 FCD = 350 lb� Ans.

Chapter 7
R7–1.	 a+ �MA = 0;	 FCD(8) - 150(8 tan 30�) = 0

	 	 FCD = 86.60 lb

Since member CF is a two-force member, 
	 VD = MD = 0� Ans.
	 ND = FCD = 86.6 lb� Ans.

 a+ �MA = 0;	 By(12) - 150(8 tan 30�) = 0
	 By = 57.735 lb

+S �Fx = 0;	 NE = 0� Ans.

    + c �Fy = 0;	 V E + 57.735 - 86.60 = 0

V E = 28.9 lb� Ans.
  a+ �ME = 0;	 57.735(9) - 86.60(5) - ME = 0

	 ME = 86.6 lb # ft� Ans.

R7–2.	 Segment DC

+S �Fx = 0;	 NC = 0� Ans.

    + c �Fy = 0;	 V C - 3.00 - 6 = 0	 V C = 9.00 kN� Ans.

 a+ �MC = 0;	 -MC - 3.00(1.5) - 6(3) - 40 = 0

	 MC = -62.5 kN # m� Ans.

Segment DB
+S �Fx = 0;	 NB = 0� Ans.

    + c �Fy = 0;	 V B - 10.0 - 7.5 - 4.00 - 6 = 0

	 V B = 27.5 kN� Ans.

a+ �MB = 0;	 -MB - 10.0(2.5)-7.5(5)

	 -4.00(7) - 6(9) - 40 = 0

	 MB = -184.5 kN # m� Ans.

R7–3.	
V (kip)

x

36

0

�36

36

�36
M (kip�ft)

x0

�108 �108

R6–5.	 Joint A:

�Fz = 0;	 FADa
2268
b - 600 = 0

	 FAD = 2473.86 lb (T) = 2.47 kip (T)� Ans. 

�Fx = 0;	 FACa
1.5266.25

b - FABa
1.5266.25

b = 0

	 FAC = FAB

�Fy = 0;	 FACa 8266.25
b + FABa 8266.25

b

	 - 2473.86a 8268
b = 0

	 0.9829 FAC + 0.9829 FAB = 2400

FAC = FAB = 1220.91 lb (C) = 1.22 kip (C)� Ans.

R6–6.	 CB is a two force member.

Member AC: 

a+ �MA = 0;	 -600(0.75) + 1.5(FCB sin 75�) = 0

		  FCB = 310.6

	 Bx = By = 310.6a 122
b = 220 N� Ans. 

+S �Fx = 0;	 -Ax + 600 sin 60� - 310.6 cos 45� = 0

	 Ax = 300 N� Ans. 

+ c �Fy = 0;	 Ay - 600 cos 60� + 310.6 sin 45� = 0

	 Ay = 80.4 N� Ans.

R6–7.	 Member AB: 

 a+ �MA = 0;	 -750(2) + By(3) = 0

		  By = 500 N

Member BC: 

 a+ �MC = 0;	 -1200(1.5) - 900(1) + Bx(3) - 500(3) = 0

	 Bx = 1400 N

    + c �Fy = 0;	 Ay - 750 + 500 = 0

	 Ay = 250 N� Ans.

Member AB:
+S �Fx = 0;	 -Ax + 1400 = 0

		     Ax = 1400 N = 1.40 kN� Ans.

Member BC: 
+S �Fx = 0;	 Cx + 900 - 1400 = 0

		  Cx = 500 N� Ans. 

    + c �Fy = 0;	 -500 - 1200 + Cy = 0

		  Cy = 1700 N = 1.70 kN� Ans.
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R8–2.	 Crate

+ c �Fy = 0;	 Nd - 588.6 = 0    Nd = 588.6 N

S+ �Fx = 0;	 P - Fd = 0� (1)

a+ �MA = 0;	 588.6(x) - P(0.8) = 0� (2)

Crate and dolly

+ c �Fy = 0;	 NB + NA - 588.6 - 98.1 = 0� (3)

S+ �Fx = 0;	 P - FA = 0� (4)

a+ �MB = 0;	 NA(1.5) - P(1.05)

	 -  588.6(0.95) - 98.1(0.75) = 0� (5)

Friction: Assuming the crate slips on dolly, then  
Fd =  msdNd = 0.5(588.6) = 294.3 N. Solving Eqs. (1) and (2)

P = 294.3 N    x = 0.400 m

Since x 7 0.3 m, the crate tips on the dolly. If this is the case 
x = 0.3 m. Solving Eqs. (1) and (2) with x = 0.3 m yields

P = 220.725 N

Fd = 220.725 N

Assuming the dolly slips at A, then FA = msfNA = 0.35NA. 
Substituting this value into Eqs. (3), (4), and (5) and solving, 
we have

NA = 559 N    NB = 128 N

	 P = 195.6 N = 196 N (Controls)� Ans.

R8–3.	 Bar

a+ �MB = 0;	 P(600) - Ay(900) = 0	 Ay = 0.6667P

Disk

+ c �Fy = 0;	 NC sin 60� - FC sin 30�

	 - 0.6667P - 343.35 = 0� (1)

a+ �MO = 0;	 FC(200) - 0.6667P(200) = 0� (2)

Friction: If the disk is on the verge of moving, slipping 
would have to occur at point C. Hence, FC = ms NC = 0.2NC. 
Substituting this into Eqs. (1) and (2) and solving, we have

	 P = 182 N� Ans.

	 NC = 606.60 N 

R8–4.	 Cam:

a+ �MO = 0;	 5 - 0.4 NB(0.06) - 0.01(NB) = 0

	 NB = 147.06 N

Follower:

+ c �Fy = 0;	 147.06 - P = 0

	 P = 147 N� Ans.

R7–4.
V (kN)

x0

10

M (kN�m)

x0

�30

�5

R7–5.

 

V (kN)

x (m)
2.5

1.25 m
�7.5

M (kN�m)

x (m)
1.56

�12.5

�50 m

R7–6.

At x = 30 ft;	 y = 3 ft;	 3 =
FH

0.5
Ccos h a0.5

FH
(30)b - 1S

	 FH = 75.25 lb

	 tan umax =
dy

dx
`
x = 30  ft

= sin ha0.5(30)

75.25
b umax = 11.346�

	 Tmax =
FH

cos umax
=

75.25

cos 11.346�
= 76.7 lb� Ans.

Chapter 8

R8–1.	 Assume that the ladder slips at A:

FA = 0.4 NA

+ c �Fy = 0;	 NA - 20 = 0

	 	 NA = 20 lb

	 	 FA = 0.4(20) = 8 lb

a+ �MB = 0;    P(4) - 20(3) + 20(6) - 8(8) = 0

		  P = 1 lb� Ans.

S+ �Fx = 0;	 NB + 1 - 8 = 0

		  NB = 7 lb 7 0� OK

The ladder will remain in contact with the wall.
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Chapter 9

R9–1.	 Using an element of thickness dx,

x =
LA

x
�

dA

LA
dA

=
L

b

a
x a c2

x
 dx b

c2 ln 
b

a

=
L

b

a
c2 dx

c2 ln 
b

a

=

c2 x `
b

a

c2 ln 
b

a

=
b - a

ln 
b

a

 

Ans.

R9–2.	 Using an element of thickness dx,

	 y =
LA

y dA

LA
dA

=
L

b

a
a c2

2x
b a c2

x
 dx b

c2 ln 
b

a

=
L

b

a

c4

2x2 dx

c2 ln 
b

a

	 =

-
c4

2x
`
b

a

c2 ln 
b

a

=  
c2(b - a)

2ab ln 
b

a

�  Ans.

R9–3.	 z� =
Lv

 z� dV

Lv
 dV

=
L

a

0
 z 3p(a2 - z2)dz 4

L
a

0
p(a2 - z2)dz

	 =  

paa2z2

2
-

z4

4
b 2 a

0

paa2z -
z3

3
b 2 a

0

=
3

8
 a� Ans.

R9–4.	 �x�L = 0(4) + 2(p)(2) = 12.5664 ft2

�y�L = 0(4) +
2(2)

p
 (p)(2) = 8 ft2

� z�L = 2(4) + 0(p)(2) = 8 ft2

	 �L = 4 + p(2) = 10.2832 ft 

	 x� =
�x�L

�L
=

12.5664

10.2832
= 1.22 ft� Ans.

	 y� =
�y�L

�L
=

8

10.2832
= 0.778 ft� Ans.

	 z� =
� z�L

�L
=

8

10.2832
= 0.778 ft� Ans.

R9–5.	

Segment A(mm2) y� (mm) y�A(mm3)
1 300(25) 112.5 843 750
2 100(50) 50 250 000

� 12 500 1 093 750

R8–5.	 S+ �Fx = 0;    -P + 0.5(1250) = 0

		  P = 625 lb
Assume block B slips up and block A does not move.

Block A:

S+ �Fx = 0;	 FA - N � = 0

+ c �Fy = 0;	 NA - 600 - 0.3N � = 0

Block B:

S+ �Fx = 0;	 N � - N � cos 45� - 0.3 N � sin 45� = 0

+ c �Fy = 0;	 N � sin 45 - 0.3 N � cos 45� - 150 - 0.3 N ��

	 = 0

Block C:

S+ �Fx = 0;	 0.3 N �cos 45 - N �cos 45 - 0.5 NC - P = 0

+ c �Fy = 0;	 NC - N �sin 45 - 0.3 N � sin 45 - 500 = 0

Solving
	 N � = 629.0 lb,	N � = 684.3 lb,	NC = 838.7 lb,	P = 1048 lb,

	 NA = 411.3 lb

	 FA = 629.0 lb 7 0.5 (411.3) = 205.6 lb� No good
All blocks slip at the same time:	 P = 625 lb� Ans.

R8–6.	 a = tan- 1a10

25
 b = 21.80�

a+ �MA = 0;	 - 6000 (35) + FBD cos 21.80�(10)
� + FBD sin 21.80�(20) = 0

	 FBD = 12 565 lb

	 fs = tan- 1 (0.4) = 21.80�

	 u = tan- 1 a 0.2

2p(0.25)
b = 7.256�

	 M = Wr tan (u + f)

	 M = 12 565 (0.25) tan (7.256� + 21.80�)

	 M = 1745 lb # in = 145 lb # ft� Ans.

R8–7.	 Block:
+ c �Fy = 0;	 N - 100 = 0

		  N - 100 lb

S+ �Fx = 0;	 T1 = 0.4(100) = 0

		  T1 = 40 lb

T2 = T1e
mb

;	 T2 = 40e0.4 (p2 ) = 74.978 lb

System:
a+ �MA = 0;	 -100(d) - 40(1) - 50(5) + 74.978(10) = 0

 d = 4.60 ft� Ans.

R8–8.	 	 P �
Wa

r

	       = 500(9.81)a 2

40
b

	 P = 245 N� Ans.
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R9–10.	

A = LA
dA = L

a

-2
-ydx = L

a

-2
2x2dx =

2

3
x3 `

0

-2
= 5.333 ft2

w = b g h = 1(62.4)(8) = 499.2 lb # ft

Fy = 5.333(1)(62.4) = 332.8 lb

Fx =
1

2
 (499.2)(8) = 1997 lb

FN = 2(332.8)2 + (1997)2 = 2024 lb = 2.02 kip� Ans.

Chapter 10
R10–1.	

 Ix = LA
y2dA = L

2

0
 y2(4 - x)dy = L

2

0
 y214 - (32)

1
3y

1
32dy

 = 1.07 in4 � Ans.

R10–2.

Ix = LA
y2dA = L

1

0
 y2(2x dy) = L

1

0
 y214(1 - y)

1
2 2 dy

    = 0.610 ft4� Ans.

R10–3.	

Iy = LA
x2dA = 2L

2

0
 x2(y dx) = 2L

2

0
 x2(1 - 0.25 x2)dx

	 = 2.13 ft4� Ans.

R10–4.	  dIxy = d Ix2y2 + dAx y = 0 + 1y1
3 dy2 a1

2
 y

1
3b  (y)

	 =
1

2
 y

5
3  d y

	Ixy = Ld Ixy = L
1 m

0

1

2
 y

5
3 dy =

3

16
 y

8
3 2 1 m

0
= 0.1875 m4� Ans.

R10–5.	
s

h - y
=

b

h
,    s =

b

h
 (h - y)

(a)	 dA = s dy = c b
h

 (h - y) d dy

	 Ix = Ly2dA = L
h

0
y2 c b

h
(h - y) d dy =

bh3

12
� Ans.

(b)	Ix = Ix� + A  d2 
bh3

12
= Ix� +

1

2
 bh ah

3
b

2

  Ix =
bh3

36
�Ans.

R10–6.	 dIxy = dIx2y2 + dA  x y

	    = 0 + (y
1
3dy ) a1

2
 y

1
3b(y)

	      =  
1

2
 y

5
3  dy

Thus, 

	 y =
�y�A

�A
=

1 093 750

12 500
= 87.5 mm� Ans.

R9–6.	

A = �u r�L

	 = 2p3 0.6 (0.05) + 2(0.6375)2 (0.025)2 + (0.075)2 

	 + 0.675 (0.1)4
	 =  1.25 m2� Ans.

R9–7.	

V = �u r�A

	 = 2p c 2 (0.65) a1

2
 (0.025)(0.075)b + 0.6375(0.05)(0.075) d

	 = 0.0227 m3� Ans.

R9–8.	 dF = LdA = 4z
1
3(3)dz

	   F = 12 L
x

0
z

1
3 dz = 12 c 3

4
 z

4
3 d

8

0
= 144 lb� Ans. 

	 LA
 z dF = 12 L

8

0
 z

4
3 dz = 12 c 3

7
 z

7
3 d

8

0
= 658.29 lb # ft

	   z� =
658.29

144
= 4.57 ft� Ans.

R9–9.	

pa = 1.0(103)(9.81)(9) = 88 290 N>m2 = 88.29 kN>m2

pb = 1.0(103)(9.81)(5) = 49 050 N>m2 = 49.05 kN>m2

Thus, 

wA = 88.29(8) = 706.32 kN>m 

wB = 49.05(8) = 392.40 kN>m 

FR1
= 392.4(5) = 1962.0 kN 

FR2
=

1

2
 (706.32 - 392.4) (5) =  784.8 kN 

 a+ �MB = 0;	 1962.0(2.5) + 784.8(3.333) - Ay(3) = 0

	 Ay = 2507 kN = 2.51 MN� Ans.

+S �Fx = 0;	 784.8a4

5
b + 1962a4

5
b - Bx = 0

	 Bx = 2197 kN = 2.20 MN� Ans.

   + c �Fy = 0;	 2507 - 784.8a3

5
b - 1962a3

5
b - By = 0

		  By = 859 kN� Ans.



656 	 Rev iew Problem Solut ions

	 dU = 0;	 -FspdxC - 2(2dyD - 20dyB + PdxC = 0

(20Fsp sin u - 20P sin u - 220 cos u)du = 0

However, from the spring formula, 
Fsp = kx = 2[2(10 cos u) - 6] = 40 cos u - 12. 
Substituting

(800 sin u cos u - 240 sin u - 220 cos u - 20P sin u) du = 0

Since du � 0, then

800 sin u cos u - 240 sin u - 220 cos u - 20P sin u = 0

P = 40 cos u - 11 cot u - 12

At the equilibrium position, u = 45�. Then

	 P = 40 cos 45� - 11 cot 45� - 12 = 5.28 lb� Ans.

R11–3.	 Using the law of cosines,

	 0.42 = x2
A + 0.12 - 2(xA)(0.1)cos u

	 Differentiating,

	 0 = 2xAdxA - 0.2dxA cos u + 0.2xA sin udu

dxA =
0.2 xA sin u

0.2 cos u - 2xA
 du

	 dU = 0;	 -FdxA - 50du = 0

a 0.2 xA  sin u

0.2 cos u - 2xA
 F - 50bdu = 0

	 Since du � 0, then
0.2xA  sin u

0.2 cos u - 2xA
 F - 50 = 0

F =
50(0.2 cos u - 2xA)

0.2xA  sin u

	 At the equilibrium position, u = 60�,

0.42 = x2
A + 0.12 - 2(xA)(0.1) cos 60�

xA = 0.4405 m

	 F = -
5030.2 cos 60� - 2(0.4405)4

0.2(0.4405) sin 60�
= 512 N� Ans.

R11–4.	 y = 4 sin u

dy = 4 cos u du

Fs = 5(4 - 4 sin u)

dU = 0;	 -10dy + Fsdy = 0

	 3-10 + 20(1 - sin u)4(4 cos u du) = 0

	 cos u = 0  and  10 - 20 sin u = 0

	 u = 90�	 u = 30�� Ans.

R11–5.	 xB = 0.1 sin u	 dxB = 0.1 cos udu

	 xD = 2(0.7 sin u) - 0.1 sin u = 1.3 sin u	 dxD = 1.3 cos udu

	 yG = 0.35 cos u	 dyG = -0.35 sin udu

	 Ixy = LdIxy = L
1 m

0
 
1

2
y

5
3d y =

3

16
 y  83 2 1 m

0

          = 0.1875 m4� Ans.

R10–7.	 Iy = c 1

12
(d)(d3) + 0 d + 4 c  1

36
 (0.2887d) ad

2
b

3

	     +
1

2
 (0.2887d) ad

2
b  ad

6
b

2

d

	     =  0.0954d 4� Ans.

