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Method of Gauss Elimination

» The basic strategy Is to successively solve one of
the equations of the set for one of the unknowns
and to eliminate that variable from the remaining
equations by substitution.

« The elimination of unknowns can be extended to
systems with more than two or three equations;
however, the method becomes extremely tedious
to solve by hand.
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Stage 1: (Forward Elimination Phase )

1. Search the first column of the augmented

matrix [A | b] from the top to the bottom for
the first non-zero entry, and then Iif
necessary, the second column (the case
where all the coefficients corresponding to
the first variable are zero), and then the
third column, and so on. The entry thus
found Is called the current pivot.

2. Interchange, If necessary, the row
containing the current pivot with the first row.



3. Keeping the row containing the pivot (that

1S, t
appro

ne first row) untouched, subtract
oriate multiples of the first row from all

the ot

ner rows to obtain all zeroes below the

current pivot in its column.

4. Re

peat the preceding steps on the sub-

matrix consisting of all those elements which
are below and to the right of the current pivot.

5. Sto
Stage

P when no further pivot can be found.
2.

(Backward substitution to find the solution)
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Elimination process that does
not alter the solution set:

1. Interchanging any two rows
2. Multiplying any row by a non-zero scalar

3. Adding or subtracting any scalar multiple
of a row to another

This process Is repeated until getting what is called
“echelon form?”, that is until successively solve
one of the equations of the set for one of the
unknowns and to eliminate that variable from
the remaining equations by substitution.
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Example: Solve By Gauss Elimination

‘ N
12 6 -2 2 4
6L —15 .8 6 10
3-13 9 3
6 4 1 -18
\ J L
12|-8| 6 10| |34
L TeT2l214] (12
+) 6
042 2 10
313 93] |27
3
xlel-2l2]a] |12
+) 6
ol12l8|1| |21

x1
X2
X3
x4

B -

J -

3

6
=5
6

12
34
27
-38

\

»
»

6 -2

3 -13
-6 4

6 -2

0 -12
6 4

R O[NNI

00 NN

1
= N
o0 w &

1
BN
oo i




6|4]1]18 [a8 6|-2]2]4 X1 12
—6 ~12 )
S [e[2[2]a] [7] -2 0l-a|2]2 x2| | _ | |10
+) 6 ~0-12 8| 1 X3 21
0 2 3-14 -26 | 0 2 3-14) \x4/ \-26
( N\ N s N
e ol2]2 4| | XL 12| “— First row does not
vy il R X2l = |1 change thereafter
- 0 -12 8 1 x3 21
02 314 | x4 26
\ J Y, N\ Y,
( \ N ~
12/8 (1] [21 sT21 212 » >
12 _
+) - olol2]5]]|[x3 9
0/ 2/3-14| | x4 26
0121 9 \ J ), g

Prof. Dr. Ibrahim Abu-Alshaikh, JU




x1
X2
X3
x4

212 4
-4 2 2

6
0

-5

0O 0 2

0 0 413

-21

0 4 -13

echelon

12

-9

x1
X2
X3
x4

212 |4

4122
0 0 2
>0 0 4 -13

6
0

-5

212 4
-4 2|2

6
0

-5

0 0 2

-21

4 |-13

Prof. Dr. Ibrahim Abu-Alshaikh, JU



O O O O

—4X, +2X%, +2X, =10 = X, =-3

Backward substitution: inner-product-based
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Backward substitution: outer-product-based
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Nalve Gauss Elimination

« Extension of method of elimination to large sets of
equations by developing a systematic scheme or
algorithm to eliminate unknowns and to back

substitute.

 As In the case of the solution of two equations, the
technique for n equations consists of two phases:

— Forward elimination of unknowns
— Back substitution
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Pseudo-code of Naive Gauss Elimination
Method

(a) Forward Elimination

(a) D0 k=1, n—1
DO i = k+1, n
factor = ajx / axx
DO j=k+1ton

a)"j S af.j = faCtOl" S

END DO
b; = b; — factor - by
END DO
END DO
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(b) Back substitution

(b)

Xo = by / ann
D0 i =n-1, 1, —1
sum = 0
DO j=1+1, n
sum = sum + a;j i X;
END DO
Xi = (b; — sum) / aj i
END DO



Pitfalls of Gauss Elimination Methods

1. Division by zero

2 X, + 3 x; =
4 x, + 6 x, + 7 x5 =

2 x, + X, + 6 x; =

8
-3
5

a;; =0
(the pivot element)

It is possible that during both elimination and back-
substitution phases a division by zero can occur.

