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Method of Gauss Elimination

• The basic strategy is to successively solve one of

the equations of the set for one of the unknowns

and to eliminate that variable from the remaining

equations by substitution.

• The elimination of unknowns can be extended to

systems with more than two or three equations;

however, the method becomes extremely tedious

to solve by hand.
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Stage 1: (Forward Elimination Phase (

1. Search the first column of the augmented

matrix [A | b] from the top to the bottom for

the first non-zero entry, and then if

necessary, the second column (the case

where all the coefficients corresponding to

the first variable are zero), and then the

third column, and so on. The entry thus

found is called the current pivot.

2. Interchange, if necessary, the row

containing the current pivot with the first row.



3. Keeping the row containing the pivot (that

is, the first row) untouched, subtract

appropriate multiples of the first row from all

the other rows to obtain all zeroes below the

current pivot in its column.

4. Repeat the preceding steps on the sub-

matrix consisting of all those elements which

are below and to the right of the current pivot.

5. Stop when no further pivot can be found.

Stage 2: 

(Backward substitution to find the solution(
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Elimination process that does 

not alter the solution set:
1. Interchanging any two rows

2. Multiplying any row by a non-zero scalar

3. Adding or subtracting any scalar multiple 

of a row to another

This process is repeated until getting what is called

“echelon form”, that is until successively solve

one of the equations of the set for one of the

unknowns and to eliminate that variable from

the remaining equations by substitution.
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form



6 -2 2 4

12 -8 6 10

3 -13 9 3

-6 4 1 -18

x1

x2

x3

x4

12

34

27

-38



12

6


6 -2 2 4

0 -4 2 2

3 -13 9 3

-6 4 1 -18

x1

x2

x3

x4

12

10

27

-38



12 -8 6 10

6 -2 2 4
12

6
 

)

0 -4 2 2

3

6


3 -13 9 3

6 -2 2 4
3

6
 

)

0 -12 8 1

12

34

10

12

21

27 6 -2 2 4

0 -4 2 2

0 -12 8 1

-6 4 1 -18

x1

x2

x3

x4

12

10

21

-38


6

6




Example: Solve By Gauss Elimination
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Backward substitution: inner-product-based
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Naive Gauss Elimination

• Extension of method of elimination to large sets of
equations by developing a systematic scheme or
algorithm to eliminate unknowns and to back
substitute.

• As in the case of the solution of two equations, the
technique for n equations consists of two phases:

– Forward elimination of unknowns

– Back substitution
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Pseudo-code of Naive Gauss Elimination 

Method

(a) Forward Elimination           (b) Back substitution

k,j
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Pitfalls of Gauss Elimination Methods

1. Division by zero

2 x2 + 3 x3 = 8

4 x1 + 6 x2 + 7 x3 = -3 

2 x1 +   x2 + 6 x3 = 5

It is possible that during both elimination and back-

substitution phases a division by zero can occur.

2. Round-off errors

In the some examples you may kept 6 digits during the

calculations. However we may end up with closer results

to the real solution. For example

x3 = 7.00003, instead of x3 = 7.0

a11 = 0 

(the pivot element)



3. Ill-conditioned systems

x1 + 2x2 = 10

1.1x1 + 2x2 = 10.4

x1 + 2x2 = 10

1.05x1 + 2x2 = 10.4

Ill conditioned systems are those where small
changes in coefficients result in large change in
solution. Alternatively, it happens when two or
more equations are nearly identical, resulting a
wide ranges of answers to approximately satisfy the
equations. Since round off errors can induce small
changes in the coefficients, these changes can lead
to large solution errors.

 x1 = 4.0  &  x2 = 3.0

 x1 = 8.0  &  x2 = 1.0



4. Singular systems. 

• When two equations are identical, we would loose 
one degree of freedom and be dealing with case 
of n-1 equations for n unknowns. 

To check for singularity:

• After getting the forward elimination process and
getting the triangle system, then the determinant
for such a system is the product of all the diagonal
elements. If a zero diagonal element is created,
the determinant is Zero then we have a
singular system.

• The determinant of a singular system is zero.
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Techniques for Improving Solutions

1. Use of more significant figures to solve for

the round-off error.

2. Pivoting. If a pivot element is zero, elimination step

leads to division by zero. The same problem may arise,
when the pivot element is close to zero. This Problem
can be avoided by:

 Partial pivoting. Switching the rows so that the
largest element is the pivot element.

 Complete pivoting. Searching for the largest element
in all rows and columns then switching.

3. Scaling

 Solve problem of ill-conditioned system.

 Minimize round-off error



Use of more significant figures to solve for 

the round-off error :Example.

Use Gauss Elimination to solve these 2 equations: (keeping 

only 4 sig. figures)

0.0003 x1 + 3.0000 x2 = 2.0001

1.0000 x1 + 1.0000 x2 = 1.000

0.0003 x1 + 3.0000 x2 = 2.0001

- 9999.0 x2 = -6666.0

Solve: x2 = 0.6667 &  x1 = 0.0

The exact solution is 

x2 = 2/3 &  x1 = 1/3          Large round-off error



Use of more significant figures to solve for the 

round-off error :Example (cont’d).