R10–8.	 d Ix =
1

2
 rp y4 dx =

1

2
 rpab4

a4 x4 +
4b4

a3  x3 +
6b4

a2  x2

	�  +
4b4

a
 x + b4bdx

	 Ix = LdIx =
1

2
rpL

a

0
ab4

a4x4 +
4b4

a3 x3 +
6b4

a2 x2

	�  +
4b4

a
x + b4bdx

	        =
31

10
 rpab4

	 m = Lm
 dm = L

a

0
 rp y2 dx

	        = rp L
a

0
ab2

a2
 x2

+
2b2

a
x + b2bdx

	        =
7

3
 rpab2

	 Ix =
93

70
 mb2� Ans.

Chapter 11

R11–1.	 x = 2L cos u

	 dx = -2L sin u du

	 y = L sin u

	 dy = L cos u du

	 dU = 0;  -Pdy -  Fdx = 0

	 -PL cos udu - F(-2L sin u)du = 0

	 -P cos u + 2F sin u = 0

	 F =
P

2 tan u
� Ans.

R11–2.	 yB = 10 sin u	 dyB = 10 cos udu

	 yD = 5 sin u	 dyD = 5 cos udu

	 xC = 2(10 cos u)	 dxC = -20 sin udu
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R11–7.	 V = V e + V g

	    =
1

2
 (24) (2 cos u)2 +

1

2
 (48) (6 cos u)2

	   + 100(3 sin u)

	    = 912 cos2 u + 300 sin u

	
dV

du
= -1824 sin u cos u + 300 cos u = 0

	
dV

du
= -912 sin 2u + 300 cos u = 0

	 u = 90�    or    u = 9.467�

	
d2V

du2 = -1824 cos 2u - 300 sin u

	
d2V

du2 `
u= 90�

= -1824 cos 180� - 300 sin 90�

             = 1524 7 0� Ans.

	
d2V

du2 `
u= 9.467�

= -1824 cos 18.933� - 300 sin 9.467�

             = 1774.7 6 0
Thus, the system is in unstable equilibrium at u = 9.47�.� Ans.

R11–8.	 V = Ve + Vg

	 =
1

2
 kx2 - Wy

	 =
1

2
 (16)(2.5 - 2.5 sin u)2 - 20(2.5 cos u)

	 = 50 sin2 u - 100 sin u - 50 cos u + 50

	
dV

du
= 100 sin u cos u - 100 cos u + 50 sin u = 0

	
dV

du
= 50 sin 2u - 100 cos u + 50 sin u = 0

	 u = 37.77� = 37.8�

	
d2V

du2 = 100 cos 2u +  100 sin u +  50 cos u

d2V

du2 `
u= 37.77�

= 100 cos 75.55� + 100 sin 37.77� + 50 cos 37.77�

	   = 125.7 7 0

Thus, the system is in stable equilibrium at u = 37.8�� Ans.

dU = 0;	 2(-49.05dyG) + Fsp(dxB - dxD) = 0

	 (34.335 sin u - 1.2Fsp cos u)du = 0

However, from the spring formula, 

Fsp = kx = 40032(0.6 sin u) - 0.34 = 480 sin u - 120. 

Substituting,

(34.335 sin u -  576 sin u cos u + 144 cos u)du = 0

Since du � 0, then

	 34.335 sin u - 576 sin u cos u + 144 cos u = 0

	 u = 15.5�	 Ans.

	 and u = 85.4�� Ans.

R11–6.	
Vg = mgy = 40(9.81)(0.45 sin u + b) = 176.58 sin u + 392.4 b

Ve =
1

2
 (1500)(0.45 cos u)2 = 151.875 cos2 u

V = Vg + Ve = 176.58 sin u + 151.875 cos2 u + 392.4 b

	
dV

du
= 176.58 cos u - 303.75 cos u sin u = 0

	 cos u(176.58 - 303.75 sin u) = 0

	 cos u = 0	 u = 90�� Ans.

	 u = 35.54� = 35.5�� Ans.

d2V

d2u
= -176.58 sin u - 303.75 cos 2u

At u = 90�, 
d2V

d2u
`
u- a�

= -176.58 sin 90� - 303.75 cos 180�

	 = 127.17 7 0

	 = 127.17 7 0    Stable � Ans.

At u = 35.54�,
d2V

d2u
`
u= 35.54�

= -176.58 sin 35.54�

	   -  303.75 cos 71.09�

	 = -201.10 6 0    Unstable� Ans.



2–5.	 FAB = 314 lb, FAC = 256 lb
2–6.	 f = 1.22�
2–7.	 (F1)v = 2.93 kN, (F1)u = 2.07 kN
2–9.	 F = 616 lb, u = 46.9�
2–10.	 FR = 980 lb, f = 19.4�
2–11.	 FR = 10.8 kN, f = 3.16�
2–13.	 Fa = 30.6 lb, Fb = 26.9 lb
2–14.	 F = 19.6 lb, Fb = 26.4 lb
2–15.	 F = 917 lb, u = 31.8�
2–17.	 FR = 19.2 N, u = 2.37� c
2–18.	 FR = 19.2 N, u = 2.37� c
2–19.	 u = 53.5�, FAB = 621 lb
2–21.	 FR = 257 N, f = 163�
2–22.	 FR = 257 N, f = 163�
2–23.	 u = 75.5�
2–25.	 u = 36.3�, f = 26.4�
2–26.	 u = 54.3�, FA = 686 N
2–27.	 FR = 1.23 kN, u = 6.08�
2–29.	 FB = 1.61 kN, u = 38.3�
2–30.	 FR = 4.01 kN, f = 16.2�
2–31.	 u = 90�, FB = 1 kN, FR = 1.73 kN
2–33.	 FR = 983 N, u = 21.8�
2–34.	 �F1 = 5200i + 346j6  N, F2 = 5177i - 177j6  N
2–35.	 FR = 413 N, u = 24.2�
2–37.	 FR = 1.96 kN, u = 4.12�
2–38.	 �F1 = {30i + 40j} N, F2 = {-20.7i - 77.3j} N,  

F3 = {30i}, FR = 54.2 N, u = 43.5�
2–39.	 �F1x = 141 N, F1y = 141 N, F2x = -130 N, 

F2y = 75 N
2–41.	 FR = 12.5 kN, u = 64.1�
2–42.	 �F1 = {680i - 510j}  N, F2 = {-312i - 541j}  N, 

F3 = {-530i + 530j}  N
2–43.	 FR = 546 N, u = 253�

2–45.	 �FR = 2F1 

2 + F2 

2 + 2F1F2 cos f, 

u = tan-1a F1 sin f

F2 + F1 cos f
b

2–46.	 u = 68.6�, FB = 960 N
2–47.	 FR = 839 N, u = 14.8�
2–49.	 FR = 389 N, f� = 42.7�
2–50.	 �F1 = {9.64i + 11.5j}  kN, F2 = {-24i + 10j}  kN, 

F3 = {31.2i - 18j}  kN
2–51.	 �FR = 17.2 kN, u = 11.7�
2–53.	 �F1 = {-15.0i - 26.0j}  kN, 

F2 = {-10.0i + 24.0j}  kN
2–54.	 FR = 25.1 kN, u = 185�
2–55.	 F = 2.03 kN, FR = 7.87 kN
2–57.	 �FR = 380 N, F1 = 57.8 N

Chapter 1
1–1.	 a.	 78.5 N
	 b.	 0.392 mN
	 c.	 7.46 MN
1–2.	 a.	 GN>s
	 b.	 Gg>N
	 c.	 GN>(kg # s)
1–3.	 a.	 Gg>s
	 b.	 kN>m
	 c.	 kN>(kg # s)
1–5.	 a.	 45.3 MN
	 b.	 56.8 km
	 c.	 5.63 mg
1–6.	 a.	 58.3 km
	 b.	 68.5 s
	 c.	 2.55 kN
	 d.	 7.56 mg
1–7.	 a.	 0.431 g
	 b.	 35.3 kN
	 c.	 5.32 m
1–9.	 a.	 km>s
	 b.	 mm
	 c.	 Gs>kg
	 d.	 mm # N
1–10.	 a.	 kN # m
	 b.	 Gg>m
	 c.	 mN>s2

	 d.	 GN>s
1–11.	 a.	 8.653 s
	 b.	 8.368 kN
	 c.	 893 g
1–13.	 2.71 Mg>m3

1–14.	 a.	 44.9(10)-3 N2

	 b.	 2.79(103) s2

	 c.	 23.4 s
1–15.	 7.41 mN
1–17.	 1.00 Mg>m3

1–18.	 a.	 0.447 kg # m>N
	 b.	 0.911 kg # s
	 c.	 18.8 GN>m
1–19.	 1.04 kip
1–21.	 F = 10.0 nN, W 1 = 78.5 N, W 2 = 118 N

Chapter 2
2–1.	 FR = 497 N, f = 155�
2–2.	 F = 960 N, u = 45.2�
2–3.	 FR = 393 lb, f = 353�

Answers to Selected Problems
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2–106.	 F = {466i + 339j - 169k} N
2–107.	 F = {476i + 329j - 159k} N
2–109.	 F = 52.1 lb
2–110.	 �rAB = 10.0 ft, 
	 �F = {-19.1i - 14.9j + 43.7k} lb, a = 112�, 

b = 107�, g = 29.0�
2–111.	 rAB = 592 mm, F = { -13.2i - 17.7j + 20.3k}  N
2–113.	 (FED)� � = 334 N, (FED)# = 498 N
2–114.	 u = 36.4�
2–115.	 (F1)AC = 56.3 N
2–117.	 |Proj FAB| = 70.5 N, |Proj FAC| = 65.1 N
2–118.	 u = 31.0�
2–119.	 F1 = 18.3 lb, F2 = 35.6 lb
2–121.	 u = 100�
2–122.	 u = 19.2�
2–123.	 FBA = 187 N
2–125.	 Fu = 246 N
2–126.	 F� � = 10.5 lb
2–127.	 u = 142�
2–129.	 F� � = 0.182 kN
2–130.	 u = 74.4�, f = 55.4�
2–131.	 (FBC) � � = 28.3 lb, (FBC)# = 68.0 lb
2–133.	 u = 132�
2–134.	 u = 23.4�
2–135.	 3(F )AB 4 � � = 63.2 lb, 3(F )AB 4 # = 64.1 lb
2–137.	 �FOA = 242 N
2–138.	 u = 82.9�
2–139.	 Proj FAB = {0.229i - 0.916j + 1.15k} lb

Chapter 3
3–1.	 F2 = 9.60 kN, F1 = 1.83 kN
3–2.	 u = 4.69�, F1 = 4.31 kN
3–3.	 u = 82.2�, F = 3.96 kN
3–5.	 T = 7.20 kN, F = 5.40 kN
3–6.	 T = 7.66 kN, u = 70.1�
3–7.	 u = 20°, T = 30.5 lb
3–9.	 F = 960 lb
3–10.	 u = 40�, TAB = 37.6 lb
3–11.	 u = 40�, W = 42.6 lb
3–13.	 �FCA = 500(103) lb, FAB = 433(103) lb, 

FAD = 250(103) lb
3–14.	 xAD = 0.4905 m, xAC = 0.793 m, xAB = 0.467 m
3–15.	 m = 8.56 kg

3–17.	
1

kT
=

1

k1
+

1

k2

3–18.	 k = 176 N>m
3–19.	 l0 = 2.03 m
3–21.	 l = 2.66 ft
3–22.	 F = 158 N
3–23.	 d = 1.56 m
3–25.	 y = 2 m, F1 = 833 N

2–58.	 u = 86.0�, F = 1.97 kN
2–59.	 FR = 11.1 kN, u = 47.7�
2–61.	 Fx = 40 N, Fy = 40 N, Fz = 56.6 N
2–62.	 a = 48.4�, b = 124�, g = 60�, F = 8.08 kN
2–63.	 FR = 114 lb, a = 62.1�, b = 113�, g = 142�
2–65.	 �F1 = {-106i + 106j + 260k}  N, 

F2 = {250i + 354j - 250k}  N, 
FR = {144i + 460j + 9.81k}  N, FR = 482 N, 
a = 72.6�, b = 17.4�, g = 88.8�

2–66.	 a1 = 111�, b1 = 69.3�, g1 = 30.0�
2–67.	 F3 = 428 lb, a = 88.3�, b = 20.6�, g = 69.5�
2–69.	 FR = 430 N, a = 28.9�, b = 67.3�, g = 107�
2–70.	 �FR = 384 N, cos a = 14.8�, �cos b = 88.9�,
	 cos g = 105�
2–71.	 F1 = 429 lb, a1 = 62.2�, b1 = 110�, g1 = 145�
2–73.	 �F1 = {72.0i + 54.0k} N,

F2 = {53.0i + 53.0j + 130k} N, F3 = {200k}
2–74.	 FR = 407 N, a = 72.1�, b = 82.5�, g = 19.5�
2–75.	 �F1 = {14.0j - 48.0k} lb, 

F2 = {90i - 127j + 90k} lb
2–77.	 FR = 610 N, a = 19.4�, b = 77.5�, g = 105�
2–78.	 F2 = 66.4 lb, a = 59.8�, b = 107�, g = 144�
2–79.	 a = 124�, b = 71.3�, g = 140�
2–81.	 FR = 1.55 kip, a = 82.4�, b = 37.6�, g = 53.4�
2–82.	 FR = 1.60 kN, a = 82.6�, b = 29.4�, g = 61.7�
2–83.	 �a3 = 139�,  

b3 = 128�, g3 = 102�, FR1 = 387 N, 
b3 = 60.7�, g3 = 64.4�, FR2 = 1.41 kN

2–85.	 F = 2.02 kN, Fy = 0.523 kN
2–86.	 rAB = 397 mm
2–87.	 �F = {59.4i - 88.2j - 83.2k} lb, a = 63.9�, 

b = 131�, g = 128�
2–89.	 x = 5.06 m, y = 3.61 m, z = 6.51 m
2–90.	 z = 6.63 m
2–91.	 x = y = 4.42 m
2–93.	 FR = 1.17 kN, a = 66.9�, b = 92.0�, g = 157�
2–94.	 FR = 1.17 kN, a = 68.0�, b = 96.8�, g = 157�
2–95.	 FBA = {-109i + 131j + 306k} lb,
	 FCA = {103i + 103j + 479k} lb,
	 FDA = {-52.1i - 156j + 365k} lb
2–97.	 FR = 757 N, a = 149�, b = 90.0�, g = 59.0�
2–98.	 F = {-34.3i + 22.9j - 68.6k} lb
2–99.	 F = {13.4i + 23.2j + 53.7k} lb
2–101.	 �FA = {169i + 33.8j - 101k} lb, 

FB = {97.6i + 97.6j - 58.6k} lb, 
FR = 338 lb, a = 37.8�, 
b = 67.1�, g = 118�

2–102.	 �F1 = {389i - 64.9j + 64.9k}  lb, 
F2 = {-584i + 97.3j - 97.3k}  lb

2–103.	 FR = 52.2 lb, a = 87.8�, b = 63.7�, g = 154�
2–105.	 F = 105 lb
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4–14.	 �MO = {0.5i + 0.866j - 3.36k} N # m,  
a = 81.8�, b = 75.7�, g = 163�

4–15.	 (MA)C = 768 lb # ftb
	 (MA)B = 636  lb # ftd
	 Clockwise

4–17.	 m = a l

d + l
b  M

4–18.	 MP = (537.5 cos u + 75 sin u) lb # ft
4–19.	 F = 239 lb
4–21.	 F = 27.6 lb
4–22.	 r = 13.3 mm
4–23.	 (MR)A = (MR)B = 76.0 kN # md
4–25.	 �(MAB)A = 3.88  kip # ftb,  

(MBCD)A = 2.05  kip # ftb,  
(Mman)A = 2.10  kip # ftb

4–26.	 (MR)A = 8.04  kip # ftb
4–27.	 MO = {-40i - 44j - 8k} kN # m
4–29.	 MO = {-25i + 6200j - 900k} lb # ft
4–30.	 MA = {-175i + 5600j - 900k} lb # ft
4–31.	 MP = {-24i + 24j + 8k} kN # m
4–33.	 MB = {-110i - 180j - 420k} N # m
4–34.	 MA = {574i + 350j + 1385k} N # m
4–35.	 F = 585 N
4–37.	 MO = {163i - 346j - 360k} N # m
4–38.	 MA = {-82.9i + 41.5j + 232k} lb # ft
4–39.	 MB = {-82.9i - 96.8j - 52.8k} lb # ft
4–41.	 F = 18.6 lb
4–42.	 MO = 4.27 N # m, a = 95.2�, b = 110�, g = 20.6�
4–43.	 MA = {-5.39i + 13.1j + 11.4k} N # m
4–45.	 y = 2 m, z = 1 m
4–46.	 y = 1 m, z = 3 m, d = 1.15 m
4–47.	 MA = {-16.0i - 32.1k} N # m
4–49.	 �MB = {1.00i + 0.750j - 1.56k} kN # m
4–50.	 MO = {373i - 99.9j + 173k} N # m�	
4–51.	 umax = 90�, umin = 0, 180�
4–53.	 �Yes, yes
4–54.	 My� = 464 lb # ft
4–55.	 Mx = 440 lb # ft
4–57.	 M AC = {11.5i + 8.64j} lb # ft
4–58.	 Mx = 21.7 � # m
4–59.	 F = 139 �
4–61.	 MAB = 136 N # m
4–62.	 MBC = 165 N # m
4–63.	 MCA = 226 N # m
4–65.	 F = 5.66 N
4–66.	 �Ma = 4.37 N # m, a = 33.7�, b = 90�, g = 56.3�, 