2. Round-off errors

In the some examples you may kept 6 digits during the
calculations. However we may end up with closer results

to the real solution. For example

X5 = 7.00003, instead of x; = 7.0



3. Ill-conditioned systems
x, + 2x,= 10
1.1x, + 2x, = 10.4

>x,=40 & X,=3.0

x, + 2x, = 10

2> x,=80 & x,=1.0
1.05x; + 2x, = 10.4

Ill conditioned systems are those where small
changes in coefficients result in large change in
solution. Alternatively, it happens when two or
more equations are nearly identical, resulting a
wide ranges of answers to approximately satisfy the
equations. Since round off errors can induce small
changes in the coefficients, these changes can lead
to large solution errors.




4. Singular systems.

e When two equations are identical, we would loose
one degree of freedom and be dealing with case
of n-1 equations for 7 unknowns.

To check for singularity:

o After getting the forward elimination process and
getting the triangle system, then the determinant
for such a system is the product of all the diagonal
elements. If a zero diagonal element is created,
the determinant is Zero then we have a
singular system.

e The determinant of a singular system is zero.
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Techniques for Improving Solutions

1. Use of more significant figures to solve for
the round-off error.

2. Pivoting. If a pivot element is zero, elimination step
leads to division by zero. The same problem may arise,
when the pivot element is close to zero. This Problem
can be avoided by:

» Partial pivoting. Switching the rows so that the
largest element is the pivot element.

» Complete pivoting. Searching for the largest element
in all rows and columns then switching.
3. Scaling
» Solve problem of ill-conditioned system.
» Minimize round-off error



Use of more significant figures to solve for
the round-off error :Example.

Use Gauss Elimination to solve these 2 equations: (keeping
only 4 sig. figures)

0.0003 x, + 3.0000 x, = 2.0001
1.0000 x;, + 1.0000 x, = 1.000

0.0003 x, + 3.0000 x, = 2.0001
- 9999.0 x, = -6666.0

Solve: x, =0.6667 & x; =0.0
The exact solution is
=2/3& x,=1/3 ‘ Large round-off error



Use of more significant figures to solve for the
round-off error :Example (cont’d).

X, = 2 . _ 2.0001-3(2/3)

3 ' 0.0003

Checking the effect of the # of significant digits

Significant
Figures X2 X1
3 0.667 -3.33

4 0.6667 0.000

5 0.66667 0.3000

6 0.666667 0.33000
7 0.6666667 0.333000




Pivoting: Example

Now, solving the pervious example using the partial pivoting

technique:
1.0000 x,+ 1.0000 x,

0.0003 x,+ 3.0000 x,

1.000
2.0001

The pivotis 1.0

1.0000 x,+ 1.0000 x, = 1.000
2.9997 x, = 1.9998

X, = 0.6667 & x,=0.3333
Checking the effect of the # of significant digits:
# of dig X, X4 Ea% in x1

4 0.6667 0.3333 0.01
S 0.66667 0.33333 0.001



Scaling: Example

« Solve the following equations using naive gauss elimination:
(keeping only 3 sig. figures)

2 X,+ 100,000 x, = 100,000
Xy + X, =2.0
* Forward elimination:
2 X+ 100.000 x, = 100.000
- 50,0000 x, = -50,0000
Solve x, =1.00 & X, = 0.00

e The exact solution is X, = 1.00002 & x, = 0.99998
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Scaling: Example (cont’d)

B) Using the scaling algorithm to solve:

2 X,+ 100,000 x, = 100,000

X1+ X, =2.0
Scaling the first equation by dividing by 100,000:
0.00002 x,+ X, = 1.0
X1+ X, =2.0
Rows are pivoted:
X{ + X, =2.0
0.00002 x,+ X, = 1.0
Forward elimination yield:
X{ + X, =2.0
=1.00

Solve: x, = 1.00 & X, = 1.00

The exact solution is x; = 1.00002 & X, =

0.99998



Scaling: Example (cont’d)

C) The scaled coefficient indicate that pivoting is
necessary.