3

2
2 x

0003.0

)3/2(30001.2
1


x

Significant 

Figures x2 x1

3                                      0.667                                  -3.33

4                                      0.6667                                 0.000

5                                      0.66667                               0.3000

6                                      0.666667                             0.33000

7                                      0.6666667                           0.333000

Checking the effect of the # of significant digits



Pivoting: Example
Now, solving the pervious example using the partial pivoting 

technique:
1.0000 x1+ 1.0000 x2 = 1.000

0.0003 x1+ 3.0000 x2 = 2.0001

The pivot is 1.0

1.0000 x1+ 1.0000 x2 = 1.000

2.9997 x2 = 1.9998

x2 = 0.6667 &  x1=0.3333

Checking the effect of the # of significant digits:

# of dig x2 x1 Ea% in x1

4 0.6667 0.3333 0.01

5 0.66667 0.33333 0.001



Scaling: Example

• Solve the following equations using naïve gauss elimination:

(keeping only 3 sig. figures)

2 x1+ 100,000 x2 = 100,000

x1 +               x2 = 2.0

• Forward elimination:

2 x1+   100.000 x2 = 100.000

- 50,0000 x2 = -50,0000

Solve x2 = 1.00 & x1 = 0.00

• The exact solution is x1 = 1.00002   & x2 = 0.99998
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Scaling: Example (cont’d)
B) Using the scaling algorithm to solve:

2 x1+ 100,000 x2 = 100,000
x1 +                x2 = 2.0

Scaling the first equation by dividing by 100,000:

0.00002 x1+               x2 = 1.0

x1+               x2 = 2.0

Rows are pivoted: 

x1    +              x2 = 2.0

0.00002 x1+               x2 = 1.0

Forward elimination yield:

x1    +                x2 = 2.0

x2 = 1.00

Solve: x2 = 1.00 & x1 = 1.00

The exact solution is x1 = 1.00002  &   x2 = 0.99998



Scaling: Example (cont’d)
C) The scaled coefficient indicate that pivoting is 

necessary.
We therefore pivot but retain the original coefficient to give:

x1 +                x2 = 2.0
2 x1+ 100,000 x2 = 100,000

Forward elimination yields:

x1    +                x2 = 2.0

100,000 x2 = 100,000 

Solve: x2 = 1.00 & x1 = 1.00

Thus, scaling was useful in determining 
whether pivoting was necessary, but 
the equation themselves did not require 
scaling to arrive at a correct  result.



Example:  Gauss Elimination
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Example:  Gauss Elimination (cont’d)
6 1 6 5 6

2 2 3 2 2 2 0.33333 1

4 3 0 1 7 3 0.66667 1
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Example:  Gauss Elimination (cont’d)
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Example:  Gauss Elimination (cont’d)

b) Back Substitution

6 1 6 5 6

0 3.6667 4 4.3333 11
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Gauss-Jordan Elimination

• It is a variation of Gauss elimination. The 

major differences are:

– When an unknown is eliminated, it is eliminated

from all other equations rather than just the

subsequent ones.

– All rows are normalized by dividing them by their 

pivot elements.

– Elimination step results in an identity matrix.

– It is not necessary to employ back substitution to 

obtain solution. 
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Gauss-Jordan Elimination- Example

0 2 0 1 0 1 0.16667 1 0.83335 1

2 2 3 2 2 2 2 3 2 21 4

4 3 0 1 7 4 3 0 1 74 / 6.0

6 1 6 5 6 0 2 0 1 0

R R

R

     
       
      
   

       

1 0.16667 1 0.83335 1

2 2 3 2 2 2 2 1

4 3 0 1 7 3 4 1

0 2 0 1 0

R R

R R

   
 

   
    
 
  
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1 0.16667 1 0.83335 1

0 1.6667 5 3.6667 2

0 3.6667 4 4.3334 7

0 2 0 1 0

   
 

 
  
 
  

Dividing the 2nd row by 1.6667 and reducing the second 

column. (operating above the diagonal as well as below) 

gives:

1 0 1.5 1.2000 1.4000

0 1 2.9999 2.2000 2.4000

0 0 15.000 12.400 19.800

0 0 5.9998 3.4000 4.8000

   
 

 
 
 

   

Divide the 3rd row by 15.000 and make the elements in 

the 3rd Column zero.



1 0 0 0.04000 0.58000

0 1 0 0.27993 1.5599

0 0 1 0.82667 1.3200

0 0 0 1.5599 3.1197

  
 

 
 
 

  

Divide the 4th row by 1.5599 and create zero above the 

diagonal in the fourth column.

1 0 0 0 0.49999

0 1 0 0 1.0001

0 0 1 0 0.33326

0 0 0 1 1.9999

  
 
 
 
 

  

Note: Gauss-Jordan method requires almost 50 % more

operations than Gauss elimination; therefore it is not

recommended to use it.