M = 5.41 N # m
4–67.	 R = 28.9 N
4–69.	 F = 75 N, P = 100 N
4–70.	 (MR)C = 435  lb # ft d
4–71.	 F = 139 lb
4–73.	 F = 830 N

3–26.	 �THA = 294 N, TAB = 340 N, TAE = 170 N, 
TBD = 490 N, TBC = 562 N

3–27.	 m = 26.7 kg
3–29.	 �FDE = 392 N, FCD = 340 N, FCB = 275 N, 

FCA = 243 N
3–30.	 m = 20.4 kg
3–31.	 s = 3.38 m, F = 76.0 N
3–33.	 �TAB = 11.0 lb, TAC = 7.76 lb, TBC = 11.0 lb,
	 TBE = 19.0 lb, TCD = 17.4 lb, u = 18.4�
3–34.	 u = 18.4�, W = 15.8 lb
3–35.	 �FAB = 175 lb, l = 2.34 ft, or  

FAB = 82.4 lb, l = 1.40 ft
3–37.	 mB = 3.58 kg, N = 19.7 N
3–38.	 FAB = 98.6 N, FAC = 267 N
3–39.	 d = 2.42 m
3–41.	 T = 30.6 lb, x = 1.92 ft
3–42.	 WB = 18.3 lb
3–43.	 FAD = 763 N, FAC = 392 N, FAB = 523 N
3–45.	 FDA = 10.0 lb, FDB = 1.11 lb, FDC = 15.6 lb
3–46.	 sOB = 327 mm, sOA = 218 mm
3–47.	 FAB = 219 N, FAC = FAD = 54.8 N
3–49.	 m = 102 kg
3–50.	 FAC = 113 lb, FAB = 257 lb, FAD = 210 lb
3–51.	 F = 1558 lb
3–53.	 FAD = 557 lb, W = 407 lb
3–54.	 FAB = 79.2 lb, FAC = 119 lb, FAD = 283 lb
3–55.	 WC = 265 lb
3–57.	 W = 55.8 N
3–58.	 FAB = 441 N, FAC = 515 N, FAD = 221 N
3–59.	 FAB = 348 N, FAC = 413 N, FAD = 174 N
3–61.	 FAC = 85.8 N, FAB = 578 N, FAD = 565 N
3–62.	 m = 88.5 kg
3–63.	 FAD = 1.56 kN, FBD = 521 N, FCD = 1.28 kN
3–65.	 FAE = 2.91 kip, F = 1.61 kip
3–66.	 FAB = 360 lb, FAC = 180 lb, FAD = 360 lb
3–67.	 �W = 375 lb

Chapter 4
4–5.	 �(MF1

)B = 4.125 kip # ftd, 
	 (MF2

)B = 2.00 kip # ftd,
	 (MF3

)B = 40.0 lb # ftd
4–6.	 MP = 341 in. # lbd
	 MF = 403 in. # lbb
	 Not sufficient
4–7.	 �(MF1

)A = 433 N # mb 
(MF2

)A = 1.30 kN # mb 
(MF3

)A = 800 N # mb 
4–9.	 MB = 90.6 lb # ftb, MC = 141 lb # ftd
4–10.	 MA = 195 lb # ftd
4–11.	 (MO)max = 48.0 kN # md, x = 9.81 m
4–13.	 �MB = {-3.36k} N # m, a = 90�, b = 90�, 

g = 180�
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4–133.	 FA = 30 kN, FB = 20 kN, FR = 190 kN
4–134.	 �FR = 5141i + 100j + 159k6  N, 

MRO
= 5122i - 183k6  N # m

4–135.	 FR = 379 N,  MR = 590 N # m, z = 2.68 m,  
	 x = -2.76 m
4–137.	 FR = 539 N,  MR = 1.45 kN # m, x = 1.21 m,
	 y = 3.59 m
4–138.	 FR = 0, MRO = 1.35 kip # ft
4–139.	 FR = 6.75 kN, x = 2.5 m
4–141.	 FR = 7 lb, x = 0.268 ft
4–142.	 FR = 15.0 kN, d = 3.40 m
4–143.	 FR = 12.5 kN, d = 1.54 m
4–145.	 FR = 15.4 kN, (MR)O = 18.5 kN # m b
4–146.	 FR = 27.0 kN, (MR)A = 81.0 kN # m b
4–147.	 a = 1.54 m
4–149.	 w2 = 17.2 kN>m, w1 = 30.3 kN>m
4–150.	 FR = 51.0 kN T , MRO

= 914 kN # m b
4–151.	 FR = 51.0 kN T , d = 17.9 m
4–153.	 FR = 1.80 kN, d = 2.33 m
4–154.	 FR = 12.0 kN, u = 48.4� d, d = 3.28 m
4–155.	 FR = 12.0 kN, u = 48.4� d, d = 3.69 m
4–157.	 FR = 6.75 kN, (MR)O = 4.05 kN # m d
4–158.	 FR = 43.6 lb, x = 3.27 ft
4–159.	 d = 2.22 ft

4–161.	 FR =
2Lw0

p
, (MR)O = a2p - 4

p2 bw0L
2  b

4–162.	 FR = 107 kN, h = 1.60 m

Chapter 5
5–10.	 Ax = 3.46 kN, Ay = 8 kN, MA = 20.2 kN # m
5–11.	 NA = 750 N, By = 600 N, Bx = 450 N
5–13.	 NA = 2.175 kN, By = 1.875 kN, Bx = 0
5–14.	 NA = 3.33 kN, Bx = 2.40 kN, By = 133 N
5–15.	 Ay = 5.00 kN, NB = 9.00 kN, Ax = 5.00 kN
5–17.	 u = 41.4�

5–18.	 Ax = 0, By = P, MA =
PL

2

5–19.	 T =
W

2
 sin u

5–21.	 TBC = 113 N
5–22.	 NA = 3.71 kN, Bx = 1.86 kN, By = 8.78 kN
5–23.	 w = 2.67 kN>m
5–25.	 NA = 39.7 lb, NB = 82.5 lb, MA = 106 lb # ft
5–26.	 �u = 70.3�, N =

A = (29.4 - 31.3 sin u) kN, 
N =

B = (73.6 + 31.3 sin u) kN
5–27.	 NB = 98.1 N, Ax = 85.0 N, Ay = 147 N
5–29.	 P = 272 N
5–30.	 Pmin = 271 N
5–31.	 FB = 86.6 N, Bx = 43.3 N, By = 110 N
5–33.	 Ax = 25.4 kN, By = 22.8 kN, Bx = 25.4 kN
5–34.	 F = 14.0 kN

4–74.	 MC = 22.5 N # mb
4–75.	 F = 83.3 N
4–77.	 (MR)C = 240 lb # ft d
4–78.	 �F = 167 lb. Resultant couple can act anywhere.
4–79.	 d = 2.03 ft
4–81.	 MC = 126 lb # ftd
4–82.	 MC = {-50i + 60j} lb # ft
4–83.	 �MR = 96.0 lb # ft, a = 47.4�, b = 74.9�, g = 133�
4–85.	 �MR = 64.0 lb # ft, a = 94.7�, b = 13.2�, g = 102�
4–86.	 �M2 = 424 N # m, M3 = 300 N # m
4–87.	 �MR = 576 lb # in., a = 37.0�, b = 111�, g = 61.2�
4–89.	 F = 15.4 N
4–90.	 MC = 45.1 N # m
4–91.	 F = 832 N
4–93.	 F = 98.1 N
4–94.	 �MC = {-2i + 20j + 17k} kN # m, 

MC = 26.3 kN # m
4–95.	 �(MC)R = 71.9 � # m, a = 44.2�, b = 131�, g = 103�
4–97.	 FR = 365 N, u = 70.8� d, (MR)O = 2364 N # m d
4–98.	 FR = 365 N, u = 70.8� d, (MR)P = 2799 N # m d
4–99.	 �FR = 5.93 kN, u = 77.8� d, MRA

= 34.8 kN # m b
4–101.	 FR = 294 N, u = 40.1� d, 
	 MRO = 39.6 N # mb
4–102.	 FR = 1.30 kN, u = 86.7� c,
	 (MR)A = 1.02 kN # m d
4–103.	 FR = 1.30 kN, u = 86.7� c,
	 (MR)B = 10.1 kN # m d
4–105.	 FR = 938 N, u = 35.9� c, (MR)A = 680 N # m d
4–106.	 MRO = {0.650i + 19.75j - 9.05k} kN # m
4–107.	 FR = 5270k6  N, MRO = 5-2.22i6  N # m
4–109.	 FR = {6i + 5j - 5k} kN, 
	 (MR)O = {2.5i - 7j} kN # m
4–110.	 FR = {44.5i + 53.1j - 40.0k} N,
	 MRA = {-5.39i + 13.1j + 11.4k} N # m
4–111.	 �FR = 5-40j - 40k6  N,

MRA = 5-12j + 12k6  N # m
4–113.	 FR = 10.75 kip  T , d = 13.7 ft
4–114.	 FR = 10.75 kip T , d = 9.26 ft
4–115.	 F = 798 lb, 67.9� d, x = 7.43 ft
4–117.	 F = 1302 N, u = 84.5� d, x = 7.36 m
4–118.	 �F = 1302 N, u = 84.5� d, 

x = 1.36 m (to the right)
4–119.	 FR = 1000 N, u = 53.1� c, d = 2.17 m
4–121.	 FR = 356 N, u = 51.8�, d = 1.75 m
4–122.	 FR = 542 N, u = 10.6� b, d = 0.827 m
4–123.	 FR = 542 N, u = 10.6� b, d = 2.17 m
4–125.	 FR = 197 lb, u = 42.6�a, d = 5.24 ft
4–126.	 FR = 197 lb, u = 42.6�a, d = 0.824 ft
4–127.	 �FR = 26 kN, y = 82.7 mm, x = 3.85 mm
4–129.	 FC = 600 N, FD = 500 N
4–130.	 FR = 35 kN, y = 11.3 m, x = 11.5 m
4–131.	 F1 = 27.6 kN, F2 = 24.0 kN
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5–83.	 �T = 58.0 N, Cz = 87.0 N,  Cy = 28.8 N, Dx = 0, 
Dy = 79.2 N, Dz = 58.0 N

5–85.	 FBC = 0, Ay = 0, Az = 800 lb, 
	 (MA)x = 4.80 kip # ft, (MA)y = 0, (MA)z = 0

Chapter 6
6–1.	 FCB = 0,  FCD = 20.0 kN (C), 
	 FDB = 33.3 kN (T),  FDA = 36.7 kN (C)
6–2.	 FCB = 0,  FCD = 45.0 kN (C), 
	 FDB = 75.0 kN (T),  FDA = 90.0 kN (C)
6–3.	 �FAC = 150 lb (C), FAB = 140 lb (T), 

FBD = 140 lb  (T), FBC = 0, FCD = 150 lb (T), 
FCE = 180 lb (C), FDE = 120 lb (C), 
FDF = 230 lb (T), FEF = 300 lb (C)

6–5.	 �FCD = 5.21 kN (C), FCB = 4.17 kN (T),
FAD = 1.46 kN (C), FAB = 4.17 kN (T),
FBD = 4 kN (T)

6–6.	 �FCD = 5.21 kN (C), FCB = 2.36 kN (T), 
FAD = 1.46 kN (C), FAB = 2.36 kN (T), 
FBD = 4 kN (T)

6–7.	 �FDE = 16.3 kN (C), FDC = 8.40 kN (T), 
FEA = 8.85 kN (C), FEC = 6.20 kN (C), 
FCF = 8.77 kN (T), FCB = 2.20 kN (T), 
FBA = 3.11 kN (T), FBF = 6.20 kN (C), 
FFA = 6.20 kN (T)

6–9.	 FAE = 5.66 kN (C), FAB = 4.00 kN (T), 
	 FDE = 7.07 kN (C), FDC = 5.00 kN (T), 
	 FBE = 3.16 kN (T), FBC = 3.00 kN (T), 
	 FCE = 6.32 kN (T)
6–10.	 FAE = 9.90 kN (C), FAB = 7.00 kN (T), 
	 FDE = 11.3 kN (C), FDC = 8.00 kN (T), 
	 FBE = 6.32 kN (T), FBC = 5.00 kN (T), 
	 FCE = 9.49 kN (T)
6–11.	 �FJD = 33.3 kN (T), 

FAL = FGH = FLK = FHI = 28.3 kN (C), 
FAB = FGF = FBC = FFE = FCD = FED =

20 kN (T),
	 �FBL = FFH = FLC = FHE = 0, 		

FCK = FEI = 10 kN (T), FKJ = FIJ = 23.6 kN (C), 
FKD = FID = 7.45 kN (C)

6–13.	 �FCD = FAD = 0.687P (T), 
FCB = FAB = 0.943P (C),  
FDB = 1.33P (T)

6–14.	 Pmax = 849 lb
6–15.	 Pmax = 849 lb
6–17.	 �P = 5.20 kN

6–18.	 FDE = 8.94 kN (T), FDC = 4.00 kN (C), 
	 FCB = 4.00 kN (C), FCE = 0,  
	 FEB = 11.3 kN (C), FEF = 12.0 kN (T), 
	 FBA = 12.0 kN (C), FBF = 18.0 kN (T), 
	 FFA = 20.1 kN (C), FFG = 21.0 kN (T)

5–35.	 NA = 173 N, NC = 416 N, NB = 69.2 N
5–37.	 NA = 975 lb, Bx = 975 lb, By = 780 lb
5–38.	 Ax = 1.46 kip, FB = 1.66 kip
5–39.	 u = 17.5�
5–41.	 F = 311 kN, Ax = 460 kN, Ay = 7.85 kN
5–42.	 FCB = 782 N, Ax = 625 N,  Ay = 681 N
5–43.	 F2 = 724 N, F1 = 1.45 kN, FA = 1.75 kN
5–45.	 P = 660 N, NA = 442 N, u = 48.0�  b

5–46.	 d =
3a

4
5–47.	 FBC = 80 kN, Ax = 54 kN, Ay = 16 kN
5–49.	 FC = 10 mN
5–50.	 k = 250 N>m
5–51.	 wB = 2.19 kip>ft, wA = 10.7 kip>ft
5–53.	 a = 10.4�
5–54.	 h = 0.645 m

5–55.	 h = A s2 - l2

3
5–57.	 w1 = 83.3 lb>ft, w2 = 167 lb>ft
5–58.	 w1 =

2P

L
, w2 =

4P

L
 

5–59.	 u = 23.2�, 85.2�
5–61.	 NA = 346 N,  NB = 693 N, a = 0.650 m
5–62.	 T = 1.84 kN, F = 6.18 kN
5–63.	 RD = 22.6 kip, RE = 22.6 kip, RF = 13.7 kip
5–65.	 NA = 28.6 lb, NB = 10.7 lb, NC = 10.7 lb
5–66.	 TBC = 43.9 N, NB = 58.9 N, Ax = 58.9 N,
	 Ay = 39.2 N, Az = 177 N
5–67.	 TC = 14.8 kN, TB = 16.5 kN, TA = 7.27 kN
5–69.	 FAB = 467 N, FAC = 674 N, Dx = 1.04 kN,
	 Dy = 0, Dz = 0
5–70.	 TBA = 2.00 kN, TBC = 1.35 kN, Dx = 0.327 kN,
	 Dy = 1.31 kN, Dz = 4.58 kN
5–71.	 FBD = FBC = 350 N, Ax = 600 N,  
	 Ay = 0, Az = 300 N
5–73.	 Cy = 800 N, Bz = 107 N, By = 600 N,  
	 Cx = 53.6 N, Ax = 400 N, Az = 800 N
5–74.	 F = 746 N
5–75.	 TBC = 1.40 kN, Ay = 800 N, Ax = 1.20 kN, 
	 (MA)x = 600 N # m, (MA )y = 1.20 kN # m, 
	 (MA)z = 2.40 kN # m
5–77.	 Ax = 300 N, Ay = 500 N, NB = 400 N, 
	 (MA)x = 1.00 kN # m, (MA )y = 200 N # m, 
	 (MA)z = 1.50 kN # m
5–78.	 �Ax = 633 lb, Ay = -141 lb, Bx = -721 lb

Bz = 895 lb, Cy = 200 lb, Cz = -506 lb
5–79.	 F2 = 674 lb
5–81.	 Cz = 10.6 lb, Dy = -0.230 lb,
	 Cy = 0.230 lb, Dx = 5.17 lb,
	 Cx = 5.44 lb, M = 0.459 lb # ft
5–82.	 �FBD = 294 N, FBC = 589 N, Ax = 0,  

Ay = 589 N,  Az = 490.5 N
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6–49.	 �FEF = 12.9 kN (T), FFI = 7.21 kN (T), 
FHI = 21.1 kN (C)

6–50.	 �FCA = FCB = 122  lb (C), FCD = 173  lb (T), 
FBD = 86.6  lb (T), FBA = 0, FDA = 86.6  lb (T)

6–51.	 �FAB = 6.46  kN (T), FAC = FAD = 1.50  kN (C), 
FBC = FBD = 3.70  kN (C), FBE = 4.80  kN (T)

6–53.	 �FCA = 833 lb (T), FCB = 667 lb (C), 
FCD = 333 lb (T), FAD = FAB = 354 lb (C), 
FDB = 50 lb (T)

6–54.	 �FCA = 1000 lb (C), FCD = 406 lb (T), 
FCB = 344 lb (C), FAB = FAD = 424 lb (T), 
FDB = 544 lb (C)