We therefore pivot but retain the original coefficient to give:
X, + X, =2.0
2 X;+ 100,000 x, = 100,000

Forward elimination yields:
X{ + X, =2.0
100,000 x, = 100,000
Solve: x, = 1.00 & X; = 1.00

Thus, scaling was useful in determining
whether pivoting was necessary, but
the equation themselves did not require
scaling to arrive at a correct result.



Example: Gauss Elimination
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Example: Gauss Elimination (cont’d)
6 1 6 -5 |6
2 2 3 2 |-2|R2-0.33333-R1
4 -3 0 1 |-7| R3-0.66667-R1

2 0 1 |0

0

6 1 -6 -5 6
0 16667 S5 3.6667 |-4
0
0

R2—=R3
-3.6667 4 4.3333 |-11

2 0 1 0

6 1 -6 -5 6
0 -3.6667 4 43333 |-11
0 16667 5 3.6667 |4
0 2 0 1 0




Example: Gauss Elimination (cont’d)

6 1 6 -5 6
0 -3.6667 4 4.3333 |-11

0 16667 5 3.6667 |—4 |R3+0.45455-R?2

0 2 0 1 0 |R4+0.54545-R2

6 1 —6 5 6

0 -36667 4 43333 | -11

0 0 6.8182 5.6364 |-9.0001

0 0 2.1818 3.3636 |-5.9999 |R4-0.32000-R3

—3.6667 4 4.3333 -11
6.8182 5.6364 |-9.0001
0 0 1.5600 |-3.1199

O O O O
o




Example: Gauss Elimination (cont’d)

0 1 —6 -5 0
0 -3.6667 4 4.3333 -11 echelon
0 0 6.8182 5.6364 |[-9.0001 form
0 0 0 15600 |-3.1199
b) Back Substitution
. = 31199 _ 1 090q
1.5600
—9.0001-5.6364 (1.
‘.- 9.0001-5.6364(-1.9999) _ . .o,
6.8182
~11-4.3333(-1.9999) - 4(0.33325)
X, = =1.0000
—3.6667
6+5(—~1.9999)+6(0.33325)-1(1.0000)
X, = = —0.50000

6



Gauss-Jordan Elimination

* ItIs a variation of Gauss elimination. The
major differences are:

—When an unknown is eliminated, it is eliminated
from all other equations rather than just the
subseqguent ones.

— All rows are normalized by dividing them by their
pivot elements.

— Elimination step results in an identity matrix.

— It Is not necessary to employ back substitution to
obtain solution.
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Gauss-Jordan Elimination- Example

2 0 1

2 3 2
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1 0.16667 -1 -0.83335 |1
0 1.6667 5 3.6667 |-2
0 -3.6667 4 43334 |7
0 2 0 1 0

Dividing the 2" row by 1.6667 and reducing the second
column. (operating above the diagonal as well as below)
gives:

0 -15 -1.2000 |1.4000
1 29999 2.2000 [-2.4000
0 15.000 12.400 |-19.800
0 -5.9998 -3.4000 |4.8000

Divide the 39 row by 15.000 and make the elements in
the 3'Y Column zero.

o o o -




1 0 0 0.04000 [|-0.58000
0 1 0 -0.27993 | 1.5599
0 0 1 0.82667 |-1.3200
0 0 0 15599 |-3.1197

Divide the 4t row by 1.5599 and create zero above the
diagonal in the fourth column.

1 0 0 0 |-0.49999
0 1 0 0 | 1.0001

0 0 1 0 |-0.33326
0 0 0 1 |-19999

Note: Gauss-Jordan method requires almost 50 % more
operations than Gauss elimination; therefore it is not
recommended to use it.