6–55.	 FDF = 5.31 kN (C), FEF = 2.00 kN (T), 
	 FAF = 0.691 kN (T)
6–57.	 �FBF = 0, FBC = 0, FBE = 500 lb (T), 

FAB = 300 lb (C), FAC = 583 lb (T), 
FAD = 333 lb (T), FAE = 667 lb (C), FDE = 0,
FEF = 300 lb (C), FCD = 300 lb (C),
FCF = 300 lb (C), FDF = 424 lb (T)

6–58.	 �FBF = 0, FBC = 0, FBE = 500 lb (T), 
FAB = 300 lb (C), FAC = 972 lb (T), FAD = 0, 
FAE = 367 lb (C), FDE = 0, FEF = 300 lb (C), 
FCD = 500 lb (C), FCF = 300 lb (C), 
FDF = 424 lb (T)

6–59.	 �FAD = 686 N (T), FBD = 0, FCD = 615 N (C), 
FBC = 229 N (T), FAC = 343 N (T), 
FEC = 457 N (C)

6–61.	 P = 12.5 lb
6–62.	 a. P = 25.0 lb, b. P = 33.3 lb, c. P = 11.1 lb
6–63.	 �P = 18.9 N
6–65.	 Bx = 4.00 kN, By = 5.33 kN, Ax = 4.00 kN, 
	 Ay = 5.33 kN
6–66.	 Ax = 24.0 kN, Ay = 12.0 kN, Dx = 18.0 kN, 
	 Dy = 24.0 kN
6–67.	 Ax = 120 lb, Ay = 0, NC = 15.0 lb
6–69.	 �Bx = 2.80 kip, By = 1.05 kip, Ax = 2.80 kip, 

Ay = 5.10 kip, MA = 43.2 kip # ft
6–70.	 Cy = 184 N, Cx = 490.5 N, Bx = 1.23 kN, 
	 By = 920 kN
6–71.	 NE = 18.0 kN, NC = 4.50 kN, Ax = 0, 
	 Ay = 7.50 kN, MA = 22.5 kN # m
6–73.	  NE = 3.60 kN, NB = 900 N, Ax = 0, 
	 Ay = 2.70 kN, MA = 8.10 kN # m
6–74.	 �T = 350 lb, Ay = 700 lb, Ax = 1.88 kip, 

Dx = 1.70 kip, Dy = 1.70 kip
6–75.	 �T = 350  lb, Ay = 700  lb, Dx = 1.82  kip, 

Dy = 1.84  kip, Ax = 2.00 kip
6–77.	 �Ax = 96 lb, Ay = 72 lb, Dy = 2.18 kip, 

Ex = 96.0 lb, Ey = 1.61 kip
6–78.	 NC = 3.00 kN, NA = 3.00 kN,  
	 By = 18.0 kN, Bx = 0 

6–19.	 FDE = 13.4 kN (T), FDC = 6.00 kN (C), 
	 FCB = 6.00 kN (C), FCE = 0, FEB = 17.0 kN (C), 
	 FEF = 18.0 kN (T), FBA = 18.0 kN (C), 
	 FBF = 20.0 kN (T), FFA = 22.4 kN (C), 
	 FFG = 28.0 kN (T)
6–21.	 FDE = FDC = FFA = 0, FCE = 34.4 kN (C), 
	 FCB = 20.6 kN (T), FBA = 20.6 kN (T), 
	 FBE = 15.0 kN (T), FFE = 30.0 kN (C), 
	 FEA = 15.6 kN (T)
6–22.	 �FFE = 0.667P (T),  FFD = 1.67P (T), 

FAB = 0.471P (C), FAE = 1.67P (T), 
FAC = 1.49P (C),    FBF = 1.41P (T), 
FBD = 1.49P (C),   FEC = 1.41P (T), 
FCD = 0.471P (C)

6–23.	 �FEC = 1.20P (T), FED = 0, 
FAB = FAD = 0.373P (C), FDC = 0.373P (C), 
FDB = 0.333P (T), FBC = 0.373P (C)

6–25.	 FCB = 2.31 kN (C), FCD = 1.15 kN (C), 
	 FDB = 4.00  kN (T), FDA = 4.62 kN (C), 
	 FAB = 2.31 kN (C)
6–26.	 Pmax = 1.30 kN
6–27.	 �FHI = 42.5 kN (T), FHC = 100 kN (T), 

FDC = 125 kN (C)
6–29.	 �FHG = 1125  lb (T), FDE = 3375  lb (C), 

FEH = 3750  lb (T)
6–30.	 �FCD = 3375 lb (C),  FHI = 6750 lb (T), 

FCH = 5625 lb (C)
6–31.	 �FKJ = 11.25 kip (T), FCD = 9.375 kip (C),
	  FCJ = 3.125 kip (C), FDJ = 0
6–33.	 FGF = 12.5 kN (C), FCD = 6.67 kN (T), FGC = 0
6–34.	 �FGH = 12.5 kN (C), FBG = 6.01 kN (T), 

FBC = 6.67 kN (T)
6–35.	 FBC = 5.33 kN (C), FEF = 5.33 kN (T), 
	 FCF = 4.00 kN (T)
6–37.	 FEF = 14.0 kN (C), FBC = 13.0 kN (T), 
	 FBE = 1.41 kN (T), FBF = 8.00 kN (T)
6–38.	 FEF = 15.0 kN (C), FBC = 12.0 kN (T), 
	 FBE = 4.24 kN (T)
6–39.	 �FBC = 10.4 kN (C), FHG = 9.16 kN (T), 

FHC = 2.24 kN (T)
6–41.	 FBC = 18.0 kN (T), FFE = 15.0 kN (C), 
	 FEB = 5.00 kN (C)
6–42.	 FHG = 17.6 kN (C), FHC = 5.41 kN (C), 
	 FBC = 19.1 kN (T)
6–43.	 FGJ = 17.6 kN (C), FCJ = 8.11 kN (C), 
	 FCD = 21.4 kN (T), FCG = 7.50 kN (T)
6–45.	 FBF = 0, FBG = 35.4 kN (C), FAB = 45 kN (T)
6–46.	 FBC = 11.0 kN (T), FGH = 11.2 kN (C), 
	 FCH = 1.25 kN (C), FCG = 10.0 kN (T)
6–47.	 FCD = 18.0 kN (T), FCJ = 10.8 kN (T), 
	 FKJ = 26.8 kN (T)
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6–79.	 NC = ND = 2 lb
6–81.	 FFB = 1.94 kN, FBD = 2.60 kN
6–82.	 NA = 36.0 lb
6–83.	 FFD = 20.1 kN, FBD = 25.5 kN, 
	 Member EDC: Cx� = 18.0 kN, Cy� = 12.0 kN, 
	 Member ABC: C�y = 12.0 kN, C�x = 18.0 kN
6–85.	 TAI = 2.88 kip, FH = 3.99 kip
6–86.	 M = 314 lb # ft
6–87.	 FC = 19.6  kN
6–89.	 Cx = 650 N, Cy = 0
6–90.	 NB = NC = 49.5 N
6–91.	 FEF = 8.18 kN (T), FAD = 158 kN (C)

6–93.	 P(u) =
250 22.252 - cos2 u

sin u cos u + 22.252 - cos2 u # cos u

6–94.	 NB = 0.1175 lb, NA = 0.0705 lb
6–95.	 FN = 5.25 lb
6–97.	 �a. F = 205 lb, NC = 380 lb, 
	 b. F = 102 lb, NC = 72.5 lb
6–98.	 Ey = 1.00 kN, Ex = 3.00 kN, Bx = 2.50 kN, 
	 By = 1.00 kN, Ax = 2.50 kN, Ay = 500 N
6–99.	 �NC = 12.7 kN, Ax = 12.7 kN, Ay = 2.94 kN, 

ND = 1.05 kN
6–101.	 F = 370 N
6–102.	 NA = 284 N
6–103.	 By = 2.67 kN, Bx = 4.25 kN,  
	 Ay = 3.33 kN, Ax = 7.25 kN
6–105.	 P = 198 N
6–106.	 F = 66.1 lb
6–107.	 �d = 0.638  ft
6–109.	 P = 46.9 lb
6–110.	 u = 23.7�
6–111.	 m = 26.0 kg
6–113.	 mS = 1.71 kg
6–114.	 mL = 106 kg
6–115.	 �P = 283 N, Bx = Dx = 42.5 N, 

By = Dy = 283 N, Bz = Dz = 283 N
6–117.	 MEx = 0.5 kN # m, MEy = 0, Ey = 0, Ex = 0
6–118.	 FD = 20.8 lb, FF = 14.7 lb, FA = 24.5 lb

Chapter 7
7–1.	 �NC = 0, V C = -386 lb, MC = -857 lb # ft, 

ND = 0, V D = 300 lb, MD = -600 lb # ft
7–2.	 �NC = 0, V C = -1.00 kip, MC = 56.0 kip # ft, 

ND = 0, V D = -1.00 kip, MD = 48.0 kip # ft
7–3.	 V A = 0, NA = -39 kN, MA = -2.425 kN # m
7–5.	 VC = -133 lb, MC = 133 lb # in.

7–6.	 a =
L

3
7–7.	 VC = -4.00 kip, MC = 24.0 kip # ft
7–9.	 NC = -30 kN,  V C = -8 kN,  MC = 6 kN # m

7–10.	 �P = 0.533 kN, NC = -2  kN, VC = -0.533 kN, 
MC = 0.400  kN # m

7–11.	 �NC = 265 lb, VC = -  649 lb, MC = - 4.23 kip # ft, 
ND = - 265 lb, V D = 637 lb, MD = -3.18 kip # ft

7–13.	 �ND = 0, VD = 3.00 kip, MD = 12.0 kip # ft, 
NE = 0, VE = -8.00 kip, ME = -20.0 kip # ft

7–14.	 �MC = -15.0 kip # ft, NC = 0, V C = 2.01 kip, 
MD = 3.77 kip # ft, ND = 0, V D = 1.11 kip

7–15.	 NC = 0, VC = -1.50 kN, MC = 13.5 kN # m
7–17.	 NA = 86.6 lb, V A = 150 lb, MA = 1.80 kip # in.
7–18.	 �V C = 2.49 kN, NC = 2.49 kN, MC = 4.97 kN # m, 

ND = 0, V D = -2.49 kN, MD = 16.5 kN # m
7–19.	 �NC = -4.32 kip, V C = 1.35 kip, MC = 4.72 kip # ft
7–21.	 �NE = 720 N, VE = 1.12 kN, ME = -320 N # m,

NF = 0, VF = -1.24 kN, MF = -1.41 kN # m
7–22.	 �ND = 4 kN, V D = -9 kN, MD = -18 kN # m, 

NE = 4 kN, V E = 3.75 kN, ME = -4.875 kN # m
7–23.	 NC = 400 N, V C = -96 N, MC = -144 N # m
7–25.	 �ND = 0, V D = 0.75 kip, MD = 13.5 kip # ft, 

NE = 0, V E = -9 kip, ME = -24.0 kip # ft
7–26.	 �NC = -20.0 kN, V C = 70.6 kN, 

MC = -302 kN # m
7–27.	 NC = -1.60 kN, VC = 200 N, MC = 200 N # m
7–29.	 NC = -406 lb, V C = 903 lb, MC = 1.35 kip # ft
7–30.	 ND = -464 lb, V D = -203 lb, MD = 2.61 kip # ft
7–31.	 ���NE = 2.20 kN, V E = 0, ME = 0,  

ND = -2.20 kN, V D = 600 N, MD = 1.20 kN # m
7–33.	 ND = -2.25 kN, V D = 1.25 kN, -1.88 kN # m
7–34.	 NE = 1.25 kN, V E = 0, MB = 1.69 kN # m
7–35.	 d = 0.200 m
7–37.	 ND = 1.26 kN, V D = 0, MD = 500 N # m
7–38.	 NE = -1.48 kN, V E = 500 N, ME = 1000 N # m
7–39.	 �V = 0.278 w0 r, N = 0.0759 w0 r, 

M = 0.0759 w0 r2

7–41.	 �NC = -350 lb, (V C)y = 700 lb, (V C)z = -150 lb , 
(MC)x = -1.20 kip # ft, (MC)y = -750 lb # ft, 
(MC)z = 1.40 kip # ft

7–42.	 �(VC)x = 104 lb,  NC = 0,  (VC)z = 10 lb, 
(MC)x = 20 lb # ft, (MC)y = 72 lb # ft, 
(MC)z = -178 lb # ft

7–43.	 �Nx = -500 N, V y = 100 N, V z = 900 N ,
Mx = 600 N # m, My = -900 N # m, 
Mz = 400 N # m

7–45.	 a.	 �0 … x 6 a: V = a1 -
a

L
bP,

	 M = a1 -
a

L
bPx,

	 a 6 x … L: V = - a a

L
bP,

	 M = Paa -
a

L
 x b
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7–57.	 �For 0 … x 6 L,  V =
w

18
 (7L - 18x),

	 M =
w

18
 (7Lx - 9x2),

	 For L 6 x 6 2L, 

	 V =
w

2
 (3L - 2x), M =

w

18
 (27Lx - 20L2 - 9x2), 

	 �For 2L 6 x … 3L,  V =
w

18
 (47L - 18x),

	 M =
w

18
 (47Lx - 9x2 - 60L2)

7–58.	 �Member AB: For 0 … x 6 12 ft,  
V = {875 - 150x} lb, 
M = 5875x - 75.0x26 lb # ft, 
For 12 ft 6 x … 14 ft,  V = 52100 - 150x6 lb, 
M = 5-75.0x2 + 2100x - 147006 lb # ft, 
Member CBD: For 0 … x 6 2 ft,  V = 919 lb, 
M = {919x} lb # ft, For 2 ft 6 x … 8 ft,  
V = -306 lb, M = 52450 - 306x6 lb # ft

7–59.	 �For 0 … x 6 9 ft, V = 25 - 1.67x2, 
M = 25x - 0.556x3 

	 For 9 ft 6 x … 13.5 ft, V = 0, M = -180
7–61.	 �x = 15- , V = -20, M = -300, 

x = 30+ , V = 0, M = 150, 
x = 45- , V = -60, M = -300

7–62.	 x =
L

2
, P =

4Mmax

L

7–63.	 0 … x … 12 ft: V = e48.0 -
x2

6
f  kip, 

	 M = e48.0x -
x3

18
- 576 f  kip # ft,

	 12 6 x … 24 ft: V = e 1

6
 (24 - x)2 f  kip,

	 M = e -
1

18
 (24 - x)3 f  kip # ft

7–65.	 �For 0 … x 6 3 m, V = 521.0 - 2x26  kN, 

M = e21.0x -
2

3
x3 f  kN # m,  

For 3 m 6 x … 6 m, V = {39.0 - 12x} kN, 
	 M = {-6x2 + 39x - 18} kN # m

7–66.	 V =
w

12L
 (4L2 - 6Lx - 3x2), 

M =
w

12L
 (4L2x - 3Lx2 - x3 ), Mmax = 0.0940 wL2

7–67.	 �N = P sin (u + f), V = -P cos (u + f), 
M = Pr [sin (u + f) - sin f]

7–69.	 �V x = 0, Vz = {24.0 - 4y} lb, 
Mx = {2y2 - 24y + 64.0} lb # ft, 
My = 8.00 lb # ft, Mz = 0

7–70.	 x = 1-, V = 450 N, M = 450 N # m,
	 x = 3+ , V = -950 N, M = 950 N # m

	 b.	 0 … x 6 2 m: V = 6 kN, M = {6x} kN # m
	 2 m

#
6 x … 6 m: V = -3 kN, 

	 M = {18 - 3x} kN # m
7–46.	 �a.	� For 0 … x 6 a, V = P, M = Px, 

For a 6 x 6 L - a, V = 0, M = Pa, 
For L - a 6 x … L, V = -P, 
M = P(L - x)

	 b.	� For 0 … x 6 5 ft, V = 800  lb,  
M = 800x    lb # ft,

	 For 5 ft 6 x 6 7 ft, V = 0,
	 M = 4000  lb # ft,
	 For 7 ft 6 x … 12 ft, V = -800  lb, 
	 M = (9600 - 800x)  lb # ft

7–47.	 �a.	 For 0 … x 6 a, V =
Pb

a + b
, M =

Pb

a + b
 x,

	 	 For a 6 x … a + b, V = -
Pa

a + b
,

	 	 M = Pa -
Pa

a + b
 x,

	 �b.	� For 0 … x 6 5 ft, V = 350 lb, 
M = 350x lb # ft, 
For 5 ft 6 x … 12 ft, V = -250 lb,  
M = 3000 - 250x lb # ft

7–49.	 0 … x 6
L

3
: V = 0, M = 0,

	
L

3
6 x 6

2L

3
: V = 0, M = M0,

	
2L

3
6 x … L: V = 0, M = 0,

	 0 … x 6
8

3
 m: V = 0, M = 0,

	
8

3
 m 6 x 

16

3
 m: V = 0, M = 500 N # m,

	
16

3
 m 6 x … 8 m: V = 0, M = 0

7–50.	 Mmax = 2 kN # m

7–51.	 0 … x 6 a: V = -wx, M = -
w
2

 x2

	 �a 6 x … 2a: V = w (2a - x), 

	 M = 2wax - 2wa2 -
w

2
 x2

7–53.	 �For 0 … x 6 20 ft,  V = 5490 - 50.0x6 lb, 
M = 5490x - 25.0x26 lb # ft, 
For 20 ft 6 x … 30 ft,  V = 0, M = -200 lb # ft

7–54.	 a.	 V =
w

2
 (L - 2x), M =

w

2
 (Lx - x2) 

	 b.	� V = (2500 - 500x) lb, 
M = (2500x - 250x2) lb # ft

7–55.	 �For 0 … x 6 8 m, V = (133.75 - 40x) kN, 
M = (133.75x - 20x2) kN # m, 
For 8 m 6 x … 11 m, V = 20 kN, 
M = (20x - 370) kN # m
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8–6.	 F = 5.79 kN
8–7.	 a.	 No
	 b.	 Yes
8–10.	 f = u, P = W  sin (a + u)
8–11.	 a.	 W = 318 lb
	 b.	 W = 360 lb
8–13.	 FCD = 3.05 kN
8–14.	 u = 21.8�
8–15.	 l = 26.7 ft
8–17.	 ms = 0.231
8–18.	 P = 1350 lb
8–19.	 NA = 200 lb
8–21.	 n = 12
8–22.	 ms = 0.595
8–23.	 u = 33.4� 
8–25.	 d = 13.4 ft
8–26.	 P = 740 N
8–27.	 P = 860 N
8–29.	 u = 11.0�
8–30.	 u = 10.6�, x = 0.184 ft 
8–31.	 u = 8.53�, FA = 1.48 lb, FB = 0.890 lb
8–33.	 No

8–34.	 If P =
1

2
 W , ms =

1

3

	 If P �
1

2
 W ,

	 �ms =
(P + W ) - 2(W + 7P)(W - P)

2(2P - W )
 

	 for 0 6 P 6 W  
8–35.	 P = 8.18 lb
8–37.	 Oy = 400 N, Ox = 46.4 N
8–38.	 P = 350 N, Oy = 945 N, Ox = 280 N
8–39.	 ms = 0.230
8–41.	 u = 31.0�
8–42.	 P = 654 N
8–43.	 The block fails to be in equilibrium.
8–45.	 P = 355 N
8–46.	 mC = 0.0734, mB = 0.0964
8–47.	 u = 16.3�
8–49.	 Yes
8–50.	 m = 66.7 kg
8–51.	 P = 408 N
8–53.	 M = 55.2 lb # ft
8–54.	 u = 33.4�
8–55.	 P = 13.3 lb
8–57.	 P = 100 N, d = 1.50 ft 
8–58.	 u = 33.4�
8–59.	 �P = 5.53 kN, yes
8–61.	 P = 39.6 lb
8–62.	 x = 18.3 mm
8–63.	 P = 2.39 kN

7–71.	 x = 1- , V = 600 N, M = 600 N # m
7–74.	 x = 0.5+ , V = 450 N, M = -150 N # m,
	 x = 1.5- , V = -750 N, M = -300 N # m
7–75.	 x = 2+ , V = -375 N, M = 750 N # m
7–77.	 x = 10+ , V = 20.0 kip, M = -50.0 kip # ft
7–78.	 x = 2+ , V = -14.3, M = -8.6
7–79.	 �x = 1+ , V = 175, M = -200, 

x = 5- , V = -225, M = -300
7–81.	 x = 4.5- , V = -31.5 kN, M = -45.0 kN # m,
	 x = 8.5+ , V = 36.0 kN, M = -54.0 kN # m
7–82.	 x = 2.75, V = 0, M = 1356 N # m
7–83.	 x = 3, V = -2.25 kN, M = 20.25 kN # m
7–85.	 x = 3+ , V = 1800 lb, M = -900 lb # ft
	 x = 6, V = 0, M = 1800 lb # ft
7–86.	 x = 1.5, V = 2.25 kN, M = -2.25 kN # m
7–87.	 x = 3, V = 3.00 kN, M = -1.50 kN # m
7–89.	 x = 215, V = 0, M = 1291 lb # ft
	 x = 12- , V = -1900 lb, M = -6000 lb # ft
7–90.	 x = 0, V = 13.5 kN, M = -9.5 kN # m
7–91.	 x = 3, V = 0, M = 18.0 kN # m
	 x = 6- , V = -27.0 kN, M = -18.0 kN # m
7–93.	 x = 15, V = 0, M = 37.5 kip # ft
7–94.	 yB = 2.22 m, yD = 1.55 m
7–95.	 P1 = 320 N, yD = 2.33 m
7–97.	 xB = 5.39 m
7–98.	 P = 700 N
7–99.	 yB = 8.67 ft, yD = 7.04 ft
7–101.	 �yB = 3.53 m, P = 0.8 kN, Tmax = TDE = 8.17 kN
7–102.	 w = 51.9 lb>ft
7–103.	 Tmax = 14.4 kip, Tmin = 13.0 kip
7–105.	 TAB = TCD = 212  lb (max), yB = 2 ft
7–106.	 x = 2.57 ft,  W = 247 lb
7–107.	 TA = 61.7 kip, TB = 36.5 kip, TC = 50.7 kip
7–109.	 Tmax = 594  kN
7–110.	 Tmin = 552  kN
7–111.	 Tmax = 3.63 kip

7–113.	 y =
x2

7813
 a75 -

x2

200
b , Tmax = 9.28 kip

7–114.	 h = 4.44 ft
7–115.	 (Fh)R = 6.25  kip, (Fv)R = 2.51  kip
7–117.	 (Fv)A = 165  N, (Fh)A = 73.9  N
7–118.	 W = 4.00 kip, Tmax = 2.01 kip
7–121.	 l = 104  ft
7–122.	 h = 146 ft
7–123.	 L = 302  ft

Chapter 8
8–1.	 P = 12.8 kN
8–2.	 NB = 2.43 kip, NC = 1.62 kip, F = 200 lb
8–3.	 NA = 16.5 kN, NB = 42.3 kN, 
	 It does not move.
8–5.	 F = 2.76 kN
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Chapter 9
9–1.	 x = 124 mm, y = 0
9–2.	 x = 0, y = 1.82 ft
9–3.	 x = 0.574 m, Bx = 0, Ay = 63.1 N, By = 84.8 N
9–5.	 y = 0.857 m

9–6.	 y =
2

5
 m

9–7.	 x =
3

8
 a

9–9.	 x =
3

2
 m 

9–10.	 y =
12

5
 m

9–11.	 x =
3

4
 b

9–13.	 x = 6 m
9–14.	 y = 2.8 m
9–15.	 x = 0.398 m
9–17.	 y = 1.43 in.

9–18.	 x =
a(1 + n)

2(2 + n)
 

9–19.	 y =
hn

2n + 1
 

9–21.	 x = 1
3

5
 ft

9–22.	 y = 4
8

55
 ft

9–23.	 x =
3

8
a

9–25.	 �x = 3.20 ft, y = 3.20 ft, TA = 384 lb,  
TC = 384 lb, TB = 1.15 kip

9–26.	 x = 3 ft

9–27.	 y =
6

5
 ft

9–29.	 y = 40.0 mm

9–30.	 x =
1

3
(a + b)

9–31.	 y =
h

3

9–33.	 y =
pa

8
9–34.	 �x = 1.26 m, y = 0.143 m, NB = 47.9 kN, 

Ax = 33.9 kN, Ay = 73.9 kN

9–35.	 x = c 2(n + 1)

3(n + 2)
d a

9–37.	 x =
2

3
a r sin a

a
b

9–38.	 x = 0.785 a

9–39.	 x = y = 0, z =
4

3
  m

8–65.	 P = 4.05 kip
8–66.	 P = 106 lb
8–67.	 F = 66.7 N
8–69.	 W = 7.19 kN
8–70.	 The screw is self-locking.
8–71.	 P = 617 lb
8–74.	 M = 40.6 N # m
8–75.	 M = 48.3 N # m
8–77.	 ms = 0.0637
8–78.	 M = 5.69 lb # in.
8–79.	 F = 1.98 kN
8–81.	 F = 11.6 kN
8–82.	 P = 104 N
8–83.	 a.	 F = 1.31 kN 
	 b.	 F = 372 N
8–85.	 �He will successfully restrain the cow.
8–86.	 �Yes, it is possible.
	 F = 137 lb
8–87.	 T1 = 57.7 lb
8–89.	 mA = 2.22 kg
8–90.	 u = 99.2�
8–91.	 n = 3 half turns, Nm = 6.74 lb
8–93.	 M = 458 N # m
8–94.	 W = 9.17 lb
8–95.	 P = 78.7 lb
8–97.	 M = 75.4 N # m, V = 0.171 m3

8–99.	 P = 53.6 N
8–101.	 x = 0.384 m
8–102.	 Fs = 85.4 N
8–103.	 W D = 12.7 lb
8–105.	 umax = 38.8�
8–106.	 M = 50.0 N # m, x = 286 mm
8–107.	 M = 132 N # m
8–109.	 F = 10.7 lb
8–110.	 M = 16.1 N # m
8–111.	 M = 237 N # m

8–113.	 M =
2ms PR

3 cos u
8–114.	 T = 905 lb # in.
8–115.	 P = 118  N
8–117.	 P = 29.0 lb

8–118.	 M =
8

15
 ms PR

8–119.	 F = 18.9 N
8–121.	 P = 20.5 lb
8–122.	 T = 289 lb, N = 479 lb, F = 101 lb
8–123.	 ms = 0.0407
8–125.	 r = 20.6 mm
8–126.	 P = 42.2 lb
8–127.	 ms = 0.411
8–129.	 P = 1333  lb
8–130.	 P = 25.3 lb
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9–94.	 W = 3.12(106) lb

9–95.	 V =
p(6p + 4)

6
 a3

9–97.	 V = 0.114 m3

9–98.	 A = 2.25 m2

9–99.	 A = 276(103) mm2

9–101.	 W = 84.7 kip
9–102.	 Number of gal. = 2.75 gal
9–103.	 A = 8pba, V = 2pba2

9–105.	 Q = 205 MJ
9–106.	 A = 119(103) mm2

9–107.	 W = 126 kip
9–109.	 A = 1365 m2

9–110.	 m = 138 kg
9–111.	 m = 2.68 kg
9–113.	 V = 1.40(10 3) in3

9–114.	 h = 29.9 mm
9–115.	 FR = 1250 lb, x = 2.33 ft, y = 4.33 ft
9–117.	 FR = 24.0 kN,
	 x = 2.00 m, y = 1.33 m

9–118.	 FR =
4ab

p2 p0,  x =
a

2
 , y =

b

2

9–119.	 FRx = 2rlp0ap2 b , FR = plrp0

9–121.	 For water: FRA
= 157 kN, FRB

= 235 kN

	 For oil: d = 4.22 m
9–122.	 d = 2.61 m
9–123.	 F.S. = 2.71
9–125.	 F1 = 9.60 kip, F2 = 40.3 kip
9–126.	 FR = 427 lb, y = 1.71 ft, x = 0
9–127.	 FB = 29.4 kN, FA = 235 kN
9–129.	 F = 102 kN
9–130.	 FRv

= 196 lb, FRh
= 125 lb

Chapter 10
10–1.	 Ix =

ab3

3(3n + 1)

10–2.	 Iy =
a3b

n + 3
10–3.	 Ix = 457(106) mm4

10–5.	 Ix = 0.133 m4

10–6.	 Iy = 0.286 m4

10–7.	 Ix = 0.267 m4

10–9.	 Ix = 23.8 ft4

10–10.	 Ix =
2

15
 bh3

10–11.	 Ix = 614 m4

10–13.	 Ix =
p

8
 m4

10–14.	 Iy =
p

2
 m4

9–41.	 z =
R2 + 3r2 + 2rR

4(R2 + r2 + rR)
 h

9–42.	 y = 2.61 ft

9–43.	 z =
h

4
, x = y =

a
p

9–45.	 z =
4

3
 m

9–46.	 y =
3

8
 b, x = z = 0

9–47.	 z = 12.8 in .
9–49.	 z = 0.675a

9–50.	 z =
c

4
9–51.	 d = 3 m
9–53.	 x = 24.4 mm, y = 40.6 mm
9–54.	 x = 0, y = 58.3 mm
9–55.	 x = 112 mm, y = 112 mm, z = 136 mm
9–57.	 x = 0.200 m, y = 4.37 m
9–58.	 y = 154 mm
9–59.	 x = 0.571 in., y = -0.571 in.
9–61.	 y = 79.7 mm
9–62.	 x = -1.00 in., y = 4.625 in.
9–63.	 y = 85.9 mm 
9–65.	 x = 1.57 in., y = 1.57 in.
9–66.	 y = 2 in.
9–67.	 y = 272 mm
9–69.	 z = 1.625 in.
9–70.	 z = 4.32 in.

9–71.	 x =

2
3 r sin3 a

a -
sin 2a

2

9–73.	 y =
22(a2 + at - t2)

2(2a - t)
9–74.	 �x = 2.81 ft, y = 1.73 ft, NB = 72.1 lb, 

NA = 86.9 lb
9–75.	 x = 120 mm, y = 305 mm, z = 73.4 mm
9–77.	 u = 53.1�

9–78.	 z = 2.48 ft, u = 38.9�

9–79.	 z = 0.70 ft
9–81.	 z = 122 mm
9–82.	 h = 385 mm
9–83.	 x = 5.07 ft, y = 3.80 ft
9–85.	 z = 128 mm
9–86.	 z = 754 mm
9–87.	 x = 19.0 ft, y = 11.0 ft
9–89.	 �m = 16.4 kg, x = 153 mm,
	 y = -15 mm, z = 111 mm

9–90.	 V = 27.2(103) ft3

9–91.	 A = 3.56 (103) ft2

9–93.	 A = 4856 ft2
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10–70.	 Iu = 1.28(106) mm4, Iv = 3.31(106) mm4, 
	 Iuv = -1.75(106) mm4

10–71.	 Iu = 1.28(106) mm4, Iuv = -1.75(106) mm4,
	 Iv = 3.31(106) mm4

10–73.	 Imax = 1219 in4, Imin = 36.3 in4, (up)2 = 19.0� d, 
	 (up)1 = 71.0� b
10–74.	 �Imax = 17.4(106) mm4, Imin = 1.84(106) mm4

	 (up)1 = 60.0�, (up)2 = -30.0�
10–75.	 Imax = 17.4(106) mm4, Imin = 1.84(106) mm4,
	 (up)2 = 30.0� b, (up)1 = 60.0� d
10–77.	 �Imax = 250 in4, Imin = 20.4 in4, (up)2 = 22.5� d
	 (up)1 = 67.5� b
10–78.	 u = 6.08�, Imax = 1.74(103) in4, Imin = 435 in4

10–79.	 u = 6.08�, Imax = 1.74(103) in4, Imin = 435 in4

10–81.	 �Iu = 11.8(106) mm4, Iuv = -5.09(106) mm4,
	 Iv = 5.90(106) mm4

10–82.	 up1 = -31.4�, up2 = 58.6�, Imax = 309 in4, 		
	 Imin = 42.1 in4

10–83.	 Imax = 309 in4, Imin = 42.1 in4, 
	 up1 = -31.4�, up2 = 58.6�

10–85.	 Ix =
2

5
 mb2

10–86.	 kx = 57.7 mm

10–87.	 Ix =
1

3
 ma2

10–89.	 Ix =
2

5
 mb2

10–90.	 kx = A n + 2

2(n + 4)
 h

10–91.	 Iy = 2.25 slug # ft2

10–93.	 Ix =
3

10
 mr2

10–94.	 Iy = 1.71(103) kg # m2

10–95.	 IA = 0.0453 kg # m2

10–97.	 Iz = 1.53 kg # m2

10–98.	 y = 1.78 m, IG = 4.45 kg # m2

10–99.	 IO = 0.276 kg # m2

10–101.	 IA = 222 slug # ft2

10–102.	 Iz = 29.4 kg # m2

10–103.	 IO =
1

2
 ma2

10–105.	 Iz = 0.113 kg # m2

10–106.	 IG = 118 slug # ft2

10–107.	 IO = 282 slug # ft2

10–109.	 Iz = 34.2 kg # m2

Chapter 11
11–1.	 FAC = 7.32 lb
11–2.	 F = 2P cot u
11–3.	 FS = 15 lb
11–5.	 F = 369 N

10–15.	 Ix = 205 in4

10–17.	 Ix =
1

30
 bh3

10–18.	 Iy =
b3h

6
10–19.	 Ix = 0.267 m4

10–21.	 Ix = 0.8 m4

10–22.	 Iy = 0.571 m4

10–23.	 Ix =
3ab3

35
10–25.	 Ix = 209 in4

10–26.	 Iy = 533 in4

10–27.	  A = 14.0(103) mm2

10–29.	 �y = 52.5 mm, Ix� = 16.6(106) mm4, 
Iy� = 5.725(106) mm4

10–30.	 Ix = 182 in4

10–31.	 Iy = 966 in4

10–33.	 Iy = 2.03(109) mm4

10–34.	 Iy = 115 (106) mm4

10–35.	 y = 207 mm, Ix� = 222 (106) mm4

10–37.	 Iy = 90.2(106) mm4

10–38.	 Ix = 1971 in4

10–39.	 Iy = 2376 in4

10–41.	 Iy = 341 in4

10–42.	 Ix = 154(106) mm4

10–43.	 Iy = 91.3(106) mm4

10–45.	 x = 61.6 mm, Iy= = 41.2(106) mm4

10–46.	 Ix = 1845 in4

10–47.	 Iy = 522 in4

10–49.	 Iy� =
ab sin u

12
(b2 + a2 cos2 u)

10–50.	 y = 0.181 m, Ix� = 4.23(10-3) m4

10–51.	 Ix= = 520(106) mm4

10–53.	 Iy = 365 in4

10–54.	 Ixy =
1

3
 tl3sin 2u

10–55.	 Ixy = 5.06 in4

10–57.	 Ixy = 10.7 m4, Ix�y� = 1.07 m4

10–58.	 Ixy =
1

6
 a2b2

10–59.	 Ixy =
a4

280
10–61.	 Ixy = 0.667 in4

10–62.	 Ixy = 97.8 in4

10–63.	 Iu = 15.75 in4, Iu = 25.75 in4

10–65.	 Ixy = 119 in4

10–66.	 Ixy = 98.4(106) mm4

10–67.	 x = y = 44.1 mm, Ix=y= = -6.26(106) mm4

10–69.	 �Iu = 3.47(103) in4, Iv = 3.47(103) in4,  
Iuv = 2.05(103) in4
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11–29.	 �u = 38.7� unstable, u = 90� stable, 
u = 141� unstable

11–30.	 x = -0.424 ft unstable, x = 0.590 ft stable
11–31.	 u = 20.2�, stable
11–33.	 �Unstable equilibrium at u = 90� 

Stable equilibrium at u = 49.0�
11–34.	 �Unstable equilibrium at u = 0� 

Stable equilibrium at u = 72.9�
11–35.	 k = 2.81 lb>ft
11–37.	 �Stable equilibrium at u = 51.2� 

Unstable equilibrium at u = 4.71�
11–38.	 k = 157 N>m 
	 Stable equilibrium at u = 60�

11–39.	 W =
8k

3L
11–41.	 Stable equilibrium at u = 24.6�
11–42.	 f = 17.4�, u = 9.18�
11–43.	 �Unstable equilibrium at u = 23.2�
11–45.	 u = 0�, u = 33.0�
11–46.	 m = 5.29 kg

11–49.	 u = 0�, u = cos-1a d

4a
b

11–7.	 M = 52.0 lb # ft
11–9.	 u = 16.6�, u = 35.8�

11–10.	 P =
W

2
 cot u

11–11.	 u = 23.8�, u = 72.3�
11–13.	 u = 90�, u = 36.1�
11–14.	 k = 166 N>m
11–15.	 F =

M

2a sin u
11–17.	 M = 13.1 N # m
11–18.	 u = 41.2�
11–19.	 k = 9.88 kN>m
11–21.	 F =

50020.04 cos2 u + 0.6

(0.2 cos u + 20.04 cos2 u + 0.6) sin u
11–22.	 u = 9.21�
11–23.	 W G = 2.5 lb

11–25.	 �F =
W(a + b - d tan u)

ac
 2a2 + c2 + 2ac sin u

11–26.	 x = -0.5 ft unstable, x = 0.833 ft stable

11–27.	 Unstable at u = 34.6�, stable at u = 145�
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Index
Active force, 89
Angles, 45–47, 69–73, 82–83, 403–405, 432

azimuth (f), 46–47
Cartesian force vectors, 45–47
coordinate direction, 45–46, 82–83
dot product used for, 69–73, 83
dry friction and, 403–405, 432
formed between intersecting lines, 70
impending motion and, 403–405
kinetic friction (uk), 404–405
lead, 432
mathematical review of, 616–617
Pythagorean’s theorem for, 70, 617
screws, 432
static friction (us), 403, 405
transverse (u), 46–47
vectors and, 45–47, 69–73, 82–81

Applied force (P), 402–405, 459–460
Area (A), 468, 470, 502–505, 523–524, 

529–535, 540–542, 548–557, 576
axial symmetry and rotation, 502–505, 

524, 548–549
centroid (C) of an, 468, 470, 502–505, 

523–524
centroidal axis of, 530–531
composite shapes, 503, 540–542, 576
inclined axis, about, 552–554
integration for, 468, 523, 529–532
Mohr’s circle for, 555–557
moments of inertia (I) for, 529–535, 

540–542, 548–557, 576
Pappus and Guldinus, theorems of, 

502–505, 524
parallel-axis theorem for, 530–531, 

540, 549, 567, 576
polar moment of inertia, 530–531
principal moments of inertia, 553–554
procedures for analysis of, 470, 532, 540
product of inertia for, 548–551, 576
radius of gyration of, 531
surface of revolution, 502, 504–505, 524
transformation equations for, 552
volume of revolution, 503–505, 524

Associative law, 126
Axes, 145–149, 190, 202, 529–535, 540–542, 

552–557, 563–570, 576–577
area moments of inertia for, 529–535, 

552–554
centroidal axis of, 530–531
composite bodies, 540–542, 568
distributed loads along single, 190
inclined, area about, 552–554
mass moments of inertia for, 

563–570, 577
Mohr’s circle for, 555–557

moment of a force about specified, 
145–149, 202

moments of inertia (I), 529–535, 
540–542, 552–557, 563–570, 576–577

parallel-axis theorem for, 530–531, 
540, 549, 567, 576

principal, 553–554, 556
procedures for analysis of, 532, 556, 564
product of inertia and, 548–551, 576
radius of gyration for, 531, 568
resultant forces and, 145–149, 190, 202
scalar analysis, 145
transformation equations for, 552
vector analysis, 146–147

Axial loads, friction (F) and, 447–449, 461
Axial revolution, 502–505, 524
Axial symmetry, 488–489, 502–505, 523–524

axial revolution and, 502–505, 524
center of gravity (G) and, 488–489, 

502–505, 523
centroid (C) and, 488–489, 502–505, 523
composite bodies, 488–489, 503
Pappus and Guldinus, theorems of, 

502–505, 524
rotation and, 502–505, 524
surface area and, 502, 504–505, 524
volume and, 503–505, 524

Axis of symmetry, 467, 469, 488–489, 523, 
548–551

area product of inertia, 548–551
centroid (C) and, 467, 469, 488, 523

Azimuth angles, 46

Ball and socket connections, 245–246, 248
Base units, 7
Beams, 342–380, 396–398

bending moments (M) and, 344–345, 
370–375, 396

cantilevered, 361
centroid (C), 344
couple moment (M) and, 372
distributed loads, 370–375, 398
force equilibrium, 370–371
free-body diagrams, 343–350, 396
internal forces, 342–380, 396–398
internal loads of, 361–364, 370–375
method of sections for, 343–350
moments, 344–345, 370–375, 396
normal force (N) and, 344–345, 396
procedures for analysis of, 345, 362
resultant loadings, 344, 396
shear and moment diagrams,  

361–364, 397
shear force (V) and, 344–345, 

370–375, 396

sign convention for, 345, 397
simply supported, 361
torsional (twisting) moment, 344, 396

Bearings, 246–248, 447–451, 461
collar, 447–449, 461
free-body diagrams, 246–248
frictional analysis of, 447–451, 461
journal, 246–247, 450–451, 461
pivot, 447–449, 461
rigid-body support reactions, 

246–248
thrust, 247–248

Belts (flat), frictional analysis of, 439–441, 460
Bending moment diagrams, 361–364. See 

also Shear and moment diagrams
Bending moments (M), 344–345, 370–375, 

396, 398
distributed loads and, 370–375, 398
internal forces and, 344–345, 370–375, 

396, 398
method of sections for, 344–345
shear (V) and, 371

Body at rest (zero), 208
By inspection, determination of forces, 

282, 292

Cables, 88, 117, 210, 246, 381–395, 398
concentrated loads, 381–383, 398
continuous, 88, 117
distributed loads, 384–387, 398
equilibrium of, 88, 117
flexibility of, 381
free-body diagram for, 88, 246
inextensible, 381
internal forces of, 381–395, 398
support reactions, 88, 246
weight of as force, 388–391, 398

Calculations, engineering importance of, 
10–11

Cantilevered beam, 361
Cartesian coordinate system, 44–49, 56–58, 

69, 82–83, 125–131, 201
addition of vectors, 47
azimuth angles (f), 46
concurrent force resultants, 47–49, 83
coordinate direction angles, 45–46, 

82–83
coplanar force resultants, 34
cross product using, 125–127
direction and, 45–47, 125, 128
dot product in, 69
magnitude in, 45, 82, 125, 128
moment of a force, calculations by, 

128–131, 201
position vectors (r), 56–58, 83
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Cartesian coordinate system (continued)
rectangular components, 44, 82
right-hand rule, 44, 56, 125–126, 128
three-dimensional systems, 44–49
transverse angles (u), 46–47
two-dimensional systems, 34
unit vectors, 44, 82
vector formulation, 126–127, 129
vector representation, 45, 82–83

Cartesian vector notation, 34
Center of gravity (G), 6, 212, 464–527

center of mass (Cm) and, 467, 523
centroid (C) and, 464–527
composite bodies, 488–492, 524
constant density and, 488
coplanar forces, 212
free-body diagrams of, 212
location of, 465–466, 470, 523
Newton’s law and, 6
procedure for analysis of, 470, 489
rigid-body equilibrium and, 212
specific weight and, 488
weight (W) and, 6, 212, 465–466, 

488, 523
Center of pressure (P), 513, 525
Centroid (C), 191, 212, 344, 464–527

area in x–y plane, 468, 523
axis of symmetry, 467, 469, 488, 523
axial symmetry, 488–489, 502–505, 

523–424
beam cross-section location, 344
center of gravity (G) and, 464–527
composite bodies, 488–492, 524
composite shapes, 503
coplanar forces, 212
distributed loads and, 511–518, 525
distributed loads, 191
flat surfaces, 511
fluid pressure and, 512–518, 525
free-body diagrams and, 212
integration for determination of, 

467–477, 523
line in x–y plane, 468–469, 523
line of action and, 191, 511, 513, 525
location of, 191, 467–477, 523
mass of a body (Cm), 467, 478, 523
method of sections and, 344
Pappus and Guldinus, theorems of, 

502–505, 524
plates, 497–518
procedure for analysis of, 470, 489
Pythagorean’s theorem for, 469
resultant forces and, 191, 344, 511, 

513–518, 525
rigid-body equilibrium and, 212

rotation of an axis, 502–505, 524
surface area and, 502, 504–505, 524
volume and, 467, 503–505, 523–524

Centroidal axis, 530–531
Coefficient of kinetic friction (mk), 404–405
Coefficient of rolling resistance, 452–453
Coefficient of static friction (ms), 403, 405
Collar bearings, frictional analysis of, 

447–449, 461
Collinear vectors, 19, 81
Communitative law, 18, 126
Components of a force, 18, 20–22
Composite bodies, 488–492, 503, 503, 524, 

540–542, 568, 576–577
area of, 503, 540–542, 576
axial symmetry and, 488–489
center of gravity (G), 488–492, 524
centroid (C) of, 488–492, 503, 524
constant density and, 488
mass moments of inertia, 568, 577
moments of inertia (I), 540–542, 

568, 576
procedure for analysis of, 489, 540
theorem of Pappus and Guldinus for 

parts of, 503
specific weight and, 488
weight (W) and, 488, 524

Compressive forces (C), 275–277, 291–292
method of joints and, 276–277
method of sections and, 291–292
truss members, 275

Concentrated force, 5
Concentrated loads, 370–371, 381–383, 

397–398
cables subjected to, 381–383, 398
distributed loads, 370–371
shear and moment discontinuities 

from, 371, 397
Concurrent forces, 47–49, 83, 106–110, 117, 

177, 252
addition of vectors, 47–49
Cartesian coordinate system for, 

47–49, 83
couple moments and, 177
equilibrium of, 106–110, 117, 252
statical determinacy and, 252
systems, simplification of, 177

Conservative forces, 597–599
potential energy and, 598–599
potential function for, 599
spring force, 597
virtual work (U) and, 597–599
weight, 597

Constant density, center of gravity (G) 
and, 488

Constraints, 251–259
improper, 252–253
procedure of analysis of, 254
redundant, 251
statical determinacy and, 251–259
rigid-body equilibrium and, 251–259

Conversion of units, 9
Coordinate direction angles, 45–46, 82–83
Coordinates, 44–49, 56–58, 82–83, 585–586, 

600, 612. See also Cartesian 
coordinate system

Cartesian, 44–49, 56–58, 82–83
direction angles (u), 45–46, 82
frictionless systems, 600
position, 585–586, 600, 612
potential energy and, 600
vector representation, 44–49, 56–58
virtual work for rigid-body connec-

tions, 585–586, 600, 612
x, y, z positions, 56

Coplanar distributed loads, 190–194
Coplanar forces, 33–38, 82, 91–95, 117, 

166–171, 177, 208–244, 268–269
addition of systems of, 33–38
Cartesian vector notation, 34
center of gravity, 212
centroid (geometric center), 212
couple moments and, 166–171, 177
direct solution for unknowns, 

220–229, 269
direction of, 33, 34
equations of equilibrium, 91, 208, 

220–229
equilibrium of, 91–95, 117, 208–244, 

268–269
equivalent system, 166–171
free-body diagrams, 91–92, 209–218, 268
idealized models of, 212–213
internal forces and, 212
magnitude of, 33, 34, 91
particles subjected to, 91–95, 117
procedure for analysis of, 92, 214, 221
rectangular components, 33–38, 82
resultants, 34–38
rigid bodies, 208–244, 268–269
scalar notation, 33, 34
support reactions, 209–211, 268
system components, 33–38
systems, simplification of, 166–171, 

177
three-force members, 230–231
two-force members, 230–231
vectors for, 33–38, 82
weight and, 212

Cosine functions, 617
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Cosine law, 22, 81
Coulomb friction, 401. See also 

Dry friction
Couple, 154
Couple moments (M0), 154–159, 166–171, 

177–183, 202–203, 372, 582–583
concurrent force systems and, 177
coplanar force systems and,  

166–171, 177
distributed load relationships, 372
equivalent couples, 155
equivalent system, 166–171
force systems, 154–159
free vectors, 154
internal forces and, 372
parallel force systems and, 178
procedure for analysis of, 168
resultant, 155–156
right-hand rule for, 154
rotation of, 582
scalar formulation of, 154
shear load (V) relationships, 372
systems, simplification of, 166–171, 

177–183
three-dimensional systems, 166–171, 

177–183
translation of, 582
vector formulation of, 154
virtual work of, 583
work of, 582
wrench, reduction of forces to, 179

Cross product, 125–127
Cartesian vector formulation, 126–127
direction and magnitude by, 125
laws of operation, 126
right-hand rule for, 125–126
vector multiplication using, 125–127

Curved plates, fluid pressure and, 514
Cylinders, rolling resistance of, 452–453, 461

Derivatives, 618
Derived units, 7–8
Dimensional homogeneity, 10
Direct solution for unknowns, 220–229, 269
Direction, 17, 33, 34, 45–47, 70, 81, 122, 125, 

128, 201, 405, 407
azimuth angles, 46
Cartesian coordinate vectors, 45–47
coordinate direction angles, 45–46
coplanar force systems, 33, 34
cross product and, 125
dot product applications, 70
frictional forces, 405, 407
moments, 122, 125, 128, 201
right-hand rule for, 125, 128, 201

three-dimensional systems, 45–47
transverse angles, 46–47
vector sense of, 17, 33, 34, 81

Direction cosines, 45–46
Disks, 447–449, 461, 564, 577

frictional analysis of, 447–449, 461
mass moments of inertia, 564, 577

Displacement (d), 583–590, 600, 612
frictionless systems, 600
potential energy and, 600
principle of virtual work and, 

583–590, 612
procedure for analysis of, 586
rigid-bodies, connected systems of, 

585–590
virtual work (U) and, 583–590, 

 600, 612
virtual work equations for, 583

Distributed loads, 190–194, 203, 370–375, 
384–387, 397–398, 511–518, 525

axis representation, along single, 190
beams subjected to, 370–375, 

397–398
bending moment (M) relationships, 

370–375, 398
cables subjected to, 384–387, 398
center of pressure (P), 513, 525
centroid (C) of, 191, 511–518, 525
concentrated loads, 370–371
coplanar, 190
couple moment (M0) relationships, 372
fluid pressure and, 512–518, 525
force equilibrium, 370–371
force system resultants, 190–194, 203
incompressible fluids, 512
internal forces, 370–375, 384–387, 

397–398
linearly, 513, 515, 525
line of action of, 191
magnitude and, 190, 511, 525
reduction of force and, 190–194, 203
resultant forces of, 190–194, 203, 

511, 525
shear force (V) relationships, 

370–375, 398
uniform, 370, 525

Distributive law, 69, 132
Dot notation, 10
Dot product, 69–73, 83, 146

applications in mechanics, 70
Cartesian vector formulation, 69
laws of operation, 69
moment about a specified axis, 146
vector angles and direction from, 

69–73, 83

Dry friction, 400–463
angles (u) of, 403–404
applied force (P) and, 402–405, 

459–460
bearings, analysis of, 447–451, 447
belts (flat), analysis of, 439–441, 460
collar and pivot bearings, analysis of, 

447–449, 461
characteristics of, 401–405, 459
coefficients of (m), 403–405, 459
direction of force, 405, 407
disks, analysis of, 447–449
equations for friction versus equilib-

rium, 407–414
equilibrium and, 402, 407
impending motion, 403, 406–414, 

432–433, 459–460
journal bearings, analysis of, 

450–451, 461
kinetic force (Fk), 404–405, 459
motion and, 403–405, 406–414, 

432–434, 459–460
problems involving, 406–414
procedure for analysis of, 409
rolling resistance and, 452–453, 461
screws, forces on, 432–434, 460
slipping and, 403–405, 406–414, 459
static force (Fs), 403, 405, 459
theory of, 402
tipping effect, balance of, 402, 459
wedges and, 430–431, 460

Dynamics, study of, 3

Elastic potential energy(Ve), 598
Engineering notation, 11
Equations of equilibrium, 87, 91, 106, 208, 

220–229, 250, 268–269, 407–414
alternative sets, 220–221
body at rest (zero), 208
coplanar force systems, 91, 220–229, 

268–269
direct solution, 220–229, 269
frictional equations and, 407–414
particles, 87, 91, 106
procedure for analysis using, 221
rigid bodies, 208, 220–229, 268–269
scalar form, 250, 268–269
three-dimensional force systems, 106, 

250, 269
three-force members, 230–231
two-force members, 230–231
vector form, 250, 269

Equilibrium, 86–119, 206–271, 370–371, 402, 
407–414, 600–606, 613

concurrent forces, 106–110, 117
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Equilibrium (continued)
conditions for, 87, 207–208, 220
coplanar force systems, 91–95, 117, 

208–244, 268–269
distributed loads, 370–371
free-body diagrams, 88–91, 106, 

209–218, 245–248, 268–269
friction and, 402, 407
frictionless systems, 600
impending motion and, 407–414
improper constraints and, 252–253
neutral, 601–602
one degree-of-freedom system, 601
particles, 86–119
potential-energy (V) criterion for, 

600, 613
procedures for analysis of, 92, 106, 

214, 221, 254, 603
redundant constraints and, 251
rigid bodies, 206–271
stability of systems, 601–606, 613
stable, 601–602
statical determinacy and,  

251–259, 269
support reactions, 209–211, 245–249, 

268–269
three-dimensional force systems, 

106–110, 117, 245–259, 269
three-force members, 230–231
tipping effect, balance of, 402, 459
two-dimensional force systems, 

91–95, 117
two-force members, 230–231
unstable, 601–602
virtual work (U) and, 600–606, 613
zero condition, 87, 117, 208

Equivalent couples, 155
Equivalent systems, 166–171, 177–183

concurrent force system, 177
coplanar systems, 166–171, 177
force and couple moment simplifica-

tion, 166–171, 177–183
parallel force systems, 178
principle of transmissibility for, 166
procedures for analysis, 168, 178
wrench, reduction to, 179
three-dimensional systems, 166–171, 177

Exponential notation, 10
External effects, 166
External forces, 207, 305

Fixed supports, 209, 211, 247
Flat plates, 511, 513, 515, 525

constant width, 513
distributed loads on, 511, 525

fluid pressure and, 513, 515, 525
variable width, 515

Floor beams, truss analysis and, 274
Fluid pressure, 512–518, 525

center of pressure (P), 513
centroid (C), 512–518, 525
curved plate of constant width, 514
flat plate of constant width, 513
flat plate of variable width, 515
incompressible fluids, 512
line of action, 513
Pascal’s law, 512
plates, 512–518, 525
resultant forces and, 513–518, 525

Force, 4, 5–9, 16–85, 86–119, 120–205, 212, 
230–231, 275–277, 291, 305, 342–399, 
402–405, 459–460, 511, 513–518, 
525, 581–583, 585–590, 597–598

active, 89
addition of vectors, 20–26, 33–38, 

47–49
applied (P), 402–405, 459–460
axis, about a specified, 145–149, 190
basic quantity of mechanics, 4
by inspection, 282, 292
cables, 88, 381–395
Cartesian vector notation for, 34
components of, 20–22, 33–38
compressive (C), 275–277, 291–292
concentrated, 5
concurrent, 47–49, 83, 166–171, 177
conservative, 597–598
coplanar, 33–38, 91–95, 117, 166–171, 

177, 203
couple moments and, 154–159, 

166–171, 177–183, 203
cross product, 125–127
directed along a line, 59–62
displacements from, 585–590
distributed loads, 190–194, 203, 511, 525
dot product, 69–73, 83
equilibrium and, 86–119, 230–231, 

370–371
equivalent system, reduction to, 

166–171, 177–183
external, 207, 305
free-body diagrams, 88–92, 117, 

291–296, 305, 343–350
friction, 402–405, 459, 597
gravitational, 7
internal, 212, 291, 305, 342–399
kinetic frictional (Fk), 404–405, 459
line of action, 17, 59–62, 83
method of sections for, 291–296, 

343–350

moment of, 121–124, 128–131, 145–149, 
154–159, 166–171, 201–202

motion and, 403–405
Newton’s laws, 6–7
nonconservative, 597
normal (N), 344–345, 396, 402–403
parallel systems, 178
parallelogram law for, 18, 20–22, 81
particles subjected to, 86–119
position vectors and, 56–58, 83
principle of moments, 132–134
principle of transmissibility, 128, 166
procedures for analysis of, 22, 89, 92, 

168, 178, 345
pulleys, 88
reactive, 89
rectangular components, 33–38, 44, 82
resultant, 18, 20–22, 34–38, 120–205, 

511, 513–518, 525
scalar notation for, 33, 34
scalars and, 17, 18, 69, 81, 121–124, 201
shear (V), 344–345, 370–375,  

396, 398
simplification of systems, 166–171, 203
spring (Fs), 597
springs, 88
static frictional (Fs), 403, 405, 459
structural analysis and, 275–277, 

291–292, 305, 343–350
structural members, 230–231, 274–275, 

292–293, 343–380
systems of, 33–38, 120–205
tensile (T), 275–277, 291–292
three-dimensional systems, 44–49, 

56–58, 106–110, 117, 166–171
unbalanced, 6
units of, 8–9
unknown, 291–292
virtual work (U) and, 581–583, 

585–590, 597–598
weight, 7, 388–391, 398, 597
work (W) of, 581–583
wrench, reduction to, 179
vectors and, 16–85, 86–119, 125–131, 201

Frames, 305–320, 337
free-body diagrams for, 305–311, 337
procedure for analysis of, 311
structural analysis of, 305–320, 337

Free vector, 154
Free-body diagrams, 88–92, 106, 117, 

209–218, 245–249, 251, 268–269, 
291–296, 305–311, 337, 343–350, 396

beams, 343–350, 396
cables, 88
center of gravity, 212
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centroid (geometric center), 212
concurrent forces, 106
coplanar force systems, 91–92, 

209–218, 221, 268
equilibrium and, 88–92, 209–218, 221, 

245–259, 251, 268–269
external forces and, 305
frames, 305–311, 337
idealized models of, 212–213
internal forces and, 212, 305,  

343–350, 396
machines, 305–311, 337
method of sections using, 291–296, 

343–350
particle equilibrium, 88–92
procedures for analysis using, 214, 

221, 254, 311
pulleys, 88
rigid bodies, 209–218, 245–249, 251, 

268–269
smooth surfaces, 88
springs, 88
statical determinacy and, 251, 269
structural analysis using, 291–296, 

305–311, 337
support reactions, 209–211, 245–248, 

251, 268–269
three-dimensional systems, 245–249, 

251, 269
weight and, 212

Frictional circle, 450
Friction (F), 400–463, 597

angles (u) of, 403–404
applied force (P), 402–405,  

459–460
axial loads and, 447–449, 461
bearings, analysis of, 447–451, 461
belts (flat), forces on, 439–441, 460
characteristics of, 401–405, 459
coefficients of (m), 403–405,  

452–453, 459
collar bearings, analysis of, 447–449, 461
Coulomb, 401
disks, analysis of, 447–449, 461
dry, 400–463
equations for friction and equilib-

rium, 407–414
equilibrium and, 402, 407
force of, 402–405, 459
impending motion, 403, 406–414, 

432–433, 459–460
journal bearings, analysis of, 

450–451, 461
kinetic force (Fk), 404–405, 459
lateral loads and, 450–451, 461

nonconservative force, as a, 597
point of contact, 401–402, 404
pivot bearings, analysis of, 447–449, 461
procedure for analysis of, 409
rolling resistance and, 452–453, 461
screws, forces of, 432–434, 460
shaft rotation and, 447–451, 461
slipping and, 404–405, 406–414, 459
static force (Fs), 403, 405, 459
virtual work (U) and, 597
wedges and, 430–431, 460

Frictionless systems, 600

Geometric center, 191, 212, 344. See also 
Centroid (C)

Gravitational attraction, Newton’s law of, 7
Gravitational potential energy (Vg), 598
Gravity, see Center of gravity (G)

Hinge connections, 209, 212, 245, 247
Hyperbolic functions, 618

Idealizations for mechanics, 5
Impending motion, 403, 406–414, 432–433, 

459–460
all points of contact, 406
angle of static friction for, 403
coefficient of static friction (ms)  

for, 403
downward, 433, 460
dry friction problems due to, 406–414
equilibrium and frictional equations 

for, 407–414
friction and, 403, 406–414, 432–433, 

459–460
no apparent, 406
points of contact, 404
procedure for analysis of, 409
screws and, 432–434, 460
some points of contact, 407
upward, 432–433, 460
verge of slipping, 403

Inclined axes, moment of inertia for area 
about, 552–554

Incompressible fluids, 512
Inertia, see Moments of inertia
Integrals, 619
Integration, 467–477, 511, 515, 525, 529–532, 

563, 576–577
area (A) integration, 468, 529–532
center of mass (Cm), determination of 

using, 467–477
centroid (C), determination of using, 

467–477, 511, 515, 525
distributed loads, 511, 515, 525

line segment, 468–469
mass moments of inertia, determina-

tion of using, 563, 577
moments of inertia, determination of 

using, 529–532, 576
parallel-axis theorem for, 530–531
pressure distribution and, 515, 525
procedure for analysis using, 532
resultant force integration, 511, 525
volume (V), 467
volume elements for, 563

Internal forces, 212, 291, 305, 342–399
beams subjected to, 342–380, 396–398
bending moments (M) and, 344–345, 

370–375, 396, 398
cables subjected to, 381–395, 398
compressive (C), 291
concentrated loads, 370–371, 381–383, 

397–398
couple moment (M0) and, 372
distributed loads, 370–375, 397–398
force equilibrium, 370–371
frames, 305
free-body diagrams, 305, 343–350, 396
machines, 305
method of sections and, 291, 343–350
moments and, 344–345, 370–375, 

396–398
normal force (N) and, 344–345, 396
procedures for analysis of, 345, 362
resultant loadings, 344, 396
rigid-body equilibrium and, 212
shear and moment diagrams, 

361–364, 397
shear force (V) and, 344–345, 

370–375, 396, 398
sign convention for, 345, 397
structural members with, 343–350, 396
tensile (T), 291
torsional (twisting) moment, 344, 396
weight, 388–391, 398

International System (SI) of units, 8, 9–10

Joints, truss analysis and, 273–274, 276–281. 
See also Method of joints

Joules (J), unit of, 582
Journal bearings, 246–248, 450–451, 461

frictional analysis of, 450–451, 461
support connections, 246–248

Kinetic frictional force (Fk), 404–405, 459

Lateral loads, friction (F) and, 450–451, 460
Laws of operation, 69
Lead of a screw, 432
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Lead angle, 432
Length, 4, 8–9, 468–470, 523

basic quantity of mechanics, 4
centroid (C) of lines, 468–470, 523
procedure for analysis of, 470
Pythagorean theorem for, 469
units of, 8–9

Line of action, 17, 59–62, 83, 191, 511, 513, 525
force vector directed along, 59–62, 83
resultant force, 191, 511
vector representation of, 17

Linear elastic behavior, 88
Lines, centroid (C) of, 468–469. See also 

Length
Loads, 190–194, 274, 370–375, 381–383, 

396–398, 447–451, 461, 512–518, 525.
	 See also Distributed loads
axial, 447–449, 461
beams, 370–375, 396–397
cables, 381–383, 398
concentrated, 370–371, 381–383, 

397–398
distributed, 370–375, 398
fluid pressure, 512–518
friction (F) and, 447–451, 461
lateral, 450–451, 461
linear distribution of, 513–514, 525
moment (M) relations with, 

370–375, 398
resultant forces, 190–192
reduction of distributed, 190–194
shaft rotation and, 447–451, 461
shear (V), 370–375, 396, 398
single axis representation, 190
three-dimensional, 344, 396
truss joints, 274
uniform, 525

Machines, 305–320, 337
free-body diagrams for, 305–311, 337
procedure for analysis of, 311
structural analysis and, 305–320, 337

Magnitude, 17, 33, 34, 44, 88, 91, 122, 125, 
128, 190, 201, 511, 525

Cartesian vectors, 45
coplanar force systems, 33, 34, 91
constant, 88
cross product and, 125
distributed load reduction and, 190, 

511, 525
equilibrium and, 88, 91
integration for, 511, 525
moments and, 122, 125, 128, 201
resultant forces, 190, 511, 525

right-hand rule for, 128
vector representation of, 17, 33, 34, 45
units of, 122

Mass, 4, 8–9, 467, 478, 523
basic quantity of mechanics, 4
center of (Cm), 467, 478, 523
integration of, 467, 523
units of, 8–9

Mass moments of inertia, 563–570, 577
axis systems, 563–570, 563, 577
composite bodies, 568, 577
disk elements, 564, 577
parallel-axis theorem for, 567
procedure for analysis of, 564
radius of gyration for, 568
shell elements, 564, 577
volume elements for integration, 563

Mathematical expressions, 616–619
Mechanics, study of, 3
Members, 230–231, 274–275, 292–293, 

343–350, 396
compressive force (C), 275
equilibrium of forces, 230–231
internal loads in, 343–350, 396
joint connections, 274
tensile force (T), 275
three-force, 230–231
truss analysis and, 274–275, 291–292
two-force, 230–231
unknown forces, 291–292

Method of joints, 276–284, 301, 335
compressive forces, 276–277
procedures for analysis using, 277, 301
space truss analysis, 301
structural analysis using, 276–284, 

301, 335
tensile forces, 276–277
truss analysis, 276–284, 301, 335
zero-force members, 282–284

Method of sections, 291–296, 301, 336, 
343–350

compressive forces, 291–292
internal forces from, 291, 343–350
free-body diagrams for, 291–296, 

343–350
procedures for analysis using, 293, 

301, 345
space truss analysis, 301
structural analysis using, 291–296, 301, 

336, 343–350
tensile forces, 291–292
truss analysis, 291–296, 336
unknown member forces, 291–292, 336

Models, idealized rigid bodies, 212–213

Mohr’s circle, 555–557
Moment arm (perpendicular distance), 

121–122
Moment axis, 122, 145–149, 202

direction and, 122
force about a, 145–149, 202
scalar analysis of, 145
vector analysis of, 146–147

Moments (M), 120–205, 344–345, 370–375, 
396, 398

bending (M), 344–345, 370–375, 396, 398
concentrated load discontinuities, 371
couple (M0), 154–159, 166–171, 

177–183, 202–203, 372
cross product for, 125–127
direction and, 122, 125, 128, 201
distributed loads and, 190–194, 203, 

370–375, 398
force, of, 120–205
free vector, 154
internal forces and, 344–345, 370–375, 

396, 398
magnitude and, 122, 125, 128, 201
parallel force systems and, 178
perpendicular to force resultants, 

177–183
principle of moments, 132–134
principle of transmissibility, 128, 166
procedures for analysis of, 168, 178
resultant, 122–124, 129, 155–156
scalar formulation of, 121–124, 

154, 201
shear loads (V) and, 370–375, 398
sign convention for, 122, 126
system simplification of, 166–171, 

177–183, 203
torque, 121
torsional (twisting), 344, 396
Varignon’s theorem, 132–134
vector formulation of, 126–131, 

154, 201
wrench, reduction of force and couple 

to, 179
Moments of inertia (I), 528–579

algebraic sum of, 540
area (A), 529–535, 540–542, 

548–557, 576
axis systems, 529–535, 540–542, 

548–554, 563–570
composite shapes, 540–542, 564, 

576–577
disk elements, 564
inclined axis, area about, 552–554
integration and, 529–532
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mass, 563–570, 563, 577
Mohr’s circle for, 555–557
parallel-axis theorem for, 530–531, 

540, 549, 567, 576
polar, 530–531
principle, 552–554, 556, 577
procedures for analysis of, 532, 540, 

556, 564
product of inertia and, 548–551, 576
radius of gyration for, 531, 568
shell elements, 564
transformation equations for, 552

Motion, 6, 403–414, 430–434, 439–441, 
447–435, 459–461

belt drives, 439–441, 460
coefficients of friction (m) and, 

403–405, 452–453, 459
downward, 433, 460
equilibrium and frictional equations 

for, 407–414
friction and, 403–414, 430–434, 

439–441, 447–435, 459–460
impending, 403, 406–414, 432–433, 

459–460
kinetic frictional force (Fk),  

404–405, 459
Newton’s laws of, 6
points of contact, 404
procedure for analysis of, 409
rolling resistance and,  

452–453, 461
screws and, 432–434, 460
self-locking mechanisms, 430, 433
shaft rotation, 447–451, 461
slipping, 404–405, 406–414, 459
static frictional force (Fs), 403,  

405, 459
upward, 432–433, 460
verge of sliding, 403
wedges, 430–431, 460

Multiforce members, 305. See also Frames; 
Machines

Neutral equilibrium, 601–602
Newton, unit of, 8
Newton’s laws, 6–7

gravitational attraction, 7
motion, 6

Nonconservative force, friction as a, 597
Normal force (N), 344–345, 396, 402–403

friction and, 402–403
internal forces as, 344–345
method of sections for, 344–345

Numerical calculations, importance of, 10–11

Pappus and Guldinus, theorems of, 
502–505, 524

axial revolution and symmetry, 502–505
centroid (C) and, 502–505, 524
composite shapes, 503
surface area and, 502, 504–505, 524
volume and, 503–505, 524

Parallel-axis theorem, 530–531, 540, 549, 
567, 576

area moments of inertia determined 
by, 530–531

area product of inertia determined by, 
549, 576

centroidal axis for, 530–531, 576
composite areas, 540
mass moments of inertia, 567
moments of inertia, 530–531, 540, 

567, 576
product of inertia determined by, 

549, 576
Parallel force and couple moments, 

simplification of, 178
Parallelogram law, 18, 20–22, 81
Particles, 5–7, 86–119

coplanar force systems, 91–95, 117
defined, 5
equations of equilibrium, 87, 91, 106
equilibrium of, 86–119
free-body diagrams, 88–91
gravitational attraction, 7
Newton’s laws applied to, 6–7
nonaccelerating reference of motion, 6
procedures for analysis of, 92, 106
three-dimensional force systems, 

106–110, 117
two-dimensional force systems, 

91–95, 117
zero condition, 87, 117

Perpendicular distance (moment arm), 
121–122

Pin connections, 209–211, 213, 247–248, 274
coplanar systems, 209–211, 213
free-body diagrams of, 209–211, 

247–248
three-dimensional systems, 247–248
truss member joints, 274

Pivot bearings, frictional analysis of, 
447–449

Planar truss, 273
Plates, 511–518, 525

flat of constant width, 513
distributed loads on, 511
flat of variable width, 515
centroid (C), 511–518, 525

curved of constant width, 514
flat of constant width, 499
flat of variable width, 501
fluid pressure and, 512–518, 525
resultant forces acting on, 511, 

513–518, 525
Point of contact, 401–402, 404
Polar moments of inertia, 530–531
Position coordinates, 585–586, 600, 612
Position vectors (r), 56–58, 83

head-to-tail addition, 56–57
x, y, z coordinates, 56, 83

Potential energy (V), 598–606, 613
elastic (Ve), 598
equilibrium, criterion for, 600, 613
equilibrium configurations, 601–606
frictionless systems, 600
gravitational (Vg), 598
position coordinates for, 600
potential function equations, 599
procedure for analysis of, 603
single degree-of-freedom systems, 

599, 601
stability of systems and, 601–606, 613
virtual work (V) and, 598–606, 613

Power-series expansions, 618
Pressure, see Fluid pressure
Principal axes, 552–554, 556
Principle moments of inertia, 553–554, 

556, 563
Principle of moments, 132–134
Principle of transmissibility, 128, 166
Principle of virtual work, 581, 583–590, 612
Product of inertia, 548–551, 576

axis of symmetry for, 548–549
moments of inertia of an area and, 

548–551, 576
parallel-axis theorem for, 549, 576

Procedure for analysis, 12–14
Projection, 70, 146
Pulleys, free-body diagram of, 88
Purlins, 273
Pythagorean theorem, 70, 469, 617

Quadratic formula, 618

Radius of gyration, 531, 568
Reactive force, 89
Rectangular components, force vectors of, 

33–38, 44
Resultants, 18, 20–22, 34–38, 81, 120–205, 

344, 396, 511, 513–518, 525
axis, moment of force about, 145–149, 

190, 202
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Resultants (continued)
Cartesian vector components, 44
Cartesian vector notation for, 34
centroid (C) and, 191, 344, 511, 

513–518, 525
concurrent forces, 47–49, 177
coplanar forces, 34–38, 177
couple moments, 154–159, 166–171, 

177–183, 203
distributed loads, reduction of, 

190–194, 203, 511, 525
fluid pressure and, 513–518, 525
force components of, 18, 20–22
force system, 120–205
integration for, 511, 525
internal forces, 344, 396
line of action, 191, 511, 513
magnitude of, 190, 511, 525
method of sections for, 344
moments of a force, 128–132
parallel forces, 178
parallelogram law for, 18, 20–22, 81
perpendicular to moments, 177–183
plates, 511–518, 525
principle moments, 132–134
procedure for analysis of, 178
scalar formulation of, 121–124, 145, 

154, 201
scalar notation for, 33
system reduction for, 166–171, 

177–183, 203
vector addition for, 18, 20–22
vector formulation of, 128–131, 

154, 202
wrench, reduction to, 179

Revolution, 502–505, 524
axial symmetry and, 502–505
centroid (C) and, 502–505, 524
composite shapes, 503
Pappus and Guldinus, theorems of, 

502–505, 524
surface area, 502, 504–505, 524
volume, 503–505, 524

Right-hand rule, 44, 56, 125–126, 128, 154
cross product direction, 125–126
moment of a couple, 154
three-dimensional coordinate  

systems, 44, 56
vector formulation, 126, 128

Rigid bodies, 3, 5, 206–271, 585–590, 612
center of gravity, 212
centroid (geometric center), 212
conditions for, 207–208
connected systems of, 585–590, 612
constraints of, 251–259

coplanar force systems, 208–244, 
268–269

defined, 5
displacement (d) and, 585–590, 600, 612
equations of equilibrium for, 208, 

220–229, 268–269
equilibrium of, 206–271
external forces and, 207
force and couple systems acting on, 

207–208
free-body diagrams, 209–218, 245–249, 

251, 268–269
frictionless systems, 600
idealized models of, 212–213
internal forces and, 212
improper constraints for, 252–253
mechanics, study of, 3
position coordinates for, 585–586, 

600, 612
procedures for analysis of, 214, 221, 

254, 586
redundant constraints for, 251
statical determinacy and, 251–259, 269
support reactions, 209–211, 245–248, 

251–259, 268–269
three-dimensional systems,  

245–259, 269
three-force members, 230–231
two-force members, 230–231
uniform, 212
virtual work (V) for, 585–590, 600, 612
weight and, 212

Rocker connections, 210
Roller connections, 209–210, 213, 246
Rolling resistance, frictional forces and, 

452–453, 461
Roof truss, 273–274, 335
Rotation of couple moments, 582. See also 

Revolution; Shaft rotation
Rounding off numbers, 11

Scalar notation, 33, 34
Scalar product, 69
Scalar triple product, 146
Scalars, 17, 18, 33, 69, 121–124, 145, 154, 201, 

250, 268–269, 582
couple moments, formulation by, 154
dot product and, 69
equations of equilibrium, 250, 

268–269
moment of a force about an axis, 145
moment of a force, formulation by, 

121–124, 201
multiplication and division of vectors 

by, 18

vectors and, 17, 69
negative, 33, 91
torque, 121
work as, 582

Screw, reduction of force and couple to, 179
Screws, frictional forces on, 430–434, 460
Self-locking mechanisms, 430, 433
Sense of direction, 17
Shaft rotation, 447–451, 461

axial loads, 447–449, 461
collar and pivot bearings for, 447–449
frictional analysis of, 447–451, 461
frictional circle, 450
journal bearings for, 450–451, 461
lateral loads, 450–451, 461

Shear and moment diagrams, 361–364, 
370–357, 397–398

beam analysis using, 361–364,  
370–375

couple moment (M0) and, 372
discontinuities in, 371
distributed load relations and, 

370–375, 398
internal forces and, 361–364, 370–375, 

397–398
moment (M) relations in, 371–375, 398
procedure for analysis of, 362
shear force (V) relations in,  

370–375, 398
Shear force (V), 344–345, 370–375, 396, 398

beams, 344–345, 370–375, 396, 398
bending moments (M) and, 344–345, 

370–375, 396, 398
concentrated load discontinuities, 371
couple moment (M0) and, 372
distributed load relations,  

370–375, 398
internal forces, 344–345, 370–375, 

396, 398
method of sections for, 344–345

Shell elements, mass moments of inertia, 
564, 577

Significant figures, 11
Simple truss, 275
Simply supported beam, 361
Sine functions, 617
Sine law, 22, 81
Single degree-of-freedom systems, 599, 601
Sliding vector, 128, 166
Slipping, 403–414, 459

friction and, 403–414, 459
impending motion of, 403,  

406–414, 459
kinetic frictional force (Fk),  

404–405, 459
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motion of, 404–414
points of contact, 404
problems involving, 406–414
static frictional force (Fs), 403, 405, 459
verge of, 403, 459

Slug, unit of, 8
Smooth surface support, 88, 246
Solving problems, procedure for, 12–14
Space trusses, structural analysis of, 

301–302, 337
Specific weight, center of gravity (G)  

and, 488
Spring constant (k), 88
Spring force (Fs), virtual work and, 597
Springs, free-body diagram of, 88, 117
Stability of a system, 252–253, 269, 601–606, 

613. See also Equilibrium
equilibrium configurations for, 

601–602, 613
potential energy and, 601–606
procedure for analysis of, 603
statical determinacy and, 252–253, 269
virtual work and, 601–606, 613

Stable equilibrium, 601–602
Static frictional force (Fs), 403, 405, 459
Statical determinacy, 251–259, 269

procedure for analysis of, 254
improper constraints and, 252–253
indeterminacy, 251, 269
reactive parallel forces, 243
redundant constraints and, 251
rigid-body equilibrium and,  

251–259, 269
stability and, 252–253, 269

Statically indeterminate bodies, 251, 269
Statics, 2–15

basic quantities, 4
concentrated force, 5
force, 4, 5–9
gravitational attraction, 7
historical development of, 4
idealizations, 5
length, 4, 8–9
mass, 4, 8–9
mechanics study of, 3
motion, 6
Newton’s laws, 6–7
numerical calculations for, 10–11
particles, 5
procedure for analysis of, 12–14
rigid bodies, 5
study of, 2–15
time, 4, 8
units of measurement, 7–10
weight, 7

Stiffness factor (k), 88
Stringers, 274
Structural analysis, 272–341, 343–350

compressive forces (C), 275–277, 
291–292

frames, 305–320, 337
free-body diagrams, 291–296, 

305–311, 337
internal forces and, 343–350
machines, 305–320, 337
method of joints, 276–284, 301, 335
method of sections, 291–296, 301, 336, 

343–350
multiforce members, 305
procedures for analysis of, 277, 293, 

301, 311, 345
space trusses, 301–302, 337
tensile forces (T), 275–277, 291–292
trusses, 273–304, 335–337
zero-force members, 282–284

Structural members, see Members
Support reactions, 209–211, 245–248, 

251–259, 268–269
coplanar force systems, 209–211, 268
improper constraints, 252–253
procedure for analysis of, 254
redundant constraints, 251
rigid-body equilibrium and, 209–211, 

245–248, 268–269
statical determinacy and, 251–259, 269
three-dimensional force systems, 

245–248, 251–259, 269
Surface area, centroid (C) and, 502, 

504–505, 524
Symmetry, see Axial symmetry; Axis of 

symmetry
System simplification, 166–171, 177–183

concurrent force system, 177
coplanar force system, 177
coplanar systems, 166–171, 177
equivalent system, reduction to, 

166–171, 177–183
force and couple moments, 167
parallel force systems, 178
procedures for analysis, 168, 178
reduction to a wrench, 179
three-dimensional systems,  

166–171, 177

Tangent functions, 617
Tensile forces (T), 275–277, 291–292

method of joints and, 276–277
method of sections and, 291–292
truss members, 275

Tetrahedron form, 301

Thread of a screw, 432
Three-dimensional systems, 44–49, 

56–58, 82–83, 106–110, 117, 166–171, 
245–259, 269.

	 See also Concurrent forces
addition of vectors, 47
azimuth angles, 46
Cartesian coordinate system for, 

44–49, 82–83
Cartesian unit vectors, 44
Cartesian vector representation, 45
concurrent forces, 47–49, 83, 106–110, 

117, 252
constraints for, 251–259, 269
coordinate direction angles,  

45–46
direction and, 45–47
equations of equilibrium, 106,  

250, 269
equilibrium of, 106–110, 117, 

245–259, 269
equivalent system, 166–171
force and couple moments, 166–171
force vectors, 44–49
free-body diagrams, 106
magnitude in, 45
particles, 106–110, 117
position vectors, 56–58, 83
procedure for analysis of, 106
reactive parallel forces, 253
rectangular components, 44
resultants, 47–49
right-hand rule, 44, 56
rigid bodies, 245–259
statical determinacy and,  

251–259, 269
support reactions for, 245–248, 

251–259, 269
transverse angles (u), 46–47

Three-force member equilibrium, 
230–231

Thrust bearing connections, 247, 248
Time, 4, 8

basic quantity of mechanics, 4
units of, 8

Tipping effect, balance of, 402, 459
Torque, 121. See also Moments (M)
Torsional (twisting) moment, 344, 396
Transformation equations, moments of 

inertia (I) and, 552
Translation of a couple moment, 582
Transverse angles, 46–47
Triangle rule, 18–19, 81
Triangular truss, 275
Trigonometric identities, 618
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Trusses, 273–304, 335–337
assumptions for design, 274–275, 301
compressive force (C) and, 275–277, 

291–292
floor beams, 274
joints, 273–274, 276–281
method of joints, 276–284, 301, 335
method of sections, 291–296, 301, 336
planar, 273
procedures for analysis of, 277,  

293, 301
purlins, 273
roof, 273–274, 335
simple, 273–275
space trusses, 301–302, 337
stringers, 274
structural analysis for, 273–304, 

335–337
tensile force (T) and, 275–277, 291–292
zero-force members, 282–284

Two-dimensional systems, 33–38, 82, 91–95, 
208–244. See also Coplanar forces

force vectors, 33–38, 82
particle equilibrium, 91–95
rigid-body equilibrium, 208–244

Two-force member equilibrium, 230–231

U.S. Customary (FPS) system of units, 8
Uniform distributed load, 370, 525
Uniform rigid bodies, 212
Unit vectors, 44, 59, 82
Units of measurement, 7–10

base, 7
conversion of, 9
derived, 7–8
International System (SI) of, 8, 9–10
prefixes, 9
rules for use, 10
U.S. Customary (FPS) system of, 8

Unknown member forces, 291–292, 336
Unstable equilibrium, 601–602

Varignon’s theorem, 132–134
Vectors, 16–85, 125–131, 146–147, 154, 201, 

250, 269
addition of, 18–19, 47
addition of forces, 20–26, 33–38
Cartesian coordinate system, 44–49, 

56–58, 69, 125–131, 201
Cartesian notation for, 34

components of a force, 18, 20–22, 81
concurrent forces, 47–49, 83
coplanar force systems, 33–38
cross product method of multiplica-

tion, 125–127
collinear, 19, 81
couple moments, formulation  

by, 154
direction and, 17, 33, 34, 45–47
division by scalars, 18
dot product, 69–73, 83
equations of equilibrium, 250, 269
force directed along a line, 59–62
forces and, 16–85
free, 154
line of action, 17, 59–62, 83
magnitude and, 17, 33, 34, 45
moment of a force about an axis, 

146–147
moments of a force, formulation by, 

128–131, 201
multiplication by scalars, 18
operations, 18–19
parallelogram law for, 18, 20–22, 81
physical quantity requirements, 17
position (r), 56–58, 83
procedure for analysis of, 22
rectangular components, 33–38,  

44, 82
resultant of a force, 18, 20–22, 81
scalar notation for, 33
scalars and, 17, 18, 69, 81
sliding, 128, 166
subtraction, 19
systems of coplanar forces, 33–38
three-dimensional systems, 44–49, 

82–83
triangle rule for, 18–19, 81
two-dimensional systems, 33–38, 82
unit, 44, 59, 82

Virtual work (U), 580–615
conservative forces and, 597–599
couple moment, work of, 582–583
displacement (d) and, 583–590, 

600, 612
equations for, 583
equilibrium and, 600–606, 613
force (F) and, 581–583, 585–590, 

597–598, 612
friction and, 598

frictionless systems, 600
movement as, 583
position coordinates for, 585–586, 

600, 612
potential energy (V) and,  

598–606, 613
principle of, 581, 583–590, 612
procedures for analysis using, 

586, 603
rigid-bodies, connected systems of, 

585–590
single degree-of-freedom systems, 

599, 601
spring force (Fs) and, 597
stability of a system, 601–606, 613
weight (W) and, 597
work (W) of a force, 581–583

Volume (V), 467, 470, 503–505, 523–524
axial rotation and symmetry, 

503–505, 524
centroid of (C), 467, 470, 503–505, 

523–524
integration of, 467, 523
Pappus and Guldinus, theorems of, 

503–505, 524
procedure for analysis of, 470

Wedges, 430–431, 460
Weight (W), 7, 212, 388–391, 398, 465–466, 

488, 523–524, 597
cables subjected to own,  

388–391, 398
center of gravity (G) and, 212, 

465–466, 523–524
composite bodies, 488, 524
conservative force of, 597
gravitational attraction and, 7
internal force of, 388–391, 398
rigid-body equilibrium and, 212
virtual work (U) and, 597

Work (W) of a force, 581–583. See also 
Virtual work

Wrench, reduction of force and moment 
to, 179

x, y, z position coordinates, 56, 83

Zero condition of equilibrium, 87, 117, 208
Zero-force members, method of joints  

and, 282–284



SI Prefixes

Multiple Exponential Form Prefix SI Symbol

1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

Submultiple

0.001 10−3 milli m

0.000 001 10−6 micro μ

0.000 000 001 10−9 nano n

Conversion Factors (FPS) to (SI)

Quantity
Unit of 

Measurement (FPS) Equals
Unit of 

Measurement (SI)

Force lb  4.448 N

Mass slug  14.59 kg

Length ft  0.3048 m

Conversion Factors (FPS)

	 1 ft = 12 in. (inches)
	 1 mi. (mile) = 5280 ft
	 1 kip (kilopound) = 1000 lb
	 1 ton = 2000 lb
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